repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/batch_norm.rs
//! Batch Normalization. //! //! This layer applies Batch Normalization over a mini-batch of inputs as described in [`Batch //! Normalization`]. The input is expected to have at least three dimensions. //! //! Note that this implementation is for inference only, there is no possibility to track the //! running stats. //! //! [`Batch Normalization`]: https://arxiv.org/abs/1502.03167 use candle::{DType, Result, Tensor, Var}; #[derive(Debug, Clone, Copy, PartialEq)] pub struct BatchNormConfig { pub eps: f64, pub remove_mean: bool, /// The meaning of affine here is different from LayerNorm: when false there is no learnable /// parameter at all, 1 used for gamma and 0 for beta. pub affine: bool, /// Controls exponential moving average of running stats. Defaults to 0.1 /// /// `running_stat * (1.0 - momentum) + stat * momentum`. pub momentum: f64, } impl Default for BatchNormConfig { fn default() -> Self { Self { eps: 1e-5, remove_mean: true, affine: true, momentum: 0.1, } } } impl From<f64> for BatchNormConfig { fn from(eps: f64) -> Self { Self { eps, ..Default::default() } } } #[derive(Clone, Debug)] pub struct BatchNorm { running_mean: Var, running_var: Var, weight_and_bias: Option<(Tensor, Tensor)>, remove_mean: bool, eps: f64, momentum: f64, } impl BatchNorm { fn check_validity(&self, num_features: usize) -> Result<()> { if self.eps < 0. { candle::bail!("batch-norm eps cannot be negative {}", self.eps) } if !(0.0..=1.0).contains(&self.momentum) { candle::bail!( "batch-norm momentum must be between 0 and 1, is {}", self.momentum ) } if self.running_mean.dims() != [num_features] { candle::bail!( "batch-norm running mean has unexpected shape {:?} should have shape [{num_features}]", self.running_mean.shape(), ) } if self.running_var.dims() != [num_features] { candle::bail!( "batch-norm running variance has unexpected shape {:?} should have shape [{num_features}]", self.running_var.shape(), ) } if let Some((ref weight, ref bias)) = self.weight_and_bias.as_ref() { if weight.dims() != [num_features] { candle::bail!( "batch-norm weight has unexpected shape {:?} should have shape [{num_features}]", weight.shape(), ) } if bias.dims() != [num_features] { candle::bail!( "batch-norm weight has unexpected shape {:?} should have shape [{num_features}]", bias.shape(), ) } } Ok(()) } pub fn new( num_features: usize, running_mean: Tensor, running_var: Tensor, weight: Tensor, bias: Tensor, eps: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: Some((weight, bias)), remove_mean: true, eps, momentum: 0.1, }; out.check_validity(num_features)?; Ok(out) } pub fn new_no_bias( num_features: usize, running_mean: Tensor, running_var: Tensor, eps: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: None, remove_mean: true, eps, momentum: 0.1, }; out.check_validity(num_features)?; Ok(out) } pub fn new_with_momentum( num_features: usize, running_mean: Tensor, running_var: Tensor, weight: Tensor, bias: Tensor, eps: f64, momentum: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: Some((weight, bias)), remove_mean: true, eps, momentum, }; out.check_validity(num_features)?; Ok(out) } pub fn new_no_bias_with_momentum( num_features: usize, running_mean: Tensor, running_var: Tensor, eps: f64, momentum: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: None, remove_mean: true, eps, momentum, }; out.check_validity(num_features)?; Ok(out) } pub fn running_mean(&self) -> &Tensor { self.running_mean.as_tensor() } pub fn running_var(&self) -> &Tensor { self.running_var.as_tensor() } pub fn eps(&self) -> f64 { self.eps } pub fn weight_and_bias(&self) -> Option<(&Tensor, &Tensor)> { self.weight_and_bias.as_ref().map(|v| (&v.0, &v.1)) } pub fn momentum(&self) -> f64 { self.momentum } pub fn forward_train(&self, x: &Tensor) -> Result<Tensor> { let num_features = self.running_mean.as_tensor().dim(0)?; let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; if x.rank() < 2 { candle::bail!( "batch-norm input tensor must have at least two dimensions ({:?})", x.shape() ) } if x.dim(1)? != num_features { candle::bail!( "batch-norm input doesn't have the expected number of features ({:?} <> {})", x.shape(), num_features ) } let x = x.to_dtype(internal_dtype)?; let x = x.transpose(0, 1)?; let x_dims_post_transpose = x.dims(); // Flatten all the dimensions exception the channel one as this performs a Spatial Batch // Normalization. let x = x.flatten_from(1)?.contiguous()?; let x = if self.remove_mean { // The mean is taken over dim 1 as this is the batch dim after the transpose(0, 1) above. let mean_x = x.mean_keepdim(1)?; let updated_running_mean = ((self.running_mean.as_tensor() * (1.0 - self.momentum))? + (mean_x.flatten_all()? * self.momentum)?)?; self.running_mean.set(&updated_running_mean)?; x.broadcast_sub(&mean_x)? } else { x }; // The mean is taken over dim 1 as this is the batch dim after the transpose(0, 1) above. let norm_x = x.sqr()?.mean_keepdim(1)?; let updated_running_var = { let batch_size = x.dim(1)? as f64; let running_var_weight = 1.0 - self.momentum; let norm_x_weight = self.momentum * batch_size / (batch_size - 1.0); ((self.running_var.as_tensor() * running_var_weight)? + (&norm_x.flatten_all()? * norm_x_weight)?)? }; self.running_var.set(&updated_running_var)?; let x = x .broadcast_div(&(norm_x + self.eps)?.sqrt()?)? .to_dtype(x_dtype)?; let x = match &self.weight_and_bias { None => x, Some((weight, bias)) => { let weight = weight.reshape(((), 1))?; let bias = bias.reshape(((), 1))?; x.broadcast_mul(&weight)?.broadcast_add(&bias)? } }; x.reshape(x_dims_post_transpose)?.transpose(0, 1) } fn forward_eval(&self, x: &Tensor) -> Result<Tensor> { let target_shape: Vec<usize> = x .dims() .iter() .enumerate() .map(|(idx, v)| if idx == 1 { *v } else { 1 }) .collect(); let target_shape = target_shape.as_slice(); let x = x .broadcast_sub(&self.running_mean.as_tensor().reshape(target_shape)?)? .broadcast_div( &(self.running_var.as_tensor().reshape(target_shape)? + self.eps)?.sqrt()?, )?; match &self.weight_and_bias { None => Ok(x), Some((weight, bias)) => { let weight = weight.reshape(target_shape)?; let bias = bias.reshape(target_shape)?; x.broadcast_mul(&weight)?.broadcast_add(&bias) } } } } impl crate::ModuleT for BatchNorm { fn forward_t(&self, x: &Tensor, train: bool) -> Result<Tensor> { if train { self.forward_train(x) } else { self.forward_eval(x) } } } pub fn batch_norm<C: Into<BatchNormConfig>>( num_features: usize, config: C, vb: crate::VarBuilder, ) -> Result<BatchNorm> { use crate::Init; let config = config.into(); if config.eps < 0. { candle::bail!("batch-norm eps cannot be negative {}", config.eps) } let running_mean = vb.get_with_hints(num_features, "running_mean", Init::Const(0.))?; let running_var = vb.get_with_hints(num_features, "running_var", Init::Const(1.))?; let weight_and_bias = if config.affine { let weight = vb.get_with_hints(num_features, "weight", Init::Const(1.))?; let bias = vb.get_with_hints(num_features, "bias", Init::Const(0.))?; Some((weight, bias)) } else { None }; Ok(BatchNorm { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias, remove_mean: config.remove_mean, eps: config.eps, momentum: config.momentum, }) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/sequential.rs
//! A sequential layer used to chain multiple layers and closures. use candle::{Module, Result, Tensor}; /// A sequential layer combining multiple other layers. pub struct Sequential { layers: Vec<Box<dyn Module>>, } /// Creates a new empty sequential layer. pub fn seq() -> Sequential { Sequential { layers: vec![] } } impl Sequential { /// The number of sub-layers embedded in this layer. pub fn len(&self) -> i64 { self.layers.len() as i64 } /// Returns true if this layer does not have any sub-layer. pub fn is_empty(&self) -> bool { self.layers.is_empty() } } impl Module for Sequential { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let mut xs = xs.clone(); for layer in self.layers.iter() { xs = layer.forward(&xs)? } Ok(xs) } } impl Sequential { /// Appends a layer after all the current layers. #[allow(clippy::should_implement_trait)] pub fn add<M: Module + 'static>(mut self, layer: M) -> Self { self.layers.push(Box::new(layer)); self } /// Appends a closure after all the current layers. pub fn add_fn<F>(self, f: F) -> Self where F: 'static + Fn(&Tensor) -> Result<Tensor> + Send + Sync, { self.add(super::func(f)) } /// Applies the forward pass and returns the output for each layer. pub fn forward_all(&self, xs: &Tensor) -> Result<Vec<Tensor>> { let mut vec = Vec::with_capacity(self.layers.len()); let mut xs = xs.clone(); for layer in self.layers.iter() { xs = layer.forward(&xs)?; vec.push(xs.clone()) } Ok(vec) } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/conv.rs
//! Convolution Layers. use crate::BatchNorm; use candle::{Result, Tensor}; #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct Conv1dConfig { pub padding: usize, pub stride: usize, pub dilation: usize, pub groups: usize, } impl Default for Conv1dConfig { fn default() -> Self { Self { padding: 0, stride: 1, dilation: 1, groups: 1, } } } #[derive(Clone, Debug)] pub struct Conv1d { weight: Tensor, bias: Option<Tensor>, config: Conv1dConfig, } impl Conv1d { pub fn new(weight: Tensor, bias: Option<Tensor>, config: Conv1dConfig) -> Self { Self { weight, bias, config, } } pub fn config(&self) -> &Conv1dConfig { &self.config } pub fn weight(&self) -> &Tensor { &self.weight } pub fn bias(&self) -> Option<&Tensor> { self.bias.as_ref() } } impl crate::Module for Conv1d { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = x.conv1d( &self.weight, self.config.padding, self.config.stride, self.config.dilation, self.config.groups, )?; match &self.bias { None => Ok(x), Some(bias) => { let b = bias.dims1()?; let bias = bias.reshape((1, b, 1))?; Ok(x.broadcast_add(&bias)?) } } } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct ConvTranspose1dConfig { pub padding: usize, pub output_padding: usize, pub stride: usize, pub dilation: usize, // TODO: support groups. } impl Default for ConvTranspose1dConfig { fn default() -> Self { Self { padding: 0, output_padding: 0, stride: 1, dilation: 1, } } } #[derive(Clone, Debug)] pub struct ConvTranspose1d { weight: Tensor, bias: Option<Tensor>, config: ConvTranspose1dConfig, } impl ConvTranspose1d { pub fn new(weight: Tensor, bias: Option<Tensor>, config: ConvTranspose1dConfig) -> Self { Self { weight, bias, config, } } pub fn config(&self) -> &ConvTranspose1dConfig { &self.config } } impl crate::Module for ConvTranspose1d { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = x.conv_transpose1d( &self.weight, self.config.padding, self.config.output_padding, self.config.stride, self.config.dilation, )?; match &self.bias { None => Ok(x), Some(bias) => { let b = bias.dims1()?; let bias = bias.reshape((1, b, 1, 1))?; Ok(x.broadcast_add(&bias)?) } } } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct Conv2dConfig { pub padding: usize, pub stride: usize, pub dilation: usize, pub groups: usize, } impl Default for Conv2dConfig { fn default() -> Self { Self { padding: 0, stride: 1, dilation: 1, groups: 1, } } } #[derive(Clone, Debug)] pub struct Conv2d { weight: Tensor, bias: Option<Tensor>, config: Conv2dConfig, } impl Conv2d { pub fn new(weight: Tensor, bias: Option<Tensor>, config: Conv2dConfig) -> Self { Self { weight, bias, config, } } pub fn config(&self) -> &Conv2dConfig { &self.config } pub fn weight(&self) -> &Tensor { &self.weight } pub fn bias(&self) -> Option<&Tensor> { self.bias.as_ref() } pub fn absorb_bn(&self, bn: &BatchNorm) -> Result<Self> { if let Some((w_bn, b_bn)) = bn.weight_and_bias() { let std_ = w_bn.div(&((bn.running_var() + bn.eps())?.sqrt()?))?; let weight = self .weight() .broadcast_mul(&(std_.reshape((self.weight().dims4()?.0, 1, 1, 1))?))?; let bias = match &self.bias { None => b_bn.sub(&(std_.mul(bn.running_mean())?))?, Some(bias) => b_bn.add(&(std_.mul(&bias.sub(bn.running_mean())?)?))?, }; Ok(Self { weight, bias: Some(bias), config: self.config, }) } else { candle::bail!("batch norm does not have weight_and_bias") } } } impl crate::Module for Conv2d { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = x.conv2d( &self.weight, self.config.padding, self.config.stride, self.config.dilation, self.config.groups, )?; match &self.bias { None => Ok(x), Some(bias) => { let b = bias.dims1()?; let bias = bias.reshape((1, b, 1, 1))?; Ok(x.broadcast_add(&bias)?) } } } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct ConvTranspose2dConfig { pub padding: usize, pub output_padding: usize, pub stride: usize, pub dilation: usize, // TODO: support groups. } impl Default for ConvTranspose2dConfig { fn default() -> Self { Self { padding: 0, output_padding: 0, stride: 1, dilation: 1, } } } #[derive(Clone, Debug)] pub struct ConvTranspose2d { weight: Tensor, bias: Option<Tensor>, config: ConvTranspose2dConfig, } impl ConvTranspose2d { pub fn new(weight: Tensor, bias: Option<Tensor>, config: ConvTranspose2dConfig) -> Self { Self { weight, bias, config, } } pub fn config(&self) -> &ConvTranspose2dConfig { &self.config } } impl crate::Module for ConvTranspose2d { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = x.conv_transpose2d( &self.weight, self.config.padding, self.config.output_padding, self.config.stride, self.config.dilation, )?; match &self.bias { None => Ok(x), Some(bias) => { let b = bias.dims1()?; let bias = bias.reshape((1, b, 1, 1))?; Ok(x.broadcast_add(&bias)?) } } } } pub fn conv1d( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: Conv1dConfig, vb: crate::VarBuilder, ) -> Result<Conv1d> { let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; let ws = vb.get_with_hints( (out_channels, in_channels / cfg.groups, kernel_size), "weight", init_ws, )?; let bound = 1. / (in_channels as f64).sqrt(); let init_bs = crate::Init::Uniform { lo: -bound, up: bound, }; let bs = vb.get_with_hints(out_channels, "bias", init_bs)?; Ok(Conv1d::new(ws, Some(bs), cfg)) } pub fn conv_transpose1d( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: ConvTranspose1dConfig, vb: crate::VarBuilder, ) -> Result<ConvTranspose1d> { let bound = 1. / (out_channels as f64 * kernel_size as f64).sqrt(); let init = crate::Init::Uniform { lo: -bound, up: bound, }; let ws = vb.get_with_hints((in_channels, out_channels, kernel_size), "weight", init)?; let bs = vb.get_with_hints(out_channels, "bias", init)?; Ok(ConvTranspose1d::new(ws, Some(bs), cfg)) } pub fn conv_transpose1d_no_bias( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: ConvTranspose1dConfig, vb: crate::VarBuilder, ) -> Result<ConvTranspose1d> { let bound = 1. / (out_channels as f64 * kernel_size as f64).sqrt(); let init = crate::Init::Uniform { lo: -bound, up: bound, }; let ws = vb.get_with_hints((in_channels, out_channels, kernel_size), "weight", init)?; Ok(ConvTranspose1d::new(ws, None, cfg)) } pub fn conv2d( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: Conv2dConfig, vb: crate::VarBuilder, ) -> Result<Conv2d> { let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; let ws = vb.get_with_hints( ( out_channels, in_channels / cfg.groups, kernel_size, kernel_size, ), "weight", init_ws, )?; let bound = 1. / (in_channels as f64).sqrt(); let init_bs = crate::Init::Uniform { lo: -bound, up: bound, }; let bs = vb.get_with_hints(out_channels, "bias", init_bs)?; Ok(Conv2d::new(ws, Some(bs), cfg)) } pub fn conv2d_no_bias( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: Conv2dConfig, vb: crate::VarBuilder, ) -> Result<Conv2d> { let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; let ws = vb.get_with_hints( ( out_channels, in_channels / cfg.groups, kernel_size, kernel_size, ), "weight", init_ws, )?; Ok(Conv2d::new(ws, None, cfg)) } pub fn conv_transpose2d( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: ConvTranspose2dConfig, vb: crate::VarBuilder, ) -> Result<ConvTranspose2d> { let bound = 1. / (out_channels as f64).sqrt() / kernel_size as f64; let init = crate::Init::Uniform { lo: -bound, up: bound, }; let ws = vb.get_with_hints( (in_channels, out_channels, kernel_size, kernel_size), "weight", init, )?; let bs = vb.get_with_hints(out_channels, "bias", init)?; Ok(ConvTranspose2d::new(ws, Some(bs), cfg)) } pub fn conv_transpose2d_no_bias( in_channels: usize, out_channels: usize, kernel_size: usize, cfg: ConvTranspose2dConfig, vb: crate::VarBuilder, ) -> Result<ConvTranspose2d> { let bound = 1. / (out_channels as f64).sqrt() / kernel_size as f64; let init = crate::Init::Uniform { lo: -bound, up: bound, }; let ws = vb.get_with_hints( (in_channels, out_channels, kernel_size, kernel_size), "weight", init, )?; Ok(ConvTranspose2d::new(ws, None, cfg)) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/optim.rs
//! Various optimization algorithms. use candle::{Result, Tensor, Var}; /// The interface optimizers should implement. pub trait Optimizer: Sized { type Config: Sized; fn new(vars: Vec<Var>, config: Self::Config) -> Result<Self>; fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()>; fn learning_rate(&self) -> f64; fn set_learning_rate(&mut self, lr: f64); fn empty(config: Self::Config) -> Result<Self> { Self::new(vec![], config) } fn backward_step(&mut self, loss: &Tensor) -> Result<()> { let grads = loss.backward()?; self.step(&grads) } fn from_slice(vars: &[&Var], config: Self::Config) -> Result<Self> { let vars: Vec<_> = vars.iter().map(|&v| v.clone()).collect(); Self::new(vars, config) } } /// Optimizer for Stochastic Gradient Descent. /// /// Contrary to the PyTorch implementation of SGD, this version does not support momentum. #[derive(Debug)] pub struct SGD { vars: Vec<Var>, learning_rate: f64, } impl Optimizer for SGD { type Config = f64; fn new(vars: Vec<Var>, learning_rate: f64) -> Result<Self> { let vars = vars .into_iter() .filter(|var| var.dtype().is_float()) .collect(); Ok(Self { vars, learning_rate, }) } fn learning_rate(&self) -> f64 { self.learning_rate } fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()> { for var in self.vars.iter() { if let Some(grad) = grads.get(var) { var.set(&var.sub(&(grad * self.learning_rate)?)?)?; } } Ok(()) } fn set_learning_rate(&mut self, lr: f64) { self.learning_rate = lr } } impl SGD { pub fn into_inner(self) -> Vec<Var> { self.vars } pub fn push(&mut self, var: &Var) { self.vars.push(var.clone()) } } #[derive(Clone, Debug)] pub struct ParamsAdamW { pub lr: f64, pub beta1: f64, pub beta2: f64, pub eps: f64, pub weight_decay: f64, } impl Default for ParamsAdamW { fn default() -> Self { Self { lr: 0.001, beta1: 0.9, beta2: 0.999, eps: 1e-8, weight_decay: 0.01, } } } #[derive(Debug)] struct VarAdamW { var: Var, first_moment: Var, second_moment: Var, } #[derive(Debug)] pub struct AdamW { vars: Vec<VarAdamW>, step_t: usize, params: ParamsAdamW, } impl Optimizer for AdamW { type Config = ParamsAdamW; fn new(vars: Vec<Var>, params: ParamsAdamW) -> Result<Self> { let vars = vars .into_iter() .filter(|var| var.dtype().is_float()) .map(|var| { let dtype = var.dtype(); let shape = var.shape(); let device = var.device(); let first_moment = Var::zeros(shape, dtype, device)?; let second_moment = Var::zeros(shape, dtype, device)?; Ok(VarAdamW { var, first_moment, second_moment, }) }) .collect::<Result<Vec<_>>>()?; Ok(Self { vars, params, step_t: 0, }) } fn learning_rate(&self) -> f64 { self.params.lr } fn set_learning_rate(&mut self, lr: f64) { self.params.lr = lr } fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()> { self.step_t += 1; let lr = self.params.lr; let lambda = self.params.weight_decay; let lr_lambda = lr * lambda; let beta1 = self.params.beta1; let beta2 = self.params.beta2; let scale_m = 1f64 / (1f64 - beta1.powi(self.step_t as i32)); let scale_v = 1f64 / (1f64 - beta2.powi(self.step_t as i32)); for var in self.vars.iter() { let theta = &var.var; let m = &var.first_moment; let v = &var.second_moment; if let Some(g) = grads.get(theta) { // This involves locking 3 RWLocks per params, if the parameters are large this // should not be an issue but this may be problematic with models with lots of // small parameters. let next_m = ((m.as_tensor() * beta1)? + (g * (1.0 - beta1))?)?; let next_v = ((v.as_tensor() * beta2)? + (g.sqr()? * (1.0 - beta2))?)?; let m_hat = (&next_m * scale_m)?; let v_hat = (&next_v * scale_v)?; let next_theta = (theta.as_tensor() * (1f64 - lr_lambda))?; let adjusted_grad = (m_hat / (v_hat.sqrt()? + self.params.eps)?)?; let next_theta = (next_theta - (adjusted_grad * lr)?)?; m.set(&next_m)?; v.set(&next_v)?; theta.set(&next_theta)?; } } Ok(()) } } impl AdamW { pub fn new_lr(vars: Vec<Var>, learning_rate: f64) -> Result<Self> { let params = ParamsAdamW { lr: learning_rate, ..ParamsAdamW::default() }; Self::new(vars, params) } pub fn params(&self) -> &ParamsAdamW { &self.params } pub fn set_params(&mut self, params: ParamsAdamW) { self.params = params; } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/lib.rs
pub mod activation; pub mod batch_norm; pub mod conv; pub mod embedding; pub mod encoding; pub mod func; pub mod group_norm; pub mod init; pub mod layer_norm; pub mod linear; pub mod loss; pub mod ops; pub mod optim; pub mod rnn; pub mod sequential; pub mod var_builder; pub mod var_map; pub use activation::{prelu, Activation, PReLU}; pub use batch_norm::{batch_norm, BatchNorm, BatchNormConfig}; pub use conv::{ conv1d, conv2d, conv2d_no_bias, conv_transpose2d, conv_transpose2d_no_bias, Conv1d, Conv1dConfig, Conv2d, Conv2dConfig, ConvTranspose2d, ConvTranspose2dConfig, }; pub use embedding::{embedding, Embedding}; pub use func::{func, func_t, Func, FuncT}; pub use group_norm::{group_norm, GroupNorm}; pub use init::Init; pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm}; pub use linear::{linear, linear_no_bias, Linear}; pub use ops::Dropout; pub use optim::{AdamW, Optimizer, ParamsAdamW, SGD}; pub use rnn::{gru, lstm, GRUConfig, LSTMConfig, GRU, LSTM, RNN}; pub use sequential::{seq, Sequential}; pub use var_builder::VarBuilder; pub use var_map::VarMap; pub use candle::{Module, ModuleT};
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/init.rs
//! Variable initialization. // This is based on: // https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py# use candle::{DType, Device, Result, Shape, Tensor, Var}; /// Number of features as input or output of a layer. /// In Kaiming initialization, choosing `FanIn` preserves /// the magnitude of the variance of the weights in the /// forward pass, choosing `FanOut` preserves this /// magnitude in the backward pass. #[derive(Debug, Copy, Clone)] pub enum FanInOut { FanIn, FanOut, } impl FanInOut { /// Compute the fan-in or fan-out value for a weight tensor of /// the specified dimensions. /// <https://github.com/pytorch/pytorch/blob/dbeacf11820e336e803bb719b7aaaf2125ae4d9c/torch/nn/init.py#L284> pub fn for_shape(&self, shape: &Shape) -> usize { let dims = shape.dims(); let receptive_field_size: usize = dims.iter().skip(2).product(); match &self { FanInOut::FanIn => { if dims.len() < 2 { 1 } else { dims[1] * receptive_field_size } } FanInOut::FanOut => { if dims.is_empty() { 1 } else { dims[0] * receptive_field_size } } } } } #[derive(Debug, Copy, Clone)] pub enum NormalOrUniform { Normal, Uniform, } /// The non-linear function that follows this layer. ReLU is the /// recommended value. #[derive(Debug, Copy, Clone)] pub enum NonLinearity { ReLU, Linear, Sigmoid, Tanh, SELU, ExplicitGain(f64), } impl NonLinearity { // https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py#L67 pub fn gain(&self) -> f64 { match *self { NonLinearity::ReLU => 2f64.sqrt(), NonLinearity::Tanh => 5. / 3., NonLinearity::Linear | NonLinearity::Sigmoid => 1., NonLinearity::SELU => 0.75, NonLinearity::ExplicitGain(g) => g, } } } /// Variable initializations. #[derive(Debug, Copy, Clone)] pub enum Init { /// Constant value. Const(f64), /// Random normal with some mean and standard deviation. Randn { mean: f64, stdev: f64 }, /// Uniform initialization between some lower and upper bounds. Uniform { lo: f64, up: f64 }, /// Kaiming uniform initialization. /// See "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification" /// He, K. et al. (2015). This uses a uniform distribution. Kaiming { dist: NormalOrUniform, fan: FanInOut, non_linearity: NonLinearity, }, } pub const ZERO: Init = Init::Const(0.); pub const ONE: Init = Init::Const(1.); pub const DEFAULT_KAIMING_UNIFORM: Init = Init::Kaiming { dist: NormalOrUniform::Uniform, fan: FanInOut::FanIn, non_linearity: NonLinearity::ReLU, }; pub const DEFAULT_KAIMING_NORMAL: Init = Init::Kaiming { dist: NormalOrUniform::Normal, fan: FanInOut::FanIn, non_linearity: NonLinearity::ReLU, }; impl Init { /// Creates a new tensor with the specified shape, device, and initialization. pub fn var<S: Into<Shape>>(&self, s: S, dtype: DType, device: &Device) -> Result<Var> { match self { Self::Const(v) if *v == 0. => Var::zeros(s, dtype, device), Self::Const(v) if *v == 1. => Var::ones(s, dtype, device), Self::Const(cst) => { Var::from_tensor(&Tensor::ones(s, dtype, device)?.affine(*cst, 0.)?) } Self::Uniform { lo, up } => Var::rand_f64(*lo, *up, s, dtype, device), Self::Randn { mean, stdev } => Var::randn_f64(*mean, *stdev, s, dtype, device), Self::Kaiming { dist, fan, non_linearity, } => { let s = s.into(); let fan = fan.for_shape(&s); let gain = non_linearity.gain(); let std = gain / (fan as f64).sqrt(); match dist { NormalOrUniform::Uniform => { let bound = 3f64.sqrt() * std; Var::rand_f64(-bound, bound, s, dtype, device) } NormalOrUniform::Normal => Var::randn_f64(0., std, s, dtype, device), } } } } } impl Default for Init { fn default() -> Self { Self::Const(0.) } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/layer_norm.rs
//! Layer Normalization. //! //! This layer applies Layer Normalization over a mini-batch of inputs as described in [`Layer //! Normalization`]. The input is expected to have three dimensions: a batch dimension, a length, //! and a hidden size, the normalization is applied over the last dimension. //! //! # Example //! //! ```rust //! use candle::{Tensor, Device::Cpu, test_utils::to_vec3_round}; //! use candle_nn::{LayerNorm, Module}; //! # fn main() -> candle::Result<()> { //! //! let w = Tensor::new(1f32, &Cpu)?; //! let b = Tensor::new(0f32, &Cpu)?; //! let layer = LayerNorm::new(w, b, 1e-5); //! //! let xs = Tensor::new( //! &[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]], //! &Cpu)?; //! let ys = layer.forward(&xs)?; //! assert_eq!( //! to_vec3_round(&ys, 4)?, //! &[[[-1.2247, 0.0, 1.2247], //! [-1.2247, 0.0, 1.2247], //! [ 1.2247, 0.0, -1.2247]]]); //! # Ok(()) } //! ``` //! //! [`Layer Normalization`]: https://arxiv.org/abs/1607.06450 use candle::{DType, Result, Tensor, D}; #[derive(Debug, Clone, Copy, PartialEq)] pub struct LayerNormConfig { pub eps: f64, /// Whether to remove the mean or not, the default is true and when set to false, this turns /// this layer into RmsNorm. pub remove_mean: bool, pub affine: bool, } impl Default for LayerNormConfig { fn default() -> Self { Self { eps: 1e-5, remove_mean: true, affine: true, } } } impl From<f64> for LayerNormConfig { fn from(eps: f64) -> Self { Self { eps, remove_mean: true, affine: true, } } } // This layer norm version handles both weight and bias so removes the mean. #[derive(Clone, Debug)] pub struct LayerNorm { weight: Tensor, bias: Option<Tensor>, remove_mean: bool, eps: f64, } impl LayerNorm { pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self { Self { weight, bias: Some(bias), remove_mean: true, eps, } } pub fn new_no_bias(weight: Tensor, eps: f64) -> Self { Self { weight, bias: None, remove_mean: true, eps, } } pub fn rms_norm(weight: Tensor, eps: f64) -> Self { Self { weight, bias: None, remove_mean: false, eps, } } pub fn weight(&self) -> &Tensor { &self.weight } pub fn bias(&self) -> Option<&Tensor> { self.bias.as_ref() } } impl crate::Module for LayerNorm { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; let hidden_size = x.dim(D::Minus1)?; let x = x.to_dtype(internal_dtype)?; let x = if self.remove_mean { let mean_x = (x.sum_keepdim(D::Minus1)? / hidden_size as f64)?; x.broadcast_sub(&mean_x)? } else { x }; let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; let x = x_normed.to_dtype(x_dtype)?.broadcast_mul(&self.weight)?; match &self.bias { None => Ok(x), Some(bias) => x.broadcast_add(bias), } } } pub fn layer_norm<C: Into<LayerNormConfig>>( size: usize, config: C, vb: crate::VarBuilder, ) -> Result<LayerNorm> { let config = config.into(); let weight = vb.get_with_hints(size, "weight", crate::Init::Const(1.))?; let bias = if config.affine { Some(vb.get_with_hints(size, "bias", crate::Init::Const(0.))?) } else { None }; Ok(LayerNorm { weight, bias, remove_mean: config.remove_mean, eps: config.eps, }) } /// RmsNorm is a specialized version of the LayerNorm module. #[derive(Clone, Debug)] pub struct RmsNorm(LayerNorm); impl RmsNorm { pub fn new(weight: Tensor, eps: f64) -> Self { Self(LayerNorm::rms_norm(weight, eps)) } pub fn into_inner(self) -> LayerNorm { self.0 } } impl crate::Module for RmsNorm { fn forward(&self, xs: &Tensor) -> Result<Tensor> { self.0.forward(xs) } } pub fn rms_norm(size: usize, eps: f64, vb: crate::VarBuilder) -> Result<RmsNorm> { let config = LayerNormConfig { eps, remove_mean: false, affine: false, }; Ok(RmsNorm(layer_norm(size, config, vb)?)) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/linear.rs
//! Linear layer //! //! This layer applies a linear transformation to the incoming data, `y = [email protected]() + b`. //! The bias is optional. The `forward` method can be used to apply the layer, it supports input //! with a batch dimension (so of shape `(b_sz, in_c)`) or without (of shape `(in_c,)`), the //! output has shape `(b_sz, out_c)` and `(out_c,)` respectively. //! //! ```rust //! use candle::{Tensor, Device::Cpu}; //! use candle_nn::{Linear, Module}; //! # fn main() -> candle::Result<()> { //! //! let w = Tensor::new(&[[1f32, 2.], [3., 4.], [5., 6.]], &Cpu)?; //! let layer = Linear::new(w, None); // Use no bias. //! let xs = Tensor::new(&[[10f32, 100.]], &Cpu)?; //! let ys = layer.forward(&xs)?; //! assert_eq!(ys.to_vec2::<f32>()?, &[[210.0, 430.0, 650.0]]); //! # Ok(()) } //! ``` use candle::{Result, Tensor}; #[derive(Clone, Debug)] pub struct Linear { weight: Tensor, bias: Option<Tensor>, } impl Linear { pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self { Self { weight, bias } } pub fn weight(&self) -> &Tensor { &self.weight } pub fn bias(&self) -> Option<&Tensor> { self.bias.as_ref() } } impl super::Module for Linear { fn forward(&self, x: &Tensor) -> candle::Result<Tensor> { let w = match *x.dims() { [b1, b2, _, _] => self.weight.broadcast_left((b1, b2))?.t()?, [bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?, _ => self.weight.t()?, }; let x = x.matmul(&w)?; match &self.bias { None => Ok(x), Some(bias) => x.broadcast_add(bias), } } } /// Create or initialize a new linear layer. /// /// This uses some default names for weights and biases, namely `"weight"` and `"bias"`. pub fn linear(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Linear> { let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; let ws = vs.get_with_hints((out_dim, in_dim), "weight", init_ws)?; let bound = 1. / (in_dim as f64).sqrt(); let init_bs = crate::Init::Uniform { lo: -bound, up: bound, }; let bs = vs.get_with_hints(out_dim, "bias", init_bs)?; Ok(Linear::new(ws, Some(bs))) } /// Create or initialize a new linear layer without biases. pub fn linear_no_bias(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Linear> { let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; let ws = vs.get_with_hints((out_dim, in_dim), "weight", init_ws)?; Ok(Linear::new(ws, None)) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/embedding.rs
//! Embedding Layer. use candle::{Result, Tensor}; #[derive(Clone, Debug)] pub struct Embedding { embeddings: Tensor, hidden_size: usize, } impl Embedding { pub fn new(embeddings: Tensor, hidden_size: usize) -> Self { Self { embeddings, hidden_size, } } pub fn embeddings(&self) -> &Tensor { &self.embeddings } /// Get the hidden size of the embedding matrix pub fn hidden_size(&self) -> usize { self.hidden_size } } impl crate::Module for Embedding { fn forward(&self, indexes: &Tensor) -> Result<Tensor> { let mut final_dims = indexes.dims().to_vec(); final_dims.push(self.hidden_size); let indexes = indexes.flatten_all()?; let values = self.embeddings.index_select(&indexes, 0)?; let values = values.reshape(final_dims)?; Ok(values) } } pub fn embedding(in_size: usize, out_size: usize, vb: crate::VarBuilder) -> Result<Embedding> { let embeddings = vb.get_with_hints( (in_size, out_size), "weight", crate::Init::Randn { mean: 0., stdev: 1., }, )?; Ok(Embedding::new(embeddings, out_size)) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/var_map.rs
use candle::{DType, Device, Result, Shape, Tensor, Var}; use std::collections::HashMap; use std::sync::{Arc, Mutex}; /// A `VarMap` is a store that holds named variables. Variables can be retrieved from the stores /// and new variables can be added by providing some initialization config in case they are /// missing. /// `VarMap` structures can be serialized in the safetensors format. #[derive(Clone)] pub struct VarMap { data: Arc<Mutex<HashMap<String, Var>>>, } impl VarMap { /// Create a new empty `VarMap`. #[allow(clippy::new_without_default)] pub fn new() -> Self { let data = Arc::new(Mutex::new(HashMap::new())); Self { data } } /// Retrieve all the variables currently stored in the map. pub fn all_vars(&self) -> Vec<Var> { let tensor_data = self.data.lock().unwrap(); #[allow(clippy::map_clone)] tensor_data.values().map(|c| c.clone()).collect::<Vec<_>>() } /// Save the map in the safetensors format. pub fn save<P: AsRef<std::path::Path>>(&self, path: P) -> Result<()> { let tensor_data = self.data.lock().unwrap(); let data = tensor_data.iter().map(|(k, v)| (k, v.as_tensor())); safetensors::tensor::serialize_to_file(data, &None, path.as_ref())?; Ok(()) } /// Load some values from a safetensors file and modify the existing variables to have these /// values. /// /// Note that values for variables that are currently not in the map are not kept. pub fn load<P: AsRef<std::path::Path>>(&mut self, path: P) -> Result<()> { let path = path.as_ref(); let data = unsafe { candle::safetensors::MmapedSafetensors::new(path)? }; let mut tensor_data = self.data.lock().unwrap(); for (name, var) in tensor_data.iter_mut() { let data = data.load(name, var.device())?; if let Err(err) = var.set(&data) { candle::bail!("error setting {name} using data from {path:?}: {err}",) } } Ok(()) } /// Set a named variable to some value. pub fn set_one<K: AsRef<str>, V: AsRef<Tensor>>(&mut self, name: K, value: V) -> Result<()> { let tensor_data = self.data.lock().unwrap(); let name = name.as_ref(); match tensor_data.get(name) { None => candle::bail!("cannot find {name} in VarMap"), Some(var) => { if let Err(err) = var.set(value.as_ref()) { candle::bail!("error setting {name}: {err}",) } } } Ok(()) } /// Set some named variables to some values. /// /// If an error is returned, some of the variables might have already been set to their new /// values. pub fn set<I: Iterator<Item = (K, V)>, K: AsRef<String>, V: AsRef<Tensor>>( &mut self, iter: I, ) -> Result<()> { let tensor_data = self.data.lock().unwrap(); for (name, value) in iter { let name = name.as_ref(); match tensor_data.get(name) { None => candle::bail!("cannot find {name} in VarMap"), Some(var) => { if let Err(err) = var.set(value.as_ref()) { candle::bail!("error setting {name}: {err}",) } } } } Ok(()) } /// Retrieve or add a new variable. pub fn get<S: Into<Shape>>( &self, shape: S, path: &str, init: crate::Init, dtype: DType, device: &Device, ) -> Result<Tensor> { let shape = shape.into(); let mut tensor_data = self.data.lock().unwrap(); if let Some(tensor) = tensor_data.get(path) { let tensor_shape = tensor.shape(); if &shape != tensor_shape { candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}") } return Ok(tensor.as_tensor().clone()); } let var = init.var(shape, dtype, device)?; let tensor = var.as_tensor().clone(); tensor_data.insert(path.to_string(), var); Ok(tensor) } pub fn data(&self) -> &Mutex<HashMap<String, Var>> { &self.data } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/var_builder.rs
//! A `VarBuilder` is used to retrieve variables used by a model. These variables can either come //! from a pre-trained checkpoint, e.g. using `VarBuilder::from_mmaped_safetensors`, or initialized //! for training, e.g. using `VarBuilder::from_varmap`. use crate::VarMap; use candle::{safetensors::Load, DType, Device, Error, Result, Shape, Tensor}; use safetensors::{slice::IndexOp, tensor::SafeTensors}; use std::collections::HashMap; use std::sync::Arc; /// A structure used to retrieve variables, these variables can either come from storage or be /// generated via some form of initialization. /// /// The way to retrieve variables is defined in the backend embedded in the `VarBuilder`. pub struct VarBuilderArgs<'a, B: Backend> { data: Arc<TensorData<B>>, path: Vec<String>, _phantom: std::marker::PhantomData<&'a B>, } impl<'a, B: Backend> Clone for VarBuilderArgs<'a, B> { fn clone(&self) -> Self { Self { data: self.data.clone(), path: self.path.clone(), _phantom: self._phantom, } } } /// A simple `VarBuilder`, this is less generic than `VarBuilderArgs` but should cover most common /// use cases. pub type VarBuilder<'a> = VarBuilderArgs<'a, Box<dyn SimpleBackend + 'a>>; struct TensorData<B: Backend> { backend: B, pub dtype: DType, pub device: Device, } /// A trait that defines how tensor data is retrieved. /// /// Typically this would use disk storage in some specific format, or random initialization. /// Note that there is a specialized version of this trait (`SimpleBackend`) that can be used most /// of the time. The main restriction is that it doesn't allow for specific args (besides /// initialization hints). pub trait Backend: Send + Sync { type Hints: Default; /// Retrieve a tensor with some target shape. fn get( &self, s: Shape, name: &str, h: Self::Hints, dtype: DType, dev: &Device, ) -> Result<Tensor>; fn contains_tensor(&self, name: &str) -> bool; } pub trait SimpleBackend: Send + Sync { /// Retrieve a tensor based on a target name and shape. fn get( &self, s: Shape, name: &str, h: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor>; fn contains_tensor(&self, name: &str) -> bool; } impl<'a> Backend for Box<dyn SimpleBackend + 'a> { type Hints = crate::Init; fn get( &self, s: Shape, name: &str, h: Self::Hints, dtype: DType, dev: &Device, ) -> Result<Tensor> { self.as_ref().get(s, name, h, dtype, dev) } fn contains_tensor(&self, name: &str) -> bool { self.as_ref().contains_tensor(name) } } impl<'a, B: Backend> VarBuilderArgs<'a, B> { pub fn new_with_args(backend: B, dtype: DType, dev: &Device) -> Self { let data = TensorData { backend, dtype, device: dev.clone(), }; Self { data: Arc::new(data), path: vec![], _phantom: std::marker::PhantomData, } } /// Returns the prefix of the `VarBuilder`. pub fn prefix(&self) -> String { self.path.join(".") } /// Returns a new `VarBuilder` using the root path. pub fn root(&self) -> Self { Self { data: self.data.clone(), path: vec![], _phantom: std::marker::PhantomData, } } /// Returns a new `VarBuilder` with the prefix set to `prefix`. pub fn set_prefix(&self, prefix: impl ToString) -> Self { Self { data: self.data.clone(), path: vec![prefix.to_string()], _phantom: std::marker::PhantomData, } } /// Return a new `VarBuilder` adding `s` to the current prefix. This can be think of as `cd` /// into a directory. pub fn push_prefix<S: ToString>(&self, s: S) -> Self { let mut path = self.path.clone(); path.push(s.to_string()); Self { data: self.data.clone(), path, _phantom: std::marker::PhantomData, } } /// Short alias for `push_prefix`. pub fn pp<S: ToString>(&self, s: S) -> Self { self.push_prefix(s) } /// The device used by default. pub fn device(&self) -> &Device { &self.data.device } /// The dtype used by default. pub fn dtype(&self) -> DType { self.data.dtype } fn path(&self, tensor_name: &str) -> String { if self.path.is_empty() { tensor_name.to_string() } else { [&self.path.join("."), tensor_name].join(".") } } /// This returns true only if a tensor with the passed in name is available. E.g. when passed /// `a`, true is returned if `prefix.a` exists but false is returned if only `prefix.a.b` /// exists. pub fn contains_tensor(&self, tensor_name: &str) -> bool { let path = self.path(tensor_name); self.data.backend.contains_tensor(&path) } /// Retrieve the tensor associated with the given name at the current path. pub fn get_with_hints<S: Into<Shape>>( &self, s: S, name: &str, hints: B::Hints, ) -> Result<Tensor> { let path = self.path(name); self.data .backend .get(s.into(), &path, hints, self.data.dtype, &self.data.device) } /// Retrieve the tensor associated with the given name at the current path. pub fn get<S: Into<Shape>>(&self, s: S, name: &str) -> Result<Tensor> { self.get_with_hints(s, name, Default::default()) } } struct Zeros; impl SimpleBackend for Zeros { fn get(&self, s: Shape, _: &str, _: crate::Init, dtype: DType, dev: &Device) -> Result<Tensor> { Tensor::zeros(s, dtype, dev) } fn contains_tensor(&self, _name: &str) -> bool { true } } impl SimpleBackend for HashMap<String, Tensor> { fn get( &self, s: Shape, name: &str, _: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { let tensor = self .get(name) .ok_or_else(|| { Error::CannotFindTensor { path: name.to_string(), } .bt() })? .clone(); if tensor.shape() != &s { Err(candle::Error::UnexpectedShape { msg: format!("shape mismatch for {name}"), expected: s, got: tensor.shape().clone(), } .bt())? } tensor.to_device(dev)?.to_dtype(dtype) } fn contains_tensor(&self, name: &str) -> bool { self.contains_key(name) } } impl SimpleBackend for VarMap { fn get( &self, s: Shape, name: &str, h: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { VarMap::get(self, s, name, h, dtype, dev) } fn contains_tensor(&self, name: &str) -> bool { self.data().lock().unwrap().contains_key(name) } } struct SafeTensorWithRouting<'a> { routing: HashMap<String, usize>, safetensors: Vec<SafeTensors<'a>>, } impl<'a> SimpleBackend for SafeTensorWithRouting<'a> { fn get( &self, s: Shape, path: &str, _: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { let index = self.routing.get(path).ok_or_else(|| { Error::CannotFindTensor { path: path.to_string(), } .bt() })?; let tensor = self.safetensors[*index] .tensor(path)? .load(dev)? .to_dtype(dtype)?; if tensor.shape() != &s { Err(candle::Error::UnexpectedShape { msg: format!("shape mismatch for {path}"), expected: s, got: tensor.shape().clone(), } .bt())? } Ok(tensor) } fn contains_tensor(&self, name: &str) -> bool { self.routing.contains_key(name) } } impl SimpleBackend for candle::npy::NpzTensors { fn get( &self, s: Shape, path: &str, _: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { let tensor = match self.get(path)? { None => Err(Error::CannotFindTensor { path: path.to_string(), } .bt())?, Some(tensor) => tensor, }; let tensor = tensor.to_device(dev)?.to_dtype(dtype)?; if tensor.shape() != &s { Err(candle::Error::UnexpectedShape { msg: format!("shape mismatch for {path}"), expected: s, got: tensor.shape().clone(), } .bt())? } Ok(tensor) } fn contains_tensor(&self, name: &str) -> bool { self.get(name).map_or(false, |v| v.is_some()) } } impl SimpleBackend for candle::pickle::PthTensors { fn get( &self, s: Shape, path: &str, _: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { let tensor = match self.get(path)? { None => Err(Error::CannotFindTensor { path: path.to_string(), } .bt())?, Some(tensor) => tensor, }; let tensor = tensor.to_device(dev)?.to_dtype(dtype)?; if tensor.shape() != &s { Err(candle::Error::UnexpectedShape { msg: format!("shape mismatch for {path}"), expected: s, got: tensor.shape().clone(), } .bt())? } Ok(tensor) } fn contains_tensor(&self, name: &str) -> bool { self.get(name).map_or(false, |v| v.is_some()) } } impl SimpleBackend for candle::safetensors::MmapedSafetensors { fn get( &self, s: Shape, name: &str, _: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { let tensor = self.load(name, dev)?.to_dtype(dtype)?; if tensor.shape() != &s { Err(candle::Error::UnexpectedShape { msg: format!("shape mismatch for {name}"), expected: s, got: tensor.shape().clone(), } .bt())? } Ok(tensor) } fn contains_tensor(&self, name: &str) -> bool { self.get(name).is_ok() } } impl SimpleBackend for candle::safetensors::BufferedSafetensors { fn get( &self, s: Shape, name: &str, _: crate::Init, dtype: DType, dev: &Device, ) -> Result<Tensor> { let tensor = self.load(name, dev)?.to_dtype(dtype)?; if tensor.shape() != &s { Err(candle::Error::UnexpectedShape { msg: format!("shape mismatch for {name}"), expected: s, got: tensor.shape().clone(), } .bt())? } Ok(tensor) } fn contains_tensor(&self, name: &str) -> bool { self.get(name).is_ok() } } impl<'a> VarBuilder<'a> { fn new(backend: Box<dyn SimpleBackend + 'a>, dtype: DType, device: Device) -> Self { let data = TensorData { backend, dtype, device, }; Self { data: Arc::new(data), path: vec![], _phantom: std::marker::PhantomData, } } /// Initializes a `VarBuilder` that uses zeros for any tensor. pub fn zeros(dtype: DType, dev: &Device) -> Self { Self::new(Box::new(Zeros), dtype, dev.clone()) } /// Initializes a `VarBuilder` that retrieves tensors stored in a hashtable. An error is /// returned if no tensor is available under the requested path or on shape mismatches. pub fn from_tensors(ts: HashMap<String, Tensor>, dtype: DType, dev: &Device) -> Self { Self::new(Box::new(ts), dtype, dev.clone()) } /// Initializes a `VarBuilder` using a `VarMap`. The requested tensors are created and /// initialized on new paths, the same tensor is used if the same path is requested multiple /// times. This is commonly used when initializing a model before training. /// /// Note that it is possible to load the tensor values after model creation using the `load` /// method on `varmap`, this can be used to start model training from an existing checkpoint. pub fn from_varmap(varmap: &VarMap, dtype: DType, dev: &Device) -> Self { Self::new(Box::new(varmap.clone()), dtype, dev.clone()) } /// Initializes a `VarBuilder` that retrieves tensors stored in a collection of safetensors /// files. /// /// # Safety /// /// The unsafe is inherited from [`memmap2::MmapOptions`]. pub unsafe fn from_mmaped_safetensors<P: AsRef<std::path::Path>>( paths: &[P], dtype: DType, dev: &Device, ) -> Result<Self> { let tensors = candle::safetensors::MmapedSafetensors::multi(paths)?; Ok(Self::new(Box::new(tensors), dtype, dev.clone())) } /// Initializes a `VarBuilder` from a binary builder in the safetensor format. pub fn from_buffered_safetensors(data: Vec<u8>, dtype: DType, dev: &Device) -> Result<Self> { let tensors = candle::safetensors::BufferedSafetensors::new(data)?; Ok(Self::new(Box::new(tensors), dtype, dev.clone())) } /// Initializes a `VarBuilder` that retrieves tensors stored in a numpy npz file. pub fn from_npz<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> { let npz = candle::npy::NpzTensors::new(p)?; Ok(Self::new(Box::new(npz), dtype, dev.clone())) } /// Initializes a `VarBuilder` that retrieves tensors stored in a pytorch pth file. pub fn from_pth<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> { let pth = candle::pickle::PthTensors::new(p)?; Ok(Self::new(Box::new(pth), dtype, dev.clone())) } } pub struct ShardedSafeTensors(candle::safetensors::MmapedSafetensors); pub type ShardedVarBuilder<'a> = VarBuilderArgs<'a, ShardedSafeTensors>; impl ShardedSafeTensors { /// Initializes a `VarBuilder` that retrieves tensors stored in a collection of safetensors /// files and make them usable in a sharded way. /// /// # Safety /// /// The unsafe is inherited from [`memmap2::MmapOptions`]. pub unsafe fn var_builder<P: AsRef<std::path::Path>>( paths: &[P], dtype: DType, dev: &Device, ) -> Result<ShardedVarBuilder<'static>> { let tensors = candle::safetensors::MmapedSafetensors::multi(paths)?; let backend = ShardedSafeTensors(tensors); Ok(VarBuilderArgs::new_with_args(backend, dtype, dev)) } } #[derive(Debug, Clone, Copy, Eq, PartialEq)] pub struct Shard { pub dim: usize, pub rank: usize, pub world_size: usize, } impl Default for Shard { fn default() -> Self { Self { dim: 0, rank: 0, world_size: 1, } } } /// Get part of a tensor, typically used to do Tensor Parallelism sharding. /// /// If the tensor is of size (1024, 1024). /// /// `dim` corresponds to the dimension to slice into /// `rank` is the rank of the current process /// `world_size` is the total number of ranks in the process group /// /// `get_sharded("tensor", 0, 0, 2)` means `tensor.i((..512))` /// `get_sharded("tensor", 0, 1, 2)` means `tensor.i((512..))` /// `get_sharded("tensor", 1, 0, 2)` means `tensor.i((.., ..512))` impl Backend for ShardedSafeTensors { type Hints = Shard; fn get( &self, target_shape: Shape, // The size is only checked when the world size is 1. path: &str, h: Self::Hints, dtype: DType, dev: &Device, ) -> Result<Tensor> { if h.world_size == 1 { // There is no sharding to be applied here so we use the default backend to speed // things up. return SimpleBackend::get(&self.0, target_shape, path, Default::default(), dtype, dev); } let Shard { dim, rank, world_size, } = h; let view = self.0.get(path)?; let view_dtype = view.dtype(); let mut shape = view.shape().to_vec(); let size = shape[dim]; if size % world_size != 0 { return Err(Error::ShapeMismatchSplit { shape: shape.into(), dim, n_parts: world_size, }); } let block_size = size / world_size; let start = rank * block_size; let stop = (rank + 1) * block_size; // Everything is expressed in tensor dimension // bytes offsets is handled automatically for safetensors. let iterator = if dim == 0 { view.slice(start..stop).map_err(|_| { Error::Msg(format!( "Cannot slice tensor {path} ({shape:?} along dim {dim} with {start}..{stop}" )) })? } else if dim == 1 { view.slice((.., start..stop)).map_err(|_| { Error::Msg(format!( "Cannot slice tensor {path} ({shape:?} along dim {dim} with {start}..{stop}" )) })? } else { candle::bail!("Get sharded on dimensions != 0 or 1") }; shape[dim] = block_size; let view_dtype: DType = view_dtype.try_into()?; let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect(); Tensor::from_raw_buffer(&raw, view_dtype, &shape, dev)?.to_dtype(dtype) } fn contains_tensor(&self, name: &str) -> bool { self.0.get(name).is_ok() } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/func.rs
//! Layers defined by closures. use candle::{Result, Tensor}; use std::sync::Arc; /// A layer defined by a simple closure. #[derive(Clone)] pub struct Func<'a> { #[allow(clippy::type_complexity)] f: Arc<dyn 'a + Fn(&Tensor) -> Result<Tensor> + Send + Sync>, } impl<'a> std::fmt::Debug for Func<'a> { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "func") } } pub fn func<'a, F>(f: F) -> Func<'a> where F: 'a + Fn(&Tensor) -> Result<Tensor> + Send + Sync, { Func { f: Arc::new(f) } } impl<'a> super::Module for Func<'a> { fn forward(&self, xs: &Tensor) -> Result<Tensor> { (*self.f)(xs) } } impl<'a> Func<'a> { pub fn new<F>(f: F) -> Self where F: 'a + Fn(&Tensor) -> Result<Tensor> + Send + Sync, { Self { f: Arc::new(f) } } } /// A layer defined by a simple closure. #[derive(Clone)] pub struct FuncT<'a> { #[allow(clippy::type_complexity)] f: Arc<dyn 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync>, } impl<'a> std::fmt::Debug for FuncT<'a> { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "func") } } pub fn func_t<'a, F>(f: F) -> FuncT<'a> where F: 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync, { FuncT { f: Arc::new(f) } } impl<'a> super::ModuleT for FuncT<'a> { fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> { (*self.f)(xs, train) } } impl<'a> FuncT<'a> { pub fn new<F>(f: F) -> Self where F: 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync, { Self { f: Arc::new(f) } } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/ops.rs
use candle::{CpuStorage, Layout, Result, Shape, Tensor}; use rayon::prelude::*; /// Applies the softmax function to the input tensor, rescaling the element so that elements on /// a slice of fixed index on dimension `dim` are between 0 and 1 and sum to 1. /// /// ```rust /// use candle::{Tensor, Device, test_utils::to_vec2_round}; /// let a = Tensor::new(&[[0f32, 1., 0., 1.], [-2., 2., 3., -3.]], &Device::Cpu)?; /// let a = candle_nn::ops::softmax(&a, 1)?; /// assert_eq!( /// to_vec2_round(&a, 4)?, /// &[ /// [0.1345, 0.3655, 0.1345, 0.3655], /// [0.0049, 0.2671, 0.7262, 0.0018] /// ]); /// # Ok::<(), candle::Error>(()) /// ``` pub fn softmax<D: candle::shape::Dim>(xs: &Tensor, dim: D) -> Result<Tensor> { let dim = dim.to_index(xs.shape(), "softmax")?; let max = xs.max_keepdim(dim)?; let diff = xs.broadcast_sub(&max)?; let num = diff.exp()?; let den = num.sum_keepdim(dim)?; num.broadcast_div(&den) } pub fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> Result<Tensor> { let d = d.to_index(xs.shape(), "log-softmax")?; let max = xs.max_keepdim(d)?; let diff = xs.broadcast_sub(&max)?; let sum_exp = diff.exp()?.sum_keepdim(d)?; let log_sm = diff.broadcast_sub(&sum_exp.log()?)?; Ok(log_sm) } pub fn silu(xs: &Tensor) -> Result<Tensor> { // TODO: Should we have a specialized op for this? xs / (xs.neg()?.exp()? + 1.0)? } pub fn swiglu(xs: &Tensor) -> Result<Tensor> { let xs = xs.chunk(2, candle::D::Minus1)?; crate::ops::silu(&xs[0])? * &xs[1] } pub fn sigmoid(xs: &Tensor) -> Result<Tensor> { // TODO: Should we have a specialized op for this? (xs.neg()?.exp()? + 1.0)?.recip() } pub fn hard_sigmoid(xs: &Tensor) -> Result<Tensor> { // TODO: Should we have a specialized op for this? ((xs + 3.0)? / 6.0)?.clamp(0f32, 1f32) } pub fn leaky_relu(xs: &Tensor, negative_slope: f64) -> Result<Tensor> { let zeros = xs.zeros_like()?; xs.maximum(&zeros)? + xs.minimum(&zeros)? * negative_slope } pub fn dropout(xs: &Tensor, drop_p: f32) -> Result<Tensor> { // This implementation is inefficient as it stores the full mask for the backward pass. // Instead we could just store the seed and have a specialized kernel that would both // generate the random mask and apply it. // Another easier optimization would be to be able to generate boolean mask using just a bit of // entropy per element rather than generating a full float per element. if !(0. ..1.).contains(&drop_p) { candle::bail!("dropout probability has to be in [0, 1), got {drop_p}") } let rand = Tensor::rand(0f32, 1f32, xs.shape(), xs.device())?; let scale = 1.0 / (1.0 - drop_p as f64); let drop_p = Tensor::new(drop_p, xs.device())?.broadcast_as(xs.shape())?; let mask = (rand.ge(&drop_p)? * scale)?.to_dtype(xs.dtype())?; xs * mask } #[derive(Debug)] pub struct Dropout { drop_p: f32, } impl Dropout { pub fn new(drop_p: f32) -> Dropout { Self { drop_p } } pub fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> { if train { dropout(xs, self.drop_p) } else { Ok(xs.clone()) } } } impl candle::ModuleT for Dropout { fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> { self.forward(xs, train) } } struct SoftmaxLastDim; impl candle::CustomOp1 for SoftmaxLastDim { fn name(&self) -> &'static str { "softmax-last-dim" } fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> { fn softmax<T: candle::WithDType + num_traits::Float>( src: &[T], layout: &Layout, ) -> Result<(CpuStorage, Shape)> { let src = match layout.contiguous_offsets() { None => candle::bail!("input has to be contiguous"), Some((o1, o2)) => &src[o1..o2], }; let el_count = layout.shape().elem_count(); let dims = layout.shape().dims(); let dim_m1 = dims[dims.len() - 1]; let mut dst = vec![T::zero(); el_count]; src.par_chunks(dim_m1) .zip(dst.par_chunks_mut(dim_m1)) .for_each(|(src, dst)| { let mut max = T::neg_infinity(); unsafe { T::vec_reduce_max(src.as_ptr(), &mut max, dim_m1) }; for (s, d) in src.iter().zip(dst.iter_mut()) { *d = (*s - max).exp(); } let mut sum_exp = T::zero(); unsafe { T::vec_reduce_sum(dst.as_ptr(), &mut sum_exp, dim_m1) }; for d in dst.iter_mut() { *d /= sum_exp } }); let storage = candle::WithDType::to_cpu_storage_owned(dst); Ok((storage, Shape::from_dims(dims))) } match storage { CpuStorage::BF16(slice) => softmax::<half::bf16>(slice, layout), CpuStorage::F16(slice) => softmax::<half::f16>(slice, layout), CpuStorage::F32(slice) => softmax::<f32>(slice, layout), CpuStorage::F64(slice) => softmax::<f64>(slice, layout), _ => candle::bail!("unsupported dtype for softmax {:?}", storage), } } #[cfg(feature = "cuda")] fn cuda_fwd( &self, storage: &candle::CudaStorage, layout: &Layout, ) -> Result<(candle::CudaStorage, Shape)> { use candle::cuda_backend::cudarc::driver::{ CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, }; use candle::cuda_backend::{kernel_name, kernels, Map1, WrapErr}; use candle::{CudaDevice, WithDType}; struct S; impl Map1 for S { fn f<T: DeviceRepr + WithDType>( &self, src: &CudaSlice<T>, dev: &CudaDevice, layout: &Layout, ) -> Result<CudaSlice<T>> { let src = match layout.contiguous_offsets() { None => candle::bail!("input has to be contiguous"), Some((o1, o2)) => src.slice(o1..o2), }; let el = layout.shape().elem_count(); let dims = layout.shape().dims(); let dim_m1 = dims[dims.len() - 1]; let (n_rows, n_cols) = (el / dim_m1, dim_m1); let cfg = LaunchConfig { grid_dim: (n_rows as u32, 1, 1), block_dim: (1, 32, 1), shared_mem_bytes: 0, }; let src = &src.slice(layout.start_offset()..); let func = dev.get_or_load_func(&kernel_name::<T>("softmax"), kernels::REDUCE)?; // SAFETY: Set later by running the kernel. let dst = unsafe { dev.alloc::<T>(el) }.w()?; let params = (src, &dst, n_cols as i32); // SAFETY: ffi. unsafe { func.launch(cfg, params) }.w()?; Ok(dst) } } use candle::backend::BackendStorage; let dev = storage.device(); let slice = S.map(&storage.slice, dev, layout)?; let dst = candle::cuda_backend::CudaStorage { slice, device: dev.clone(), }; Ok((dst, layout.shape().clone())) } #[cfg(feature = "metal")] fn metal_fwd( &self, storage: &candle::MetalStorage, layout: &Layout, ) -> Result<(candle::MetalStorage, Shape)> { use candle::{backend::BackendStorage, DType}; let device = storage.device(); let command_buffer = device.command_buffer()?; let kernels = device.kernels(); let name = match storage.dtype() { DType::F32 => "softmax_f32", DType::F16 => "softmax_f16", DType::BF16 => "softmax_bf16", dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"), }; let n = layout.stride().len(); if !(layout.is_contiguous() && layout.stride()[n - 1] == 1) { candle::bail!("Non contiguous softmax-last-dim is not implemented"); } let last_dim = layout.dims()[layout.shape().rank() - 1]; let elem_count = layout.shape().elem_count(); let output = device.new_buffer(elem_count, storage.dtype(), "softmax")?; candle_metal_kernels::call_last_softmax( device.metal_device(), &command_buffer, kernels, name, elem_count, last_dim, storage.buffer(), layout.start_offset() * storage.dtype().size_in_bytes(), &output, ) .unwrap(); let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype()); Ok((newstorage, layout.shape().clone())) } } pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> { xs.apply_op1_no_bwd(&SoftmaxLastDim) } // https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html pub fn pixel_shuffle(xs: &Tensor, upscale_factor: usize) -> Result<Tensor> { let (b_size, c, h, w) = xs.dims4()?; let out_c = c / upscale_factor / upscale_factor; xs.reshape((b_size, out_c, upscale_factor, upscale_factor, h, w))? .permute((0, 1, 4, 2, 5, 3))? .reshape((b_size, out_c, h * upscale_factor, w * upscale_factor)) } pub fn pixel_unshuffle(xs: &Tensor, downscale_factor: usize) -> Result<Tensor> { let (b_size, c, h, w) = xs.dims4()?; let out_c = c * downscale_factor * downscale_factor; xs.reshape(( b_size, c, h / downscale_factor, downscale_factor, w / downscale_factor, downscale_factor, ))? .permute((0, 1, 3, 5, 2, 4))? .reshape((b_size, out_c, h / downscale_factor, w / downscale_factor)) } // https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html pub fn replication_pad2d(xs: &Tensor, pad: usize) -> Result<Tensor> { match pad { 0 => Ok(xs.clone()), 1 => { let (_b_size, _c, h, w) = xs.dims4()?; let (first, last) = (xs.narrow(3, 0, 1)?, xs.narrow(3, w - 1, 1)?); let xs = Tensor::cat(&[&first, xs, &last], 3)?; let (first, last) = (xs.narrow(2, 0, 1)?, xs.narrow(2, h - 1, 1)?); Tensor::cat(&[&first, &xs, &last], 2) } n => candle::bail!("replication-pad with a size of {n} is not supported"), } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/encoding.rs
//! Encoding Utilities. (e.g., one-hot/cold encoding) use candle::{bail, DType, Result, Tensor, WithDType}; /// One-hot/cold encoding. /// /// Given an input tensor of indices, this function returns a tensor of the same shape as the input /// tensor with an additional dimension of the given depth size. The values in the returned tensor are /// all set to the `off_value` except for the positions represented by the indices, which are set to the `on_value`. /// /// This method returns a tensor with a rank that is one rank larger than the input tensor. /// /// As an example, the following tensor will be encoded to a one-hot matrix: /// /// `[[0i64, 2], [1, -1]]` /// /// with a depth of 4 will be encoded to: /// /// `[[[1, 0, 0, 0], [0, 0, 1, 0]], [[0, 1, 0, 0], [0, 0, 0, 0]]]` /// /// When the input tensor index has a value of -1, the corresponding one-hot vector will be ignored, /// resulting in a vector of values set to the `off_value`. /// /// /// This method supports one-cold encoding by setting `on_value` to `0` and `off_value` to `1`. /// By default `on_value` is `1` and `off_value` is `0`. /// /// Other encoding values can be used by setting `on_value` and `off_value` to the desired values. /// /// # Examples /// /// ## One-hot encoding /// /// ```rust /// use candle::{Shape, Tensor, Device}; /// use candle_nn::encoding::one_hot; /// /// let device = candle::Device::Cpu; /// /// let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device).unwrap(); /// let depth = 4; /// let one_hot = one_hot(indices, depth, 1f32, 0f32).unwrap(); /// /// let expected_matrix = [ /// [[1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]], /// [[0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], /// ]; /// /// assert_eq!(one_hot.shape(), &Shape::from((2, 2, depth))); /// /// let matrix = one_hot.to_vec3::<f32>().unwrap(); /// /// assert_eq!(matrix, expected_matrix); ///``` /// ## One-cold Encoding /// /// ```rust /// use candle::{Shape, Tensor, Device}; /// use candle_nn::encoding::one_hot; /// /// /// let device = candle::Device::Cpu; /// let depth = 4; /// let indices = Tensor::new(vec![vec![0u8, 2], vec![1, 3]], &device).unwrap(); /// let one_cold = one_hot(indices, depth, 0u8, 1u8).unwrap(); /// /// let expected_matrix = [[[0, 1, 1, 1], [1, 1, 0, 1]], [[1, 0, 1, 1], [1, 1, 1, 0]]]; /// /// assert_eq!(one_cold.shape(), &Shape::from((2, 2, depth))); /// /// let matrix = one_cold.to_vec3::<u8>().unwrap(); /// /// assert_eq!(matrix, expected_matrix); /// ``` /// /// /// # Bails /// /// This method bails if: /// - One of the index value is less than -1. /// - One of the index value is greater than or equal to the depth value. /// - The input data type is not `U8`, `U32`, or `I64`. /// /// # API Design /// /// The api design for this method is loosely based on the [TensorFlow One-Hot](https://www.tensorflow.org/api_docs/python/tf/one_hot) method. pub fn one_hot<D: WithDType>( indices: Tensor, depth: usize, on_value: D, off_value: D, ) -> Result<Tensor> { let mut target_shape = indices.dims().to_vec(); target_shape.push(depth); let indices = indices.flatten_all()?; let mut out = vec![off_value; depth * indices.elem_count()]; match indices.dtype() { DType::U8 => { let indices = indices.to_vec1::<u8>()?; for (i, &index) in indices.iter().enumerate() { set_at_index(index, i * depth, depth, &mut out, on_value)?; } } DType::U32 => { let indices = indices.to_vec1::<u32>()?; for (i, &index) in indices.iter().enumerate() { set_at_index(index, i * depth, depth, &mut out, on_value)?; } } DType::I64 => { let indices = indices.to_vec1::<i64>()?; for (i, &index) in indices.iter().enumerate() { set_at_index(index, i * depth, depth, &mut out, on_value)?; } } dtype => { bail!("one_hot: unsupported data type {dtype:?}, expected U8, U32, or I64") } }; Tensor::from_vec(out, target_shape, indices.device()) } fn set_at_index<D: WithDType, I: Into<i64>>( value: I, offset: usize, depth: usize, v: &mut Vec<D>, on_value: D, ) -> Result<()> { let value = value.into(); // Skip for an entire row of off_values if value == -1 { return Ok(()); } if value < -1 { bail!( "one_hot: invalid negative index value {value}, expected a positive index value or -1" ); } let value = value as usize; if value >= depth { bail!("one_hot: index value {value} exceeds depth {depth}") } let idx = offset + value; if idx >= v.len() { bail!("one_hot: index out of bounds {idx}, len {}", v.len()); } v[idx] = on_value; Ok(()) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/loss.rs
use candle::{Result, Tensor}; /// The negative log likelihood loss. /// /// Arguments /// /// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number /// of categories. This is expected to contain log probabilities. /// * [target]: The ground truth labels as a tensor of u32 of dimension `N`. /// /// The resulting tensor is a scalar containing the average value over the batch. pub fn nll(inp: &Tensor, target: &Tensor) -> Result<Tensor> { let b_sz = match target.dims() { &[b_sz] => b_sz, dims => candle::bail!("the target tensor should have a single dimension ({dims:?})"), }; match inp.dims() { &[inp_b_sz, _] => { if inp_b_sz != b_sz { candle::bail!("batch size mismatch between inp ({inp_b_sz}) and target ({b_sz})") } } dims => candle::bail!("the target tensor should have two dimensions ({dims:?})"), } inp.gather(&target.unsqueeze(1)?, 1)? .sum_all()? .affine(-1f64 / b_sz as f64, 0.) } /// The cross-entropy loss. /// /// Arguments /// /// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number /// of categories. This is expected to raw logits. /// * [target]: The ground truth labels as a tensor of u32 of dimension `N`. /// /// The resulting tensor is a scalar containing the average value over the batch. pub fn cross_entropy(inp: &Tensor, target: &Tensor) -> Result<Tensor> { if inp.rank() != 2 { candle::bail!("cross_entropy expects an input tensor of rank 2") } let inp = crate::ops::log_softmax(inp, 1)?; nll(&inp, target) } /// The mean squared error loss. pub fn mse(inp: &Tensor, target: &Tensor) -> Result<Tensor> { (inp - target)?.sqr()?.mean_all() } /// The binary cross-entropy with logit loss. /// /// Arguments /// /// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number /// of categories. This is expected to raw logits. /// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number /// of categories. /// /// The resulting tensor is a scalar containing the average value over the batch. pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> { let inp = crate::ops::sigmoid(inp)?; let left_side = target * inp.log()?; let right_side = (target.affine(-1., 1.))? * inp.affine(-1., 1.)?.log()?; let loss = left_side? + right_side?; let loss = loss?.neg()?.mean_all()?; Ok(loss) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/group_norm.rs
//! Group Normalization. //! //! This layer applies Group Normalization over a mini-batch of inputs. use candle::{DType, Result, Tensor}; // This group norm version handles both weight and bias so removes the mean. #[derive(Clone, Debug)] pub struct GroupNorm { weight: Tensor, bias: Tensor, eps: f64, num_channels: usize, num_groups: usize, } impl GroupNorm { pub fn new( weight: Tensor, bias: Tensor, num_channels: usize, num_groups: usize, eps: f64, ) -> Result<Self> { if num_channels % num_groups != 0 { candle::bail!( "GroupNorm: num_groups ({num_groups}) must divide num_channels ({num_channels})" ) } Ok(Self { weight, bias, eps, num_channels, num_groups, }) } } impl crate::Module for GroupNorm { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x_shape = x.dims(); if x_shape.len() <= 2 { candle::bail!("input rank for GroupNorm should be at least 3"); } let (b_sz, n_channels) = (x_shape[0], x_shape[1]); let hidden_size = x_shape[2..].iter().product::<usize>() * n_channels / self.num_groups; if n_channels != self.num_channels { candle::bail!( "unexpected num-channels in GroupNorm ({n_channels} <> {}", self.num_channels ) } let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; let x = x.reshape((b_sz, self.num_groups, hidden_size))?; let x = x.to_dtype(internal_dtype)?; let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?; let x = x.broadcast_sub(&mean_x)?; let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; let mut w_dims = vec![1; x_shape.len()]; w_dims[1] = n_channels; let weight = self.weight.reshape(w_dims.clone())?; let bias = self.bias.reshape(w_dims)?; x_normed .to_dtype(x_dtype)? .reshape(x_shape)? .broadcast_mul(&weight)? .broadcast_add(&bias) } } pub fn group_norm( num_groups: usize, num_channels: usize, eps: f64, vb: crate::VarBuilder, ) -> Result<GroupNorm> { let weight = vb.get_with_hints(num_channels, "weight", crate::Init::Const(1.))?; let bias = vb.get_with_hints(num_channels, "bias", crate::Init::Const(0.))?; GroupNorm::new(weight, bias, num_channels, num_groups, eps) }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/rnn.rs
//! Recurrent Neural Networks use candle::{DType, Device, IndexOp, Result, Tensor}; /// Trait for Recurrent Neural Networks. #[allow(clippy::upper_case_acronyms)] pub trait RNN { type State: Clone; /// A zero state from which the recurrent network is usually initialized. fn zero_state(&self, batch_dim: usize) -> Result<Self::State>; /// Applies a single step of the recurrent network. /// /// The input should have dimensions [batch_size, features]. fn step(&self, input: &Tensor, state: &Self::State) -> Result<Self::State>; /// Applies multiple steps of the recurrent network. /// /// The input should have dimensions [batch_size, seq_len, features]. /// The initial state is the result of applying zero_state. fn seq(&self, input: &Tensor) -> Result<Vec<Self::State>> { let batch_dim = input.dim(0)?; let state = self.zero_state(batch_dim)?; self.seq_init(input, &state) } /// Applies multiple steps of the recurrent network. /// /// The input should have dimensions [batch_size, seq_len, features]. fn seq_init(&self, input: &Tensor, init_state: &Self::State) -> Result<Vec<Self::State>> { let (_b_size, seq_len, _features) = input.dims3()?; let mut output = Vec::with_capacity(seq_len); for seq_index in 0..seq_len { let input = input.i((.., seq_index, ..))?; let state = if seq_index == 0 { self.step(&input, init_state)? } else { self.step(&input, &output[seq_index - 1])? }; output.push(state); } Ok(output) } /// Converts a sequence of state to a tensor. fn states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor>; } /// The state for a LSTM network, this contains two tensors. #[allow(clippy::upper_case_acronyms)] #[derive(Debug, Clone)] pub struct LSTMState { h: Tensor, c: Tensor, } impl LSTMState { /// The hidden state vector, which is also the output of the LSTM. pub fn h(&self) -> &Tensor { &self.h } /// The cell state vector. pub fn c(&self) -> &Tensor { &self.c } } #[allow(clippy::upper_case_acronyms)] #[derive(Debug, Clone, Copy)] pub struct LSTMConfig { pub w_ih_init: super::Init, pub w_hh_init: super::Init, pub b_ih_init: Option<super::Init>, pub b_hh_init: Option<super::Init>, pub layer_idx: usize, } impl Default for LSTMConfig { fn default() -> Self { Self { w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM, w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM, b_ih_init: Some(super::Init::Const(0.)), b_hh_init: Some(super::Init::Const(0.)), layer_idx: 0, } } } impl LSTMConfig { pub fn default_no_bias() -> Self { Self { w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM, w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM, b_ih_init: None, b_hh_init: None, layer_idx: 0, } } } /// A Long Short-Term Memory (LSTM) layer. /// /// <https://en.wikipedia.org/wiki/Long_short-term_memory> #[allow(clippy::upper_case_acronyms, unused)] #[derive(Clone, Debug)] pub struct LSTM { w_ih: Tensor, w_hh: Tensor, b_ih: Option<Tensor>, b_hh: Option<Tensor>, hidden_dim: usize, config: LSTMConfig, device: Device, dtype: DType, } /// Creates a LSTM layer. pub fn lstm( in_dim: usize, hidden_dim: usize, config: LSTMConfig, vb: crate::VarBuilder, ) -> Result<LSTM> { let layer_idx = config.layer_idx; let w_ih = vb.get_with_hints( (4 * hidden_dim, in_dim), &format!("weight_ih_l{layer_idx}"), // Only a single layer is supported. config.w_ih_init, )?; let w_hh = vb.get_with_hints( (4 * hidden_dim, hidden_dim), &format!("weight_hh_l{layer_idx}"), // Only a single layer is supported. config.w_hh_init, )?; let b_ih = match config.b_ih_init { Some(init) => { Some(vb.get_with_hints(4 * hidden_dim, &format!("bias_ih_l{layer_idx}"), init)?) } None => None, }; let b_hh = match config.b_hh_init { Some(init) => { Some(vb.get_with_hints(4 * hidden_dim, &format!("bias_hh_l{layer_idx}"), init)?) } None => None, }; Ok(LSTM { w_ih, w_hh, b_ih, b_hh, hidden_dim, config, device: vb.device().clone(), dtype: vb.dtype(), }) } impl RNN for LSTM { type State = LSTMState; fn zero_state(&self, batch_dim: usize) -> Result<Self::State> { let zeros = Tensor::zeros((batch_dim, self.hidden_dim), self.dtype, &self.device)?.contiguous()?; Ok(Self::State { h: zeros.clone(), c: zeros.clone(), }) } fn step(&self, input: &Tensor, in_state: &Self::State) -> Result<Self::State> { let w_ih = input.matmul(&self.w_ih.t()?)?; let w_hh = in_state.h.matmul(&self.w_hh.t()?)?; let w_ih = match &self.b_ih { None => w_ih, Some(b_ih) => w_ih.broadcast_add(b_ih)?, }; let w_hh = match &self.b_hh { None => w_hh, Some(b_hh) => w_hh.broadcast_add(b_hh)?, }; let chunks = (&w_ih + &w_hh)?.chunk(4, 1)?; let in_gate = crate::ops::sigmoid(&chunks[0])?; let forget_gate = crate::ops::sigmoid(&chunks[1])?; let cell_gate = chunks[2].tanh()?; let out_gate = crate::ops::sigmoid(&chunks[3])?; let next_c = ((forget_gate * &in_state.c)? + (in_gate * cell_gate)?)?; let next_h = (out_gate * next_c.tanh()?)?; Ok(LSTMState { c: next_c, h: next_h, }) } fn states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor> { let states = states.iter().map(|s| s.h.clone()).collect::<Vec<_>>(); Tensor::cat(&states, 1) } } /// The state for a GRU network, this contains a single tensor. #[allow(clippy::upper_case_acronyms)] #[derive(Debug, Clone)] pub struct GRUState { h: Tensor, } impl GRUState { /// The hidden state vector, which is also the output of the LSTM. pub fn h(&self) -> &Tensor { &self.h } } #[allow(clippy::upper_case_acronyms)] #[derive(Debug, Clone, Copy)] pub struct GRUConfig { pub w_ih_init: super::Init, pub w_hh_init: super::Init, pub b_ih_init: Option<super::Init>, pub b_hh_init: Option<super::Init>, } impl Default for GRUConfig { fn default() -> Self { Self { w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM, w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM, b_ih_init: Some(super::Init::Const(0.)), b_hh_init: Some(super::Init::Const(0.)), } } } impl GRUConfig { pub fn default_no_bias() -> Self { Self { w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM, w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM, b_ih_init: None, b_hh_init: None, } } } /// A Gated Recurrent Unit (GRU) layer. /// /// <https://en.wikipedia.org/wiki/Gated_recurrent_unit> #[allow(clippy::upper_case_acronyms, unused)] #[derive(Clone, Debug)] pub struct GRU { w_ih: Tensor, w_hh: Tensor, b_ih: Option<Tensor>, b_hh: Option<Tensor>, hidden_dim: usize, config: GRUConfig, device: Device, dtype: DType, } /// Creates a GRU layer. pub fn gru( in_dim: usize, hidden_dim: usize, config: GRUConfig, vb: crate::VarBuilder, ) -> Result<GRU> { let w_ih = vb.get_with_hints( (3 * hidden_dim, in_dim), "weight_ih_l0", // Only a single layer is supported. config.w_ih_init, )?; let w_hh = vb.get_with_hints( (3 * hidden_dim, hidden_dim), "weight_hh_l0", // Only a single layer is supported. config.w_hh_init, )?; let b_ih = match config.b_ih_init { Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_ih_l0", init)?), None => None, }; let b_hh = match config.b_hh_init { Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_hh_l0", init)?), None => None, }; Ok(GRU { w_ih, w_hh, b_ih, b_hh, hidden_dim, config, device: vb.device().clone(), dtype: vb.dtype(), }) } impl RNN for GRU { type State = GRUState; fn zero_state(&self, batch_dim: usize) -> Result<Self::State> { let h = Tensor::zeros((batch_dim, self.hidden_dim), self.dtype, &self.device)?.contiguous()?; Ok(Self::State { h }) } fn step(&self, input: &Tensor, in_state: &Self::State) -> Result<Self::State> { let w_ih = input.matmul(&self.w_ih.t()?)?; let w_hh = in_state.h.matmul(&self.w_hh.t()?)?; let w_ih = match &self.b_ih { None => w_ih, Some(b_ih) => w_ih.broadcast_add(b_ih)?, }; let w_hh = match &self.b_hh { None => w_hh, Some(b_hh) => w_hh.broadcast_add(b_hh)?, }; let chunks_ih = w_ih.chunk(3, 1)?; let chunks_hh = w_hh.chunk(3, 1)?; let r_gate = crate::ops::sigmoid(&(&chunks_ih[0] + &chunks_hh[0])?)?; let z_gate = crate::ops::sigmoid(&(&chunks_ih[1] + &chunks_hh[1])?)?; let n_gate = (&chunks_ih[2] + (r_gate * &chunks_hh[2])?)?.tanh(); let next_h = ((&z_gate * &in_state.h)? - ((&z_gate - 1.)? * n_gate)?)?; Ok(GRUState { h: next_h }) } fn states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor> { let states = states.iter().map(|s| s.h.clone()).collect::<Vec<_>>(); Tensor::cat(&states, 1) } }
0
hf_public_repos/candle/candle-nn
hf_public_repos/candle/candle-nn/src/activation.rs
use candle::{Result, Tensor}; use serde::Deserialize; #[derive(Debug, Clone, Copy, PartialEq, Deserialize, Default)] #[serde(rename_all = "lowercase")] pub enum Activation { #[default] Gelu, #[serde(alias = "gelu_new")] NewGelu, Relu, Relu2, Relu6, Silu, Sigmoid, HardSigmoid, Swiglu, Swish, HardSwish, Elu(f64), LeakyRelu(f64), } impl super::Module for Activation { fn forward(&self, xs: &Tensor) -> Result<Tensor> { match self { Self::Gelu => xs.gelu_erf(), // https://github.com/huggingface/transformers/blob/12f043eaeaabfef6f6efea411d98e6f6d3c094b7/src/transformers/activations.py#L49-L78 Self::NewGelu => xs.gelu(), Self::Relu => xs.relu(), Self::Relu2 => xs.relu()?.sqr(), Self::Relu6 => xs.clamp(0f32, 6f32), Self::Silu => crate::ops::silu(xs), Self::Sigmoid => crate::ops::sigmoid(xs), Self::HardSigmoid => crate::ops::hard_sigmoid(xs), Self::Swiglu => crate::ops::swiglu(xs), Self::Swish => xs * crate::ops::sigmoid(xs)?, Self::HardSwish => xs * crate::ops::hard_sigmoid(xs)?, &Self::Elu(alpha) => xs.elu(alpha), &Self::LeakyRelu(negative_slope) => crate::ops::leaky_relu(xs, negative_slope), } } } #[derive(Clone, Debug)] pub struct PReLU { weight: Tensor, is_scalar: bool, } impl PReLU { pub fn new(weight: Tensor, is_scalar: bool) -> Self { Self { weight, is_scalar } } pub fn weight(&self) -> &Tensor { &self.weight } pub fn is_scalar(&self) -> bool { self.is_scalar } } impl candle::Module for PReLU { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let weight = if self.is_scalar { self.weight.reshape(())? } else if xs.rank() >= 2 { let num_channels = xs.dim(1)?; let num_weights = self.weight.elem_count(); if num_weights != num_channels { candle::bail!("error in prelu: unexpected number of channels for the input, got {num_channels}, weight dim is {num_weights}") } let mut s = vec![1; xs.rank()]; s[1] = self.weight.elem_count(); self.weight.reshape(s)? } else { self.weight.clone() }; let zeros = xs.zeros_like()?; xs.maximum(&zeros)? + xs.minimum(&zeros)?.broadcast_mul(&weight)? } } /// Create or initialize a new PReLU layer. /// /// This uses some default name for weights, namely `"weight"`. /// # Arguments /// /// * `num_channels` - The number of channels. Use `None` to have as single trainable value and /// `Some` for a 1D vector with the appropriate number of channels. When applying the `forward` /// function, the input tensor shape `s` should either be one dimension with this number of /// channels or if `s.len() >= 2` it should have `s[1]` equal to this number. pub fn prelu(num_channels: Option<usize>, vs: crate::VarBuilder) -> Result<PReLU> { let init_ws = crate::init::Init::Const(0.25); // When using a scalar weight, the PyTorch encoding is to use a 1d vector of length 1. let ws = vs.get_with_hints((num_channels.unwrap_or(1),), "weight", init_ws)?; Ok(PReLU::new(ws, num_channels.is_none())) }
0
hf_public_repos/candle
hf_public_repos/candle/candle-onnx/build.rs
use std::io::Result; fn main() -> Result<()> { prost_build::compile_protos(&["src/onnx.proto3"], &["src/"])?; Ok(()) }
0
hf_public_repos/candle
hf_public_repos/candle/candle-onnx/README.md
# candle-onnx This crate adds ONNX support to candle ## FAQ #### Missing protoc installation when compiling candle-onnx The candle-onnx dependency prost-build no longer comes bundled with prost binaries. This could cause the following error when attempting to compile candle-onnx: ``` error: failed to run custom build command for `candle-onnx` Caused by: // (...) Could not find `protoc` installation and this build crate cannot proceed without this knowledge. ``` To fix this issue install protoc on your system and make it available in your system `PATH`. See the [protoc documentation](https://grpc.io/docs/protoc-installation/) for more information.
0
hf_public_repos/candle
hf_public_repos/candle/candle-onnx/Cargo.toml
[package] name = "candle-onnx" version = "0.3.3" edition = "2021" description = "ONNX support for Candle" repository = "https://github.com/huggingface/candle" keywords = ["blas", "tensor", "machine-learning"] categories = ["science"] license = "MIT OR Apache-2.0" [dependencies] candle = { path = "../candle-core", package = "candle-core" } candle-nn = { path = "../candle-nn" } prost = "0.12.1" [build-dependencies] prost-build = "0.12.1" [dev-dependencies] anyhow = { version = "1", features = ["backtrace"] } clap = { version = "4.2.4", features = ["derive"] }
0
hf_public_repos/candle/candle-onnx
hf_public_repos/candle/candle-onnx/tests/ops.rs
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{Device, Result, Tensor}; use candle_onnx::onnx::{GraphProto, ModelProto, NodeProto, ValueInfoProto}; use std::collections::HashMap; const INPUT_X: &str = "x"; const INPUT_Y: &str = "y"; const OUTPUT_Z: &str = "z"; fn create_model_proto_with_graph(graph: Option<GraphProto>) -> ModelProto { ModelProto { metadata_props: vec![], training_info: vec![], functions: vec![], ir_version: 0, opset_import: vec![], producer_name: "".to_string(), producer_version: "".to_string(), domain: "".to_string(), model_version: 0, doc_string: "".to_string(), graph, } } #[test] fn test_evaluation_fails_without_defined_graph() -> Result<()> { let manual_graph = create_model_proto_with_graph(None); let inputs: HashMap<String, Tensor> = HashMap::new(); match candle_onnx::simple_eval(&manual_graph, inputs) { Err(err) => assert_eq!(err.to_string(), "no graph defined in proto"), Ok(_) => panic!("Expected an error due to undefined graph"), } Ok(()) } // "Add" #[test] fn test_add_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Add".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?); inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let first = z .to_vec1::<f64>()? .to_vec() .get(0) .expect("Failed to get first element") .clone(); assert_eq!(first, 4.0f64); Ok(()) } // "Sub" #[test] fn test_sub_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Sub".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?); inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let first = z .to_vec1::<f64>()? .to_vec() .get(0) .expect("Failed to get first element") .clone(); assert_eq!(first, 0.0f64); Ok(()) } // "Mul" #[test] fn test_mul_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Mul".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?); inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let first = z .to_vec1::<f64>()? .to_vec() .get(0) .expect("Failed to get first element") .clone(); assert_eq!(first, 4.0f64); Ok(()) } // "Div" #[test] fn test_div_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Div".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?); inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let first = z .to_vec1::<f64>()? .to_vec() .get(0) .expect("Failed to get first element") .clone(); assert_eq!(first, 1.0f64); Ok(()) } // "Equal" #[test] fn test_equal_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Equal".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?); inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let first = z.to_dtype(candle::DType::U8)?.to_vec1::<u8>()?.to_vec()[0]; assert_eq!(first, 1); Ok(()) } // "Not" #[test] fn test_not_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Not".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), Tensor::new(&[0.], &Device::Cpu)?); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let first = z.to_dtype(candle::DType::U8)?.to_vec1::<u8>()?.to_vec()[0]; assert_eq!(first, 1); Ok(()) } // "MatMul" #[test] fn test_matmul_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "MatMul".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert( INPUT_X.to_string(), Tensor::from_vec( // vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu, )?, ); inputs.insert( INPUT_Y.to_string(), Tensor::from_vec( // vec![5.0f32, 6.0f32, 7.0f32, 8.0f32], &[2, 2], &Device::Cpu, )?, ); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let results = z.to_vec2::<f32>()?; assert_eq!(results, vec![vec![19.0, 22.0], vec![43.0, 50.0]]); Ok(()) } // "Reshape" #[test] fn test_reshape_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Reshape".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string(), INPUT_Y.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![ ValueInfoProto { name: INPUT_X.to_string(), doc_string: "".to_string(), r#type: None, }, ValueInfoProto { name: INPUT_Y.to_string(), doc_string: "".to_string(), r#type: None, }, ], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let x = Tensor::from_vec( // vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu, )?; let y = Tensor::from_vec( // vec![4i64], &[1], &Device::Cpu, )?; let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), x); inputs.insert(INPUT_Y.to_string(), y); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let results = z.to_vec1::<f32>()?; assert_eq!(results, vec![1.0, 2.0, 3.0, 4.0]); Ok(()) } // "LogSoftmax" #[test] fn test_logsoftmax_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "LogSoftmax".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![ ValueInfoProto { name: INPUT_X.to_string(), doc_string: "".to_string(), r#type: None, }, ValueInfoProto { name: INPUT_Y.to_string(), doc_string: "".to_string(), r#type: None, }, ], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let x = Tensor::from_vec( // vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu, )?; let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), x); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let results = z.to_vec2::<f32>()?; assert_eq!( results, vec![vec![0.26894143, 0.7310586], vec![0.26894143, 0.7310586]] ); Ok(()) } // "Softmax" #[test] fn test_softmax_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Softmax".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![ ValueInfoProto { name: INPUT_X.to_string(), doc_string: "".to_string(), r#type: None, }, ValueInfoProto { name: INPUT_Y.to_string(), doc_string: "".to_string(), r#type: None, }, ], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let x = Tensor::from_vec( // vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu, )?; let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), x); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let results = z.to_vec2::<f32>()?; assert_eq!( results, vec![vec![0.26894143, 0.7310586], vec![0.26894143, 0.7310586]] ); Ok(()) } // "Transpose" #[test] fn test_transpose_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Transpose".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![ ValueInfoProto { name: INPUT_X.to_string(), doc_string: "".to_string(), r#type: None, }, ValueInfoProto { name: INPUT_Y.to_string(), doc_string: "".to_string(), r#type: None, }, ], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let x = Tensor::from_vec( // vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu, )?; let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), x); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let results = z.to_vec2::<f32>()?; assert_eq!(results, vec![vec![1.0, 3.0], vec![2.0, 4.0]]); Ok(()) } // "Dropout" #[test] fn test_dropout_operation() -> Result<()> { let manual_graph = create_model_proto_with_graph(Some(GraphProto { node: vec![NodeProto { op_type: "Dropout".to_string(), domain: "".to_string(), attribute: vec![], input: vec![INPUT_X.to_string()], output: vec![OUTPUT_Z.to_string()], name: "".to_string(), doc_string: "".to_string(), }], name: "".to_string(), initializer: vec![], input: vec![ ValueInfoProto { name: INPUT_X.to_string(), doc_string: "".to_string(), r#type: None, }, ValueInfoProto { name: INPUT_Y.to_string(), doc_string: "".to_string(), r#type: None, }, ], output: vec![ValueInfoProto { name: OUTPUT_Z.to_string(), doc_string: "".to_string(), r#type: None, }], value_info: vec![], doc_string: "".to_string(), sparse_initializer: vec![], quantization_annotation: vec![], })); let x = Tensor::from_vec( // vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu, )?; let mut inputs: HashMap<String, Tensor> = HashMap::new(); inputs.insert(INPUT_X.to_string(), x); let eval = candle_onnx::simple_eval(&manual_graph, inputs)?; assert_eq!(eval.len(), 1); let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); let results = z.to_vec2::<f32>()?; assert_eq!(results, vec![vec![1.0, 2.0], vec![3.0, 4.0]]); Ok(()) } // Below are ops that are implemented but not tested yet // "MaxPool" // #[test] // "AveragePool" // #[test] // "BatchNormalization" // #[test] // "Squeeze" // #[test] // "ConstantOfShape" // #[test] // "Unsqueeze" // #[test] // "Clip" // #[test] // "Gather" // #[test] // "Shape" // #[test] // "Conv" // #[test] // "Concat" // #[test] // "Abs" // #[test] // "Cos" // #[test] // "Sin" // #[test] // "Neg" // #[test] // "Erf" // #[test] // "Tanh" // #[test] // "Sigmoid" // #[test] // "Gelu" // #[test] // "Relu" // #[test] // "Constant" // #[test] // "Cast" // #[test]
0
hf_public_repos/candle/candle-onnx
hf_public_repos/candle/candle-onnx/src/eval.rs
use crate::onnx; use crate::onnx::attribute_proto::AttributeType; use crate::onnx::tensor_proto::DataType; use candle::{bail, DType, Device, Result, Tensor}; use std::collections::HashMap; pub type Value = Tensor; pub fn dtype(dt: DataType) -> Option<DType> { match dt { DataType::Uint8 => Some(DType::U8), DataType::Uint32 => Some(DType::U32), DataType::Int64 => Some(DType::I64), DataType::Float16 => Some(DType::F16), DataType::Float => Some(DType::F32), DataType::Double => Some(DType::F64), _ => None, } } trait Attr { const TYPE: AttributeType; fn get(attr: &onnx::AttributeProto) -> Result<&Self>; } impl Attr for i64 { const TYPE: AttributeType = AttributeType::Int; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { Ok(&attr.i) } } impl Attr for f32 { const TYPE: AttributeType = AttributeType::Float; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { Ok(&attr.f) } } impl Attr for [i64] { const TYPE: AttributeType = AttributeType::Ints; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { Ok(attr.ints.as_slice()) } } impl Attr for str { const TYPE: AttributeType = AttributeType::String; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { std::str::from_utf8(&attr.s).map_err(candle::Error::wrap) } } fn get_attr_<'a>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a onnx::AttributeProto> { match node.attribute.iter().find(|attr| attr.name == name) { None => { bail!( "cannot find the '{name}' attribute in '{}' for {}", node.op_type, node.name ) } Some(dt) => Ok(dt), } } fn get_attr<'a, T: Attr + ?Sized>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a T> { let attr = get_attr_(node, name)?; if attr.r#type() != T::TYPE { bail!( "unsupported type {:?} for '{name}' attribute in '{}' for {}", attr.r#type, node.op_type, node.name ) } T::get(attr) } fn get_attr_opt<'a, T: Attr + ?Sized>( node: &'a onnx::NodeProto, name: &str, ) -> Result<Option<&'a T>> { match node.attribute.iter().find(|attr| attr.name == name) { None => Ok(None), Some(attr) => { if attr.r#type() != T::TYPE { bail!( "unsupported type {:?} for '{name}' attribute in '{}' for {}", attr.r#type, node.op_type, node.name ) } let val = T::get(attr)?; Ok(Some(val)) } } } pub fn get_tensor(t: &onnx::TensorProto, name: &str) -> Result<Tensor> { let dims: Vec<usize> = t.dims.iter().map(|&x| x as usize).collect(); match DataType::try_from(t.data_type) { Ok(DataType::Int32) => { if t.int32_data.is_empty() { let len = t.raw_data.len() / 4; let data: &[i32] = unsafe { std::slice::from_raw_parts(t.raw_data.as_ptr() as *const i32, len) }; let data = data.iter().map(|v| *v as i64).collect::<Vec<_>>(); Tensor::from_vec(data, len, &Device::Cpu) } else { let data = t.int32_data.iter().map(|v| *v as i64).collect::<Vec<_>>(); Tensor::from_vec(data, t.int32_data.len(), &Device::Cpu) } } Ok(dt) => match dtype(dt) { Some(dt) => { if dt == DType::F32 && !t.float_data.is_empty() { Tensor::from_slice(&t.float_data, dims.as_slice(), &Device::Cpu) } else if dt == DType::F64 && !t.double_data.is_empty() { Tensor::from_slice(&t.double_data, dims.as_slice(), &Device::Cpu) } else if dt == DType::I64 && !t.int64_data.is_empty() { Tensor::from_slice(&t.int64_data, dims.as_slice(), &Device::Cpu) } else { Tensor::from_raw_buffer( t.raw_data.as_slice(), dt, dims.as_slice(), &Device::Cpu, ) } } None => { bail!("unsupported 'value' data-type {dt:?} for {name}") } }, Err(_) => { bail!("unsupported 'value' data-type {} for {name}", t.data_type,) } } } // This function provides a direct evaluation of the proto. // Longer-term, we should first convert the proto to an intermediate representation of the compute // graph so as to make multiple evaluations more efficient. // An example upside of this would be to remove intermediary values when they are not needed // anymore. pub fn simple_eval( model: &onnx::ModelProto, inputs: HashMap<String, Value>, ) -> Result<HashMap<String, Value>> { let graph = match &model.graph { None => bail!("no graph defined in proto"), Some(graph) => graph, }; let mut values = inputs; for t in graph.initializer.iter() { let tensor = get_tensor(t, t.name.as_str())?; values.insert(t.name.to_string(), tensor); } for input in graph.input.iter() { let input_type = match &input.r#type { Some(input_type) => input_type, None => continue, }; let input_type = match &input_type.value { Some(input_type) => input_type, None => continue, }; let tensor_type = match input_type { onnx::type_proto::Value::TensorType(tt) => tt, _ => continue, }; let tensor = match values.get(&input.name) { None => bail!("missing input {}", input.name), Some(tensor) => tensor, }; let dt = match DataType::try_from(tensor_type.elem_type) { Ok(dt) => match dtype(dt) { Some(dt) => dt, None => { bail!("unsupported 'value' data-type {dt:?} for {}", input.name) } }, type_ => bail!("unsupported input type {type_:?}"), }; match &tensor_type.shape { None => continue, Some(shape) => { if shape.dim.len() != tensor.rank() { bail!( "unexpected rank for {}, got {:?}, expected {:?}", input.name, shape.dim, tensor.shape() ) } for (idx, (d, &dim)) in shape.dim.iter().zip(tensor.dims().iter()).enumerate() { match &d.value { Some(onnx::tensor_shape_proto::dimension::Value::DimValue(v)) => { if *v as usize != dim { bail!( "unexpected dim {idx} for {}, got {:?}, expected {:?}", input.name, shape.dim, tensor.shape() ) } } // We do not check equality constraints for the DimParam dimensions for now. Some(onnx::tensor_shape_proto::dimension::Value::DimParam(_)) | None => (), } } } }; if dt != tensor.dtype() { bail!( "unexpected dtype for {}, got {:?}, expected {dt:?}", input.name, tensor.dtype() ) } } // The nodes are topologically sorted so we can just process them in order. for node in graph.node.iter() { let get = |input_name: &str| match values.get(input_name) { Some(value) => Ok(value), None => bail!("cannot find {input_name} for op {}", node.name), }; // TODO: Validate node.input for each operator. match node.op_type.as_str() { "Add" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_add(input1)?; values.insert(node.output[0].clone(), output); } "Sub" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_sub(input1)?; values.insert(node.output[0].clone(), output); } "Mul" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_mul(input1)?; values.insert(node.output[0].clone(), output); } "Div" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_div(input1)?; values.insert(node.output[0].clone(), output); } "Pow" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_pow(input1)?; values.insert(node.output[0].clone(), output); } "Equal" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_eq(input1)?; values.insert(node.output[0].clone(), output); } "Not" => { let xs = get(&node.input[0])?; let xs = xs.eq(&xs.zeros_like()?)?; values.insert(node.output[0].clone(), xs); } "MatMul" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_matmul(input1)?; values.insert(node.output[0].clone(), output); } "Reshape" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?.to_vec1::<i64>()?; // TODO: Check that there is at most a single -1 or 0, handle other neg values. let mut other_than_minus1 = 1usize; for &v in input1.iter() { if v != -1 && v != 0 { other_than_minus1 *= v as usize } } let input1 = input1 .iter() .enumerate() .map(|(idx, &v)| match v { -1 => Ok(input0.elem_count() / other_than_minus1), 0 => input0.dim(idx), _ => Ok(v as usize), }) .collect::<Result<Vec<usize>>>()?; let output = input0.reshape(input1)?; values.insert(node.output[0].clone(), output); } "LogSoftmax" => { let input = get(&node.input[0])?; let output = match get_attr_opt::<i64>(node, "axis")? { None => candle_nn::ops::softmax_last_dim(input)?, Some(&axis) => { let axis = input.normalize_axis(axis)?; candle_nn::ops::log_softmax(input, axis)? } }; values.insert(node.output[0].clone(), output); } "Softmax" => { let input = get(&node.input[0])?; let output = match get_attr_opt::<i64>(node, "axis")? { None => candle_nn::ops::softmax_last_dim(input)?, Some(&axis) => { let axis = input.normalize_axis(axis)?; candle_nn::ops::softmax(input, axis)? } }; values.insert(node.output[0].clone(), output); } "Transpose" => { let input = get(&node.input[0])?; let output = match get_attr_opt::<[i64]>(node, "perm")? { None => input.t()?, Some(perm) => { let perm = perm.iter().map(|&v| v as usize).collect::<Vec<_>>(); input.permute(perm)? } }; values.insert(node.output[0].clone(), output); } "Dropout" => { let input = get(&node.input[0])?; // Do not apply dropout at the moment, consider that we're only doing inference. values.insert(node.output[0].clone(), input.clone()); } "MaxPool" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#MaxPool let dilations = get_attr_opt::<[i64]>(node, "dilations")?; let kernel_shape = get_attr::<[i64]>(node, "kernel_shape")?; let pads = get_attr_opt::<[i64]>(node, "pads")?; let strides = get_attr_opt::<[i64]>(node, "strides")?; let auto_pad = get_attr_opt::<str>(node, "auto_pad")?; match auto_pad { None | Some("NOTSET") => (), Some(s) => bail!("unsupported auto_pad {s}"), }; if let Some(d) = dilations { if d.iter().any(|&v| v != 1) { bail!("MaxPool with dilation != 1, {dilations:?}") } } if let Some(d) = pads { if d.iter().any(|&v| v != 0) { bail!("MaxPool with pads != 0, {pads:?}") } } let xs = get(&node.input[0])?; let (k1, k2) = match kernel_shape { [k1, k2] => (*k1 as usize, *k2 as usize), _ => bail!("only 2d MaxPool is supported, kernel shape {kernel_shape:?}"), }; let ys = match strides { None => xs.max_pool2d((k1, k2))?, Some([s1, s2]) => { xs.max_pool2d_with_stride((k1, k2), (*s1 as usize, *s2 as usize))? } Some(strides) => bail!("only 2d MaxPool is supported, strides {strides:?}"), }; values.insert(node.output[0].clone(), ys); } "AveragePool" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#AveragePool let dilations = get_attr_opt::<[i64]>(node, "dilations")?; let kernel_shape = get_attr::<[i64]>(node, "kernel_shape")?; let pads = get_attr_opt::<[i64]>(node, "pads")?; let strides = get_attr_opt::<[i64]>(node, "strides")?; let auto_pad = get_attr_opt::<str>(node, "auto_pad")?; match auto_pad { None | Some("NOTSET") => (), Some(s) => bail!("unsupported auto_pad {s}"), }; if let Some(d) = dilations { if d.iter().any(|&v| v != 1) { bail!("AvgPool with dilation != 1, {dilations:?}") } } if let Some(d) = pads { if d.iter().any(|&v| v != 0) { bail!("AvgPool with pads != 0, {pads:?}") } } let xs = get(&node.input[0])?; let (k1, k2) = match kernel_shape { [k1, k2] => (*k1 as usize, *k2 as usize), _ => bail!("only 2d AvgPool is supported, kernel shape {kernel_shape:?}"), }; let ys = match strides { None => xs.avg_pool2d((k1, k2))?, Some([s1, s2]) => { xs.avg_pool2d_with_stride((k1, k2), (*s1 as usize, *s2 as usize))? } Some(strides) => bail!("only 2d AvgPool is supported, strides {strides:?}"), }; values.insert(node.output[0].clone(), ys); } "BatchNormalization" => { let training_mode = get_attr_opt::<i64>(node, "training_mode")?; if training_mode.copied().unwrap_or(0) != 0 { bail!("training mode is not supported for BatchNorm") } let eps = get_attr_opt::<f32>(node, "epsilon")? .copied() .unwrap_or(1e-5); let xs = get(&node.input[0])?; let weight = get(&node.input[1])?; let bias = get(&node.input[2])?; let running_mean = get(&node.input[3])?; let running_var = get(&node.input[4])?; let target_shape: Vec<usize> = xs .dims() .iter() .enumerate() .map(|(idx, v)| if idx == 1 { *v } else { 1 }) .collect(); let target_shape = target_shape.as_slice(); let xs = xs .broadcast_sub(&running_mean.reshape(target_shape)?)? .broadcast_div(&(running_var.reshape(target_shape)? + eps as f64)?.sqrt()?)?; let weight = weight.reshape(target_shape)?; let bias = bias.reshape(target_shape)?; let xs = xs.broadcast_mul(&weight)?.broadcast_add(&bias)?; values.insert(node.output[0].clone(), xs); } "Squeeze" => { let xs = get(&node.input[0])?; let mut axes = if node.input.len() <= 1 { // contract all the dimensions with size 1 except the batch dim. xs.dims() .iter() .enumerate() .flat_map(|(idx, &s)| if s == 1 && idx > 0 { Some(idx) } else { None }) .collect() } else { get(&node.input[1])? .to_vec1::<i64>()? .iter() .map(|&i| xs.normalize_axis(i)) .collect::<Result<Vec<_>>>()? }; axes.sort(); let mut xs = xs.clone(); for &axis in axes.iter().rev() { xs = xs.squeeze(axis)? } values.insert(node.output[0].clone(), xs); } "ConstantOfShape" => { let dims = get(&node.input[0])?; let shape = dims .to_vec1::<i64>()? .into_iter() .map(|v| v as usize) .collect::<Vec<_>>(); let xs = Tensor::zeros(shape, DType::F32, dims.device())?; values.insert(node.output[0].clone(), xs); } "Unsqueeze" => { let xs = get(&node.input[0])?; let axes = match get_attr_opt::<[i64]>(node, "axes")? { Some(axis) => axis.to_vec(), None => get(&node.input[1])?.to_vec1::<i64>()?, }; let mut axes = axes .iter() .map(|&i| { if i == xs.rank() as i64 { Ok(xs.rank()) } else { xs.normalize_axis(i) } }) .collect::<Result<Vec<_>>>()?; axes.sort(); let mut xs = xs.clone(); for &axis in axes.iter().rev() { xs = xs.unsqueeze(axis)? } values.insert(node.output[0].clone(), xs); } "Clip" => { let xs = get(&node.input[0])?; let xs = if node.input.len() >= 2 { let mins = get(&node.input[1])?; xs.broadcast_maximum(mins)? } else { xs.clone() }; let xs = if node.input.len() >= 3 { let maxs = get(&node.input[2])?; xs.broadcast_minimum(maxs)? } else { xs.clone() }; values.insert(node.output[0].clone(), xs); } "Gather" => { let xs = get(&node.input[0])?; let indices = get(&node.input[1])?; let axis = get_attr_opt::<i64>(node, "axis")?.copied().unwrap_or(0); let axis = xs.normalize_axis(axis)?; // TODO: Provide an op to handle the ONNX generalized gather op ideally in a // differentiable way. let xs = if indices.rank() == 0 { let index = indices.to_vec0::<i64>()? as usize; xs.narrow(axis, index, 1)?.squeeze(axis)? } else { todo!("implement gather for {xs:?} {indices:?} axis {axis}") }; values.insert(node.output[0].clone(), xs); } "Shape" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Shape let xs = get(&node.input[0])?; let start = get_attr_opt::<i64>(node, "start")?.copied().unwrap_or(0); let end = get_attr_opt::<i64>(node, "end")?.copied().unwrap_or(-1); let start = xs.normalize_axis(start)?; let end = xs.normalize_axis(end)?; let mut dims = vec![]; for idx in start..=end { dims.push(xs.dim(idx)? as i64) } let dims = Tensor::from_vec(dims, xs.rank(), xs.device())?; values.insert(node.output[0].clone(), dims); } "Conv" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv let dilations = get_attr_opt::<[i64]>(node, "dilations")?; let groups = get_attr_opt::<i64>(node, "group")?.copied().unwrap_or(1); let _kernel_shape = get_attr_opt::<[i64]>(node, "kernel_shape")?; let pads = get_attr_opt::<[i64]>(node, "pads")?; let strides = get_attr_opt::<[i64]>(node, "strides")?; let auto_pad = get_attr_opt::<str>(node, "auto_pad")?; match auto_pad { None | Some("NOTSET") => (), Some(s) => bail!("unsupported auto_pad {s}"), }; let xs = get(&node.input[0])?; let ws = get(&node.input[1])?; let ys = match ws.rank() { 3 => { let (pads, xs) = match pads { None => (0, xs.clone()), Some([p]) => (*p as usize, xs.clone()), Some([p1, p2]) => { if p1 != p2 { (0usize, xs.pad_with_zeros(2, *p1 as usize, *p2 as usize)?) } else { (*p1 as usize, xs.clone()) } } Some(pads) => { bail!("more pads than expected in conv1d {pads:?} {}", node.name) } }; let strides = match strides { None => 1, Some([p]) => *p as usize, Some(s) => { bail!("more strides than expected in conv1d {s:?} {}", node.name) } }; let dilations = match dilations { None => 1, Some([p]) => *p as usize, Some(s) => { bail!("more dilations than expected in conv1d {s:?} {}", node.name) } }; xs.conv1d(ws, pads, strides, dilations, groups as usize)? } 4 => { let (pads, xs) = match pads { None => (0, xs.clone()), Some([p]) => (*p as usize, xs.clone()), Some(&[p1, p2, p3, p4]) => { let p1 = p1 as usize; let p2 = p2 as usize; let p3 = p3 as usize; let p4 = p4 as usize; if p1 != p2 || p1 != p3 || p1 != p4 { (0, xs.pad_with_zeros(2, p1, p3)?.pad_with_zeros(3, p2, p4)?) } else { (p1, xs.clone()) } } Some(pads) => { bail!("more pads than expected in conv2d {pads:?} {}", node.name) } }; let strides = match strides { None => 1, Some([p]) => *p as usize, Some([p1, p2]) => { if p1 != p2 { bail!( "strides have to be the same on both axis {pads:?} {}", node.name ) } *p1 as usize } Some(s) => { bail!("more strides than expected in conv2d {s:?} {}", node.name) } }; let dilations = match dilations { None => 1, Some([p]) => *p as usize, Some([p1, p2]) => { if p1 != p2 { bail!( "dilations have to be the same on both axis {pads:?} {}", node.name ) } *p1 as usize } Some(s) => { bail!("more dilations than expected in conv2d {s:?} {}", node.name) } }; xs.conv2d(ws, pads, strides, dilations, groups as usize)? } rank => bail!( "unsupported rank for weight matrix {rank} in conv {}", node.name ), }; let ys = if node.input.len() > 2 { let bs = get(&node.input[2])?; let mut bs_shape = vec![1; ys.rank()]; bs_shape[1] = bs.elem_count(); ys.broadcast_add(&bs.reshape(bs_shape)?)? } else { ys }; values.insert(node.output[0].clone(), ys); } "Concat" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Concat let inputs = node .input .iter() .map(|n| Ok(get(n.as_str())?.clone())) .collect::<Result<Vec<Value>>>()?; let axis: i64 = *get_attr(node, "axis")?; if inputs.is_empty() { bail!("empty concat") }; let axis = inputs[0].normalize_axis(axis)?; let output = Tensor::cat(&inputs, axis)?; values.insert(node.output[0].clone(), output); } "Abs" => { let input = get(&node.input[0])?; let output = input.abs()?; values.insert(node.output[0].clone(), output); } "Cos" => { let input = get(&node.input[0])?; let output = input.cos()?; values.insert(node.output[0].clone(), output); } "Sin" => { let input = get(&node.input[0])?; let output = input.sin()?; values.insert(node.output[0].clone(), output); } "Neg" => { let input = get(&node.input[0])?; let output = input.neg()?; values.insert(node.output[0].clone(), output); } "Erf" => { let input = get(&node.input[0])?; let output = input.erf()?; values.insert(node.output[0].clone(), output); } "Tanh" => { let input = get(&node.input[0])?; let output = input.tanh()?; values.insert(node.output[0].clone(), output); } "Sigmoid" => { let input = get(&node.input[0])?; let output = candle_nn::ops::sigmoid(input)?; values.insert(node.output[0].clone(), output); } "Gelu" => { let input = get(&node.input[0])?; let output = input.gelu_erf()?; values.insert(node.output[0].clone(), output); } "Relu" => { let input = get(&node.input[0])?; let output = input.relu()?; values.insert(node.output[0].clone(), output); } // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Constant "Constant" => { let value = match node.attribute.iter().find(|attr| attr.name == "value") { None => { // TODO: support sparse_value etc. bail!("cannot find 'value' attr in 'Constant' for {}", node.name) } Some(value) => value, }; let output = match value.r#type() { AttributeType::Tensor => { let t = value.t.as_ref().unwrap(); get_tensor(t, &node.name)? } rtype => bail!("unsupported 'value' type {rtype:?} for {}", node.name), }; values.insert(node.output[0].clone(), output); } // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Cast "Cast" => { let input = get(&node.input[0])?; let dt: i64 = *get_attr(node, "to")?; let dtype = match DataType::try_from(dt as i32) { Ok(DataType::Int32) => DType::I64, Ok(dt) => match dtype(dt) { Some(dt) => dt, None => { bail!("unsupported 'to' value {dt:?} for cast {}", node.name) } }, Err(_) => { bail!("unsupported 'to' value {dt:?} for cast {}", node.name) } }; let output = input.to_dtype(dtype)?; values.insert(node.output[0].clone(), output); } // https://github.com/onnx/onnx/blob/main/docs/Operators.md#CumSum "CumSum" => { let exclusive = get_attr_opt::<i64>(node, "exclusive")? .copied() .unwrap_or(0); let reverse = get_attr_opt::<i64>(node, "reverse")?.copied().unwrap_or(0); if exclusive != 0 { bail!("only exclusive == 0 is supported in CumSum") } if reverse != 0 { bail!("only reverse == 0 is supported in CumSum") } let input = get(&node.input[0])?; let axis = get(&node.input[1])? .to_dtype(DType::U32)? .to_vec0::<u32>()?; let output = input.cumsum(axis as usize)?; values.insert(node.output[0].clone(), output); } op_type => bail!("unsupported op_type {op_type} for op {node:?}"), } } graph .output .iter() .map(|output| match values.remove(&output.name) { None => bail!("cannot find output {}", output.name), Some(value) => Ok((output.name.clone(), value)), }) .collect() }
0
hf_public_repos/candle/candle-onnx
hf_public_repos/candle/candle-onnx/src/lib.rs
use candle::Result; use prost::Message; pub mod onnx { include!(concat!(env!("OUT_DIR"), "/onnx.rs")); } pub mod eval; pub use eval::{dtype, simple_eval}; pub fn read_file<P: AsRef<std::path::Path>>(p: P) -> Result<onnx::ModelProto> { let buf = std::fs::read(p)?; onnx::ModelProto::decode(buf.as_slice()).map_err(candle::Error::wrap) }
0
hf_public_repos/candle/candle-onnx
hf_public_repos/candle/candle-onnx/src/onnx.proto3
// // WARNING: This file is automatically generated! Please edit onnx.in.proto. // // SPDX-License-Identifier: Apache-2.0 syntax = "proto3"; package onnx; // Overview // // ONNX is an open specification that is comprised of the following components: // // 1) A definition of an extensible computation graph model. // 2) Definitions of standard data types. // 3) Definitions of built-in operators. // // This document describes the syntax of models and their computation graphs, // as well as the standard data types. Together, they are referred to as the ONNX // Intermediate Representation, or 'IR' for short. // // The normative semantic specification of the ONNX IR is found in docs/IR.md. // Definitions of the built-in neural network operators may be found in docs/Operators.md. // Notes // // Protobuf compatibility // // To simplify framework compatibility, ONNX is defined using the subset of protobuf // that is compatible with both protobuf v2 and v3. This means that we do not use any // protobuf features that are only available in one of the two versions. // // Here are the most notable contortions we have to carry out to work around // these limitations: // // - No 'map' (added protobuf 3.0). We instead represent mappings as lists // of key-value pairs, where order does not matter and duplicates // are not allowed. // Versioning // // ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md // // To be compatible with both proto2 and proto3, we will use a version number // that is not defined by the default value but an explicit enum number. enum Version { // proto3 requires the first enum value to be zero. // We add this just to appease the compiler. _START_VERSION = 0; // The version field is always serialized and we will use it to store the // version that the graph is generated from. This helps us set up version // control. // For the IR, we are using simple numbers starting with 0x00000001, // which was the version we published on Oct 10, 2017. IR_VERSION_2017_10_10 = 0x0000000000000001; // IR_VERSION 2 published on Oct 30, 2017 // - Added type discriminator to AttributeProto to support proto3 users IR_VERSION_2017_10_30 = 0x0000000000000002; // IR VERSION 3 published on Nov 3, 2017 // - For operator versioning: // - Added new message OperatorSetIdProto // - Added opset_import in ModelProto // - For vendor extensions, added domain in NodeProto IR_VERSION_2017_11_3 = 0x0000000000000003; // IR VERSION 4 published on Jan 22, 2019 // - Relax constraint that initializers should be a subset of graph inputs // - Add type BFLOAT16 IR_VERSION_2019_1_22 = 0x0000000000000004; // IR VERSION 5 published on March 18, 2019 // - Add message TensorAnnotation. // - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters. IR_VERSION_2019_3_18 = 0x0000000000000005; // IR VERSION 6 published on Sep 19, 2019 // - Add support for sparse tensor constants stored in model. // - Add message SparseTensorProto // - Add sparse initializers IR_VERSION_2019_9_19 = 0x0000000000000006; // IR VERSION 7 published on May 8, 2020 // - Add support to allow function body graph to rely on multiple external opreator sets. // - Add a list to promote inference graph's initializers to global and // mutable variables. Global variables are visible in all graphs of the // stored models. // - Add message TrainingInfoProto to store initialization // method and training algorithm. The execution of TrainingInfoProto // can modify the values of mutable variables. // - Implicitly add inference graph into each TrainingInfoProto's algorithm. IR_VERSION_2020_5_8 = 0x0000000000000007; // IR VERSION 8 published on July 30, 2021 // Introduce TypeProto.SparseTensor // Introduce TypeProto.Optional // Added a list of FunctionProtos local to the model // Deprecated since_version and operator status from FunctionProto IR_VERSION_2021_7_30 = 0x0000000000000008; // IR VERSION 9 published on May 5, 2023 // Added AttributeProto to FunctionProto so that default attribute values can be set. // Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ. IR_VERSION = 0x0000000000000009; } // Attributes // // A named attribute containing either singular float, integer, string, graph, // and tensor values, or repeated float, integer, string, graph, and tensor values. // An AttributeProto MUST contain the name field, and *only one* of the // following content fields, effectively enforcing a C/C++ union equivalent. message AttributeProto { reserved 12, 16 to 19; reserved "v"; // Note: this enum is structurally identical to the OpSchema::AttrType // enum defined in schema.h. If you rev one, you likely need to rev the other. enum AttributeType { UNDEFINED = 0; FLOAT = 1; INT = 2; STRING = 3; TENSOR = 4; GRAPH = 5; SPARSE_TENSOR = 11; TYPE_PROTO = 13; FLOATS = 6; INTS = 7; STRINGS = 8; TENSORS = 9; GRAPHS = 10; SPARSE_TENSORS = 12; TYPE_PROTOS = 14; } // The name field MUST be present for this version of the IR. string name = 1; // namespace Attribute // if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function. // In this case, this AttributeProto does not contain data, and it's a reference of attribute // in parent scope. // NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph. string ref_attr_name = 21; // A human-readable documentation for this attribute. Markdown is allowed. string doc_string = 13; // The type field MUST be present for this version of the IR. // For 0.0.1 versions of the IR, this field was not defined, and // implementations needed to use has_field heuristics to determine // which value field was in use. For IR_VERSION 0.0.2 or later, this // field MUST be set and match the f|i|s|t|... field in use. This // change was made to accommodate proto3 implementations. AttributeType type = 20; // discriminator that indicates which field below is in use // Exactly ONE of the following fields must be present for this version of the IR float f = 2; // float int64 i = 3; // int bytes s = 4; // UTF-8 string TensorProto t = 5; // tensor value GraphProto g = 6; // graph SparseTensorProto sparse_tensor = 22; // sparse tensor value // Do not use field below, it's deprecated. // optional ValueProto v = 12; // value - subsumes everything but graph TypeProto tp = 14; // type proto repeated float floats = 7; // list of floats repeated int64 ints = 8; // list of ints repeated bytes strings = 9; // list of UTF-8 strings repeated TensorProto tensors = 10; // list of tensors repeated GraphProto graphs = 11; // list of graph repeated SparseTensorProto sparse_tensors = 23; // list of sparse tensors repeated TypeProto type_protos = 15;// list of type protos } // Defines information on value, including the name, the type, and // the shape of the value. message ValueInfoProto { // This field MUST be present in this version of the IR. string name = 1; // namespace Value // This field MUST be present in this version of the IR for // inputs and outputs of the top-level graph. TypeProto type = 2; // A human-readable documentation for this value. Markdown is allowed. string doc_string = 3; } // Nodes // // Computation graphs are made up of a DAG of nodes, which represent what is // commonly called a "layer" or "pipeline stage" in machine learning frameworks. // // For example, it can be a node of type "Conv" that takes in an image, a filter // tensor and a bias tensor, and produces the convolved output. message NodeProto { repeated string input = 1; // namespace Value repeated string output = 2; // namespace Value // An optional identifier for this node in a graph. // This field MAY be absent in ths version of the IR. string name = 3; // namespace Node // The symbolic identifier of the Operator to execute. string op_type = 4; // namespace Operator // The domain of the OperatorSet that specifies the operator named by op_type. string domain = 7; // namespace Domain // Additional named attributes. repeated AttributeProto attribute = 5; // A human-readable documentation for this node. Markdown is allowed. string doc_string = 6; } // Training information // TrainingInfoProto stores information for training a model. // In particular, this defines two functionalities: an initialization-step // and a training-algorithm-step. Initialization resets the model // back to its original state as if no training has been performed. // Training algorithm improves the model based on input data. // // The semantics of the initialization-step is that the initializers // in ModelProto.graph and in TrainingInfoProto.algorithm are first // initialized as specified by the initializers in the graph, and then // updated by the "initialization_binding" in every instance in // ModelProto.training_info. // // The field "algorithm" defines a computation graph which represents a // training algorithm's step. After the execution of a // TrainingInfoProto.algorithm, the initializers specified by "update_binding" // may be immediately updated. If the targeted training algorithm contains // consecutive update steps (such as block coordinate descent methods), // the user needs to create a TrainingInfoProto for each step. message TrainingInfoProto { // This field describes a graph to compute the initial tensors // upon starting the training process. Initialization graph has no input // and can have multiple outputs. Usually, trainable tensors in neural // networks are randomly initialized. To achieve that, for each tensor, // the user can put a random number operator such as RandomNormal or // RandomUniform in TrainingInfoProto.initialization.node and assign its // random output to the specific tensor using "initialization_binding". // This graph can also set the initializers in "algorithm" in the same // TrainingInfoProto; a use case is resetting the number of training // iteration to zero. // // By default, this field is an empty graph and its evaluation does not // produce any output. Thus, no initializer would be changed by default. GraphProto initialization = 1; // This field represents a training algorithm step. Given required inputs, // it computes outputs to update initializers in its own or inference graph's // initializer lists. In general, this field contains loss node, gradient node, // optimizer node, increment of iteration count. // // An execution of the training algorithm step is performed by executing the // graph obtained by combining the inference graph (namely "ModelProto.graph") // and the "algorithm" graph. That is, the actual // input/initializer/output/node/value_info/sparse_initializer list of // the training graph is the concatenation of // "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" // and "algorithm.input/initializer/output/node/value_info/sparse_initializer" // in that order. This combined graph must satisfy the normal ONNX conditions. // Now, let's provide a visualization of graph combination for clarity. // Let the inference graph (i.e., "ModelProto.graph") be // tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d // and the "algorithm" graph be // tensor_d -> Add -> tensor_e // The combination process results // tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e // // Notice that an input of a node in the "algorithm" graph may reference the // output of a node in the inference graph (but not the other way round). Also, inference // node cannot reference inputs of "algorithm". With these restrictions, inference graph // can always be run independently without training information. // // By default, this field is an empty graph and its evaluation does not // produce any output. Evaluating the default training step never // update any initializers. GraphProto algorithm = 2; // This field specifies the bindings from the outputs of "initialization" to // some initializers in "ModelProto.graph.initializer" and // the "algorithm.initializer" in the same TrainingInfoProto. // See "update_binding" below for details. // // By default, this field is empty and no initializer would be changed // by the execution of "initialization". repeated StringStringEntryProto initialization_binding = 3; // Gradient-based training is usually an iterative procedure. In one gradient // descent iteration, we apply // // x = x - r * g // // where "x" is the optimized tensor, "r" stands for learning rate, and "g" is // gradient of "x" with respect to a chosen loss. To avoid adding assignments // into the training graph, we split the update equation into // // y = x - r * g // x = y // // The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To // tell that "y" should be assigned to "x", the field "update_binding" may // contain a key-value pair of strings, "x" (key of StringStringEntryProto) // and "y" (value of StringStringEntryProto). // For a neural network with multiple trainable (mutable) tensors, there can // be multiple key-value pairs in "update_binding". // // The initializers appears as keys in "update_binding" are considered // mutable variables. This implies some behaviors // as described below. // // 1. We have only unique keys in all "update_binding"s so that two // variables may not have the same name. This ensures that one // variable is assigned up to once. // 2. The keys must appear in names of "ModelProto.graph.initializer" or // "TrainingInfoProto.algorithm.initializer". // 3. The values must be output names of "algorithm" or "ModelProto.graph.output". // 4. Mutable variables are initialized to the value specified by the // corresponding initializer, and then potentially updated by // "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. // // This field usually contains names of trainable tensors // (in ModelProto.graph), optimizer states such as momentums in advanced // stochastic gradient methods (in TrainingInfoProto.graph), // and number of training iterations (in TrainingInfoProto.graph). // // By default, this field is empty and no initializer would be changed // by the execution of "algorithm". repeated StringStringEntryProto update_binding = 4; } // Models // // ModelProto is a top-level file/container format for bundling a ML model and // associating its computation graph with metadata. // // The semantics of the model are described by the associated GraphProto's. message ModelProto { // The version of the IR this model targets. See Version enum above. // This field MUST be present. int64 ir_version = 1; // The OperatorSets this model relies on. // All ModelProtos MUST have at least one entry that // specifies which version of the ONNX OperatorSet is // being imported. // // All nodes in the ModelProto's graph will bind against the operator // with the same-domain/same-op_type operator with the HIGHEST version // in the referenced operator sets. repeated OperatorSetIdProto opset_import = 8; // The name of the framework or tool used to generate this model. // This field SHOULD be present to indicate which implementation/tool/framework // emitted the model. string producer_name = 2; // The version of the framework or tool used to generate this model. // This field SHOULD be present to indicate which implementation/tool/framework // emitted the model. string producer_version = 3; // Domain name of the model. // We use reverse domain names as name space indicators. For example: // `com.facebook.fair` or `com.microsoft.cognitiveservices` // // Together with `model_version` and GraphProto.name, this forms the unique identity of // the graph. string domain = 4; // The version of the graph encoded. See Version enum below. int64 model_version = 5; // A human-readable documentation for this model. Markdown is allowed. string doc_string = 6; // The parameterized graph that is evaluated to execute the model. GraphProto graph = 7; // Named metadata values; keys should be distinct. repeated StringStringEntryProto metadata_props = 14; // Training-specific information. Sequentially executing all stored // `TrainingInfoProto.algorithm`s and assigning their outputs following // the corresponding `TrainingInfoProto.update_binding`s is one training // iteration. Similarly, to initialize the model // (as if training hasn't happened), the user should sequentially execute // all stored `TrainingInfoProto.initialization`s and assigns their outputs // using `TrainingInfoProto.initialization_binding`s. // // If this field is empty, the training behavior of the model is undefined. repeated TrainingInfoProto training_info = 20; // A list of function protos local to the model. // // Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain". // In case of any conflicts the behavior (whether the model local functions are given higher priority, // or standard operator sets are given higher priotity or this is treated as error) is defined by // the runtimes. // // The operator sets imported by FunctionProto should be compatible with the ones // imported by ModelProto and other model local FunctionProtos. // Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto // or by 2 FunctionProtos then versions for the operator set may be different but, // the operator schema returned for op_type, domain, version combination // for both the versions should be same for every node in the function body. // // One FunctionProto can reference other FunctionProto in the model, however, recursive reference // is not allowed. repeated FunctionProto functions = 25; }; // StringStringEntryProto follows the pattern for cross-proto-version maps. // See https://developers.google.com/protocol-buffers/docs/proto3#maps message StringStringEntryProto { string key = 1; string value = 2; }; message TensorAnnotation { string tensor_name = 1; // <key, value> pairs to annotate tensor specified by <tensor_name> above. // The keys used in the mapping below must be pre-defined in ONNX spec. // For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as // quantization parameter keys. repeated StringStringEntryProto quant_parameter_tensor_names = 2; } // Graphs // // A graph defines the computational logic of a model and is comprised of a parameterized // list of nodes that form a directed acyclic graph based on their inputs and outputs. // This is the equivalent of the "network" or "graph" in many deep learning // frameworks. message GraphProto { // The nodes in the graph, sorted topologically. repeated NodeProto node = 1; // The name of the graph. string name = 2; // namespace Graph // A list of named tensor values, used to specify constant inputs of the graph. // Each initializer (both TensorProto as well SparseTensorProto) MUST have a name. // The name MUST be unique across both initializer and sparse_initializer, // but the name MAY also appear in the input list. repeated TensorProto initializer = 5; // Initializers (see above) stored in sparse format. repeated SparseTensorProto sparse_initializer = 15; // A human-readable documentation for this graph. Markdown is allowed. string doc_string = 10; // The inputs and outputs of the graph. repeated ValueInfoProto input = 11; repeated ValueInfoProto output = 12; // Information for the values in the graph. The ValueInfoProto.name's // must be distinct. It is optional for a value to appear in value_info list. repeated ValueInfoProto value_info = 13; // This field carries information to indicate the mapping among a tensor and its // quantization parameter tensors. For example: // For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated, // which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model. repeated TensorAnnotation quantization_annotation = 14; reserved 3, 4, 6 to 9; reserved "ir_version", "producer_version", "producer_tag", "domain"; } // Tensors // // A serialized tensor value. message TensorProto { enum DataType { UNDEFINED = 0; // Basic types. FLOAT = 1; // float UINT8 = 2; // uint8_t INT8 = 3; // int8_t UINT16 = 4; // uint16_t INT16 = 5; // int16_t INT32 = 6; // int32_t INT64 = 7; // int64_t STRING = 8; // string BOOL = 9; // bool // IEEE754 half-precision floating-point format (16 bits wide). // This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits. FLOAT16 = 10; DOUBLE = 11; UINT32 = 12; UINT64 = 13; COMPLEX64 = 14; // complex with float32 real and imaginary components COMPLEX128 = 15; // complex with float64 real and imaginary components // Non-IEEE floating-point format based on IEEE754 single-precision // floating-point number truncated to 16 bits. // This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits. BFLOAT16 = 16; // Non-IEEE floating-point format based on papers // FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433, // 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf. // Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear. // The computation usually happens inside a block quantize / dequantize // fused by the runtime. FLOAT8E4M3FN = 17; // float 8, mostly used for coefficients, supports nan, not inf FLOAT8E4M3FNUZ = 18; // float 8, mostly used for coefficients, supports nan, not inf, no negative zero FLOAT8E5M2 = 19; // follows IEEE 754, supports nan, inf, mostly used for gradients FLOAT8E5M2FNUZ = 20; // follows IEEE 754, supports nan, inf, mostly used for gradients, no negative zero // Future extensions go here. } // The shape of the tensor. repeated int64 dims = 1; // The data type of the tensor. // This field MUST have a valid TensorProto.DataType value int32 data_type = 2; // For very large tensors, we may want to store them in chunks, in which // case the following fields will specify the segment that is stored in // the current TensorProto. message Segment { int64 begin = 1; int64 end = 2; } Segment segment = 3; // Tensor content must be organized in row-major order. // // Depending on the data_type field, exactly one of the fields below with // name ending in _data is used to store the elements of the tensor. // For float and complex64 values // Complex64 tensors are encoded as a single array of floats, // with the real components appearing in odd numbered positions, // and the corresponding imaginary component appearing in the // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] // is encoded as [1.0, 2.0 ,3.0 ,4.0] // When this field is present, the data_type field MUST be FLOAT or COMPLEX64. repeated float float_data = 4 [packed = true]; // For int32, uint8, int8, uint16, int16, bool, float8, and float16 values // float16 and float8 values must be bit-wise converted to an uint16_t prior // to writing to the buffer. // When this field is present, the data_type field MUST be // INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ repeated int32 int32_data = 5 [packed = true]; // For strings. // Each element of string_data is a UTF-8 encoded Unicode // string. No trailing null, no leading BOM. The protobuf "string" // scalar type is not used to match ML community conventions. // When this field is present, the data_type field MUST be STRING repeated bytes string_data = 6; // For int64. // When this field is present, the data_type field MUST be INT64 repeated int64 int64_data = 7 [packed = true]; // Optionally, a name for the tensor. string name = 8; // namespace Value // A human-readable documentation for this tensor. Markdown is allowed. string doc_string = 12; // Serializations can either use one of the fields above, or use this // raw bytes field. The only exception is the string case, where one is // required to store the content in the repeated bytes string_data field. // // When this raw_data field is used to store tensor value, elements MUST // be stored in as fixed-width, little-endian order. // Floating-point data types MUST be stored in IEEE 754 format. // Complex64 elements must be written as two consecutive FLOAT values, real component first. // Complex128 elements must be written as two consecutive DOUBLE values, real component first. // Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false). // // Note: the advantage of specific field rather than the raw_data field is // that in some cases (e.g. int data), protobuf does a better packing via // variable length storage, and may lead to smaller binary footprint. // When this field is present, the data_type field MUST NOT be STRING or UNDEFINED bytes raw_data = 9; // Data can be stored inside the protobuf file using type-specific fields or raw_data. // Alternatively, raw bytes data can be stored in an external file, using the external_data field. // external_data stores key-value pairs describing data location. Recognized keys are: // - "location" (required) - POSIX filesystem path relative to the directory where the ONNX // protobuf model was stored // - "offset" (optional) - position of byte at which stored data begins. Integer stored as string. // Offset values SHOULD be multiples 4096 (page size) to enable mmap support. // - "length" (optional) - number of bytes containing data. Integer stored as string. // - "checksum" (optional) - SHA1 digest of file specified in under 'location' key. repeated StringStringEntryProto external_data = 13; // Location of the data for this tensor. MUST be one of: // - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field. // - EXTERNAL - data stored in an external location as described by external_data field. enum DataLocation { DEFAULT = 0; EXTERNAL = 1; } // If value not set, data is stored in raw_data (if set) otherwise in type-specified field. DataLocation data_location = 14; // For double // Complex128 tensors are encoded as a single array of doubles, // with the real components appearing in odd numbered positions, // and the corresponding imaginary component appearing in the // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] // is encoded as [1.0, 2.0 ,3.0 ,4.0] // When this field is present, the data_type field MUST be DOUBLE or COMPLEX128 repeated double double_data = 10 [packed = true]; // For uint64 and uint32 values // When this field is present, the data_type field MUST be // UINT32 or UINT64 repeated uint64 uint64_data = 11 [packed = true]; } // A serialized sparse-tensor value message SparseTensorProto { // The sequence of non-default values are encoded as a tensor of shape [NNZ]. // The default-value is zero for numeric tensors, and empty-string for string tensors. // values must have a non-empty name present which serves as a name for SparseTensorProto // when used in sparse_initializer list. TensorProto values = 1; // The indices of the non-default values, which may be stored in one of two formats. // (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value // corresponding to the j-th index of the i-th value (in the values tensor). // (b) Indices can be a tensor of shape [NNZ], in which case the i-th value // must be the linearized-index of the i-th value (in the values tensor). // The linearized-index can be converted into an index tuple (k_1,...,k_rank) // using the shape provided below. // The indices must appear in ascending order without duplication. // In the first format, the ordering is lexicographic-ordering: // e.g., index-value [1,4] must appear before [2,1] TensorProto indices = 2; // The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank] repeated int64 dims = 3; } // Defines a tensor shape. A dimension can be either an integer value // or a symbolic variable. A symbolic variable represents an unknown // dimension. message TensorShapeProto { message Dimension { oneof value { int64 dim_value = 1; string dim_param = 2; // namespace Shape }; // Standard denotation can optionally be used to denote tensor // dimensions with standard semantic descriptions to ensure // that operations are applied to the correct axis of a tensor. // Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition // for pre-defined dimension denotations. string denotation = 3; }; repeated Dimension dim = 1; } // Types // // The standard ONNX data types. message TypeProto { message Tensor { // This field MUST NOT have the value of UNDEFINED // This field MUST have a valid TensorProto.DataType value // This field MUST be present for this version of the IR. int32 elem_type = 1; TensorShapeProto shape = 2; } // repeated T message Sequence { // The type and optional shape of each element of the sequence. // This field MUST be present for this version of the IR. TypeProto elem_type = 1; }; // map<K,V> message Map { // This field MUST have a valid TensorProto.DataType value // This field MUST be present for this version of the IR. // This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING int32 key_type = 1; // This field MUST be present for this version of the IR. TypeProto value_type = 2; }; // wrapper for Tensor, Sequence, or Map message Optional { // The type and optional shape of the element wrapped. // This field MUST be present for this version of the IR. // Possible values correspond to OptionalProto.DataType enum TypeProto elem_type = 1; }; message SparseTensor { // This field MUST NOT have the value of UNDEFINED // This field MUST have a valid TensorProto.DataType value // This field MUST be present for this version of the IR. int32 elem_type = 1; TensorShapeProto shape = 2; } oneof value { // The type of a tensor. Tensor tensor_type = 1; // NOTE: DNN-only implementations of ONNX MAY elect to not support non-tensor values // as input and output to graphs and nodes. These types are needed to naturally // support classical ML operators. DNN operators SHOULD restrict their input // and output types to tensors. // The type of a sequence. Sequence sequence_type = 4; // The type of a map. Map map_type = 5; // The type of an optional. Optional optional_type = 9; // Type of the sparse tensor SparseTensor sparse_tensor_type = 8; } // An optional denotation can be used to denote the whole // type with a standard semantic description as to what is // stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition // for pre-defined type denotations. string denotation = 6; } // Operator Sets // // OperatorSets are uniquely identified by a (domain, opset_version) pair. message OperatorSetIdProto { // The domain of the operator set being identified. // The empty string ("") or absence of this field implies the operator // set that is defined as part of the ONNX specification. // This field MUST be present in this version of the IR when referring to any other operator set. string domain = 1; // The version of the operator set being identified. // This field MUST be present in this version of the IR. int64 version = 2; } // Operator/function status. enum OperatorStatus { EXPERIMENTAL = 0; STABLE = 1; } message FunctionProto { // The name of the function, similar usage of op_type in OperatorProto. // Combined with FunctionProto.domain, this forms the unique identity of // the FunctionProto. string name = 1; // Deprecated since IR Version 8 // optional int64 since_version = 2; reserved 2; reserved "since_version"; // Deprecated since IR Version 8 // optional OperatorStatus status = 3; reserved 3; reserved "status"; // The inputs and outputs of the function. repeated string input = 4; repeated string output = 5; // The attribute parameters of the function. // It is for function parameters without default values. repeated string attribute = 6; // The attribute protos of the function. // It is for function attributes with default values. // A function attribute shall be represented either as // a string attribute or an AttributeProto, not both. repeated AttributeProto attribute_proto = 11; // The nodes in the function. repeated NodeProto node = 7; // A human-readable documentation for this function. Markdown is allowed. string doc_string = 8; // The OperatorSets this function body (graph) relies on. // // All nodes in the function body (graph) will bind against the operator // with the same-domain/same-op_type operator with the HIGHEST version // in the referenced operator sets. This means at most one version can be relied // for one domain. // // The operator sets imported by FunctionProto should be compatible with the ones // imported by ModelProto. Example, if same operator set say 'A' is imported by FunctionProto // and ModelProto then versions for the operator set may be different but, // the operator schema returned for op_type, domain, version combination // for both the versions should be same. repeated OperatorSetIdProto opset_import = 9; // The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of // the FunctionProto. string domain = 10; } // For using protobuf-lite option optimize_for = LITE_RUNTIME;
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/segment-anything/README.md
## Running Segment Anything Example Here, we provide two examples of how to run Whisper using a Candle-compiled WASM binary and runtimes. ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { Model } from "./build/m.js"; ``` The full example can be found under `./lib-example.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/lib-example.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/segment-anything/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/segment-anything/Cargo.toml
[package] name = "candle-wasm-example-sam" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } num-traits = { workspace = true } # App crates. anyhow = { workspace = true } byteorder = { workspace = true } getrandom = { version = "0.2", features = ["js"] } image = { workspace = true } log = { workspace = true } safetensors = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } # Wasm specific crates. console_error_panic_hook = "0.1.7" wasm-bindgen = "0.2.87" serde-wasm-bindgen = "0.6.0"
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/segment-anything/lib-example.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Segment Anything Model (SAM) Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> // base url for image examples const MODEL_BASEURL = "https://huggingface.co/lmz/candle-sam/resolve/main/"; // models base url const MODELS = { sam_mobile_tiny: { url: "mobile_sam-tiny-vitt.safetensors", }, sam_base: { url: "sam_vit_b_01ec64.safetensors", }, }; const samWorker = new Worker("./samWorker.js", { type: "module" }); async function segmentPoints( modelURL, // URL to the weights file modelID, // model ID imageURL, // URL to the image file points // {x, y} points to prompt image ) { return new Promise((resolve, reject) => { function messageHandler(event) { console.log(event.data); if ("status" in event.data) { updateStatus(event.data); } if ("error" in event.data) { samWorker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete-embedding") { samWorker.removeEventListener("message", messageHandler); resolve(); } if (event.data.status === "complete") { samWorker.removeEventListener("message", messageHandler); resolve(event.data.output); } } samWorker.addEventListener("message", messageHandler); samWorker.postMessage({ modelURL, modelID, imageURL, points, }); }); } function updateStatus(statusMessage) { statusOutput.innerText = event.data.message; } let copyMaskURL = null; let copyImageURL = null; const clearBtn = document.querySelector("#clear-btn"); const maskBtn = document.querySelector("#mask-btn"); const undoBtn = document.querySelector("#undo-btn"); const downloadBtn = document.querySelector("#download-btn"); const canvas = document.querySelector("#canvas"); const mask = document.querySelector("#mask"); const ctxCanvas = canvas.getContext("2d"); const ctxMask = mask.getContext("2d"); const fileUpload = document.querySelector("#file-upload"); const dropArea = document.querySelector("#drop-area"); const dropButtons = document.querySelector("#drop-buttons"); const imagesExamples = document.querySelector("#image-select"); const modelSelection = document.querySelector("#model"); const statusOutput = document.querySelector("#output-status"); //add event listener to file input fileUpload.addEventListener("input", (e) => { const target = e.target; if (target.files.length > 0) { const href = URL.createObjectURL(target.files[0]); clearImageCanvas(); copyImageURL = href; drawImageCanvas(href); setImageEmbeddings(href); togglePointMode(false); } }); // add event listener to drop-area dropArea.addEventListener("dragenter", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("dragleave", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); }); dropArea.addEventListener("dragover", (e) => { e.preventDefault(); }); dropArea.addEventListener("drop", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); const url = e.dataTransfer.getData("text/uri-list"); const files = e.dataTransfer.files; if (files.length > 0) { const href = URL.createObjectURL(files[0]); clearImageCanvas(); copyImageURL = href; drawImageCanvas(href); setImageEmbeddings(href); togglePointMode(false); } else if (url) { clearImageCanvas(); copyImageURL = url; drawImageCanvas(url); setImageEmbeddings(url); togglePointMode(false); } }); let hasImage = false; let isSegmenting = false; let isEmbedding = false; let currentImageURL = ""; let pointArr = []; let bgPointMode = false; //add event listener to image examples imagesExamples.addEventListener("click", (e) => { if (isEmbedding || isSegmenting) { return; } const target = e.target; if (target.nodeName === "IMG") { const href = target.src; clearImageCanvas(); copyImageURL = href; drawImageCanvas(href); setImageEmbeddings(href); } }); //add event listener to mask button maskBtn.addEventListener("click", () => { togglePointMode(); }); //add event listener to clear button clearBtn.addEventListener("click", () => { clearImageCanvas(); togglePointMode(false); pointArr = []; }); //add event listener to undo button undoBtn.addEventListener("click", () => { undoPoint(); }); // add event to download btn downloadBtn.addEventListener("click", async () => { // Function to load image blobs as Image elements asynchronously const loadImageAsync = (imageURL) => { return new Promise((resolve) => { const img = new Image(); img.onload = () => { resolve(img); }; img.crossOrigin = "anonymous"; img.src = imageURL; }); }; const originalImage = await loadImageAsync(copyImageURL); const maskImage = await loadImageAsync(copyMaskURL); // create main a board to draw const canvas = document.createElement("canvas"); const ctx = canvas.getContext("2d"); canvas.width = originalImage.width; canvas.height = originalImage.height; // Perform the mask operation ctx.drawImage(maskImage, 0, 0); ctx.globalCompositeOperation = "source-in"; ctx.drawImage(originalImage, 0, 0); // to blob const blobPromise = new Promise((resolve) => { canvas.toBlob(resolve); }); const blob = await blobPromise; const resultURL = URL.createObjectURL(blob); // download const link = document.createElement("a"); link.href = resultURL; link.download = "cutout.png"; link.click(); }); //add click event to canvas canvas.addEventListener("click", async (event) => { if (!hasImage || isEmbedding || isSegmenting) { return; } const backgroundMode = event.shiftKey ? bgPointMode^event.shiftKey : bgPointMode; const targetBox = event.target.getBoundingClientRect(); const x = (event.clientX - targetBox.left) / targetBox.width; const y = (event.clientY - targetBox.top) / targetBox.height; const ptsToRemove = []; for (const [idx, pts] of pointArr.entries()) { const d = Math.sqrt((pts[0] - x) ** 2 + (pts[1] - y) ** 2); if (d < 6 / targetBox.width) { ptsToRemove.push(idx); } } if (ptsToRemove.length > 0) { pointArr = pointArr.filter((_, idx) => !ptsToRemove.includes(idx)); } else { pointArr = [...pointArr, [x, y, !backgroundMode]]; } undoBtn.disabled = false; downloadBtn.disabled = false; if (pointArr.length == 0) { ctxMask.clearRect(0, 0, canvas.width, canvas.height); undoBtn.disabled = true; downloadBtn.disabled = true; return; } isSegmenting = true; const { maskURL } = await getSegmentationMask(pointArr); isSegmenting = false; copyMaskURL = maskURL; drawMask(maskURL, pointArr); }); async function undoPoint() { if (!hasImage || isEmbedding || isSegmenting) { return; } if (pointArr.length === 0) { return; } pointArr.pop(); if (pointArr.length === 0) { ctxMask.clearRect(0, 0, canvas.width, canvas.height); undoBtn.disabled = true; return; } isSegmenting = true; const { maskURL } = await getSegmentationMask(pointArr); isSegmenting = false; copyMaskURL = maskURL; drawMask(maskURL, pointArr); } function togglePointMode(mode) { bgPointMode = mode === undefined ? !bgPointMode : mode; maskBtn.querySelector("span").innerText = bgPointMode ? "Background Point" : "Mask Point"; if (bgPointMode) { maskBtn.querySelector("#mask-circle").setAttribute("hidden", ""); maskBtn.querySelector("#unmask-circle").removeAttribute("hidden"); } else { maskBtn.querySelector("#mask-circle").removeAttribute("hidden"); maskBtn.querySelector("#unmask-circle").setAttribute("hidden", ""); } } async function getSegmentationMask(points) { const modelID = modelSelection.value; const modelURL = MODEL_BASEURL + MODELS[modelID].url; const imageURL = currentImageURL; const { maskURL } = await segmentPoints( modelURL, modelID, imageURL, points ); return { maskURL }; } async function setImageEmbeddings(imageURL) { if (isEmbedding) { return; } canvas.classList.remove("cursor-pointer"); canvas.classList.add("cursor-wait"); clearBtn.disabled = true; const modelID = modelSelection.value; const modelURL = MODEL_BASEURL + MODELS[modelID].url; isEmbedding = true; await segmentPoints(modelURL, modelID, imageURL); canvas.classList.remove("cursor-wait"); canvas.classList.add("cursor-pointer"); clearBtn.disabled = false; isEmbedding = false; currentImageURL = imageURL; } function clearImageCanvas() { ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); ctxMask.clearRect(0, 0, canvas.width, canvas.height); hasImage = false; isEmbedding = false; isSegmenting = false; currentImageURL = ""; pointArr = []; clearBtn.disabled = true; canvas.parentElement.style.height = "auto"; dropButtons.classList.remove("invisible"); } function drawMask(maskURL, points) { if (!maskURL) { throw new Error("No mask URL provided"); } const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { mask.width = canvas.width; mask.height = canvas.height; ctxMask.save(); ctxMask.drawImage(canvas, 0, 0); ctxMask.globalCompositeOperation = "source-atop"; ctxMask.fillStyle = "rgba(255, 0, 0, 0.6)"; ctxMask.fillRect(0, 0, canvas.width, canvas.height); ctxMask.globalCompositeOperation = "destination-in"; ctxMask.drawImage(img, 0, 0); ctxMask.globalCompositeOperation = "source-over"; for (const pt of points) { if (pt[2]) { ctxMask.fillStyle = "rgba(0, 255, 255, 1)"; } else { ctxMask.fillStyle = "rgba(255, 255, 0, 1)"; } ctxMask.beginPath(); ctxMask.arc( pt[0] * canvas.width, pt[1] * canvas.height, 3, 0, 2 * Math.PI ); ctxMask.fill(); } ctxMask.restore(); }; img.src = maskURL; } function drawImageCanvas(imgURL) { if (!imgURL) { throw new Error("No image URL provided"); } ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { canvas.width = img.width; canvas.height = img.height; ctxCanvas.drawImage(img, 0, 0); canvas.parentElement.style.height = canvas.offsetHeight + "px"; hasImage = true; clearBtn.disabled = false; dropButtons.classList.add("invisible"); }; img.src = imgURL; } const observer = new ResizeObserver((entries) => { for (let entry of entries) { if (entry.target === canvas) { canvas.parentElement.style.height = canvas.offsetHeight + "px"; } } }); observer.observe(canvas); </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]">🕯️</span> <div> <h1 class="text-5xl font-bold">Candle Segment Anything</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> Zero-shot image segmentation with <a href="https://segment-anything.com" class="underline hover:text-blue-500 hover:no-underline" target="_blank" >Segment Anything Model (SAM)</a > and <a href="https://github.com/ChaoningZhang/MobileSAM" class="underline hover:text-blue-500 hover:no-underline" target="_blank" >MobileSAM </a >. It runs in the browser with a WASM runtime built with <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light"> <option value="sam_mobile_tiny" selected> Mobile SAM Tiny (40.6 MB) </option> <option value="sam_base">SAM Base (375 MB)</option> </select> </div> <div> <p class="text-xs italic max-w-lg"> <b>Note:</b> The model's first run may take a few seconds as it loads and caches the model in the browser, and then creates the image embeddings. Any subsequent clicks on points will be significantly faster. </p> </div> <div class="relative max-w-2xl"> <div class="flex justify-between items-center"> <div class="px-2 rounded-md inline text-xs"> <span id="output-status" class="m-auto font-light"></span> </div> <div class="flex gap-2"> <button id="mask-btn" title="Toggle Mask Point and Background Point" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center"> <span>Mask Point</span> <svg xmlns="http://www.w3.org/2000/svg" height="1em" viewBox="0 0 512 512"> <path id="mask-circle" d="M256 512a256 256 0 1 0 0-512 256 256 0 1 0 0 512z" /> <path id="unmask-circle" hidden d="M464 256a208 208 0 1 0-416 0 208 208 0 1 0 416 0zM0 256a256 256 0 1 1 512 0 256 256 0 1 1-512 0z" /> </svg> </button> <button id="undo-btn" disabled title="Undo Last Point" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center"> <svg xmlns="http://www.w3.org/2000/svg" height="1em" viewBox="0 0 512 512"> <path d="M48.5 224H40a24 24 0 0 1-24-24V72a24 24 0 0 1 41-17l41.6 41.6a224 224 0 1 1-1 317.8 32 32 0 0 1 45.3-45.3 160 160 0 1 0 1-227.3L185 183a24 24 0 0 1-17 41H48.5z" /> </svg> </button> <button id="clear-btn" disabled title="Clear Image" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center"> <svg class="" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 13 12" height="1em"> <path d="M1.6.7 12 11.1M12 .7 1.6 11.1" stroke="#2E3036" stroke-width="2" /> </svg> </button> </div> </div> <div id="drop-area" class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative p-20 w-full overflow-hidden"> <div id="drop-buttons" class="flex flex-col items-center justify-center space-y-1 text-center relative z-10"> <svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" fill="#000" /> </svg> <div class="flex text-sm text-gray-600"> <label for="file-upload" class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700"> <span>Drag and drop your image here</span> <span class="block text-xs">or</span> <span class="block text-xs">Click to upload</span> </label> </div> <input id="file-upload" name="file-upload" type="file" class="sr-only" /> </div> <canvas id="canvas" class="absolute w-full"></canvas> <canvas id="mask" class="pointer-events-none absolute w-full"></canvas> </div> <div class="text-right py-2"> <button id="share-btn" class="bg-white rounded-md hover:outline outline-orange-200 disabled:opacity-50 invisible"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/share-to-community-sm.svg" /> </button> <button id="download-btn" title="Copy result (.png)" disabled class="p-1 px-2 text-xs font-medium bg-white rounded-2xl outline outline-gray-200 hover:outline-orange-200 disabled:opacity-50" > Download Cut-Out </button> </div> </div> <div> <div class="flex gap-3 items-center overflow-x-scroll" id="image-select"> <h3 class="font-medium">Examples:</h3> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg" class="cursor-pointer w-24 h-24 object-cover" /> </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/segment-anything/samWorker.js
//load the candle SAM Model wasm module import init, { Model } from "./build/m.js"; async function fetchArrayBuffer(url, cacheModel = true) { if (!cacheModel) return new Uint8Array(await (await fetch(url)).arrayBuffer()); const cacheName = "sam-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class SAMModel { static instance = {}; // keep current image embeddings state static imageArrayHash = {}; // Add a new property to hold the current modelID static currentModelID = null; static async getInstance(modelURL, modelID) { if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: `Loading Model ${modelID}`, }); const weightsArrayU8 = await fetchArrayBuffer(modelURL); this.instance[modelID] = new Model( weightsArrayU8, /tiny|mobile/.test(modelID) ); } else { self.postMessage({ status: "loading", message: "Model Already Loaded" }); } // Set the current modelID to the modelID that was passed in this.currentModelID = modelID; return this.instance[modelID]; } // Remove the modelID parameter from setImageEmbeddings static setImageEmbeddings(imageArrayU8) { // check if image embeddings are already set for this image and model const imageArrayHash = this.getSimpleHash(imageArrayU8); if ( this.imageArrayHash[this.currentModelID] === imageArrayHash && this.instance[this.currentModelID] ) { self.postMessage({ status: "embedding", message: "Embeddings Already Set", }); return; } this.imageArrayHash[this.currentModelID] = imageArrayHash; this.instance[this.currentModelID].set_image_embeddings(imageArrayU8); self.postMessage({ status: "embedding", message: "Embeddings Set" }); } static getSimpleHash(imageArrayU8) { // get simple hash of imageArrayU8 let imageArrayHash = 0; for (let i = 0; i < imageArrayU8.length; i += 100) { imageArrayHash ^= imageArrayU8[i]; } return imageArrayHash.toString(16); } } async function createImageCanvas( { mask_shape, mask_data }, // mask { original_width, original_height, width, height } // original image ) { const [_, __, shape_width, shape_height] = mask_shape; const maskCanvas = new OffscreenCanvas(shape_width, shape_height); // canvas for mask const maskCtx = maskCanvas.getContext("2d"); const canvas = new OffscreenCanvas(original_width, original_height); // canvas for creating mask with original image size const ctx = canvas.getContext("2d"); const imageData = maskCtx.createImageData( maskCanvas.width, maskCanvas.height ); const data = imageData.data; for (let p = 0; p < data.length; p += 4) { data[p] = 0; data[p + 1] = 0; data[p + 2] = 0; data[p + 3] = mask_data[p / 4] * 255; } maskCtx.putImageData(imageData, 0, 0); let sx, sy; if (original_height < original_width) { sy = original_height / original_width; sx = 1; } else { sy = 1; sx = original_width / original_height; } ctx.drawImage( maskCanvas, 0, 0, maskCanvas.width * sx, maskCanvas.height * sy, 0, 0, original_width, original_height ); const blob = await canvas.convertToBlob(); return URL.createObjectURL(blob); } self.addEventListener("message", async (event) => { const { modelURL, modelID, imageURL, points } = event.data; try { self.postMessage({ status: "loading", message: "Starting SAM" }); const sam = await SAMModel.getInstance(modelURL, modelID); self.postMessage({ status: "loading", message: "Loading Image" }); const imageArrayU8 = await fetchArrayBuffer(imageURL, false); self.postMessage({ status: "embedding", message: "Creating Embeddings" }); SAMModel.setImageEmbeddings(imageArrayU8); if (!points) { // no points only do the embeddings self.postMessage({ status: "complete-embedding", message: "Embeddings Complete", }); return; } self.postMessage({ status: "segmenting", message: "Segmenting" }); const { mask, image } = sam.mask_for_point({ points }); const maskDataURL = await createImageCanvas(mask, image); // Send the segment back to the main thread as JSON self.postMessage({ status: "complete", message: "Segmentation Complete", output: { maskURL: maskDataURL }, }); } catch (e) { self.postMessage({ error: e }); } });
0
hf_public_repos/candle/candle-wasm-examples/segment-anything
hf_public_repos/candle/candle-wasm-examples/segment-anything/src/lib.rs
use candle_transformers::models::segment_anything::sam; use wasm_bindgen::prelude::*; pub use sam::{Sam, IMAGE_SIZE}; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::log(&format_args!($($t)*).to_string())) }
0
hf_public_repos/candle/candle-wasm-examples/segment-anything/src
hf_public_repos/candle/candle-wasm-examples/segment-anything/src/bin/m.rs
use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; use candle_wasm_example_sam as sam; use wasm_bindgen::prelude::*; struct Embeddings { original_width: u32, original_height: u32, width: u32, height: u32, data: Tensor, } #[wasm_bindgen] pub struct Model { sam: sam::Sam, embeddings: Option<Embeddings>, } #[wasm_bindgen] impl Model { #[wasm_bindgen(constructor)] pub fn new(weights: Vec<u8>, use_tiny: bool) -> Result<Model, JsError> { console_error_panic_hook::set_once(); let dev = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?; let sam = if use_tiny { sam::Sam::new_tiny(vb)? // tiny vit_t } else { sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)? // sam_vit_b }; Ok(Self { sam, embeddings: None, }) } pub fn set_image_embeddings(&mut self, image_data: Vec<u8>) -> Result<(), JsError> { sam::console_log!("image data: {}", image_data.len()); let image_data = std::io::Cursor::new(image_data); let image = image::io::Reader::new(image_data) .with_guessed_format()? .decode() .map_err(candle::Error::wrap)?; let (original_height, original_width) = (image.height(), image.width()); let (height, width) = (original_height, original_width); let resize_longest = sam::IMAGE_SIZE as u32; let (height, width) = if height < width { let h = (resize_longest * height) / width; (h, resize_longest) } else { let w = (resize_longest * width) / height; (resize_longest, w) }; let image_t = { let img = image.resize_exact(width, height, image::imageops::FilterType::CatmullRom); let data = img.to_rgb8().into_raw(); Tensor::from_vec( data, (img.height() as usize, img.width() as usize, 3), &Device::Cpu, )? .permute((2, 0, 1))? }; let data = self.sam.embeddings(&image_t)?; self.embeddings = Some(Embeddings { original_width, original_height, width, height, data, }); Ok(()) } pub fn mask_for_point(&self, input: JsValue) -> Result<JsValue, JsError> { let input: PointsInput = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?; let transformed_points = input.points; for &(x, y, _bool) in &transformed_points { if !(0.0..=1.0).contains(&x) { return Err(JsError::new(&format!( "x has to be between 0 and 1, got {}", x ))); } if !(0.0..=1.0).contains(&y) { return Err(JsError::new(&format!( "y has to be between 0 and 1, got {}", y ))); } } let embeddings = match &self.embeddings { None => Err(JsError::new("image embeddings have not been set"))?, Some(embeddings) => embeddings, }; let (mask, iou_predictions) = self.sam.forward_for_embeddings( &embeddings.data, embeddings.height as usize, embeddings.width as usize, &transformed_points, false, )?; let iou = iou_predictions.flatten(0, 1)?.to_vec1::<f32>()?[0]; let mask_shape = mask.dims().to_vec(); let mask_data = mask.ge(0f32)?.flatten_all()?.to_vec1::<u8>()?; let mask = Mask { iou, mask_shape, mask_data, }; let image = Image { original_width: embeddings.original_width, original_height: embeddings.original_height, width: embeddings.width, height: embeddings.height, }; Ok(serde_wasm_bindgen::to_value(&MaskImage { mask, image })?) } } #[derive(serde::Serialize, serde::Deserialize)] struct Mask { iou: f32, mask_shape: Vec<usize>, mask_data: Vec<u8>, } #[derive(serde::Serialize, serde::Deserialize)] struct Image { original_width: u32, original_height: u32, width: u32, height: u32, } #[derive(serde::Serialize, serde::Deserialize)] struct MaskImage { mask: Mask, image: Image, } #[derive(serde::Serialize, serde::Deserialize)] struct PointsInput { points: Vec<(f64, f64, bool)>, } fn main() { console_error_panic_hook::set_once(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/llama2-c/index.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <title>Welcome to Candle!</title> <link data-trunk rel="copy-file" href="tokenizer.json" /> <link data-trunk rel="copy-file" href="model.bin" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="app" data-type="main" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="worker" data-type="worker" /> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css"> </head> <body></body> </html>
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/llama2-c/README.md
## Running [llama2.c](https://github.com/karpathy/llama2.c) Examples Here, we provide two examples of how to run [llama2.c](https://github.com/karpathy/llama2.c) written in Rust using a Candle-compiled WASM binary and runtimes. ### Pure Rust UI To build and test the UI made in Rust you will need [Trunk](https://trunkrs.dev/#install) From the `candle-wasm-examples/llama2-c` directory run: Download assets: ```bash # Model and tokenizer wget -c https://huggingface.co/spaces/lmz/candle-llama2/resolve/main/model.bin wget -c https://huggingface.co/spaces/lmz/candle-llama2/resolve/main/tokenizer.json ``` Run hot reload server: ```bash trunk serve --release --public-url / --port 8080 ``` ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { Model } from "./build/m.js"; ``` The full example can be found under `./lib-example.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/lib-example.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/llama2-c/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/llama2-c/llama2cWorker.js
import init, { Model } from "./build/m.js"; async function fetchArrayBuffer(url) { const cacheName = "llama2c-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class Llama2C { static instance = {}; static async getInstance(weightsURL, modelID, tokenizerURL) { // load individual modelID only once if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([ fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), ]); this.instance[modelID] = new Model(weightsArrayU8, tokenizerArrayU8); } return this.instance[modelID]; } } let controller = null; self.addEventListener("message", (event) => { if (event.data.command === "start") { controller = new AbortController(); generate(event.data); } else if (event.data.command === "abort") { controller.abort(); } }); async function generate(data) { const { weightsURL, modelID, tokenizerURL, prompt, temp, top_p, repeatPenalty, seed, maxSeqLen, } = data; try { self.postMessage({ status: "loading", message: "Starting llama2.c" }); const model = await Llama2C.getInstance(weightsURL, modelID, tokenizerURL); self.postMessage({ status: "loading", message: "Initializing model" }); const firstToken = model.init_with_prompt( prompt, temp, top_p, repeatPenalty, seed ); const seq_len = model.get_seq_len(); let sentence = firstToken; let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; let startTime = performance.now(); let tokensCount = 0; while (tokensCount < maxTokens) { await new Promise(async (resolve) => { if (controller && controller.signal.aborted) { self.postMessage({ status: "aborted", message: "Aborted", output: prompt + sentence, }); return; } const token = await model.next_token(); const tokensSec = ((tokensCount + 1) / (performance.now() - startTime)) * 1000; sentence += token; self.postMessage({ status: "generating", message: "Generating token", token: token, sentence: sentence, totalTime: performance.now() - startTime, tokensSec, prompt: prompt, }); setTimeout(resolve, 0); }); tokensCount++; } self.postMessage({ status: "complete", message: "complete", output: prompt + sentence, }); } catch (e) { self.postMessage({ error: e }); } }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/llama2-c/Cargo.toml
[package] name = "candle-wasm-example-llama2" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } num-traits = { workspace = true } tokenizers = { workspace = true, features = ["unstable_wasm"] } # App crates. anyhow = { workspace = true } byteorder = { workspace = true } log = { workspace = true } rand = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } # Wasm specific crates. console_error_panic_hook = "0.1.7" getrandom = { version = "0.2", features = ["js"] } gloo = "0.11" js-sys = "0.3.64" wasm-bindgen = "0.2.87" wasm-bindgen-futures = "0.4.37" wasm-logger = "0.2" yew-agent = "0.2.0" yew = { version = "0.20.0", features = ["csr"] } [dependencies.web-sys] version = "0.3.64" features = [ 'Blob', 'Document', 'Element', 'HtmlElement', 'Node', 'Window', 'Request', 'RequestCache', 'RequestInit', 'RequestMode', 'Response', 'Performance', ]
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/llama2-c/lib-example.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Llama.c Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } code, output, select, pre { font-family: "Source Code Pro", monospace; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> // base url for audio examples const MODELS_BASE_URL = "https://huggingface.co/karpathy/tinyllamas/resolve/main"; // models base url const MODELS = { stories15M: { url: "stories15M.bin", seq_len: 256, }, stories42M: { url: "stories42M.bin", seq_len: 1024, }, stories110M: { url: "stories110M.bin", seq_len: 1024, }, }; const llamaWorker = new Worker("./llama2cWorker.js", { type: "module", }); async function generateSequence(controller) { const getValue = (id) => document.querySelector(`#${id}`).value; const modelID = getValue("model"); const model = MODELS[modelID]; const weightsURL = `${MODELS_BASE_URL}/${model.url}`; const prompt = getValue("prompt"); const temperature = getValue("temperature"); const topP = getValue("top-p"); const repeatPenalty = getValue("repeat_penalty"); const seed = getValue("seed"); const maxSeqLen = getValue("max-seq"); function updateStatus(data) { const outStatus = document.querySelector("#output-status"); const outGen = document.querySelector("#output-generation"); const outCounter = document.querySelector("#output-counter"); switch (data.status) { case "loading": outStatus.hidden = false; outStatus.textContent = data.message; outGen.hidden = true; outCounter.hidden = true; break; case "generating": const { message, prompt, sentence, tokensSec, totalTime } = data; outStatus.hidden = true; outCounter.hidden = false; outGen.hidden = false; outGen.innerHTML = `<span class="font-semibold">${prompt}</span>${sentence.replace( /\<s\>|\<\/s\>/g, "" )}`; outCounter.innerHTML = `${(totalTime / 1000).toFixed( 2 )}s (${tokensSec.toFixed(2)} tok/s)`; break; case "complete": outStatus.hidden = true; outGen.hidden = false; break; } } return new Promise((resolve, reject) => { llamaWorker.postMessage({ weightsURL, modelID, tokenizerURL: "tokenizer.json", prompt, temp: temperature, top_p: topP, repeatPenalty, seed: BigInt(seed), maxSeqLen, command: "start", }); const handleAbort = () => { llamaWorker.postMessage({ command: "abort" }); }; const handleMessage = (event) => { const { status, error, message, prompt, sentence } = event.data; if (status) updateStatus(event.data); if (error) { llamaWorker.removeEventListener("message", handleMessage); reject(new Error(error)); } if (status === "aborted") { llamaWorker.removeEventListener("message", handleMessage); resolve(event.data); } if (status === "complete") { llamaWorker.removeEventListener("message", handleMessage); resolve(event.data); } }; controller.signal.addEventListener("abort", handleAbort); llamaWorker.addEventListener("message", handleMessage); }); } const form = document.querySelector("#form"); const prompt = document.querySelector("#prompt"); const clearBtn = document.querySelector("#clear-btn"); const runBtn = document.querySelector("#run"); const modelSelect = document.querySelector("#model"); let runController = new AbortController(); let isRunning = false; modelSelect.addEventListener("change", (e) => { const model = MODELS[e.target.value]; document.querySelector("#max-seq").max = model.seq_len; document.querySelector("#max-seq").nextElementSibling.value = model.seq_len; }); form.addEventListener("submit", async (e) => { e.preventDefault(); if (isRunning) { stopRunning(); } else { startRunning(); await generateSequence(runController); stopRunning(); } }); function startRunning() { isRunning = true; runBtn.textContent = "Stop"; } function stopRunning() { runController.abort(); runController = new AbortController(); runBtn.textContent = "Run"; isRunning = false; } clearBtn.addEventListener("click", (e) => { e.preventDefault(); prompt.value = ""; clearBtn.classList.add("invisible"); runBtn.disabled = true; stopRunning(); }); prompt.addEventListener("input", (e) => { runBtn.disabled = false; if (e.target.value.length > 0) { clearBtn.classList.remove("invisible"); } else { clearBtn.classList.add("invisible"); } }); </script> </head> <body class="container max-w-4xl mx-auto p-4 text-gray-800"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle Llama2.c</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> <a href="https://github.com/karpathy/llama2.c" target="_blank" class="underline hover:text-blue-500 hover:no-underline" target="_blank" >Llama2.c</a > is Andrey Karpathy's C implementation of the Llama 2 LLM model in C. This demo uses <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> to run Llama2.c in the browser using rust/wasm. </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light"> <option value="stories15M" selected>stories 15M (60.8 MB)</option> <option value="stories42M">stories 42M (167 MB)</option> <option value="stories110M">stories 110M (438 MB)</option> </select> </div> <form id="form" class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center"> <input type="submit" hidden /> <input type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 resize-none outline-none" placeholder="Add your prompt here..." value="Once upon a time" /> <button id="clear-btn"> <svg fill="none" xmlns="http://www.w3.org/2000/svg" width="40" viewBox="0 0 70 40"> <path opacity=".5" d="M39 .2v40.2" stroke="#1F2937" /> <path d="M1.5 11.5 19 29.1m0-17.6L1.5 29.1" opacity=".5" stroke="#1F2937" stroke-width="2" /> </svg> </button> <button id="run" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed"> Run </button> </form> <details> <summary class="font-medium cursor-pointer">Advanced Options</summary> <div class="grid grid-cols-3 max-w-md items-center gap-3 py-3"> <label class="text-sm font-medium" for="max-seq" >Maximum length </label> <input type="range" id="max-seq" name="max-seq" min="1" max="256" step="1" value="200" oninput="this.nextElementSibling.value = Number(this.value)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 200</output > <label class="text-sm font-medium" for="temperature" >Temperature</label > <input type="range" id="temperature" name="temperature" min="0" max="2" step="0.01" value="0.40" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 0.40</output > <label class="text-sm font-medium" for="top-p">Top-p</label> <input type="range" id="top-p" name="top-p" min="0" max="1" step="0.01" value="1.00" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 1.00</output > <label class="text-sm font-medium" for="repeat_penalty" >Repeat Penalty</label > <input type="range" id="repeat_penalty" name="repeat_penalty" min="1" max="2" step="0.01" value="1.10" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" >1.10</output > <label class="text-sm font-medium" for="seed">Seed</label> <input type="number" id="seed" name="seed" value="299792458" class="font-light border border-gray-700 text-right rounded-md p-2" /> <button id="run" onclick="document.querySelector('#seed').value = BigInt(Math.floor(Math.random() * 2**64-1))" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-1 w-[50px] rounded disabled:bg-gray-300 disabled:cursor-not-allowed text-sm"> Rand </button> </div> </details> <div> <h3 class="font-medium">Generation:</h3> <div class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2"> <div id="output-counter" hidden class="ml-auto font-semibold grid-rows-1 text-sm"></div> <p hidden id="output-generation" class="grid-rows-2"></p> <span id="output-status" class="m-auto font-light" >No output yet</span > </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples/llama2-c
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/lib.rs
mod app; pub mod model; pub mod worker; pub use app::App; pub use worker::Worker;
0
hf_public_repos/candle/candle-wasm-examples/llama2-c
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/app.rs
use crate::console_log; use crate::worker::{ModelData, Worker, WorkerInput, WorkerOutput}; use std::str::FromStr; use wasm_bindgen::prelude::*; use wasm_bindgen_futures::JsFuture; use yew::{html, Component, Context, Html}; use yew_agent::{Bridge, Bridged}; async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> { use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response}; let window = web_sys::window().ok_or("window")?; let mut opts = RequestInit::new(); let opts = opts .method("GET") .mode(RequestMode::Cors) .cache(RequestCache::NoCache); let request = Request::new_with_str_and_init(url, opts)?; let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?; // `resp_value` is a `Response` object. assert!(resp_value.is_instance_of::<Response>()); let resp: Response = resp_value.dyn_into()?; let data = JsFuture::from(resp.blob()?).await?; let blob = web_sys::Blob::from(data); let array_buffer = JsFuture::from(blob.array_buffer()).await?; let data = js_sys::Uint8Array::new(&array_buffer).to_vec(); Ok(data) } pub enum Msg { Refresh, Run, UpdateStatus(String), SetModel(ModelData), WorkerIn(WorkerInput), WorkerOut(Result<WorkerOutput, String>), } pub struct CurrentDecode { start_time: Option<f64>, } pub struct App { status: String, loaded: bool, temperature: std::rc::Rc<std::cell::RefCell<f64>>, top_p: std::rc::Rc<std::cell::RefCell<f64>>, prompt: std::rc::Rc<std::cell::RefCell<String>>, generated: String, n_tokens: usize, current_decode: Option<CurrentDecode>, worker: Box<dyn Bridge<Worker>>, } async fn model_data_load() -> Result<ModelData, JsValue> { let tokenizer = fetch_url("tokenizer.json").await?; let model = fetch_url("model.bin").await?; console_log!("{}", model.len()); Ok(ModelData { tokenizer, model }) } fn performance_now() -> Option<f64> { let window = web_sys::window()?; let performance = window.performance()?; Some(performance.now() / 1000.) } impl Component for App { type Message = Msg; type Properties = (); fn create(ctx: &Context<Self>) -> Self { let status = "loading weights".to_string(); let cb = { let link = ctx.link().clone(); move |e| link.send_message(Self::Message::WorkerOut(e)) }; let worker = Worker::bridge(std::rc::Rc::new(cb)); Self { status, n_tokens: 0, temperature: std::rc::Rc::new(std::cell::RefCell::new(0.)), top_p: std::rc::Rc::new(std::cell::RefCell::new(1.0)), prompt: std::rc::Rc::new(std::cell::RefCell::new("".to_string())), generated: String::new(), current_decode: None, worker, loaded: false, } } fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) { if first_render { ctx.link().send_future(async { match model_data_load().await { Err(err) => { let status = format!("{err:?}"); Msg::UpdateStatus(status) } Ok(model_data) => Msg::SetModel(model_data), } }); } } fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool { match msg { Msg::SetModel(md) => { self.status = "weights loaded successfully!".to_string(); self.loaded = true; console_log!("loaded weights"); self.worker.send(WorkerInput::ModelData(md)); true } Msg::Run => { if self.current_decode.is_some() { self.status = "already generating some sample at the moment".to_string() } else { let start_time = performance_now(); self.current_decode = Some(CurrentDecode { start_time }); self.status = "generating...".to_string(); self.n_tokens = 0; self.generated.clear(); let temp = *self.temperature.borrow(); let top_p = *self.top_p.borrow(); let prompt = self.prompt.borrow().clone(); console_log!("temp: {}, top_p: {}, prompt: {}", temp, top_p, prompt); ctx.link() .send_message(Msg::WorkerIn(WorkerInput::Run(temp, top_p, prompt))) } true } Msg::WorkerOut(output) => { match output { Ok(WorkerOutput::WeightsLoaded) => self.status = "weights loaded!".to_string(), Ok(WorkerOutput::GenerationDone(Err(err))) => { self.status = format!("error in worker process: {err}"); self.current_decode = None } Ok(WorkerOutput::GenerationDone(Ok(()))) => { let dt = self.current_decode.as_ref().and_then(|current_decode| { current_decode.start_time.and_then(|start_time| { performance_now().map(|stop_time| stop_time - start_time) }) }); self.status = match dt { None => "generation succeeded!".to_string(), Some(dt) => format!( "generation succeeded in {:.2}s ({:.1} ms/token)", dt, dt * 1000.0 / (self.n_tokens as f64) ), }; self.current_decode = None } Ok(WorkerOutput::Generated(token)) => { self.n_tokens += 1; self.generated.push_str(&token) } Err(err) => { self.status = format!("error in worker {err:?}"); } } true } Msg::WorkerIn(inp) => { self.worker.send(inp); true } Msg::UpdateStatus(status) => { self.status = status; true } Msg::Refresh => true, } } fn view(&self, ctx: &Context<Self>) -> Html { use yew::TargetCast; let temperature = self.temperature.clone(); let oninput_temperature = ctx.link().callback(move |e: yew::InputEvent| { let input: web_sys::HtmlInputElement = e.target_unchecked_into(); if let Ok(temp) = f64::from_str(&input.value()) { *temperature.borrow_mut() = temp } Msg::Refresh }); let top_p = self.top_p.clone(); let oninput_top_p = ctx.link().callback(move |e: yew::InputEvent| { let input: web_sys::HtmlInputElement = e.target_unchecked_into(); if let Ok(top_p_input) = f64::from_str(&input.value()) { *top_p.borrow_mut() = top_p_input } Msg::Refresh }); let prompt = self.prompt.clone(); let oninput_prompt = ctx.link().callback(move |e: yew::InputEvent| { let input: web_sys::HtmlInputElement = e.target_unchecked_into(); *prompt.borrow_mut() = input.value(); Msg::Refresh }); html! { <div style="margin: 2%;"> <div><p>{"Running "} <a href="https://github.com/karpathy/llama2.c" target="_blank">{"llama2.c"}</a> {" in the browser using rust/wasm with "} <a href="https://github.com/huggingface/candle" target="_blank">{"candle!"}</a> </p> <p>{"Once the weights have loaded, click on the run button to start generating content."} </p> </div> {"temperature \u{00a0} "} <input type="range" min="0." max="1.2" step="0.1" value={self.temperature.borrow().to_string()} oninput={oninput_temperature} id="temp"/> {format!(" \u{00a0} {}", self.temperature.borrow())} <br/ > {"top_p \u{00a0} "} <input type="range" min="0." max="1.0" step="0.05" value={self.top_p.borrow().to_string()} oninput={oninput_top_p} id="top_p"/> {format!(" \u{00a0} {}", self.top_p.borrow())} <br/ > {"prompt: "}<input type="text" value={self.prompt.borrow().to_string()} oninput={oninput_prompt} id="prompt"/> <br/ > { if self.loaded{ html!(<button class="button" onclick={ctx.link().callback(move |_| Msg::Run)}> { "run" }</button>) }else{ html! { <progress id="progress-bar" aria-label="Loading weights..."></progress> } } } <br/ > <h3> {&self.status} </h3> { if self.current_decode.is_some() { html! { <progress id="progress-bar" aria-label="generating…"></progress> } } else { html! {} } } <blockquote> <p> { self.generated.chars().map(|c| if c == '\r' || c == '\n' { html! { <br/> } } else { html! { {c} } }).collect::<Html>() } </p> </blockquote> </div> } } }
0
hf_public_repos/candle/candle-wasm-examples/llama2-c
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/worker.rs
use crate::model::{Cache, Config, Llama}; use byteorder::{LittleEndian, ReadBytesExt}; use candle::{DType, Device, IndexOp, Result, Shape, Tensor}; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; use serde::{Deserialize, Serialize}; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; use yew_agent::{HandlerId, Public, WorkerLink}; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string())) } // Communication to the worker happens through bincode, the model weights and configs are fetched // on the main thread and transferred via the following structure. #[derive(Serialize, Deserialize)] pub struct ModelData { pub tokenizer: Vec<u8>, pub model: Vec<u8>, } fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> { let mut buf = [0u8; 4]; r.read_exact(&mut buf)?; Ok(i32::from_le_bytes(buf)) } fn read_tensor<R: std::io::Read, S: Into<Shape>>( r: &mut R, shape: S, dev: &Device, ) -> Result<Tensor> { let shape = shape.into(); let mut data_t = vec![0f32; shape.elem_count()]; r.read_f32_into::<LittleEndian>(&mut data_t)?; let tensor = Tensor::from_vec(data_t, shape, dev)?; Ok(tensor) } pub struct Model { pub cache: Cache, pub config: Config, pub llama: Llama, pub tokenizer: Tokenizer, } impl Model { fn run( &self, link: &WorkerLink<Worker>, id: HandlerId, temp: f64, top_p: f64, prompt: String, ) -> Result<()> { let dev = Device::Cpu; let temp = if temp <= 0. { None } else { Some(temp) }; let top_p = if top_p <= 0. || top_p >= 1.0 { None } else { Some(top_p) }; console_log!("temp: {temp:?} top_p: {top_p:?} prompt: {prompt}"); let mut logits_processor = LogitsProcessor::new(299792458, temp, top_p); let mut index_pos = 0; let mut tokens = self .tokenizer .encode(prompt.to_string(), true) .map_err(|m| candle::Error::Msg(m.to_string()))? .get_ids() .to_vec(); link.respond(id, Ok(WorkerOutput::Generated(prompt))); for index in 0.. { if tokens.len() >= self.config.seq_len { break; } let context_size = if self.cache.use_kv_cache && index > 0 { 1 } else { tokens.len() }; let ctxt = &tokens[tokens.len().saturating_sub(context_size)..]; let input = Tensor::new(ctxt, &dev)?.unsqueeze(0)?; let logits = self.llama.forward(&input, index_pos)?; let logits = logits.squeeze(0)?; index_pos += ctxt.len(); let next_token = logits_processor.sample(&logits)?; tokens.push(next_token); if let Some(text) = self.tokenizer.id_to_token(next_token) { let text = text.replace('▁', " ").replace("<0x0A>", "\n"); link.respond(id, Ok(WorkerOutput::Generated(text))); } } Ok(()) } } impl Config { fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> { let dim = read_i32(r)? as usize; let hidden_dim = read_i32(r)? as usize; let n_layers = read_i32(r)? as usize; let n_heads = read_i32(r)? as usize; let n_kv_heads = read_i32(r)? as usize; let vocab_size = read_i32(r)? as usize; let seq_len = read_i32(r)? as usize; Ok(Self { dim, hidden_dim, n_layers, n_heads, n_kv_heads, vocab_size, seq_len, norm_eps: 1e-5, }) } pub fn head_size(&self) -> usize { self.dim / self.n_heads } } struct TransformerWeights { // token embedding table token_embedding_table: Tensor, // (vocab_size, dim) // weights for rmsnorms rms_att_weight: Tensor, // (layer, dim) rmsnorm weights rms_ffn_weight: Tensor, // (layer, dim) // weights for matmuls wq: Tensor, // (layer, dim, dim) wk: Tensor, // (layer, dim, dim) wv: Tensor, // (layer, dim, dim) wo: Tensor, // (layer, dim, dim) // weights for ffn w1: Tensor, // (layer, hidden_dim, dim) w2: Tensor, // (layer, dim, hidden_dim) w3: Tensor, // (layer, hidden_dim, dim) // final rmsnorm rms_final_weight: Tensor, // (dim,) // freq_cis for RoPE relatively positional embeddings freq_cis_real: Tensor, // (seq_len, head_size/2) freq_cis_imag: Tensor, // (seq_len, head_size/2) } impl TransformerWeights { fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> { let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?; let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?; let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?; let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?; let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?; let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?; let rms_final_weight = read_tensor(r, c.dim, dev)?; let head_size = c.head_size(); let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?; let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?; Ok(Self { token_embedding_table, rms_att_weight, wq, wk, wv, wo, rms_ffn_weight, w1, w2, w3, rms_final_weight, freq_cis_real, freq_cis_imag, }) } fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> { let mut ws = std::collections::HashMap::new(); let mut insert = |name: &str, t: Tensor| { ws.insert(name.to_string(), t); }; insert("rot.freq_cis_real", self.freq_cis_real.clone()); insert("rot.freq_cis_imag", self.freq_cis_imag.clone()); insert( "model.embed_tokens.weight", self.token_embedding_table.clone(), ); insert("lm_head.weight", self.token_embedding_table.clone()); insert("model.norm.weight", self.rms_final_weight.clone()); for layer in 0..cfg.n_layers { ws.insert( format!("model.layers.{layer}.self_attn.q_proj.weight"), self.wq.i(layer)?, ); ws.insert( format!("model.layers.{layer}.self_attn.k_proj.weight"), self.wk.i(layer)?, ); ws.insert( format!("model.layers.{layer}.self_attn.v_proj.weight"), self.wv.i(layer)?, ); ws.insert( format!("model.layers.{layer}.self_attn.o_proj.weight"), self.wo.i(layer)?, ); ws.insert( format!("model.layers.{layer}.mlp.gate_proj.weight"), self.w1.i(layer)?, ); ws.insert( format!("model.layers.{layer}.mlp.down_proj.weight"), self.w2.i(layer)?, ); ws.insert( format!("model.layers.{layer}.mlp.up_proj.weight"), self.w3.i(layer)?, ); ws.insert( format!("model.layers.{layer}.input_layernorm.weight"), self.rms_att_weight.i(layer)?, ); ws.insert( format!("model.layers.{layer}.post_attention_layernorm.weight"), self.rms_ffn_weight.i(layer)?, ); } let vb = VarBuilder::from_tensors(ws, DType::F32, device); Ok(vb) } } impl Model { pub fn load(md: ModelData) -> Result<Self> { let dev = Device::Cpu; let mut model = std::io::Cursor::new(md.model); let config = Config::from_reader(&mut model)?; let weights = TransformerWeights::from_reader(&mut model, &config, &dev)?; let vb = weights.var_builder(&config, &dev)?; let cache = Cache::new(true, &config, vb.pp("rot"))?; let llama = Llama::load(vb, &cache, &config)?; let tokenizer = Tokenizer::from_bytes(&md.tokenizer).map_err(|m| candle::Error::Msg(m.to_string()))?; Ok(Self { cache, config, llama, tokenizer, }) } } pub struct Worker { link: WorkerLink<Self>, model: Option<Model>, } #[derive(Serialize, Deserialize)] pub enum WorkerInput { ModelData(ModelData), Run(f64, f64, String), } #[derive(Serialize, Deserialize)] pub enum WorkerOutput { Generated(String), GenerationDone(std::result::Result<(), String>), WeightsLoaded, } impl yew_agent::Worker for Worker { type Input = WorkerInput; type Message = (); type Output = std::result::Result<WorkerOutput, String>; type Reach = Public<Self>; fn create(link: WorkerLink<Self>) -> Self { Self { link, model: None } } fn update(&mut self, _msg: Self::Message) { // no messaging } fn handle_input(&mut self, msg: Self::Input, id: HandlerId) { let output = match msg { WorkerInput::ModelData(md) => match Model::load(md) { Ok(model) => { self.model = Some(model); Ok(WorkerOutput::WeightsLoaded) } Err(err) => Err(format!("model creation error {err:?}")), }, WorkerInput::Run(temp, top_p, prompt) => match &mut self.model { None => Err("model has not been set yet".to_string()), Some(model) => { { let mut cache = model.cache.kvs.lock().unwrap(); for elem in cache.iter_mut() { *elem = None } } let result = model .run(&self.link, id, temp, top_p, prompt) .map_err(|e| e.to_string()); Ok(WorkerOutput::GenerationDone(result)) } }, }; self.link.respond(id, output); } fn name_of_resource() -> &'static str { "worker.js" } fn resource_path_is_relative() -> bool { true } }
0
hf_public_repos/candle/candle-wasm-examples/llama2-c
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/model.rs
use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::{ embedding, linear_no_bias as linear, rms_norm, Embedding, Linear, Module, RmsNorm, VarBuilder, }; use std::collections::HashMap; use std::sync::{Arc, Mutex}; #[derive(Debug, Clone)] pub struct Config { pub dim: usize, // transformer dimension pub hidden_dim: usize, // for ffn layers pub n_layers: usize, // number of layers pub n_heads: usize, // number of query heads pub n_kv_heads: usize, // number of key/value heads (can be < query heads because of multiquery) pub vocab_size: usize, // vocabulary size, usually 256 (byte-level) pub seq_len: usize, // max sequence length pub norm_eps: f64, } #[derive(Clone)] pub struct Cache { masks: Arc<Mutex<HashMap<usize, Tensor>>>, pub use_kv_cache: bool, #[allow(clippy::type_complexity)] pub kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>, cos: Tensor, sin: Tensor, device: Device, } impl Cache { pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> { let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?; let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?; let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; Ok(Self { masks: Arc::new(Mutex::new(HashMap::new())), use_kv_cache, kvs: Arc::new(Mutex::new(vec![None; cfg.n_layers])), cos, sin, device: vb.device().clone(), }) } fn mask(&self, t: usize) -> Result<Tensor> { let mut masks = self.masks.lock().unwrap(); if let Some(mask) = masks.get(&t) { Ok(mask.clone()) } else { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), &self.device)?; masks.insert(t, mask.clone()); Ok(mask) } } } struct CausalSelfAttention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, n_head: usize, n_key_value_head: usize, head_dim: usize, cache: Cache, } impl CausalSelfAttention { fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> { let (b_sz, seq_len, h, n_embd) = x.dims4()?; let cos = self.cache.cos.i(index_pos..index_pos + seq_len)?; let sin = self.cache.sin.i(index_pos..index_pos + seq_len)?; let cos = cos.unsqueeze(1)?; let sin = sin.unsqueeze(1)?; let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?; let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?; let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?; let x0 = x.narrow(D::Minus1, 0, 1)?; let x1 = x.narrow(D::Minus1, 1, 1)?; let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?; let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?; let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?; Ok(rope) } fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> { let (b_sz, seq_len, n_embd) = x.dims3()?; let q = self.q_proj.forward(x)?; let k = self.k_proj.forward(x)?; let v = self.v_proj.forward(x)?; let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?; let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?; let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?; let q = self.apply_rotary_emb(&q, index_pos)?; let mut k = self.apply_rotary_emb(&k, index_pos)?; if self.cache.use_kv_cache { let mut cache = self.cache.kvs.lock().unwrap(); if let Some((cache_k, cache_v)) = &cache[block_idx] { k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?; v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?; } cache[block_idx] = Some((k.clone(), v.clone())) } let k = self.repeat_kv(k)?; let v = self.repeat_kv(v)?; let q = q.transpose(1, 2)?.contiguous()?; let k = k.transpose(1, 2)?.contiguous()?; let v = v.transpose(1, 2)?.contiguous()?; let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?; let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?; let att = candle_nn::ops::softmax(&att, D::Minus1)?; // Convert to contiguous as matmul doesn't support strided vs for now. let y = att.matmul(&v.contiguous()?)?; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = self.o_proj.forward(&y)?; Ok(y) } fn repeat_kv(&self, x: Tensor) -> Result<Tensor> { let n_rep = self.n_head / self.n_key_value_head; if n_rep == 1 { Ok(x) } else { let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?; let x = x .unsqueeze(3)? .expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))? .reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?; Ok(x) } } fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> { let size_in = cfg.dim; let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads; let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads; let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?; let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?; let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?; let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, n_head: cfg.n_heads, n_key_value_head: cfg.n_kv_heads, head_dim: cfg.dim / cfg.n_heads, cache: cache.clone(), }) } } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } struct Mlp { c_fc1: Linear, c_fc2: Linear, c_proj: Linear, } impl Mlp { fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self { Self { c_fc1, c_fc2, c_proj, } } fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?; self.c_proj.forward(&x) } fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { let h_size = cfg.dim; let i_size = cfg.hidden_dim; let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?; let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?; let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?; Ok(Self::new(c_fc1, c_fc2, c_proj)) } } struct Block { rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp, } impl Block { fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self { Self { rms_1, attn, rms_2, mlp, } } fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> { let residual = x; let x = self.rms_1.forward(x)?; let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?; let residual = &x; let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?; Ok(x) } fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> { let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?; let mlp = Mlp::load(vb.pp("mlp"), cfg)?; let input_layernorm = rms_norm(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = rms_norm(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?; Ok(Self::new( input_layernorm, attn, post_attention_layernorm, mlp, )) } } pub struct Llama { wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear, } impl Llama { fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self { Self { wte, blocks, ln_f, lm_head, } } pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> { let (_b_sz, seq_len) = x.dims2()?; let mut x = self.wte.forward(x)?; for (block_idx, block) in self.blocks.iter().enumerate() { x = block.forward(&x, index_pos, block_idx)?; } let x = self.ln_f.forward(&x)?; let x = x.i((.., seq_len - 1, ..))?; let logits = self.lm_head.forward(&x)?; logits.to_dtype(DType::F32) } pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> { let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?; let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?; let norm = rms_norm(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?; let blocks: Vec<_> = (0..cfg.n_layers) .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap()) .collect(); Ok(Self::new(wte, blocks, norm, lm_head)) } }
0
hf_public_repos/candle/candle-wasm-examples/llama2-c/src
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/bin/app.rs
fn main() { wasm_logger::init(wasm_logger::Config::new(log::Level::Trace)); console_error_panic_hook::set_once(); yew::Renderer::<candle_wasm_example_llama2::App>::new().render(); }
0
hf_public_repos/candle/candle-wasm-examples/llama2-c/src
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/bin/m.rs
use candle::{Device, Tensor}; use candle_transformers::generation::LogitsProcessor; use candle_wasm_example_llama2::worker::{Model as M, ModelData}; use wasm_bindgen::prelude::*; #[wasm_bindgen] pub struct Model { inner: M, logits_processor: LogitsProcessor, tokens: Vec<u32>, repeat_penalty: f32, } impl Model { fn process(&mut self, tokens: &[u32]) -> candle::Result<String> { const REPEAT_LAST_N: usize = 64; let dev = Device::Cpu; let input = Tensor::new(tokens, &dev)?.unsqueeze(0)?; let logits = self.inner.llama.forward(&input, tokens.len())?; let logits = logits.squeeze(0)?; let logits = if self.repeat_penalty == 1. || tokens.is_empty() { logits } else { let start_at = self.tokens.len().saturating_sub(REPEAT_LAST_N); candle_transformers::utils::apply_repeat_penalty( &logits, self.repeat_penalty, &self.tokens[start_at..], )? }; let next_token = self.logits_processor.sample(&logits)?; self.tokens.push(next_token); let text = match self.inner.tokenizer.id_to_token(next_token) { Some(text) => text.replace('▁', " ").replace("<0x0A>", "\n"), None => "".to_string(), }; Ok(text) } } #[wasm_bindgen] impl Model { #[wasm_bindgen(constructor)] pub fn new(weights: Vec<u8>, tokenizer: Vec<u8>) -> Result<Model, JsError> { let model = M::load(ModelData { tokenizer, model: weights, }); let logits_processor = LogitsProcessor::new(299792458, None, None); match model { Ok(inner) => Ok(Self { inner, logits_processor, tokens: vec![], repeat_penalty: 1., }), Err(e) => Err(JsError::new(&e.to_string())), } } #[wasm_bindgen] pub fn get_seq_len(&mut self) -> usize { self.inner.config.seq_len } #[wasm_bindgen] pub fn init_with_prompt( &mut self, prompt: String, temp: f64, top_p: f64, repeat_penalty: f32, seed: u64, ) -> Result<String, JsError> { // First reset the cache. { let mut cache = self.inner.cache.kvs.lock().unwrap(); for elem in cache.iter_mut() { *elem = None } } let temp = if temp <= 0. { None } else { Some(temp) }; let top_p = if top_p <= 0. || top_p >= 1. { None } else { Some(top_p) }; self.logits_processor = LogitsProcessor::new(seed, temp, top_p); self.repeat_penalty = repeat_penalty; self.tokens.clear(); let tokens = self .inner .tokenizer .encode(prompt, true) .map_err(|m| JsError::new(&m.to_string()))? .get_ids() .to_vec(); let text = self .process(&tokens) .map_err(|m| JsError::new(&m.to_string()))?; Ok(text) } #[wasm_bindgen] pub fn next_token(&mut self) -> Result<String, JsError> { let last_token = *self.tokens.last().unwrap(); let text = self .process(&[last_token]) .map_err(|m| JsError::new(&m.to_string()))?; Ok(text) } } fn main() {}
0
hf_public_repos/candle/candle-wasm-examples/llama2-c/src
hf_public_repos/candle/candle-wasm-examples/llama2-c/src/bin/worker.rs
use yew_agent::PublicWorker; fn main() { console_error_panic_hook::set_once(); candle_wasm_example_llama2::Worker::register(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/yolo/index.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <title>Welcome to Candle!</title> <link data-trunk rel="copy-file" href="yolov8s.safetensors" /> <link data-trunk rel="copy-file" href="bike.jpeg" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="app" data-type="main" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="worker" data-type="worker" /> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css"> </head> <body></body> </html>
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/yolo/README.md
## Running Yolo Examples Here, we provide two examples of how to run YOLOv8 using a Candle-compiled WASM binary and runtimes. ### Pure Rust UI To build and test the UI made in Rust you will need [Trunk](https://trunkrs.dev/#install) From the `candle-wasm-examples/yolo` directory run: Download assets: ```bash wget -c https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg wget -c https://huggingface.co/lmz/candle-yolo-v8/resolve/main/yolov8s.safetensors ``` Run hot reload server: ```bash trunk serve --release --public-url / --port 8080 ``` ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { Model, ModelPose } from "./build/m.js"; ``` The full example can be found under `./lib-example.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/lib-example.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/yolo/yoloWorker.js
//load the candle yolo wasm module import init, { Model, ModelPose } from "./build/m.js"; async function fetchArrayBuffer(url) { const cacheName = "yolo-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class Yolo { static instance = {}; // Retrieve the YOLO model. When called for the first time, // this will load the model and save it for future use. static async getInstance(modelID, modelURL, modelSize) { // load individual modelID only once if (!this.instance[modelID]) { await init(); self.postMessage({ status: `loading model ${modelID}:${modelSize}` }); const weightsArrayU8 = await fetchArrayBuffer(modelURL); if (/pose/.test(modelID)) { // if pose model, use ModelPose this.instance[modelID] = new ModelPose(weightsArrayU8, modelSize); } else { this.instance[modelID] = new Model(weightsArrayU8, modelSize); } } else { self.postMessage({ status: "model already loaded" }); } return this.instance[modelID]; } } self.addEventListener("message", async (event) => { const { imageURL, modelID, modelURL, modelSize, confidence, iou_threshold } = event.data; try { self.postMessage({ status: "detecting" }); const yolo = await Yolo.getInstance(modelID, modelURL, modelSize); self.postMessage({ status: "loading image" }); const imgRes = await fetch(imageURL); const imgData = await imgRes.arrayBuffer(); const imageArrayU8 = new Uint8Array(imgData); self.postMessage({ status: `running inference ${modelID}:${modelSize}` }); const bboxes = yolo.run(imageArrayU8, confidence, iou_threshold); // Send the output back to the main thread as JSON self.postMessage({ status: "complete", output: JSON.parse(bboxes), }); } catch (e) { self.postMessage({ error: e }); } });
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/yolo/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/yolo/Cargo.toml
[package] name = "candle-wasm-example-yolo" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } num-traits = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } image = { workspace = true } # App crates. anyhow = { workspace = true } byteorder = { workspace = true } log = { workspace = true } rand = { workspace = true } safetensors = { workspace = true } # Wasm specific crates. console_error_panic_hook = "0.1.7" getrandom = { version = "0.2", features = ["js"] } gloo = "0.11" js-sys = "0.3.64" wasm-bindgen = "0.2.87" wasm-bindgen-futures = "0.4.37" wasm-logger = "0.2" yew-agent = "0.2.0" yew = { version = "0.20.0", features = ["csr"] } [dependencies.web-sys] version = "0.3.64" features = [ 'Blob', 'CanvasRenderingContext2d', 'Document', 'Element', 'HtmlElement', 'HtmlCanvasElement', 'HtmlImageElement', 'ImageData', 'Node', 'Window', 'Request', 'RequestCache', 'RequestInit', 'RequestMode', 'Response', 'Performance', 'TextMetrics', ]
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/yolo/lib-example.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle YOLOv8 Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } code, output, select, pre { font-family: "Source Code Pro", monospace; } </style> <script src="https://cdn.tailwindcss.com"></script> <script src="https://cdn.jsdelivr.net/gh/huggingface/hub-js-utils/share-canvas.js" type="module" ></script> <script type="module"> const MODEL_BASEURL = "https://huggingface.co/lmz/candle-yolo-v8/resolve/main/"; const MODELS = { yolov8n: { model_size: "n", url: "yolov8n.safetensors", }, yolov8s: { model_size: "s", url: "yolov8s.safetensors", }, yolov8m: { model_size: "m", url: "yolov8m.safetensors", }, yolov8l: { model_size: "l", url: "yolov8l.safetensors", }, yolov8x: { model_size: "x", url: "yolov8x.safetensors", }, yolov8n_pose: { model_size: "n", url: "yolov8n-pose.safetensors", }, yolov8s_pose: { model_size: "s", url: "yolov8s-pose.safetensors", }, yolov8m_pose: { model_size: "m", url: "yolov8m-pose.safetensors", }, yolov8l_pose: { model_size: "l", url: "yolov8l-pose.safetensors", }, yolov8x_pose: { model_size: "x", url: "yolov8x-pose.safetensors", }, }; const COCO_PERSON_SKELETON = [ [4, 0], // head [3, 0], [16, 14], // left lower leg [14, 12], // left upper leg [6, 12], // left torso [6, 5], // top torso [6, 8], // upper arm [8, 10], // lower arm [1, 2], // head [1, 3], // right head [2, 4], // left head [3, 5], // right neck [4, 6], // left neck [5, 7], // right upper arm [7, 9], // right lower arm [5, 11], // right torso [11, 12], // bottom torso [11, 13], // right upper leg [13, 15], // right lower leg ]; // init web worker const yoloWorker = new Worker("./yoloWorker.js", { type: "module" }); let hasImage = false; //add event listener to image examples document.querySelector("#image-select").addEventListener("click", (e) => { const target = e.target; if (target.nodeName === "IMG") { const href = target.src; drawImageCanvas(href); } }); //add event listener to file input document.querySelector("#file-upload").addEventListener("change", (e) => { const target = e.target; if (target.files.length > 0) { const href = URL.createObjectURL(target.files[0]); drawImageCanvas(href); } }); // add event listener to drop-area const dropArea = document.querySelector("#drop-area"); dropArea.addEventListener("dragenter", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("dragleave", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); }); dropArea.addEventListener("dragover", (e) => { e.preventDefault(); }); dropArea.addEventListener("drop", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); const url = e.dataTransfer.getData("text/uri-list"); const files = e.dataTransfer.files; if (files.length > 0) { const href = URL.createObjectURL(files[0]); drawImageCanvas(href); } else if (url) { drawImageCanvas(url); } }); document.querySelector("#clear-btn").addEventListener("click", () => { drawImageCanvas(); }); function drawImageCanvas(imgURL) { const canvas = document.querySelector("#canvas"); const canvasResult = document.querySelector("#canvas-result"); canvasResult .getContext("2d") .clearRect(0, 0, canvas.width, canvas.height); const ctx = canvas.getContext("2d"); ctx.clearRect(0, 0, canvas.width, canvas.height); document.querySelector("#share-btn").classList.add("invisible"); document.querySelector("#clear-btn").classList.add("invisible"); document.querySelector("#detect").disabled = true; hasImage = false; canvas.parentElement.style.height = "auto"; if (imgURL && imgURL !== "") { const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { canvas.width = img.width; canvas.height = img.height; ctx.drawImage(img, 0, 0); canvas.parentElement.style.height = canvas.offsetHeight + "px"; hasImage = true; document.querySelector("#detect").disabled = false; document.querySelector("#clear-btn").classList.remove("invisible"); }; img.src = imgURL; } } async function classifyImage( imageURL, // URL of image to classify modelID, // ID of model to use modelURL, // URL to model file modelSize, // size of model confidence, // confidence threshold iou_threshold, // IoU threshold updateStatus // function receives status updates ) { return new Promise((resolve, reject) => { yoloWorker.postMessage({ imageURL, modelID, modelURL, modelSize, confidence, iou_threshold, }); function handleMessage(event) { console.log("message", event.data); if ("status" in event.data) { updateStatus(event.data.status); } if ("error" in event.data) { yoloWorker.removeEventListener("message", handleMessage); reject(new Error(event.data.error)); } if (event.data.status === "complete") { yoloWorker.removeEventListener("message", handleMessage); resolve(event.data); } } yoloWorker.addEventListener("message", handleMessage); }); } // add event listener to detect button document.querySelector("#detect").addEventListener("click", async () => { if (!hasImage) { return; } const modelID = document.querySelector("#model").value; const modelURL = MODEL_BASEURL + MODELS[modelID].url; const modelSize = MODELS[modelID].model_size; const confidence = parseFloat( document.querySelector("#confidence").value ); const iou_threshold = parseFloat( document.querySelector("#iou_threshold").value ); const canvasInput = document.querySelector("#canvas"); const canvas = document.querySelector("#canvas-result"); canvas.width = canvasInput.width; canvas.height = canvasInput.height; const scale = canvas.width / canvas.offsetWidth; const ctx = canvas.getContext("2d"); ctx.drawImage(canvasInput, 0, 0); const imageURL = canvas.toDataURL(); const results = await await classifyImage( imageURL, modelID, modelURL, modelSize, confidence, iou_threshold, updateStatus ); const { output } = results; ctx.lineWidth = 1 + 2 * scale; ctx.strokeStyle = "#3c8566"; ctx.fillStyle = "#0dff9a"; const fontSize = 14 * scale; ctx.font = `${fontSize}px sans-serif`; for (const detection of output) { // check keypoint for pose model data let xmin, xmax, ymin, ymax, label, confidence, keypoints; if ("keypoints" in detection) { xmin = detection.xmin; xmax = detection.xmax; ymin = detection.ymin; ymax = detection.ymax; confidence = detection.confidence; keypoints = detection.keypoints; } else { const [_label, bbox] = detection; label = _label; xmin = bbox.xmin; xmax = bbox.xmax; ymin = bbox.ymin; ymax = bbox.ymax; confidence = bbox.confidence; } const [x, y, w, h] = [xmin, ymin, xmax - xmin, ymax - ymin]; const text = `${label ? label + " " : ""}${confidence.toFixed(2)}`; const width = ctx.measureText(text).width; ctx.fillStyle = "#3c8566"; ctx.fillRect(x - 2, y - fontSize, width + 4, fontSize); ctx.fillStyle = "#e3fff3"; ctx.strokeRect(x, y, w, h); ctx.fillText(text, x, y - 2); if (keypoints) { ctx.save(); ctx.fillStyle = "magenta"; ctx.strokeStyle = "yellow"; for (const keypoint of keypoints) { const { x, y } = keypoint; ctx.beginPath(); ctx.arc(x, y, 3, 0, 2 * Math.PI); ctx.fill(); } ctx.beginPath(); for (const [xid, yid] of COCO_PERSON_SKELETON) { //draw line between skeleton keypoitns if (keypoints[xid] && keypoints[yid]) { ctx.moveTo(keypoints[xid].x, keypoints[xid].y); ctx.lineTo(keypoints[yid].x, keypoints[yid].y); } } ctx.stroke(); ctx.restore(); } } }); function updateStatus(statusMessage) { const button = document.querySelector("#detect"); if (statusMessage === "detecting") { button.disabled = true; button.classList.add("bg-blue-700"); button.classList.remove("bg-blue-950"); button.textContent = "Predicting..."; } else if (statusMessage === "complete") { button.disabled = false; button.classList.add("bg-blue-950"); button.classList.remove("bg-blue-700"); button.textContent = "Predict"; document.querySelector("#share-btn").classList.remove("invisible"); } } document.querySelector("#share-btn").addEventListener("click", () => { shareToCommunity( "lmz/candle-yolo", "Candle + YOLOv8", "YOLOv8 with [Candle](https://github.com/huggingface/candle)", "canvas-result", "share-btn" ); }); </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle YOLOv8</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> This demo showcases object detection and pose estimation models in your browser using Rust/WASM. It utilizes <a href="https://huggingface.co/lmz/candle-yolo-v8" target="_blank" class="underline hover:text-blue-500 hover:no-underline" > safetensor's YOLOv8 models </a> and a WASM runtime built with <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a >. </p> <p> To run pose estimation, select a yolo pose model from the dropdown </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light" > <option value="yolov8n" selected>yolov8n (6.37 MB)</option> <option value="yolov8s">yolov8s (22.4 MB)</option> <option value="yolov8m">yolov8m (51.9 MB)</option> <option value="yolov8l">yolov8l (87.5 MB)</option> <option value="yolov8x">yolov8x (137 MB)</option> <!-- Pose models --> <option value="yolov8n_pose">yolov8n_pose (6.65 MB)</option> <option value="yolov8s_pose">yolov8s_pose (23.3 MB)</option> <option value="yolov8m_pose">yolov8m_pose (53 MB)</option> <option value="yolov8l_pose">yolov8l_pose (89.1 MB)</option> <option value="yolov8x_pose">yolov8x_pose (139 MB)</option> </select> </div> <div> <button id="detect" disabled class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 px-4 rounded disabled:bg-gray-300 disabled:cursor-not-allowed" > Predict </button> </div> <!-- drag and drop area --> <div class="relative max-w-lg"> <div class="py-1"> <button id="clear-btn" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center ml-auto invisible" > <svg class="" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 13 12" height="1em" > <path d="M1.6.7 12 11.1M12 .7 1.6 11.1" stroke="#2E3036" stroke-width="2" /> </svg> Clear image </button> </div> <div id="drop-area" class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative aspect-video w-full overflow-hidden" > <div class="flex flex-col items-center justify-center space-y-1 text-center" > <svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg" > <path d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" fill="#000" /> </svg> <div class="flex text-sm text-gray-600"> <label for="file-upload" class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700" > <span>Drag and drop your image here</span> <span class="block text-xs">or</span> <span class="block text-xs">Click to upload</span> </label> </div> <input id="file-upload" name="file-upload" type="file" class="sr-only" /> </div> <canvas id="canvas" class="absolute pointer-events-none w-full" ></canvas> <canvas id="canvas-result" class="absolute pointer-events-none w-full" ></canvas> </div> <div class="text-right py-2"> <button id="share-btn" class="bg-white rounded-md hover:outline outline-orange-200 disabled:opacity-50 invisible" > <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/share-to-community-sm.svg" /> </button> </div> </div> <div> <div class="flex gap-3 items-center overflow-x-scroll" id="image-select" > <h3 class="font-medium">Examples:</h3> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg" class="cursor-pointer w-24 h-24 object-cover" /> </div> </div> <div> <div class="grid grid-cols-3 max-w-md items-center gap-3"> <label class="text-sm font-medium" for="confidence" >Confidence Threshold</label > <input type="range" id="confidence" name="confidence" min="0" max="1" step="0.01" value="0.25" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs font-light px-1 py-1 border border-gray-700 rounded-md w-min" >0.25</output > <label class="text-sm font-medium" for="iou_threshold" >IoU Threshold</label > <input type="range" id="iou_threshold" name="iou_threshold" min="0" max="1" step="0.01" value="0.45" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="font-extralight text-xs px-1 py-1 border border-gray-700 rounded-md w-min" >0.45</output > </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples/yolo
hf_public_repos/candle/candle-wasm-examples/yolo/src/lib.rs
mod app; pub mod coco_classes; pub mod model; pub mod worker; pub use app::App; pub use worker::Worker;
0
hf_public_repos/candle/candle-wasm-examples/yolo
hf_public_repos/candle/candle-wasm-examples/yolo/src/coco_classes.rs
pub const NAMES: [&str; 80] = [ "person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ];
0
hf_public_repos/candle/candle-wasm-examples/yolo
hf_public_repos/candle/candle-wasm-examples/yolo/src/app.rs
use crate::console_log; use crate::worker::{ModelData, RunData, Worker, WorkerInput, WorkerOutput}; use wasm_bindgen::prelude::*; use wasm_bindgen_futures::JsFuture; use yew::{html, Component, Context, Html}; use yew_agent::{Bridge, Bridged}; async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> { use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response}; let window = web_sys::window().ok_or("window")?; let mut opts = RequestInit::new(); let opts = opts .method("GET") .mode(RequestMode::Cors) .cache(RequestCache::NoCache); let request = Request::new_with_str_and_init(url, opts)?; let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?; // `resp_value` is a `Response` object. assert!(resp_value.is_instance_of::<Response>()); let resp: Response = resp_value.dyn_into()?; let data = JsFuture::from(resp.blob()?).await?; let blob = web_sys::Blob::from(data); let array_buffer = JsFuture::from(blob.array_buffer()).await?; let data = js_sys::Uint8Array::new(&array_buffer).to_vec(); Ok(data) } pub enum Msg { Refresh, Run, UpdateStatus(String), SetModel(ModelData), WorkerIn(WorkerInput), WorkerOut(Result<WorkerOutput, String>), } pub struct CurrentDecode { start_time: Option<f64>, } pub struct App { status: String, loaded: bool, generated: String, current_decode: Option<CurrentDecode>, worker: Box<dyn Bridge<Worker>>, } async fn model_data_load() -> Result<ModelData, JsValue> { let weights = fetch_url("yolov8s.safetensors").await?; let model_size = "s".to_string(); console_log!("loaded weights {}", weights.len()); Ok(ModelData { weights, model_size, }) } fn performance_now() -> Option<f64> { let window = web_sys::window()?; let performance = window.performance()?; Some(performance.now() / 1000.) } fn draw_bboxes(bboxes: Vec<Vec<crate::model::Bbox>>) -> Result<(), JsValue> { let document = web_sys::window().unwrap().document().unwrap(); let canvas = match document.get_element_by_id("canvas") { Some(canvas) => canvas, None => return Err("no canvas".into()), }; let canvas: web_sys::HtmlCanvasElement = canvas.dyn_into::<web_sys::HtmlCanvasElement>()?; let context = canvas .get_context("2d")? .ok_or("no 2d")? .dyn_into::<web_sys::CanvasRenderingContext2d>()?; let image_html_element = document.get_element_by_id("bike-img"); let image_html_element = match image_html_element { Some(data) => data, None => return Err("no bike-img".into()), }; let image_html_element = image_html_element.dyn_into::<web_sys::HtmlImageElement>()?; canvas.set_width(image_html_element.natural_width()); canvas.set_height(image_html_element.natural_height()); context.draw_image_with_html_image_element(&image_html_element, 0., 0.)?; context.set_stroke_style(&JsValue::from("#0dff9a")); for (class_index, bboxes_for_class) in bboxes.iter().enumerate() { for b in bboxes_for_class.iter() { let name = crate::coco_classes::NAMES[class_index]; context.stroke_rect( b.xmin as f64, b.ymin as f64, (b.xmax - b.xmin) as f64, (b.ymax - b.ymin) as f64, ); if let Ok(metrics) = context.measure_text(name) { let width = metrics.width(); context.set_fill_style(&"#3c8566".into()); context.fill_rect(b.xmin as f64 - 2., b.ymin as f64 - 12., width + 4., 14.); context.set_fill_style(&"#e3fff3".into()); context.fill_text(name, b.xmin as f64, b.ymin as f64 - 2.)? } } } Ok(()) } impl Component for App { type Message = Msg; type Properties = (); fn create(ctx: &Context<Self>) -> Self { let status = "loading weights".to_string(); let cb = { let link = ctx.link().clone(); move |e| link.send_message(Self::Message::WorkerOut(e)) }; let worker = Worker::bridge(std::rc::Rc::new(cb)); Self { status, generated: String::new(), current_decode: None, worker, loaded: false, } } fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) { if first_render { ctx.link().send_future(async { match model_data_load().await { Err(err) => { let status = format!("{err:?}"); Msg::UpdateStatus(status) } Ok(model_data) => Msg::SetModel(model_data), } }); } } fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool { match msg { Msg::SetModel(md) => { self.status = "weights loaded successfully!".to_string(); self.loaded = true; console_log!("loaded weights"); self.worker.send(WorkerInput::ModelData(md)); true } Msg::Run => { if self.current_decode.is_some() { self.status = "already processing some image at the moment".to_string() } else { let start_time = performance_now(); self.current_decode = Some(CurrentDecode { start_time }); self.status = "processing...".to_string(); self.generated.clear(); ctx.link().send_future(async { match fetch_url("bike.jpeg").await { Err(err) => { let status = format!("{err:?}"); Msg::UpdateStatus(status) } Ok(image_data) => Msg::WorkerIn(WorkerInput::RunData(RunData { image_data, conf_threshold: 0.5, iou_threshold: 0.5, })), } }); } true } Msg::WorkerOut(output) => { match output { Ok(WorkerOutput::WeightsLoaded) => self.status = "weights loaded!".to_string(), Ok(WorkerOutput::ProcessingDone(Err(err))) => { self.status = format!("error in worker process: {err}"); self.current_decode = None } Ok(WorkerOutput::ProcessingDone(Ok(bboxes))) => { let mut content = Vec::new(); for (class_index, bboxes_for_class) in bboxes.iter().enumerate() { for b in bboxes_for_class.iter() { content.push(format!( "bbox {}: xs {:.0}-{:.0} ys {:.0}-{:.0}", crate::coco_classes::NAMES[class_index], b.xmin, b.xmax, b.ymin, b.ymax )) } } self.generated = content.join("\n"); let dt = self.current_decode.as_ref().and_then(|current_decode| { current_decode.start_time.and_then(|start_time| { performance_now().map(|stop_time| stop_time - start_time) }) }); self.status = match dt { None => "processing succeeded!".to_string(), Some(dt) => format!("processing succeeded in {:.2}s", dt,), }; self.current_decode = None; if let Err(err) = draw_bboxes(bboxes) { self.status = format!("{err:?}") } } Err(err) => { self.status = format!("error in worker {err:?}"); } } true } Msg::WorkerIn(inp) => { self.worker.send(inp); true } Msg::UpdateStatus(status) => { self.status = status; true } Msg::Refresh => true, } } fn view(&self, ctx: &Context<Self>) -> Html { html! { <div style="margin: 2%;"> <div><p>{"Running an object detection model in the browser using rust/wasm with "} <a href="https://github.com/huggingface/candle" target="_blank">{"candle!"}</a> </p> <p>{"Once the weights have loaded, click on the run button to process an image."}</p> <p><img id="bike-img" src="bike.jpeg"/></p> <p>{"Source: "}<a href="https://commons.wikimedia.org/wiki/File:V%C3%A9lo_parade_-_V%C3%A9lorution_-_bike_critical_mass.JPG">{"wikimedia"}</a></p> </div> { if self.loaded{ html!(<button class="button" onclick={ctx.link().callback(move |_| Msg::Run)}> { "run" }</button>) }else{ html! { <progress id="progress-bar" aria-label="Loading weights..."></progress> } } } <br/ > <h3> {&self.status} </h3> { if self.current_decode.is_some() { html! { <progress id="progress-bar" aria-label="generating…"></progress> } } else { html! {} } } <div> <canvas id="canvas" height="150" width="150"></canvas> </div> <blockquote> <p> { self.generated.chars().map(|c| if c == '\r' || c == '\n' { html! { <br/> } } else { html! { {c} } }).collect::<Html>() } </p> </blockquote> </div> } } }
0
hf_public_repos/candle/candle-wasm-examples/yolo
hf_public_repos/candle/candle-wasm-examples/yolo/src/worker.rs
use crate::model::{report_detect, report_pose, Bbox, Multiples, YoloV8, YoloV8Pose}; use candle::{DType, Device, Result, Tensor}; use candle_nn::{Module, VarBuilder}; use serde::{Deserialize, Serialize}; use wasm_bindgen::prelude::*; use yew_agent::{HandlerId, Public, WorkerLink}; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string())) } // Communication to the worker happens through bincode, the model weights and configs are fetched // on the main thread and transferred via the following structure. #[derive(Serialize, Deserialize)] pub struct ModelData { pub weights: Vec<u8>, pub model_size: String, } #[derive(Serialize, Deserialize)] pub struct RunData { pub image_data: Vec<u8>, pub conf_threshold: f32, pub iou_threshold: f32, } pub struct Model { model: YoloV8, } impl Model { pub fn run( &self, image_data: Vec<u8>, conf_threshold: f32, iou_threshold: f32, ) -> Result<Vec<Vec<Bbox>>> { console_log!("image data: {}", image_data.len()); let image_data = std::io::Cursor::new(image_data); let original_image = image::io::Reader::new(image_data) .with_guessed_format()? .decode() .map_err(candle::Error::wrap)?; let (width, height) = { let w = original_image.width() as usize; let h = original_image.height() as usize; if w < h { let w = w * 640 / h; // Sizes have to be divisible by 32. (w / 32 * 32, 640) } else { let h = h * 640 / w; (640, h / 32 * 32) } }; let image_t = { let img = original_image.resize_exact( width as u32, height as u32, image::imageops::FilterType::CatmullRom, ); let data = img.to_rgb8().into_raw(); Tensor::from_vec( data, (img.height() as usize, img.width() as usize, 3), &Device::Cpu, )? .permute((2, 0, 1))? }; let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?; let predictions = self.model.forward(&image_t)?.squeeze(0)?; console_log!("generated predictions {predictions:?}"); let bboxes = report_detect( &predictions, original_image, width, height, conf_threshold, iou_threshold, )?; Ok(bboxes) } pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> { let multiples = match model_size { "n" => Multiples::n(), "s" => Multiples::s(), "m" => Multiples::m(), "l" => Multiples::l(), "x" => Multiples::x(), _ => Err(candle::Error::Msg( "invalid model size: must be n, s, m, l or x".to_string(), ))?, }; let dev = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?; let model = YoloV8::load(vb, multiples, 80)?; Ok(Self { model }) } pub fn load(md: ModelData) -> Result<Self> { Self::load_(md.weights, &md.model_size.to_string()) } } pub struct ModelPose { model: YoloV8Pose, } impl ModelPose { pub fn run( &self, image_data: Vec<u8>, conf_threshold: f32, iou_threshold: f32, ) -> Result<Vec<Bbox>> { console_log!("image data: {}", image_data.len()); let image_data = std::io::Cursor::new(image_data); let original_image = image::io::Reader::new(image_data) .with_guessed_format()? .decode() .map_err(candle::Error::wrap)?; let (width, height) = { let w = original_image.width() as usize; let h = original_image.height() as usize; if w < h { let w = w * 640 / h; // Sizes have to be divisible by 32. (w / 32 * 32, 640) } else { let h = h * 640 / w; (640, h / 32 * 32) } }; let image_t = { let img = original_image.resize_exact( width as u32, height as u32, image::imageops::FilterType::CatmullRom, ); let data = img.to_rgb8().into_raw(); Tensor::from_vec( data, (img.height() as usize, img.width() as usize, 3), &Device::Cpu, )? .permute((2, 0, 1))? }; let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?; let predictions = self.model.forward(&image_t)?.squeeze(0)?; console_log!("generated predictions {predictions:?}"); let bboxes = report_pose( &predictions, original_image, width, height, conf_threshold, iou_threshold, )?; Ok(bboxes) } pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> { let multiples = match model_size { "n" => Multiples::n(), "s" => Multiples::s(), "m" => Multiples::m(), "l" => Multiples::l(), "x" => Multiples::x(), _ => Err(candle::Error::Msg( "invalid model size: must be n, s, m, l or x".to_string(), ))?, }; let dev = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?; let model = YoloV8Pose::load(vb, multiples, 1, (17, 3))?; Ok(Self { model }) } pub fn load(md: ModelData) -> Result<Self> { Self::load_(md.weights, &md.model_size.to_string()) } } pub struct Worker { link: WorkerLink<Self>, model: Option<Model>, } #[derive(Serialize, Deserialize)] pub enum WorkerInput { ModelData(ModelData), RunData(RunData), } #[derive(Serialize, Deserialize)] pub enum WorkerOutput { ProcessingDone(std::result::Result<Vec<Vec<Bbox>>, String>), WeightsLoaded, } impl yew_agent::Worker for Worker { type Input = WorkerInput; type Message = (); type Output = std::result::Result<WorkerOutput, String>; type Reach = Public<Self>; fn create(link: WorkerLink<Self>) -> Self { Self { link, model: None } } fn update(&mut self, _msg: Self::Message) { // no messaging } fn handle_input(&mut self, msg: Self::Input, id: HandlerId) { let output = match msg { WorkerInput::ModelData(md) => match Model::load(md) { Ok(model) => { self.model = Some(model); Ok(WorkerOutput::WeightsLoaded) } Err(err) => Err(format!("model creation error {err:?}")), }, WorkerInput::RunData(rd) => match &mut self.model { None => Err("model has not been set yet".to_string()), Some(model) => { let result = model .run(rd.image_data, rd.conf_threshold, rd.iou_threshold) .map_err(|e| e.to_string()); Ok(WorkerOutput::ProcessingDone(result)) } }, }; self.link.respond(id, output); } fn name_of_resource() -> &'static str { "worker.js" } fn resource_path_is_relative() -> bool { true } }
0
hf_public_repos/candle/candle-wasm-examples/yolo
hf_public_repos/candle/candle-wasm-examples/yolo/src/model.rs
use candle::{DType, IndexOp, Result, Tensor, D}; use candle_nn::{ batch_norm, conv2d, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder, }; use image::DynamicImage; // Model architecture from https://github.com/ultralytics/ultralytics/issues/189 // https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py #[derive(Clone, Copy, PartialEq, Debug)] pub struct Multiples { depth: f64, width: f64, ratio: f64, } impl Multiples { pub fn n() -> Self { Self { depth: 0.33, width: 0.25, ratio: 2.0, } } pub fn s() -> Self { Self { depth: 0.33, width: 0.50, ratio: 2.0, } } pub fn m() -> Self { Self { depth: 0.67, width: 0.75, ratio: 1.5, } } pub fn l() -> Self { Self { depth: 1.00, width: 1.00, ratio: 1.0, } } pub fn x() -> Self { Self { depth: 1.00, width: 1.25, ratio: 1.0, } } fn filters(&self) -> (usize, usize, usize) { let f1 = (256. * self.width) as usize; let f2 = (512. * self.width) as usize; let f3 = (512. * self.width * self.ratio) as usize; (f1, f2, f3) } } #[derive(Debug)] struct Upsample { scale_factor: usize, } impl Upsample { fn new(scale_factor: usize) -> Result<Self> { Ok(Upsample { scale_factor }) } } impl Module for Upsample { fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> { let (_b_size, _channels, h, w) = xs.dims4()?; xs.upsample_nearest2d(self.scale_factor * h, self.scale_factor * w) } } #[derive(Debug)] struct ConvBlock { conv: Conv2d, bn: BatchNorm, } impl ConvBlock { fn load( vb: VarBuilder, c1: usize, c2: usize, k: usize, stride: usize, padding: Option<usize>, ) -> Result<Self> { let padding = padding.unwrap_or(k / 2); let cfg = Conv2dConfig { padding, stride, groups: 1, dilation: 1, }; let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?; let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?; Ok(Self { conv, bn }) } } impl Module for ConvBlock { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.conv.forward(xs)?.apply_t(&self.bn, false)?; candle_nn::ops::silu(&xs) } } #[derive(Debug)] struct Bottleneck { cv1: ConvBlock, cv2: ConvBlock, residual: bool, } impl Bottleneck { fn load(vb: VarBuilder, c1: usize, c2: usize, shortcut: bool) -> Result<Self> { let channel_factor = 1.; let c_ = (c2 as f64 * channel_factor) as usize; let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 3, 1, None)?; let cv2 = ConvBlock::load(vb.pp("cv2"), c_, c2, 3, 1, None)?; let residual = c1 == c2 && shortcut; Ok(Self { cv1, cv2, residual }) } } impl Module for Bottleneck { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let ys = self.cv2.forward(&self.cv1.forward(xs)?)?; if self.residual { xs + ys } else { Ok(ys) } } } #[derive(Debug)] struct C2f { cv1: ConvBlock, cv2: ConvBlock, bottleneck: Vec<Bottleneck>, } impl C2f { fn load(vb: VarBuilder, c1: usize, c2: usize, n: usize, shortcut: bool) -> Result<Self> { let c = (c2 as f64 * 0.5) as usize; let cv1 = ConvBlock::load(vb.pp("cv1"), c1, 2 * c, 1, 1, None)?; let cv2 = ConvBlock::load(vb.pp("cv2"), (2 + n) * c, c2, 1, 1, None)?; let mut bottleneck = Vec::with_capacity(n); for idx in 0..n { let b = Bottleneck::load(vb.pp(&format!("bottleneck.{idx}")), c, c, shortcut)?; bottleneck.push(b) } Ok(Self { cv1, cv2, bottleneck, }) } } impl Module for C2f { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let ys = self.cv1.forward(xs)?; let mut ys = ys.chunk(2, 1)?; for m in self.bottleneck.iter() { ys.push(m.forward(ys.last().unwrap())?) } let zs = Tensor::cat(ys.as_slice(), 1)?; self.cv2.forward(&zs) } } #[derive(Debug)] struct Sppf { cv1: ConvBlock, cv2: ConvBlock, k: usize, } impl Sppf { fn load(vb: VarBuilder, c1: usize, c2: usize, k: usize) -> Result<Self> { let c_ = c1 / 2; let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 1, 1, None)?; let cv2 = ConvBlock::load(vb.pp("cv2"), c_ * 4, c2, 1, 1, None)?; Ok(Self { cv1, cv2, k }) } } impl Module for Sppf { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (_, _, _, _) = xs.dims4()?; let xs = self.cv1.forward(xs)?; let xs2 = xs .pad_with_zeros(2, self.k / 2, self.k / 2)? .pad_with_zeros(3, self.k / 2, self.k / 2)? .max_pool2d_with_stride(self.k, 1)?; let xs3 = xs2 .pad_with_zeros(2, self.k / 2, self.k / 2)? .pad_with_zeros(3, self.k / 2, self.k / 2)? .max_pool2d_with_stride(self.k, 1)?; let xs4 = xs3 .pad_with_zeros(2, self.k / 2, self.k / 2)? .pad_with_zeros(3, self.k / 2, self.k / 2)? .max_pool2d_with_stride(self.k, 1)?; self.cv2.forward(&Tensor::cat(&[&xs, &xs2, &xs3, &xs4], 1)?) } } #[derive(Debug)] struct Dfl { conv: Conv2d, num_classes: usize, } impl Dfl { fn load(vb: VarBuilder, num_classes: usize) -> Result<Self> { let conv = conv2d_no_bias(num_classes, 1, 1, Default::default(), vb.pp("conv"))?; Ok(Self { conv, num_classes }) } } impl Module for Dfl { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (b_sz, _channels, anchors) = xs.dims3()?; let xs = xs .reshape((b_sz, 4, self.num_classes, anchors))? .transpose(2, 1)?; let xs = candle_nn::ops::softmax(&xs, 1)?; self.conv.forward(&xs)?.reshape((b_sz, 4, anchors)) } } #[derive(Debug)] struct DarkNet { b1_0: ConvBlock, b1_1: ConvBlock, b2_0: C2f, b2_1: ConvBlock, b2_2: C2f, b3_0: ConvBlock, b3_1: C2f, b4_0: ConvBlock, b4_1: C2f, b5: Sppf, } impl DarkNet { fn load(vb: VarBuilder, m: Multiples) -> Result<Self> { let (w, r, d) = (m.width, m.ratio, m.depth); let b1_0 = ConvBlock::load(vb.pp("b1.0"), 3, (64. * w) as usize, 3, 2, Some(1))?; let b1_1 = ConvBlock::load( vb.pp("b1.1"), (64. * w) as usize, (128. * w) as usize, 3, 2, Some(1), )?; let b2_0 = C2f::load( vb.pp("b2.0"), (128. * w) as usize, (128. * w) as usize, (3. * d).round() as usize, true, )?; let b2_1 = ConvBlock::load( vb.pp("b2.1"), (128. * w) as usize, (256. * w) as usize, 3, 2, Some(1), )?; let b2_2 = C2f::load( vb.pp("b2.2"), (256. * w) as usize, (256. * w) as usize, (6. * d).round() as usize, true, )?; let b3_0 = ConvBlock::load( vb.pp("b3.0"), (256. * w) as usize, (512. * w) as usize, 3, 2, Some(1), )?; let b3_1 = C2f::load( vb.pp("b3.1"), (512. * w) as usize, (512. * w) as usize, (6. * d).round() as usize, true, )?; let b4_0 = ConvBlock::load( vb.pp("b4.0"), (512. * w) as usize, (512. * w * r) as usize, 3, 2, Some(1), )?; let b4_1 = C2f::load( vb.pp("b4.1"), (512. * w * r) as usize, (512. * w * r) as usize, (3. * d).round() as usize, true, )?; let b5 = Sppf::load( vb.pp("b5.0"), (512. * w * r) as usize, (512. * w * r) as usize, 5, )?; Ok(Self { b1_0, b1_1, b2_0, b2_1, b2_2, b3_0, b3_1, b4_0, b4_1, b5, }) } fn forward(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { let x1 = self.b1_1.forward(&self.b1_0.forward(xs)?)?; let x2 = self .b2_2 .forward(&self.b2_1.forward(&self.b2_0.forward(&x1)?)?)?; let x3 = self.b3_1.forward(&self.b3_0.forward(&x2)?)?; let x4 = self.b4_1.forward(&self.b4_0.forward(&x3)?)?; let x5 = self.b5.forward(&x4)?; Ok((x2, x3, x5)) } } #[derive(Debug)] struct YoloV8Neck { up: Upsample, n1: C2f, n2: C2f, n3: ConvBlock, n4: C2f, n5: ConvBlock, n6: C2f, } impl YoloV8Neck { fn load(vb: VarBuilder, m: Multiples) -> Result<Self> { let up = Upsample::new(2)?; let (w, r, d) = (m.width, m.ratio, m.depth); let n = (3. * d).round() as usize; let n1 = C2f::load( vb.pp("n1"), (512. * w * (1. + r)) as usize, (512. * w) as usize, n, false, )?; let n2 = C2f::load( vb.pp("n2"), (768. * w) as usize, (256. * w) as usize, n, false, )?; let n3 = ConvBlock::load( vb.pp("n3"), (256. * w) as usize, (256. * w) as usize, 3, 2, Some(1), )?; let n4 = C2f::load( vb.pp("n4"), (768. * w) as usize, (512. * w) as usize, n, false, )?; let n5 = ConvBlock::load( vb.pp("n5"), (512. * w) as usize, (512. * w) as usize, 3, 2, Some(1), )?; let n6 = C2f::load( vb.pp("n6"), (512. * w * (1. + r)) as usize, (512. * w * r) as usize, n, false, )?; Ok(Self { up, n1, n2, n3, n4, n5, n6, }) } fn forward(&self, p3: &Tensor, p4: &Tensor, p5: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { let x = self .n1 .forward(&Tensor::cat(&[&self.up.forward(p5)?, p4], 1)?)?; let head_1 = self .n2 .forward(&Tensor::cat(&[&self.up.forward(&x)?, p3], 1)?)?; let head_2 = self .n4 .forward(&Tensor::cat(&[&self.n3.forward(&head_1)?, &x], 1)?)?; let head_3 = self .n6 .forward(&Tensor::cat(&[&self.n5.forward(&head_2)?, p5], 1)?)?; Ok((head_1, head_2, head_3)) } } #[derive(Debug)] struct DetectionHead { dfl: Dfl, cv2: [(ConvBlock, ConvBlock, Conv2d); 3], cv3: [(ConvBlock, ConvBlock, Conv2d); 3], ch: usize, no: usize, } #[derive(Debug)] struct PoseHead { detect: DetectionHead, cv4: [(ConvBlock, ConvBlock, Conv2d); 3], kpt: (usize, usize), } fn make_anchors( xs0: &Tensor, xs1: &Tensor, xs2: &Tensor, (s0, s1, s2): (usize, usize, usize), grid_cell_offset: f64, ) -> Result<(Tensor, Tensor)> { let dev = xs0.device(); let mut anchor_points = vec![]; let mut stride_tensor = vec![]; for (xs, stride) in [(xs0, s0), (xs1, s1), (xs2, s2)] { // xs is only used to extract the h and w dimensions. let (_, _, h, w) = xs.dims4()?; let sx = (Tensor::arange(0, w as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?; let sy = (Tensor::arange(0, h as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?; let sx = sx .reshape((1, sx.elem_count()))? .repeat((h, 1))? .flatten_all()?; let sy = sy .reshape((sy.elem_count(), 1))? .repeat((1, w))? .flatten_all()?; anchor_points.push(Tensor::stack(&[&sx, &sy], D::Minus1)?); stride_tensor.push((Tensor::ones(h * w, DType::F32, dev)? * stride as f64)?); } let anchor_points = Tensor::cat(anchor_points.as_slice(), 0)?; let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?; Ok((anchor_points, stride_tensor)) } struct DetectionHeadOut { pred: Tensor, anchors: Tensor, strides: Tensor, } fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> { let chunks = distance.chunk(2, 1)?; let lt = &chunks[0]; let rb = &chunks[1]; let x1y1 = anchor_points.sub(lt)?; let x2y2 = anchor_points.add(rb)?; let c_xy = ((&x1y1 + &x2y2)? * 0.5)?; let wh = (&x2y2 - &x1y1)?; Tensor::cat(&[c_xy, wh], 1) } impl DetectionHead { fn load(vb: VarBuilder, nc: usize, filters: (usize, usize, usize)) -> Result<Self> { let ch = 16; let dfl = Dfl::load(vb.pp("dfl"), ch)?; let c1 = usize::max(filters.0, nc); let c2 = usize::max(filters.0 / 4, ch * 4); let cv3 = [ Self::load_cv3(vb.pp("cv3.0"), c1, nc, filters.0)?, Self::load_cv3(vb.pp("cv3.1"), c1, nc, filters.1)?, Self::load_cv3(vb.pp("cv3.2"), c1, nc, filters.2)?, ]; let cv2 = [ Self::load_cv2(vb.pp("cv2.0"), c2, ch, filters.0)?, Self::load_cv2(vb.pp("cv2.1"), c2, ch, filters.1)?, Self::load_cv2(vb.pp("cv2.2"), c2, ch, filters.2)?, ]; let no = nc + ch * 4; Ok(Self { dfl, cv2, cv3, ch, no, }) } fn load_cv3( vb: VarBuilder, c1: usize, nc: usize, filter: usize, ) -> Result<(ConvBlock, ConvBlock, Conv2d)> { let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?; let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?; let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?; Ok((block0, block1, conv)) } fn load_cv2( vb: VarBuilder, c2: usize, ch: usize, filter: usize, ) -> Result<(ConvBlock, ConvBlock, Conv2d)> { let block0 = ConvBlock::load(vb.pp("0"), filter, c2, 3, 1, None)?; let block1 = ConvBlock::load(vb.pp("1"), c2, c2, 3, 1, None)?; let conv = conv2d(c2, 4 * ch, 1, Default::default(), vb.pp("2"))?; Ok((block0, block1, conv)) } fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<DetectionHeadOut> { let forward_cv = |xs, i: usize| { let xs_2 = self.cv2[i].0.forward(xs)?; let xs_2 = self.cv2[i].1.forward(&xs_2)?; let xs_2 = self.cv2[i].2.forward(&xs_2)?; let xs_3 = self.cv3[i].0.forward(xs)?; let xs_3 = self.cv3[i].1.forward(&xs_3)?; let xs_3 = self.cv3[i].2.forward(&xs_3)?; Tensor::cat(&[&xs_2, &xs_3], 1) }; let xs0 = forward_cv(xs0, 0)?; let xs1 = forward_cv(xs1, 1)?; let xs2 = forward_cv(xs2, 2)?; let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?; let anchors = anchors.transpose(0, 1)?.unsqueeze(0)?; let strides = strides.transpose(0, 1)?; let reshape = |xs: &Tensor| { let d = xs.dim(0)?; let el = xs.elem_count(); xs.reshape((d, self.no, el / (d * self.no))) }; let ys0 = reshape(&xs0)?; let ys1 = reshape(&xs1)?; let ys2 = reshape(&xs2)?; let x_cat = Tensor::cat(&[ys0, ys1, ys2], 2)?; let box_ = x_cat.i((.., ..self.ch * 4))?; let cls = x_cat.i((.., self.ch * 4..))?; let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors)?; let dbox = dbox.broadcast_mul(&strides)?; let pred = Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)?; Ok(DetectionHeadOut { pred, anchors, strides, }) } } impl PoseHead { // kpt: keypoints, (17, 3) // nc: num-classes, 80 fn load( vb: VarBuilder, nc: usize, kpt: (usize, usize), filters: (usize, usize, usize), ) -> Result<Self> { let detect = DetectionHead::load(vb.clone(), nc, filters)?; let nk = kpt.0 * kpt.1; let c4 = usize::max(filters.0 / 4, nk); let cv4 = [ Self::load_cv4(vb.pp("cv4.0"), c4, nk, filters.0)?, Self::load_cv4(vb.pp("cv4.1"), c4, nk, filters.1)?, Self::load_cv4(vb.pp("cv4.2"), c4, nk, filters.2)?, ]; Ok(Self { detect, cv4, kpt }) } fn load_cv4( vb: VarBuilder, c1: usize, nc: usize, filter: usize, ) -> Result<(ConvBlock, ConvBlock, Conv2d)> { let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?; let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?; let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?; Ok((block0, block1, conv)) } fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> { let d = self.detect.forward(xs0, xs1, xs2)?; let forward_cv = |xs: &Tensor, i: usize| { let (b_sz, _, h, w) = xs.dims4()?; let xs = self.cv4[i].0.forward(xs)?; let xs = self.cv4[i].1.forward(&xs)?; let xs = self.cv4[i].2.forward(&xs)?; xs.reshape((b_sz, self.kpt.0 * self.kpt.1, h * w)) }; let xs0 = forward_cv(xs0, 0)?; let xs1 = forward_cv(xs1, 1)?; let xs2 = forward_cv(xs2, 2)?; let xs = Tensor::cat(&[xs0, xs1, xs2], D::Minus1)?; let (b_sz, _nk, hw) = xs.dims3()?; let xs = xs.reshape((b_sz, self.kpt.0, self.kpt.1, hw))?; let ys01 = ((xs.i((.., .., 0..2))? * 2.)?.broadcast_add(&d.anchors)? - 0.5)? .broadcast_mul(&d.strides)?; let ys2 = candle_nn::ops::sigmoid(&xs.i((.., .., 2..3))?)?; let ys = Tensor::cat(&[ys01, ys2], 2)?.flatten(1, 2)?; Tensor::cat(&[d.pred, ys], 1) } } #[derive(Debug)] pub struct YoloV8 { net: DarkNet, fpn: YoloV8Neck, head: DetectionHead, } impl YoloV8 { pub fn load(vb: VarBuilder, m: Multiples, num_classes: usize) -> Result<Self> { let net = DarkNet::load(vb.pp("net"), m)?; let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?; let head = DetectionHead::load(vb.pp("head"), num_classes, m.filters())?; Ok(Self { net, fpn, head }) } } impl Module for YoloV8 { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (xs1, xs2, xs3) = self.net.forward(xs)?; let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?; Ok(self.head.forward(&xs1, &xs2, &xs3)?.pred) } } #[derive(Debug)] pub struct YoloV8Pose { net: DarkNet, fpn: YoloV8Neck, head: PoseHead, } impl YoloV8Pose { pub fn load( vb: VarBuilder, m: Multiples, num_classes: usize, kpt: (usize, usize), ) -> Result<Self> { let net = DarkNet::load(vb.pp("net"), m)?; let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?; let head = PoseHead::load(vb.pp("head"), num_classes, kpt, m.filters())?; Ok(Self { net, fpn, head }) } } impl Module for YoloV8Pose { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (xs1, xs2, xs3) = self.net.forward(xs)?; let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?; self.head.forward(&xs1, &xs2, &xs3) } } #[derive(Debug, Clone, Copy, PartialEq, serde::Serialize, serde::Deserialize)] pub struct KeyPoint { pub x: f32, pub y: f32, pub mask: f32, } #[derive(Debug, Clone, serde::Serialize, serde::Deserialize)] pub struct Bbox { pub xmin: f32, pub ymin: f32, pub xmax: f32, pub ymax: f32, pub confidence: f32, pub keypoints: Vec<KeyPoint>, } // Intersection over union of two bounding boxes. fn iou(b1: &Bbox, b2: &Bbox) -> f32 { let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.); let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.); let i_xmin = b1.xmin.max(b2.xmin); let i_xmax = b1.xmax.min(b2.xmax); let i_ymin = b1.ymin.max(b2.ymin); let i_ymax = b1.ymax.min(b2.ymax); let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.); i_area / (b1_area + b2_area - i_area) } pub fn report_detect( pred: &Tensor, img: DynamicImage, w: usize, h: usize, conf_threshold: f32, iou_threshold: f32, ) -> Result<Vec<Vec<Bbox>>> { let (pred_size, npreds) = pred.dims2()?; let nclasses = pred_size - 4; let conf_threshold = conf_threshold.clamp(0.0, 1.0); let iou_threshold = iou_threshold.clamp(0.0, 1.0); // The bounding boxes grouped by (maximum) class index. let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect(); // Extract the bounding boxes for which confidence is above the threshold. for index in 0..npreds { let pred = Vec::<f32>::try_from(pred.i((.., index))?)?; let confidence = *pred[4..].iter().max_by(|x, y| x.total_cmp(y)).unwrap(); if confidence > conf_threshold { let mut class_index = 0; for i in 0..nclasses { if pred[4 + i] > pred[4 + class_index] { class_index = i } } if pred[class_index + 4] > 0. { let bbox = Bbox { xmin: pred[0] - pred[2] / 2., ymin: pred[1] - pred[3] / 2., xmax: pred[0] + pred[2] / 2., ymax: pred[1] + pred[3] / 2., confidence, keypoints: vec![], }; bboxes[class_index].push(bbox) } } } non_maximum_suppression(&mut bboxes, iou_threshold); // Annotate the original image and print boxes information. let (initial_h, initial_w) = (img.height() as f32, img.width() as f32); let w_ratio = initial_w / w as f32; let h_ratio = initial_h / h as f32; for (class_index, bboxes_for_class) in bboxes.iter_mut().enumerate() { for b in bboxes_for_class.iter_mut() { crate::console_log!("{}: {:?}", crate::coco_classes::NAMES[class_index], b); b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.); b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.); b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.); b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.); } } Ok(bboxes) } fn non_maximum_suppression(bboxes: &mut [Vec<Bbox>], threshold: f32) { // Perform non-maximum suppression. for bboxes_for_class in bboxes.iter_mut() { bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap()); let mut current_index = 0; for index in 0..bboxes_for_class.len() { let mut drop = false; for prev_index in 0..current_index { let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]); if iou > threshold { drop = true; break; } } if !drop { bboxes_for_class.swap(current_index, index); current_index += 1; } } bboxes_for_class.truncate(current_index); } } pub fn report_pose( pred: &Tensor, img: DynamicImage, w: usize, h: usize, confidence_threshold: f32, nms_threshold: f32, ) -> Result<Vec<Bbox>> { let (pred_size, npreds) = pred.dims2()?; if pred_size != 17 * 3 + 4 + 1 { candle::bail!("unexpected pred-size {pred_size}"); } let mut bboxes = vec![]; // Extract the bounding boxes for which confidence is above the threshold. for index in 0..npreds { let pred = Vec::<f32>::try_from(pred.i((.., index))?)?; let confidence = pred[4]; if confidence > confidence_threshold { let keypoints = (0..17) .map(|i| KeyPoint { x: pred[3 * i + 5], y: pred[3 * i + 6], mask: pred[3 * i + 7], }) .collect::<Vec<_>>(); let bbox = Bbox { xmin: pred[0] - pred[2] / 2., ymin: pred[1] - pred[3] / 2., xmax: pred[0] + pred[2] / 2., ymax: pred[1] + pred[3] / 2., confidence, keypoints, }; bboxes.push(bbox) } } let mut bboxes = vec![bboxes]; non_maximum_suppression(&mut bboxes, nms_threshold); let mut bboxes = bboxes.into_iter().next().unwrap(); let (initial_h, initial_w) = (img.height() as f32, img.width() as f32); let w_ratio = initial_w / w as f32; let h_ratio = initial_h / h as f32; for b in bboxes.iter_mut() { crate::console_log!("detected {b:?}"); b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.); b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.); b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.); b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.); for kp in b.keypoints.iter_mut() { kp.x = (kp.x * w_ratio).clamp(0., initial_w - 1.); kp.y = (kp.y * h_ratio).clamp(0., initial_h - 1.); } } Ok(bboxes) }
0
hf_public_repos/candle/candle-wasm-examples/yolo/src
hf_public_repos/candle/candle-wasm-examples/yolo/src/bin/app.rs
fn main() { wasm_logger::init(wasm_logger::Config::new(log::Level::Trace)); console_error_panic_hook::set_once(); yew::Renderer::<candle_wasm_example_yolo::App>::new().render(); }
0
hf_public_repos/candle/candle-wasm-examples/yolo/src
hf_public_repos/candle/candle-wasm-examples/yolo/src/bin/m.rs
use candle_wasm_example_yolo::coco_classes; use candle_wasm_example_yolo::model::Bbox; use candle_wasm_example_yolo::worker::Model as M; use candle_wasm_example_yolo::worker::ModelPose as P; use wasm_bindgen::prelude::*; #[wasm_bindgen] pub struct Model { inner: M, } #[wasm_bindgen] impl Model { #[wasm_bindgen(constructor)] pub fn new(data: Vec<u8>, model_size: &str) -> Result<Model, JsError> { let inner = M::load_(data, model_size)?; Ok(Self { inner }) } #[wasm_bindgen] pub fn run( &self, image: Vec<u8>, conf_threshold: f32, iou_threshold: f32, ) -> Result<String, JsError> { let bboxes = self.inner.run(image, conf_threshold, iou_threshold)?; let mut detections: Vec<(String, Bbox)> = vec![]; for (class_index, bboxes_for_class) in bboxes.into_iter().enumerate() { for b in bboxes_for_class.into_iter() { detections.push((coco_classes::NAMES[class_index].to_string(), b)); } } let json = serde_json::to_string(&detections)?; Ok(json) } } #[wasm_bindgen] pub struct ModelPose { inner: P, } #[wasm_bindgen] impl ModelPose { #[wasm_bindgen(constructor)] pub fn new(data: Vec<u8>, model_size: &str) -> Result<ModelPose, JsError> { let inner = P::load_(data, model_size)?; Ok(Self { inner }) } #[wasm_bindgen] pub fn run( &self, image: Vec<u8>, conf_threshold: f32, iou_threshold: f32, ) -> Result<String, JsError> { let bboxes = self.inner.run(image, conf_threshold, iou_threshold)?; let json = serde_json::to_string(&bboxes)?; Ok(json) } } fn main() {}
0
hf_public_repos/candle/candle-wasm-examples/yolo/src
hf_public_repos/candle/candle-wasm-examples/yolo/src/bin/worker.rs
use yew_agent::PublicWorker; fn main() { console_error_panic_hook::set_once(); candle_wasm_example_yolo::Worker::register(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/phi/index.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Phi 1.5 / Phi 2.0 Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/highlightjs/[email protected]/build/styles/default.min.css" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } code, output, select, pre { font-family: "Source Code Pro", monospace; } </style> <style type="text/tailwindcss"> .link { @apply underline hover:text-blue-500 hover:no-underline; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> import snarkdown from "https://cdn.skypack.dev/snarkdown"; import hljs from "https://cdn.skypack.dev/highlight.js"; // models base url const MODELS = { phi_1_5_q4k: { base_url: "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/", model: "model-q4k.gguf", tokenizer: "tokenizer.json", config: "phi-1_5.json", quantized: true, seq_len: 2048, size: "800 MB", }, phi_1_5_q80: { base_url: "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/", model: "model-q80.gguf", tokenizer: "tokenizer.json", config: "phi-1_5.json", quantized: true, seq_len: 2048, size: "1.51 GB", }, phi_2_0_q4k: { base_url: "https://huggingface.co/radames/phi-2-quantized/resolve/main/", model: [ "model-v2-q4k.gguf_aa.part", "model-v2-q4k.gguf_ab.part", "model-v2-q4k.gguf_ac.part", ], tokenizer: "tokenizer.json", config: "config.json", quantized: true, seq_len: 2048, size: "1.57GB", }, puffin_phi_v2_q4k: { base_url: "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/", model: "model-puffin-phi-v2-q4k.gguf", tokenizer: "tokenizer-puffin-phi-v2.json", config: "puffin-phi-v2.json", quantized: true, seq_len: 2048, size: "798 MB", }, puffin_phi_v2_q80: { base_url: "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/", model: "model-puffin-phi-v2-q80.gguf", tokenizer: "tokenizer-puffin-phi-v2.json", config: "puffin-phi-v2.json", quantized: true, seq_len: 2048, size: "1.50 GB", }, }; const TEMPLATES = [ { title: "Simple prompt", prompt: `Sebastien is in London today, it’s the middle of July yet it’s raining, so Sebastien is feeling gloomy. He`, }, { title: "Think step by step", prompt: `Suppose Alice originally had 3 apples, then Bob gave Alice 7 apples, then Alice gave Cook 5 apples, and then Tim gave Alice 3x the amount of apples Alice had. How many apples does Alice have now? Let’s think step by step.`, }, { title: "Explaing a code snippet", prompt: `What does this script do? \`\`\`python s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 0)) s.listen(1) conn, addr = s.accept() print('Connected by', addr) return conn.getsockname()[1] \`\`\` Let’s think step by step.`, }, { title: "Question answering", prompt: `Instruct: What is the capital of France? Output:`, }, { title: "Chat mode", prompt: `Alice: Can you tell me how to create a python application to go through all the files in one directory where the file’s name DOES NOT end with '.json'? Bob:`, }, { title: "Python code completion", prompt: `"""write a python function called batch(function, list) which call function(x) for x in list in parallel""" Solution:`, }, { title: "Python Sample", prompt: `"""Can you make sure those histograms appear side by side on the same plot: \`\`\`python plt.hist(intreps_retrained[0][1].view(64,-1).norm(dim=1).detach().cpu().numpy(), bins = 20) plt.hist(intreps_pretrained[0][1].view(64,-1).norm(dim=1).detach().cpu().numpy(), bins = 20) \`\`\` """`, }, { title: "Write a Twitter post", prompt: `Write a twitter post for the discovery of gravitational wave. Twitter Post:`, }, { title: "Write a review", prompt: `Write a polite review complaining that the video game 'Random Game' was too badly optimized and it burned my laptop. Very polite review:`, }, ]; const phiWorker = new Worker("./phiWorker.js", { type: "module", }); async function generateSequence(controller) { const getValue = (id) => document.querySelector(`#${id}`).value; const modelID = getValue("model"); const model = MODELS[modelID]; const weightsURL = model.model instanceof Array ? model.model.map((m) => model.base_url + m) : model.base_url + model.model; const tokenizerURL = model.base_url + model.tokenizer; const configURL = model.base_url + model.config; const prompt = getValue("prompt").trim(); const temperature = getValue("temperature"); const topP = getValue("top-p"); const repeatPenalty = getValue("repeat_penalty"); const seed = getValue("seed"); const maxSeqLen = getValue("max-seq"); function updateStatus(data) { const outStatus = document.querySelector("#output-status"); const outGen = document.querySelector("#output-generation"); const outCounter = document.querySelector("#output-counter"); switch (data.status) { case "loading": outStatus.hidden = false; outStatus.textContent = data.message; outGen.hidden = true; outCounter.hidden = true; break; case "generating": const { message, prompt, sentence, tokensSec, totalTime } = data; outStatus.hidden = true; outCounter.hidden = false; outGen.hidden = false; outGen.innerHTML = snarkdown(prompt + sentence); outCounter.innerHTML = `${(totalTime / 1000).toFixed( 2 )}s (${tokensSec.toFixed(2)} tok/s)`; hljs.highlightAll(); break; case "complete": outStatus.hidden = true; outGen.hidden = false; break; } } return new Promise((resolve, reject) => { phiWorker.postMessage({ weightsURL, modelID, tokenizerURL, configURL, quantized: model.quantized, prompt, temp: temperature, top_p: topP, repeatPenalty, seed: seed, maxSeqLen, command: "start", }); const handleAbort = () => { phiWorker.postMessage({ command: "abort" }); }; const handleMessage = (event) => { const { status, error, message, prompt, sentence } = event.data; if (status) updateStatus(event.data); if (error) { phiWorker.removeEventListener("message", handleMessage); reject(new Error(error)); } if (status === "aborted") { phiWorker.removeEventListener("message", handleMessage); resolve(event.data); } if (status === "complete") { phiWorker.removeEventListener("message", handleMessage); resolve(event.data); } }; controller.signal.addEventListener("abort", handleAbort); phiWorker.addEventListener("message", handleMessage); }); } const form = document.querySelector("#form"); const prompt = document.querySelector("#prompt"); const clearBtn = document.querySelector("#clear-btn"); const runBtn = document.querySelector("#run"); const modelSelect = document.querySelector("#model"); const promptTemplates = document.querySelector("#prompt-templates"); let runController = new AbortController(); let isRunning = false; document.addEventListener("DOMContentLoaded", () => { for (const [id, model] of Object.entries(MODELS)) { const option = document.createElement("option"); option.value = id; option.innerText = `${id} (${model.size})`; modelSelect.appendChild(option); } const query = new URLSearchParams(window.location.search); const modelID = query.get("model"); if (modelID) { modelSelect.value = modelID; } else { modelSelect.value = "phi_1_5_q4k"; } for (const [i, { title, prompt }] of TEMPLATES.entries()) { const div = document.createElement("div"); const input = document.createElement("input"); input.type = "radio"; input.name = "task"; input.id = `templates-${i}`; input.classList.add("font-light", "cursor-pointer"); input.value = prompt; const label = document.createElement("label"); label.htmlFor = `templates-${i}`; label.classList.add("cursor-pointer"); label.innerText = title; div.appendChild(input); div.appendChild(label); promptTemplates.appendChild(div); } }); promptTemplates.addEventListener("change", (e) => { const template = e.target.value; prompt.value = template; prompt.style.height = "auto"; prompt.style.height = prompt.scrollHeight + "px"; runBtn.disabled = false; clearBtn.classList.remove("invisible"); }); modelSelect.addEventListener("change", (e) => { const query = new URLSearchParams(window.location.search); query.set("model", e.target.value); window.history.replaceState( {}, "", `${window.location.pathname}?${query}` ); window.parent.postMessage({ queryString: "?" + query }, "*"); const model = MODELS[e.target.value]; document.querySelector("#max-seq").max = model.seq_len; document.querySelector("#max-seq").nextElementSibling.value = 200; }); form.addEventListener("submit", async (e) => { e.preventDefault(); if (isRunning) { stopRunning(); } else { startRunning(); await generateSequence(runController); stopRunning(); } }); function startRunning() { isRunning = true; runBtn.textContent = "Stop"; } function stopRunning() { runController.abort(); runController = new AbortController(); runBtn.textContent = "Run"; isRunning = false; } clearBtn.addEventListener("click", (e) => { e.preventDefault(); prompt.value = ""; clearBtn.classList.add("invisible"); runBtn.disabled = true; stopRunning(); }); prompt.addEventListener("input", (e) => { runBtn.disabled = false; if (e.target.value.length > 0) { clearBtn.classList.remove("invisible"); } else { clearBtn.classList.add("invisible"); } }); </script> </head> <body class="container max-w-4xl mx-auto p-4 text-gray-800"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle Phi 1.5 / Phi 2.0</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> The <a href="https://huggingface.co/microsoft/phi-1_5" class="link" target="_blank" >Phi-1.5</a > and <a href="https://huggingface.co/microsoft/phi-2" class="link" target="_blank" >Phi-2</a > models achieve state-of-the-art performance with only 1.3 billion and 2.7 billion parameters, compared to larger models with up to 13 billion parameters. Here you can try the quantized versions. Additional prompt examples are available in the <a href="https://arxiv.org/pdf/2309.05463.pdf#page=8" class="link" target="_blank" > technical report </a >. </p> <p class="max-w-lg"> You can also try <a href="https://huggingface.co/teknium/Puffin-Phi-v2" class="link" target="_blank" >Puffin-Phi V2 </a> quantized version, a fine-tuned version of Phi-1.5 on the <a href="https://huggingface.co/datasets/LDJnr/Puffin" class="link" target="_blank" >Puffin dataset </a> </p> </div> <div> <p class="text-xs italic max-w-lg"> <b>Note:</b> When first run, the app will download and cache the model, which could take a few minutes. The models are <b>~800MB</b> or <b>~1.57GB</b> in size. </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light" ></select> </div> <div> <details> <summary class="font-medium cursor-pointer">Prompt Templates</summary> <form id="prompt-templates" class="grid grid-cols-1 sm:grid-cols-2 gap-1 my-2" ></form> </details> </div> <form id="form" class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center" > <input type="submit" hidden /> <textarea type="text" id="prompt" class="font-light text-lg w-full px-3 py-2 mx-1 resize-none outline-none" oninput="this.style.height = 0;this.style.height = this.scrollHeight + 'px'" placeholder="Add your prompt here..." > Instruct: Write a detailed analogy between mathematics and a lighthouse. Output:</textarea > <button id="clear-btn"> <svg fill="none" xmlns="http://www.w3.org/2000/svg" width="40" viewBox="0 0 70 40" > <path opacity=".5" d="M39 .2v40.2" stroke="#1F2937" /> <path d="M1.5 11.5 19 29.1m0-17.6L1.5 29.1" opacity=".5" stroke="#1F2937" stroke-width="2" /> </svg> </button> <button id="run" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed" > Run </button> </form> <details> <summary class="font-medium cursor-pointer">Advanced Options</summary> <div class="grid grid-cols-3 max-w-md items-center gap-3 py-3"> <label class="text-sm font-medium" for="max-seq" >Maximum length </label> <input type="range" id="max-seq" name="max-seq" min="1" max="2048" step="1" value="200" oninput="this.nextElementSibling.value = Number(this.value)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" > 200</output > <label class="text-sm font-medium" for="temperature" >Temperature</label > <input type="range" id="temperature" name="temperature" min="0" max="2" step="0.01" value="0.00" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" > 0.00</output > <label class="text-sm font-medium" for="top-p">Top-p</label> <input type="range" id="top-p" name="top-p" min="0" max="1" step="0.01" value="1.00" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" > 1.00</output > <label class="text-sm font-medium" for="repeat_penalty" >Repeat Penalty</label > <input type="range" id="repeat_penalty" name="repeat_penalty" min="1" max="2" step="0.01" value="1.10" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" >1.10</output > <label class="text-sm font-medium" for="seed">Seed</label> <input type="number" id="seed" name="seed" value="299792458" class="font-light border border-gray-700 text-right rounded-md p-2" /> <button id="run" onclick="document.querySelector('#seed').value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER)" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-1 w-[50px] rounded disabled:bg-gray-300 disabled:cursor-not-allowed text-sm" > Rand </button> </div> </details> <div> <h3 class="font-medium">Generation:</h3> <div class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2" > <div id="output-counter" hidden class="ml-auto font-semibold grid-rows-1" ></div> <p hidden id="output-generation" class="grid-rows-2 text-lg"></p> <span id="output-status" class="m-auto font-light" >No output yet</span > </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/phi/README.md
## Running [Microsoft phi 1.5](https://huggingface.co/microsoft/phi-1_5) Example Here, we provide two examples of how to run [Microsoft phi 1.5](https://huggingface.co/microsoft/phi-1_5) written in Rust using a Candle-compiled WASM binary and runtime. ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { Model } from "./build/m.js"; ``` The full example can be found under `./index.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/index.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/phi/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/phi/phiWorker.js
import init, { Model } from "./build/m.js"; async function fetchArrayBuffer(url) { const cacheName = "phi-mixformer-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } async function concatenateArrayBuffers(urls) { const arrayBuffers = await Promise.all(urls.map(url => fetchArrayBuffer(url))); let totalLength = arrayBuffers.reduce((acc, arrayBuffer) => acc + arrayBuffer.byteLength, 0); let concatenatedBuffer = new Uint8Array(totalLength); let offset = 0; arrayBuffers.forEach(buffer => { concatenatedBuffer.set(new Uint8Array(buffer), offset); offset += buffer.byteLength; }); return concatenatedBuffer; } class Phi { static instance = {}; static async getInstance( weightsURL, modelID, tokenizerURL, configURL, quantized ) { // load individual modelID only once if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = await Promise.all([ weightsURL instanceof Array ? concatenateArrayBuffers(weightsURL) : fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), fetchArrayBuffer(configURL), ]); this.instance[modelID] = new Model( weightsArrayU8, tokenizerArrayU8, configArrayU8, quantized ); } return this.instance[modelID]; } } let controller = null; self.addEventListener("message", (event) => { if (event.data.command === "start") { controller = new AbortController(); generate(event.data); } else if (event.data.command === "abort") { controller.abort(); } }); async function generate(data) { const { weightsURL, modelID, tokenizerURL, configURL, quantized, prompt, temp, top_p, repeatPenalty, seed, maxSeqLen, } = data; try { self.postMessage({ status: "loading", message: "Starting Phi" }); const model = await Phi.getInstance( weightsURL, modelID, tokenizerURL, configURL, quantized ); self.postMessage({ status: "loading", message: "Initializing model" }); const firstToken = model.init_with_prompt( prompt, temp, top_p, repeatPenalty, 64, BigInt(seed) ); const seq_len = 2048; let sentence = firstToken; let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; let startTime = performance.now(); let tokensCount = 0; while (tokensCount < maxTokens) { await new Promise(async (resolve) => { if (controller && controller.signal.aborted) { self.postMessage({ status: "aborted", message: "Aborted", output: prompt + sentence, }); return; } const token = await model.next_token(); if (token === "<|endoftext|>") { self.postMessage({ status: "complete", message: "complete", output: prompt + sentence, }); return; } const tokensSec = ((tokensCount + 1) / (performance.now() - startTime)) * 1000; sentence += token; self.postMessage({ status: "generating", message: "Generating token", token: token, sentence: sentence, totalTime: performance.now() - startTime, tokensSec, prompt: prompt, }); setTimeout(resolve, 0); }); tokensCount++; } self.postMessage({ status: "complete", message: "complete", output: prompt + sentence, }); } catch (e) { self.postMessage({ error: e }); } }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/phi/Cargo.toml
[package] name = "candle-wasm-example-phi" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } tokenizers = { workspace = true, features = ["unstable_wasm"] } num-traits = { workspace = true } # App crates. anyhow = { workspace = true } byteorder = { workspace = true } getrandom = { version = "0.2", features = ["js"] } image = { workspace = true } log = { workspace = true } safetensors = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } # Wasm specific crates. console_error_panic_hook = "0.1.7" wasm-bindgen = "0.2.87" js-sys = "0.3.64"
0
hf_public_repos/candle/candle-wasm-examples/phi
hf_public_repos/candle/candle-wasm-examples/phi/src/lib.rs
use wasm_bindgen::prelude::*; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::log(&format_args!($($t)*).to_string())) }
0
hf_public_repos/candle/candle-wasm-examples/phi/src
hf_public_repos/candle/candle-wasm-examples/phi/src/bin/m.rs
use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer}; use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer; use candle_wasm_example_phi::console_log; use js_sys::Date; use serde::Deserialize; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; enum SelectedModel { MixFormer(MixFormer), Quantized(QMixFormer), } #[wasm_bindgen] pub struct Model { model: SelectedModel, tokenizer: Tokenizer, logits_processor: LogitsProcessor, tokens: Vec<u32>, repeat_penalty: f32, repeat_last_n: usize, } #[derive(Debug, Clone, PartialEq, Deserialize)] pub struct ModelName { pub _name_or_path: String, } #[wasm_bindgen] impl Model { #[wasm_bindgen(constructor)] pub fn load( weights: Vec<u8>, tokenizer: Vec<u8>, config: Vec<u8>, quantized: bool, ) -> Result<Model, JsError> { console_error_panic_hook::set_once(); console_log!("loading model"); let device = Device::Cpu; let name: ModelName = serde_json::from_slice(&config)?; let config: Config = serde_json::from_slice(&config)?; console_log!("config loaded {:?}", name); let tokenizer = Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?; let start = Date::now(); console_log!("weights len: {:?}", weights.len()); let model = if quantized { let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf_buffer( &weights, &device, )?; console_log!("weights loaded"); if name._name_or_path == "microsoft/phi-2" { let model = QMixFormer::new_v2(&config, vb)?; SelectedModel::Quantized(model) } else { let model = QMixFormer::new(&config, vb)?; SelectedModel::Quantized(model) } } else { let device = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, device)?; let model = MixFormer::new(&config, vb)?; SelectedModel::MixFormer(model) }; console_log!("model loaded in {:?}s", (Date::now() - start) / 1000.); let logits_processor = LogitsProcessor::new(299792458, None, None); Ok(Self { model, tokenizer, tokens: vec![], logits_processor, repeat_penalty: 1., repeat_last_n: 64, }) } #[wasm_bindgen] pub fn init_with_prompt( &mut self, prompt: String, temp: f64, top_p: f64, repeat_penalty: f32, repeat_last_n: usize, seed: u64, ) -> Result<String, JsError> { match &mut self.model { SelectedModel::MixFormer(m) => m.clear_kv_cache(), SelectedModel::Quantized(m) => m.clear_kv_cache(), }; let temp = if temp <= 0. { None } else { Some(temp) }; let top_p = if top_p <= 0. || top_p >= 1. { None } else { Some(top_p) }; self.logits_processor = LogitsProcessor::new(seed, temp, top_p); self.repeat_penalty = repeat_penalty; self.repeat_last_n = repeat_last_n; self.tokens.clear(); let tokens = self .tokenizer .encode(prompt, true) .map_err(|m| JsError::new(&m.to_string()))? .get_ids() .to_vec(); let text = self .process(&tokens) .map_err(|m| JsError::new(&m.to_string()))?; Ok(text) } #[wasm_bindgen] pub fn next_token(&mut self) -> Result<String, JsError> { let last_token = *self.tokens.last().unwrap(); let text = self .process(&[last_token]) .map_err(|m| JsError::new(&m.to_string()))?; Ok(text) } } impl Model { fn process(&mut self, tokens: &[u32]) -> candle::Result<String> { let dev = Device::Cpu; let input = Tensor::new(tokens, &dev)?.unsqueeze(0)?; let logits = match &mut self.model { SelectedModel::MixFormer(m) => m.forward(&input)?, SelectedModel::Quantized(m) => m.forward(&input)?, }; let logits = logits.squeeze(0)?.to_dtype(DType::F32)?; let logits = if self.repeat_penalty == 1. { logits } else { let start_at = tokens.len().saturating_sub(self.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, self.repeat_penalty, &tokens[start_at..], )? }; let next_token = self.logits_processor.sample(&logits)?; self.tokens.push(next_token); let token = match self.tokenizer.decode(&[next_token], false) { Ok(token) => token, Err(e) => { console_log!("error decoding token: {:?}", e); "".to_string() } }; // console_log!("token: {:?}: {:?}", token, next_token); Ok(token) } } fn main() { console_error_panic_hook::set_once(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/index.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <title>Welcome to Candle!</title> <link data-trunk rel="copy-file" href="mel_filters.safetensors" /> <!-- samples --> <link data-trunk rel="copy-dir" href="audios" /> <!-- tiny.en --> <link data-trunk rel="copy-dir" href="whisper-tiny.en" /> <!-- tiny --> <link data-trunk rel="copy-dir" href="whisper-tiny" /> <!-- quantized --> <link data-trunk rel="copy-dir" href="quantized" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="app" data-type="main" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="worker" data-type="worker" /> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css" /> </head> <body></body> </html>
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/main.js
import init, { run_app } from './pkg/candle_wasm_example_whisper.js'; async function main() { await init('/pkg/candle_wasm_example_whisper_bg.wasm'); run_app(); } main()
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/README.md
## Running Whisper Examples Here, we provide two examples of how to run Whisper using a Candle-compiled WASM binary and runtimes. ### Pure Rust UI To build and test the UI made in Rust you will need [Trunk](https://trunkrs.dev/#install) From the `candle-wasm-examples/whisper` directory run: Download assets: ```bash # mel filters wget -c https://huggingface.co/spaces/lmz/candle-whisper/resolve/main/mel_filters.safetensors # Model and tokenizer tiny.en wget -c https://huggingface.co/openai/whisper-tiny.en/resolve/main/model.safetensors -P whisper-tiny.en wget -c https://huggingface.co/openai/whisper-tiny.en/raw/main/tokenizer.json -P whisper-tiny.en wget -c https://huggingface.co/openai/whisper-tiny.en/raw/main/config.json -P whisper-tiny.en # model and tokenizer tiny multilanguage wget -c https://huggingface.co/openai/whisper-tiny/resolve/main/model.safetensors -P whisper-tiny wget -c https://huggingface.co/openai/whisper-tiny/raw/main/tokenizer.json -P whisper-tiny wget -c https://huggingface.co/openai/whisper-tiny/raw/main/config.json -P whisper-tiny #quantized wget -c https://huggingface.co/lmz/candle-whisper/resolve/main/model-tiny-en-q80.gguf -P quantized wget -c https://huggingface.co/lmz/candle-whisper/raw/main/tokenizer-tiny-en.json -P quantized wget -c https://huggingface.co/lmz/candle-whisper/raw/main/config-tiny-en.json -P quantized # Audio samples wget -c https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_gb0.wav -P audios wget -c https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_a13.wav -P audios wget -c https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_gb1.wav -P audios wget -c https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_hp0.wav -P audios wget -c https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_jfk.wav -P audios wget -c https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_mm0.wav -P audios ``` Run hot reload server: ```bash trunk serve --release --public-url / --port 8080 ``` ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { Decoder } from "./build/m.js"; ``` The full example can be found under `./lib-example.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/lib-example.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/whisperWorker.js
//load the candle Whisper decoder wasm module import init, { Decoder } from "./build/m.js"; async function fetchArrayBuffer(url) { const cacheName = "whisper-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class Whisper { static instance = {}; // Retrieve the Whisper model. When called for the first time, // this will load the model and save it for future use. static async getInstance(params) { const { weightsURL, modelID, tokenizerURL, mel_filtersURL, configURL, quantized, is_multilingual, timestamps, task, language, } = params; // load individual modelID only once if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [ weightsArrayU8, tokenizerArrayU8, mel_filtersArrayU8, configArrayU8, ] = await Promise.all([ fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), fetchArrayBuffer(mel_filtersURL), fetchArrayBuffer(configURL), ]); this.instance[modelID] = new Decoder( weightsArrayU8, tokenizerArrayU8, mel_filtersArrayU8, configArrayU8, quantized, is_multilingual, timestamps, task, language ); } else { self.postMessage({ status: "loading", message: "Model Already Loaded" }); } return this.instance[modelID]; } } self.addEventListener("message", async (event) => { const { weightsURL, modelID, tokenizerURL, configURL, mel_filtersURL, audioURL, } = event.data; try { self.postMessage({ status: "decoding", message: "Starting Decoder" }); let quantized = false; if (modelID.includes("quantized")) { quantized = true; } let is_multilingual = false; if (modelID.includes("multilingual")) { is_multilingual = true; } let timestamps = true; const decoder = await Whisper.getInstance({ weightsURL, modelID, tokenizerURL, mel_filtersURL, configURL, quantized, is_multilingual, timestamps, task: null, language: null, }); self.postMessage({ status: "decoding", message: "Loading Audio" }); const audioArrayU8 = await fetchArrayBuffer(audioURL); self.postMessage({ status: "decoding", message: "Running Decoder..." }); const segments = decoder.decode(audioArrayU8); // Send the segment back to the main thread as JSON self.postMessage({ status: "complete", message: "complete", output: JSON.parse(segments), }); } catch (e) { self.postMessage({ error: e }); } });
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/Cargo.toml
[package] name = "candle-wasm-example-whisper" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } num-traits = { workspace = true } tokenizers = { workspace = true, features = ["unstable_wasm"] } # App crates. anyhow = { workspace = true } log = { workspace = true } rand = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } wav = { workspace = true } safetensors = { workspace = true } # Wasm specific crates. getrandom = { version = "0.2", features = ["js"] } gloo = "0.11" js-sys = "0.3.64" wasm-bindgen = "0.2.87" wasm-bindgen-futures = "0.4.37" wasm-logger = "0.2" yew-agent = "0.2.0" yew = { version = "0.20.0", features = ["csr"] } [dependencies.web-sys] version = "0.3.64" features = [ 'Blob', 'Document', 'Element', 'HtmlElement', 'Node', 'Window', 'Request', 'RequestCache', 'RequestInit', 'RequestMode', 'Response', 'Performance', ]
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/whisper/lib-example.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Whisper Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> // base url for audio examples const AUDIO_BASE_URL = "https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/"; // models base url const MODELS = { tiny_multilingual: { base_url: "https://huggingface.co/openai/whisper-tiny/resolve/main/", model: "model.safetensors", tokenizer: "tokenizer.json", config: "config.json", size: "151 MB", }, tiny_en: { base_url: "https://huggingface.co/openai/whisper-tiny.en/resolve/main/", model: "model.safetensors", tokenizer: "tokenizer.json", config: "config.json", size: "151 MB", }, tiny_quantized_multilingual_q80: { base_url: "https://huggingface.co/lmz/candle-whisper/resolve/main/", model: "model-tiny-q80.gguf", tokenizer: "tokenizer-tiny.json", config: "config-tiny.json", size: "41.5 MB", }, tiny_en_quantized_q80: { base_url: "https://huggingface.co/lmz/candle-whisper/resolve/main/", model: "model-tiny-q80.gguf", tokenizer: "tokenizer-tiny-en.json", config: "config-tiny-en.json", size: "41.8 MB", }, distil_medium_en: { base_url: "https://huggingface.co/distil-whisper/distil-medium.en/resolve/main/", model: "model.safetensors", tokenizer: "tokenizer.json", config: "config.json", size: "789 MB", }, }; const modelEl = document.querySelector("#model"); Object.keys(MODELS).forEach((modelID) => { const model = MODELS[modelID]; const option = document.createElement("option"); option.value = modelID; option.textContent = `${modelID} (${model.size})`; modelEl.appendChild(option); }); const whisperWorker = new Worker("./whisperWorker.js", { type: "module", }); async function classifyAudio( weightsURL, // URL to the weights file modelID, // model ID tokenizerURL, // URL to the tokenizer file configURL, // model config URL mel_filtersURL, // URL to the mel filters file audioURL, // URL to the audio file updateStatus // function to update the status ) { return new Promise((resolve, reject) => { whisperWorker.postMessage({ weightsURL, modelID, tokenizerURL, configURL, mel_filtersURL, audioURL, }); function messageHandler(event) { console.log(event.data); if ("status" in event.data) { updateStatus(event.data); } if ("error" in event.data) { whisperWorker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { whisperWorker.removeEventListener("message", messageHandler); resolve(event.data); } } whisperWorker.addEventListener("message", messageHandler); }); } // keep track of the audio URL let audioURL = null; function setAudio(src) { const audio = document.querySelector("#audio"); audio.src = src; audio.controls = true; audio.hidden = false; document.querySelector("#detect").disabled = false; audioURL = src; } // add event listener to audio buttons document.querySelectorAll("#audios-select > button").forEach((target) => { target.addEventListener("click", (e) => { const value = target.dataset.value; const href = AUDIO_BASE_URL + value; setAudio(href); }); }); //add event listener to file input document.querySelector("#file-upload").addEventListener("change", (e) => { const target = e.target; if (target.files.length > 0) { const href = URL.createObjectURL(target.files[0]); setAudio(href); } }); // add event listener to drop-area const dropArea = document.querySelector("#drop-area"); dropArea.addEventListener("dragenter", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("dragleave", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); }); dropArea.addEventListener("dragover", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("drop", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); const url = e.dataTransfer.getData("text/uri-list"); const files = e.dataTransfer.files; if (files.length > 0) { const href = URL.createObjectURL(files[0]); setAudio(href); } else if (url) { setAudio(url); } }); // add event listener to detect button document.querySelector("#detect").addEventListener("click", async () => { if (audioURL === null) { return; } const modelID = modelEl.value; const model = MODELS[modelID]; const modelURL = model.base_url + model.model; const tokenizerURL = model.base_url + model.tokenizer; const configURL = model.base_url + model.config; classifyAudio( modelURL, modelID, tokenizerURL, configURL, "mel_filters.safetensors", audioURL, updateStatus ) .then((result) => { console.log("RESULT", result); const { output } = result; const text = output.map((segment) => segment.dr.text).join(" "); console.log(text); document.querySelector("#output-status").hidden = true; document.querySelector("#output-generation").hidden = false; document.querySelector("#output-generation").textContent = text; }) .catch((error) => { console.error(error); }); }); function updateStatus(data) { const { status, message } = data; const button = document.querySelector("#detect"); if (status === "decoding" || status === "loading") { button.disabled = true; button.textContent = message; } else if (status === "complete") { button.disabled = false; button.textContent = "Transcribe Audio"; } } </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle Whisper</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> Transcribe audio in the browser using rust/wasm with an audio file. This demo uses the <a href="https://huggingface.co/openai/" target="_blank" class="underline hover:text-blue-500 hover:no-underline"> OpenAI Whisper models </a> and WASM runtime built with <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light"> </select> </div> <!-- drag and drop area --> <div class="relative"> <div id="drop-area" class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative h-48 w-full overflow-hidden"> <div class="flex flex-col items-center justify-center space-y-1 text-center"> <svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" fill="#000" /> </svg> <div class="flex text-sm text-gray-600"> <label for="file-upload" class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700"> <span>Drag and drop your audio here</span> <span class="block text-xs">or</span> <span class="block text-xs">Click to upload</span> </label> </div> <input id="file-upload" name="file-upload" type="file" accept="audio/*" class="sr-only" /> </div> <audio id="audio" hidden controls class="w-full p-2 select-none"></audio> </div> </div> <div> <div class="flex flex-wrap gap-3 items-center" id="audios-select"> <h3 class="font-medium">Examples:</h3> <button data-value="samples_jfk.wav" class="text-gray-500 border border-gray-500 rounded-md p-2 underline hover:no-underline"> <span>jfk.wav</span> <span class="text-xs block"> (352 kB)</span> </button> <button data-value="samples_a13.wav" class="text-gray-500 border border-gray-500 rounded-md p-2 underline hover:no-underline"> <span>a13.wav</span> <span class="text-xs block"> (960 kB)</span> </button> <button data-value="samples_mm0.wav" class="text-gray-500 border border-gray-500 rounded-md p-2 underline hover:no-underline"> <span>mm0.wav</span> <span class="text-xs block new"> (957 kB)</span> </button> <button data-value="samples_gb0.wav" class="text-gray-500 border border-gray-500 rounded-md p-2 underline hover:no-underline"> <span>gb0.wav </span> <span class="text-xs block">(4.08 MB)</span> </button> <button data-value="samples_gb1.wav" class="text-gray-500 border border-gray-500 rounded-md p-2 underline hover:no-underline"> <span>gb1.wav </span> <span class="text-xs block">(6.36 MB)</span> </button> <button data-value="samples_hp0.wav" class="text-gray-500 border border-gray-500 rounded-md p-2 underline hover:no-underline"> <span>hp0.wav </span> <span class="text-xs block">(8.75 MB)</span> </button> </div> </div> <div> <button id="detect" disabled class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 px-4 rounded disabled:bg-gray-300 disabled:cursor-not-allowed"> Transcribe Audio </button> </div> <div> <h3 class="font-medium">Transcription:</h3> <div class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2"> <p hidden id="output-generation" class="grid-rows-2"></p> <span id="output-status" class="m-auto font-light" >No transcription results yet</span > </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples/whisper
hf_public_repos/candle/candle-wasm-examples/whisper/src/lib.rs
pub const WITH_TIMER: bool = true; struct Timer { label: &'static str, } // impl Timer { // fn new(label: &'static str) -> Self { // if WITH_TIMER { // web_sys::console::time_with_label(label); // } // Self { label } // } // } impl Drop for Timer { fn drop(&mut self) { if WITH_TIMER { web_sys::console::time_end_with_label(self.label) } } } mod app; mod audio; pub mod languages; pub mod worker; pub use app::App; pub use worker::Worker;
0
hf_public_repos/candle/candle-wasm-examples/whisper
hf_public_repos/candle/candle-wasm-examples/whisper/src/languages.rs
pub const LANGUAGES: [(&str, &str); 99] = [ ("en", "english"), ("zh", "chinese"), ("de", "german"), ("es", "spanish"), ("ru", "russian"), ("ko", "korean"), ("fr", "french"), ("ja", "japanese"), ("pt", "portuguese"), ("tr", "turkish"), ("pl", "polish"), ("ca", "catalan"), ("nl", "dutch"), ("ar", "arabic"), ("sv", "swedish"), ("it", "italian"), ("id", "indonesian"), ("hi", "hindi"), ("fi", "finnish"), ("vi", "vietnamese"), ("he", "hebrew"), ("uk", "ukrainian"), ("el", "greek"), ("ms", "malay"), ("cs", "czech"), ("ro", "romanian"), ("da", "danish"), ("hu", "hungarian"), ("ta", "tamil"), ("no", "norwegian"), ("th", "thai"), ("ur", "urdu"), ("hr", "croatian"), ("bg", "bulgarian"), ("lt", "lithuanian"), ("la", "latin"), ("mi", "maori"), ("ml", "malayalam"), ("cy", "welsh"), ("sk", "slovak"), ("te", "telugu"), ("fa", "persian"), ("lv", "latvian"), ("bn", "bengali"), ("sr", "serbian"), ("az", "azerbaijani"), ("sl", "slovenian"), ("kn", "kannada"), ("et", "estonian"), ("mk", "macedonian"), ("br", "breton"), ("eu", "basque"), ("is", "icelandic"), ("hy", "armenian"), ("ne", "nepali"), ("mn", "mongolian"), ("bs", "bosnian"), ("kk", "kazakh"), ("sq", "albanian"), ("sw", "swahili"), ("gl", "galician"), ("mr", "marathi"), ("pa", "punjabi"), ("si", "sinhala"), ("km", "khmer"), ("sn", "shona"), ("yo", "yoruba"), ("so", "somali"), ("af", "afrikaans"), ("oc", "occitan"), ("ka", "georgian"), ("be", "belarusian"), ("tg", "tajik"), ("sd", "sindhi"), ("gu", "gujarati"), ("am", "amharic"), ("yi", "yiddish"), ("lo", "lao"), ("uz", "uzbek"), ("fo", "faroese"), ("ht", "haitian creole"), ("ps", "pashto"), ("tk", "turkmen"), ("nn", "nynorsk"), ("mt", "maltese"), ("sa", "sanskrit"), ("lb", "luxembourgish"), ("my", "myanmar"), ("bo", "tibetan"), ("tl", "tagalog"), ("mg", "malagasy"), ("as", "assamese"), ("tt", "tatar"), ("haw", "hawaiian"), ("ln", "lingala"), ("ha", "hausa"), ("ba", "bashkir"), ("jw", "javanese"), ("su", "sundanese"), ];
0
hf_public_repos/candle/candle-wasm-examples/whisper
hf_public_repos/candle/candle-wasm-examples/whisper/src/app.rs
use crate::console_log; use crate::worker::{ModelData, Segment, Worker, WorkerInput, WorkerOutput}; use js_sys::Date; use wasm_bindgen::prelude::*; use wasm_bindgen_futures::JsFuture; use yew::{html, Component, Context, Html}; use yew_agent::{Bridge, Bridged}; const SAMPLE_NAMES: [&str; 6] = [ "audios/samples_jfk.wav", "audios/samples_a13.wav", "audios/samples_gb0.wav", "audios/samples_gb1.wav", "audios/samples_hp0.wav", "audios/samples_mm0.wav", ]; async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> { use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response}; let window = web_sys::window().ok_or("window")?; let mut opts = RequestInit::new(); let opts = opts .method("GET") .mode(RequestMode::Cors) .cache(RequestCache::NoCache); let request = Request::new_with_str_and_init(url, opts)?; let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?; // `resp_value` is a `Response` object. assert!(resp_value.is_instance_of::<Response>()); let resp: Response = resp_value.dyn_into()?; let data = JsFuture::from(resp.blob()?).await?; let blob = web_sys::Blob::from(data); let array_buffer = JsFuture::from(blob.array_buffer()).await?; let data = js_sys::Uint8Array::new(&array_buffer).to_vec(); Ok(data) } pub enum Msg { Run(usize), UpdateStatus(String), SetDecoder(ModelData), WorkerIn(WorkerInput), WorkerOut(Result<WorkerOutput, String>), } pub struct CurrentDecode { start_time: Option<f64>, } pub struct App { status: String, loaded: bool, segments: Vec<Segment>, current_decode: Option<CurrentDecode>, worker: Box<dyn Bridge<Worker>>, } async fn model_data_load() -> Result<ModelData, JsValue> { let quantized = false; let is_multilingual = false; let (tokenizer, mel_filters, weights, config) = if quantized { console_log!("loading quantized weights"); let tokenizer = fetch_url("quantized/tokenizer-tiny-en.json").await?; let mel_filters = fetch_url("mel_filters.safetensors").await?; let weights = fetch_url("quantized/model-tiny-en-q80.gguf").await?; let config = fetch_url("quantized/config-tiny-en.json").await?; (tokenizer, mel_filters, weights, config) } else { console_log!("loading float weights"); if is_multilingual { let mel_filters = fetch_url("mel_filters.safetensors").await?; let tokenizer = fetch_url("whisper-tiny/tokenizer.json").await?; let weights = fetch_url("whisper-tiny/model.safetensors").await?; let config = fetch_url("whisper-tiny/config.json").await?; (tokenizer, mel_filters, weights, config) } else { let mel_filters = fetch_url("mel_filters.safetensors").await?; let tokenizer = fetch_url("whisper-tiny.en/tokenizer.json").await?; let weights = fetch_url("whisper-tiny.en/model.safetensors").await?; let config = fetch_url("whisper-tiny.en/config.json").await?; (tokenizer, mel_filters, weights, config) } }; let timestamps = true; let _task = Some("transcribe".to_string()); console_log!("{}", weights.len()); Ok(ModelData { tokenizer, mel_filters, weights, config, quantized, timestamps, task: None, is_multilingual, language: None, }) } fn performance_now() -> Option<f64> { let window = web_sys::window()?; let performance = window.performance()?; Some(performance.now() / 1000.) } impl Component for App { type Message = Msg; type Properties = (); fn create(ctx: &Context<Self>) -> Self { let status = "loading weights".to_string(); let cb = { let link = ctx.link().clone(); move |e| link.send_message(Self::Message::WorkerOut(e)) }; let worker = Worker::bridge(std::rc::Rc::new(cb)); Self { status, segments: vec![], current_decode: None, worker, loaded: false, } } fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) { if first_render { ctx.link().send_future(async { match model_data_load().await { Err(err) => { let status = format!("{err:?}"); Msg::UpdateStatus(status) } Ok(model_data) => Msg::SetDecoder(model_data), } }); } } fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool { match msg { Msg::SetDecoder(md) => { self.status = "weights loaded successfully!".to_string(); self.loaded = true; console_log!("loaded weights"); self.worker.send(WorkerInput::ModelData(md)); true } Msg::Run(sample_index) => { let sample = SAMPLE_NAMES[sample_index]; if self.current_decode.is_some() { self.status = "already decoding some sample at the moment".to_string() } else { let start_time = performance_now(); self.current_decode = Some(CurrentDecode { start_time }); self.status = format!("decoding {sample}"); self.segments.clear(); ctx.link().send_future(async move { match fetch_url(sample).await { Err(err) => { let output = Err(format!("decoding error: {err:?}")); // Mimic a worker output to so as to release current_decode Msg::WorkerOut(output) } Ok(wav_bytes) => Msg::WorkerIn(WorkerInput::DecodeTask { wav_bytes }), } }) } // true } Msg::WorkerOut(output) => { let dt = self.current_decode.as_ref().and_then(|current_decode| { current_decode.start_time.and_then(|start_time| { performance_now().map(|stop_time| stop_time - start_time) }) }); self.current_decode = None; match output { Ok(WorkerOutput::WeightsLoaded) => self.status = "weights loaded!".to_string(), Ok(WorkerOutput::Decoded(segments)) => { self.status = match dt { None => "decoding succeeded!".to_string(), Some(dt) => format!("decoding succeeded in {:.2}s", dt), }; self.segments = segments; } Err(err) => { self.status = format!("decoding error {err:?}"); } } true } Msg::WorkerIn(inp) => { self.worker.send(inp); true } Msg::UpdateStatus(status) => { self.status = status; true } } } fn view(&self, ctx: &Context<Self>) -> Html { html! { <div> <table> <thead> <tr> <th>{"Sample"}</th> <th></th> <th></th> </tr> </thead> <tbody> { SAMPLE_NAMES.iter().enumerate().map(|(i, name)| { html! { <tr> <th>{name}</th> <th><audio controls=true src={format!("./{name}")}></audio></th> { if self.loaded { html!(<th><button class="button" onclick={ctx.link().callback(move |_| Msg::Run(i))}> { "run" }</button></th>) }else{html!()} } </tr> } }).collect::<Html>() } </tbody> </table> <h2> {&self.status} </h2> { if !self.loaded{ html! { <progress id="progress-bar" aria-label="loading weights…"></progress> } } else if self.current_decode.is_some() { html! { <progress id="progress-bar" aria-label="decoding…"></progress> } } else { html!{ <blockquote> <p> { self.segments.iter().map(|segment| { html! { <> <i> { format!("{:.2}s-{:.2}s: (avg-logprob: {:.4}, no-speech-prob: {:.4})", segment.start, segment.start + segment.duration, segment.dr.avg_logprob, segment.dr.no_speech_prob, ) } </i> <br/ > {&segment.dr.text} <br/ > </> } }).collect::<Html>() } </p> </blockquote> } } } // Display the current date and time the page was rendered <p class="footer"> { "Rendered: " } { String::from(Date::new_0().to_string()) } </p> </div> } } }
0
hf_public_repos/candle/candle-wasm-examples/whisper
hf_public_repos/candle/candle-wasm-examples/whisper/src/worker.rs
use crate::languages::LANGUAGES; use anyhow::Error as E; use candle::{safetensors::Load, DType, Device, IndexOp, Tensor, D}; use candle_nn::{ops::softmax, VarBuilder}; pub use candle_transformers::models::whisper::{self as m, Config}; use rand::{distributions::Distribution, rngs::StdRng, SeedableRng}; use serde::{Deserialize, Serialize}; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; use yew_agent::{HandlerId, Public, WorkerLink}; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string())) } pub const DTYPE: DType = DType::F32; pub enum Model { Normal(m::model::Whisper), Quantized(m::quantized_model::Whisper), } // Maybe we should use some traits rather than doing the dispatch for all these. impl Model { pub fn config(&self) -> &Config { match self { Self::Normal(m) => &m.config, Self::Quantized(m) => &m.config, } } pub fn encoder_forward(&mut self, x: &Tensor, flush: bool) -> candle::Result<Tensor> { match self { Self::Normal(m) => m.encoder.forward(x, flush), Self::Quantized(m) => m.encoder.forward(x, flush), } } pub fn decoder_forward( &mut self, x: &Tensor, xa: &Tensor, flush: bool, ) -> candle::Result<Tensor> { match self { Self::Normal(m) => m.decoder.forward(x, xa, flush), Self::Quantized(m) => m.decoder.forward(x, xa, flush), } } pub fn decoder_final_linear(&self, x: &Tensor) -> candle::Result<Tensor> { match self { Self::Normal(m) => m.decoder.final_linear(x), Self::Quantized(m) => m.decoder.final_linear(x), } } } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct DecodingResult { pub tokens: Vec<u32>, pub text: String, pub avg_logprob: f64, pub no_speech_prob: f64, temperature: f64, compression_ratio: f64, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct Segment { pub start: f64, pub duration: f64, pub dr: DecodingResult, } pub struct Decoder { model: Model, rng: rand::rngs::StdRng, task: Option<Task>, language: Option<String>, is_multilingual: bool, mel_filters: Vec<f32>, timestamps: bool, tokenizer: Tokenizer, suppress_tokens: Tensor, sot_token: u32, transcribe_token: u32, translate_token: u32, eot_token: u32, no_speech_token: u32, no_timestamps_token: u32, } impl Decoder { #[allow(clippy::too_many_arguments)] fn new( model: Model, tokenizer: Tokenizer, mel_filters: Vec<f32>, device: &Device, task: Option<Task>, language: Option<String>, is_multilingual: bool, timestamps: bool, ) -> anyhow::Result<Self> { let suppress_tokens: Vec<f32> = (0..model.config().vocab_size as u32) .map(|i| { if model.config().suppress_tokens.contains(&i) { f32::NEG_INFINITY } else { 0f32 } }) .collect(); let no_timestamps_token = token_id(&tokenizer, m::NO_TIMESTAMPS_TOKEN)?; let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?; let sot_token = token_id(&tokenizer, m::SOT_TOKEN)?; let transcribe_token = token_id(&tokenizer, m::TRANSCRIBE_TOKEN)?; let translate_token = token_id(&tokenizer, m::TRANSLATE_TOKEN)?; let eot_token = token_id(&tokenizer, m::EOT_TOKEN)?; let no_speech_token = m::NO_SPEECH_TOKENS .iter() .find_map(|token| token_id(&tokenizer, token).ok()); let no_speech_token = match no_speech_token { None => anyhow::bail!("unable to find any non-speech token"), Some(n) => n, }; let seed = 299792458; Ok(Self { model, rng: StdRng::seed_from_u64(seed), tokenizer, mel_filters, task, timestamps, language, is_multilingual, suppress_tokens, sot_token, transcribe_token, translate_token, eot_token, no_speech_token, no_timestamps_token, }) } fn decode(&mut self, mel: &Tensor, t: f64) -> anyhow::Result<DecodingResult> { let model = &mut self.model; let language_token = match (self.is_multilingual, &self.language) { (true, None) => Some(detect_language(model, &self.tokenizer, mel)?), (false, None) => None, (true, Some(language)) => { match token_id(&self.tokenizer, &format!("<|{:?}|>", self.language)) { Ok(token_id) => Some(token_id), Err(_) => anyhow::bail!("language {language} is not supported"), } } (false, Some(_)) => { anyhow::bail!("a language cannot be set for non-multilingual models") } }; let audio_features = model.encoder_forward(mel, true)?; println!("audio features: {:?}", audio_features.dims()); let sample_len = model.config().max_target_positions / 2; let mut sum_logprob = 0f64; let mut no_speech_prob = f64::NAN; let mut tokens = vec![self.sot_token]; if let Some(language_token) = language_token { tokens.push(language_token); } match self.task { None | Some(Task::Transcribe) => tokens.push(self.transcribe_token), Some(Task::Translate) => tokens.push(self.translate_token), } if !self.timestamps { tokens.push(self.no_timestamps_token); } for i in 0..sample_len { let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?; // The model expects a batch dim but this inference loop does not handle // it so we add it at this point. let tokens_t = tokens_t.unsqueeze(0)?; let ys = model.decoder_forward(&tokens_t, &audio_features, i == 0)?; // Extract the no speech probability on the first iteration by looking at the first // token logits and the probability for the according token. if i == 0 { let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?; no_speech_prob = softmax(&logits, 0)? .i(self.no_speech_token as usize)? .to_scalar::<f32>()? as f64; } let (_, seq_len, _) = ys.dims3()?; let logits = model .decoder_final_linear(&ys.i((..1, seq_len - 1..))?)? .i(0)? .i(0)?; // TODO: Besides suppress tokens, we should apply the heuristics from // ApplyTimestampRules, i.e.: // - Timestamps come in pairs, except before EOT. // - Timestamps should be non-decreasing. // - If the sum of the probabilities of timestamps is higher than any other tokens, // only consider timestamps when sampling. // https://github.com/openai/whisper/blob/e8622f9afc4eba139bf796c210f5c01081000472/whisper/decoding.py#L439 let logits = logits.broadcast_add(&self.suppress_tokens)?; let next_token = if t > 0f64 { let prs = softmax(&(&logits / t)?, 0)?; let logits_v: Vec<f32> = prs.to_vec1()?; let distr = rand::distributions::WeightedIndex::new(&logits_v)?; distr.sample(&mut self.rng) as u32 } else { let logits_v: Vec<f32> = logits.to_vec1()?; logits_v .iter() .enumerate() .max_by(|(_, u), (_, v)| u.total_cmp(v)) .map(|(i, _)| i as u32) .unwrap() }; tokens.push(next_token); let prob = softmax(&logits, candle::D::Minus1)? .i(next_token as usize)? .to_scalar::<f32>()? as f64; if next_token == self.eot_token || tokens.len() > model.config().max_target_positions { break; } sum_logprob += prob.ln(); } let text = self.tokenizer.decode(&tokens, true).map_err(E::msg)?; let avg_logprob = sum_logprob / tokens.len() as f64; Ok(DecodingResult { tokens, text, avg_logprob, no_speech_prob, temperature: t, compression_ratio: f64::NAN, }) } fn decode_with_fallback(&mut self, segment: &Tensor) -> anyhow::Result<DecodingResult> { for (i, &t) in m::TEMPERATURES.iter().enumerate() { let dr: Result<DecodingResult, _> = self.decode(segment, t); if i == m::TEMPERATURES.len() - 1 { return dr; } // On errors, we try again with a different temperature. match dr { Ok(dr) => { let needs_fallback = dr.compression_ratio > m::COMPRESSION_RATIO_THRESHOLD || dr.avg_logprob < m::LOGPROB_THRESHOLD; if !needs_fallback || dr.no_speech_prob > m::NO_SPEECH_THRESHOLD { return Ok(dr); } } Err(err) => { console_log!("Error running at {t}: {err}") } } } unreachable!() } fn run(&mut self, mel: &Tensor) -> anyhow::Result<Vec<Segment>> { let (_, _, content_frames) = mel.dims3()?; let mut seek = 0; let mut segments = vec![]; while seek < content_frames { let time_offset = (seek * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64; let segment_size = usize::min(content_frames - seek, m::N_FRAMES); let mel_segment = mel.narrow(2, seek, segment_size)?; let segment_duration = (segment_size * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64; let dr = self.decode_with_fallback(&mel_segment)?; seek += segment_size; if dr.no_speech_prob > m::NO_SPEECH_THRESHOLD && dr.avg_logprob < m::LOGPROB_THRESHOLD { console_log!("no speech detected, skipping {seek} {dr:?}"); continue; } let segment = Segment { start: time_offset, duration: segment_duration, dr, }; console_log!("{seek}: {segment:?}"); segments.push(segment) } Ok(segments) } pub fn load(md: ModelData) -> anyhow::Result<Self> { let device = Device::Cpu; let tokenizer = Tokenizer::from_bytes(&md.tokenizer).map_err(E::msg)?; let mel_filters = safetensors::tensor::SafeTensors::deserialize(&md.mel_filters)?; let mel_filters = mel_filters.tensor("mel_80")?.load(&device)?; console_log!("loaded mel filters {:?}", mel_filters.shape()); let mel_filters = mel_filters.flatten_all()?.to_vec1::<f32>()?; let config: Config = serde_json::from_slice(&md.config)?; let model = if md.quantized { let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf_buffer( &md.weights, &device, )?; Model::Quantized(m::quantized_model::Whisper::load(&vb, config)?) } else { let vb = VarBuilder::from_buffered_safetensors(md.weights, m::DTYPE, &device)?; Model::Normal(m::model::Whisper::load(&vb, config)?) }; console_log!("done loading model"); let task = match md.task.as_deref() { Some("translate") => Some(Task::Translate), _ => Some(Task::Transcribe), }; let decoder = Self::new( model, tokenizer, mel_filters, &device, task, md.language, md.is_multilingual, md.timestamps, )?; Ok(decoder) } pub fn convert_and_run(&mut self, wav_input: &[u8]) -> anyhow::Result<Vec<Segment>> { let device = Device::Cpu; let mut wav_input = std::io::Cursor::new(wav_input); let (header, data) = wav::read(&mut wav_input)?; console_log!("loaded wav data: {header:?}"); if header.sampling_rate != m::SAMPLE_RATE as u32 { anyhow::bail!("wav file must have a {} sampling rate", m::SAMPLE_RATE); } let data = data.as_sixteen().expect("expected 16 bit wav file"); let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize] .iter() .map(|v| *v as f32 / 32768.) .collect(); console_log!("pcm data loaded {}", pcm_data.len()); let mel = crate::audio::pcm_to_mel(self.model.config(), &pcm_data, &self.mel_filters)?; let mel_len = mel.len(); let n_mels = self.model.config().num_mel_bins; let mel = Tensor::from_vec(mel, (1, n_mels, mel_len / n_mels), &device)?; console_log!("loaded mel: {:?}", mel.dims()); let segments = self.run(&mel)?; Ok(segments) } } /// Returns the token id for the selected language. pub fn detect_language(model: &mut Model, tokenizer: &Tokenizer, mel: &Tensor) -> Result<u32, E> { console_log!("detecting language"); let (_bsize, _, seq_len) = mel.dims3()?; let mel = mel.narrow( 2, 0, usize::min(seq_len, model.config().max_source_positions), )?; let device = mel.device(); let language_token_ids = LANGUAGES .iter() .map(|(t, _)| token_id(tokenizer, &format!("<|{t}|>"))) .map(|e| e.map_err(E::msg)) .collect::<Result<Vec<_>, E>>()?; let sot_token = token_id(tokenizer, m::SOT_TOKEN)?; let audio_features = model.encoder_forward(&mel, true)?; let tokens = Tensor::new(&[[sot_token]], device)?; let language_token_ids = Tensor::new(language_token_ids.as_slice(), device)?; let ys = model.decoder_forward(&tokens, &audio_features, true)?; let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?; let logits = logits.index_select(&language_token_ids, 0)?; let probs = candle_nn::ops::softmax(&logits, D::Minus1)?; let probs = probs.to_vec1::<f32>()?; let mut probs = LANGUAGES.iter().zip(probs.iter()).collect::<Vec<_>>(); probs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for ((_, language), p) in probs.iter().take(5) { println!("{language}: {p}") } let token = &format!("<|{}|>", probs[0].0 .0); let language = token_id(tokenizer, token)?; console_log!("detected language: {language} {token}"); Ok(language) } pub fn token_id(tokenizer: &Tokenizer, token: &str) -> candle::Result<u32> { match tokenizer.token_to_id(token) { None => candle::bail!("no token-id for {token}"), Some(id) => Ok(id), } } #[derive(Serialize, Deserialize, Clone, Copy, Debug)] pub enum Task { Transcribe, Translate, } // Communication to the worker happens through bincode, the model weights and configs are fetched // on the main thread and transferred via the following structure. #[derive(Serialize, Deserialize)] pub struct ModelData { pub weights: Vec<u8>, pub tokenizer: Vec<u8>, pub mel_filters: Vec<u8>, pub config: Vec<u8>, pub quantized: bool, pub timestamps: bool, pub is_multilingual: bool, pub language: Option<String>, pub task: Option<String>, } pub struct Worker { link: WorkerLink<Self>, decoder: Option<Decoder>, } #[derive(Serialize, Deserialize)] pub enum WorkerInput { ModelData(ModelData), DecodeTask { wav_bytes: Vec<u8> }, } #[derive(Serialize, Deserialize)] pub enum WorkerOutput { Decoded(Vec<Segment>), WeightsLoaded, } impl yew_agent::Worker for Worker { type Input = WorkerInput; type Message = (); type Output = Result<WorkerOutput, String>; type Reach = Public<Self>; fn create(link: WorkerLink<Self>) -> Self { Self { link, decoder: None, } } fn update(&mut self, _msg: Self::Message) { // no messaging } fn handle_input(&mut self, msg: Self::Input, id: HandlerId) { let output = match msg { WorkerInput::ModelData(md) => match Decoder::load(md) { Ok(decoder) => { self.decoder = Some(decoder); Ok(WorkerOutput::WeightsLoaded) } Err(err) => Err(format!("model creation error {err:?}")), }, WorkerInput::DecodeTask { wav_bytes } => match &mut self.decoder { None => Err("model has not been set".to_string()), Some(decoder) => decoder .convert_and_run(&wav_bytes) .map(WorkerOutput::Decoded) .map_err(|e| e.to_string()), }, }; self.link.respond(id, output); } fn name_of_resource() -> &'static str { "worker.js" } fn resource_path_is_relative() -> bool { true } }
0
hf_public_repos/candle/candle-wasm-examples/whisper
hf_public_repos/candle/candle-wasm-examples/whisper/src/audio.rs
// Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp use super::worker; pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} impl Float for f32 {} impl Float for f64 {} // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 fn fft<T: Float>(inp: &[T]) -> Vec<T> { let n = inp.len(); let zero = T::zero(); if n == 1 { return vec![inp[0], zero]; } if n % 2 == 1 { return dft(inp); } let mut out = vec![zero; n * 2]; let mut even = Vec::with_capacity(n / 2); let mut odd = Vec::with_capacity(n / 2); for (i, &inp) in inp.iter().enumerate() { if i % 2 == 0 { even.push(inp) } else { odd.push(inp); } } let even_fft = fft(&even); let odd_fft = fft(&odd); let two_pi = T::PI() + T::PI(); let n_t = T::from(n).unwrap(); for k in 0..n / 2 { let k_t = T::from(k).unwrap(); let theta = two_pi * k_t / n_t; let re = theta.cos(); let im = -theta.sin(); let re_odd = odd_fft[2 * k]; let im_odd = odd_fft[2 * k + 1]; out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd; out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd; out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd; out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd; } out } // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337 fn dft<T: Float>(inp: &[T]) -> Vec<T> { let zero = T::zero(); let n = inp.len(); let two_pi = T::PI() + T::PI(); let mut out = Vec::with_capacity(2 * n); let n_t = T::from(n).unwrap(); for k in 0..n { let k_t = T::from(k).unwrap(); let mut re = zero; let mut im = zero; for (j, &inp) in inp.iter().enumerate() { let j_t = T::from(j).unwrap(); let angle = two_pi * k_t * j_t / n_t; re += inp * angle.cos(); im -= inp * angle.sin(); } out.push(re); out.push(im); } out } #[allow(clippy::too_many_arguments)] // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414 fn log_mel_spectrogram_w<T: Float>( ith: usize, hann: &[T], samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, speed_up: bool, n_len: usize, n_mel: usize, n_threads: usize, ) -> Vec<T> { let n_fft = if speed_up { 1 + fft_size / 4 } else { 1 + fft_size / 2 }; let zero = T::zero(); let half = T::from(0.5).unwrap(); let mut fft_in = vec![zero; fft_size]; let mut mel = vec![zero; n_len * n_mel]; for i in (ith..n_len).step_by(n_threads) { let offset = i * fft_step; // apply Hanning window for j in 0..fft_size { fft_in[j] = if offset + j < samples.len() { hann[j] * samples[offset + j] } else { zero } } // FFT -> mag^2 let mut fft_out: Vec<T> = fft(&fft_in); for j in 0..fft_size { fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1]; } for j in 1..fft_size / 2 { let v = fft_out[fft_size - j]; fft_out[j] += v; } if speed_up { // scale down in the frequency domain results in a speed up in the time domain for j in 0..n_fft { fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]); } } // mel spectrogram for j in 0..n_mel { let mut sum = zero; for k in 0..n_fft { sum += fft_out[k] * filters[j * n_fft + k]; } mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10(); } } mel } fn log_mel_spectrogram_<T: Float + std::fmt::Display>( samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, n_mel: usize, speed_up: bool, ) -> Vec<T> { let zero = T::zero(); let two_pi = T::PI() + T::PI(); let half = T::from(0.5).unwrap(); let one = T::from(1.0).unwrap(); let four = T::from(4.0).unwrap(); let fft_size_t = T::from(fft_size).unwrap(); let hann: Vec<T> = (0..fft_size) .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos())) .collect(); let n_len = samples.len() / fft_step; // pad audio with at least one extra chunk of zeros let pad = 100 * worker::m::CHUNK_LENGTH / 2; let n_len = if n_len % pad != 0 { (n_len / pad + 1) * pad } else { n_len }; let n_len = n_len + pad; let samples = { let mut samples_padded = samples.to_vec(); let to_add = n_len * fft_step - samples.len(); samples_padded.extend(std::iter::repeat(zero).take(to_add)); samples_padded }; // Use a single thread for now. let mut mel = log_mel_spectrogram_w( 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1, ); let mmax = mel .iter() .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater)) .copied() .unwrap_or(zero) - T::from(8).unwrap(); for m in mel.iter_mut() { let v = T::max(*m, mmax); *m = v / four + one } mel } pub fn pcm_to_mel<T: Float + std::fmt::Display>( cfg: &worker::m::Config, samples: &[T], filters: &[T], ) -> anyhow::Result<Vec<T>> { let mel = log_mel_spectrogram_( samples, filters, worker::m::N_FFT, worker::m::HOP_LENGTH, cfg.num_mel_bins, false, ); Ok(mel) }
0
hf_public_repos/candle/candle-wasm-examples/whisper/src
hf_public_repos/candle/candle-wasm-examples/whisper/src/bin/app.rs
fn main() { wasm_logger::init(wasm_logger::Config::new(log::Level::Trace)); yew::Renderer::<candle_wasm_example_whisper::App>::new().render(); }
0
hf_public_repos/candle/candle-wasm-examples/whisper/src
hf_public_repos/candle/candle-wasm-examples/whisper/src/bin/m.rs
use candle_wasm_example_whisper::worker::{Decoder as D, ModelData}; use wasm_bindgen::prelude::*; #[wasm_bindgen] pub struct Decoder { decoder: D, } #[wasm_bindgen] impl Decoder { #[wasm_bindgen(constructor)] #[allow(clippy::too_many_arguments)] pub fn new( weights: Vec<u8>, tokenizer: Vec<u8>, mel_filters: Vec<u8>, config: Vec<u8>, quantized: bool, is_multilingual: bool, timestamps: bool, task: Option<String>, language: Option<String>, ) -> Result<Decoder, JsError> { let decoder = D::load(ModelData { tokenizer, mel_filters, config, quantized, weights, is_multilingual, timestamps, task, language, }); match decoder { Ok(decoder) => Ok(Self { decoder }), Err(e) => Err(JsError::new(&e.to_string())), } } #[wasm_bindgen] pub fn decode(&mut self, wav_input: Vec<u8>) -> Result<String, JsError> { let segments = self .decoder .convert_and_run(&wav_input) .map_err(|e| JsError::new(&e.to_string()))?; let json = serde_json::to_string(&segments)?; Ok(json) } } fn main() {}
0
hf_public_repos/candle/candle-wasm-examples/whisper/src
hf_public_repos/candle/candle-wasm-examples/whisper/src/bin/worker.rs
use yew_agent::PublicWorker; fn main() { candle_wasm_example_whisper::Worker::register(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/index.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle T5</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <style type="text/tailwindcss"> .link { @apply underline hover:text-blue-500 hover:no-underline; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> import { getModelInfo, MODELS, extractEmbeddings, generateText, } from "./utils.js"; const t5ModelEncoderWorker = new Worker("./T5ModelEncoderWorker.js", { type: "module", }); const t5ModelConditionalGeneration = new Worker( "./T5ModelConditionalGeneration.js", { type: "module" } ); const formEl = document.querySelector("#form"); const modelEl = document.querySelector("#model"); const promptEl = document.querySelector("#prompt"); const temperatureEl = document.querySelector("#temperature"); const toppEL = document.querySelector("#top-p"); const repeatPenaltyEl = document.querySelector("#repeat_penalty"); const seedEl = document.querySelector("#seed"); const outputEl = document.querySelector("#output-generation"); const tasksEl = document.querySelector("#tasks"); let selectedTaskID = ""; document.addEventListener("DOMContentLoaded", () => { for (const [id, model] of Object.entries(MODELS)) { const option = document.createElement("option"); option.value = id; option.innerText = `${id} (${model.size})`; modelEl.appendChild(option); } populateTasks(modelEl.value); modelEl.addEventListener("change", (e) => { populateTasks(e.target.value); }); tasksEl.addEventListener("change", (e) => { const task = e.target.value; const modelID = modelEl.value; promptEl.value = MODELS[modelID].tasks[task].prefix; selectedTaskID = task; }); }); function populateTasks(modelID) { const tasks = MODELS[modelID].tasks; tasksEl.innerHTML = ""; for (const [task, params] of Object.entries(tasks)) { const div = document.createElement("div"); div.innerHTML = ` <input type="radio" name="task" id="${task}" class="font-light cursor-pointer" value="${task}" /> <label for="${task}" class="cursor-pointer"> ${params.prefix} </label> `; tasksEl.appendChild(div); } selectedTaskID = Object.keys(tasks)[0]; tasksEl.querySelector(`#${selectedTaskID}`).checked = true; } form.addEventListener("submit", (e) => { e.preventDefault(); const promptText = promptEl.value; const modelID = modelEl.value; const { modelURL, configURL, tokenizerURL, maxLength } = getModelInfo( modelID, selectedTaskID ); const params = { temperature: Number(temperatureEl.value), top_p: Number(toppEL.value), repetition_penalty: Number(repeatPenaltyEl.value), seed: BigInt(seedEl.value), max_length: maxLength, }; generateText( t5ModelConditionalGeneration, modelURL, tokenizerURL, configURL, modelID, promptText, params, (status) => { if (status.status === "loading") { outputEl.innerText = "Loading model..."; } if (status.status === "decoding") { outputEl.innerText = "Generating..."; } } ).then(({ output }) => { outputEl.innerText = output.generation; }); }); </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle T5 Transformer</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> This demo showcase Text-To-Text Transfer Transformer (<a href="https://blog.research.google/2020/02/exploring-transfer-learning-with-t5.html" target="_blank" class="link" >T5</a >) models right in your browser, thanks to <a href="https://github.com/huggingface/candle/" target="_blank" class="link"> Candle </a> ML framework and rust/wasm. You can choose from a range of available models, including <a href="https://huggingface.co/t5-small" target="_blank" class="link"> t5-small</a >, <a href="https://huggingface.co/t5-base" target="_blank" class="link" >t5-base</a >, <a href="https://huggingface.co/google/flan-t5-small" target="_blank" class="link" >flan-t5-small</a >, several <a href="https://huggingface.co/lmz/candle-quantized-t5/tree/main" target="_blank" class="link"> t5 quantized gguf models</a >, and also a quantized <a href="https://huggingface.co/jbochi/candle-coedit-quantized/tree/main" target="_blank" class="link"> CoEdIT model for text rewrite</a >. </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light"></select> </div> <div> <h3 class="font-medium">Task Prefix:</h3> <form id="tasks" class="flex flex-col gap-1 my-2"></form> </div> <form id="form" class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center"> <input type="submit" hidden /> <input type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 resize-none outline-none" placeholder="Add prompt here, e.g. 'translate English to German: Today I'm going to eat Ice Cream'" value="translate English to German: Today I'm going to eat Ice Cream" /> <button class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed"> Run </button> </form> <div class="grid grid-cols-3 max-w-md items-center gap-3"> <label class="text-sm font-medium" for="temperature">Temperature</label> <input type="range" id="temperature" name="temperature" min="0" max="2" step="0.01" value="0.00" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 0.00</output > <label class="text-sm font-medium" for="top-p">Top-p</label> <input type="range" id="top-p" name="top-p" min="0" max="1" step="0.01" value="1.00" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 1.00</output > <label class="text-sm font-medium" for="repeat_penalty" >Repeat Penalty</label > <input type="range" id="repeat_penalty" name="repeat_penalty" min="1" max="2" step="0.01" value="1.10" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" >1.10</output > <label class="text-sm font-medium" for="seed">Seed</label> <input type="number" id="seed" name="seed" value="299792458" class="font-light border border-gray-700 text-right rounded-md p-2" /> <button id="run" onclick="document.querySelector('#seed').value = BigInt(Math.floor(Math.random() * 2**64-1))" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-1 w-[50px] rounded disabled:bg-gray-300 disabled:cursor-not-allowed text-sm"> Rand </button> </div> <div> <h3 class="font-medium">Generation:</h3> <div class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2 text-lg"> <p id="output-generation" class="grid-rows-2">No output yet</p> </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/utils.js
export async function extractEmbeddings( worker, weightsURL, tokenizerURL, configURL, modelID, sentences, updateStatus, normalize_embeddings = true ) { return new Promise((resolve, reject) => { worker.postMessage({ weightsURL, tokenizerURL, configURL, modelID, sentences, normalize_embeddings, }); function messageHandler(event) { if ("error" in event.data) { worker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { worker.removeEventListener("message", messageHandler); resolve(event.data); } if (updateStatus) updateStatus(event.data); } worker.addEventListener("message", messageHandler); }); } export async function generateText( worker, weightsURL, tokenizerURL, configURL, modelID, prompt, params, updateStatus ) { return new Promise((resolve, reject) => { worker.postMessage({ weightsURL, tokenizerURL, configURL, modelID, prompt, params, }); function messageHandler(event) { if ("error" in event.data) { worker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { worker.removeEventListener("message", messageHandler); resolve(event.data); } if (updateStatus) updateStatus(event.data); } worker.addEventListener("message", messageHandler); }); } export const MODELS = { t5_small_quantized: { size: "64.4 MB", base_url: "https://huggingface.co/lmz/candle-quantized-t5/resolve/main/", model: "model.gguf", tokenizer: "tokenizer.json", config: "config.json", tasks: { translation_en_to_de: { prefix: "translate English to German: ", max_length: 300, }, translation_en_to_fr: { prefix: "translate English to French: ", max_length: 300, }, translation_en_to_ro: { prefix: "translate English to Romanian: ", max_length: 300, }, summarization: { prefix: "summarize: ", max_length: 200 }, }, }, t5_small: { size: "242 MB", base_url: "https://huggingface.co/t5-small/resolve/main/", model: "model.safetensors", tokenizer: "tokenizer.json", config: "config.json", tasks: { translation_en_to_de: { prefix: "translate English to German: ", max_length: 300, }, translation_en_to_fr: { prefix: "translate English to French: ", max_length: 300, }, translation_en_to_ro: { prefix: "translate English to Romanian: ", max_length: 300, }, summarization: { prefix: "summarize: ", max_length: 200 }, }, }, flan_t5_small: { size: "308 MB", base_url: "https://huggingface.co/google/flan-t5-small/resolve/refs%2Fpr%2F14/", model: "model.safetensors", tokenizer: "tokenizer.json", config: "config.json", tasks: { translation_en_to_de: { prefix: "translate English to German: ", max_length: 300, }, translation_en_to_fr: { prefix: "translate English to French: ", max_length: 300, }, translation_en_to_ro: { prefix: "translate English to Romanian: ", max_length: 300, }, summarization: { prefix: "summarize: ", max_length: 200 }, }, }, flan_t5_base_quantized: { size: "263 MB", base_url: "https://huggingface.co/lmz/candle-quantized-t5/resolve/main/", model: "model-flan-t5-base.gguf", tokenizer: "tokenizer.json", config: "config-flan-t5-base.json", tasks: { translation_en_to_de: { prefix: "translate English to German: ", max_length: 300, }, translation_en_to_fr: { prefix: "translate English to French: ", max_length: 300, }, translation_en_to_ro: { prefix: "translate English to Romanian: ", max_length: 300, }, summarization: { prefix: "summarize: ", max_length: 200 }, }, }, coedit_large_quantized: { size: "643 MB", base_url: "https://huggingface.co/jbochi/candle-coedit-quantized/resolve/main/", model: "model.gguf", tokenizer: "tokenizer.json", config: "config.json", tasks: { fluency: { prefix: "Fix the grammar: ", max_length: 300, }, coherence: { prefix: "Rewrite to make this easier to understand: ", max_length: 300, }, simplification: { prefix: "translate English to Romanian: ", max_length: 300, }, simplification: { prefix: "Paraphrase this: ", max_length: 300, }, formalization: { prefix: "Write this more formally: ", max_length: 300, }, neutralize: { prefix: "Write in a more neutral way: ", max_length: 300, }, }, }, }; export function getModelInfo(id, taskID) { const model = MODELS[id]; return { modelURL: model.base_url + model.model, configURL: model.base_url + model.config, tokenizerURL: model.base_url + model.tokenizer, maxLength: model.tasks[taskID].max_length, }; }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/README.md
## Running T5 with Candle and WASM Here, we provide two examples of how to run Bert using a Candle-compiled WASM binary and runtime. ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { ModelConditionalGeneration, ModelEncoder } from "./build/m.js"; ``` For the quantized version, we need to import the quantized module: ```js import init, { ModelConditionalGeneration, ModelEncoder } from "./build/m-quantized.js"; ``` The full example can be found under `./index.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/index.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web wasm-bindgen ../../target/wasm32-unknown-unknown/release/m-quantized.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/T5ModelConditionalGeneration.js
//load Candle Bert Module wasm module let init, ModelConditionalGeneration; async function fetchArrayBuffer(url) { const cacheName = "t5-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class ConditionalGeneration { static instance = {}; static async getInstance(weightsURL, tokenizerURL, configURL, modelID) { if (modelID.includes("quantized")) { ({ default: init, ModelConditionalGeneration } = await import( "./build/m-quantized.js" )); } else { ({ default: init, ModelConditionalGeneration } = await import( "./build/m.js" )); } if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = await Promise.all([ fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), fetchArrayBuffer(configURL), ]); this.instance[modelID] = new ModelConditionalGeneration( weightsArrayU8, tokenizerArrayU8, configArrayU8 ); } else { self.postMessage({ status: "ready", message: "Model Already Loaded" }); } return this.instance[modelID]; } } self.addEventListener("message", async (event) => { const { weightsURL, tokenizerURL, configURL, modelID, prompt, params } = event.data; let { temperature = 0.0, seed = 299792458, repeat_penalty = 1.1, repeat_last_n = 64, top_p = 1, } = { ...params }; try { self.postMessage({ status: "ready", message: "Starting T5 Conditional Generation", }); const model = await ConditionalGeneration.getInstance( weightsURL, tokenizerURL, configURL, modelID ); self.postMessage({ status: "decoding", message: "Decoding Prompt", }); const output = model.decode({ prompt, temperature, seed, top_p, repeat_penalty, repeat_last_n, }); self.postMessage({ status: "complete", message: "complete", output: output, }); } catch (e) { self.postMessage({ error: e }); } });
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/T5ModelEncoderWorker.js
//load Candle Bert Module wasm module let init, ModelEncoder; async function fetchArrayBuffer(url) { const cacheName = "t5-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class Encoder { static instance = {}; static async getInstance(weightsURL, tokenizerURL, configURL, modelID) { if (modelID.includes("quantized")) { ({ default: init, ModelEncoder } = await import( "./build/m-quantized.js" )); } else { ({ default: init, ModelEncoder } = await import("./build/m.js")); } if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = await Promise.all([ fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), fetchArrayBuffer(configURL), ]); this.instance[modelID] = new ModelEncoder( weightsArrayU8, tokenizerArrayU8, configArrayU8 ); } else { self.postMessage({ status: "ready", message: "Model Already Loaded" }); } return this.instance[modelID]; } } self.addEventListener("message", async (event) => { const { weightsURL, tokenizerURL, configURL, modelID, sentences, normalize_embeddings, } = event.data; try { self.postMessage({ status: "ready", message: "Starting T5 Encoder" }); const model = await Encoder.getInstance( weightsURL, tokenizerURL, configURL, modelID ); self.postMessage({ status: "encoding", message: "Encoding Sentences", }); const output = model.decode({ sentences: sentences, normalize_embeddings: normalize_embeddings || true, }); self.postMessage({ status: "complete", message: "complete", output: output, }); } catch (e) { self.postMessage({ error: e }); } });
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/t5/Cargo.toml
[package] name = "candle-wasm-example-t5" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } num-traits = { workspace = true } tokenizers = { workspace = true, features = ["unstable_wasm"] } # App crates. anyhow = { workspace = true } byteorder = { workspace = true } log = { workspace = true } rand = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } safetensors = { workspace = true } # Wasm specific crates. console_error_panic_hook = "0.1.7" getrandom = { version = "0.2", features = ["js"] } gloo = "0.11" js-sys = "0.3.64" wasm-bindgen = "0.2.87" serde-wasm-bindgen = "0.6.0"
0
hf_public_repos/candle/candle-wasm-examples/t5
hf_public_repos/candle/candle-wasm-examples/t5/src/lib.rs
use wasm_bindgen::prelude::*; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::log(&format_args!($($t)*).to_string())) }
0
hf_public_repos/candle/candle-wasm-examples/t5/src
hf_public_repos/candle/candle-wasm-examples/t5/src/bin/m.rs
use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; pub use candle_transformers::models::t5::{Config, T5EncoderModel, T5ForConditionalGeneration}; use candle_wasm_example_t5::console_log; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; #[wasm_bindgen] pub struct ModelEncoder { model: T5EncoderModel, tokenizer: Tokenizer, } #[wasm_bindgen] pub struct ModelConditionalGeneration { model: T5ForConditionalGeneration, tokenizer: Tokenizer, config: Config, } #[wasm_bindgen] impl ModelConditionalGeneration { #[wasm_bindgen(constructor)] pub fn load( weights: Vec<u8>, tokenizer: Vec<u8>, config: Vec<u8>, ) -> Result<ModelConditionalGeneration, JsError> { console_error_panic_hook::set_once(); console_log!("loading model"); let device = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, device)?; let mut config: Config = serde_json::from_slice(&config)?; let tokenizer = Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?; let model = T5ForConditionalGeneration::load(vb, &config)?; config.use_cache = false; Ok(Self { model, tokenizer, config, }) } pub fn decode(&mut self, input: JsValue) -> Result<JsValue, JsError> { let input: ConditionalGenerationParams = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?; let device = &Device::Cpu; self.model.clear_kv_cache(); let mut output_token_ids = [self.config.pad_token_id as u32].to_vec(); let prompt = input.prompt; let repeat_penalty = input.repeat_penalty; let repeat_last_n = input.repeat_last_n; let seed = input.seed; let max_length = usize::clamp(input.max_length.unwrap_or(512), 0, 512); let temperature = if input.temperature <= 0. { None } else { Some(input.temperature) }; let top_p = if input.top_p <= 0. || input.top_p >= 1. { None } else { Some(input.top_p) }; let mut logits_processor = LogitsProcessor::new(seed, temperature, top_p); let tokens = self .tokenizer .encode(prompt, true) .map_err(|m| JsError::new(&m.to_string()))? .get_ids() .to_vec(); let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; let encoder_output = self.model.encode(&input_token_ids)?; let mut decoded = String::new(); for index in 0.. { if output_token_ids.len() > max_length { break; } let decoder_token_ids = if index == 0 { Tensor::new(output_token_ids.as_slice(), device)?.unsqueeze(0)? } else { let last_token = *output_token_ids.last().unwrap(); Tensor::new(&[last_token], device)?.unsqueeze(0)? }; let logits = self .model .decode(&decoder_token_ids, &encoder_output)? .squeeze(0)?; let logits = if repeat_penalty == 1. { logits } else { let start_at = output_token_ids.len().saturating_sub(repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, repeat_penalty, &output_token_ids[start_at..], )? }; let next_token_id = logits_processor.sample(&logits)?; if next_token_id as usize == self.config.eos_token_id { break; } output_token_ids.push(next_token_id); if let Some(text) = self.tokenizer.id_to_token(next_token_id) { let text = text.replace('▁', " ").replace("<0x0A>", "\n"); decoded += &text; } } Ok(serde_wasm_bindgen::to_value( &ConditionalGenerationOutput { generation: decoded, }, )?) } } #[wasm_bindgen] impl ModelEncoder { #[wasm_bindgen(constructor)] pub fn load( weights: Vec<u8>, tokenizer: Vec<u8>, config: Vec<u8>, ) -> Result<ModelEncoder, JsError> { console_error_panic_hook::set_once(); console_log!("loading model"); let device = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, device)?; let mut config: Config = serde_json::from_slice(&config)?; config.use_cache = false; let tokenizer = Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?; let model = T5EncoderModel::load(vb, &config)?; Ok(Self { model, tokenizer }) } pub fn decode(&mut self, input: JsValue) -> Result<JsValue, JsError> { let device = &Device::Cpu; let input: DecoderParams = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?; self.model.clear_kv_cache(); let sentences = input.sentences; let normalize_embeddings = input.normalize_embeddings; let n_sentences = sentences.len(); let mut all_embeddings = Vec::with_capacity(n_sentences); for sentence in sentences { let tokens = self .tokenizer .encode(sentence, true) .map_err(|m| JsError::new(&m.to_string()))? .get_ids() .to_vec(); let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; let embeddings = self.model.forward(&token_ids)?; console_log!("generated embeddings {:?}", embeddings.shape()); // Apply some avg-pooling by taking the mean embedding value for all tokens (including padding) let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?; let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?; let embeddings = if normalize_embeddings { embeddings.broadcast_div(&embeddings.sqr()?.sum_keepdim(1)?.sqrt()?)? } else { embeddings }; console_log!("{:?}", embeddings.shape()); all_embeddings.push(embeddings.squeeze(0)?.to_vec1::<f32>()?); } Ok(serde_wasm_bindgen::to_value(&DecoderOutput { embeddings: all_embeddings, })?) } } #[derive(serde::Serialize, serde::Deserialize)] struct ConditionalGenerationOutput { generation: String, } #[derive(serde::Serialize, serde::Deserialize)] struct DecoderOutput { embeddings: Vec<Vec<f32>>, } #[derive(serde::Serialize, serde::Deserialize)] pub struct DecoderParams { sentences: Vec<String>, normalize_embeddings: bool, } #[derive(serde::Serialize, serde::Deserialize)] pub struct ConditionalGenerationParams { prompt: String, temperature: f64, seed: u64, top_p: f64, repeat_penalty: f32, repeat_last_n: usize, max_length: Option<usize>, } fn main() { console_error_panic_hook::set_once(); }
0
hf_public_repos/candle/candle-wasm-examples/t5/src
hf_public_repos/candle/candle-wasm-examples/t5/src/bin/m-quantized.rs
use candle::{Device, Tensor}; use candle_transformers::generation::LogitsProcessor; pub use candle_transformers::models::quantized_t5::{ Config, T5EncoderModel, T5ForConditionalGeneration, VarBuilder, }; use candle_wasm_example_t5::console_log; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; const DEVICE: Device = Device::Cpu; #[wasm_bindgen] pub struct ModelEncoder { model: T5EncoderModel, tokenizer: Tokenizer, } #[wasm_bindgen] pub struct ModelConditionalGeneration { model: T5ForConditionalGeneration, tokenizer: Tokenizer, config: Config, } #[wasm_bindgen] impl ModelConditionalGeneration { #[wasm_bindgen(constructor)] pub fn load( weights: Vec<u8>, tokenizer: Vec<u8>, config: Vec<u8>, ) -> Result<ModelConditionalGeneration, JsError> { console_error_panic_hook::set_once(); console_log!("loading model"); let vb = VarBuilder::from_gguf_buffer(&weights, &DEVICE)?; let mut config: Config = serde_json::from_slice(&config)?; let tokenizer = Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?; let model = T5ForConditionalGeneration::load(vb, &config)?; config.use_cache = false; Ok(Self { model, tokenizer, config, }) } pub fn decode(&mut self, input: JsValue) -> Result<JsValue, JsError> { let input: ConditionalGenerationParams = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?; let device = &DEVICE; self.model.clear_kv_cache(); let mut output_token_ids = [self.config.pad_token_id as u32].to_vec(); let prompt = input.prompt; let repeat_penalty = input.repeat_penalty; let repeat_last_n = input.repeat_last_n; let seed = input.seed; let max_length = usize::clamp(input.max_length.unwrap_or(512), 0, 512); let temperature = if input.temperature <= 0. { None } else { Some(input.temperature) }; let top_p = if input.top_p <= 0. || input.top_p >= 1. { None } else { Some(input.top_p) }; let mut logits_processor = LogitsProcessor::new(seed, temperature, top_p); let tokens = self .tokenizer .encode(prompt, true) .map_err(|m| JsError::new(&m.to_string()))? .get_ids() .to_vec(); let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; let encoder_output = self.model.encode(&input_token_ids)?; let mut decoded = String::new(); for index in 0.. { if output_token_ids.len() > max_length { break; } let decoder_token_ids = if index == 0 { Tensor::new(output_token_ids.as_slice(), device)?.unsqueeze(0)? } else { let last_token = *output_token_ids.last().unwrap(); Tensor::new(&[last_token], device)?.unsqueeze(0)? }; let logits = self .model .decode(&decoder_token_ids, &encoder_output)? .squeeze(0)?; let logits = if repeat_penalty == 1. { logits } else { let start_at = output_token_ids.len().saturating_sub(repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, repeat_penalty, &output_token_ids[start_at..], )? }; let next_token_id = logits_processor.sample(&logits)?; if next_token_id as usize == self.config.eos_token_id { break; } output_token_ids.push(next_token_id); if let Some(text) = self.tokenizer.id_to_token(next_token_id) { let text = text.replace('▁', " ").replace("<0x0A>", "\n"); decoded += &text; } } Ok(serde_wasm_bindgen::to_value( &ConditionalGenerationOutput { generation: decoded, }, )?) } } #[wasm_bindgen] impl ModelEncoder { #[wasm_bindgen(constructor)] pub fn load( weights: Vec<u8>, tokenizer: Vec<u8>, config: Vec<u8>, ) -> Result<ModelEncoder, JsError> { console_error_panic_hook::set_once(); console_log!("loading model"); let vb = VarBuilder::from_gguf_buffer(&weights, &DEVICE)?; let mut config: Config = serde_json::from_slice(&config)?; config.use_cache = false; let tokenizer = Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?; let model = T5EncoderModel::load(vb, &config)?; Ok(Self { model, tokenizer }) } pub fn decode(&mut self, input: JsValue) -> Result<JsValue, JsError> { let device = &DEVICE; let input: DecoderParams = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?; self.model.clear_kv_cache(); let sentences = input.sentences; let normalize_embeddings = input.normalize_embeddings; let n_sentences = sentences.len(); let mut all_embeddings = Vec::with_capacity(n_sentences); for sentence in sentences { let tokens = self .tokenizer .encode(sentence, true) .map_err(|m| JsError::new(&m.to_string()))? .get_ids() .to_vec(); let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; let embeddings = self.model.forward(&token_ids)?; console_log!("generated embeddings {:?}", embeddings.shape()); // Apply some avg-pooling by taking the mean embedding value for all tokens (including padding) let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?; let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?; let embeddings = if normalize_embeddings { embeddings.broadcast_div(&embeddings.sqr()?.sum_keepdim(1)?.sqrt()?)? } else { embeddings }; console_log!("{:?}", embeddings.shape()); all_embeddings.push(embeddings.squeeze(0)?.to_vec1::<f32>()?); } Ok(serde_wasm_bindgen::to_value(&DecoderOutput { embeddings: all_embeddings, })?) } } #[derive(serde::Serialize, serde::Deserialize)] struct ConditionalGenerationOutput { generation: String, } #[derive(serde::Serialize, serde::Deserialize)] struct DecoderOutput { embeddings: Vec<Vec<f32>>, } #[derive(serde::Serialize, serde::Deserialize)] pub struct DecoderParams { sentences: Vec<String>, normalize_embeddings: bool, } #[derive(serde::Serialize, serde::Deserialize)] pub struct ConditionalGenerationParams { prompt: String, temperature: f64, seed: u64, top_p: f64, repeat_penalty: f32, repeat_last_n: usize, max_length: Option<usize>, } fn main() { console_error_panic_hook::set_once(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/bert/bertWorker.js
//load Candle Bert Module wasm module import init, { Model } from "./build/m.js"; async function fetchArrayBuffer(url) { const cacheName = "bert-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class Bert { static instance = {}; static async getInstance(weightsURL, tokenizerURL, configURL, modelID) { if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8, mel_filtersArrayU8] = await Promise.all([ fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), fetchArrayBuffer(configURL), ]); this.instance[modelID] = new Model( weightsArrayU8, tokenizerArrayU8, mel_filtersArrayU8 ); } else { self.postMessage({ status: "ready", message: "Model Already Loaded" }); } return this.instance[modelID]; } } self.addEventListener("message", async (event) => { const { weightsURL, tokenizerURL, configURL, modelID, sentences, normalize = true, } = event.data; try { self.postMessage({ status: "ready", message: "Starting Bert Model" }); const model = await Bert.getInstance( weightsURL, tokenizerURL, configURL, modelID ); self.postMessage({ status: "embedding", message: "Calculating Embeddings", }); const output = model.get_embeddings({ sentences: sentences, normalize_embeddings: normalize, }); self.postMessage({ status: "complete", message: "complete", output: output.data, }); } catch (e) { self.postMessage({ error: e }); } });
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/bert/utils.js
export async function getEmbeddings( worker, weightsURL, tokenizerURL, configURL, modelID, sentences, updateStatus = null ) { return new Promise((resolve, reject) => { worker.postMessage({ weightsURL, tokenizerURL, configURL, modelID, sentences, }); function messageHandler(event) { if ("error" in event.data) { worker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { worker.removeEventListener("message", messageHandler); resolve(event.data); } if (updateStatus) updateStatus(event.data); } worker.addEventListener("message", messageHandler); }); } const MODELS = { intfloat_e5_small_v2: { base_url: "https://huggingface.co/intfloat/e5-small-v2/resolve/main/", search_prefix: "query: ", document_prefix: "passage: ", }, intfloat_e5_base_v2: { base_url: "https://huggingface.co/intfloat/e5-base-v2/resolve/main/", search_prefix: "query: ", document_prefix: "passage:", }, intfloat_multilingual_e5_small: { base_url: "https://huggingface.co/intfloat/multilingual-e5-small/resolve/main/", search_prefix: "query: ", document_prefix: "passage: ", }, sentence_transformers_all_MiniLM_L6_v2: { base_url: "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/refs%2Fpr%2F21/", search_prefix: "", document_prefix: "", }, sentence_transformers_all_MiniLM_L12_v2: { base_url: "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/refs%2Fpr%2F4/", search_prefix: "", document_prefix: "", }, }; export function getModelInfo(id) { return { modelURL: MODELS[id].base_url + "model.safetensors", configURL: MODELS[id].base_url + "config.json", tokenizerURL: MODELS[id].base_url + "tokenizer.json", search_prefix: MODELS[id].search_prefix, document_prefix: MODELS[id].document_prefix, }; } export function cosineSimilarity(vec1, vec2) { const dot = vec1.reduce((acc, val, i) => acc + val * vec2[i], 0); const a = Math.sqrt(vec1.reduce((acc, val) => acc + val * val, 0)); const b = Math.sqrt(vec2.reduce((acc, val) => acc + val * val, 0)); return dot / (a * b); } export async function getWikiText(article) { // thanks to wikipedia for the API const URL = `https://en.wikipedia.org/w/api.php?action=query&prop=extracts&exlimit=1&titles=${article}&explaintext=1&exsectionformat=plain&format=json&origin=*`; return fetch(URL, { method: "GET", headers: { Accept: "application/json", }, }) .then((r) => r.json()) .then((data) => { const pages = data.query.pages; const pageId = Object.keys(pages)[0]; const extract = pages[pageId].extract; if (extract === undefined || extract === "") { throw new Error("No article found"); } return extract; }) .catch((error) => console.error("Error:", error)); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/bert/README.md
## Running BERT with Candle and WASM Here, we provide two examples of how to run Bert using a Candle-compiled WASM binary and runtime. ### Vanilla JS and WebWorkers To build and test the UI made in Vanilla JS and WebWorkers, first we need to build the WASM library: ```bash sh build-lib.sh ``` This will bundle the library under `./build` and we can import it inside our WebWorker like a normal JS module: ```js import init, { Model } from "./build/m.js"; ``` The full example can be found under `./lib-example.html`. All needed assets are fetched from the web, so no need to download anything. Finally, you can preview the example by running a local HTTP server. For example: ```bash python -m http.server ``` Then open `http://localhost:8000/lib-example.html` in your browser.
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/bert/build-lib.sh
cargo build --target wasm32-unknown-unknown --release wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/bert/Cargo.toml
[package] name = "candle-wasm-example-bert" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true [dependencies] candle = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } num-traits = { workspace = true } tokenizers = { workspace = true, features = ["unstable_wasm"] } # App crates. anyhow = { workspace = true } byteorder = { workspace = true } log = { workspace = true } rand = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } safetensors = { workspace = true } # Wasm specific crates. console_error_panic_hook = "0.1.7" getrandom = { version = "0.2", features = ["js"] } gloo = "0.11" js-sys = "0.3.64" wasm-bindgen = "0.2.87" serde-wasm-bindgen = "0.6.0"
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/bert/lib-example.html
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Bert</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module" src="./code.js"></script> <script type="module"> import { hcl } from "https://cdn.skypack.dev/d3-color@3"; import { interpolateReds } from "https://cdn.skypack.dev/d3-scale-chromatic@3"; import { scaleLinear } from "https://cdn.skypack.dev/d3-scale@4"; import { getModelInfo, getEmbeddings, getWikiText, cosineSimilarity, } from "./utils.js"; const bertWorker = new Worker("./bertWorker.js", { type: "module", }); const inputContainerEL = document.querySelector("#input-container"); const textAreaEl = document.querySelector("#input-area"); const outputAreaEl = document.querySelector("#output-area"); const formEl = document.querySelector("#form"); const searchInputEl = document.querySelector("#search-input"); const formWikiEl = document.querySelector("#form-wiki"); const searchWikiEl = document.querySelector("#search-wiki"); const outputStatusEl = document.querySelector("#output-status"); const modelSelectEl = document.querySelector("#model"); const sentencesRegex = /(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z]\.)(?<=\.|\?)\s/gm; let sentenceEmbeddings = []; let currInputText = ""; let isCalculating = false; function toggleTextArea(state) { if (state) { textAreaEl.hidden = false; textAreaEl.focus(); } else { textAreaEl.hidden = true; } } inputContainerEL.addEventListener("focus", (e) => { toggleTextArea(true); }); textAreaEl.addEventListener("blur", (e) => { toggleTextArea(false); }); textAreaEl.addEventListener("focusout", (e) => { toggleTextArea(false); if (currInputText === textAreaEl.value || isCalculating) return; populateOutputArea(textAreaEl.value); calculateEmbeddings(textAreaEl.value); }); modelSelectEl.addEventListener("change", (e) => { if (currInputText === "" || isCalculating) return; populateOutputArea(textAreaEl.value); calculateEmbeddings(textAreaEl.value); }); function populateOutputArea(text) { currInputText = text; const sentences = text.split(sentencesRegex); outputAreaEl.innerHTML = ""; for (const [id, sentence] of sentences.entries()) { const sentenceEl = document.createElement("span"); sentenceEl.id = `sentence-${id}`; sentenceEl.innerText = sentence + " "; outputAreaEl.appendChild(sentenceEl); } } formEl.addEventListener("submit", async (e) => { e.preventDefault(); if (isCalculating || currInputText === "") return; toggleInputs(true); const modelID = modelSelectEl.value; const { modelURL, tokenizerURL, configURL, search_prefix } = getModelInfo(modelID); const text = searchInputEl.value; const query = search_prefix + searchInputEl.value; outputStatusEl.classList.remove("invisible"); outputStatusEl.innerText = "Calculating embeddings for query..."; isCalculating = true; const out = await getEmbeddings( bertWorker, modelURL, tokenizerURL, configURL, modelID, [query] ); outputStatusEl.classList.add("invisible"); const queryEmbeddings = out.output[0]; // calculate cosine similarity with all sentences given the query const distances = sentenceEmbeddings .map((embedding, id) => ({ id, similarity: cosineSimilarity(queryEmbeddings, embedding), })) .sort((a, b) => b.similarity - a.similarity) // getting top 10 most similar sentences .slice(0, 10); const colorScale = scaleLinear() .domain([ distances[distances.length - 1].similarity, distances[0].similarity, ]) .range([0, 1]) .interpolate(() => interpolateReds); outputAreaEl.querySelectorAll("span").forEach((el) => { el.style.color = "unset"; el.style.backgroundColor = "unset"; }); distances.forEach((d) => { const el = outputAreaEl.querySelector(`#sentence-${d.id}`); const color = colorScale(d.similarity); const fontColor = hcl(color).l < 70 ? "white" : "black"; el.style.color = fontColor; el.style.backgroundColor = color; }); outputAreaEl .querySelector(`#sentence-${distances[0].id}`) .scrollIntoView({ behavior: "smooth", block: "center", inline: "nearest", }); isCalculating = false; toggleInputs(false); }); async function calculateEmbeddings(text) { isCalculating = true; toggleInputs(true); const modelID = modelSelectEl.value; const { modelURL, tokenizerURL, configURL, document_prefix } = getModelInfo(modelID); const sentences = text.split(sentencesRegex); const allEmbeddings = []; outputStatusEl.classList.remove("invisible"); for (const [id, sentence] of sentences.entries()) { const query = document_prefix + sentence; outputStatusEl.innerText = `Calculating embeddings: sentence ${ id + 1 } of ${sentences.length}`; const embeddings = await getEmbeddings( bertWorker, modelURL, tokenizerURL, configURL, modelID, [query], updateStatus ); allEmbeddings.push(embeddings); } outputStatusEl.classList.add("invisible"); sentenceEmbeddings = allEmbeddings.map((e) => e.output[0]); isCalculating = false; toggleInputs(false); } function updateStatus(data) { if ("status" in data) { if (data.status === "loading") { outputStatusEl.innerText = data.message; outputStatusEl.classList.remove("invisible"); } } } function toggleInputs(state) { const interactive = document.querySelectorAll(".interactive"); interactive.forEach((el) => { if (state) { el.disabled = true; } else { el.disabled = false; } }); } searchWikiEl.addEventListener("input", () => { searchWikiEl.setCustomValidity(""); }); formWikiEl.addEventListener("submit", async (e) => { e.preventDefault(); if ("example" in e.submitter.dataset) { searchWikiEl.value = e.submitter.innerText; } const text = searchWikiEl.value; if (isCalculating || text === "") return; try { const wikiText = await getWikiText(text); searchWikiEl.setCustomValidity(""); textAreaEl.innerHTML = wikiText; populateOutputArea(wikiText); calculateEmbeddings(wikiText); searchWikiEl.value = ""; } catch { searchWikiEl.setCustomValidity("Invalid Wikipedia article name"); searchWikiEl.reportValidity(); } }); </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-5 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle BERT</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> Running sentence embeddings and similarity search in the browser using the Bert Model written with <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> and compiled to Wasm. Embeddings models from are from <a href="https://huggingface.co/sentence-transformers/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" > Sentence Transformers </a> and <a href="https://huggingface.co/intfloat/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" > Liang Wang - e5 Models </a> </p> </div> <div> <label for="model" class="font-medium block">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light interactive disabled:cursor-not-allowed w-full max-w-max" > <option value="intfloat_e5_small_v2" selected> intfloat/e5-small-v2 (133 MB) </option> <option value="intfloat_e5_base_v2"> intfloat/e5-base-v2 (438 MB) </option> <option value="intfloat_multilingual_e5_small"> intfloat/multilingual-e5-small (471 MB) </option> <option value="sentence_transformers_all_MiniLM_L6_v2"> sentence-transformers/all-MiniLM-L6-v2 (90.9 MB) </option> <option value="sentence_transformers_all_MiniLM_L12_v2"> sentence-transformers/all-MiniLM-L12-v2 (133 MB) </option> </select> </div> <div> <h3 class="font-medium">Examples:</h3> <form id="form-wiki" class="flex text-xs rounded-md justify-between w-min gap-3" > <input type="submit" hidden /> <button data-example class="disabled:cursor-not-allowed interactive"> Pizza </button> <button data-example class="disabled:cursor-not-allowed interactive"> Paris </button> <button data-example class="disabled:cursor-not-allowed interactive"> Physics </button> <input type="text" id="search-wiki" title="Search Wikipedia article by title" class="font-light py-0 mx-1 resize-none outline-none w-32 disabled:cursor-not-allowed interactive" placeholder="Load Wikipedia article..." /> <button title="Search Wikipedia article and load into input" class="bg-gray-700 hover:bg-gray-800 text-white font-normal px-2 py-1 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive" > Load </button> </form> </div> <form id="form" class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center" > <input type="submit" hidden /> <input type="text" id="search-input" class="font-light w-full px-3 py-2 mx-1 resize-none outline-none interactive disabled:cursor-not-allowed" placeholder="Search query here..." /> <button class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive" > Search </button> </form> <div> <h3 class="font-medium">Input text:</h3> <div class="flex justify-between items-center"> <div class="rounded-md inline text-xs"> <span id="output-status" class="m-auto font-light invisible" >C</span > </div> </div> <div id="input-container" tabindex="0" class="min-h-[250px] bg-slate-100 text-gray-500 rounded-md p-4 flex flex-col gap-2 relative" > <textarea id="input-area" hidden value="" placeholder="Input text to perform semantic similarity search..." class="flex-1 resize-none outline-none left-0 right-0 top-0 bottom-0 m-4 absolute interactive disabled:invisible" ></textarea> <p id="output-area" class="grid-rows-2"> Input text to perform semantic similarity search... </p> </div> </div> </main> </body> </html>
0
hf_public_repos/candle/candle-wasm-examples/bert
hf_public_repos/candle/candle-wasm-examples/bert/src/lib.rs
use candle_transformers::models::bert; use wasm_bindgen::prelude::*; pub use bert::{BertModel, Config, DTYPE}; pub use tokenizers::{PaddingParams, Tokenizer}; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::log(&format_args!($($t)*).to_string())) }
0
hf_public_repos/candle/candle-wasm-examples/bert/src
hf_public_repos/candle/candle-wasm-examples/bert/src/bin/m.rs
use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; use candle_transformers::models::bert::{BertModel, Config}; use candle_wasm_example_bert::console_log; use tokenizers::{PaddingParams, Tokenizer}; use wasm_bindgen::prelude::*; #[wasm_bindgen] pub struct Model { bert: BertModel, tokenizer: Tokenizer, } #[wasm_bindgen] impl Model { #[wasm_bindgen(constructor)] pub fn load(weights: Vec<u8>, tokenizer: Vec<u8>, config: Vec<u8>) -> Result<Model, JsError> { console_error_panic_hook::set_once(); console_log!("loading model"); let device = &Device::Cpu; let vb = VarBuilder::from_buffered_safetensors(weights, DType::F64, device)?; let config: Config = serde_json::from_slice(&config)?; let tokenizer = Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?; let bert = BertModel::load(vb, &config)?; Ok(Self { bert, tokenizer }) } pub fn get_embeddings(&mut self, input: JsValue) -> Result<JsValue, JsError> { let input: Params = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?; let sentences = input.sentences; let normalize_embeddings = input.normalize_embeddings; let device = &Device::Cpu; if let Some(pp) = self.tokenizer.get_padding_mut() { pp.strategy = tokenizers::PaddingStrategy::BatchLongest } else { let pp = PaddingParams { strategy: tokenizers::PaddingStrategy::BatchLongest, ..Default::default() }; self.tokenizer.with_padding(Some(pp)); } let tokens = self .tokenizer .encode_batch(sentences.to_vec(), true) .map_err(|m| JsError::new(&m.to_string()))?; let token_ids: Vec<Tensor> = tokens .iter() .map(|tokens| { let tokens = tokens.get_ids().to_vec(); Tensor::new(tokens.as_slice(), device) }) .collect::<Result<Vec<_>, _>>()?; let token_ids = Tensor::stack(&token_ids, 0)?; let token_type_ids = token_ids.zeros_like()?; console_log!("running inference on batch {:?}", token_ids.shape()); let embeddings = self.bert.forward(&token_ids, &token_type_ids)?; console_log!("generated embeddings {:?}", embeddings.shape()); // Apply some avg-pooling by taking the mean embedding value for all tokens (including padding) let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?; let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?; let embeddings = if normalize_embeddings { embeddings.broadcast_div(&embeddings.sqr()?.sum_keepdim(1)?.sqrt()?)? } else { embeddings }; let embeddings_data = embeddings.to_vec2()?; Ok(serde_wasm_bindgen::to_value(&Embeddings { data: embeddings_data, })?) } } #[derive(serde::Serialize, serde::Deserialize)] struct Embeddings { data: Vec<Vec<f64>>, } #[derive(serde::Serialize, serde::Deserialize)] pub struct Params { sentences: Vec<String>, normalize_embeddings: bool, } fn main() { console_error_panic_hook::set_once(); }
0
hf_public_repos/candle/candle-wasm-examples
hf_public_repos/candle/candle-wasm-examples/blip/index.html
<!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <title>Candle Blip Image Captioning Demo</title> <script src="https://cdn.tailwindcss.com"></script> <script type="module" src="./code.js"></script> <script type="module"> const MODELS = { blip_image_quantized_q4k: { base_url: "https://huggingface.co/lmz/candle-blip/resolve/main/", model: "blip-image-captioning-large-q4k.gguf", config: "config.json", tokenizer: "tokenizer.json", quantized: true, size: "271 MB", }, blip_image_quantized_q80: { base_url: "https://huggingface.co/lmz/candle-blip/resolve/main/", model: "blip-image-captioning-large-q80.gguf", config: "config.json", tokenizer: "tokenizer.json", quantized: true, size: "505 MB", }, blip_image_large: { base_url: "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/refs%2Fpr%2F18/", model: "model.safetensors", config: "config.json", tokenizer: "tokenizer.json", quantized: false, size: "1.88 GB", }, }; const blipWorker = new Worker("./blipWorker.js", { type: "module", }); const outputStatusEl = document.querySelector("#output-status"); const outputCaptionEl = document.querySelector("#output-caption"); const modelSelectEl = document.querySelector("#model"); const clearBtn = document.querySelector("#clear-btn"); const fileUpload = document.querySelector("#file-upload"); const dropArea = document.querySelector("#drop-area"); const imagesExamples = document.querySelector("#image-select"); const canvas = document.querySelector("#canvas"); const ctxCanvas = canvas.getContext("2d"); let isCaptioning = false; let currentImageURL = null; clearBtn.addEventListener("click", () => { clearImageCanvas(); }); modelSelectEl.addEventListener("change", () => { if (currentImageURL) { runInference(currentImageURL); } }); //add event listener to file input fileUpload.addEventListener("input", async (e) => { const target = e.target; if (target.files.length > 0) { const href = URL.createObjectURL(target.files[0]); clearImageCanvas(); await drawImageCanvas(href); runInference(href); } }); // add event listener to drop-area dropArea.addEventListener("dragenter", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("dragleave", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); }); dropArea.addEventListener("dragover", (e) => { e.preventDefault(); }); dropArea.addEventListener("drop", async (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); const url = e.dataTransfer.getData("text/uri-list"); const files = e.dataTransfer.files; if (files.length > 0) { const href = URL.createObjectURL(files[0]); clearImageCanvas(); await drawImageCanvas(href); runInference(href); } else if (url) { clearImageCanvas(); await drawImageCanvas(url); runInference(url); } }); imagesExamples.addEventListener("click", async (e) => { if (isCaptioning) { return; } const target = e.target; if (target.nodeName === "IMG") { const href = target.src; clearImageCanvas(); await drawImageCanvas(href); runInference(href); } }); function clearImageCanvas() { ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); isCaptioning = false; clearBtn.disabled = true; canvas.parentElement.style.height = "auto"; outputStatusEl.hidden = false; outputCaptionEl.hidden = true; outputStatusEl.innerText = "Please select an image"; currentImageURL = null; } async function drawImageCanvas(imgURL) { if (!imgURL) { throw new Error("No image URL provided"); } return new Promise((resolve, reject) => { ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { canvas.width = img.width; canvas.height = img.height; ctxCanvas.drawImage(img, 0, 0); canvas.parentElement.style.height = canvas.offsetHeight + "px"; clearBtn.disabled = false; resolve(img); }; img.src = imgURL; currentImageURL = imgURL; }); } document.addEventListener("DOMContentLoaded", () => { for (const [id, model] of Object.entries(MODELS)) { const option = document.createElement("option"); option.value = id; option.innerText = `${id} (${model.size})`; modelSelectEl.appendChild(option); } }); async function getImageCaption( worker, weightsURL, tokenizerURL, configURL, modelID, imageURL, quantized, updateStatus = null ) { return new Promise((resolve, reject) => { worker.postMessage({ weightsURL, tokenizerURL, configURL, modelID, imageURL, quantized, }); function messageHandler(event) { if ("error" in event.data) { worker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { worker.removeEventListener("message", messageHandler); resolve(event.data); } if (updateStatus) updateStatus(event.data); } worker.addEventListener("message", messageHandler); }); } function updateStatus(data) { if (data.status === "status") { outputStatusEl.innerText = data.message; } } async function runInference(imageURL) { if (isCaptioning || !imageURL) { alert("Please select an image first"); return; } outputStatusEl.hidden = false; outputCaptionEl.hidden = true; clearBtn.disabled = true; modelSelectEl.disabled = true; isCaptioning = true; const selectedModel = modelSelectEl.value; const model = MODELS[selectedModel]; const weightsURL = `${model.base_url}${model.model}`; const tokenizerURL = `${model.base_url}${model.tokenizer}`; const configURL = `${model.base_url}${model.config}`; const quantized = model.quantized; try { const time = performance.now(); const caption = await getImageCaption( blipWorker, weightsURL, tokenizerURL, configURL, selectedModel, imageURL, quantized, updateStatus ); outputStatusEl.hidden = true; outputCaptionEl.hidden = false; const totalTime = ((performance.now() - time)/1000).toFixed(2); outputCaptionEl.innerHTML = `${ caption.output }<br/><span class="text-xs">Inference time: ${totalTime} s</span>`; } catch (err) { console.error(err); outputStatusEl.hidden = false; outputCaptionEl.hidden = true; outputStatusEl.innerText = err.message; } clearBtn.disabled = false; modelSelectEl.disabled = false; isCaptioning = false; } </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-5 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle BLIP Image Captioning</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> <a href="https://huggingface.co/Salesforce/blip-image-captioning-large" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >BLIP Image Captioning </a> running in the browser using <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle</a >, a minimalist ML framework for Rust. </p> <p class="text-xs max-w-lg py-2"> <b>Note:</b> The image captioning on the smallest model takes about ~50 seconds, it will vary depending on your machine and model size. </p> </div> <div> <label for="model" class="font-medium block">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light interactive disabled:cursor-not-allowed w-full max-w-max" ></select> </div> <!-- drag and drop area --> <div class="grid gap-4 sm:grid-cols-2 py-4"> <div class="relative max-w-lg"> <div class="absolute w-full bottom-full flex justify-between items-center" > <div class="flex gap-2 w-full"> <button id="clear-btn" disabled title="Clear Image" class="ml-auto text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center" > <svg class="" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 13 12" height="1em" > <path d="M1.6.7 12 11.1M12 .7 1.6 11.1" stroke="#2E3036" stroke-width="2" /> </svg> </button> </div> </div> <div id="drop-area" class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative aspect-video w-full overflow-hidden" > <div class="flex flex-col items-center justify-center space-y-1 text-center" > <svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg" > <path d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" fill="#000" /> </svg> <div class="flex text-sm text-gray-600"> <label for="file-upload" class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700" > <span>Drag and drop y our image here</span> <span class="block text-xs">or</span> <span class="block text-xs">Click to upload</span> </label> </div> <input id="file-upload" name="file-upload" type="file" class="sr-only" /> </div> <canvas id="canvas" class="absolute pointer-events-none w-full" ></canvas> </div> </div> <div class=""> <div class="h-full bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2" > <p id="output-caption" class="m-auto text-xl text-center p-2" hidden ></p> <span id="output-status" class="m-auto font-light"> Please select an image </span> </div> </div> </div> <div> <div class="flex gap-3 items-center overflow-x-scroll" id="image-select" > <h3 class="font-medium">Examples:</h3> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg" class="cursor-pointer w-24 h-24 object-cover" /> </div> </div> </main> </body> </html>
0