code
stringlengths
5
1.03M
repo_name
stringlengths
5
90
path
stringlengths
4
158
license
stringclasses
15 values
size
int64
5
1.03M
n_ast_errors
int64
0
53.9k
ast_max_depth
int64
2
4.17k
n_whitespaces
int64
0
365k
n_ast_nodes
int64
3
317k
n_ast_terminals
int64
1
171k
n_ast_nonterminals
int64
1
146k
loc
int64
-1
37.3k
cycloplexity
int64
-1
1.31k
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="zh-CN"> <title>Support for the Open API Specification | ZAP Extension</title> <maps> <homeID>top</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
veggiespam/zap-extensions
addOns/openapi/src/main/javahelp/org/zaproxy/zap/extension/openapi/resources/help_zh_CN/helpset_zh_CN.hs
apache-2.0
1,000
80
66
164
423
214
209
-1
-1
{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Module : Distribution.Client.IndexUtils -- Copyright : (c) Duncan Coutts 2008 -- License : BSD-like -- -- Maintainer : [email protected] -- Stability : provisional -- Portability : portable -- -- Extra utils related to the package indexes. ----------------------------------------------------------------------------- module Distribution.Client.IndexUtils ( getIndexFileAge, getInstalledPackages, getSourcePackages, getSourcePackagesStrict, convert, readPackageIndexFile, parsePackageIndex, readRepoIndex, updateRepoIndexCache, updatePackageIndexCacheFile, BuildTreeRefType(..), refTypeFromTypeCode, typeCodeFromRefType ) where import qualified Distribution.Client.Tar as Tar import Distribution.Client.Types import Distribution.Package ( PackageId, PackageIdentifier(..), PackageName(..) , Package(..), packageVersion, packageName , Dependency(Dependency), InstalledPackageId(..) ) import Distribution.Client.PackageIndex (PackageIndex) import qualified Distribution.Client.PackageIndex as PackageIndex import Distribution.Simple.PackageIndex (InstalledPackageIndex) import qualified Distribution.Simple.PackageIndex as InstalledPackageIndex import qualified Distribution.InstalledPackageInfo as InstalledPackageInfo import qualified Distribution.PackageDescription.Parse as PackageDesc.Parse import Distribution.PackageDescription ( GenericPackageDescription ) import Distribution.PackageDescription.Parse ( parsePackageDescription ) import Distribution.Simple.Compiler ( Compiler, PackageDBStack ) import Distribution.Simple.Program ( ProgramConfiguration ) import qualified Distribution.Simple.Configure as Configure ( getInstalledPackages ) import Distribution.ParseUtils ( ParseResult(..) ) import Distribution.Version ( Version(Version), intersectVersionRanges ) import Distribution.Text ( display, simpleParse ) import Distribution.Verbosity ( Verbosity, normal, lessVerbose ) import Distribution.Simple.Utils ( die, warn, info, fromUTF8 ) import Data.Char (isAlphaNum) import Data.Maybe (mapMaybe, fromMaybe) import Data.List (isPrefixOf) #if !MIN_VERSION_base(4,8,0) import Data.Monoid (Monoid(..)) #endif import qualified Data.Map as Map import Control.Monad (MonadPlus(mplus), when, liftM) import Control.Exception (evaluate) import qualified Data.ByteString.Lazy as BS import qualified Data.ByteString.Lazy.Char8 as BS.Char8 import qualified Data.ByteString.Char8 as BSS import Data.ByteString.Lazy (ByteString) import Distribution.Client.GZipUtils (maybeDecompress) import Distribution.Client.Utils ( byteStringToFilePath , tryFindAddSourcePackageDesc ) import Distribution.Compat.Exception (catchIO) import Distribution.Client.Compat.Time (getFileAge, getModTime) import System.Directory (doesFileExist) import System.FilePath ((</>), takeExtension, splitDirectories, normalise) import System.FilePath.Posix as FilePath.Posix ( takeFileName ) import System.IO import System.IO.Unsafe (unsafeInterleaveIO) import System.IO.Error (isDoesNotExistError) import Numeric (showFFloat) getInstalledPackages :: Verbosity -> Compiler -> PackageDBStack -> ProgramConfiguration -> IO InstalledPackageIndex getInstalledPackages verbosity comp packageDbs conf = Configure.getInstalledPackages verbosity' comp packageDbs conf where --FIXME: make getInstalledPackages use sensible verbosity in the first place verbosity' = lessVerbose verbosity convert :: InstalledPackageIndex -> PackageIndex InstalledPackage convert index' = PackageIndex.fromList -- There can be multiple installed instances of each package version, -- like when the same package is installed in the global & user DBs. -- InstalledPackageIndex.allPackagesBySourcePackageId gives us the -- installed packages with the most preferred instances first, so by -- picking the first we should get the user one. This is almost but not -- quite the same as what ghc does. [ InstalledPackage ipkg (sourceDeps index' ipkg) | (_,ipkg:_) <- InstalledPackageIndex.allPackagesBySourcePackageId index' ] where -- The InstalledPackageInfo only lists dependencies by the -- InstalledPackageId, which means we do not directly know the corresponding -- source dependency. The only way to find out is to lookup the -- InstalledPackageId to get the InstalledPackageInfo and look at its -- source PackageId. But if the package is broken because it depends on -- other packages that do not exist then we have a problem we cannot find -- the original source package id. Instead we make up a bogus package id. -- This should have the same effect since it should be a dependency on a -- nonexistent package. sourceDeps index ipkg = [ maybe (brokenPackageId depid) packageId mdep | let depids = InstalledPackageInfo.depends ipkg getpkg = InstalledPackageIndex.lookupInstalledPackageId index , (depid, mdep) <- zip depids (map getpkg depids) ] brokenPackageId (InstalledPackageId str) = PackageIdentifier (PackageName (str ++ "-broken")) (Version [] []) ------------------------------------------------------------------------ -- Reading the source package index -- -- | Read a repository index from disk, from the local files specified by -- a list of 'Repo's. -- -- All the 'SourcePackage's are marked as having come from the appropriate -- 'Repo'. -- -- This is a higher level wrapper used internally in cabal-install. -- getSourcePackages :: Verbosity -> [Repo] -> IO SourcePackageDb getSourcePackages verbosity repos = getSourcePackages' verbosity repos ReadPackageIndexLazyIO -- | Like 'getSourcePackages', but reads the package index strictly. Useful if -- you want to write to the package index after having read it. getSourcePackagesStrict :: Verbosity -> [Repo] -> IO SourcePackageDb getSourcePackagesStrict verbosity repos = getSourcePackages' verbosity repos ReadPackageIndexStrict -- | Common implementation used by getSourcePackages and -- getSourcePackagesStrict. getSourcePackages' :: Verbosity -> [Repo] -> ReadPackageIndexMode -> IO SourcePackageDb getSourcePackages' verbosity [] _mode = do warn verbosity $ "No remote package servers have been specified. Usually " ++ "you would have one specified in the config file." return SourcePackageDb { packageIndex = mempty, packagePreferences = mempty } getSourcePackages' verbosity repos mode = do info verbosity "Reading available packages..." pkgss <- mapM (\r -> readRepoIndex verbosity r mode) repos let (pkgs, prefs) = mconcat pkgss prefs' = Map.fromListWith intersectVersionRanges [ (name, range) | Dependency name range <- prefs ] _ <- evaluate pkgs _ <- evaluate prefs' return SourcePackageDb { packageIndex = pkgs, packagePreferences = prefs' } -- | Read a repository index from disk, from the local file specified by -- the 'Repo'. -- -- All the 'SourcePackage's are marked as having come from the given 'Repo'. -- -- This is a higher level wrapper used internally in cabal-install. -- readRepoIndex :: Verbosity -> Repo -> ReadPackageIndexMode -> IO (PackageIndex SourcePackage, [Dependency]) readRepoIndex verbosity repo mode = let indexFile = repoLocalDir repo </> "00-index.tar" cacheFile = repoLocalDir repo </> "00-index.cache" in handleNotFound $ do warnIfIndexIsOld =<< getIndexFileAge repo whenCacheOutOfDate indexFile cacheFile $ do updatePackageIndexCacheFile verbosity indexFile cacheFile readPackageIndexCacheFile mkAvailablePackage indexFile cacheFile mode where mkAvailablePackage pkgEntry = SourcePackage { packageInfoId = pkgid, packageDescription = packageDesc pkgEntry, packageSource = case pkgEntry of NormalPackage _ _ _ _ -> RepoTarballPackage repo pkgid Nothing BuildTreeRef _ _ _ path _ -> LocalUnpackedPackage path, packageDescrOverride = case pkgEntry of NormalPackage _ _ pkgtxt _ -> Just pkgtxt _ -> Nothing } where pkgid = packageId pkgEntry handleNotFound action = catchIO action $ \e -> if isDoesNotExistError e then do case repoKind repo of Left remoteRepo -> warn verbosity $ "The package list for '" ++ remoteRepoName remoteRepo ++ "' does not exist. Run 'cabal update' to download it." Right _localRepo -> warn verbosity $ "The package list for the local repo '" ++ repoLocalDir repo ++ "' is missing. The repo is invalid." return mempty else ioError e isOldThreshold = 15 --days warnIfIndexIsOld dt = do when (dt >= isOldThreshold) $ case repoKind repo of Left remoteRepo -> warn verbosity $ "The package list for '" ++ remoteRepoName remoteRepo ++ "' is " ++ showFFloat (Just 1) dt " days old.\nRun " ++ "'cabal update' to get the latest list of available packages." Right _localRepo -> return () -- | Return the age of the index file in days (as a Double). getIndexFileAge :: Repo -> IO Double getIndexFileAge repo = getFileAge $ repoLocalDir repo </> "00-index.tar" -- | It is not necessary to call this, as the cache will be updated when the -- index is read normally. However you can do the work earlier if you like. -- updateRepoIndexCache :: Verbosity -> Repo -> IO () updateRepoIndexCache verbosity repo = whenCacheOutOfDate indexFile cacheFile $ do updatePackageIndexCacheFile verbosity indexFile cacheFile where indexFile = repoLocalDir repo </> "00-index.tar" cacheFile = repoLocalDir repo </> "00-index.cache" whenCacheOutOfDate :: FilePath -> FilePath -> IO () -> IO () whenCacheOutOfDate origFile cacheFile action = do exists <- doesFileExist cacheFile if not exists then action else do origTime <- getModTime origFile cacheTime <- getModTime cacheFile when (origTime > cacheTime) action ------------------------------------------------------------------------ -- Reading the index file -- -- | An index entry is either a normal package, or a local build tree reference. data PackageEntry = NormalPackage PackageId GenericPackageDescription ByteString BlockNo | BuildTreeRef BuildTreeRefType PackageId GenericPackageDescription FilePath BlockNo -- | A build tree reference is either a link or a snapshot. data BuildTreeRefType = SnapshotRef | LinkRef deriving Eq refTypeFromTypeCode :: Tar.TypeCode -> BuildTreeRefType refTypeFromTypeCode t | t == Tar.buildTreeRefTypeCode = LinkRef | t == Tar.buildTreeSnapshotTypeCode = SnapshotRef | otherwise = error "Distribution.Client.IndexUtils.refTypeFromTypeCode: unknown type code" typeCodeFromRefType :: BuildTreeRefType -> Tar.TypeCode typeCodeFromRefType LinkRef = Tar.buildTreeRefTypeCode typeCodeFromRefType SnapshotRef = Tar.buildTreeSnapshotTypeCode type MkPackageEntry = IO PackageEntry instance Package PackageEntry where packageId (NormalPackage pkgid _ _ _) = pkgid packageId (BuildTreeRef _ pkgid _ _ _) = pkgid packageDesc :: PackageEntry -> GenericPackageDescription packageDesc (NormalPackage _ descr _ _) = descr packageDesc (BuildTreeRef _ _ descr _ _) = descr -- | Read a compressed \"00-index.tar.gz\" file into a 'PackageIndex'. -- -- This is supposed to be an \"all in one\" way to easily get at the info in -- the Hackage package index. -- -- It takes a function to map a 'GenericPackageDescription' into any more -- specific instance of 'Package' that you might want to use. In the simple -- case you can just use @\_ p -> p@ here. -- readPackageIndexFile :: Package pkg => (PackageEntry -> pkg) -> FilePath -> IO (PackageIndex pkg, [Dependency]) readPackageIndexFile mkPkg indexFile = do (mkPkgs, prefs) <- either fail return . parsePackageIndex . maybeDecompress =<< BS.readFile indexFile pkgEntries <- sequence mkPkgs pkgs <- evaluate $ PackageIndex.fromList (map mkPkg pkgEntries) return (pkgs, prefs) -- | Parse an uncompressed \"00-index.tar\" repository index file represented -- as a 'ByteString'. -- parsePackageIndex :: ByteString -> Either String ([MkPackageEntry], [Dependency]) parsePackageIndex = accum 0 [] [] . Tar.read where accum blockNo pkgs prefs es = case es of Tar.Fail err -> Left err Tar.Done -> Right (reverse pkgs, reverse prefs) Tar.Next e es' -> accum blockNo' pkgs' prefs' es' where (pkgs', prefs') = extract blockNo pkgs prefs e blockNo' = blockNo + Tar.entrySizeInBlocks e extract blockNo pkgs prefs entry = fromMaybe (pkgs, prefs) $ tryExtractPkg `mplus` tryExtractPrefs where tryExtractPkg = do mkPkgEntry <- extractPkg entry blockNo return (mkPkgEntry:pkgs, prefs) tryExtractPrefs = do prefs' <- extractPrefs entry return (pkgs, prefs'++prefs) extractPkg :: Tar.Entry -> BlockNo -> Maybe MkPackageEntry extractPkg entry blockNo = case Tar.entryContent entry of Tar.NormalFile content _ | takeExtension fileName == ".cabal" -> case splitDirectories (normalise fileName) of [pkgname,vers,_] -> case simpleParse vers of Just ver -> Just $ return (NormalPackage pkgid descr content blockNo) where pkgid = PackageIdentifier (PackageName pkgname) ver parsed = parsePackageDescription . fromUTF8 . BS.Char8.unpack $ content descr = case parsed of ParseOk _ d -> d _ -> error $ "Couldn't read cabal file " ++ show fileName _ -> Nothing _ -> Nothing Tar.OtherEntryType typeCode content _ | Tar.isBuildTreeRefTypeCode typeCode -> Just $ do let path = byteStringToFilePath content err = "Error reading package index." cabalFile <- tryFindAddSourcePackageDesc path err descr <- PackageDesc.Parse.readPackageDescription normal cabalFile return $ BuildTreeRef (refTypeFromTypeCode typeCode) (packageId descr) descr path blockNo _ -> Nothing where fileName = Tar.entryPath entry extractPrefs :: Tar.Entry -> Maybe [Dependency] extractPrefs entry = case Tar.entryContent entry of Tar.NormalFile content _ | takeFileName (Tar.entryPath entry) == "preferred-versions" -> Just . parsePreferredVersions . BS.Char8.unpack $ content _ -> Nothing parsePreferredVersions :: String -> [Dependency] parsePreferredVersions = mapMaybe simpleParse . filter (not . isPrefixOf "--") . lines ------------------------------------------------------------------------ -- Reading and updating the index cache -- updatePackageIndexCacheFile :: Verbosity -> FilePath -> FilePath -> IO () updatePackageIndexCacheFile verbosity indexFile cacheFile = do info verbosity "Updating the index cache file..." (mkPkgs, prefs) <- either fail return . parsePackageIndex . maybeDecompress =<< BS.readFile indexFile pkgEntries <- sequence mkPkgs let cache = mkCache pkgEntries prefs writeFile cacheFile (showIndexCache cache) where mkCache pkgs prefs = [ CachePreference pref | pref <- prefs ] ++ [ CachePackageId pkgid blockNo | (NormalPackage pkgid _ _ blockNo) <- pkgs ] ++ [ CacheBuildTreeRef refType blockNo | (BuildTreeRef refType _ _ _ blockNo) <- pkgs] data ReadPackageIndexMode = ReadPackageIndexStrict | ReadPackageIndexLazyIO readPackageIndexCacheFile :: Package pkg => (PackageEntry -> pkg) -> FilePath -> FilePath -> ReadPackageIndexMode -> IO (PackageIndex pkg, [Dependency]) readPackageIndexCacheFile mkPkg indexFile cacheFile mode = do cache <- liftM readIndexCache (BSS.readFile cacheFile) myWithFile indexFile ReadMode $ \indexHnd -> packageIndexFromCache mkPkg indexHnd cache mode where myWithFile f m act = case mode of ReadPackageIndexStrict -> withFile f m act ReadPackageIndexLazyIO -> do indexHnd <- openFile f m act indexHnd packageIndexFromCache :: Package pkg => (PackageEntry -> pkg) -> Handle -> [IndexCacheEntry] -> ReadPackageIndexMode -> IO (PackageIndex pkg, [Dependency]) packageIndexFromCache mkPkg hnd entrs mode = accum mempty [] entrs where accum srcpkgs prefs [] = do -- Have to reverse entries, since in a tar file, later entries mask -- earlier ones, and PackageIndex.fromList does the same, but we -- accumulate the list of entries in reverse order, so need to reverse. pkgIndex <- evaluate $ PackageIndex.fromList (reverse srcpkgs) return (pkgIndex, prefs) accum srcpkgs prefs (CachePackageId pkgid blockno : entries) = do -- Given the cache entry, make a package index entry. -- The magic here is that we use lazy IO to read the .cabal file -- from the index tarball if it turns out that we need it. -- Most of the time we only need the package id. ~(pkg, pkgtxt) <- unsafeInterleaveIO $ do pkgtxt <- getEntryContent blockno pkg <- readPackageDescription pkgtxt return (pkg, pkgtxt) let srcpkg = case mode of ReadPackageIndexLazyIO -> mkPkg (NormalPackage pkgid pkg pkgtxt blockno) ReadPackageIndexStrict -> pkg `seq` pkgtxt `seq` mkPkg (NormalPackage pkgid pkg pkgtxt blockno) accum (srcpkg:srcpkgs) prefs entries accum srcpkgs prefs (CacheBuildTreeRef refType blockno : entries) = do -- We have to read the .cabal file eagerly here because we can't cache the -- package id for build tree references - the user might edit the .cabal -- file after the reference was added to the index. path <- liftM byteStringToFilePath . getEntryContent $ blockno pkg <- do let err = "Error reading package index from cache." file <- tryFindAddSourcePackageDesc path err PackageDesc.Parse.readPackageDescription normal file let srcpkg = mkPkg (BuildTreeRef refType (packageId pkg) pkg path blockno) accum (srcpkg:srcpkgs) prefs entries accum srcpkgs prefs (CachePreference pref : entries) = accum srcpkgs (pref:prefs) entries getEntryContent :: BlockNo -> IO ByteString getEntryContent blockno = do hSeek hnd AbsoluteSeek (fromIntegral (blockno * 512)) header <- BS.hGet hnd 512 size <- getEntrySize header BS.hGet hnd (fromIntegral size) getEntrySize :: ByteString -> IO Tar.FileSize getEntrySize header = case Tar.read header of Tar.Next e _ -> case Tar.entryContent e of Tar.NormalFile _ size -> return size Tar.OtherEntryType typecode _ size | Tar.isBuildTreeRefTypeCode typecode -> return size _ -> interror "unexpected tar entry type" _ -> interror "could not read tar file entry" readPackageDescription :: ByteString -> IO GenericPackageDescription readPackageDescription content = case parsePackageDescription . fromUTF8 . BS.Char8.unpack $ content of ParseOk _ d -> return d _ -> interror "failed to parse .cabal file" interror msg = die $ "internal error when reading package index: " ++ msg ++ "The package index or index cache is probably " ++ "corrupt. Running cabal update might fix it." ------------------------------------------------------------------------ -- Index cache data structure -- -- | Tar files are block structured with 512 byte blocks. Every header and file -- content starts on a block boundary. -- type BlockNo = Int data IndexCacheEntry = CachePackageId PackageId BlockNo | CacheBuildTreeRef BuildTreeRefType BlockNo | CachePreference Dependency deriving (Eq) packageKey, blocknoKey, buildTreeRefKey, preferredVersionKey :: String packageKey = "pkg:" blocknoKey = "b#" buildTreeRefKey = "build-tree-ref:" preferredVersionKey = "pref-ver:" readIndexCacheEntry :: BSS.ByteString -> Maybe IndexCacheEntry readIndexCacheEntry = \line -> case BSS.words line of [key, pkgnamestr, pkgverstr, sep, blocknostr] | key == BSS.pack packageKey && sep == BSS.pack blocknoKey -> case (parseName pkgnamestr, parseVer pkgverstr [], parseBlockNo blocknostr) of (Just pkgname, Just pkgver, Just blockno) -> Just (CachePackageId (PackageIdentifier pkgname pkgver) blockno) _ -> Nothing [key, typecodestr, blocknostr] | key == BSS.pack buildTreeRefKey -> case (parseRefType typecodestr, parseBlockNo blocknostr) of (Just refType, Just blockno) -> Just (CacheBuildTreeRef refType blockno) _ -> Nothing (key: remainder) | key == BSS.pack preferredVersionKey -> fmap CachePreference (simpleParse (BSS.unpack (BSS.unwords remainder))) _ -> Nothing where parseName str | BSS.all (\c -> isAlphaNum c || c == '-') str = Just (PackageName (BSS.unpack str)) | otherwise = Nothing parseVer str vs = case BSS.readInt str of Nothing -> Nothing Just (v, str') -> case BSS.uncons str' of Just ('.', str'') -> parseVer str'' (v:vs) Just _ -> Nothing Nothing -> Just (Version (reverse (v:vs)) []) parseBlockNo str = case BSS.readInt str of Just (blockno, remainder) | BSS.null remainder -> Just blockno _ -> Nothing parseRefType str = case BSS.uncons str of Just (typeCode, remainder) | BSS.null remainder && Tar.isBuildTreeRefTypeCode typeCode -> Just (refTypeFromTypeCode typeCode) _ -> Nothing showIndexCacheEntry :: IndexCacheEntry -> String showIndexCacheEntry entry = unwords $ case entry of CachePackageId pkgid b -> [ packageKey , display (packageName pkgid) , display (packageVersion pkgid) , blocknoKey , show b ] CacheBuildTreeRef t b -> [ buildTreeRefKey , [typeCodeFromRefType t] , show b ] CachePreference dep -> [ preferredVersionKey , display dep ] readIndexCache :: BSS.ByteString -> [IndexCacheEntry] readIndexCache = mapMaybe readIndexCacheEntry . BSS.lines showIndexCache :: [IndexCacheEntry] -> String showIndexCache = unlines . map showIndexCacheEntry
DavidAlphaFox/ghc
libraries/Cabal/cabal-install/Distribution/Client/IndexUtils.hs
bsd-3-clause
24,027
0
21
6,309
4,908
2,547
2,361
412
11
-- {-# OPTIONS_GHC -Wno-redundant-constraints -Wno-simplifiable-class-constraints #-} {-# LANGUAGE UndecidableInstances, MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances #-} module T3108 where -- Direct recursion terminates (typechecking-wise) class C0 x where m0 :: x -> () m0 = const undefined instance {-# OVERLAPPING #-} (C0 x, C0 y) => C0 (x,y) instance {-# OVERLAPPING #-} C0 Bool instance {-# OVERLAPPABLE #-} C0 (x,Bool) => C0 x foo :: () foo = m0 (1::Int) -- Indirect recursion does not terminate (typechecking-wise) class C1 x where m1 :: x -> () m1 = const undefined instance {-# OVERLAPPING #-} (C1 x, C1 y) => C1 (x,y) instance {-# OVERLAPPING #-} C1 Bool instance {-# OVERLAPPABLE #-} (C2 x y, C1 (y,Bool)) => C1 x -- Weird test case: (C1 (y,Bool)) is simplifiable class C2 x y | x -> y instance C2 Int Int -- It is this declaration that causes nontermination of typechecking. bar :: () bar = m1 (1::Int)
rahulmutt/ghcvm
tests/suite/typecheck/compile/T3108.hs
bsd-3-clause
965
0
8
183
258
141
117
-1
-1
{-# LANGUAGE TemplateHaskell,DeriveDataTypeable,BangPatterns #-} module Main where import Remote import Remote.Process (roundtripResponse,setRemoteNodeLogConfig,getConfig,PayloadDisposition(..),roundtripQuery,roundtripQueryMulti) import KMeansCommon import Control.Exception (try,SomeException,evaluate) import Control.Monad (liftM) import Control.Monad.Trans (liftIO) import System.Random (randomR,getStdRandom) import Data.Typeable (Typeable) import Data.Data (Data) import Control.Exception (IOException) import Data.Binary (Binary,get,put,encode,decode) import Data.Maybe (fromJust) import Data.List (minimumBy,sortBy) import Data.Time import Data.Either (rights) import qualified Data.ByteString.Lazy as B import qualified Data.Map as Map import System.IO import Debug.Trace split :: Int -> [a] -> [[a]] split numChunks l = splitSize (ceiling $ fromIntegral (length l) / fromIntegral numChunks) l where splitSize i v = let (first,second) = splitAt i v in first : splitSize i second broadcast :: (Serializable a) => [ProcessId] -> a -> ProcessM () broadcast pids dat = mapM_ (\pid -> send pid dat) pids multiSpawn :: [NodeId] -> Closure (ProcessM ()) -> ProcessM [ProcessId] multiSpawn nodes f = mapM (\node -> spawnLink node f) nodes where s n = do mypid <- getSelfNode setRemoteNodeLogConfig n (LogConfig LoTrivial (LtForward mypid) LfAll) spawnLink n f mapperProcess :: ProcessM () mapperProcess = let mapProcess :: (Maybe [Vector],Maybe [ProcessId],Map.Map Int (Int,Vector)) -> ProcessM () mapProcess (mvecs,mreducers,mresult) = receiveWait [ match (\vec -> do vecs<-liftIO $ readf vec say $ "Mapper read data file" return (Just vecs,mreducers,mresult)), match (\reducers -> return (mvecs,Just reducers,mresult)), roundtripResponse (\() -> return (mresult,(mvecs,mreducers,mresult))), roundtripResponse (\clusters -> let tbl = analyze (fromJust mvecs) clustersandcenters Map.empty clustersandcenters = map (\x -> (x,clusterCenter x)) clusters reducers = fromJust mreducers target clust = reducers !! (clust `mod` length reducers) sendout (clustid,(count,sum)) = send (target clustid) Cluster {clId = clustid,clCount=count, clSum=sum} in do say $ "calculating: "++show (length reducers)++" reducers" mapM_ sendout (Map.toList tbl) return ((),(mvecs,mreducers,tbl))), matchUnknownThrow ] >>= mapProcess getit :: Handle -> IO [Vector] getit h = do l <- liftM lines $ hGetContents h return (map read l) -- evaluate or return? readf fn = do h <- openFile fn ReadMode getit h condtrace cond s val = if cond then trace s val else val analyze :: [Vector] -> [(Cluster,Vector)] -> Map.Map Int (Int,Vector) -> Map.Map Int (Int,Vector) analyze [] _ ht = ht analyze (v:vectors) clusters ht = let theclust = assignToCluster clusters v newh = ht `seq` theclust `seq` Map.insertWith' (\(a,v1) (b,v2) -> let av = addVector v1 v2 in av `seq` (a+b,av) ) theclust (1,v) ht -- condtrace (blarg `mod` 1000 == 0) (show blarg) $ in newh `seq` analyze vectors clusters newh assignToCluster :: [(Cluster,Vector)] -> Vector -> Int assignToCluster clusters vector = let distances = map (\(x,center) -> (clId x,sqDistance center vector)) clusters in fst $ minimumBy (\(_,a) (_,b) -> compare a b) distances doit = mapProcess (Nothing,Nothing,Map.empty) in doit >> return () reducerProcess :: ProcessM () reducerProcess = let reduceProcess :: ([Cluster],[Cluster]) -> ProcessM () reduceProcess (oldclusters,clusters) = receiveWait [ roundtripResponse (\() -> return (clusters,(clusters,[]))), match (\x -> return (oldclusters,combineClusters clusters x)), matchUnknownThrow] >>= reduceProcess combineClusters :: [Cluster] -> Cluster -> [Cluster] combineClusters [] a = [a] combineClusters (fstclst:rest) clust | clId fstclst == clId clust = (Cluster {clId = clId fstclst, clCount = clCount fstclst + clCount clust, clSum = addVector (clSum fstclst) (clSum clust)}):rest combineClusters (fstclst:res) clust = fstclst:(combineClusters res clust) in reduceProcess ([],[]) >> return () $( remotable ['mapperProcess, 'reducerProcess] ) initialProcess "MASTER" = do peers <- getPeers -- say $ "Got peers: " ++ show peers cfg <- getConfig let mappers = findPeerByRole peers "MAPPER" let reducers = findPeerByRole peers "REDUCER" let numreducers = length reducers let nummappers = length mappers say $ "Got " ++ show nummappers ++ " mappers and " ++ show numreducers ++ " reducers" clusters <- liftIO $ getClusters "kmeans-clusters" say $ "Got "++show (length clusters)++" clusters" mypid <- getSelfPid mapperPids <- multiSpawn mappers mapperProcess__closure reducerPids <- multiSpawn reducers reducerProcess__closure broadcast mapperPids reducerPids mapM_ (\(pid,chunk) -> send pid chunk) (zip (mapperPids) (repeat "kmeans-points")) say "Starting iteration" starttime <- liftIO $ getCurrentTime let loop howmany clusters = do liftIO $ putStrLn $ show howmany roundtripQueryMulti PldUser mapperPids clusters :: ProcessM [Either TransmitStatus ()] res <- roundtripQueryMulti PldUser reducerPids () :: ProcessM [Either TransmitStatus [Cluster]] let newclusters = rights res let newclusters2 = (sortBy (\a b -> compare (clId a) (clId b)) (concat newclusters)) if newclusters2 == clusters || howmany >= 4 then do donetime <- liftIO $ getCurrentTime say $ "Converged in " ++ show howmany ++ " iterations and " ++ (show $ diffUTCTime donetime starttime) pointmaps <- mapM (\pid -> do (Right m) <- roundtripQuery PldUser pid () return (m::Map.Map Int (Int,Vector))) mapperPids let pointmap = map (\x -> sum $ map fst (Map.elems x)) pointmaps say $ "Total points: " ++ (show $ sum pointmap) -- liftIO $ writeFile "kmeans-converged" $ readableShow (Map.toList pointmap) --respoints <- roundtripQueryAsync PldUser mapperPids () :: ProcessM [Either TransmitStatus (Map.Map Int [Vector])] --liftIO $ B.writeFile "kmeans-converged" $ encode $ Map.toList $ Map.unionsWith (++) (rights respoints) else loop (howmany+1) newclusters2 loop 0 clusters initialProcess "MAPPER" = receiveWait [] initialProcess "REDUCER" = receiveWait [] initialProcess _ = error "Role must be MAPPER or REDUCER or MASTER" main = remoteInit (Just "config") [Main.__remoteCallMetaData] initialProcess
jepst/CloudHaskell
examples/kmeans/KMeans.hs
bsd-3-clause
8,229
0
25
2,929
2,350
1,220
1,130
126
3
{-# LANGUAGE Trustworthy #-} {-# LANGUAGE NoImplicitPrelude #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Monad -- Copyright : (c) The University of Glasgow 2001 -- License : BSD-style (see the file libraries/base/LICENSE) -- -- Maintainer : [email protected] -- Stability : provisional -- Portability : portable -- -- The 'Functor', 'Monad' and 'MonadPlus' classes, -- with some useful operations on monads. module Control.Monad ( -- * Functor and monad classes Functor(fmap) , Monad((>>=), (>>), return, fail) , MonadPlus(mzero, mplus) -- * Functions -- ** Naming conventions -- $naming -- ** Basic @Monad@ functions , mapM , mapM_ , forM , forM_ , sequence , sequence_ , (=<<) , (>=>) , (<=<) , forever , void -- ** Generalisations of list functions , join , msum , mfilter , filterM , mapAndUnzipM , zipWithM , zipWithM_ , foldM , foldM_ , replicateM , replicateM_ -- ** Conditional execution of monadic expressions , guard , when , unless -- ** Monadic lifting operators , liftM , liftM2 , liftM3 , liftM4 , liftM5 , ap -- ** Strict monadic functions , (<$!>) ) where import Data.Foldable ( Foldable, sequence_, sequenceA_, msum, mapM_, foldlM, forM_ ) import Data.Functor ( void, (<$>) ) import Data.Traversable ( forM, mapM, traverse, sequence, sequenceA ) import GHC.Base hiding ( mapM, sequence ) import GHC.List ( zipWith, unzip ) import GHC.Num ( (-) ) -- ----------------------------------------------------------------------------- -- Functions mandated by the Prelude -- | Conditional failure of 'Alternative' computations. Defined by -- -- @ -- guard True = 'pure' () -- guard False = 'empty' -- @ -- -- ==== __Examples__ -- -- Common uses of 'guard' include conditionally signaling an error in -- an error monad and conditionally rejecting the current choice in an -- 'Alternative'-based parser. -- -- As an example of signaling an error in the error monad 'Maybe', -- consider a safe division function @safeDiv x y@ that returns -- 'Nothing' when the denominator @y@ is zero and @'Just' (x \`div\` -- y)@ otherwise. For example: -- -- @ -- >>> safeDiv 4 0 -- Nothing -- >>> safeDiv 4 2 -- Just 2 -- @ -- -- A definition of @safeDiv@ using guards, but not 'guard': -- -- @ -- safeDiv :: Int -> Int -> Maybe Int -- safeDiv x y | y /= 0 = Just (x \`div\` y) -- | otherwise = Nothing -- @ -- -- A definition of @safeDiv@ using 'guard' and 'Monad' @do@-notation: -- -- @ -- safeDiv :: Int -> Int -> Maybe Int -- safeDiv x y = do -- guard (y /= 0) -- return (x \`div\` y) -- @ guard :: (Alternative f) => Bool -> f () guard True = pure () guard False = empty -- | This generalizes the list-based 'filter' function. {-# INLINE filterM #-} filterM :: (Applicative m) => (a -> m Bool) -> [a] -> m [a] filterM p = foldr (\ x -> liftA2 (\ flg -> if flg then (x:) else id) (p x)) (pure []) infixr 1 <=<, >=> -- | Left-to-right Kleisli composition of monads. (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c) f >=> g = \x -> f x >>= g -- | Right-to-left Kleisli composition of monads. @('>=>')@, with the arguments flipped. -- -- Note how this operator resembles function composition @('.')@: -- -- > (.) :: (b -> c) -> (a -> b) -> a -> c -- > (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c) (<=<) = flip (>=>) -- | @'forever' act@ repeats the action infinitely. forever :: (Applicative f) => f a -> f b {-# INLINE forever #-} forever a = let a' = a *> a' in a' -- Use explicit sharing here, as it prevents a space leak regardless of -- optimizations. -- ----------------------------------------------------------------------------- -- Other monad functions -- | The 'mapAndUnzipM' function maps its first argument over a list, returning -- the result as a pair of lists. This function is mainly used with complicated -- data structures or a state-transforming monad. mapAndUnzipM :: (Applicative m) => (a -> m (b,c)) -> [a] -> m ([b], [c]) {-# INLINE mapAndUnzipM #-} mapAndUnzipM f xs = unzip <$> traverse f xs -- | The 'zipWithM' function generalizes 'zipWith' to arbitrary applicative functors. zipWithM :: (Applicative m) => (a -> b -> m c) -> [a] -> [b] -> m [c] {-# INLINE zipWithM #-} zipWithM f xs ys = sequenceA (zipWith f xs ys) -- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result. zipWithM_ :: (Applicative m) => (a -> b -> m c) -> [a] -> [b] -> m () {-# INLINE zipWithM_ #-} zipWithM_ f xs ys = sequenceA_ (zipWith f xs ys) {- | The 'foldM' function is analogous to 'foldl', except that its result is encapsulated in a monad. Note that 'foldM' works from left-to-right over the list arguments. This could be an issue where @('>>')@ and the `folded function' are not commutative. > foldM f a1 [x1, x2, ..., xm] > > == > > do > a2 <- f a1 x1 > a3 <- f a2 x2 > ... > f am xm If right-to-left evaluation is required, the input list should be reversed. Note: 'foldM' is the same as 'foldlM' -} foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b {-# INLINABLE foldM #-} {-# SPECIALISE foldM :: (a -> b -> IO a) -> a -> [b] -> IO a #-} {-# SPECIALISE foldM :: (a -> b -> Maybe a) -> a -> [b] -> Maybe a #-} foldM = foldlM -- | Like 'foldM', but discards the result. foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () {-# INLINABLE foldM_ #-} {-# SPECIALISE foldM_ :: (a -> b -> IO a) -> a -> [b] -> IO () #-} {-# SPECIALISE foldM_ :: (a -> b -> Maybe a) -> a -> [b] -> Maybe () #-} foldM_ f a xs = foldlM f a xs >> return () {- Note [Worker/wrapper transform on replicateM/replicateM_] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The implementations of replicateM and replicateM_ both leverage the worker/wrapper transform. The simpler implementation of replicateM_, as an example, would be: replicateM_ 0 _ = pure () replicateM_ n f = f *> replicateM_ (n - 1) f However, the self-recursive nature of this implementation inhibits inlining, which means we never get to specialise to the action (`f` in the code above). By contrast, the implementation below with a local loop makes it possible to inline the entire definition (as happens for foldr, for example) thereby specialising for the particular action. For further information, see this Trac comment, which includes side-by-side Core: https://ghc.haskell.org/trac/ghc/ticket/11795#comment:6 -} -- | @'replicateM' n act@ performs the action @n@ times, -- gathering the results. replicateM :: (Applicative m) => Int -> m a -> m [a] {-# INLINABLE replicateM #-} {-# SPECIALISE replicateM :: Int -> IO a -> IO [a] #-} {-# SPECIALISE replicateM :: Int -> Maybe a -> Maybe [a] #-} replicateM cnt0 f = loop cnt0 where loop cnt | cnt <= 0 = pure [] | otherwise = liftA2 (:) f (loop (cnt - 1)) -- | Like 'replicateM', but discards the result. replicateM_ :: (Applicative m) => Int -> m a -> m () {-# INLINABLE replicateM_ #-} {-# SPECIALISE replicateM_ :: Int -> IO a -> IO () #-} {-# SPECIALISE replicateM_ :: Int -> Maybe a -> Maybe () #-} replicateM_ cnt0 f = loop cnt0 where loop cnt | cnt <= 0 = pure () | otherwise = f *> loop (cnt - 1) -- | The reverse of 'when'. unless :: (Applicative f) => Bool -> f () -> f () {-# INLINABLE unless #-} {-# SPECIALISE unless :: Bool -> IO () -> IO () #-} {-# SPECIALISE unless :: Bool -> Maybe () -> Maybe () #-} unless p s = if p then pure () else s infixl 4 <$!> -- | Strict version of 'Data.Functor.<$>'. -- -- @since 4.8.0.0 (<$!>) :: Monad m => (a -> b) -> m a -> m b {-# INLINE (<$!>) #-} f <$!> m = do x <- m let z = f x z `seq` return z -- ----------------------------------------------------------------------------- -- Other MonadPlus functions -- | Direct 'MonadPlus' equivalent of 'filter' -- @'filter'@ = @(mfilter:: (a -> Bool) -> [a] -> [a]@ -- applicable to any 'MonadPlus', for example -- @mfilter odd (Just 1) == Just 1@ -- @mfilter odd (Just 2) == Nothing@ mfilter :: (MonadPlus m) => (a -> Bool) -> m a -> m a {-# INLINABLE mfilter #-} mfilter p ma = do a <- ma if p a then return a else mzero {- $naming The functions in this library use the following naming conventions: * A postfix \'@M@\' always stands for a function in the Kleisli category: The monad type constructor @m@ is added to function results (modulo currying) and nowhere else. So, for example, > filter :: (a -> Bool) -> [a] -> [a] > filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a] * A postfix \'@_@\' changes the result type from @(m a)@ to @(m ())@. Thus, for example: > sequence :: Monad m => [m a] -> m [a] > sequence_ :: Monad m => [m a] -> m () * A prefix \'@m@\' generalizes an existing function to a monadic form. Thus, for example: > filter :: (a -> Bool) -> [a] -> [a] > mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a -}
rahulmutt/ghcvm
libraries/base/Control/Monad.hs
bsd-3-clause
9,327
0
12
2,241
1,476
856
620
114
2
{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} {-# LANGUAGE CPP, DeriveDataTypeable, DeriveFunctor #-} -- | CoreSyn holds all the main data types for use by for the Glasgow Haskell Compiler midsection module CoreSyn ( -- * Main data types Expr(..), Alt, Bind(..), AltCon(..), Arg, Tickish(..), TickishScoping(..), TickishPlacement(..), CoreProgram, CoreExpr, CoreAlt, CoreBind, CoreArg, CoreBndr, TaggedExpr, TaggedAlt, TaggedBind, TaggedArg, TaggedBndr(..), deTagExpr, -- ** 'Expr' construction mkLets, mkLams, mkApps, mkTyApps, mkCoApps, mkVarApps, mkIntLit, mkIntLitInt, mkWordLit, mkWordLitWord, mkWord64LitWord64, mkInt64LitInt64, mkCharLit, mkStringLit, mkFloatLit, mkFloatLitFloat, mkDoubleLit, mkDoubleLitDouble, mkConApp, mkConApp2, mkTyBind, mkCoBind, varToCoreExpr, varsToCoreExprs, isId, cmpAltCon, cmpAlt, ltAlt, -- ** Simple 'Expr' access functions and predicates bindersOf, bindersOfBinds, rhssOfBind, rhssOfAlts, collectBinders, collectTyAndValBinders, collectArgs, collectArgsTicks, flattenBinds, exprToType, exprToCoercion_maybe, applyTypeToArg, isValArg, isTypeArg, isTyCoArg, valArgCount, valBndrCount, isRuntimeArg, isRuntimeVar, tickishCounts, tickishScoped, tickishScopesLike, tickishFloatable, tickishCanSplit, mkNoCount, mkNoScope, tickishIsCode, tickishPlace, tickishContains, -- * Unfolding data types Unfolding(..), UnfoldingGuidance(..), UnfoldingSource(..), -- ** Constructing 'Unfolding's noUnfolding, evaldUnfolding, mkOtherCon, unSaturatedOk, needSaturated, boringCxtOk, boringCxtNotOk, -- ** Predicates and deconstruction on 'Unfolding' unfoldingTemplate, expandUnfolding_maybe, maybeUnfoldingTemplate, otherCons, isValueUnfolding, isEvaldUnfolding, isCheapUnfolding, isExpandableUnfolding, isConLikeUnfolding, isCompulsoryUnfolding, isStableUnfolding, hasStableCoreUnfolding_maybe, isClosedUnfolding, hasSomeUnfolding, canUnfold, neverUnfoldGuidance, isStableSource, -- * Annotated expression data types AnnExpr, AnnExpr'(..), AnnBind(..), AnnAlt, -- ** Operations on annotated expressions collectAnnArgs, collectAnnArgsTicks, -- ** Operations on annotations deAnnotate, deAnnotate', deAnnAlt, collectAnnBndrs, -- * Orphanhood IsOrphan(..), isOrphan, notOrphan, chooseOrphanAnchor, -- * Core rule data types CoreRule(..), RuleBase, RuleName, RuleFun, IdUnfoldingFun, InScopeEnv, RuleEnv(..), mkRuleEnv, emptyRuleEnv, -- ** Operations on 'CoreRule's ruleArity, ruleName, ruleIdName, ruleActivation, setRuleIdName, isBuiltinRule, isLocalRule, isAutoRule, -- * Core vectorisation declarations data type CoreVect(..) ) where #include "HsVersions.h" import CostCentre import VarEnv( InScopeSet ) import Var import Type import Coercion import Name import NameEnv( NameEnv, emptyNameEnv ) import Literal import DataCon import Module import TyCon import BasicTypes import DynFlags import Outputable import Util import SrcLoc ( RealSrcSpan, containsSpan ) import Binary import Data.Data hiding (TyCon) import Data.Int import Data.Word infixl 4 `mkApps`, `mkTyApps`, `mkVarApps`, `App`, `mkCoApps` -- Left associative, so that we can say (f `mkTyApps` xs `mkVarApps` ys) {- ************************************************************************ * * \subsection{The main data types} * * ************************************************************************ These data types are the heart of the compiler -} -- | This is the data type that represents GHCs core intermediate language. Currently -- GHC uses System FC <http://research.microsoft.com/~simonpj/papers/ext-f/> for this purpose, -- which is closely related to the simpler and better known System F <http://en.wikipedia.org/wiki/System_F>. -- -- We get from Haskell source to this Core language in a number of stages: -- -- 1. The source code is parsed into an abstract syntax tree, which is represented -- by the data type 'HsExpr.HsExpr' with the names being 'RdrName.RdrNames' -- -- 2. This syntax tree is /renamed/, which attaches a 'Unique.Unique' to every 'RdrName.RdrName' -- (yielding a 'Name.Name') to disambiguate identifiers which are lexically identical. -- For example, this program: -- -- @ -- f x = let f x = x + 1 -- in f (x - 2) -- @ -- -- Would be renamed by having 'Unique's attached so it looked something like this: -- -- @ -- f_1 x_2 = let f_3 x_4 = x_4 + 1 -- in f_3 (x_2 - 2) -- @ -- But see Note [Shadowing] below. -- -- 3. The resulting syntax tree undergoes type checking (which also deals with instantiating -- type class arguments) to yield a 'HsExpr.HsExpr' type that has 'Id.Id' as it's names. -- -- 4. Finally the syntax tree is /desugared/ from the expressive 'HsExpr.HsExpr' type into -- this 'Expr' type, which has far fewer constructors and hence is easier to perform -- optimization, analysis and code generation on. -- -- The type parameter @b@ is for the type of binders in the expression tree. -- -- The language consists of the following elements: -- -- * Variables -- -- * Primitive literals -- -- * Applications: note that the argument may be a 'Type'. -- -- See "CoreSyn#let_app_invariant" for another invariant -- -- * Lambda abstraction -- -- * Recursive and non recursive @let@s. Operationally -- this corresponds to allocating a thunk for the things -- bound and then executing the sub-expression. -- -- #top_level_invariant# -- #letrec_invariant# -- -- The right hand sides of all top-level and recursive @let@s -- /must/ be of lifted type (see "Type#type_classification" for -- the meaning of /lifted/ vs. /unlifted/). -- -- See Note [CoreSyn let/app invariant] -- -- #type_let# -- We allow a /non-recursive/ let to bind a type variable, thus: -- -- > Let (NonRec tv (Type ty)) body -- -- This can be very convenient for postponing type substitutions until -- the next run of the simplifier. -- -- At the moment, the rest of the compiler only deals with type-let -- in a Let expression, rather than at top level. We may want to revist -- this choice. -- -- * Case split. Operationally this corresponds to evaluating -- the scrutinee (expression examined) to weak head normal form -- and then examining at most one level of resulting constructor (i.e. you -- cannot do nested pattern matching directly with this). -- -- The binder gets bound to the value of the scrutinee, -- and the 'Type' must be that of all the case alternatives -- -- #case_invariants# -- This is one of the more complicated elements of the Core language, -- and comes with a number of restrictions: -- -- 1. The list of alternatives may be empty; -- See Note [Empty case alternatives] -- -- 2. The 'DEFAULT' case alternative must be first in the list, -- if it occurs at all. -- -- 3. The remaining cases are in order of increasing -- tag (for 'DataAlts') or -- lit (for 'LitAlts'). -- This makes finding the relevant constructor easy, -- and makes comparison easier too. -- -- 4. The list of alternatives must be exhaustive. An /exhaustive/ case -- does not necessarily mention all constructors: -- -- @ -- data Foo = Red | Green | Blue -- ... case x of -- Red -> True -- other -> f (case x of -- Green -> ... -- Blue -> ... ) ... -- @ -- -- The inner case does not need a @Red@ alternative, because @x@ -- can't be @Red@ at that program point. -- -- 5. Floating-point values must not be scrutinised against literals. -- See Trac #9238 and Note [Rules for floating-point comparisons] -- in PrelRules for rationale. -- -- * Cast an expression to a particular type. -- This is used to implement @newtype@s (a @newtype@ constructor or -- destructor just becomes a 'Cast' in Core) and GADTs. -- -- * Notes. These allow general information to be added to expressions -- in the syntax tree -- -- * A type: this should only show up at the top level of an Arg -- -- * A coercion -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs data Expr b = Var Id | Lit Literal | App (Expr b) (Arg b) | Lam b (Expr b) | Let (Bind b) (Expr b) | Case (Expr b) b Type [Alt b] -- See #case_invariant# | Cast (Expr b) Coercion | Tick (Tickish Id) (Expr b) | Type Type | Coercion Coercion deriving (Data, Typeable) -- | Type synonym for expressions that occur in function argument positions. -- Only 'Arg' should contain a 'Type' at top level, general 'Expr' should not type Arg b = Expr b -- | A case split alternative. Consists of the constructor leading to the alternative, -- the variables bound from the constructor, and the expression to be executed given that binding. -- The default alternative is @(DEFAULT, [], rhs)@ -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs type Alt b = (AltCon, [b], Expr b) -- | A case alternative constructor (i.e. pattern match) -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs data AltCon = DataAlt DataCon -- ^ A plain data constructor: @case e of { Foo x -> ... }@. -- Invariant: the 'DataCon' is always from a @data@ type, and never from a @newtype@ | LitAlt Literal -- ^ A literal: @case e of { 1 -> ... }@ -- Invariant: always an *unlifted* literal -- See Note [Literal alternatives] | DEFAULT -- ^ Trivial alternative: @case e of { _ -> ... }@ deriving (Eq, Ord, Data, Typeable) -- | Binding, used for top level bindings in a module and local bindings in a @let@. -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs data Bind b = NonRec b (Expr b) | Rec [(b, (Expr b))] deriving (Data, Typeable) {- Note [Shadowing] ~~~~~~~~~~~~~~~~ While various passes attempt to rename on-the-fly in a manner that avoids "shadowing" (thereby simplifying downstream optimizations), neither the simplifier nor any other pass GUARANTEES that shadowing is avoided. Thus, all passes SHOULD work fine even in the presence of arbitrary shadowing in their inputs. In particular, scrutinee variables `x` in expressions of the form `Case e x t` are often renamed to variables with a prefix "wild_". These "wild" variables may appear in the body of the case-expression, and further, may be shadowed within the body. So the Unique in an Var is not really unique at all. Still, it's very useful to give a constant-time equality/ordering for Vars, and to give a key that can be used to make sets of Vars (VarSet), or mappings from Vars to other things (VarEnv). Moreover, if you do want to eliminate shadowing, you can give a new Unique to an Id without changing its printable name, which makes debugging easier. Note [Literal alternatives] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Literal alternatives (LitAlt lit) are always for *un-lifted* literals. We have one literal, a literal Integer, that is lifted, and we don't allow in a LitAlt, because LitAlt cases don't do any evaluation. Also (see Trac #5603) if you say case 3 of S# x -> ... J# _ _ -> ... (where S#, J# are the constructors for Integer) we don't want the simplifier calling findAlt with argument (LitAlt 3). No no. Integer literals are an opaque encoding of an algebraic data type, not of an unlifted literal, like all the others. Also, we do not permit case analysis with literal patterns on floating-point types. See Trac #9238 and Note [Rules for floating-point comparisons] in PrelRules for the rationale for this restriction. -------------------------- CoreSyn INVARIANTS --------------------------- Note [CoreSyn top-level invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #toplevel_invariant# Note [CoreSyn letrec invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #letrec_invariant# Note [CoreSyn let/app invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The let/app invariant the right hand side of a non-recursive 'Let', and the argument of an 'App', /may/ be of unlifted type, but only if the expression is ok-for-speculation. This means that the let can be floated around without difficulty. For example, this is OK: y::Int# = x +# 1# But this is not, as it may affect termination if the expression is floated out: y::Int# = fac 4# In this situation you should use @case@ rather than a @let@. The function 'CoreUtils.needsCaseBinding' can help you determine which to generate, or alternatively use 'MkCore.mkCoreLet' rather than this constructor directly, which will generate a @case@ if necessary Th let/app invariant is initially enforced by DsUtils.mkCoreLet and mkCoreApp Note [CoreSyn case invariants] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #case_invariants# Note [CoreSyn let goal] ~~~~~~~~~~~~~~~~~~~~~~~ * The simplifier tries to ensure that if the RHS of a let is a constructor application, its arguments are trivial, so that the constructor can be inlined vigorously. Note [Type let] ~~~~~~~~~~~~~~~ See #type_let# Note [Empty case alternatives] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The alternatives of a case expression should be exhaustive. But this exhaustive list can be empty! * A case expression can have empty alternatives if (and only if) the scrutinee is bound to raise an exception or diverge. When do we know this? See Note [Bottoming expressions] in CoreUtils. * The possiblity of empty alternatives is one reason we need a type on the case expression: if the alternatives are empty we can't get the type from the alternatives! * In the case of empty types (see Note [Bottoming expressions]), say data T we do NOT want to replace case (x::T) of Bool {} --> error Bool "Inaccessible case" because x might raise an exception, and *that*'s what we want to see! (Trac #6067 is an example.) To preserve semantics we'd have to say x `seq` error Bool "Inaccessible case" but the 'seq' is just a case, so we are back to square 1. Or I suppose we could say x |> UnsafeCoerce T Bool but that loses all trace of the fact that this originated with an empty set of alternatives. * We can use the empty-alternative construct to coerce error values from one type to another. For example f :: Int -> Int f n = error "urk" g :: Int -> (# Char, Bool #) g x = case f x of { 0 -> ..., n -> ... } Then if we inline f in g's RHS we get case (error Int "urk") of (# Char, Bool #) { ... } and we can discard the alternatives since the scrutinee is bottom to give case (error Int "urk") of (# Char, Bool #) {} This is nicer than using an unsafe coerce between Int ~ (# Char,Bool #), if for no other reason that we don't need to instantiate the (~) at an unboxed type. * We treat a case expression with empty alternatives as trivial iff its scrutinee is (see CoreUtils.exprIsTrivial). This is actually important; see Note [Empty case is trivial] in CoreUtils * An empty case is replaced by its scrutinee during the CoreToStg conversion; remember STG is un-typed, so there is no need for the empty case to do the type conversion. ************************************************************************ * * Ticks * * ************************************************************************ -} -- | Allows attaching extra information to points in expressions -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs data Tickish id = -- | An @{-# SCC #-}@ profiling annotation, either automatically -- added by the desugarer as a result of -auto-all, or added by -- the user. ProfNote { profNoteCC :: CostCentre, -- ^ the cost centre profNoteCount :: !Bool, -- ^ bump the entry count? profNoteScope :: !Bool -- ^ scopes over the enclosed expression -- (i.e. not just a tick) } -- | A "tick" used by HPC to track the execution of each -- subexpression in the original source code. | HpcTick { tickModule :: Module, tickId :: !Int } -- | A breakpoint for the GHCi debugger. This behaves like an HPC -- tick, but has a list of free variables which will be available -- for inspection in GHCi when the program stops at the breakpoint. -- -- NB. we must take account of these Ids when (a) counting free variables, -- and (b) substituting (don't substitute for them) | Breakpoint { breakpointId :: !Int , breakpointFVs :: [id] -- ^ the order of this list is important: -- it matches the order of the lists in the -- appropriate entry in HscTypes.ModBreaks. -- -- Careful about substitution! See -- Note [substTickish] in CoreSubst. } -- | A source note. -- -- Source notes are pure annotations: Their presence should neither -- influence compilation nor execution. The semantics are given by -- causality: The presence of a source note means that a local -- change in the referenced source code span will possibly provoke -- the generated code to change. On the flip-side, the functionality -- of annotated code *must* be invariant against changes to all -- source code *except* the spans referenced in the source notes -- (see "Causality of optimized Haskell" paper for details). -- -- Therefore extending the scope of any given source note is always -- valid. Note that it is still undesirable though, as this reduces -- their usefulness for debugging and profiling. Therefore we will -- generally try only to make use of this property where it is -- neccessary to enable optimizations. | SourceNote { sourceSpan :: RealSrcSpan -- ^ Source covered , sourceName :: String -- ^ Name for source location -- (uses same names as CCs) } deriving (Eq, Ord, Data, Typeable) -- | A "counting tick" (where tickishCounts is True) is one that -- counts evaluations in some way. We cannot discard a counting tick, -- and the compiler should preserve the number of counting ticks as -- far as possible. -- -- However, we still allow the simplifier to increase or decrease -- sharing, so in practice the actual number of ticks may vary, except -- that we never change the value from zero to non-zero or vice versa. tickishCounts :: Tickish id -> Bool tickishCounts n@ProfNote{} = profNoteCount n tickishCounts HpcTick{} = True tickishCounts Breakpoint{} = True tickishCounts _ = False -- | Specifies the scoping behaviour of ticks. This governs the -- behaviour of ticks that care about the covered code and the cost -- associated with it. Important for ticks relating to profiling. data TickishScoping = -- | No scoping: The tick does not care about what code it -- covers. Transformations can freely move code inside as well as -- outside without any additional annotation obligations NoScope -- | Soft scoping: We want all code that is covered to stay -- covered. Note that this scope type does not forbid -- transformations from happening, as as long as all results of -- the transformations are still covered by this tick or a copy of -- it. For example -- -- let x = tick<...> (let y = foo in bar) in baz -- ===> -- let x = tick<...> bar; y = tick<...> foo in baz -- -- Is a valid transformation as far as "bar" and "foo" is -- concerned, because both still are scoped over by the tick. -- -- Note though that one might object to the "let" not being -- covered by the tick any more. However, we are generally lax -- with this - constant costs don't matter too much, and given -- that the "let" was effectively merged we can view it as having -- lost its identity anyway. -- -- Also note that this scoping behaviour allows floating a tick -- "upwards" in pretty much any situation. For example: -- -- case foo of x -> tick<...> bar -- ==> -- tick<...> case foo of x -> bar -- -- While this is always leagl, we want to make a best effort to -- only make us of this where it exposes transformation -- opportunities. | SoftScope -- | Cost centre scoping: We don't want any costs to move to other -- cost-centre stacks. This means we not only want no code or cost -- to get moved out of their cost centres, but we also object to -- code getting associated with new cost-centre ticks - or -- changing the order in which they get applied. -- -- A rule of thumb is that we don't want any code to gain new -- annotations. However, there are notable exceptions, for -- example: -- -- let f = \y -> foo in tick<...> ... (f x) ... -- ==> -- tick<...> ... foo[x/y] ... -- -- In-lining lambdas like this is always legal, because inlining a -- function does not change the cost-centre stack when the -- function is called. | CostCentreScope deriving (Eq) -- | Returns the intended scoping rule for a Tickish tickishScoped :: Tickish id -> TickishScoping tickishScoped n@ProfNote{} | profNoteScope n = CostCentreScope | otherwise = NoScope tickishScoped HpcTick{} = NoScope tickishScoped Breakpoint{} = CostCentreScope -- Breakpoints are scoped: eventually we're going to do call -- stacks, but also this helps prevent the simplifier from moving -- breakpoints around and changing their result type (see #1531). tickishScoped SourceNote{} = SoftScope -- | Returns whether the tick scoping rule is at least as permissive -- as the given scoping rule. tickishScopesLike :: Tickish id -> TickishScoping -> Bool tickishScopesLike t scope = tickishScoped t `like` scope where NoScope `like` _ = True _ `like` NoScope = False SoftScope `like` _ = True _ `like` SoftScope = False CostCentreScope `like` _ = True -- | Returns @True@ for ticks that can be floated upwards easily even -- where it might change execution counts, such as: -- -- Just (tick<...> foo) -- ==> -- tick<...> (Just foo) -- -- This is a combination of @tickishSoftScope@ and -- @tickishCounts@. Note that in principle splittable ticks can become -- floatable using @mkNoTick@ -- even though there's currently no -- tickish for which that is the case. tickishFloatable :: Tickish id -> Bool tickishFloatable t = t `tickishScopesLike` SoftScope && not (tickishCounts t) -- | Returns @True@ for a tick that is both counting /and/ scoping and -- can be split into its (tick, scope) parts using 'mkNoScope' and -- 'mkNoTick' respectively. tickishCanSplit :: Tickish id -> Bool tickishCanSplit ProfNote{profNoteScope = True, profNoteCount = True} = True tickishCanSplit _ = False mkNoCount :: Tickish id -> Tickish id mkNoCount n | not (tickishCounts n) = n | not (tickishCanSplit n) = panic "mkNoCount: Cannot split!" mkNoCount n@ProfNote{} = n {profNoteCount = False} mkNoCount _ = panic "mkNoCount: Undefined split!" mkNoScope :: Tickish id -> Tickish id mkNoScope n | tickishScoped n == NoScope = n | not (tickishCanSplit n) = panic "mkNoScope: Cannot split!" mkNoScope n@ProfNote{} = n {profNoteScope = False} mkNoScope _ = panic "mkNoScope: Undefined split!" -- | Return @True@ if this source annotation compiles to some backend -- code. Without this flag, the tickish is seen as a simple annotation -- that does not have any associated evaluation code. -- -- What this means that we are allowed to disregard the tick if doing -- so means that we can skip generating any code in the first place. A -- typical example is top-level bindings: -- -- foo = tick<...> \y -> ... -- ==> -- foo = \y -> tick<...> ... -- -- Here there is just no operational difference between the first and -- the second version. Therefore code generation should simply -- translate the code as if it found the latter. tickishIsCode :: Tickish id -> Bool tickishIsCode SourceNote{} = False tickishIsCode _tickish = True -- all the rest for now -- | Governs the kind of expression that the tick gets placed on when -- annotating for example using @mkTick@. If we find that we want to -- put a tickish on an expression ruled out here, we try to float it -- inwards until we find a suitable expression. data TickishPlacement = -- | Place ticks exactly on run-time expressions. We can still -- move the tick through pure compile-time constructs such as -- other ticks, casts or type lambdas. This is the most -- restrictive placement rule for ticks, as all tickishs have in -- common that they want to track runtime processes. The only -- legal placement rule for counting ticks. PlaceRuntime -- | As @PlaceRuntime@, but we float the tick through all -- lambdas. This makes sense where there is little difference -- between annotating the lambda and annotating the lambda's code. | PlaceNonLam -- | In addition to floating through lambdas, cost-centre style -- tickishs can also be moved from constructors, non-function -- variables and literals. For example: -- -- let x = scc<...> C (scc<...> y) (scc<...> 3) in ... -- -- Neither the constructor application, the variable or the -- literal are likely to have any cost worth mentioning. And even -- if y names a thunk, the call would not care about the -- evaluation context. Therefore removing all annotations in the -- above example is safe. | PlaceCostCentre deriving (Eq) -- | Placement behaviour we want for the ticks tickishPlace :: Tickish id -> TickishPlacement tickishPlace n@ProfNote{} | profNoteCount n = PlaceRuntime | otherwise = PlaceCostCentre tickishPlace HpcTick{} = PlaceRuntime tickishPlace Breakpoint{} = PlaceRuntime tickishPlace SourceNote{} = PlaceNonLam -- | Returns whether one tick "contains" the other one, therefore -- making the second tick redundant. tickishContains :: Eq b => Tickish b -> Tickish b -> Bool tickishContains (SourceNote sp1 n1) (SourceNote sp2 n2) = n1 == n2 && containsSpan sp1 sp2 tickishContains t1 t2 = t1 == t2 {- ************************************************************************ * * Orphans * * ************************************************************************ -} -- | Is this instance an orphan? If it is not an orphan, contains an 'OccName' -- witnessing the instance's non-orphanhood. -- See Note [Orphans] data IsOrphan = IsOrphan | NotOrphan OccName -- The OccName 'n' witnesses the instance's non-orphanhood -- In that case, the instance is fingerprinted as part -- of the definition of 'n's definition deriving (Data, Typeable) -- | Returns true if 'IsOrphan' is orphan. isOrphan :: IsOrphan -> Bool isOrphan IsOrphan = True isOrphan _ = False -- | Returns true if 'IsOrphan' is not an orphan. notOrphan :: IsOrphan -> Bool notOrphan NotOrphan{} = True notOrphan _ = False chooseOrphanAnchor :: [Name] -> IsOrphan -- Something (rule, instance) is relate to all the Names in this -- list. Choose one of them to be an "anchor" for the orphan. We make -- the choice deterministic to avoid gratuitious changes in the ABI -- hash (Trac #4012). Specficially, use lexicographic comparison of -- OccName rather than comparing Uniques -- -- NB: 'minimum' use Ord, and (Ord OccName) works lexicographically -- chooseOrphanAnchor local_names | null local_names = IsOrphan | otherwise = NotOrphan (minimum occs) where occs = map nameOccName local_names instance Binary IsOrphan where put_ bh IsOrphan = putByte bh 0 put_ bh (NotOrphan n) = do putByte bh 1 put_ bh n get bh = do h <- getByte bh case h of 0 -> return IsOrphan _ -> do n <- get bh return $ NotOrphan n {- Note [Orphans] ~~~~~~~~~~~~~~ Class instances, rules, and family instances are divided into orphans and non-orphans. Roughly speaking, an instance/rule is an orphan if its left hand side mentions nothing defined in this module. Orphan-hood has two major consequences * A module that contains orphans is called an "orphan module". If the module being compiled depends (transitively) on an oprhan module M, then M.hi is read in regardless of whether M is oherwise needed. This is to ensure that we don't miss any instance decls in M. But it's painful, because it means we need to keep track of all the orphan modules below us. * A non-orphan is not finger-printed separately. Instead, for fingerprinting purposes it is treated as part of the entity it mentions on the LHS. For example data T = T1 | T2 instance Eq T where .... The instance (Eq T) is incorprated as part of T's fingerprint. In constrast, orphans are all fingerprinted together in the mi_orph_hash field of the ModIface. See MkIface.addFingerprints. Orphan-hood is computed * For class instances: when we make a ClsInst (because it is needed during instance lookup) * For rules and family instances: when we generate an IfaceRule (MkIface.coreRuleToIfaceRule) or IfaceFamInst (MkIface.instanceToIfaceInst) -} {- ************************************************************************ * * \subsection{Transformation rules} * * ************************************************************************ The CoreRule type and its friends are dealt with mainly in CoreRules, but CoreFVs, Subst, PprCore, CoreTidy also inspect the representation. -} -- | Gathers a collection of 'CoreRule's. Maps (the name of) an 'Id' to its rules type RuleBase = NameEnv [CoreRule] -- The rules are unordered; -- we sort out any overlaps on lookup -- | A full rule environment which we can apply rules from. Like a 'RuleBase', -- but it also includes the set of visible orphans we use to filter out orphan -- rules which are not visible (even though we can see them...) data RuleEnv = RuleEnv { re_base :: RuleBase , re_visible_orphs :: ModuleSet } mkRuleEnv :: RuleBase -> [Module] -> RuleEnv mkRuleEnv rules vis_orphs = RuleEnv rules (mkModuleSet vis_orphs) emptyRuleEnv :: RuleEnv emptyRuleEnv = RuleEnv emptyNameEnv emptyModuleSet -- | A 'CoreRule' is: -- -- * \"Local\" if the function it is a rule for is defined in the -- same module as the rule itself. -- -- * \"Orphan\" if nothing on the LHS is defined in the same module -- as the rule itself data CoreRule = Rule { ru_name :: RuleName, -- ^ Name of the rule, for communication with the user ru_act :: Activation, -- ^ When the rule is active -- Rough-matching stuff -- see comments with InstEnv.ClsInst( is_cls, is_rough ) ru_fn :: Name, -- ^ Name of the 'Id.Id' at the head of this rule ru_rough :: [Maybe Name], -- ^ Name at the head of each argument to the left hand side -- Proper-matching stuff -- see comments with InstEnv.ClsInst( is_tvs, is_tys ) ru_bndrs :: [CoreBndr], -- ^ Variables quantified over ru_args :: [CoreExpr], -- ^ Left hand side arguments -- And the right-hand side ru_rhs :: CoreExpr, -- ^ Right hand side of the rule -- Occurrence info is guaranteed correct -- See Note [OccInfo in unfoldings and rules] -- Locality ru_auto :: Bool, -- ^ @True@ <=> this rule is auto-generated -- @False@ <=> generated at the users behest -- Main effect: reporting of orphan-hood ru_origin :: !Module, -- ^ 'Module' the rule was defined in, used -- to test if we should see an orphan rule. ru_orphan :: !IsOrphan, -- ^ Whether or not the rule is an orphan. ru_local :: Bool -- ^ @True@ iff the fn at the head of the rule is -- defined in the same module as the rule -- and is not an implicit 'Id' (like a record selector, -- class operation, or data constructor). This -- is different from 'ru_orphan', where a rule -- can avoid being an orphan if *any* Name in -- LHS of the rule was defined in the same -- module as the rule. } -- | Built-in rules are used for constant folding -- and suchlike. They have no free variables. -- A built-in rule is always visible (there is no such thing as -- an orphan built-in rule.) | BuiltinRule { ru_name :: RuleName, -- ^ As above ru_fn :: Name, -- ^ As above ru_nargs :: Int, -- ^ Number of arguments that 'ru_try' consumes, -- if it fires, including type arguments ru_try :: RuleFun -- ^ This function does the rewrite. It given too many -- arguments, it simply discards them; the returned 'CoreExpr' -- is just the rewrite of 'ru_fn' applied to the first 'ru_nargs' args } -- See Note [Extra args in rule matching] in Rules.hs type RuleFun = DynFlags -> InScopeEnv -> Id -> [CoreExpr] -> Maybe CoreExpr type InScopeEnv = (InScopeSet, IdUnfoldingFun) type IdUnfoldingFun = Id -> Unfolding -- A function that embodies how to unfold an Id if you need -- to do that in the Rule. The reason we need to pass this info in -- is that whether an Id is unfoldable depends on the simplifier phase isBuiltinRule :: CoreRule -> Bool isBuiltinRule (BuiltinRule {}) = True isBuiltinRule _ = False isAutoRule :: CoreRule -> Bool isAutoRule (BuiltinRule {}) = False isAutoRule (Rule { ru_auto = is_auto }) = is_auto -- | The number of arguments the 'ru_fn' must be applied -- to before the rule can match on it ruleArity :: CoreRule -> Int ruleArity (BuiltinRule {ru_nargs = n}) = n ruleArity (Rule {ru_args = args}) = length args ruleName :: CoreRule -> RuleName ruleName = ru_name ruleActivation :: CoreRule -> Activation ruleActivation (BuiltinRule { }) = AlwaysActive ruleActivation (Rule { ru_act = act }) = act -- | The 'Name' of the 'Id.Id' at the head of the rule left hand side ruleIdName :: CoreRule -> Name ruleIdName = ru_fn isLocalRule :: CoreRule -> Bool isLocalRule = ru_local -- | Set the 'Name' of the 'Id.Id' at the head of the rule left hand side setRuleIdName :: Name -> CoreRule -> CoreRule setRuleIdName nm ru = ru { ru_fn = nm } {- ************************************************************************ * * \subsection{Vectorisation declarations} * * ************************************************************************ Representation of desugared vectorisation declarations that are fed to the vectoriser (via 'ModGuts'). -} data CoreVect = Vect Id CoreExpr | NoVect Id | VectType Bool TyCon (Maybe TyCon) | VectClass TyCon -- class tycon | VectInst Id -- instance dfun (always SCALAR) !!!FIXME: should be superfluous now {- ************************************************************************ * * Unfoldings * * ************************************************************************ The @Unfolding@ type is declared here to avoid numerous loops -} -- | Records the /unfolding/ of an identifier, which is approximately the form the -- identifier would have if we substituted its definition in for the identifier. -- This type should be treated as abstract everywhere except in "CoreUnfold" data Unfolding = NoUnfolding -- ^ We have no information about the unfolding | OtherCon [AltCon] -- ^ It ain't one of these constructors. -- @OtherCon xs@ also indicates that something has been evaluated -- and hence there's no point in re-evaluating it. -- @OtherCon []@ is used even for non-data-type values -- to indicated evaluated-ness. Notably: -- -- > data C = C !(Int -> Int) -- > case x of { C f -> ... } -- -- Here, @f@ gets an @OtherCon []@ unfolding. | DFunUnfolding { -- The Unfolding of a DFunId -- See Note [DFun unfoldings] -- df = /\a1..am. \d1..dn. MkD t1 .. tk -- (op1 a1..am d1..dn) -- (op2 a1..am d1..dn) df_bndrs :: [Var], -- The bound variables [a1..m],[d1..dn] df_con :: DataCon, -- The dictionary data constructor (never a newtype datacon) df_args :: [CoreExpr] -- Args of the data con: types, superclasses and methods, } -- in positional order | CoreUnfolding { -- An unfolding for an Id with no pragma, -- or perhaps a NOINLINE pragma -- (For NOINLINE, the phase, if any, is in the -- InlinePragInfo for this Id.) uf_tmpl :: CoreExpr, -- Template; occurrence info is correct uf_src :: UnfoldingSource, -- Where the unfolding came from uf_is_top :: Bool, -- True <=> top level binding uf_is_value :: Bool, -- exprIsHNF template (cached); it is ok to discard -- a `seq` on this variable uf_is_conlike :: Bool, -- True <=> applicn of constructor or CONLIKE function -- Cached version of exprIsConLike uf_is_work_free :: Bool, -- True <=> doesn't waste (much) work to expand -- inside an inlining -- Cached version of exprIsCheap uf_expandable :: Bool, -- True <=> can expand in RULE matching -- Cached version of exprIsExpandable uf_guidance :: UnfoldingGuidance -- Tells about the *size* of the template. } -- ^ An unfolding with redundant cached information. Parameters: -- -- uf_tmpl: Template used to perform unfolding; -- NB: Occurrence info is guaranteed correct: -- see Note [OccInfo in unfoldings and rules] -- -- uf_is_top: Is this a top level binding? -- -- uf_is_value: 'exprIsHNF' template (cached); it is ok to discard a 'seq' on -- this variable -- -- uf_is_work_free: Does this waste only a little work if we expand it inside an inlining? -- Basically this is a cached version of 'exprIsWorkFree' -- -- uf_guidance: Tells us about the /size/ of the unfolding template ------------------------------------------------ data UnfoldingSource = -- See also Note [Historical note: unfoldings for wrappers] InlineRhs -- The current rhs of the function -- Replace uf_tmpl each time around | InlineStable -- From an INLINE or INLINABLE pragma -- INLINE if guidance is UnfWhen -- INLINABLE if guidance is UnfIfGoodArgs/UnfoldNever -- (well, technically an INLINABLE might be made -- UnfWhen if it was small enough, and then -- it will behave like INLINE outside the current -- module, but that is the way automatic unfoldings -- work so it is consistent with the intended -- meaning of INLINABLE). -- -- uf_tmpl may change, but only as a result of -- gentle simplification, it doesn't get updated -- to the current RHS during compilation as with -- InlineRhs. -- -- See Note [InlineRules] | InlineCompulsory -- Something that *has* no binding, so you *must* inline it -- Only a few primop-like things have this property -- (see MkId.hs, calls to mkCompulsoryUnfolding). -- Inline absolutely always, however boring the context. -- | 'UnfoldingGuidance' says when unfolding should take place data UnfoldingGuidance = UnfWhen { -- Inline without thinking about the *size* of the uf_tmpl -- Used (a) for small *and* cheap unfoldings -- (b) for INLINE functions -- See Note [INLINE for small functions] in CoreUnfold ug_arity :: Arity, -- Number of value arguments expected ug_unsat_ok :: Bool, -- True <=> ok to inline even if unsaturated ug_boring_ok :: Bool -- True <=> ok to inline even if the context is boring -- So True,True means "always" } | UnfIfGoodArgs { -- Arose from a normal Id; the info here is the -- result of a simple analysis of the RHS ug_args :: [Int], -- Discount if the argument is evaluated. -- (i.e., a simplification will definitely -- be possible). One elt of the list per *value* arg. ug_size :: Int, -- The "size" of the unfolding. ug_res :: Int -- Scrutinee discount: the discount to substract if the thing is in } -- a context (case (thing args) of ...), -- (where there are the right number of arguments.) | UnfNever -- The RHS is big, so don't inline it deriving (Eq) {- Note [Historical note: unfoldings for wrappers] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We used to have a nice clever scheme in interface files for wrappers. A wrapper's unfolding can be reconstructed from its worker's id and its strictness. This decreased .hi file size (sometimes significantly, for modules like GHC.Classes with many high-arity w/w splits) and had a slight corresponding effect on compile times. However, when we added the second demand analysis, this scheme lead to some Core lint errors. The second analysis could change the strictness signatures, which sometimes resulted in a wrapper's regenerated unfolding applying the wrapper to too many arguments. Instead of repairing the clever .hi scheme, we abandoned it in favor of simplicity. The .hi sizes are usually insignificant (excluding the +1M for base libraries), and compile time barely increases (~+1% for nofib). The nicer upshot is that the UnfoldingSource no longer mentions an Id, so, eg, substitutions need not traverse them. Note [DFun unfoldings] ~~~~~~~~~~~~~~~~~~~~~~ The Arity in a DFunUnfolding is total number of args (type and value) that the DFun needs to produce a dictionary. That's not necessarily related to the ordinary arity of the dfun Id, esp if the class has one method, so the dictionary is represented by a newtype. Example class C a where { op :: a -> Int } instance C a -> C [a] where op xs = op (head xs) The instance translates to $dfCList :: forall a. C a => C [a] -- Arity 2! $dfCList = /\a.\d. $copList {a} d |> co $copList :: forall a. C a => [a] -> Int -- Arity 2! $copList = /\a.\d.\xs. op {a} d (head xs) Now we might encounter (op (dfCList {ty} d) a1 a2) and we want the (op (dfList {ty} d)) rule to fire, because $dfCList has all its arguments, even though its (value) arity is 2. That's why we record the number of expected arguments in the DFunUnfolding. Note that although it's an Arity, it's most convenient for it to give the *total* number of arguments, both type and value. See the use site in exprIsConApp_maybe. -} -- Constants for the UnfWhen constructor needSaturated, unSaturatedOk :: Bool needSaturated = False unSaturatedOk = True boringCxtNotOk, boringCxtOk :: Bool boringCxtOk = True boringCxtNotOk = False ------------------------------------------------ noUnfolding :: Unfolding -- ^ There is no known 'Unfolding' evaldUnfolding :: Unfolding -- ^ This unfolding marks the associated thing as being evaluated noUnfolding = NoUnfolding evaldUnfolding = OtherCon [] mkOtherCon :: [AltCon] -> Unfolding mkOtherCon = OtherCon isStableSource :: UnfoldingSource -> Bool -- Keep the unfolding template isStableSource InlineCompulsory = True isStableSource InlineStable = True isStableSource InlineRhs = False -- | Retrieves the template of an unfolding: panics if none is known unfoldingTemplate :: Unfolding -> CoreExpr unfoldingTemplate = uf_tmpl -- | Retrieves the template of an unfolding if possible -- maybeUnfoldingTemplate is used mainly wnen specialising, and we do -- want to specialise DFuns, so it's important to return a template -- for DFunUnfoldings maybeUnfoldingTemplate :: Unfolding -> Maybe CoreExpr maybeUnfoldingTemplate (CoreUnfolding { uf_tmpl = expr }) = Just expr maybeUnfoldingTemplate (DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = args }) = Just (mkLams bndrs (mkApps (Var (dataConWorkId con)) args)) maybeUnfoldingTemplate _ = Nothing -- | The constructors that the unfolding could never be: -- returns @[]@ if no information is available otherCons :: Unfolding -> [AltCon] otherCons (OtherCon cons) = cons otherCons _ = [] -- | Determines if it is certainly the case that the unfolding will -- yield a value (something in HNF): returns @False@ if unsure isValueUnfolding :: Unfolding -> Bool -- Returns False for OtherCon isValueUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald isValueUnfolding _ = False -- | Determines if it possibly the case that the unfolding will -- yield a value. Unlike 'isValueUnfolding' it returns @True@ -- for 'OtherCon' isEvaldUnfolding :: Unfolding -> Bool -- Returns True for OtherCon isEvaldUnfolding (OtherCon _) = True isEvaldUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald isEvaldUnfolding _ = False -- | @True@ if the unfolding is a constructor application, the application -- of a CONLIKE function or 'OtherCon' isConLikeUnfolding :: Unfolding -> Bool isConLikeUnfolding (OtherCon _) = True isConLikeUnfolding (CoreUnfolding { uf_is_conlike = con }) = con isConLikeUnfolding _ = False -- | Is the thing we will unfold into certainly cheap? isCheapUnfolding :: Unfolding -> Bool isCheapUnfolding (CoreUnfolding { uf_is_work_free = is_wf }) = is_wf isCheapUnfolding _ = False isExpandableUnfolding :: Unfolding -> Bool isExpandableUnfolding (CoreUnfolding { uf_expandable = is_expable }) = is_expable isExpandableUnfolding _ = False expandUnfolding_maybe :: Unfolding -> Maybe CoreExpr -- Expand an expandable unfolding; this is used in rule matching -- See Note [Expanding variables] in Rules.hs -- The key point here is that CONLIKE things can be expanded expandUnfolding_maybe (CoreUnfolding { uf_expandable = True, uf_tmpl = rhs }) = Just rhs expandUnfolding_maybe _ = Nothing hasStableCoreUnfolding_maybe :: Unfolding -> Maybe Bool -- Just True <=> has stable inlining, very keen to inline (eg. INLINE pragma) -- Just False <=> has stable inlining, open to inlining it (eg. INLINEABLE pragma) -- Nothing <=> not stable, or cannot inline it anyway hasStableCoreUnfolding_maybe (CoreUnfolding { uf_src = src, uf_guidance = guide }) | isStableSource src = case guide of UnfWhen {} -> Just True UnfIfGoodArgs {} -> Just False UnfNever -> Nothing hasStableCoreUnfolding_maybe _ = Nothing isCompulsoryUnfolding :: Unfolding -> Bool isCompulsoryUnfolding (CoreUnfolding { uf_src = InlineCompulsory }) = True isCompulsoryUnfolding _ = False isStableUnfolding :: Unfolding -> Bool -- True of unfoldings that should not be overwritten -- by a CoreUnfolding for the RHS of a let-binding isStableUnfolding (CoreUnfolding { uf_src = src }) = isStableSource src isStableUnfolding (DFunUnfolding {}) = True isStableUnfolding _ = False isClosedUnfolding :: Unfolding -> Bool -- No free variables isClosedUnfolding (CoreUnfolding {}) = False isClosedUnfolding (DFunUnfolding {}) = False isClosedUnfolding _ = True -- | Only returns False if there is no unfolding information available at all hasSomeUnfolding :: Unfolding -> Bool hasSomeUnfolding NoUnfolding = False hasSomeUnfolding _ = True neverUnfoldGuidance :: UnfoldingGuidance -> Bool neverUnfoldGuidance UnfNever = True neverUnfoldGuidance _ = False canUnfold :: Unfolding -> Bool canUnfold (CoreUnfolding { uf_guidance = g }) = not (neverUnfoldGuidance g) canUnfold _ = False {- Note [InlineRules] ~~~~~~~~~~~~~~~~~ When you say {-# INLINE f #-} f x = <rhs> you intend that calls (f e) are replaced by <rhs>[e/x] So we should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle with it. Meanwhile, we can optimise <rhs> to our heart's content, leaving the original unfolding intact in Unfolding of 'f'. For example all xs = foldr (&&) True xs any p = all . map p {-# INLINE any #-} We optimise any's RHS fully, but leave the InlineRule saying "all . map p", which deforests well at the call site. So INLINE pragma gives rise to an InlineRule, which captures the original RHS. Moreover, it's only used when 'f' is applied to the specified number of arguments; that is, the number of argument on the LHS of the '=' sign in the original source definition. For example, (.) is now defined in the libraries like this {-# INLINE (.) #-} (.) f g = \x -> f (g x) so that it'll inline when applied to two arguments. If 'x' appeared on the left, thus (.) f g x = f (g x) it'd only inline when applied to three arguments. This slightly-experimental change was requested by Roman, but it seems to make sense. See also Note [Inlining an InlineRule] in CoreUnfold. Note [OccInfo in unfoldings and rules] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In unfoldings and rules, we guarantee that the template is occ-analysed, so that the occurrence info on the binders is correct. This is important, because the Simplifier does not re-analyse the template when using it. If the occurrence info is wrong - We may get more simpifier iterations than necessary, because once-occ info isn't there - More seriously, we may get an infinite loop if there's a Rec without a loop breaker marked ************************************************************************ * * AltCon * * ************************************************************************ -} -- The Ord is needed for the FiniteMap used in the lookForConstructor -- in SimplEnv. If you declared that lookForConstructor *ignores* -- constructor-applications with LitArg args, then you could get -- rid of this Ord. instance Outputable AltCon where ppr (DataAlt dc) = ppr dc ppr (LitAlt lit) = ppr lit ppr DEFAULT = text "__DEFAULT" cmpAlt :: (AltCon, a, b) -> (AltCon, a, b) -> Ordering cmpAlt (con1, _, _) (con2, _, _) = con1 `cmpAltCon` con2 ltAlt :: (AltCon, a, b) -> (AltCon, a, b) -> Bool ltAlt a1 a2 = (a1 `cmpAlt` a2) == LT cmpAltCon :: AltCon -> AltCon -> Ordering -- ^ Compares 'AltCon's within a single list of alternatives cmpAltCon DEFAULT DEFAULT = EQ cmpAltCon DEFAULT _ = LT cmpAltCon (DataAlt d1) (DataAlt d2) = dataConTag d1 `compare` dataConTag d2 cmpAltCon (DataAlt _) DEFAULT = GT cmpAltCon (LitAlt l1) (LitAlt l2) = l1 `compare` l2 cmpAltCon (LitAlt _) DEFAULT = GT cmpAltCon con1 con2 = WARN( True, text "Comparing incomparable AltCons" <+> ppr con1 <+> ppr con2 ) LT {- ************************************************************************ * * \subsection{Useful synonyms} * * ************************************************************************ Note [CoreProgram] ~~~~~~~~~~~~~~~~~~ The top level bindings of a program, a CoreProgram, are represented as a list of CoreBind * Later bindings in the list can refer to earlier ones, but not vice versa. So this is OK NonRec { x = 4 } Rec { p = ...q...x... ; q = ...p...x } Rec { f = ...p..x..f.. } NonRec { g = ..f..q...x.. } But it would NOT be ok for 'f' to refer to 'g'. * The occurrence analyser does strongly-connected component analysis on each Rec binding, and splits it into a sequence of smaller bindings where possible. So the program typically starts life as a single giant Rec, which is then dependency-analysed into smaller chunks. -} -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs type CoreProgram = [CoreBind] -- See Note [CoreProgram] -- | The common case for the type of binders and variables when -- we are manipulating the Core language within GHC type CoreBndr = Var -- | Expressions where binders are 'CoreBndr's type CoreExpr = Expr CoreBndr -- | Argument expressions where binders are 'CoreBndr's type CoreArg = Arg CoreBndr -- | Binding groups where binders are 'CoreBndr's type CoreBind = Bind CoreBndr -- | Case alternatives where binders are 'CoreBndr's type CoreAlt = Alt CoreBndr {- ************************************************************************ * * \subsection{Tagging} * * ************************************************************************ -} -- | Binders are /tagged/ with a t data TaggedBndr t = TB CoreBndr t -- TB for "tagged binder" type TaggedBind t = Bind (TaggedBndr t) type TaggedExpr t = Expr (TaggedBndr t) type TaggedArg t = Arg (TaggedBndr t) type TaggedAlt t = Alt (TaggedBndr t) instance Outputable b => Outputable (TaggedBndr b) where ppr (TB b l) = char '<' <> ppr b <> comma <> ppr l <> char '>' instance Outputable b => OutputableBndr (TaggedBndr b) where pprBndr _ b = ppr b -- Simple pprInfixOcc b = ppr b pprPrefixOcc b = ppr b deTagExpr :: TaggedExpr t -> CoreExpr deTagExpr (Var v) = Var v deTagExpr (Lit l) = Lit l deTagExpr (Type ty) = Type ty deTagExpr (Coercion co) = Coercion co deTagExpr (App e1 e2) = App (deTagExpr e1) (deTagExpr e2) deTagExpr (Lam (TB b _) e) = Lam b (deTagExpr e) deTagExpr (Let bind body) = Let (deTagBind bind) (deTagExpr body) deTagExpr (Case e (TB b _) ty alts) = Case (deTagExpr e) b ty (map deTagAlt alts) deTagExpr (Tick t e) = Tick t (deTagExpr e) deTagExpr (Cast e co) = Cast (deTagExpr e) co deTagBind :: TaggedBind t -> CoreBind deTagBind (NonRec (TB b _) rhs) = NonRec b (deTagExpr rhs) deTagBind (Rec prs) = Rec [(b, deTagExpr rhs) | (TB b _, rhs) <- prs] deTagAlt :: TaggedAlt t -> CoreAlt deTagAlt (con, bndrs, rhs) = (con, [b | TB b _ <- bndrs], deTagExpr rhs) {- ************************************************************************ * * \subsection{Core-constructing functions with checking} * * ************************************************************************ -} -- | Apply a list of argument expressions to a function expression in a nested fashion. Prefer to -- use 'MkCore.mkCoreApps' if possible mkApps :: Expr b -> [Arg b] -> Expr b -- | Apply a list of type argument expressions to a function expression in a nested fashion mkTyApps :: Expr b -> [Type] -> Expr b -- | Apply a list of coercion argument expressions to a function expression in a nested fashion mkCoApps :: Expr b -> [Coercion] -> Expr b -- | Apply a list of type or value variables to a function expression in a nested fashion mkVarApps :: Expr b -> [Var] -> Expr b -- | Apply a list of argument expressions to a data constructor in a nested fashion. Prefer to -- use 'MkCore.mkCoreConApps' if possible mkConApp :: DataCon -> [Arg b] -> Expr b mkApps f args = foldl App f args mkCoApps f args = foldl (\ e a -> App e (Coercion a)) f args mkVarApps f vars = foldl (\ e a -> App e (varToCoreExpr a)) f vars mkConApp con args = mkApps (Var (dataConWorkId con)) args mkTyApps f args = foldl (\ e a -> App e (typeOrCoercion a)) f args where typeOrCoercion ty | Just co <- isCoercionTy_maybe ty = Coercion co | otherwise = Type ty mkConApp2 :: DataCon -> [Type] -> [Var] -> Expr b mkConApp2 con tys arg_ids = Var (dataConWorkId con) `mkApps` map Type tys `mkApps` map varToCoreExpr arg_ids -- | Create a machine integer literal expression of type @Int#@ from an @Integer@. -- If you want an expression of type @Int@ use 'MkCore.mkIntExpr' mkIntLit :: DynFlags -> Integer -> Expr b -- | Create a machine integer literal expression of type @Int#@ from an @Int@. -- If you want an expression of type @Int@ use 'MkCore.mkIntExpr' mkIntLitInt :: DynFlags -> Int -> Expr b mkIntLit dflags n = Lit (mkMachInt dflags n) mkIntLitInt dflags n = Lit (mkMachInt dflags (toInteger n)) -- | Create a machine word literal expression of type @Word#@ from an @Integer@. -- If you want an expression of type @Word@ use 'MkCore.mkWordExpr' mkWordLit :: DynFlags -> Integer -> Expr b -- | Create a machine word literal expression of type @Word#@ from a @Word@. -- If you want an expression of type @Word@ use 'MkCore.mkWordExpr' mkWordLitWord :: DynFlags -> Word -> Expr b mkWordLit dflags w = Lit (mkMachWord dflags w) mkWordLitWord dflags w = Lit (mkMachWord dflags (toInteger w)) mkWord64LitWord64 :: Word64 -> Expr b mkWord64LitWord64 w = Lit (mkMachWord64 (toInteger w)) mkInt64LitInt64 :: Int64 -> Expr b mkInt64LitInt64 w = Lit (mkMachInt64 (toInteger w)) -- | Create a machine character literal expression of type @Char#@. -- If you want an expression of type @Char@ use 'MkCore.mkCharExpr' mkCharLit :: Char -> Expr b -- | Create a machine string literal expression of type @Addr#@. -- If you want an expression of type @String@ use 'MkCore.mkStringExpr' mkStringLit :: String -> Expr b mkCharLit c = Lit (mkMachChar c) mkStringLit s = Lit (mkMachString s) -- | Create a machine single precision literal expression of type @Float#@ from a @Rational@. -- If you want an expression of type @Float@ use 'MkCore.mkFloatExpr' mkFloatLit :: Rational -> Expr b -- | Create a machine single precision literal expression of type @Float#@ from a @Float@. -- If you want an expression of type @Float@ use 'MkCore.mkFloatExpr' mkFloatLitFloat :: Float -> Expr b mkFloatLit f = Lit (mkMachFloat f) mkFloatLitFloat f = Lit (mkMachFloat (toRational f)) -- | Create a machine double precision literal expression of type @Double#@ from a @Rational@. -- If you want an expression of type @Double@ use 'MkCore.mkDoubleExpr' mkDoubleLit :: Rational -> Expr b -- | Create a machine double precision literal expression of type @Double#@ from a @Double@. -- If you want an expression of type @Double@ use 'MkCore.mkDoubleExpr' mkDoubleLitDouble :: Double -> Expr b mkDoubleLit d = Lit (mkMachDouble d) mkDoubleLitDouble d = Lit (mkMachDouble (toRational d)) -- | Bind all supplied binding groups over an expression in a nested let expression. Assumes -- that the rhs satisfies the let/app invariant. Prefer to use 'MkCore.mkCoreLets' if -- possible, which does guarantee the invariant mkLets :: [Bind b] -> Expr b -> Expr b -- | Bind all supplied binders over an expression in a nested lambda expression. Prefer to -- use 'MkCore.mkCoreLams' if possible mkLams :: [b] -> Expr b -> Expr b mkLams binders body = foldr Lam body binders mkLets binds body = foldr Let body binds -- | Create a binding group where a type variable is bound to a type. Per "CoreSyn#type_let", -- this can only be used to bind something in a non-recursive @let@ expression mkTyBind :: TyVar -> Type -> CoreBind mkTyBind tv ty = NonRec tv (Type ty) -- | Create a binding group where a type variable is bound to a type. Per "CoreSyn#type_let", -- this can only be used to bind something in a non-recursive @let@ expression mkCoBind :: CoVar -> Coercion -> CoreBind mkCoBind cv co = NonRec cv (Coercion co) -- | Convert a binder into either a 'Var' or 'Type' 'Expr' appropriately varToCoreExpr :: CoreBndr -> Expr b varToCoreExpr v | isTyVar v = Type (mkTyVarTy v) | isCoVar v = Coercion (mkCoVarCo v) | otherwise = ASSERT( isId v ) Var v varsToCoreExprs :: [CoreBndr] -> [Expr b] varsToCoreExprs vs = map varToCoreExpr vs {- ************************************************************************ * * Getting a result type * * ************************************************************************ These are defined here to avoid a module loop between CoreUtils and CoreFVs -} applyTypeToArg :: Type -> CoreExpr -> Type -- ^ Determines the type resulting from applying an expression with given type -- to a given argument expression applyTypeToArg fun_ty arg = piResultTy fun_ty (exprToType arg) -- | If the expression is a 'Type', converts. Otherwise, -- panics. NB: This does /not/ convert 'Coercion' to 'CoercionTy'. exprToType :: CoreExpr -> Type exprToType (Type ty) = ty exprToType _bad = pprPanic "exprToType" empty -- | If the expression is a 'Coercion', converts. exprToCoercion_maybe :: CoreExpr -> Maybe Coercion exprToCoercion_maybe (Coercion co) = Just co exprToCoercion_maybe _ = Nothing {- ************************************************************************ * * \subsection{Simple access functions} * * ************************************************************************ -} -- | Extract every variable by this group bindersOf :: Bind b -> [b] -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] in coreSyn/CoreLint.hs bindersOf (NonRec binder _) = [binder] bindersOf (Rec pairs) = [binder | (binder, _) <- pairs] -- | 'bindersOf' applied to a list of binding groups bindersOfBinds :: [Bind b] -> [b] bindersOfBinds binds = foldr ((++) . bindersOf) [] binds rhssOfBind :: Bind b -> [Expr b] rhssOfBind (NonRec _ rhs) = [rhs] rhssOfBind (Rec pairs) = [rhs | (_,rhs) <- pairs] rhssOfAlts :: [Alt b] -> [Expr b] rhssOfAlts alts = [e | (_,_,e) <- alts] -- | Collapse all the bindings in the supplied groups into a single -- list of lhs\/rhs pairs suitable for binding in a 'Rec' binding group flattenBinds :: [Bind b] -> [(b, Expr b)] flattenBinds (NonRec b r : binds) = (b,r) : flattenBinds binds flattenBinds (Rec prs1 : binds) = prs1 ++ flattenBinds binds flattenBinds [] = [] -- | We often want to strip off leading lambdas before getting down to -- business. This function is your friend. collectBinders :: Expr b -> ([b], Expr b) -- | Collect type and value binders from nested lambdas, stopping -- right before any "forall"s within a non-forall. For example, -- forall (a :: *) (b :: Foo ~ Bar) (c :: *). Baz -> forall (d :: *). Blob -- will pull out the binders for a, b, c, and Baz, but not for d or anything -- within Blob. This is to coordinate with tcSplitSigmaTy. collectTyAndValBinders :: CoreExpr -> ([TyVar], [Id], CoreExpr) collectBinders expr = go [] expr where go bs (Lam b e) = go (b:bs) e go bs e = (reverse bs, e) collectTyAndValBinders expr = go_forall [] [] expr where go_forall tvs ids (Lam b e) | isTyVar b = go_forall (b:tvs) ids e | isCoVar b = go_forall tvs (b:ids) e go_forall tvs ids e = go_fun tvs ids e go_fun tvs ids (Lam b e) | isId b = go_fun tvs (b:ids) e go_fun tvs ids e = (reverse tvs, reverse ids, e) -- | Takes a nested application expression and returns the the function -- being applied and the arguments to which it is applied collectArgs :: Expr b -> (Expr b, [Arg b]) collectArgs expr = go expr [] where go (App f a) as = go f (a:as) go e as = (e, as) -- | Like @collectArgs@, but also collects looks through floatable -- ticks if it means that we can find more arguments. collectArgsTicks :: (Tickish Id -> Bool) -> Expr b -> (Expr b, [Arg b], [Tickish Id]) collectArgsTicks skipTick expr = go expr [] [] where go (App f a) as ts = go f (a:as) ts go (Tick t e) as ts | skipTick t = go e as (t:ts) go e as ts = (e, as, reverse ts) {- ************************************************************************ * * \subsection{Predicates} * * ************************************************************************ At one time we optionally carried type arguments through to runtime. @isRuntimeVar v@ returns if (Lam v _) really becomes a lambda at runtime, i.e. if type applications are actual lambdas because types are kept around at runtime. Similarly isRuntimeArg. -} -- | Will this variable exist at runtime? isRuntimeVar :: Var -> Bool isRuntimeVar = isId -- | Will this argument expression exist at runtime? isRuntimeArg :: CoreExpr -> Bool isRuntimeArg = isValArg -- | Returns @True@ for value arguments, false for type args -- NB: coercions are value arguments (zero width, to be sure, -- like State#, but still value args). isValArg :: Expr b -> Bool isValArg e = not (isTypeArg e) -- | Returns @True@ iff the expression is a 'Type' or 'Coercion' -- expression at its top level isTyCoArg :: Expr b -> Bool isTyCoArg (Type {}) = True isTyCoArg (Coercion {}) = True isTyCoArg _ = False -- | Returns @True@ iff the expression is a 'Type' expression at its -- top level. Note this does NOT include 'Coercion's. isTypeArg :: Expr b -> Bool isTypeArg (Type {}) = True isTypeArg _ = False -- | The number of binders that bind values rather than types valBndrCount :: [CoreBndr] -> Int valBndrCount = count isId -- | The number of argument expressions that are values rather than types at their top level valArgCount :: [Arg b] -> Int valArgCount = count isValArg {- ************************************************************************ * * \subsection{Annotated core} * * ************************************************************************ -} -- | Annotated core: allows annotation at every node in the tree type AnnExpr bndr annot = (annot, AnnExpr' bndr annot) -- | A clone of the 'Expr' type but allowing annotation at every tree node data AnnExpr' bndr annot = AnnVar Id | AnnLit Literal | AnnLam bndr (AnnExpr bndr annot) | AnnApp (AnnExpr bndr annot) (AnnExpr bndr annot) | AnnCase (AnnExpr bndr annot) bndr Type [AnnAlt bndr annot] | AnnLet (AnnBind bndr annot) (AnnExpr bndr annot) | AnnCast (AnnExpr bndr annot) (annot, Coercion) -- Put an annotation on the (root of) the coercion | AnnTick (Tickish Id) (AnnExpr bndr annot) | AnnType Type | AnnCoercion Coercion -- | A clone of the 'Alt' type but allowing annotation at every tree node type AnnAlt bndr annot = (AltCon, [bndr], AnnExpr bndr annot) -- | A clone of the 'Bind' type but allowing annotation at every tree node data AnnBind bndr annot = AnnNonRec bndr (AnnExpr bndr annot) | AnnRec [(bndr, AnnExpr bndr annot)] -- | Takes a nested application expression and returns the the function -- being applied and the arguments to which it is applied collectAnnArgs :: AnnExpr b a -> (AnnExpr b a, [AnnExpr b a]) collectAnnArgs expr = go expr [] where go (_, AnnApp f a) as = go f (a:as) go e as = (e, as) collectAnnArgsTicks :: (Tickish Var -> Bool) -> AnnExpr b a -> (AnnExpr b a, [AnnExpr b a], [Tickish Var]) collectAnnArgsTicks tickishOk expr = go expr [] [] where go (_, AnnApp f a) as ts = go f (a:as) ts go (_, AnnTick t e) as ts | tickishOk t = go e as (t:ts) go e as ts = (e, as, reverse ts) deAnnotate :: AnnExpr bndr annot -> Expr bndr deAnnotate (_, e) = deAnnotate' e deAnnotate' :: AnnExpr' bndr annot -> Expr bndr deAnnotate' (AnnType t) = Type t deAnnotate' (AnnCoercion co) = Coercion co deAnnotate' (AnnVar v) = Var v deAnnotate' (AnnLit lit) = Lit lit deAnnotate' (AnnLam binder body) = Lam binder (deAnnotate body) deAnnotate' (AnnApp fun arg) = App (deAnnotate fun) (deAnnotate arg) deAnnotate' (AnnCast e (_,co)) = Cast (deAnnotate e) co deAnnotate' (AnnTick tick body) = Tick tick (deAnnotate body) deAnnotate' (AnnLet bind body) = Let (deAnnBind bind) (deAnnotate body) where deAnnBind (AnnNonRec var rhs) = NonRec var (deAnnotate rhs) deAnnBind (AnnRec pairs) = Rec [(v,deAnnotate rhs) | (v,rhs) <- pairs] deAnnotate' (AnnCase scrut v t alts) = Case (deAnnotate scrut) v t (map deAnnAlt alts) deAnnAlt :: AnnAlt bndr annot -> Alt bndr deAnnAlt (con,args,rhs) = (con,args,deAnnotate rhs) -- | As 'collectBinders' but for 'AnnExpr' rather than 'Expr' collectAnnBndrs :: AnnExpr bndr annot -> ([bndr], AnnExpr bndr annot) collectAnnBndrs e = collect [] e where collect bs (_, AnnLam b body) = collect (b:bs) body collect bs body = (reverse bs, body)
nushio3/ghc
compiler/coreSyn/CoreSyn.hs
bsd-3-clause
73,179
0
14
19,898
8,479
4,816
3,663
593
5
{-# LANGUAGE Haskell98 #-} {-# LINE 1 "Data/IntMap/Internal.hs" #-} {-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE MagicHash, DeriveDataTypeable, StandaloneDeriving #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Data.IntMap.Internal -- Copyright : (c) Daan Leijen 2002 -- (c) Andriy Palamarchuk 2008 -- (c) wren romano 2016 -- License : BSD-style -- Maintainer : [email protected] -- Portability : portable -- -- = WARNING -- -- This module is considered __internal__. -- -- The Package Versioning Policy __does not apply__. -- -- This contents of this module may change __in any way whatsoever__ -- and __without any warning__ between minor versions of this package. -- -- Authors importing this module are expected to track development -- closely. -- -- = Description -- -- This defines the data structures and core (hidden) manipulations -- on representations. ----------------------------------------------------------------------------- -- [Note: INLINE bit fiddling] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- It is essential that the bit fiddling functions like mask, zero, branchMask -- etc are inlined. If they do not, the memory allocation skyrockets. The GHC -- usually gets it right, but it is disastrous if it does not. Therefore we -- explicitly mark these functions INLINE. -- [Note: Local 'go' functions and capturing] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Care must be taken when using 'go' function which captures an argument. -- Sometimes (for example when the argument is passed to a data constructor, -- as in insert), GHC heap-allocates more than necessary. Therefore C-- code -- must be checked for increased allocation when creating and modifying such -- functions. -- [Note: Order of constructors] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- The order of constructors of IntMap matters when considering performance. -- Currently in GHC 7.0, when type has 3 constructors, they are matched from -- the first to the last -- the best performance is achieved when the -- constructors are ordered by frequency. -- On GHC 7.0, reordering constructors from Nil | Tip | Bin to Bin | Tip | Nil -- improves the benchmark by circa 10%. module Data.IntMap.Internal ( -- * Map type IntMap(..), Key -- instance Eq,Show -- * Operators , (!), (\\) -- * Query , null , size , member , notMember , lookup , findWithDefault , lookupLT , lookupGT , lookupLE , lookupGE -- * Construction , empty , singleton -- ** Insertion , insert , insertWith , insertWithKey , insertLookupWithKey -- ** Delete\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey , alter , alterF -- * Combine -- ** Union , union , unionWith , unionWithKey , unions , unionsWith -- ** Difference , difference , differenceWith , differenceWithKey -- ** Intersection , intersection , intersectionWith , intersectionWithKey -- ** General combining function , SimpleWhenMissing , SimpleWhenMatched , runWhenMatched , runWhenMissing , merge -- *** @WhenMatched@ tactics , zipWithMaybeMatched , zipWithMatched -- *** @WhenMissing@ tactics , mapMaybeMissing , dropMissing , preserveMissing , mapMissing , filterMissing -- ** Applicative general combining function , WhenMissing (..) , WhenMatched (..) , mergeA -- *** @WhenMatched@ tactics -- | The tactics described for 'merge' work for -- 'mergeA' as well. Furthermore, the following -- are available. , zipWithMaybeAMatched , zipWithAMatched -- *** @WhenMissing@ tactics -- | The tactics described for 'merge' work for -- 'mergeA' as well. Furthermore, the following -- are available. , traverseMaybeMissing , traverseMissing , filterAMissing -- ** Deprecated general combining function , mergeWithKey , mergeWithKey' -- * Traversal -- ** Map , map , mapWithKey , traverseWithKey , mapAccum , mapAccumWithKey , mapAccumRWithKey , mapKeys , mapKeysWith , mapKeysMonotonic -- * Folds , foldr , foldl , foldrWithKey , foldlWithKey , foldMapWithKey -- ** Strict folds , foldr' , foldl' , foldrWithKey' , foldlWithKey' -- * Conversion , elems , keys , assocs , keysSet , fromSet -- ** Lists , toList , fromList , fromListWith , fromListWithKey -- ** Ordered lists , toAscList , toDescList , fromAscList , fromAscListWith , fromAscListWithKey , fromDistinctAscList -- * Filter , filter , filterWithKey , restrictKeys , withoutKeys , partition , partitionWithKey , mapMaybe , mapMaybeWithKey , mapEither , mapEitherWithKey , split , splitLookup , splitRoot -- * Submap , isSubmapOf, isSubmapOfBy , isProperSubmapOf, isProperSubmapOfBy -- * Min\/Max , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMin , updateMax , updateMinWithKey , updateMaxWithKey , minView , maxView , minViewWithKey , maxViewWithKey -- * Debugging , showTree , showTreeWith -- * Internal types , Mask, Prefix, Nat -- * Utility , natFromInt , intFromNat , link , bin , binCheckLeft , binCheckRight , zero , nomatch , match , mask , maskW , shorter , branchMask , highestBitMask -- * Used by "IntMap.Merge.Lazy" and "IntMap.Merge.Strict" , mapWhenMissing , mapWhenMatched , lmapWhenMissing , contramapFirstWhenMatched , contramapSecondWhenMatched , mapGentlyWhenMissing , mapGentlyWhenMatched ) where import Data.Functor.Identity (Identity (..)) import Control.Applicative (liftA2) import Data.Semigroup (Semigroup((<>), stimes), stimesIdempotentMonoid) import Data.Functor.Classes import Control.DeepSeq (NFData(rnf)) import Control.Monad (liftM) import Data.Bits import qualified Data.Foldable as Foldable import Data.Maybe (fromMaybe) import Data.Typeable import Prelude hiding (lookup, map, filter, foldr, foldl, null) import Data.IntSet.Internal (Key) import qualified Data.IntSet.Internal as IntSet import Utils.Containers.Internal.BitUtil import Utils.Containers.Internal.StrictFold import Utils.Containers.Internal.StrictPair import Data.Data (Data(..), Constr, mkConstr, constrIndex, Fixity(Prefix), DataType, mkDataType) import GHC.Exts (build) import qualified GHC.Exts as GHCExts import Text.Read import qualified Control.Category as Category import Data.Coerce -- A "Nat" is a natural machine word (an unsigned Int) type Nat = Word natFromInt :: Key -> Nat natFromInt = fromIntegral {-# INLINE natFromInt #-} intFromNat :: Nat -> Key intFromNat = fromIntegral {-# INLINE intFromNat #-} {-------------------------------------------------------------------- Types --------------------------------------------------------------------} -- | A map of integers to values @a@. -- See Note: Order of constructors data IntMap a = Bin {-# UNPACK #-} !Prefix {-# UNPACK #-} !Mask !(IntMap a) !(IntMap a) | Tip {-# UNPACK #-} !Key a | Nil type Prefix = Int type Mask = Int -- Some stuff from "Data.IntSet.Internal", for 'restrictKeys' and -- 'withoutKeys' to use. type IntSetPrefix = Int type IntSetBitMap = Word bitmapOf :: Int -> IntSetBitMap bitmapOf x = shiftLL 1 (x .&. IntSet.suffixBitMask) {-# INLINE bitmapOf #-} {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} -- | /O(min(n,W))/. Find the value at a key. -- Calls 'error' when the element can not be found. -- -- > fromList [(5,'a'), (3,'b')] ! 1 Error: element not in the map -- > fromList [(5,'a'), (3,'b')] ! 5 == 'a' (!) :: IntMap a -> Key -> a (!) m k = find k m -- | Same as 'difference'. (\\) :: IntMap a -> IntMap b -> IntMap a m1 \\ m2 = difference m1 m2 infixl 9 \\{-This comment teaches CPP correct behaviour -} {-------------------------------------------------------------------- Types --------------------------------------------------------------------} instance Monoid (IntMap a) where mempty = empty mconcat = unions mappend = (<>) instance Semigroup (IntMap a) where (<>) = union stimes = stimesIdempotentMonoid instance Foldable.Foldable IntMap where fold = go where go Nil = mempty go (Tip _ v) = v go (Bin _ _ l r) = go l `mappend` go r {-# INLINABLE fold #-} foldr = foldr {-# INLINE foldr #-} foldl = foldl {-# INLINE foldl #-} foldMap f t = go t where go Nil = mempty go (Tip _ v) = f v go (Bin _ _ l r) = go l `mappend` go r {-# INLINE foldMap #-} foldl' = foldl' {-# INLINE foldl' #-} foldr' = foldr' {-# INLINE foldr' #-} length = size {-# INLINE length #-} null = null {-# INLINE null #-} toList = elems -- NB: Foldable.toList /= IntMap.toList {-# INLINE toList #-} elem = go where go !_ Nil = False go x (Tip _ y) = x == y go x (Bin _ _ l r) = go x l || go x r {-# INLINABLE elem #-} maximum = start where start Nil = error "Data.Foldable.maximum (for Data.IntMap): empty map" start (Tip _ y) = y start (Bin _ _ l r) = go (start l) r go !m Nil = m go m (Tip _ y) = max m y go m (Bin _ _ l r) = go (go m l) r {-# INLINABLE maximum #-} minimum = start where start Nil = error "Data.Foldable.minimum (for Data.IntMap): empty map" start (Tip _ y) = y start (Bin _ _ l r) = go (start l) r go !m Nil = m go m (Tip _ y) = min m y go m (Bin _ _ l r) = go (go m l) r {-# INLINABLE minimum #-} sum = foldl' (+) 0 {-# INLINABLE sum #-} product = foldl' (*) 1 {-# INLINABLE product #-} instance Traversable IntMap where traverse f = traverseWithKey (\_ -> f) {-# INLINE traverse #-} instance NFData a => NFData (IntMap a) where rnf Nil = () rnf (Tip _ v) = rnf v rnf (Bin _ _ l r) = rnf l `seq` rnf r {-------------------------------------------------------------------- A Data instance --------------------------------------------------------------------} -- This instance preserves data abstraction at the cost of inefficiency. -- We provide limited reflection services for the sake of data abstraction. instance Data a => Data (IntMap a) where gfoldl f z im = z fromList `f` (toList im) toConstr _ = fromListConstr gunfold k z c = case constrIndex c of 1 -> k (z fromList) _ -> error "gunfold" dataTypeOf _ = intMapDataType dataCast1 f = gcast1 f fromListConstr :: Constr fromListConstr = mkConstr intMapDataType "fromList" [] Prefix intMapDataType :: DataType intMapDataType = mkDataType "Data.IntMap.Internal.IntMap" [fromListConstr] {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(1)/. Is the map empty? -- -- > Data.IntMap.null (empty) == True -- > Data.IntMap.null (singleton 1 'a') == False null :: IntMap a -> Bool null Nil = True null _ = False {-# INLINE null #-} -- | /O(n)/. Number of elements in the map. -- -- > size empty == 0 -- > size (singleton 1 'a') == 1 -- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3 size :: IntMap a -> Int size = go 0 where go !acc (Bin _ _ l r) = go (go acc l) r go acc (Tip _ _) = 1 + acc go acc Nil = acc -- | /O(min(n,W))/. Is the key a member of the map? -- -- > member 5 (fromList [(5,'a'), (3,'b')]) == True -- > member 1 (fromList [(5,'a'), (3,'b')]) == False -- See Note: Local 'go' functions and capturing] member :: Key -> IntMap a -> Bool member !k = go where go (Bin p m l r) | nomatch k p m = False | zero k m = go l | otherwise = go r go (Tip kx _) = k == kx go Nil = False -- | /O(min(n,W))/. Is the key not a member of the map? -- -- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False -- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True notMember :: Key -> IntMap a -> Bool notMember k m = not $ member k m -- | /O(min(n,W))/. Lookup the value at a key in the map. See also 'Data.Map.lookup'. -- See Note: Local 'go' functions and capturing] lookup :: Key -> IntMap a -> Maybe a lookup !k = go where go (Bin p m l r) | nomatch k p m = Nothing | zero k m = go l | otherwise = go r go (Tip kx x) | k == kx = Just x | otherwise = Nothing go Nil = Nothing -- See Note: Local 'go' functions and capturing] find :: Key -> IntMap a -> a find !k = go where go (Bin p m l r) | nomatch k p m = not_found | zero k m = go l | otherwise = go r go (Tip kx x) | k == kx = x | otherwise = not_found go Nil = not_found not_found = error ("IntMap.!: key " ++ show k ++ " is not an element of the map") -- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@ -- returns the value at key @k@ or returns @def@ when the key is not an -- element of the map. -- -- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' -- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a' -- See Note: Local 'go' functions and capturing] findWithDefault :: a -> Key -> IntMap a -> a findWithDefault def !k = go where go (Bin p m l r) | nomatch k p m = def | zero k m = go l | otherwise = go r go (Tip kx x) | k == kx = x | otherwise = def go Nil = def -- | /O(log n)/. Find largest key smaller than the given one and return the -- corresponding (key, value) pair. -- -- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing -- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') -- See Note: Local 'go' functions and capturing. lookupLT :: Key -> IntMap a -> Maybe (Key, a) lookupLT !k t = case t of Bin _ m l r | m < 0 -> if k >= 0 then go r l else go Nil r _ -> go Nil t where go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMax def else unsafeFindMax r | zero k m = go def l | otherwise = go l r go def (Tip ky y) | k <= ky = unsafeFindMax def | otherwise = Just (ky, y) go def Nil = unsafeFindMax def -- | /O(log n)/. Find smallest key greater than the given one and return the -- corresponding (key, value) pair. -- -- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') -- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing -- See Note: Local 'go' functions and capturing. lookupGT :: Key -> IntMap a -> Maybe (Key, a) lookupGT !k t = case t of Bin _ m l r | m < 0 -> if k >= 0 then go Nil l else go l r _ -> go Nil t where go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMin l else unsafeFindMin def | zero k m = go r l | otherwise = go def r go def (Tip ky y) | k >= ky = unsafeFindMin def | otherwise = Just (ky, y) go def Nil = unsafeFindMin def -- | /O(log n)/. Find largest key smaller or equal to the given one and return -- the corresponding (key, value) pair. -- -- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing -- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') -- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') -- See Note: Local 'go' functions and capturing. lookupLE :: Key -> IntMap a -> Maybe (Key, a) lookupLE !k t = case t of Bin _ m l r | m < 0 -> if k >= 0 then go r l else go Nil r _ -> go Nil t where go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMax def else unsafeFindMax r | zero k m = go def l | otherwise = go l r go def (Tip ky y) | k < ky = unsafeFindMax def | otherwise = Just (ky, y) go def Nil = unsafeFindMax def -- | /O(log n)/. Find smallest key greater or equal to the given one and return -- the corresponding (key, value) pair. -- -- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') -- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') -- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing -- See Note: Local 'go' functions and capturing. lookupGE :: Key -> IntMap a -> Maybe (Key, a) lookupGE !k t = case t of Bin _ m l r | m < 0 -> if k >= 0 then go Nil l else go l r _ -> go Nil t where go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMin l else unsafeFindMin def | zero k m = go r l | otherwise = go def r go def (Tip ky y) | k > ky = unsafeFindMin def | otherwise = Just (ky, y) go def Nil = unsafeFindMin def -- Helper function for lookupGE and lookupGT. It assumes that if a Bin node is -- given, it has m > 0. unsafeFindMin :: IntMap a -> Maybe (Key, a) unsafeFindMin Nil = Nothing unsafeFindMin (Tip ky y) = Just (ky, y) unsafeFindMin (Bin _ _ l _) = unsafeFindMin l -- Helper function for lookupLE and lookupLT. It assumes that if a Bin node is -- given, it has m > 0. unsafeFindMax :: IntMap a -> Maybe (Key, a) unsafeFindMax Nil = Nothing unsafeFindMax (Tip ky y) = Just (ky, y) unsafeFindMax (Bin _ _ _ r) = unsafeFindMax r {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. The empty map. -- -- > empty == fromList [] -- > size empty == 0 empty :: IntMap a empty = Nil {-# INLINE empty #-} -- | /O(1)/. A map of one element. -- -- > singleton 1 'a' == fromList [(1, 'a')] -- > size (singleton 1 'a') == 1 singleton :: Key -> a -> IntMap a singleton k x = Tip k x {-# INLINE singleton #-} {-------------------------------------------------------------------- Insert --------------------------------------------------------------------} -- | /O(min(n,W))/. Insert a new key\/value pair in the map. -- If the key is already present in the map, the associated value is -- replaced with the supplied value, i.e. 'insert' is equivalent to -- @'insertWith' 'const'@. -- -- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')] -- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')] -- > insert 5 'x' empty == singleton 5 'x' insert :: Key -> a -> IntMap a -> IntMap a insert !k x t@(Bin p m l r) | nomatch k p m = link k (Tip k x) p t | zero k m = Bin p m (insert k x l) r | otherwise = Bin p m l (insert k x r) insert k x t@(Tip ky _) | k==ky = Tip k x | otherwise = link k (Tip k x) ky t insert k x Nil = Tip k x -- right-biased insertion, used by 'union' -- | /O(min(n,W))/. Insert with a combining function. -- @'insertWith' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert @f new_value old_value@. -- -- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] -- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWith (++) 5 "xxx" empty == singleton 5 "xxx" insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a insertWith f k x t = insertWithKey (\_ x' y' -> f x' y') k x t -- | /O(min(n,W))/. Insert with a combining function. -- @'insertWithKey' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert @f key new_value old_value@. -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] -- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWithKey f 5 "xxx" empty == singleton 5 "xxx" insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a insertWithKey f !k x t@(Bin p m l r) | nomatch k p m = link k (Tip k x) p t | zero k m = Bin p m (insertWithKey f k x l) r | otherwise = Bin p m l (insertWithKey f k x r) insertWithKey f k x t@(Tip ky y) | k == ky = Tip k (f k x y) | otherwise = link k (Tip k x) ky t insertWithKey _ k x Nil = Tip k x -- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@) -- is a pair where the first element is equal to (@'lookup' k map@) -- and the second element equal to (@'insertWithKey' f k x map@). -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) -- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) -- > insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx") -- -- This is how to define @insertLookup@ using @insertLookupWithKey@: -- -- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t -- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) -- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")]) insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a) insertLookupWithKey f !k x t@(Bin p m l r) | nomatch k p m = (Nothing,link k (Tip k x) p t) | zero k m = let (found,l') = insertLookupWithKey f k x l in (found,Bin p m l' r) | otherwise = let (found,r') = insertLookupWithKey f k x r in (found,Bin p m l r') insertLookupWithKey f k x t@(Tip ky y) | k == ky = (Just y,Tip k (f k x y)) | otherwise = (Nothing,link k (Tip k x) ky t) insertLookupWithKey _ k x Nil = (Nothing,Tip k x) {-------------------------------------------------------------------- Deletion --------------------------------------------------------------------} -- | /O(min(n,W))/. Delete a key and its value from the map. When the key is not -- a member of the map, the original map is returned. -- -- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > delete 5 empty == empty delete :: Key -> IntMap a -> IntMap a delete !k t@(Bin p m l r) | nomatch k p m = t | zero k m = binCheckLeft p m (delete k l) r | otherwise = binCheckRight p m l (delete k r) delete k t@(Tip ky _) | k == ky = Nil | otherwise = t delete _k Nil = Nil -- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. -- -- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjust ("new " ++) 7 empty == empty adjust :: (a -> a) -> Key -> IntMap a -> IntMap a adjust f k m = adjustWithKey (\_ x -> f x) k m -- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. -- -- > let f key x = (show key) ++ ":new " ++ x -- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjustWithKey f 7 empty == empty adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a adjustWithKey f !k t@(Bin p m l r) | nomatch k p m = t | zero k m = Bin p m (adjustWithKey f k l) r | otherwise = Bin p m l (adjustWithKey f k r) adjustWithKey f k t@(Tip ky y) | k == ky = Tip ky (f k y) | otherwise = t adjustWithKey _ _ Nil = Nil -- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a update f = updateWithKey (\_ x -> f x) -- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a updateWithKey f !k t@(Bin p m l r) | nomatch k p m = t | zero k m = binCheckLeft p m (updateWithKey f k l) r | otherwise = binCheckRight p m l (updateWithKey f k r) updateWithKey f k t@(Tip ky y) | k == ky = case (f k y) of Just y' -> Tip ky y' Nothing -> Nil | otherwise = t updateWithKey _ _ Nil = Nil -- | /O(min(n,W))/. Lookup and update. -- The function returns original value, if it is updated. -- This is different behavior than 'Data.Map.updateLookupWithKey'. -- Returns the original key value if the map entry is deleted. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")]) -- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) -- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a") updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a) updateLookupWithKey f !k t@(Bin p m l r) | nomatch k p m = (Nothing,t) | zero k m = let !(found,l') = updateLookupWithKey f k l in (found,binCheckLeft p m l' r) | otherwise = let !(found,r') = updateLookupWithKey f k r in (found,binCheckRight p m l r') updateLookupWithKey f k t@(Tip ky y) | k==ky = case (f k y) of Just y' -> (Just y,Tip ky y') Nothing -> (Just y,Nil) | otherwise = (Nothing,t) updateLookupWithKey _ _ Nil = (Nothing,Nil) -- | /O(min(n,W))/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alter' can be used to insert, delete, or update a value in an 'IntMap'. -- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@. alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a alter f !k t@(Bin p m l r) | nomatch k p m = case f Nothing of Nothing -> t Just x -> link k (Tip k x) p t | zero k m = binCheckLeft p m (alter f k l) r | otherwise = binCheckRight p m l (alter f k r) alter f k t@(Tip ky y) | k==ky = case f (Just y) of Just x -> Tip ky x Nothing -> Nil | otherwise = case f Nothing of Just x -> link k (Tip k x) ky t Nothing -> Tip ky y alter f k Nil = case f Nothing of Just x -> Tip k x Nothing -> Nil -- | /O(log n)/. The expression (@'alterF' f k map@) alters the value @x@ at -- @k@, or absence thereof. 'alterF' can be used to inspect, insert, delete, -- or update a value in an 'IntMap'. In short : @'lookup' k <$> 'alterF' f k m = f -- ('lookup' k m)@. -- -- Example: -- -- @ -- interactiveAlter :: Int -> IntMap String -> IO (IntMap String) -- interactiveAlter k m = alterF f k m where -- f Nothing -> do -- putStrLn $ show k ++ -- " was not found in the map. Would you like to add it?" -- getUserResponse1 :: IO (Maybe String) -- f (Just old) -> do -- putStrLn "The key is currently bound to " ++ show old ++ -- ". Would you like to change or delete it?" -- getUserresponse2 :: IO (Maybe String) -- @ -- -- 'alterF' is the most general operation for working with an individual -- key that may or may not be in a given map. -- -- Note: 'alterF' is a flipped version of the 'at' combinator from -- 'Control.Lens.At'. -- -- @since 0.5.8 alterF :: Functor f => (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a) -- This implementation was stolen from 'Control.Lens.At'. alterF f k m = (<$> f mv) $ \fres -> case fres of Nothing -> maybe m (const (delete k m)) mv Just v' -> insert k v' m where mv = lookup k m {-------------------------------------------------------------------- Union --------------------------------------------------------------------} -- | The union of a list of maps. -- -- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] -- > == fromList [(3, "b"), (5, "a"), (7, "C")] -- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])] -- > == fromList [(3, "B3"), (5, "A3"), (7, "C")] unions :: [IntMap a] -> IntMap a unions xs = foldlStrict union empty xs -- | The union of a list of maps, with a combining operation. -- -- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] -- > == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")] unionsWith :: (a->a->a) -> [IntMap a] -> IntMap a unionsWith f ts = foldlStrict (unionWith f) empty ts -- | /O(n+m)/. The (left-biased) union of two maps. -- It prefers the first map when duplicate keys are encountered, -- i.e. (@'union' == 'unionWith' 'const'@). -- -- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")] union :: IntMap a -> IntMap a -> IntMap a union m1 m2 = mergeWithKey' Bin const id id m1 m2 -- | /O(n+m)/. The union with a combining function. -- -- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")] unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a unionWith f m1 m2 = unionWithKey (\_ x y -> f x y) m1 m2 -- | /O(n+m)/. The union with a combining function. -- -- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value -- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")] unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a unionWithKey f m1 m2 = mergeWithKey' Bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 (f k1 x1 x2)) id id m1 m2 {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(n+m)/. Difference between two maps (based on keys). -- -- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b" difference :: IntMap a -> IntMap b -> IntMap a difference m1 m2 = mergeWithKey (\_ _ _ -> Nothing) id (const Nil) m1 m2 -- | /O(n+m)/. Difference with a combining function. -- -- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing -- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")]) -- > == singleton 3 "b:B" differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a differenceWith f m1 m2 = differenceWithKey (\_ x y -> f x y) m1 m2 -- | /O(n+m)/. Difference with a combining function. When two equal keys are -- encountered, the combining function is applied to the key and both values. -- If it returns 'Nothing', the element is discarded (proper set difference). -- If it returns (@'Just' y@), the element is updated with a new value @y@. -- -- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing -- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")]) -- > == singleton 3 "3:b|B" differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a differenceWithKey f m1 m2 = mergeWithKey f id (const Nil) m1 m2 -- TODO(wrengr): re-verify that asymptotic bound -- | /O(n+m)/. Remove all the keys in a given set from a map. -- -- @ -- m `withoutKeys` s = 'filterWithKey' (\k _ -> k `'IntSet.notMember'` s) m -- @ -- -- @since 0.5.8 withoutKeys :: IntMap a -> IntSet.IntSet -> IntMap a withoutKeys t1@(Bin p1 m1 l1 r1) t2@(IntSet.Bin p2 m2 l2 r2) | shorter m1 m2 = difference1 | shorter m2 m1 = difference2 | p1 == p2 = bin p1 m1 (withoutKeys l1 l2) (withoutKeys r1 r2) | otherwise = t1 where difference1 | nomatch p2 p1 m1 = t1 | zero p2 m1 = binCheckLeft p1 m1 (withoutKeys l1 t2) r1 | otherwise = binCheckRight p1 m1 l1 (withoutKeys r1 t2) difference2 | nomatch p1 p2 m2 = t1 | zero p1 m2 = withoutKeys t1 l2 | otherwise = withoutKeys t1 r2 withoutKeys t1@(Bin p1 m1 _ _) (IntSet.Tip p2 bm2) = let minbit = bitmapOf p1 lt_minbit = minbit - 1 maxbit = bitmapOf (p1 .|. (m1 .|. (m1 - 1))) gt_maxbit = maxbit `xor` complement (maxbit - 1) -- TODO(wrengr): should we manually inline/unroll 'updatePrefix' -- and 'withoutBM' here, in order to avoid redundant case analyses? in updatePrefix p2 t1 $ withoutBM (bm2 .|. lt_minbit .|. gt_maxbit) withoutKeys t1@(Bin _ _ _ _) IntSet.Nil = t1 withoutKeys t1@(Tip k1 _) t2 | k1 `IntSet.member` t2 = Nil | otherwise = t1 withoutKeys Nil _ = Nil updatePrefix :: IntSetPrefix -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a updatePrefix !kp t@(Bin p m l r) f | m .&. IntSet.suffixBitMask /= 0 = if p .&. IntSet.prefixBitMask == kp then f t else t | nomatch kp p m = t | zero kp m = binCheckLeft p m (updatePrefix kp l f) r | otherwise = binCheckRight p m l (updatePrefix kp r f) updatePrefix kp t@(Tip kx _) f | kx .&. IntSet.prefixBitMask == kp = f t | otherwise = t updatePrefix _ Nil _ = Nil withoutBM :: IntSetBitMap -> IntMap a -> IntMap a withoutBM 0 t = t withoutBM bm (Bin p m l r) = let leftBits = bitmapOf (p .|. m) - 1 bmL = bm .&. leftBits bmR = bm `xor` bmL -- = (bm .&. complement leftBits) in bin p m (withoutBM bmL l) (withoutBM bmR r) withoutBM bm t@(Tip k _) -- TODO(wrengr): need we manually inline 'IntSet.Member' here? | k `IntSet.member` IntSet.Tip (k .&. IntSet.prefixBitMask) bm = Nil | otherwise = t withoutBM _ Nil = Nil {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(n+m)/. The (left-biased) intersection of two maps (based on keys). -- -- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a" intersection :: IntMap a -> IntMap b -> IntMap a intersection m1 m2 = mergeWithKey' bin const (const Nil) (const Nil) m1 m2 -- TODO(wrengr): re-verify that asymptotic bound -- | /O(n+m)/. The restriction of a map to the keys in a set. -- -- @ -- m `restrictKeys` s = 'filterWithKey' (\k _ -> k `'IntSet.member'` s) m -- @ -- -- @since 0.5.8 restrictKeys :: IntMap a -> IntSet.IntSet -> IntMap a restrictKeys t1@(Bin p1 m1 l1 r1) t2@(IntSet.Bin p2 m2 l2 r2) | shorter m1 m2 = intersection1 | shorter m2 m1 = intersection2 | p1 == p2 = bin p1 m1 (restrictKeys l1 l2) (restrictKeys r1 r2) | otherwise = Nil where intersection1 | nomatch p2 p1 m1 = Nil | zero p2 m1 = restrictKeys l1 t2 | otherwise = restrictKeys r1 t2 intersection2 | nomatch p1 p2 m2 = Nil | zero p1 m2 = restrictKeys t1 l2 | otherwise = restrictKeys t1 r2 restrictKeys t1@(Bin p1 m1 _ _) (IntSet.Tip p2 bm2) = let minbit = bitmapOf p1 ge_minbit = complement (minbit - 1) maxbit = bitmapOf (p1 .|. (m1 .|. (m1 - 1))) le_maxbit = maxbit .|. (maxbit - 1) -- TODO(wrengr): should we manually inline/unroll 'lookupPrefix' -- and 'restrictBM' here, in order to avoid redundant case analyses? in restrictBM (bm2 .&. ge_minbit .&. le_maxbit) (lookupPrefix p2 t1) restrictKeys (Bin _ _ _ _) IntSet.Nil = Nil restrictKeys t1@(Tip k1 _) t2 | k1 `IntSet.member` t2 = t1 | otherwise = Nil restrictKeys Nil _ = Nil -- | /O(min(n,W))/. Restrict to the sub-map with all keys matching -- a key prefix. lookupPrefix :: IntSetPrefix -> IntMap a -> IntMap a lookupPrefix !kp t@(Bin p m l r) | m .&. IntSet.suffixBitMask /= 0 = if p .&. IntSet.prefixBitMask == kp then t else Nil | nomatch kp p m = Nil | zero kp m = lookupPrefix kp l | otherwise = lookupPrefix kp r lookupPrefix kp t@(Tip kx _) | (kx .&. IntSet.prefixBitMask) == kp = t | otherwise = Nil lookupPrefix _ Nil = Nil restrictBM :: IntSetBitMap -> IntMap a -> IntMap a restrictBM 0 _ = Nil restrictBM bm (Bin p m l r) = let leftBits = bitmapOf (p .|. m) - 1 bmL = bm .&. leftBits bmR = bm `xor` bmL -- = (bm .&. complement leftBits) in bin p m (restrictBM bmL l) (restrictBM bmR r) restrictBM bm t@(Tip k _) -- TODO(wrengr): need we manually inline 'IntSet.Member' here? | k `IntSet.member` IntSet.Tip (k .&. IntSet.prefixBitMask) bm = t | otherwise = Nil restrictBM _ Nil = Nil -- | /O(n+m)/. The intersection with a combining function. -- -- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA" intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c intersectionWith f m1 m2 = intersectionWithKey (\_ x y -> f x y) m1 m2 -- | /O(n+m)/. The intersection with a combining function. -- -- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar -- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A" intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c intersectionWithKey f m1 m2 = mergeWithKey' bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 (f k1 x1 x2)) (const Nil) (const Nil) m1 m2 {-------------------------------------------------------------------- MergeWithKey --------------------------------------------------------------------} -- | /O(n+m)/. A high-performance universal combining function. Using -- 'mergeWithKey', all combining functions can be defined without any loss of -- efficiency (with exception of 'union', 'difference' and 'intersection', -- where sharing of some nodes is lost with 'mergeWithKey'). -- -- Please make sure you know what is going on when using 'mergeWithKey', -- otherwise you can be surprised by unexpected code growth or even -- corruption of the data structure. -- -- When 'mergeWithKey' is given three arguments, it is inlined to the call -- site. You should therefore use 'mergeWithKey' only to define your custom -- combining functions. For example, you could define 'unionWithKey', -- 'differenceWithKey' and 'intersectionWithKey' as -- -- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2 -- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2 -- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2 -- -- When calling @'mergeWithKey' combine only1 only2@, a function combining two -- 'IntMap's is created, such that -- -- * if a key is present in both maps, it is passed with both corresponding -- values to the @combine@ function. Depending on the result, the key is either -- present in the result with specified value, or is left out; -- -- * a nonempty subtree present only in the first map is passed to @only1@ and -- the output is added to the result; -- -- * a nonempty subtree present only in the second map is passed to @only2@ and -- the output is added to the result. -- -- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/. -- The values can be modified arbitrarily. Most common variants of @only1@ and -- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or -- @'filterWithKey' f@ could be used for any @f@. mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c mergeWithKey f g1 g2 = mergeWithKey' bin combine g1 g2 where -- We use the lambda form to avoid non-exhaustive pattern matches warning. combine = \(Tip k1 x1) (Tip _k2 x2) -> case f k1 x1 x2 of Nothing -> Nil Just x -> Tip k1 x {-# INLINE combine #-} {-# INLINE mergeWithKey #-} -- Slightly more general version of mergeWithKey. It differs in the following: -- -- * the combining function operates on maps instead of keys and values. The -- reason is to enable sharing in union, difference and intersection. -- -- * mergeWithKey' is given an equivalent of bin. The reason is that in union*, -- Bin constructor can be used, because we know both subtrees are nonempty. mergeWithKey' :: (Prefix -> Mask -> IntMap c -> IntMap c -> IntMap c) -> (IntMap a -> IntMap b -> IntMap c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c mergeWithKey' bin' f g1 g2 = go where go t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2) | shorter m1 m2 = merge1 | shorter m2 m1 = merge2 | p1 == p2 = bin' p1 m1 (go l1 l2) (go r1 r2) | otherwise = maybe_link p1 (g1 t1) p2 (g2 t2) where merge1 | nomatch p2 p1 m1 = maybe_link p1 (g1 t1) p2 (g2 t2) | zero p2 m1 = bin' p1 m1 (go l1 t2) (g1 r1) | otherwise = bin' p1 m1 (g1 l1) (go r1 t2) merge2 | nomatch p1 p2 m2 = maybe_link p1 (g1 t1) p2 (g2 t2) | zero p1 m2 = bin' p2 m2 (go t1 l2) (g2 r2) | otherwise = bin' p2 m2 (g2 l2) (go t1 r2) go t1'@(Bin _ _ _ _) t2'@(Tip k2' _) = merge0 t2' k2' t1' where merge0 t2 k2 t1@(Bin p1 m1 l1 r1) | nomatch k2 p1 m1 = maybe_link p1 (g1 t1) k2 (g2 t2) | zero k2 m1 = bin' p1 m1 (merge0 t2 k2 l1) (g1 r1) | otherwise = bin' p1 m1 (g1 l1) (merge0 t2 k2 r1) merge0 t2 k2 t1@(Tip k1 _) | k1 == k2 = f t1 t2 | otherwise = maybe_link k1 (g1 t1) k2 (g2 t2) merge0 t2 _ Nil = g2 t2 go t1@(Bin _ _ _ _) Nil = g1 t1 go t1'@(Tip k1' _) t2' = merge0 t1' k1' t2' where merge0 t1 k1 t2@(Bin p2 m2 l2 r2) | nomatch k1 p2 m2 = maybe_link k1 (g1 t1) p2 (g2 t2) | zero k1 m2 = bin' p2 m2 (merge0 t1 k1 l2) (g2 r2) | otherwise = bin' p2 m2 (g2 l2) (merge0 t1 k1 r2) merge0 t1 k1 t2@(Tip k2 _) | k1 == k2 = f t1 t2 | otherwise = maybe_link k1 (g1 t1) k2 (g2 t2) merge0 t1 _ Nil = g1 t1 go Nil t2 = g2 t2 maybe_link _ Nil _ t2 = t2 maybe_link _ t1 _ Nil = t1 maybe_link p1 t1 p2 t2 = link p1 t1 p2 t2 {-# INLINE maybe_link #-} {-# INLINE mergeWithKey' #-} {-------------------------------------------------------------------- mergeA --------------------------------------------------------------------} -- | A tactic for dealing with keys present in one map but not the -- other in 'merge' or 'mergeA'. -- -- A tactic of type @WhenMissing f k x z@ is an abstract representation -- of a function of type @Key -> x -> f (Maybe z)@. data WhenMissing f x y = WhenMissing { missingSubtree :: IntMap x -> f (IntMap y) , missingKey :: Key -> x -> f (Maybe y)} instance (Applicative f, Monad f) => Functor (WhenMissing f x) where fmap = mapWhenMissing {-# INLINE fmap #-} instance (Applicative f, Monad f) => Category.Category (WhenMissing f) where id = preserveMissing f . g = traverseMaybeMissing $ \ k x -> do y <- missingKey g k x case y of Nothing -> pure Nothing Just q -> missingKey f k q {-# INLINE id #-} {-# INLINE (.) #-} -- | Equivalent to @ReaderT k (ReaderT x (MaybeT f))@. instance (Applicative f, Monad f) => Applicative (WhenMissing f x) where pure x = mapMissing (\ _ _ -> x) f <*> g = traverseMaybeMissing $ \k x -> do res1 <- missingKey f k x case res1 of Nothing -> pure Nothing Just r -> (pure $!) . fmap r =<< missingKey g k x {-# INLINE pure #-} {-# INLINE (<*>) #-} -- | Equivalent to @ReaderT k (ReaderT x (MaybeT f))@. instance (Applicative f, Monad f) => Monad (WhenMissing f x) where m >>= f = traverseMaybeMissing $ \k x -> do res1 <- missingKey m k x case res1 of Nothing -> pure Nothing Just r -> missingKey (f r) k x {-# INLINE (>>=) #-} -- | Map covariantly over a @'WhenMissing' f x@. mapWhenMissing :: (Applicative f, Monad f) => (a -> b) -> WhenMissing f x a -> WhenMissing f x b mapWhenMissing f t = WhenMissing { missingSubtree = \m -> missingSubtree t m >>= \m' -> pure $! fmap f m' , missingKey = \k x -> missingKey t k x >>= \q -> (pure $! fmap f q) } {-# INLINE mapWhenMissing #-} -- | Map covariantly over a @'WhenMissing' f x@, using only a -- 'Functor f' constraint. mapGentlyWhenMissing :: Functor f => (a -> b) -> WhenMissing f x a -> WhenMissing f x b mapGentlyWhenMissing f t = WhenMissing { missingSubtree = \m -> fmap f <$> missingSubtree t m , missingKey = \k x -> fmap f <$> missingKey t k x } {-# INLINE mapGentlyWhenMissing #-} -- | Map covariantly over a @'WhenMatched' f k x@, using only a -- 'Functor f' constraint. mapGentlyWhenMatched :: Functor f => (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b mapGentlyWhenMatched f t = zipWithMaybeAMatched $ \k x y -> fmap f <$> runWhenMatched t k x y {-# INLINE mapGentlyWhenMatched #-} -- | Map contravariantly over a @'WhenMissing' f _ x@. lmapWhenMissing :: (b -> a) -> WhenMissing f a x -> WhenMissing f b x lmapWhenMissing f t = WhenMissing { missingSubtree = \m -> missingSubtree t (fmap f m) , missingKey = \k x -> missingKey t k (f x) } {-# INLINE lmapWhenMissing #-} -- | Map contravariantly over a @'WhenMatched' f _ y z@. contramapFirstWhenMatched :: (b -> a) -> WhenMatched f a y z -> WhenMatched f b y z contramapFirstWhenMatched f t = WhenMatched $ \k x y -> runWhenMatched t k (f x) y {-# INLINE contramapFirstWhenMatched #-} -- | Map contravariantly over a @'WhenMatched' f x _ z@. contramapSecondWhenMatched :: (b -> a) -> WhenMatched f x a z -> WhenMatched f x b z contramapSecondWhenMatched f t = WhenMatched $ \k x y -> runWhenMatched t k x (f y) {-# INLINE contramapSecondWhenMatched #-} -- | A tactic for dealing with keys present in one map but not the -- other in 'merge'. -- -- A tactic of type @SimpleWhenMissing x z@ is an abstract -- representation of a function of type @Key -> x -> Maybe z@. type SimpleWhenMissing = WhenMissing Identity -- | A tactic for dealing with keys present in both maps in 'merge' -- or 'mergeA'. -- -- A tactic of type @WhenMatched f x y z@ is an abstract representation -- of a function of type @Key -> x -> y -> f (Maybe z)@. newtype WhenMatched f x y z = WhenMatched { matchedKey :: Key -> x -> y -> f (Maybe z) } -- | Along with zipWithMaybeAMatched, witnesses the isomorphism -- between @WhenMatched f x y z@ and @Key -> x -> y -> f (Maybe z)@. runWhenMatched :: WhenMatched f x y z -> Key -> x -> y -> f (Maybe z) runWhenMatched = matchedKey {-# INLINE runWhenMatched #-} -- | Along with traverseMaybeMissing, witnesses the isomorphism -- between @WhenMissing f x y@ and @Key -> x -> f (Maybe y)@. runWhenMissing :: WhenMissing f x y -> Key-> x -> f (Maybe y) runWhenMissing = missingKey {-# INLINE runWhenMissing #-} instance Functor f => Functor (WhenMatched f x y) where fmap = mapWhenMatched {-# INLINE fmap #-} instance (Monad f, Applicative f) => Category.Category (WhenMatched f x) where id = zipWithMatched (\_ _ y -> y) f . g = zipWithMaybeAMatched $ \k x y -> do res <- runWhenMatched g k x y case res of Nothing -> pure Nothing Just r -> runWhenMatched f k x r {-# INLINE id #-} {-# INLINE (.) #-} -- | Equivalent to @ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))@ instance (Monad f, Applicative f) => Applicative (WhenMatched f x y) where pure x = zipWithMatched (\_ _ _ -> x) fs <*> xs = zipWithMaybeAMatched $ \k x y -> do res <- runWhenMatched fs k x y case res of Nothing -> pure Nothing Just r -> (pure $!) . fmap r =<< runWhenMatched xs k x y {-# INLINE pure #-} {-# INLINE (<*>) #-} -- | Equivalent to @ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))@ instance (Monad f, Applicative f) => Monad (WhenMatched f x y) where m >>= f = zipWithMaybeAMatched $ \k x y -> do res <- runWhenMatched m k x y case res of Nothing -> pure Nothing Just r -> runWhenMatched (f r) k x y {-# INLINE (>>=) #-} -- | Map covariantly over a @'WhenMatched' f x y@. mapWhenMatched :: Functor f => (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b mapWhenMatched f (WhenMatched g) = WhenMatched $ \k x y -> fmap (fmap f) (g k x y) {-# INLINE mapWhenMatched #-} -- | A tactic for dealing with keys present in both maps in 'merge'. -- -- A tactic of type @SimpleWhenMatched x y z@ is an abstract -- representation of a function of type @Key -> x -> y -> Maybe z@. type SimpleWhenMatched = WhenMatched Identity -- | When a key is found in both maps, apply a function to the key -- and values and use the result in the merged map. -- -- > zipWithMatched -- > :: (Key -> x -> y -> z) -- > -> SimpleWhenMatched x y z zipWithMatched :: Applicative f => (Key -> x -> y -> z) -> WhenMatched f x y z zipWithMatched f = WhenMatched $ \ k x y -> pure . Just $ f k x y {-# INLINE zipWithMatched #-} -- | When a key is found in both maps, apply a function to the key -- and values to produce an action and use its result in the merged -- map. zipWithAMatched :: Applicative f => (Key -> x -> y -> f z) -> WhenMatched f x y z zipWithAMatched f = WhenMatched $ \ k x y -> Just <$> f k x y {-# INLINE zipWithAMatched #-} -- | When a key is found in both maps, apply a function to the key -- and values and maybe use the result in the merged map. -- -- > zipWithMaybeMatched -- > :: (Key -> x -> y -> Maybe z) -- > -> SimpleWhenMatched x y z zipWithMaybeMatched :: Applicative f => (Key -> x -> y -> Maybe z) -> WhenMatched f x y z zipWithMaybeMatched f = WhenMatched $ \ k x y -> pure $ f k x y {-# INLINE zipWithMaybeMatched #-} -- | When a key is found in both maps, apply a function to the key -- and values, perform the resulting action, and maybe use the -- result in the merged map. -- -- This is the fundamental 'WhenMatched' tactic. zipWithMaybeAMatched :: (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z zipWithMaybeAMatched f = WhenMatched $ \ k x y -> f k x y {-# INLINE zipWithMaybeAMatched #-} -- | Drop all the entries whose keys are missing from the other -- map. -- -- > dropMissing :: SimpleWhenMissing x y -- -- prop> dropMissing = mapMaybeMissing (\_ _ -> Nothing) -- -- but @dropMissing@ is much faster. dropMissing :: Applicative f => WhenMissing f x y dropMissing = WhenMissing { missingSubtree = const (pure Nil) , missingKey = \_ _ -> pure Nothing } {-# INLINE dropMissing #-} -- | Preserve, unchanged, the entries whose keys are missing from -- the other map. -- -- > preserveMissing :: SimpleWhenMissing x x -- -- prop> preserveMissing = Merge.Lazy.mapMaybeMissing (\_ x -> Just x) -- -- but @preserveMissing@ is much faster. preserveMissing :: Applicative f => WhenMissing f x x preserveMissing = WhenMissing { missingSubtree = pure , missingKey = \_ v -> pure (Just v) } {-# INLINE preserveMissing #-} -- | Map over the entries whose keys are missing from the other map. -- -- > mapMissing :: (k -> x -> y) -> SimpleWhenMissing x y -- -- prop> mapMissing f = mapMaybeMissing (\k x -> Just $ f k x) -- -- but @mapMissing@ is somewhat faster. mapMissing :: Applicative f => (Key -> x -> y) -> WhenMissing f x y mapMissing f = WhenMissing { missingSubtree = \m -> pure $! mapWithKey f m , missingKey = \k x -> pure $ Just (f k x) } {-# INLINE mapMissing #-} -- | Map over the entries whose keys are missing from the other -- map, optionally removing some. This is the most powerful -- 'SimpleWhenMissing' tactic, but others are usually more efficient. -- -- > mapMaybeMissing :: (Key -> x -> Maybe y) -> SimpleWhenMissing x y -- -- prop> mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x)) -- -- but @mapMaybeMissing@ uses fewer unnecessary 'Applicative' -- operations. mapMaybeMissing :: Applicative f => (Key -> x -> Maybe y) -> WhenMissing f x y mapMaybeMissing f = WhenMissing { missingSubtree = \m -> pure $! mapMaybeWithKey f m , missingKey = \k x -> pure $! f k x } {-# INLINE mapMaybeMissing #-} -- | Filter the entries whose keys are missing from the other map. -- -- > filterMissing :: (k -> x -> Bool) -> SimpleWhenMissing x x -- -- prop> filterMissing f = Merge.Lazy.mapMaybeMissing $ \k x -> guard (f k x) *> Just x -- -- but this should be a little faster. filterMissing :: Applicative f => (Key -> x -> Bool) -> WhenMissing f x x filterMissing f = WhenMissing { missingSubtree = \m -> pure $! filterWithKey f m , missingKey = \k x -> pure $! if f k x then Just x else Nothing } {-# INLINE filterMissing #-} -- | Filter the entries whose keys are missing from the other map -- using some 'Applicative' action. -- -- > filterAMissing f = Merge.Lazy.traverseMaybeMissing $ -- > \k x -> (\b -> guard b *> Just x) <$> f k x -- -- but this should be a little faster. filterAMissing :: Applicative f => (Key -> x -> f Bool) -> WhenMissing f x x filterAMissing f = WhenMissing { missingSubtree = \m -> filterWithKeyA f m , missingKey = \k x -> bool Nothing (Just x) <$> f k x } {-# INLINE filterAMissing #-} -- | /O(n)/. Filter keys and values using an 'Applicative' predicate. filterWithKeyA :: Applicative f => (Key -> a -> f Bool) -> IntMap a -> f (IntMap a) filterWithKeyA _ Nil = pure Nil filterWithKeyA f t@(Tip k x) = (\b -> if b then t else Nil) <$> f k x filterWithKeyA f (Bin p m l r) = liftA2 (bin p m) (filterWithKeyA f l) (filterWithKeyA f r) -- | This wasn't in Data.Bool until 4.7.0, so we define it here bool :: a -> a -> Bool -> a bool f _ False = f bool _ t True = t -- | Traverse over the entries whose keys are missing from the other -- map. traverseMissing :: Applicative f => (Key -> x -> f y) -> WhenMissing f x y traverseMissing f = WhenMissing { missingSubtree = traverseWithKey f , missingKey = \k x -> Just <$> f k x } {-# INLINE traverseMissing #-} -- | Traverse over the entries whose keys are missing from the other -- map, optionally producing values to put in the result. This is -- the most powerful 'WhenMissing' tactic, but others are usually -- more efficient. traverseMaybeMissing :: Applicative f => (Key -> x -> f (Maybe y)) -> WhenMissing f x y traverseMaybeMissing f = WhenMissing { missingSubtree = traverseMaybeWithKey f , missingKey = f } {-# INLINE traverseMaybeMissing #-} -- | /O(n)/. Traverse keys\/values and collect the 'Just' results. traverseMaybeWithKey :: Applicative f => (Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b) traverseMaybeWithKey f = go where go Nil = pure Nil go (Tip k x) = maybe Nil (Tip k) <$> f k x go (Bin p m l r) = liftA2 (bin p m) (go l) (go r) -- | Merge two maps. -- -- @merge@ takes two 'WhenMissing' tactics, a 'WhenMatched' tactic -- and two maps. It uses the tactics to merge the maps. Its behavior -- is best understood via its fundamental tactics, 'mapMaybeMissing' -- and 'zipWithMaybeMatched'. -- -- Consider -- -- @ -- merge (mapMaybeMissing g1) -- (mapMaybeMissing g2) -- (zipWithMaybeMatched f) -- m1 m2 -- @ -- -- Take, for example, -- -- @ -- m1 = [(0, 'a'), (1, 'b'), (3,'c'), (4, 'd')] -- m2 = [(1, "one"), (2, "two"), (4, "three")] -- @ -- -- @merge@ will first ''align'' these maps by key: -- -- @ -- m1 = [(0, 'a'), (1, 'b'), (3,'c'), (4, 'd')] -- m2 = [(1, "one"), (2, "two"), (4, "three")] -- @ -- -- It will then pass the individual entries and pairs of entries -- to @g1@, @g2@, or @f@ as appropriate: -- -- @ -- maybes = [g1 0 'a', f 1 'b' "one", g2 2 "two", g1 3 'c', f 4 'd' "three"] -- @ -- -- This produces a 'Maybe' for each key: -- -- @ -- keys = 0 1 2 3 4 -- results = [Nothing, Just True, Just False, Nothing, Just True] -- @ -- -- Finally, the @Just@ results are collected into a map: -- -- @ -- return value = [(1, True), (2, False), (4, True)] -- @ -- -- The other tactics below are optimizations or simplifications of -- 'mapMaybeMissing' for special cases. Most importantly, -- -- * 'dropMissing' drops all the keys. -- * 'preserveMissing' leaves all the entries alone. -- -- When 'merge' is given three arguments, it is inlined at the call -- site. To prevent excessive inlining, you should typically use -- 'merge' to define your custom combining functions. -- -- -- Examples: -- -- prop> unionWithKey f = merge preserveMissing preserveMissing (zipWithMatched f) -- prop> intersectionWithKey f = merge dropMissing dropMissing (zipWithMatched f) -- prop> differenceWith f = merge diffPreserve diffDrop f -- prop> symmetricDifference = merge diffPreserve diffPreserve (\ _ _ _ -> Nothing) -- prop> mapEachPiece f g h = merge (diffMapWithKey f) (diffMapWithKey g) -- -- @since 0.5.8 merge :: SimpleWhenMissing a c -- ^ What to do with keys in @m1@ but not @m2@ -> SimpleWhenMissing b c -- ^ What to do with keys in @m2@ but not @m1@ -> SimpleWhenMatched a b c -- ^ What to do with keys in both @m1@ and @m2@ -> IntMap a -- ^ Map @m1@ -> IntMap b -- ^ Map @m2@ -> IntMap c merge g1 g2 f m1 m2 = runIdentity $ mergeA g1 g2 f m1 m2 {-# INLINE merge #-} -- | An applicative version of 'merge'. -- -- @mergeA@ takes two 'WhenMissing' tactics, a 'WhenMatched' -- tactic and two maps. It uses the tactics to merge the maps. -- Its behavior is best understood via its fundamental tactics, -- 'traverseMaybeMissing' and 'zipWithMaybeAMatched'. -- -- Consider -- -- @ -- mergeA (traverseMaybeMissing g1) -- (traverseMaybeMissing g2) -- (zipWithMaybeAMatched f) -- m1 m2 -- @ -- -- Take, for example, -- -- @ -- m1 = [(0, 'a'), (1, 'b'), (3,'c'), (4, 'd')] -- m2 = [(1, "one"), (2, "two"), (4, "three")] -- @ -- -- @mergeA@ will first ''align'' these maps by key: -- -- @ -- m1 = [(0, 'a'), (1, 'b'), (3,'c'), (4, 'd')] -- m2 = [(1, "one"), (2, "two"), (4, "three")] -- @ -- -- It will then pass the individual entries and pairs of entries -- to @g1@, @g2@, or @f@ as appropriate: -- -- @ -- actions = [g1 0 'a', f 1 'b' "one", g2 2 "two", g1 3 'c', f 4 'd' "three"] -- @ -- -- Next, it will perform the actions in the @actions@ list in order from -- left to right. -- -- @ -- keys = 0 1 2 3 4 -- results = [Nothing, Just True, Just False, Nothing, Just True] -- @ -- -- Finally, the @Just@ results are collected into a map: -- -- @ -- return value = [(1, True), (2, False), (4, True)] -- @ -- -- The other tactics below are optimizations or simplifications of -- 'traverseMaybeMissing' for special cases. Most importantly, -- -- * 'dropMissing' drops all the keys. -- * 'preserveMissing' leaves all the entries alone. -- * 'mapMaybeMissing' does not use the 'Applicative' context. -- -- When 'mergeA' is given three arguments, it is inlined at the call -- site. To prevent excessive inlining, you should generally only use -- 'mergeA' to define custom combining functions. -- -- @since 0.5.8 mergeA :: (Applicative f) => WhenMissing f a c -- ^ What to do with keys in @m1@ but not @m2@ -> WhenMissing f b c -- ^ What to do with keys in @m2@ but not @m1@ -> WhenMatched f a b c -- ^ What to do with keys in both @m1@ and @m2@ -> IntMap a -- ^ Map @m1@ -> IntMap b -- ^ Map @m2@ -> f (IntMap c) mergeA WhenMissing{missingSubtree = g1t, missingKey = g1k} WhenMissing{missingSubtree = g2t, missingKey = g2k} WhenMatched{matchedKey = f} = go where go t1 Nil = g1t t1 go Nil t2 = g2t t2 -- This case is already covered below. -- go (Tip k1 x1) (Tip k2 x2) = mergeTips k1 x1 k2 x2 go (Tip k1 x1) t2' = merge2 t2' where merge2 t2@(Bin p2 m2 l2 r2) | nomatch k1 p2 m2 = linkA k1 (subsingletonBy g1k k1 x1) p2 (g2t t2) | zero k1 m2 = liftA2 (bin p2 m2) (merge2 l2) (g2t r2) | otherwise = liftA2 (bin p2 m2) (g2t l2) (merge2 r2) merge2 (Tip k2 x2) = mergeTips k1 x1 k2 x2 merge2 Nil = subsingletonBy g1k k1 x1 go t1' (Tip k2 x2) = merge1 t1' where merge1 t1@(Bin p1 m1 l1 r1) | nomatch k2 p1 m1 = linkA p1 (g1t t1) k2 (subsingletonBy g2k k2 x2) | zero k2 m1 = liftA2 (bin p1 m1) (merge1 l1) (g1t r1) | otherwise = liftA2 (bin p1 m1) (g1t l1) (merge1 r1) merge1 (Tip k1 x1) = mergeTips k1 x1 k2 x2 merge1 Nil = subsingletonBy g2k k2 x2 go t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2) | shorter m1 m2 = merge1 | shorter m2 m1 = merge2 | p1 == p2 = liftA2 (bin p1 m1) (go l1 l2) (go r1 r2) | otherwise = liftA2 (link_ p1 p2) (g1t t1) (g2t t2) where merge1 | nomatch p2 p1 m1 = liftA2 (link_ p1 p2) (g1t t1) (g2t t2) | zero p2 m1 = liftA2 (bin p1 m1) (go l1 t2) (g1t r1) | otherwise = liftA2 (bin p1 m1) (g1t l1) (go r1 t2) merge2 | nomatch p1 p2 m2 = liftA2 (link_ p1 p2) (g1t t1) (g2t t2) | zero p1 m2 = liftA2 (bin p2 m2) (go t1 l2) (g2t r2) | otherwise = liftA2 (bin p2 m2) (g2t l2) (go t1 r2) subsingletonBy gk k x = maybe Nil (Tip k) <$> gk k x {-# INLINE subsingletonBy #-} mergeTips k1 x1 k2 x2 | k1 == k2 = maybe Nil (Tip k1) <$> f k1 x1 x2 | k1 < k2 = liftA2 (subdoubleton k1 k2) (g1k k1 x1) (g2k k2 x2) {- = link_ k1 k2 <$> subsingletonBy g1k k1 x1 <*> subsingletonBy g2k k2 x2 -} | otherwise = liftA2 (subdoubleton k2 k1) (g2k k2 x2) (g1k k1 x1) {-# INLINE mergeTips #-} subdoubleton _ _ Nothing Nothing = Nil subdoubleton _ k2 Nothing (Just y2) = Tip k2 y2 subdoubleton k1 _ (Just y1) Nothing = Tip k1 y1 subdoubleton k1 k2 (Just y1) (Just y2) = link k1 (Tip k1 y1) k2 (Tip k2 y2) {-# INLINE subdoubleton #-} link_ _ _ Nil t2 = t2 link_ _ _ t1 Nil = t1 link_ p1 p2 t1 t2 = link p1 t1 p2 t2 {-# INLINE link_ #-} -- | A variant of 'link_' which makes sure to execute side-effects -- in the right order. linkA :: Applicative f => Prefix -> f (IntMap a) -> Prefix -> f (IntMap a) -> f (IntMap a) linkA p1 t1 p2 t2 | zero p1 m = liftA2 (bin p m) t1 t2 | otherwise = liftA2 (bin p m) t2 t1 where m = branchMask p1 p2 p = mask p1 m {-# INLINE linkA #-} {-# INLINE mergeA #-} {-------------------------------------------------------------------- Min\/Max --------------------------------------------------------------------} -- | /O(min(n,W))/. Update the value at the minimal key. -- -- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")] -- > updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a updateMinWithKey f t = case t of Bin p m l r | m < 0 -> binCheckRight p m l (go f r) _ -> go f t where go f' (Bin p m l r) = binCheckLeft p m (go f' l) r go f' (Tip k y) = case f' k y of Just y' -> Tip k y' Nothing -> Nil go _ Nil = error "updateMinWithKey Nil" -- | /O(min(n,W))/. Update the value at the maximal key. -- -- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")] -- > updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a updateMaxWithKey f t = case t of Bin p m l r | m < 0 -> binCheckLeft p m (go f l) r _ -> go f t where go f' (Bin p m l r) = binCheckRight p m l (go f' r) go f' (Tip k y) = case f' k y of Just y' -> Tip k y' Nothing -> Nil go _ Nil = error "updateMaxWithKey Nil" data View a = View {-# UNPACK #-} !Key a !(IntMap a) -- | /O(min(n,W))/. Retrieves the maximal (key,value) pair of the map, and -- the map stripped of that element, or 'Nothing' if passed an empty map. -- -- > maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b") -- > maxViewWithKey empty == Nothing maxViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a) maxViewWithKey t = case t of Nil -> Nothing Bin p m l r | m < 0 -> Just $ case go l of View k a l' -> ((k, a), binCheckLeft p m l' r) _ -> Just $ case go t of View k a t' -> ((k, a), t') where go (Bin p m l r) = case go r of View k a r' -> View k a (binCheckRight p m l r') go (Tip k y) = View k y Nil go Nil = error "maxViewWithKey Nil" -- | /O(min(n,W))/. Retrieves the minimal (key,value) pair of the map, and -- the map stripped of that element, or 'Nothing' if passed an empty map. -- -- > minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a") -- > minViewWithKey empty == Nothing minViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a) minViewWithKey t = case t of Nil -> Nothing Bin p m l r | m < 0 -> Just $ case go r of View k a r' -> ((k, a), binCheckRight p m l r') _ -> Just $ case go t of View k a t' -> ((k, a), t') where go (Bin p m l r) = case go l of View k a l' -> View k a (binCheckLeft p m l' r) go (Tip k y) = View k y Nil go Nil = error "minViewWithKey Nil" -- | /O(min(n,W))/. Update the value at the maximal key. -- -- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")] -- > updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a updateMax f = updateMaxWithKey (const f) -- | /O(min(n,W))/. Update the value at the minimal key. -- -- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")] -- > updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a updateMin f = updateMinWithKey (const f) -- Similar to the Arrow instance. first :: (a -> c) -> (a, b) -> (c, b) first f (x,y) = (f x,y) -- | /O(min(n,W))/. Retrieves the maximal key of the map, and the map -- stripped of that element, or 'Nothing' if passed an empty map. maxView :: IntMap a -> Maybe (a, IntMap a) maxView t = liftM (first snd) (maxViewWithKey t) -- | /O(min(n,W))/. Retrieves the minimal key of the map, and the map -- stripped of that element, or 'Nothing' if passed an empty map. minView :: IntMap a -> Maybe (a, IntMap a) minView t = liftM (first snd) (minViewWithKey t) -- | /O(min(n,W))/. Delete and find the maximal element. deleteFindMax :: IntMap a -> ((Key, a), IntMap a) deleteFindMax = fromMaybe (error "deleteFindMax: empty map has no maximal element") . maxViewWithKey -- | /O(min(n,W))/. Delete and find the minimal element. deleteFindMin :: IntMap a -> ((Key, a), IntMap a) deleteFindMin = fromMaybe (error "deleteFindMin: empty map has no minimal element") . minViewWithKey -- | /O(min(n,W))/. The minimal key of the map. findMin :: IntMap a -> (Key, a) findMin Nil = error $ "findMin: empty map has no minimal element" findMin (Tip k v) = (k,v) findMin (Bin _ m l r) | m < 0 = go r | otherwise = go l where go (Tip k v) = (k,v) go (Bin _ _ l' _) = go l' go Nil = error "findMax Nil" -- | /O(min(n,W))/. The maximal key of the map. findMax :: IntMap a -> (Key, a) findMax Nil = error $ "findMax: empty map has no maximal element" findMax (Tip k v) = (k,v) findMax (Bin _ m l r) | m < 0 = go l | otherwise = go r where go (Tip k v) = (k,v) go (Bin _ _ _ r') = go r' go Nil = error "findMax Nil" -- | /O(min(n,W))/. Delete the minimal key. Returns an empty map if the map is empty. -- -- Note that this is a change of behaviour for consistency with 'Data.Map.Map' &#8211; -- versions prior to 0.5 threw an error if the 'IntMap' was already empty. deleteMin :: IntMap a -> IntMap a deleteMin = maybe Nil snd . minView -- | /O(min(n,W))/. Delete the maximal key. Returns an empty map if the map is empty. -- -- Note that this is a change of behaviour for consistency with 'Data.Map.Map' &#8211; -- versions prior to 0.5 threw an error if the 'IntMap' was already empty. deleteMax :: IntMap a -> IntMap a deleteMax = maybe Nil snd . maxView {-------------------------------------------------------------------- Submap --------------------------------------------------------------------} -- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal). -- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@). isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool isProperSubmapOf m1 m2 = isProperSubmapOfBy (==) m1 m2 {- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal). The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when @m1@ and @m2@ are not equal, all keys in @m1@ are in @m2@, and when @f@ returns 'True' when applied to their respective values. For example, the following expressions are all 'True': > isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) > isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) But the following are all 'False': > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)]) > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)]) > isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) -} isProperSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool isProperSubmapOfBy predicate t1 t2 = case submapCmp predicate t1 t2 of LT -> True _ -> False submapCmp :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering submapCmp predicate t1@(Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) | shorter m1 m2 = GT | shorter m2 m1 = submapCmpLt | p1 == p2 = submapCmpEq | otherwise = GT -- disjoint where submapCmpLt | nomatch p1 p2 m2 = GT | zero p1 m2 = submapCmp predicate t1 l2 | otherwise = submapCmp predicate t1 r2 submapCmpEq = case (submapCmp predicate l1 l2, submapCmp predicate r1 r2) of (GT,_ ) -> GT (_ ,GT) -> GT (EQ,EQ) -> EQ _ -> LT submapCmp _ (Bin _ _ _ _) _ = GT submapCmp predicate (Tip kx x) (Tip ky y) | (kx == ky) && predicate x y = EQ | otherwise = GT -- disjoint submapCmp predicate (Tip k x) t = case lookup k t of Just y | predicate x y -> LT _ -> GT -- disjoint submapCmp _ Nil Nil = EQ submapCmp _ Nil _ = LT -- | /O(n+m)/. Is this a submap? -- Defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@). isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool isSubmapOf m1 m2 = isSubmapOfBy (==) m1 m2 {- | /O(n+m)/. The expression (@'isSubmapOfBy' f m1 m2@) returns 'True' if all keys in @m1@ are in @m2@, and when @f@ returns 'True' when applied to their respective values. For example, the following expressions are all 'True': > isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) > isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) > isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)]) But the following are all 'False': > isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)]) > isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) > isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)]) -} isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool isSubmapOfBy predicate t1@(Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) | shorter m1 m2 = False | shorter m2 m1 = match p1 p2 m2 && if zero p1 m2 then isSubmapOfBy predicate t1 l2 else isSubmapOfBy predicate t1 r2 | otherwise = (p1==p2) && isSubmapOfBy predicate l1 l2 && isSubmapOfBy predicate r1 r2 isSubmapOfBy _ (Bin _ _ _ _) _ = False isSubmapOfBy predicate (Tip k x) t = case lookup k t of Just y -> predicate x y Nothing -> False isSubmapOfBy _ Nil _ = True {-------------------------------------------------------------------- Mapping --------------------------------------------------------------------} -- | /O(n)/. Map a function over all values in the map. -- -- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")] map :: (a -> b) -> IntMap a -> IntMap b map f = go where go (Bin p m l r) = Bin p m (go l) (go r) go (Tip k x) = Tip k (f x) go Nil = Nil {-# NOINLINE [1] map #-} {-# RULES "map/map" forall f g xs . map f (map g xs) = map (f . g) xs #-} -- Safe coercions were introduced in 7.8, but did not play well with RULES yet. {-# RULES "map/coerce" map coerce = coerce #-} -- | /O(n)/. Map a function over all values in the map. -- -- > let f key x = (show key) ++ ":" ++ x -- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")] mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b mapWithKey f t = case t of Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r) Tip k x -> Tip k (f k x) Nil -> Nil {-# NOINLINE [1] mapWithKey #-} {-# RULES "mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) = mapWithKey (\k a -> f k (g k a)) xs "mapWithKey/map" forall f g xs . mapWithKey f (map g xs) = mapWithKey (\k a -> f k (g a)) xs "map/mapWithKey" forall f g xs . map f (mapWithKey g xs) = mapWithKey (\k a -> f (g k a)) xs #-} -- | /O(n)/. -- @'traverseWithKey' f s == 'fromList' <$> 'traverse' (\(k, v) -> (,) k <$> f k v) ('toList' m)@ -- That is, behaves exactly like a regular 'traverse' except that the traversing -- function also has access to the key associated with a value. -- -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing traverseWithKey :: Applicative t => (Key -> a -> t b) -> IntMap a -> t (IntMap b) traverseWithKey f = go where go Nil = pure Nil go (Tip k v) = Tip k <$> f k v go (Bin p m l r) = liftA2 (Bin p m) (go l) (go r) {-# INLINE traverseWithKey #-} -- | /O(n)/. The function @'mapAccum'@ threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a b = (a ++ b, b ++ "X") -- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")]) mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccum f = mapAccumWithKey (\a' _ x -> f a' x) -- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") -- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")]) mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccumWithKey f a t = mapAccumL f a t -- | /O(n)/. The function @'mapAccumL'@ threads an accumulating -- argument through the map in ascending order of keys. mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccumL f a t = case t of Bin p m l r -> let (a1,l') = mapAccumL f a l (a2,r') = mapAccumL f a1 r in (a2,Bin p m l' r') Tip k x -> let (a',x') = f a k x in (a',Tip k x') Nil -> (a,Nil) -- | /O(n)/. The function @'mapAccumR'@ threads an accumulating -- argument through the map in descending order of keys. mapAccumRWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccumRWithKey f a t = case t of Bin p m l r -> let (a1,r') = mapAccumRWithKey f a r (a2,l') = mapAccumRWithKey f a1 l in (a2,Bin p m l' r') Tip k x -> let (a',x') = f a k x in (a',Tip k x') Nil -> (a,Nil) -- | /O(n*min(n,W))/. -- @'mapKeys' f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the value at the greatest of the -- original keys is retained. -- -- > mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")] -- > mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c" -- > mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c" mapKeys :: (Key->Key) -> IntMap a -> IntMap a mapKeys f = fromList . foldrWithKey (\k x xs -> (f k, x) : xs) [] -- | /O(n*min(n,W))/. -- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the associated values will be -- combined using @c@. -- -- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" -- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab" mapKeysWith :: (a -> a -> a) -> (Key->Key) -> IntMap a -> IntMap a mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) [] -- | /O(n*min(n,W))/. -- @'mapKeysMonotonic' f s == 'mapKeys' f s@, but works only when @f@ -- is strictly monotonic. -- That is, for any values @x@ and @y@, if @x@ < @y@ then @f x@ < @f y@. -- /The precondition is not checked./ -- Semi-formally, we have: -- -- > and [x < y ==> f x < f y | x <- ls, y <- ls] -- > ==> mapKeysMonotonic f s == mapKeys f s -- > where ls = keys s -- -- This means that @f@ maps distinct original keys to distinct resulting keys. -- This function has slightly better performance than 'mapKeys'. -- -- > mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")] mapKeysMonotonic :: (Key->Key) -> IntMap a -> IntMap a mapKeysMonotonic f = fromDistinctAscList . foldrWithKey (\k x xs -> (f k, x) : xs) [] {-------------------------------------------------------------------- Filter --------------------------------------------------------------------} -- | /O(n)/. Filter all values that satisfy some predicate. -- -- > filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty -- > filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty filter :: (a -> Bool) -> IntMap a -> IntMap a filter p m = filterWithKey (\_ x -> p x) m -- | /O(n)/. Filter all keys\/values that satisfy some predicate. -- -- > filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a filterWithKey predicate = go where go Nil = Nil go t@(Tip k x) = if predicate k x then t else Nil go (Bin p m l r) = bin p m (go l) (go r) -- | /O(n)/. Partition the map according to some predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. -- -- > partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") -- > partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) -- > partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")]) partition :: (a -> Bool) -> IntMap a -> (IntMap a,IntMap a) partition p m = partitionWithKey (\_ x -> p x) m -- | /O(n)/. Partition the map according to some predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. -- -- > partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b") -- > partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) -- > partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")]) partitionWithKey :: (Key -> a -> Bool) -> IntMap a -> (IntMap a,IntMap a) partitionWithKey predicate0 t0 = toPair $ go predicate0 t0 where go predicate t = case t of Bin p m l r -> let (l1 :*: l2) = go predicate l (r1 :*: r2) = go predicate r in bin p m l1 r1 :*: bin p m l2 r2 Tip k x | predicate k x -> (t :*: Nil) | otherwise -> (Nil :*: t) Nil -> (Nil :*: Nil) -- | /O(n)/. Map values and collect the 'Just' results. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a" mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b mapMaybe f = mapMaybeWithKey (\_ x -> f x) -- | /O(n)/. Map keys\/values and collect the 'Just' results. -- -- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing -- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3" mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b mapMaybeWithKey f (Bin p m l r) = bin p m (mapMaybeWithKey f l) (mapMaybeWithKey f r) mapMaybeWithKey f (Tip k x) = case f k x of Just y -> Tip k y Nothing -> Nil mapMaybeWithKey _ Nil = Nil -- | /O(n)/. Map values and separate the 'Left' and 'Right' results. -- -- > let f a = if a < "c" then Left a else Right a -- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) -- > -- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c) mapEither f m = mapEitherWithKey (\_ x -> f x) m -- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results. -- -- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) -- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) -- > -- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")]) mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c) mapEitherWithKey f0 t0 = toPair $ go f0 t0 where go f (Bin p m l r) = bin p m l1 r1 :*: bin p m l2 r2 where (l1 :*: l2) = go f l (r1 :*: r2) = go f r go f (Tip k x) = case f k x of Left y -> (Tip k y :*: Nil) Right z -> (Nil :*: Tip k z) go _ Nil = (Nil :*: Nil) -- | /O(min(n,W))/. The expression (@'split' k map@) is a pair @(map1,map2)@ -- where all keys in @map1@ are lower than @k@ and all keys in -- @map2@ larger than @k@. Any key equal to @k@ is found in neither @map1@ nor @map2@. -- -- > split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")]) -- > split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a") -- > split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") -- > split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty) -- > split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty) split :: Key -> IntMap a -> (IntMap a, IntMap a) split k t = case t of Bin _ m l r | m < 0 -> if k >= 0 -- handle negative numbers. then case go k l of (lt :*: gt) -> let !lt' = union r lt in (lt', gt) else case go k r of (lt :*: gt) -> let !gt' = union gt l in (lt, gt') _ -> case go k t of (lt :*: gt) -> (lt, gt) where go k' t'@(Bin p m l r) | nomatch k' p m = if k' > p then t' :*: Nil else Nil :*: t' | zero k' m = case go k' l of (lt :*: gt) -> lt :*: union gt r | otherwise = case go k' r of (lt :*: gt) -> union l lt :*: gt go k' t'@(Tip ky _) | k' > ky = (t' :*: Nil) | k' < ky = (Nil :*: t') | otherwise = (Nil :*: Nil) go _ Nil = (Nil :*: Nil) data SplitLookup a = SplitLookup !(IntMap a) !(Maybe a) !(IntMap a) mapLT :: (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a mapLT f (SplitLookup lt fnd gt) = SplitLookup (f lt) fnd gt {-# INLINE mapLT #-} mapGT :: (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a mapGT f (SplitLookup lt fnd gt) = SplitLookup lt fnd (f gt) {-# INLINE mapGT #-} -- | /O(min(n,W))/. Performs a 'split' but also returns whether the pivot -- key was found in the original map. -- -- > splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")]) -- > splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a") -- > splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a") -- > splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty) -- > splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty) splitLookup :: Key -> IntMap a -> (IntMap a, Maybe a, IntMap a) splitLookup k t = case case t of Bin _ m l r | m < 0 -> if k >= 0 -- handle negative numbers. then mapLT (union r) (go k l) else mapGT (`union` l) (go k r) _ -> go k t of SplitLookup lt fnd gt -> (lt, fnd, gt) where go k' t'@(Bin p m l r) | nomatch k' p m = if k' > p then SplitLookup t' Nothing Nil else SplitLookup Nil Nothing t' | zero k' m = mapGT (`union` r) (go k' l) | otherwise = mapLT (union l) (go k' r) go k' t'@(Tip ky y) | k' > ky = SplitLookup t' Nothing Nil | k' < ky = SplitLookup Nil Nothing t' | otherwise = SplitLookup Nil (Just y) Nil go _ Nil = SplitLookup Nil Nothing Nil {-------------------------------------------------------------------- Fold --------------------------------------------------------------------} -- | /O(n)/. Fold the values in the map using the given right-associative -- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'elems'@. -- -- For example, -- -- > elems map = foldr (:) [] map -- -- > let f a len = len + (length a) -- > foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4 foldr :: (a -> b -> b) -> b -> IntMap a -> b foldr f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before | otherwise -> go (go z r) l _ -> go z t where go z' Nil = z' go z' (Tip _ x) = f x z' go z' (Bin _ _ l r) = go (go z' r) l {-# INLINE foldr #-} -- | /O(n)/. A strict version of 'foldr'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldr' :: (a -> b -> b) -> b -> IntMap a -> b foldr' f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before | otherwise -> go (go z r) l _ -> go z t where go !z' Nil = z' go z' (Tip _ x) = f x z' go z' (Bin _ _ l r) = go (go z' r) l {-# INLINE foldr' #-} -- | /O(n)/. Fold the values in the map using the given left-associative -- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'elems'@. -- -- For example, -- -- > elems = reverse . foldl (flip (:)) [] -- -- > let f len a = len + (length a) -- > foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4 foldl :: (a -> b -> a) -> a -> IntMap b -> a foldl f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before | otherwise -> go (go z l) r _ -> go z t where go z' Nil = z' go z' (Tip _ x) = f z' x go z' (Bin _ _ l r) = go (go z' l) r {-# INLINE foldl #-} -- | /O(n)/. A strict version of 'foldl'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldl' :: (a -> b -> a) -> a -> IntMap b -> a foldl' f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before | otherwise -> go (go z l) r _ -> go z t where go !z' Nil = z' go z' (Tip _ x) = f z' x go z' (Bin _ _ l r) = go (go z' l) r {-# INLINE foldl' #-} -- | /O(n)/. Fold the keys and values in the map using the given right-associative -- binary operator, such that -- @'foldrWithKey' f z == 'Prelude.foldr' ('uncurry' f) z . 'toAscList'@. -- -- For example, -- -- > keys map = foldrWithKey (\k x ks -> k:ks) [] map -- -- > let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" -- > foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)" foldrWithKey :: (Key -> a -> b -> b) -> b -> IntMap a -> b foldrWithKey f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before | otherwise -> go (go z r) l _ -> go z t where go z' Nil = z' go z' (Tip kx x) = f kx x z' go z' (Bin _ _ l r) = go (go z' r) l {-# INLINE foldrWithKey #-} -- | /O(n)/. A strict version of 'foldrWithKey'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldrWithKey' :: (Key -> a -> b -> b) -> b -> IntMap a -> b foldrWithKey' f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before | otherwise -> go (go z r) l _ -> go z t where go !z' Nil = z' go z' (Tip kx x) = f kx x z' go z' (Bin _ _ l r) = go (go z' r) l {-# INLINE foldrWithKey' #-} -- | /O(n)/. Fold the keys and values in the map using the given left-associative -- binary operator, such that -- @'foldlWithKey' f z == 'Prelude.foldl' (\\z' (kx, x) -> f z' kx x) z . 'toAscList'@. -- -- For example, -- -- > keys = reverse . foldlWithKey (\ks k x -> k:ks) [] -- -- > let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" -- > foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)" foldlWithKey :: (a -> Key -> b -> a) -> a -> IntMap b -> a foldlWithKey f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before | otherwise -> go (go z l) r _ -> go z t where go z' Nil = z' go z' (Tip kx x) = f z' kx x go z' (Bin _ _ l r) = go (go z' l) r {-# INLINE foldlWithKey #-} -- | /O(n)/. A strict version of 'foldlWithKey'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldlWithKey' :: (a -> Key -> b -> a) -> a -> IntMap b -> a foldlWithKey' f z = \t -> -- Use lambda t to be inlinable with two arguments only. case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before | otherwise -> go (go z l) r _ -> go z t where go !z' Nil = z' go z' (Tip kx x) = f z' kx x go z' (Bin _ _ l r) = go (go z' l) r {-# INLINE foldlWithKey' #-} -- | /O(n)/. Fold the keys and values in the map using the given monoid, such that -- -- @'foldMapWithKey' f = 'Prelude.fold' . 'mapWithKey' f@ -- -- This can be an asymptotically faster than 'foldrWithKey' or 'foldlWithKey' for some monoids. foldMapWithKey :: Monoid m => (Key -> a -> m) -> IntMap a -> m foldMapWithKey f = go where go Nil = mempty go (Tip kx x) = f kx x go (Bin _ _ l r) = go l `mappend` go r {-# INLINE foldMapWithKey #-} {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(n)/. -- Return all elements of the map in the ascending order of their keys. -- Subject to list fusion. -- -- > elems (fromList [(5,"a"), (3,"b")]) == ["b","a"] -- > elems empty == [] elems :: IntMap a -> [a] elems = foldr (:) [] -- | /O(n)/. Return all keys of the map in ascending order. Subject to list -- fusion. -- -- > keys (fromList [(5,"a"), (3,"b")]) == [3,5] -- > keys empty == [] keys :: IntMap a -> [Key] keys = foldrWithKey (\k _ ks -> k : ks) [] -- | /O(n)/. An alias for 'toAscList'. Returns all key\/value pairs in the -- map in ascending key order. Subject to list fusion. -- -- > assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] -- > assocs empty == [] assocs :: IntMap a -> [(Key,a)] assocs = toAscList -- | /O(n*min(n,W))/. The set of all keys of the map. -- -- > keysSet (fromList [(5,"a"), (3,"b")]) == Data.IntSet.fromList [3,5] -- > keysSet empty == Data.IntSet.empty keysSet :: IntMap a -> IntSet.IntSet keysSet Nil = IntSet.Nil keysSet (Tip kx _) = IntSet.singleton kx keysSet (Bin p m l r) | m .&. IntSet.suffixBitMask == 0 = IntSet.Bin p m (keysSet l) (keysSet r) | otherwise = IntSet.Tip (p .&. IntSet.prefixBitMask) (computeBm (computeBm 0 l) r) where computeBm !acc (Bin _ _ l' r') = computeBm (computeBm acc l') r' computeBm acc (Tip kx _) = acc .|. IntSet.bitmapOf kx computeBm _ Nil = error "Data.IntSet.keysSet: Nil" -- | /O(n)/. Build a map from a set of keys and a function which for each key -- computes its value. -- -- > fromSet (\k -> replicate k 'a') (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")] -- > fromSet undefined Data.IntSet.empty == empty fromSet :: (Key -> a) -> IntSet.IntSet -> IntMap a fromSet _ IntSet.Nil = Nil fromSet f (IntSet.Bin p m l r) = Bin p m (fromSet f l) (fromSet f r) fromSet f (IntSet.Tip kx bm) = buildTree f kx bm (IntSet.suffixBitMask + 1) where -- This is slightly complicated, as we to convert the dense -- representation of IntSet into tree representation of IntMap. -- -- We are given a nonzero bit mask 'bmask' of 'bits' bits with -- prefix 'prefix'. We split bmask into halves corresponding -- to left and right subtree. If they are both nonempty, we -- create a Bin node, otherwise exactly one of them is nonempty -- and we construct the IntMap from that half. buildTree g !prefix !bmask bits = case bits of 0 -> Tip prefix (g prefix) _ -> case intFromNat ((natFromInt bits) `shiftRL` 1) of bits2 | bmask .&. ((1 `shiftLL` bits2) - 1) == 0 -> buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2 | (bmask `shiftRL` bits2) .&. ((1 `shiftLL` bits2) - 1) == 0 -> buildTree g prefix bmask bits2 | otherwise -> Bin prefix bits2 (buildTree g prefix bmask bits2) (buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2) {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} instance GHCExts.IsList (IntMap a) where type Item (IntMap a) = (Key,a) fromList = fromList toList = toList -- | /O(n)/. Convert the map to a list of key\/value pairs. Subject to list -- fusion. -- -- > toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] -- > toList empty == [] toList :: IntMap a -> [(Key,a)] toList = toAscList -- | /O(n)/. Convert the map to a list of key\/value pairs where the -- keys are in ascending order. Subject to list fusion. -- -- > toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] toAscList :: IntMap a -> [(Key,a)] toAscList = foldrWithKey (\k x xs -> (k,x):xs) [] -- | /O(n)/. Convert the map to a list of key\/value pairs where the keys -- are in descending order. Subject to list fusion. -- -- > toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")] toDescList :: IntMap a -> [(Key,a)] toDescList = foldlWithKey (\xs k x -> (k,x):xs) [] -- List fusion for the list generating functions. -- The foldrFB and foldlFB are fold{r,l}WithKey equivalents, used for list fusion. -- They are important to convert unfused methods back, see mapFB in prelude. foldrFB :: (Key -> a -> b -> b) -> b -> IntMap a -> b foldrFB = foldrWithKey {-# INLINE[0] foldrFB #-} foldlFB :: (a -> Key -> b -> a) -> a -> IntMap b -> a foldlFB = foldlWithKey {-# INLINE[0] foldlFB #-} -- Inline assocs and toList, so that we need to fuse only toAscList. {-# INLINE assocs #-} {-# INLINE toList #-} -- The fusion is enabled up to phase 2 included. If it does not succeed, -- convert in phase 1 the expanded elems,keys,to{Asc,Desc}List calls back to -- elems,keys,to{Asc,Desc}List. In phase 0, we inline fold{lr}FB (which were -- used in a list fusion, otherwise it would go away in phase 1), and let compiler -- do whatever it wants with elems,keys,to{Asc,Desc}List -- it was forbidden to -- inline it before phase 0, otherwise the fusion rules would not fire at all. {-# NOINLINE[0] elems #-} {-# NOINLINE[0] keys #-} {-# NOINLINE[0] toAscList #-} {-# NOINLINE[0] toDescList #-} {-# RULES "IntMap.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-} {-# RULES "IntMap.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-} {-# RULES "IntMap.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-} {-# RULES "IntMap.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-} {-# RULES "IntMap.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-} {-# RULES "IntMap.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-} {-# RULES "IntMap.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-} {-# RULES "IntMap.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-} -- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs. -- -- > fromList [] == empty -- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] -- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")] fromList :: [(Key,a)] -> IntMap a fromList xs = foldlStrict ins empty xs where ins t (k,x) = insert k x t -- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'. -- -- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "ab"), (5, "cba")] -- > fromListWith (++) [] == empty fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a fromListWith f xs = fromListWithKey (\_ x y -> f x y) xs -- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'. -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "3:a|b"), (5, "5:c|5:b|a")] -- > fromListWithKey f [] == empty fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a fromListWithKey f xs = foldlStrict ins empty xs where ins t (k,x) = insertWithKey f k x t -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order. -- -- > fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] -- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")] fromAscList :: [(Key,a)] -> IntMap a fromAscList xs = fromAscListWithKey (\_ x _ -> x) xs -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order, with a combining function on equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")] fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a fromAscListWith f xs = fromAscListWithKey (\_ x y -> f x y) xs -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order, with a combining function on equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "5:b|a")] fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a fromAscListWithKey _ [] = Nil fromAscListWithKey f (x0 : xs0) = fromDistinctAscList (combineEq x0 xs0) where -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs] combineEq z [] = [z] combineEq z@(kz,zz) (x@(kx,xx):xs) | kx==kz = let yy = f kx xx zz in combineEq (kx,yy) xs | otherwise = z:combineEq x xs -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order and all distinct. -- /The precondition (input list is strictly ascending) is not checked./ -- -- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] fromDistinctAscList :: forall a. [(Key,a)] -> IntMap a fromDistinctAscList [] = Nil fromDistinctAscList (z0 : zs0) = work z0 zs0 Nada where work (kx,vx) [] stk = finish kx (Tip kx vx) stk work (kx,vx) (z@(kz,_):zs) stk = reduce z zs (branchMask kx kz) kx (Tip kx vx) stk reduce :: (Key,a) -> [(Key,a)] -> Mask -> Prefix -> IntMap a -> Stack a -> IntMap a reduce z zs _ px tx Nada = work z zs (Push px tx Nada) reduce z zs m px tx stk@(Push py ty stk') = let mxy = branchMask px py pxy = mask px mxy in if shorter m mxy then reduce z zs m pxy (Bin pxy mxy ty tx) stk' else work z zs (Push px tx stk) finish _ t Nada = t finish px tx (Push py ty stk) = finish p (link py ty px tx) stk where m = branchMask px py p = mask px m data Stack a = Push {-# UNPACK #-} !Prefix !(IntMap a) !(Stack a) | Nada {-------------------------------------------------------------------- Eq --------------------------------------------------------------------} instance Eq a => Eq (IntMap a) where t1 == t2 = equal t1 t2 t1 /= t2 = nequal t1 t2 equal :: Eq a => IntMap a -> IntMap a -> Bool equal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) = (m1 == m2) && (p1 == p2) && (equal l1 l2) && (equal r1 r2) equal (Tip kx x) (Tip ky y) = (kx == ky) && (x==y) equal Nil Nil = True equal _ _ = False nequal :: Eq a => IntMap a -> IntMap a -> Bool nequal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) = (m1 /= m2) || (p1 /= p2) || (nequal l1 l2) || (nequal r1 r2) nequal (Tip kx x) (Tip ky y) = (kx /= ky) || (x/=y) nequal Nil Nil = False nequal _ _ = True instance Eq1 IntMap where liftEq eq (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) = (m1 == m2) && (p1 == p2) && (liftEq eq l1 l2) && (liftEq eq r1 r2) liftEq eq (Tip kx x) (Tip ky y) = (kx == ky) && (eq x y) liftEq _eq Nil Nil = True liftEq _eq _ _ = False {-------------------------------------------------------------------- Ord --------------------------------------------------------------------} instance Ord a => Ord (IntMap a) where compare m1 m2 = compare (toList m1) (toList m2) instance Ord1 IntMap where liftCompare cmp m n = liftCompare (liftCompare cmp) (toList m) (toList n) {-------------------------------------------------------------------- Functor --------------------------------------------------------------------} instance Functor IntMap where fmap = map a <$ Bin p m l r = Bin p m (a <$ l) (a <$ r) a <$ Tip k _ = Tip k a _ <$ Nil = Nil {-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance Show a => Show (IntMap a) where showsPrec d m = showParen (d > 10) $ showString "fromList " . shows (toList m) instance Show1 IntMap where liftShowsPrec sp sl d m = showsUnaryWith (liftShowsPrec sp' sl') "fromList" d (toList m) where sp' = liftShowsPrec sp sl sl' = liftShowList sp sl {-------------------------------------------------------------------- Read --------------------------------------------------------------------} instance (Read e) => Read (IntMap e) where readPrec = parens $ prec 10 $ do Ident "fromList" <- lexP xs <- readPrec return (fromList xs) readListPrec = readListPrecDefault instance Read1 IntMap where liftReadsPrec rp rl = readsData $ readsUnaryWith (liftReadsPrec rp' rl') "fromList" fromList where rp' = liftReadsPrec rp rl rl' = liftReadList rp rl {-------------------------------------------------------------------- Typeable --------------------------------------------------------------------} deriving instance Typeable IntMap {-------------------------------------------------------------------- Helpers --------------------------------------------------------------------} {-------------------------------------------------------------------- Link --------------------------------------------------------------------} link :: Prefix -> IntMap a -> Prefix -> IntMap a -> IntMap a link p1 t1 p2 t2 | zero p1 m = Bin p m t1 t2 | otherwise = Bin p m t2 t1 where m = branchMask p1 p2 p = mask p1 m {-# INLINE link #-} {-------------------------------------------------------------------- @bin@ assures that we never have empty trees within a tree. --------------------------------------------------------------------} bin :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a bin _ _ l Nil = l bin _ _ Nil r = r bin p m l r = Bin p m l r {-# INLINE bin #-} -- binCheckLeft only checks that the left subtree is non-empty binCheckLeft :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a binCheckLeft _ _ Nil r = r binCheckLeft p m l r = Bin p m l r {-# INLINE binCheckLeft #-} -- binCheckRight only checks that the right subtree is non-empty binCheckRight :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a binCheckRight _ _ l Nil = l binCheckRight p m l r = Bin p m l r {-# INLINE binCheckRight #-} {-------------------------------------------------------------------- Endian independent bit twiddling --------------------------------------------------------------------} -- | Should this key follow the left subtree of a 'Bin' with switching -- bit @m@? N.B., the answer is only valid when @match i p m@ is true. zero :: Key -> Mask -> Bool zero i m = (natFromInt i) .&. (natFromInt m) == 0 {-# INLINE zero #-} nomatch,match :: Key -> Prefix -> Mask -> Bool -- | Does the key @i@ differ from the prefix @p@ before getting to -- the switching bit @m@? nomatch i p m = (mask i m) /= p {-# INLINE nomatch #-} -- | Does the key @i@ match the prefix @p@ (up to but not including -- bit @m@)? match i p m = (mask i m) == p {-# INLINE match #-} -- | The prefix of key @i@ up to (but not including) the switching -- bit @m@. mask :: Key -> Mask -> Prefix mask i m = maskW (natFromInt i) (natFromInt m) {-# INLINE mask #-} {-------------------------------------------------------------------- Big endian operations --------------------------------------------------------------------} -- | The prefix of key @i@ up to (but not including) the switching -- bit @m@. maskW :: Nat -> Nat -> Prefix maskW i m = intFromNat (i .&. (complement (m-1) `xor` m)) {-# INLINE maskW #-} -- | Does the left switching bit specify a shorter prefix? shorter :: Mask -> Mask -> Bool shorter m1 m2 = (natFromInt m1) > (natFromInt m2) {-# INLINE shorter #-} -- | The first switching bit where the two prefixes disagree. branchMask :: Prefix -> Prefix -> Mask branchMask p1 p2 = intFromNat (highestBitMask (natFromInt p1 `xor` natFromInt p2)) {-# INLINE branchMask #-} {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} -- | /O(1)/. Decompose a map into pieces based on the structure -- of the underlying tree. This function is useful for consuming a -- map in parallel. -- -- No guarantee is made as to the sizes of the pieces; an internal, but -- deterministic process determines this. However, it is guaranteed that the -- pieces returned will be in ascending order (all elements in the first submap -- less than all elements in the second, and so on). -- -- Examples: -- -- > splitRoot (fromList (zip [1..6::Int] ['a'..])) == -- > [fromList [(1,'a'),(2,'b'),(3,'c')],fromList [(4,'d'),(5,'e'),(6,'f')]] -- -- > splitRoot empty == [] -- -- Note that the current implementation does not return more than two submaps, -- but you should not depend on this behaviour because it can change in the -- future without notice. splitRoot :: IntMap a -> [IntMap a] splitRoot orig = case orig of Nil -> [] x@(Tip _ _) -> [x] Bin _ m l r | m < 0 -> [r, l] | otherwise -> [l, r] {-# INLINE splitRoot #-} {-------------------------------------------------------------------- Debugging --------------------------------------------------------------------} -- | /O(n)/. Show the tree that implements the map. The tree is shown -- in a compressed, hanging format. showTree :: Show a => IntMap a -> String showTree s = showTreeWith True False s {- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows the tree that implements the map. If @hang@ is 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is 'True', an extra wide version is shown. -} showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String showTreeWith hang wide t | hang = (showsTreeHang wide [] t) "" | otherwise = (showsTree wide [] [] t) "" showsTree :: Show a => Bool -> [String] -> [String] -> IntMap a -> ShowS showsTree wide lbars rbars t = case t of Bin p m l r -> showsTree wide (withBar rbars) (withEmpty rbars) r . showWide wide rbars . showsBars lbars . showString (showBin p m) . showString "\n" . showWide wide lbars . showsTree wide (withEmpty lbars) (withBar lbars) l Tip k x -> showsBars lbars . showString " " . shows k . showString ":=" . shows x . showString "\n" Nil -> showsBars lbars . showString "|\n" showsTreeHang :: Show a => Bool -> [String] -> IntMap a -> ShowS showsTreeHang wide bars t = case t of Bin p m l r -> showsBars bars . showString (showBin p m) . showString "\n" . showWide wide bars . showsTreeHang wide (withBar bars) l . showWide wide bars . showsTreeHang wide (withEmpty bars) r Tip k x -> showsBars bars . showString " " . shows k . showString ":=" . shows x . showString "\n" Nil -> showsBars bars . showString "|\n" showBin :: Prefix -> Mask -> String showBin _ _ = "*" -- ++ show (p,m) showWide :: Bool -> [String] -> String -> String showWide wide bars | wide = showString (concat (reverse bars)) . showString "|\n" | otherwise = id showsBars :: [String] -> ShowS showsBars bars = case bars of [] -> id _ -> showString (concat (reverse (tail bars))) . showString node node :: String node = "+--" withBar, withEmpty :: [String] -> [String] withBar bars = "| ":bars withEmpty bars = " ":bars
phischu/fragnix
tests/packages/scotty/Data.IntMap.Internal.hs
bsd-3-clause
114,732
0
21
29,173
27,075
14,011
13,064
1,603
14
{-# OPTIONS_JHC -fffi -funboxed-values #-} module Data.Typeable(TypeRep(),Typeable(..),Typeable1(..),Typeable2(..)) where import Jhc.Prim import Jhc.String type String_ = BitsPtr_ data TypeRep = TypeRep String_ [TypeRep] showsAddr__ :: String_ -> [Char] -> [Char] showsAddr__ a xs = unpackStringFoldr a (:) xs instance Show TypeRep where showsPrec _ (TypeRep a []) = showsAddr__ a showsPrec n (TypeRep a xs) = showParen (n > 9) $ spacesep (showsAddr__ a:map (showsPrec 10) xs) where spacesep [] = id spacesep [x] = x spacesep (x:xs) = x . showChar ' ' . spacesep xs instance Eq TypeRep where TypeRep a xs == TypeRep b ys = case c_strcmp (Addr_ a) (Addr_ b) of 0 -> xs == ys _ -> False foreign import ccall "strcmp" c_strcmp :: Addr_ -> Addr_ -> Int {- foreign import primitive ptypeOf :: a -> TypeRep foreign import primitive ptypeOf1 :: t a -> TypeRep foreign import primitive ptypeOf2 :: t a b -> TypeRep foreign import primitive ptypeOf3 :: t a b c -> TypeRep foreign import primitive ptypeOf4 :: t a b c d -> TypeRep foreign import primitive ptypeOf5 :: t a b c d e -> TypeRep foreign import primitive ptypeOf6 :: t a b c d e f -> TypeRep foreign import primitive ptypeOf7 :: t a b c d e f g -> TypeRep foreign import primitive typeRepEq :: TypeRep -> TypeRep -> Bool -} class Typeable a where typeOf :: a -> TypeRep class Typeable1 f where typeOf1 :: f a -> TypeRep class Typeable2 f where typeOf2 :: f a b -> TypeRep instance Typeable1 [] where typeOf1 _ = TypeRep "[]"# [] instance Typeable a => Typeable [a] where typeOf x = typeOfDefault x {- instance (Typeable a,Typeable b) => Typeable (a -> b) where typeOf x = (typeOf2 x `mkAppTy` arg1 x) `mkAppTy` arg2 x where arg1 :: (x -> y) -> x arg2 :: (x -> y) -> y arg1 = undefined arg2 = undefined instance (Typeable a) => Typeable1 ((->) a) where typeOf1 x = typeOf1Default x instance Typeable2 (->) where typeOf2 _ = TypeRep "->"# [] -} instance Typeable2 (,) where typeOf2 _ = TypeRep "(,)"# [] instance Typeable a => Typeable1 ((,) a) where typeOf1 x = typeOf1Default x instance (Typeable b,Typeable a) => Typeable (a,b) where typeOf x = typeOfDefault x instance Typeable Char where typeOf _ = TypeRep "Char"# [] instance Typeable () where typeOf _ = TypeRep "()"# [] instance Typeable Int where typeOf _ = TypeRep "Int"# [] --instance (Typeable1 f,Typeable a) => Typeable (f a) where -- typeOf x = typeOf1 x `mkAppTy` typeOf (argType x) where -- argType :: a b -> b -- argType = undefined mkAppTy :: TypeRep -> TypeRep -> TypeRep mkAppTy (TypeRep x xs) tr = TypeRep x (xs ++ [tr]) ------------------------------------------------------------- -- -- Type-safe cast -- ------------------------------------------------------------- unsafeCoerce :: a -> b unsafeCoerce = unsafeCoerce__ -- | The type-safe cast operation cast :: (Typeable a, Typeable b) => a -> Maybe b cast x = r where fromJust (Just x) = x r = if typeOf x == typeOf (fromJust r) then Just $ unsafeCoerce x else Nothing {- -- | A flexible variation parameterised in a type constructor gcast :: (Typeable a, Typeable b) => c a -> Maybe (c b) gcast x = r where r = if typeOf (getArg x) == typeOf (getArg (fromJust r)) then Just $ unsafeCoerce x else Nothing getArg :: c x -> x getArg = undefined -- | Cast for * -> * gcast1 :: (Typeable1 t, Typeable1 t') c (t a) -> Maybe (c (t' a)) gcast1 x = r where r = if typeOf1 (getArg x) == typeOf1 (getArg (fromJust r)) then Just $ unsafeCoerce x else Nothing getArg :: c x -> x getArg = undefined -- | Cast for * -> * -> * gcast2 :: (Typeable2 t, Typeable2 t') c (t a b) -> Maybe (c (t' a b)) gcast2 x = r where r = if typeOf2 (getArg x) == typeOf2 (getArg (fromJust r)) then Just $ unsafeCoerce x else Nothing getArg :: c x -> x getArg = undefined -} -- | For defining a 'Typeable' instance from any 'Typeable1' instance. typeOfDefault :: (Typeable1 t, Typeable a) => t a -> TypeRep typeOfDefault x = typeOf1 x `mkAppTy` typeOf (argType x) where argType :: t a -> a argType = undefined -- | For defining a 'Typeable1' instance from any 'Typeable2' instance. typeOf1Default :: (Typeable2 t, Typeable a) => t a b -> TypeRep typeOf1Default x = typeOf2 x `mkAppTy` typeOf (argType x) where argType :: t a b -> a argType = undefined
m-alvarez/jhc
lib/haskell-extras/Data/Typeable.hs
mit
4,497
2
12
1,076
929
483
446
62
2
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances, UndecidableInstances, FlexibleContexts, EmptyDataDecls, ScopedTypeVariables, TypeOperators, TypeSynonymInstances, TypeFamilies #-} --module Main where import Records import References import ReferenceMonad import Methods {- key = firstLabel name = nextLabel key type TestType = Integer :* String :* EmptyRecord test :: TestType test = key .= 10 .* name .= "Pippo" .* EmptyRecord res :: Reference TestType Integer res = do v <- this <-- key return (v+1) res1 :: Reference TestType () res1 = do v <- ((this <-- key)::Reference TestType Integer) (((this <-- key)::Reference TestType Integer) =: (v+1))::Reference TestType () return () x = getter res test -- x = (11, test) y = getter res1 test -- y = ((), {test with key = test.key+1}) -} {- dichiariamo le labels del nostro record -} val = firstLabel incr = nextLabel val val' :: (Z,((Counter RecCounter) -> Integer), (Counter RecCounter) -> Integer -> (Counter RecCounter)) val' = firstLabel' incr' :: (S Z,((Counter RecCounter) -> Method RecCounter () ()), (Counter RecCounter) -> Method RecCounter () () -> (Counter RecCounter)) incr' = nextLabel' val' {- dichiariamo due tipi per il nostro record: serve perché altrimenti con i metodi otteniamo un tipo infinito -} type Counter k = (Integer :* Method k () () :* EmptyRecord) data RecCounter = RecCounter (Counter RecCounter) {- mettiamo in relazione i due tipi che definiscono il record, in modo che il sistema di oggetti possa autonomamente convertire istanze ricorsive (di RecCounter) in istanze "appiattite" (di Counter RecCounter) -} instance Recursive (Counter RecCounter) where {- le type functions sono una feature molto nuova di Haskell (ce l'ha mostrate SPJ a Oxford) che permette di far funzionare i metodi: senza queste il type checker non é in grado di risolvere alcuni predicati di tipo perché non fa SDL-risoluzione (che sarebbe l'unico modo) -} type Rec (Counter RecCounter) = RecCounter cons = RecCounter elim (RecCounter r) = r {- costruiamo un metodo, che ha tipo () -> Reference RecCounter (); prima costruiamo il metodo originale, che ha tipo () -> Reference (Counter RecCounter) (), e poi lo convertiamo con mk_method alla sua forma finale -} m :: Method RecCounter () () m = mk_method (\() -> (do v <- ((this <-- val) :: Reference (Counter RecCounter) Integer) (this <-- val) =: (v+1) :: Reference (Counter RecCounter) () return ())) x |> f = f x {- costruiamo il nostro record iniziale -} test' :: Counter RecCounter test' = RecCounter( val .= 0 .* incr .= m .* EmptyRecord) |> elim {- invochiamo due volte il metodo incr e poi leggiamo il contatore -} res2 :: Reference (Counter RecCounter) Integer res2 = do (this <<- incr) () :: Reference (Counter RecCounter) () (this <<- incr) () :: Reference (Counter RecCounter) () v <- (this <-- val) return v res3 = do v <- (this <== val') (this <== val') =: (v+1) v <- (this <== val') return v --count é pari a 2: YAY! count = fst (getter res2 test')
vs-team/Papers
Before Giuseppe's PhD/Monads/ObjectiveMonad/MonadicObjects/trunk/Src/Main.hs
mit
3,251
0
15
745
606
317
289
39
1
-- | PDF viewer demo -- Author : Andy Stewart -- Copyright : (c) 2010 Andy Stewart <[email protected]> -- | The PDF viewer base on poppler library. -- -- Usage: -- pdfviewer file -- module Main where import Control.Applicative import Control.Concurrent.STM import Control.Monad import Data.Maybe import Graphics.Rendering.Cairo import Graphics.UI.Gtk import Graphics.UI.Gtk.Gdk.EventM import Graphics.UI.Gtk.Poppler.Document import Graphics.UI.Gtk.Poppler.Page import System.Environment import System.Process data Viewer = Viewer {viewerArea :: DrawingArea ,viewerDocument :: Document ,viewerScrolledWindow:: ScrolledWindow ,viewerPage :: TVar Int} -- | Main entry. main :: IO () main = do -- Get program arguments. args <- getArgs case args of -- Display help ["--help"] -> putStrLn $ "PDF viewer demo. \n\n" ++ "Usage: pdfviewer file\n\n" -- Start program. [arg] -> viewerMain arg _ -> putStrLn "Usage: pdfviewer file" -- | Internal browser fucntion. viewerMain :: FilePath -> IO () viewerMain file = do -- Init. initGUI -- Create window. window <- windowNew windowSetDefaultSize window 600 780 windowSetPosition window WinPosCenter -- Create window box. windowBox <- vBoxNew False 0 window `containerAdd` windowBox -- Create viewer. viewer <- viewerNew file let area = viewerArea viewer doc = viewerDocument viewer sWin = viewerScrolledWindow viewer -- Set title. title <- get doc documentTitle windowSetTitle window ("PdfViewer " ++ title) -- Create spin button to select page. pages <- documentGetNPages doc -- get maximum page spinButton <- spinButtonNewWithRange 0 (integralToDouble pages) 1.0 -- Redraw viewer after change value of spin button. afterValueSpinned spinButton $ do page <- spinButtonGetValue spinButton writeTVarIO (viewerPage viewer) (truncate page) widgetQueueDraw area -- Show. boxPackStart windowBox sWin PackGrow 0 boxPackStart windowBox spinButton PackNatural 0 window `onDestroy` mainQuit widgetShowAll window mainGUI viewerNew :: FilePath -> IO Viewer viewerNew file = do area <- drawingAreaNew doc <- liftM (fromMaybe (error "Error when open pdf file.")) (documentNewFromFile ("file://" ++ file) Nothing) sWin <- scrolledWindowNew Nothing Nothing page <- newTVarIO 0 let viewer = Viewer area doc sWin page scrolledWindowAddWithViewport sWin area scrolledWindowSetPolicy sWin PolicyAutomatic PolicyAutomatic area `on` exposeEvent $ tryEvent $ viewerDraw viewer return viewer viewerDraw :: Viewer -> EventM EExpose () viewerDraw viewer = do let doc = viewerDocument viewer area = viewerArea viewer (winWidth, winHeight) <- eventWindowSize liftIO $ do pageNumber <- readTVarIO $ viewerPage viewer page <- documentGetPage doc pageNumber frameWin <- widgetGetDrawWindow area (docWidth, docHeight) <- pageGetSize page let scaleX = winWidth / docWidth width = winWidth height = scaleX * docHeight widgetSetSizeRequest area (truncate width) (truncate height) renderWithDrawable frameWin $ do setSourceRGB 1.0 1.0 1.0 scale scaleX scaleX pageRender page eventWindowSize :: EventM EExpose (Double, Double) eventWindowSize = do dr <- eventWindow (w,h) <- liftIO $ drawableGetSize dr return $ if w * h > 1 then (fromIntegral w, fromIntegral h) else (1,1) -- | Transform Int to Doube integralToDouble :: Integral a => a -> Double integralToDouble v = fromIntegral v :: Double -- | The IO version of `writeTVar`. writeTVarIO :: TVar a -> a -> IO () writeTVarIO a b = atomically $ writeTVar a b
wavewave/poppler
demo/PdfViewer.hs
lgpl-2.1
3,804
0
13
871
960
478
482
91
3
{-# LANGUAGE ScopedTypeVariables #-} import StackTest import System.Directory import Control.Exception (catch, IOException) main :: IO () main = do removeFileIgnore "stack.yaml" createDirectory "unreachabledir" `catch` \(e :: IOException) -> pure () setPermissions "unreachabledir" emptyPermissions stack ["init"]
juhp/stack
test/integration/tests/skip-unreachable-dirs/Main.hs
bsd-3-clause
332
0
10
53
90
46
44
10
1
module E5 where data BTree a = Empty | T a (BTree a) (BTree a) deriving Show buildtree :: Ord a => [a] -> BTree a buildtree [] = Empty buildtree ((x : xs)) = head (insert x (buildtree xs)) insert :: Ord a => a -> (BTree a) -> [BTree a] insert val v2 = do case v2 of T val Empty Empty | val == val -> [Empty] | otherwise -> [(T val Empty Empty), Empty] T val (T val2 Empty Empty) Empty -> [Empty] _ -> [v2] main :: IO () main = do let f = [(T a_1 Empty Empty) | n@(T a_1 Empty Empty) <- insert 42 (buildtree [1, 2, 3])] if True then do putStrLn $ (show 42) else do putStrLn $ (show 42)
kmate/HaRe
old/testing/unfoldAsPatterns/E5AST.hs
bsd-3-clause
1,090
0
16
635
353
181
172
25
3
module DuplicateModuleName (Window(..)) where data Window = Window deriving (Show)
ezyang/ghc
testsuite/tests/typecheck/T13168/package1/DuplicateModuleName.hs
bsd-3-clause
84
0
6
11
27
17
10
2
0
{-# LANGUAGE TypeFamilies, ConstraintKinds, UndecidableInstances, UndecidableSuperClasses #-} module Ctx where import Data.Kind ( Constraint ) type family Indirect :: * -> Constraint type instance Indirect = Show class Indirect a => Cls a where foo :: Cls a => a -> String foo = show
ezyang/ghc
testsuite/tests/typecheck/should_compile/tc256.hs
bsd-3-clause
288
0
6
49
72
40
32
-1
-1
module T4114dSub (assertKeep, assertNoKeep) where import Control.Monad (unless, when) import System.Directory (doesFileExist) assertNoKeep :: FilePath -> IO () assertNoKeep a = whenM (doesFileExist a) $ error ("error: intermediate '" ++ a ++ "' exists") assertKeep :: FilePath -> IO () assertKeep a = unlessM (doesFileExist a) $ error ("error: intermediate '" ++ a ++ "' is missing") whenM :: Monad m => m Bool -> m () -> m () whenM mp f = mp >>= \p -> when p f unlessM :: Monad m => m Bool -> m () -> m () unlessM mp f = mp >>= \p -> unless p f
ezyang/ghc
testsuite/tests/driver/T4114dSub.hs
bsd-3-clause
574
0
9
133
247
124
123
15
1
module Player where import GameEngine playerX :: Player playerX = Player 'X' playerO :: Player playerO = Player 'O' -- workaround since the Player data type is not an instance of eq isPlayer :: Player -> Player -> Bool isPlayer (Player a) (Player b) = a == b isPlayerSymbol :: Player -> Symbol -> Bool isPlayerSymbol (Player x) = (==) x isPlayerXSymbol :: Symbol -> Bool isPlayerXSymbol = isPlayerSymbol playerX isPlayerOSymbol :: Symbol -> Bool isPlayerOSymbol = isPlayerSymbol playerO
TGOlson/haskell-tic-tac-toe
Src/Player.hs
mit
500
0
7
92
139
75
64
14
1
-- Recursiveness -- Gets the biggest value in a list -- This version uses guards maximum' :: (Ord a) => [a] -> a maximum' [] = error "no max for empty lists" maximum' [x] = x maximum' (x:y) | x > maxTail = x | otherwise = x where maxTail = maximum' y -- We can improve this by using `max` shortMax :: (Ord a) => [a] -> a shortMax [] = error "no max for empty lists" shortMax [x] = x shortMax (x:y) = max x (shortMax y) -- Replicate replicate' :: (Num i, Ord i) => i -> a -> [a] replicate' n x | n <= 0 = [] | otherwise = x:replicate' (n - 1) x -- This one fallsthrough when n is not <= 0 take' :: (Num i, Ord i) => i -> [a] -> [a] take' n _ | n <= 0 = [] take' _ [] = [] take' n (x:xs) = x : take' (n - 1) xs -- Reverses a list reverse' :: [a] -> [a] reverse' [] = [] reverse' (x:xs) = reverse' xs ++ [x] -- Repeat -- Repeats an element infinitely -- If we do something like: take 5 (repeat 3) we can finish evaluating -- However, if we just do repeat 3 we keep going ad infinitum repeat' :: a -> [a] repeat' x = x : repeat' x -- Zip -- This one has two edge conditions zip' :: [a] -> [b] -> [(a, b)] zip' [] _ = [] zip' _ [] = [] zip' (x:xs) (y:ys) = [(x, y)] ++ (zip' xs ys) -- Elem -- Finds an element in the list elem' :: (Eq a) => a -> [a] -> Bool elem' _ [] = False elem' a (x:xs) | a == x = True | otherwise = elem' a xs -- Quicksort -- OH MY GOD THIS IS SO ELEGANT -- I WANNA THROW A PARTY FOR THIS ALGORITHM -- OH GOD HASKELL WHY U SO GOOD -- PLS TELL ME, I CAN'T TAKE IT quickSort :: (Ord a) => [a] -> [a] quickSort [] = [] quickSort (x:xs) = let smallerSorted = quickSort [ a | a <- xs, a <= x ] biggerSorted = quickSort [ a | a <- xs, a > x ] in smallerSorted ++ [x] ++ biggerSorted
lucasfcosta/haskell-experiences
Chapter 5/recursiveness.hs
mit
1,737
0
12
434
742
395
347
40
1
module LC where import Data.List (sort) kthLargest :: Int -> [Int] -> Int kthLargest k = last . take k . sort
AriaFallah/leetcode
haskell/KthLargest.hs
mit
112
0
7
24
49
27
22
4
1
{-| Module : PostgREST.DbStructure Description : PostgREST schema cache This module contains queries that target PostgreSQL system catalogs, these are used to build the schema cache(DbStructure). The schema cache is necessary for resource embedding, foreign keys are used for inferring the relationships between tables. These queries are executed once at startup or when PostgREST is reloaded. -} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE NamedFieldPuns #-} module PostgREST.DbStructure ( getDbStructure , accessibleTables , accessibleProcs , schemaDescription , getPgVersion ) where import qualified Hasql.Decoders as HD import qualified Hasql.Encoders as HE import qualified Hasql.Statement as H import Control.Applicative import qualified Data.HashMap.Strict as M import qualified Data.List as L import Data.Set as S (fromList) import Data.Text (split, strip, breakOn, dropAround, splitOn) import qualified Data.Text as T import qualified Hasql.Session as H import qualified Hasql.Transaction as HT import PostgREST.Types import Text.InterpolatedString.Perl6 (q, qc) import GHC.Exts (groupWith) import Protolude import Unsafe (unsafeHead) getDbStructure :: Schema -> PgVersion -> HT.Transaction DbStructure getDbStructure schema pgVer = do HT.sql "set local schema ''" -- for getting the fully qualified name(schema.name) of every db object tabs <- HT.statement () allTables cols <- HT.statement schema $ allColumns tabs syns <- HT.statement schema $ allSynonyms cols pgVer childRels <- HT.statement () $ allChildRelations tabs cols keys <- HT.statement () $ allPrimaryKeys tabs procs <- HT.statement schema allProcs let rels = addManyToManyRelations . addParentRelations $ addViewChildRelations syns childRels cols' = addForeignKeys rels cols keys' = addViewPrimaryKeys syns keys return DbStructure { dbTables = tabs , dbColumns = cols' , dbRelations = rels , dbPrimaryKeys = keys' , dbProcs = procs , pgVersion = pgVer } decodeTables :: HD.Result [Table] decodeTables = HD.rowList tblRow where tblRow = Table <$> HD.column HD.text <*> HD.column HD.text <*> HD.nullableColumn HD.text <*> HD.column HD.bool decodeColumns :: [Table] -> HD.Result [Column] decodeColumns tables = mapMaybe (columnFromRow tables) <$> HD.rowList colRow where colRow = (,,,,,,,,,,,) <$> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.text <*> HD.nullableColumn HD.text <*> HD.column HD.int4 <*> HD.column HD.bool <*> HD.column HD.text <*> HD.column HD.bool <*> HD.nullableColumn HD.int4 <*> HD.nullableColumn HD.int4 <*> HD.nullableColumn HD.text <*> HD.nullableColumn HD.text decodeRelations :: [Table] -> [Column] -> HD.Result [Relation] decodeRelations tables cols = mapMaybe (relationFromRow tables cols) <$> HD.rowList relRow where relRow = (,,,,,) <$> HD.column HD.text <*> HD.column HD.text <*> HD.column (HD.array (HD.dimension replicateM (HD.element HD.text))) <*> HD.column HD.text <*> HD.column HD.text <*> HD.column (HD.array (HD.dimension replicateM (HD.element HD.text))) decodePks :: [Table] -> HD.Result [PrimaryKey] decodePks tables = mapMaybe (pkFromRow tables) <$> HD.rowList pkRow where pkRow = (,,) <$> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.text decodeSynonyms :: [Column] -> HD.Result [Synonym] decodeSynonyms cols = mapMaybe (synonymFromRow cols) <$> HD.rowList synRow where synRow = (,,,,,) <$> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.text decodeProcs :: HD.Result (M.HashMap Text [ProcDescription]) decodeProcs = -- Duplicate rows for a function means they're overloaded, order these by least args according to ProcDescription Ord instance map sort . M.fromListWith (++) . map ((\(x,y) -> (x, [y])) . addName) <$> HD.rowList tblRow where tblRow = ProcDescription <$> HD.column HD.text <*> HD.nullableColumn HD.text <*> (parseArgs <$> HD.column HD.text) <*> (parseRetType <$> HD.column HD.text <*> HD.column HD.text <*> HD.column HD.bool <*> HD.column HD.char) <*> (parseVolatility <$> HD.column HD.char) addName :: ProcDescription -> (Text, ProcDescription) addName pd = (pdName pd, pd) parseArgs :: Text -> [PgArg] parseArgs = mapMaybe parseArg . filter (not . isPrefixOf "OUT" . toS) . map strip . split (==',') parseArg :: Text -> Maybe PgArg parseArg a = let arg = lastDef "" $ splitOn "INOUT " a (body, def) = breakOn " DEFAULT " arg (name, typ) = breakOn " " body in if T.null typ then Nothing else Just $ PgArg (dropAround (== '"') name) (strip typ) (T.null def) parseRetType :: Text -> Text -> Bool -> Char -> RetType parseRetType schema name isSetOf typ | isSetOf = SetOf pgType | otherwise = Single pgType where qi = QualifiedIdentifier schema name pgType = case typ of 'c' -> Composite qi 'p' -> if name == "record" -- Only pg pseudo type that is a row type is 'record' then Composite qi else Scalar qi _ -> Scalar qi -- 'b'ase, 'd'omain, 'e'num, 'r'ange parseVolatility :: Char -> ProcVolatility parseVolatility v | v == 'i' = Immutable | v == 's' = Stable | otherwise = Volatile -- only 'v' can happen here allProcs :: H.Statement Schema (M.HashMap Text [ProcDescription]) allProcs = H.Statement (toS procsSqlQuery) (HE.param HE.text) decodeProcs True accessibleProcs :: H.Statement Schema (M.HashMap Text [ProcDescription]) accessibleProcs = H.Statement (toS sql) (HE.param HE.text) decodeProcs True where sql = procsSqlQuery <> " AND has_function_privilege(p.oid, 'execute')" procsSqlQuery :: SqlQuery procsSqlQuery = [q| SELECT p.proname as "proc_name", d.description as "proc_description", pg_get_function_arguments(p.oid) as "args", tn.nspname as "rettype_schema", coalesce(comp.relname, t.typname) as "rettype_name", p.proretset as "rettype_is_setof", t.typtype as "rettype_typ", p.provolatile FROM pg_proc p JOIN pg_namespace pn ON pn.oid = p.pronamespace JOIN pg_type t ON t.oid = p.prorettype JOIN pg_namespace tn ON tn.oid = t.typnamespace LEFT JOIN pg_class comp ON comp.oid = t.typrelid LEFT JOIN pg_catalog.pg_description as d on d.objoid = p.oid WHERE pn.nspname = $1 |] schemaDescription :: H.Statement Schema (Maybe Text) schemaDescription = H.Statement sql (HE.param HE.text) (join <$> HD.rowMaybe (HD.nullableColumn HD.text)) True where sql = [q| select description from pg_catalog.pg_namespace n left join pg_catalog.pg_description d on d.objoid = n.oid where n.nspname = $1 |] accessibleTables :: H.Statement Schema [Table] accessibleTables = H.Statement sql (HE.param HE.text) decodeTables True where sql = [q| select n.nspname as table_schema, relname as table_name, d.description as table_description, c.relkind = 'r' or (c.relkind IN ('v', 'f')) and (pg_relation_is_updatable(c.oid::regclass, false) & 8) = 8 or (exists ( select 1 from pg_trigger where pg_trigger.tgrelid = c.oid and (pg_trigger.tgtype::integer & 69) = 69) ) as insertable from pg_class c join pg_namespace n on n.oid = c.relnamespace left join pg_catalog.pg_description as d on d.objoid = c.oid and d.objsubid = 0 where c.relkind in ('v', 'r', 'm', 'f') and n.nspname = $1 and ( pg_has_role(c.relowner, 'USAGE'::text) or has_table_privilege(c.oid, 'SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER'::text) or has_any_column_privilege(c.oid, 'SELECT, INSERT, UPDATE, REFERENCES'::text) ) order by relname |] addForeignKeys :: [Relation] -> [Column] -> [Column] addForeignKeys rels = map addFk where addFk col = col { colFK = fk col } fk col = join $ relToFk col <$> find (lookupFn col) rels lookupFn :: Column -> Relation -> Bool lookupFn c Relation{relColumns=cs, relType=rty} = c `elem` cs && rty==Child relToFk col Relation{relColumns=cols, relFColumns=colsF} = do pos <- L.elemIndex col cols colF <- atMay colsF pos return $ ForeignKey colF {- Adds Views Child Relations based on Synonyms found, the logic is as follows: Having a Relation{relTable=t1, relColumns=[c1], relFTable=t2, relFColumns=[c2], relType=Child} represented by: t1.c1------t2.c2 When only having a t1_view.c1 synonym, we need to add a View to Table Child Relation t1.c1----t2.c2 t1.c1----------t2.c2 -> ________/ / t1_view.c1 t1_view.c1 When only having a t2_view.c2 synonym, we need to add a Table to View Child Relation t1.c1----t2.c2 t1.c1----------t2.c2 -> \________ \ t2_view.c2 t2_view.c1 When having t1_view.c1 and a t2_view.c2 synonyms, we need to add a View to View Child Relation in addition to the prior t1.c1----t2.c2 t1.c1----------t2.c2 -> \________/ / \ t1_view.c1 t2_view.c2 t1_view.c1-------t2_view.c1 The logic for composite pks is similar just need to make sure all the Relation columns have synonyms. -} addViewChildRelations :: [Synonym] -> [Relation] -> [Relation] addViewChildRelations allSyns = concatMap (\rel -> rel : case rel of Relation{relType=Child, relTable, relColumns, relFTable, relFColumns} -> let colSynsGroupedByView :: [Column] -> [[Synonym]] colSynsGroupedByView relCols = L.groupBy (\(_, viewCol1) (_, viewCol2) -> colTable viewCol1 == colTable viewCol2) $ filter (\(c, _) -> c `elem` relCols) allSyns colsSyns = colSynsGroupedByView relColumns fColsSyns = colSynsGroupedByView relFColumns getView :: [Synonym] -> Table getView = colTable . snd . unsafeHead syns `allSynsOf` cols = S.fromList (fst <$> syns) == S.fromList cols -- Relation is dependent on the order of relColumns and relFColumns to get the join conditions right in the generated query. -- So we need to change the order of the synonyms to match the relColumns -- This could be avoided if the Relation type is improved with a structure that maintains the association of relColumns and relFColumns syns `sortAccordingTo` columns = sortOn (\(k, _) -> L.lookup k $ zip columns [0::Int ..]) syns in -- View Table Child Relations [Relation (getView syns) (snd <$> syns `sortAccordingTo` relColumns) relFTable relFColumns Child Nothing Nothing Nothing | syns <- colsSyns, syns `allSynsOf` relColumns] ++ -- Table View Child Relations [Relation relTable relColumns (getView fSyns) (snd <$> fSyns `sortAccordingTo` relFColumns) Child Nothing Nothing Nothing | fSyns <- fColsSyns, fSyns `allSynsOf` relFColumns] ++ -- View View Child Relations [Relation (getView syns) (snd <$> syns `sortAccordingTo` relColumns) (getView fSyns) (snd <$> fSyns `sortAccordingTo` relFColumns) Child Nothing Nothing Nothing | syns <- colsSyns, fSyns <- fColsSyns, syns `allSynsOf` relColumns, fSyns `allSynsOf` relFColumns] _ -> []) addParentRelations :: [Relation] -> [Relation] addParentRelations = concatMap (\rel@(Relation t c ft fc _ _ _ _) -> [rel, Relation ft fc t c Parent Nothing Nothing Nothing]) addManyToManyRelations :: [Relation] -> [Relation] addManyToManyRelations rels = rels ++ addMirrorRelation (mapMaybe link2Relation links) where links = join $ map (combinations 2) $ filter (not . null) $ groupWith groupFn $ filter ( (==Child). relType) rels groupFn :: Relation -> Text groupFn Relation{relTable=Table{tableSchema=s, tableName=t}} = s <> "_" <> t -- Reference : https://wiki.haskell.org/99_questions/Solutions/26 combinations :: Int -> [a] -> [[a]] combinations 0 _ = [ [] ] combinations n xs = [ y:ys | y:xs' <- tails xs , ys <- combinations (n-1) xs'] addMirrorRelation = concatMap (\rel@(Relation t c ft fc _ lt lc1 lc2) -> [rel, Relation ft fc t c Many lt lc2 lc1]) link2Relation [ Relation{relTable=lt, relColumns=lc1, relFTable=t, relFColumns=c}, Relation{ relColumns=lc2, relFTable=ft, relFColumns=fc} ] | lc1 /= lc2 && length lc1 == 1 && length lc2 == 1 = Just $ Relation t c ft fc Many (Just lt) (Just lc1) (Just lc2) | otherwise = Nothing link2Relation _ = Nothing addViewPrimaryKeys :: [Synonym] -> [PrimaryKey] -> [PrimaryKey] addViewPrimaryKeys syns = concatMap (\pk -> let viewPks = (\(_, viewCol) -> PrimaryKey{pkTable=colTable viewCol, pkName=colName viewCol}) <$> filter (\(col, _) -> colTable col == pkTable pk && colName col == pkName pk) syns in pk : viewPks) allTables :: H.Statement () [Table] allTables = H.Statement sql HE.unit decodeTables True where sql = [q| SELECT n.nspname AS table_schema, c.relname AS table_name, NULL AS table_description, c.relkind = 'r' OR (c.relkind IN ('v','f')) AND (pg_relation_is_updatable(c.oid::regclass, FALSE) & 8) = 8 OR (EXISTS ( SELECT 1 FROM pg_trigger WHERE pg_trigger.tgrelid = c.oid AND (pg_trigger.tgtype::integer & 69) = 69) ) AS insertable FROM pg_class c JOIN pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind IN ('v','r','m','f') AND n.nspname NOT IN ('pg_catalog', 'information_schema') GROUP BY table_schema, table_name, insertable ORDER BY table_schema, table_name |] allColumns :: [Table] -> H.Statement Schema [Column] allColumns tabs = H.Statement sql (HE.param HE.text) (decodeColumns tabs) True where sql = [q| SELECT DISTINCT info.table_schema AS schema, info.table_name AS table_name, info.column_name AS name, info.description AS description, info.ordinal_position AS position, info.is_nullable::boolean AS nullable, info.data_type AS col_type, info.is_updatable::boolean AS updatable, info.character_maximum_length AS max_len, info.numeric_precision AS precision, info.column_default AS default_value, array_to_string(enum_info.vals, ',') AS enum FROM ( /* -- CTE based on pg_catalog to get only Primary and Foreign key columns outside api schema */ WITH key_columns AS ( SELECT r.oid AS r_oid, c.oid AS c_oid, n.nspname, c.relname, r.conname, r.contype, unnest(r.conkey) AS conkey FROM pg_catalog.pg_constraint r, pg_catalog.pg_class c, pg_catalog.pg_namespace n WHERE r.contype IN ('f', 'p') AND c.relkind IN ('r', 'v', 'f', 'm') AND r.conrelid = c.oid AND c.relnamespace = n.oid AND n.nspname NOT IN ('pg_catalog', 'information_schema', $1) ), /* -- CTE based on information_schema.columns -- changed: -- remove the owner filter -- limit columns to the ones in the api schema or PK/FK columns */ columns AS ( SELECT current_database()::information_schema.sql_identifier AS table_catalog, nc.nspname::information_schema.sql_identifier AS table_schema, c.relname::information_schema.sql_identifier AS table_name, a.attname::information_schema.sql_identifier AS column_name, d.description::information_schema.sql_identifier AS description, a.attnum::information_schema.cardinal_number AS ordinal_position, pg_get_expr(ad.adbin, ad.adrelid)::information_schema.character_data AS column_default, CASE WHEN a.attnotnull OR t.typtype = 'd'::"char" AND t.typnotnull THEN 'NO'::text ELSE 'YES'::text END::information_schema.yes_or_no AS is_nullable, CASE WHEN t.typtype = 'd'::"char" THEN CASE WHEN bt.typelem <> 0::oid AND bt.typlen = (-1) THEN 'ARRAY'::text WHEN nbt.nspname = 'pg_catalog'::name THEN format_type(t.typbasetype, NULL::integer) ELSE format_type(a.atttypid, a.atttypmod) END ELSE CASE WHEN t.typelem <> 0::oid AND t.typlen = (-1) THEN 'ARRAY'::text WHEN nt.nspname = 'pg_catalog'::name THEN format_type(a.atttypid, NULL::integer) ELSE format_type(a.atttypid, a.atttypmod) END END::information_schema.character_data AS data_type, information_schema._pg_char_max_length(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.cardinal_number AS character_maximum_length, information_schema._pg_char_octet_length(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.cardinal_number AS character_octet_length, information_schema._pg_numeric_precision(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.cardinal_number AS numeric_precision, information_schema._pg_numeric_precision_radix(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.cardinal_number AS numeric_precision_radix, information_schema._pg_numeric_scale(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.cardinal_number AS numeric_scale, information_schema._pg_datetime_precision(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.cardinal_number AS datetime_precision, information_schema._pg_interval_type(information_schema._pg_truetypid(a.*, t.*), information_schema._pg_truetypmod(a.*, t.*))::information_schema.character_data AS interval_type, NULL::integer::information_schema.cardinal_number AS interval_precision, NULL::character varying::information_schema.sql_identifier AS character_set_catalog, NULL::character varying::information_schema.sql_identifier AS character_set_schema, NULL::character varying::information_schema.sql_identifier AS character_set_name, CASE WHEN nco.nspname IS NOT NULL THEN current_database() ELSE NULL::name END::information_schema.sql_identifier AS collation_catalog, nco.nspname::information_schema.sql_identifier AS collation_schema, co.collname::information_schema.sql_identifier AS collation_name, CASE WHEN t.typtype = 'd'::"char" THEN current_database() ELSE NULL::name END::information_schema.sql_identifier AS domain_catalog, CASE WHEN t.typtype = 'd'::"char" THEN nt.nspname ELSE NULL::name END::information_schema.sql_identifier AS domain_schema, CASE WHEN t.typtype = 'd'::"char" THEN t.typname ELSE NULL::name END::information_schema.sql_identifier AS domain_name, current_database()::information_schema.sql_identifier AS udt_catalog, COALESCE(nbt.nspname, nt.nspname)::information_schema.sql_identifier AS udt_schema, COALESCE(bt.typname, t.typname)::information_schema.sql_identifier AS udt_name, NULL::character varying::information_schema.sql_identifier AS scope_catalog, NULL::character varying::information_schema.sql_identifier AS scope_schema, NULL::character varying::information_schema.sql_identifier AS scope_name, NULL::integer::information_schema.cardinal_number AS maximum_cardinality, a.attnum::information_schema.sql_identifier AS dtd_identifier, 'NO'::character varying::information_schema.yes_or_no AS is_self_referencing, 'NO'::character varying::information_schema.yes_or_no AS is_identity, NULL::character varying::information_schema.character_data AS identity_generation, NULL::character varying::information_schema.character_data AS identity_start, NULL::character varying::information_schema.character_data AS identity_increment, NULL::character varying::information_schema.character_data AS identity_maximum, NULL::character varying::information_schema.character_data AS identity_minimum, NULL::character varying::information_schema.yes_or_no AS identity_cycle, 'NEVER'::character varying::information_schema.character_data AS is_generated, NULL::character varying::information_schema.character_data AS generation_expression, CASE WHEN c.relkind = 'r'::"char" OR (c.relkind = ANY (ARRAY['v'::"char", 'f'::"char"])) AND pg_column_is_updatable(c.oid::regclass, a.attnum, false) THEN 'YES'::text ELSE 'NO'::text END::information_schema.yes_or_no AS is_updatable FROM pg_attribute a LEFT JOIN key_columns kc ON kc.conkey = a.attnum AND kc.c_oid = a.attrelid LEFT JOIN pg_catalog.pg_description AS d ON d.objoid = a.attrelid and d.objsubid = a.attnum LEFT JOIN pg_attrdef ad ON a.attrelid = ad.adrelid AND a.attnum = ad.adnum JOIN (pg_class c JOIN pg_namespace nc ON c.relnamespace = nc.oid) ON a.attrelid = c.oid JOIN (pg_type t JOIN pg_namespace nt ON t.typnamespace = nt.oid) ON a.atttypid = t.oid LEFT JOIN (pg_type bt JOIN pg_namespace nbt ON bt.typnamespace = nbt.oid) ON t.typtype = 'd'::"char" AND t.typbasetype = bt.oid LEFT JOIN (pg_collation co JOIN pg_namespace nco ON co.collnamespace = nco.oid) ON a.attcollation = co.oid AND (nco.nspname <> 'pg_catalog'::name OR co.collname <> 'default'::name) WHERE NOT pg_is_other_temp_schema(nc.oid) AND a.attnum > 0 AND NOT a.attisdropped AND (c.relkind = ANY (ARRAY['r'::"char", 'v'::"char", 'f'::"char", 'm'::"char"])) AND (nc.nspname = $1 OR kc.r_oid IS NOT NULL) /*--filter only columns that are FK/PK or in the api schema */ /*--AND (pg_has_role(c.relowner, 'USAGE'::text) OR has_column_privilege(c.oid, a.attnum, 'SELECT, INSERT, UPDATE, REFERENCES'::text))*/ ) SELECT table_schema, table_name, column_name, description, ordinal_position, is_nullable, data_type, is_updatable, character_maximum_length, numeric_precision, column_default, udt_name /*-- FROM information_schema.columns*/ FROM columns WHERE table_schema NOT IN ('pg_catalog', 'information_schema') ) AS info LEFT OUTER JOIN ( SELECT n.nspname AS s, t.typname AS n, array_agg(e.enumlabel ORDER BY e.enumsortorder) AS vals FROM pg_type t JOIN pg_enum e ON t.oid = e.enumtypid JOIN pg_catalog.pg_namespace n ON n.oid = t.typnamespace GROUP BY s,n ) AS enum_info ON (info.udt_name = enum_info.n) ORDER BY schema, position |] columnFromRow :: [Table] -> (Text, Text, Text, Maybe Text, Int32, Bool, Text, Bool, Maybe Int32, Maybe Int32, Maybe Text, Maybe Text) -> Maybe Column columnFromRow tabs (s, t, n, desc, pos, nul, typ, u, l, p, d, e) = buildColumn <$> table where buildColumn tbl = Column tbl n desc pos nul typ u l p d (parseEnum e) Nothing table = find (\tbl -> tableSchema tbl == s && tableName tbl == t) tabs parseEnum :: Maybe Text -> [Text] parseEnum = maybe [] (split (==',')) allChildRelations :: [Table] -> [Column] -> H.Statement () [Relation] allChildRelations tabs cols = H.Statement sql HE.unit (decodeRelations tabs cols) True where sql = [q| SELECT ns1.nspname AS table_schema, tab.relname AS table_name, column_info.cols AS columns, ns2.nspname AS foreign_table_schema, other.relname AS foreign_table_name, column_info.refs AS foreign_columns FROM pg_constraint, LATERAL (SELECT array_agg(cols.attname) AS cols, array_agg(cols.attnum) AS nums, array_agg(refs.attname) AS refs FROM ( SELECT unnest(conkey) AS col, unnest(confkey) AS ref) k, LATERAL (SELECT * FROM pg_attribute WHERE attrelid = conrelid AND attnum = col) AS cols, LATERAL (SELECT * FROM pg_attribute WHERE attrelid = confrelid AND attnum = ref) AS refs) AS column_info, LATERAL (SELECT * FROM pg_namespace WHERE pg_namespace.oid = connamespace) AS ns1, LATERAL (SELECT * FROM pg_class WHERE pg_class.oid = conrelid) AS tab, LATERAL (SELECT * FROM pg_class WHERE pg_class.oid = confrelid) AS other, LATERAL (SELECT * FROM pg_namespace WHERE pg_namespace.oid = other.relnamespace) AS ns2 WHERE confrelid != 0 ORDER BY (conrelid, column_info.nums) |] relationFromRow :: [Table] -> [Column] -> (Text, Text, [Text], Text, Text, [Text]) -> Maybe Relation relationFromRow allTabs allCols (rs, rt, rcs, frs, frt, frcs) = Relation <$> table <*> cols <*> tableF <*> colsF <*> pure Child <*> pure Nothing <*> pure Nothing <*> pure Nothing where findTable s t = find (\tbl -> tableSchema tbl == s && tableName tbl == t) allTabs findCol s t c = find (\col -> tableSchema (colTable col) == s && tableName (colTable col) == t && colName col == c) allCols table = findTable rs rt tableF = findTable frs frt cols = mapM (findCol rs rt) rcs colsF = mapM (findCol frs frt) frcs allPrimaryKeys :: [Table] -> H.Statement () [PrimaryKey] allPrimaryKeys tabs = H.Statement sql HE.unit (decodePks tabs) True where sql = [q| /* -- CTE to replace information_schema.table_constraints to remove owner limit */ WITH tc AS ( SELECT current_database()::information_schema.sql_identifier AS constraint_catalog, nc.nspname::information_schema.sql_identifier AS constraint_schema, c.conname::information_schema.sql_identifier AS constraint_name, current_database()::information_schema.sql_identifier AS table_catalog, nr.nspname::information_schema.sql_identifier AS table_schema, r.relname::information_schema.sql_identifier AS table_name, CASE c.contype WHEN 'c'::"char" THEN 'CHECK'::text WHEN 'f'::"char" THEN 'FOREIGN KEY'::text WHEN 'p'::"char" THEN 'PRIMARY KEY'::text WHEN 'u'::"char" THEN 'UNIQUE'::text ELSE NULL::text END::information_schema.character_data AS constraint_type, CASE WHEN c.condeferrable THEN 'YES'::text ELSE 'NO'::text END::information_schema.yes_or_no AS is_deferrable, CASE WHEN c.condeferred THEN 'YES'::text ELSE 'NO'::text END::information_schema.yes_or_no AS initially_deferred FROM pg_namespace nc, pg_namespace nr, pg_constraint c, pg_class r WHERE nc.oid = c.connamespace AND nr.oid = r.relnamespace AND c.conrelid = r.oid AND (c.contype <> ALL (ARRAY['t'::"char", 'x'::"char"])) AND r.relkind = 'r'::"char" AND NOT pg_is_other_temp_schema(nr.oid) /*--AND (pg_has_role(r.relowner, 'USAGE'::text) OR has_table_privilege(r.oid, 'INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER'::text) OR has_any_column_privilege(r.oid, 'INSERT, UPDATE, REFERENCES'::text))*/ UNION ALL SELECT current_database()::information_schema.sql_identifier AS constraint_catalog, nr.nspname::information_schema.sql_identifier AS constraint_schema, (((((nr.oid::text || '_'::text) || r.oid::text) || '_'::text) || a.attnum::text) || '_not_null'::text)::information_schema.sql_identifier AS constraint_name, current_database()::information_schema.sql_identifier AS table_catalog, nr.nspname::information_schema.sql_identifier AS table_schema, r.relname::information_schema.sql_identifier AS table_name, 'CHECK'::character varying::information_schema.character_data AS constraint_type, 'NO'::character varying::information_schema.yes_or_no AS is_deferrable, 'NO'::character varying::information_schema.yes_or_no AS initially_deferred FROM pg_namespace nr, pg_class r, pg_attribute a WHERE nr.oid = r.relnamespace AND r.oid = a.attrelid AND a.attnotnull AND a.attnum > 0 AND NOT a.attisdropped AND r.relkind = 'r'::"char" AND NOT pg_is_other_temp_schema(nr.oid) /*--AND (pg_has_role(r.relowner, 'USAGE'::text) OR has_table_privilege(r.oid, 'INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER'::text) OR has_any_column_privilege(r.oid, 'INSERT, UPDATE, REFERENCES'::text))*/ ), /* -- CTE to replace information_schema.key_column_usage to remove owner limit */ kc AS ( SELECT current_database()::information_schema.sql_identifier AS constraint_catalog, ss.nc_nspname::information_schema.sql_identifier AS constraint_schema, ss.conname::information_schema.sql_identifier AS constraint_name, current_database()::information_schema.sql_identifier AS table_catalog, ss.nr_nspname::information_schema.sql_identifier AS table_schema, ss.relname::information_schema.sql_identifier AS table_name, a.attname::information_schema.sql_identifier AS column_name, (ss.x).n::information_schema.cardinal_number AS ordinal_position, CASE WHEN ss.contype = 'f'::"char" THEN information_schema._pg_index_position(ss.conindid, ss.confkey[(ss.x).n]) ELSE NULL::integer END::information_schema.cardinal_number AS position_in_unique_constraint FROM pg_attribute a, ( SELECT r.oid AS roid, r.relname, r.relowner, nc.nspname AS nc_nspname, nr.nspname AS nr_nspname, c.oid AS coid, c.conname, c.contype, c.conindid, c.confkey, c.confrelid, information_schema._pg_expandarray(c.conkey) AS x FROM pg_namespace nr, pg_class r, pg_namespace nc, pg_constraint c WHERE nr.oid = r.relnamespace AND r.oid = c.conrelid AND nc.oid = c.connamespace AND (c.contype = ANY (ARRAY['p'::"char", 'u'::"char", 'f'::"char"])) AND r.relkind = 'r'::"char" AND NOT pg_is_other_temp_schema(nr.oid)) ss WHERE ss.roid = a.attrelid AND a.attnum = (ss.x).x AND NOT a.attisdropped /*--AND (pg_has_role(ss.relowner, 'USAGE'::text) OR has_column_privilege(ss.roid, a.attnum, 'SELECT, INSERT, UPDATE, REFERENCES'::text))*/ ) SELECT kc.table_schema, kc.table_name, kc.column_name FROM /* --information_schema.table_constraints tc, --information_schema.key_column_usage kc */ tc, kc WHERE tc.constraint_type = 'PRIMARY KEY' AND kc.table_name = tc.table_name AND kc.table_schema = tc.table_schema AND kc.constraint_name = tc.constraint_name AND kc.table_schema NOT IN ('pg_catalog', 'information_schema') |] pkFromRow :: [Table] -> (Schema, Text, Text) -> Maybe PrimaryKey pkFromRow tabs (s, t, n) = PrimaryKey <$> table <*> pure n where table = find (\tbl -> tableSchema tbl == s && tableName tbl == t) tabs allSynonyms :: [Column] -> PgVersion -> H.Statement Schema [Synonym] allSynonyms cols pgVer = H.Statement sql (HE.param HE.text) (decodeSynonyms cols) True -- query explanation at https://gist.github.com/steve-chavez/7ee0e6590cddafb532e5f00c46275569 where subselectRegex :: Text -- "result" appears when the subselect is used inside "case when", see `authors_have_book_in_decade` fixture -- "resno" appears in every other case -- when copying the query into pg make sure you omit one backslash from \\d+, it should be like `\d+` for the regex subselectRegex | pgVer < pgVersion100 = ":subselect {.*?:constraintDeps <>} :location \\d+} :res(no|ult)" | otherwise = ":subselect {.*?:stmt_len 0} :location \\d+} :res(no|ult)" sql = [qc| with views as ( select n.nspname as view_schema, c.relname as view_name, r.ev_action as view_definition from pg_class c join pg_namespace n on n.oid = c.relnamespace join pg_rewrite r on r.ev_class = c.oid where (c.relkind in ('v', 'm')) and n.nspname = $1 ), removed_subselects as( select view_schema, view_name, regexp_replace(view_definition, '{subselectRegex}', '', 'g') as x from views ), target_lists as( select view_schema, view_name, regexp_split_to_array(x, 'targetList') as x from removed_subselects ), last_target_list_wo_tail as( select view_schema, view_name, (regexp_split_to_array(x[array_upper(x, 1)], ':onConflict'))[1] as x from target_lists ), target_entries as( select view_schema, view_name, unnest(regexp_split_to_array(x, 'TARGETENTRY')) as entry from last_target_list_wo_tail ), results as( select view_schema, view_name, substring(entry from ':resname (.*?) :') as view_colum_name, substring(entry from ':resorigtbl (.*?) :') as resorigtbl, substring(entry from ':resorigcol (.*?) :') as resorigcol from target_entries ) select sch.nspname as table_schema, tbl.relname as table_name, col.attname as table_column_name, res.view_schema, res.view_name, res.view_colum_name from results res join pg_class tbl on tbl.oid::text = res.resorigtbl join pg_attribute col on col.attrelid = tbl.oid and col.attnum::text = res.resorigcol join pg_namespace sch on sch.oid = tbl.relnamespace where resorigtbl <> '0' order by view_schema, view_name, view_colum_name; |] synonymFromRow :: [Column] -> (Text,Text,Text,Text,Text,Text) -> Maybe Synonym synonymFromRow allCols (s1,t1,c1,s2,t2,c2) = (,) <$> col1 <*> col2 where col1 = findCol s1 t1 c1 col2 = findCol s2 t2 c2 findCol s t c = find (\col -> (tableSchema . colTable) col == s && (tableName . colTable) col == t && colName col == c) allCols getPgVersion :: H.Session PgVersion getPgVersion = H.statement () $ H.Statement sql HE.unit versionRow False where sql = "SELECT current_setting('server_version_num')::integer, current_setting('server_version')" versionRow = HD.singleRow $ PgVersion <$> HD.column HD.int4 <*> HD.column HD.text
begriffs/postgrest
src/PostgREST/DbStructure.hs
mit
37,710
0
21
10,645
4,568
2,419
2,149
254
5
module LoggingSpec (spec, main) where import Control.Monad.Except (runExceptT) import Data.Either.Combinators (fromRight') import Data.Monoid ((<>)) import Network.AWS.S3.Types (BucketName(..)) import Network.AWS.Types (Region(..)) import Test.Hspec ( describe , context , shouldBe , shouldSatisfy , it , hspec , Spec ) import Configuration (Command(..)) import Logging ( logMain , logGeneral , logStackName , logExecution , logStackOutputs , logFileUpload , logZip , filterBuilderBy , LogParameters(..) ) import StackParameters (getStackParameters, StackDescription(..)) import Types ( StackName(..) , StackOutputName(..) ) main :: IO () main = hspec spec spec :: Spec spec = describe "LoggingSpec" $ do context "generating log messages" $ do it "can generate a main log message" $ do stackParams <- runExceptT . getStackParameters $ "test/valid.yaml" let descriptions = fromRight' stackParams let accountID = "478156153062" let logParams = LogParameters Create descriptions accountID Sydney let logMessage = logMain logParams logMessage `shouldBe` "\nCommand being executed: " <> "Create" <> "\nAWS Account ID: " <> "478156153062" <> "\nRegion: ap-southeast-2" <> "\nStack(s) being operated on:" <> "\n Stack1" <> "\n Stack2" it "can generate a general log message" $ do let accountID = "478156153062" let logMessage = logGeneral Create accountID Sydney logMessage `shouldBe` "\nCommand being executed: " <> "Create" <> "\nAWS Account ID: " <> "478156153062" <> "\nRegion: ap-southeast-2" it "can generate a stack name log message" $ do stackParams <- runExceptT . getStackParameters $ "test/valid.yaml" let desc = head . fromRight' $ stackParams let logMessage = logStackName desc logMessage `shouldBe` "\n Stack1" it "can generate a command execution log message" $ do stackParams <- runExceptT . getStackParameters $ "test/valid.yaml" let desc = head . fromRight' $ stackParams let logMessage = logExecution Create (_stackName desc) Sydney logMessage `shouldBe` "\nExecuting " <> "Create" <> " on " <> "Stack1" <> " in " <> "ap-southeast-2" <> "...\n" it "can generate a stack outputs log message" $ do let stackOutputs = Just ([ (StackOutputName (StackName "myStack") "myOutput1", "OutputValue1") , (StackOutputName (StackName "myStack") "myOutput2", "OutputValue2") ]) let logMessage = logStackOutputs stackOutputs logMessage `shouldBe` "Stack outputs:\n" <> "Stack name: myStack, Output name: myOutput1, Output value: OutputValue1\n" <> "Stack name: myStack, Output name: myOutput2, Output value: OutputValue2\n" it "can generate a file upload log message" $ do let filePath = "myFolder/myFile.txt" let myAltPath = "folder/myFile.txt" let bucketName = BucketName "myBucket" logFileUpload filePath myAltPath bucketName `shouldBe` "Uploading myFolder/myFile.txt" <> " as folder/myFile.txt" <> " to myBucket" it "can generate a zip log message" $ do let nameOfZip = "test.zip" let paths = ["folder/file1.txt", "folder/file2.txt"] logZip nameOfZip paths `shouldBe` "Creating archive test.zip" <> "\n folder/file1.txt" <> "\n folder/file2.txt" it "logs properly when there are no stack outputs" $ do let stackOutputs = Nothing let logMessage = logStackOutputs stackOutputs logMessage `shouldBe` "Stack outputs: None" context "filtering log messages" $ it "can filter a message based on a given prefix" $ do let prefix = "Log:" let message = "Log: This is a logMessage." prefix `shouldSatisfy` filterBuilderBy message
SEEK-Org/evaporate
test/LoggingSpec.hs
mit
4,260
0
23
1,310
866
443
423
105
1
module Data.Rational where import Prelude hiding (Rational) import Data.Maybe import Data.List import Data.Function data Rational = Rational { numerator :: Integer , denominator :: Integer } instance Show Rational where show r = show (numerator r) ++ "/" ++ show (denominator r) instance Read Rational where readsPrec _ s = [(Rational (read p) (read $ tail q), "")] where (p, q) = splitAt (fromJust $ elemIndex '/' s) s add :: Rational -> Rational -> Rational add p q = Rational ((r + s) `quot` gcdRS) (lcmPQ `quot` gcdRS) where lcmPQ = (lcm `on` denominator) p q r = (lcmPQ `quot` denominator p) * numerator p s = (lcmPQ `quot` denominator q) * numerator q rs = r + s gcdRS = gcd (r + s) lcmPQ
gallais/dailyprogrammer
easy/226/Data/Rational.hs
mit
768
0
11
200
320
175
145
20
1
module Core.CorePrelude(preludeDefs) where import Core.CoreExpr preludeDefs :: CoreProgram preludeDefs = [ ("I", ["x"], EVar "x"), ("K", ["x","y"], EVar "x"), ("K1",["x","y"], EVar "y"), ("S", ["f","g","x"], EAp (EAp (EVar "f") (EVar "x")) (EAp (EVar "g") (EVar "x"))), ("compose", ["f","g","x"], EAp (EVar "f") (EAp (EVar "g") (EVar "x"))), ("twice", ["f"], EAp (EAp (EVar "compose") (EVar "f")) (EVar "f")) ]
binesiyu/ifl
Core/CorePrelude.hs
mit
524
0
11
169
250
143
107
12
1
ms = [getChar, getChar] s1 :: Monad m => [m a] -> m [a] s1 [] = return [] s1 (m:ms) = m >>= \ a -> do as <- s1 ms return (a:as) -- can't >>= on return () <-- needs to be return [] {-s2 :: Monad m => [m a] -> m [a]-} {-s2 ms = foldr func (return ()) ms-} {-where-} {-func :: (Monad m) => m a -> m [a] -> m [a]-} {-func m acc-} {-= do x <- m-} {-xs <- acc-} {-return (x : xs)-} {-s3 :: Monad m => [m a] -> m [a]-} {-s3 ms = foldr func (return []) ms-} {-where-} {-func :: (Monad m) => m a -> m [a] -> m [a]-} {-func m acc = m : acc-} -- invalid syntax {-s4 :: Monad m => [m a] -> m [a]-} {-s4 [] = return []-} {-s4 (m : ms) = return (a : as)-} {-where-} {-a <- m-} {-as <- s4 ms-} s5 :: Monad m => [m a] -> m [a] s5 ms = foldr func (return []) ms where func :: (Monad m) => m a -> m [a] -> m [a] func m acc = do x <- m xs <- acc return (x : xs) -- Can't use '>>' with a lambda on the right! {-s6 :: Monad m => [m a] -> m [a]-} {-s6 [] = return []-} {-s6 (m : ms)-} {-= m >>-} {-\ a ->-} {-do as <- s6 ms-} {-return (a : as)-} -- Can't use <- without do syntax! {-s7 :: Monad m => [m a] -> m [a]-} {-s7 (m:ms) = m >>= \a ->-} {-as <- s7 ms-} {-return (a : as)-} s8 :: Monad m => [m a] -> m [a] s8 [] = return [] s8 (m : ms) = do a <- m as <- s8 ms return (a:as)
adz/real_world_haskell
edx-fp1/sequence.hs
mit
1,428
0
11
489
351
189
162
21
1
{-# language ScopedTypeVariables #-} module Control.Unification.IntVar.Extras (liftCatch) where import Control.Unification.IntVar import Control.Monad.Signatures (Catch) import Control.Monad.Trans (lift) import qualified Control.Monad.State.Class as St runWithState :: St.MonadState s m => s -> m a -> m a runWithState s m = St.put s >> m -- | Lift a @catchE@ operation to the new monad. liftCatch :: forall e tm m a . Monad m => Catch e m (a, IntBindingState tm) -> Catch e (IntBindingT tm m) a liftCatch catch comp handler = do initial <- St.get (ans, final) <- lift $ guardedComp initial comp St.put final return ans where guardedComp :: IntBindingState tm -> IntBindingT tm m a -> m (a, IntBindingState tm) guardedComp s m = runIntBindingT (runWithState s m) `catch` (runIntBindingT . runWithState s . handler)
lambdageek/use-c
src/Control/Unification/IntVar/Extras.hs
mit
844
0
11
156
292
154
138
16
1
import Data.Array import Data.Maybe (catMaybes) import qualified Data.Heap as H import qualified Data.Set as S import Debug.Trace --trace _ b = b main = do input <- readFile "p083_matrix.txt" print $ process input process input = lookup (Point (1,1)) $ solve $ matrixArray $ toMatrix input type Score = Int toMatrix :: String -> [[Score]] toMatrix input = map ((map read) . (split ',')) $ lines input split :: (Eq a) => a -> [a] -> [[a]] split _ [] = [[]] split c s = case second of [] -> [first] (x:xs) -> first : split c xs where (first, second) = break (==c) s matrixSize matrix = let y = length matrix x = length $ head matrix in (x,y) matrixArray matrix = listArray ((1,1),(x,y)) $ concat matrix where (x,y) = matrixSize matrix -- boilerplate ends here newtype Point = Point (Int,Int) deriving (Show, Eq, Ord) arr `at` (Point p) = arr ! p solve arr = bfs (initialHeap arr) S.empty arr [] initialHeap :: (Ord a) => Array (Int,Int) a -> H.MinPrioHeap a Point initialHeap arr = H.singleton (arr `at` p, p) where p = Point (x1,y1) ((_,_),(x1,y1)) = bounds arr data Direction = DUp | DDown | DRight | DLeft deriving (Show, Eq, Ord, Ix) move :: Array (Int, Int) Int -> Point -> Direction -> Maybe Point move arr (Point (i,j)) DUp | i>x0 = Just (Point (i-1, j)) | otherwise = Nothing where ((x0,y0),(x1,y1)) = bounds arr move arr (Point (i,j)) DDown | i<x1 = Just (Point (i+1, j)) | otherwise = Nothing where ((x0,y0),(x1,y1)) = bounds arr move arr (Point (i,j)) DLeft | j>y0 = Just (Point (i, j-1)) | otherwise = Nothing where ((x0,y0),(x1,y1)) = bounds arr move arr (Point (i,j)) DRight | j<y1 = Just (Point (i, j+1)) | otherwise = Nothing where ((x0,y0),(x1,y1)) = bounds arr reachable :: Point -> Array (Int, Int) Int -> S.Set Point -> [Point] reachable point arr visited = filter (\p -> not $ S.member p visited) (catMaybes points) where points = map (move arr point) [DUp, DDown, DRight, DLeft] bfs :: H.MinPrioHeap Int Point -> S.Set Point -> Array (Int, Int) Int -> [(Point,Int)] -> [(Point, Int)] bfs heap _ _ values | H.null heap = values --bfs heap visited arr values | trace ("---------------\n" ++ show values ++ "\n" ++ show visited) False = undefined bfs heap visited arr values = bfs heap' visited'' arr values' where ((top:_), restHeap) = H.splitAt 1 heap (value, point) = top points = reachable point arr visited visited' = S.insert point visited visited'' = foldr S.insert visited' points pvals = map (\p -> (arr `at` p + value, p)) points heap' = foldr H.insert restHeap pvals newValue = (point, value) values' = newValue : values
arekfu/project_euler
p0083/p0083.hs
mit
2,889
0
12
798
1,351
723
628
59
2
-- statemonads.hs import Control.Monad.State
gitrookie/functionalcode
code/Haskell/snippets/statemonads.hs
mit
48
0
4
7
8
5
3
1
0
import Data.Matrix import Hungarian import System.Random import Criterion.Main import Control.DeepSeq (($!!)) data NamedMatrix a = NMatrix String (Matrix a) instance (Show a) => Show (NamedMatrix a) where show (NMatrix string matr) = "\n\n" ++ string ++ "\n\n" ++ show matr main = do putStrLn "Enter a number to seed random generator with mkStdGen, or type 'new' to use newStdGen." response <- getLine globalStdGen <- newStdGen let stdGen = if response == "new" then globalStdGen else mkStdGen (read response :: Int) putStrLn "Run benchmarks up to what nxn size matrix?" size <- getLine let matrixSize = (read size :: Int) putStrLn $ show $ generateSolvedRandomMatrices matrixSize stdGen defaultMain [ bgroup "hungarianMin" $ generateBenchmarks matrixSize stdGen ] randSquareMatrix :: Int -> Int -> StdGen -> Int -> Matrix Int randSquareMatrix lowerLimit upperLimit g x = matrix x x $ \(i,j) -> randomNumbers !! (j + i*x) where randomNumbers = randomRs (lowerLimit, upperLimit) g randTestMatrix = randSquareMatrix 0 1000 generateBenchmarks :: Int -> StdGen -> [Benchmark] generateBenchmarks 0 _ = [] generateBenchmarks x g = generateBenchmarks (x-1) (snd (next g)) ++ [bench (show x ++ "x" ++ show x) $ (whnf hungarianMin) $!! randTestMatrix g x] generateSolvedRandomMatrices :: Int -> StdGen -> [NamedMatrix Int] generateSolvedRandomMatrices 0 _ = [] generateSolvedRandomMatrices x g = let randName = "Random " ++ sizeStr x ++ " Matrix" randMatrix = randTestMatrix g x solvedName = "Solved Random " ++ sizeStr x ++ " Matrix" solvedMatrix = hungarianMin randMatrix in generateSolvedRandomMatrices (x-1) (snd (next g)) ++ NMatrix randName randMatrix : [NMatrix solvedName solvedMatrix] sizeStr :: Int -> String sizeStr x = show x ++ "x" ++ show x
jjeffrey/hungarian
CriterionTests.hs
mit
1,929
12
16
453
592
304
288
38
2
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE NamedFieldPuns #-} module Server.Web where import Data.String (fromString) import Web.Scotty import Network.HTTP.Types (status404) import Network.Wai.Middleware.RequestLogger (logStdoutDev) import Server.Types import Server.ProgramOptions (ProgramOptions(..)) import Server.Stream (getStream) import Server.HLSProxy (getProxy) import Control.Monad.IO.Class (liftIO) import Control.Concurrent.MVar (MVar(..)) runServer :: MVar ServerState -> ProgramOptions -> IO () runServer state options = scotty webPort $ do middleware logStdoutDev get "/:channel" $ do channel <- param "channel" maybeStream <- liftIO $ getStream options channel state withJustOr404 json maybeStream get playlistRoutePattern $ do channel <- param "channel" quality <- param "quality" mbProxy <- liftIO $ getProxy options channel quality state withJustOr404 serveProxy mbProxy where ProgramOptions{indexFileName, webPort} = options playlistRoutePattern = fromString $ "/:channel/:quality/" ++ indexFileName withJustOr404 :: (a -> ActionM ()) -> Maybe a -> ActionM () withJustOr404 = maybe $ status status404 serveProxy :: HLSProxy -> ActionM () serveProxy proxy = do addHeader "Content-Type" "application/vnd.apple.mpegurl" file $ indexPath proxy
best-coloc-ever/twitch-cast
streamer/app/Server/Web.hs
mit
1,425
0
13
280
376
192
184
35
1
{-| Module : Sivi.Operation.Types Description : Type declarations Copyright : (c) Maxime ANDRE, 2015 License : GPL-2 Maintainer : [email protected] Stability : experimental Portability : POSIX -} module Sivi.Operation.Types ( Transformation , Operation , OpEnvironment(..) , OpState(..) , Tool(..) , ArcDirection(..) , CuttingParameters(..) , buildEnvironment , buildState ) where import Linear import Control.Monad.RWS type Transformation = V3 Double -> V3 Double -- | The Operation type. type Operation m w a = RWS (OpEnvironment m) w OpState a -- | Contains the Reader part of the 'Operation' monad. -- Before, a tuple was used. But a custom datatype is more readable, and it is easier to add new parameters. -- Each parameter name is prepended with an "e" to avoid name collisions with functions like 'Sivi.Operation.Base.getTransformation', 'Sivi.Operation.Base.getFeedRate', ... Moreover, these names are used only internally, and won't be used by the user. They are a bit ugly, but it's not really a problem. data OpEnvironment m = OpEnvironment { eTransformation :: Transformation , eFeedRate :: Double , ePlungeRate :: Double , eProbeRate :: Double , eDepthOfCut :: Double , eMachine :: m } -- | Contains the State part of the 'Operation' monad. -- Each parameter is prepended with an "s" tto avoid name collisions. For the same reason as 'OpEnvironment'. data OpState = OpState { sCurrentPosition :: (V3 Double) , sTool :: Tool } -- | Tool data type. -- Used for tool changes, radius compensation. data Tool = EndMill { diameter :: Double, len :: Double } | BallEndMill { diameter :: Double, shankDiameter :: Double, len :: Double } -- ^ The coordinates of the tool are the center of the ball (and not the bottom of the tool) | ProbeTool { diameter :: Double, len :: Double } deriving (Eq, Show) data ArcDirection = CW -- ^ Clockwise | CCW -- ^ Counterclockwise deriving (Eq, Show) -- | Cutting parameters : contains the feed rate, plunge rate, etc. They are needed when we want to run an operation with 'Sivi.Operation.Run.runOperation'. data CuttingParameters m = CuttingParameters { transformation :: Transformation -- ^ the initial transformation should always be 'Prelude.id' (identity function, i.e. no transformation). Use something else if you know what you are doing. , feedRate :: Double , plungeRate :: Double , probeRate :: Double , depthOfCut :: Double -- ^ Must be a negative number , machine :: m , initialPosition :: V3 Double , initialTool :: Tool } -- | Gets the environment part of the cutting parameters. buildEnvironment :: CuttingParameters m -> OpEnvironment m buildEnvironment (CuttingParameters tr fr pr pbr dc m _ _) = OpEnvironment tr fr pr pbr dc m -- | Gets the state part of the cutting parameters. buildState :: CuttingParameters m -> OpState buildState (CuttingParameters _ _ _ _ _ _ ipos itool) = OpState ipos itool
iemxblog/sivi-haskell
src/Sivi/Operation/Types.hs
gpl-2.0
3,199
0
10
808
450
275
175
46
1
import Data.Char import System.IO n :: Integer n = 134896036104102133446208954973118530800743044711419303630456535295204304771800100892609593430702833309387082353959992161865438523195671760946142657809228938824313865760630832980160727407084204864544706387890655083179518455155520501821681606874346463698215916627632418223019328444607858743434475109717014763667 k :: Int k = 131 primes :: [Integer] primes = take k $ sieve (2 : [3, 5..]) where sieve (p:xs) = p : sieve [x|x <- xs, x `mod` p > 0] stringToInteger :: String -> Integer stringToInteger str = foldl (\x y -> (toInteger $ ord y) + x*256) 0 str integerToString :: Integer -> String integerToString num = f num "" where f 0 str = str f num str = f (div num 256) $ (:) (chr $ fromIntegral $ num `mod` 256) str numToBits :: Integer -> [Int] numToBits num = f num [] where f 0 arr = arr f x arr = f (div x 2) ((fromInteger $ x `mod` 2) : arr) extendBits :: Int -> [Int] -> [Int] extendBits blockLen arr | len == 0 = arr | len > 0 = (replicate (blockLen-len) 0) ++ arr where len = (length arr) `mod` blockLen calc :: Integer -> [Int] -> Integer calc num [] = num calc num arr = calc result restArr where num2 = num*num `mod` n (block, restArr) = splitAt k arr zipped = zipWith (\x y -> ((fromIntegral x)*y) `mod` n) block primes mul = product $ filter (/=0) zipped result = num2*mul `mod` n magic :: String -> String magic input = result where num = stringToInteger input bits = numToBits num extended = reverse $ extendBits 8 bits oriLen = length extended extendedBits = extendBits k extended oriLenBits = numToBits $ fromIntegral oriLen extendedOriLenBits = extendBits k oriLenBits finalBits = extendedOriLenBits ++ extendedBits result = show $ calc 1 (reverse finalBits) main = do flag <- readFile "flag" putStrLn.show $ length flag putStrLn $ magic ("the flag is hitcon{" ++ flag ++ "}")
Qwaz/solved-hacking-problem
HITCON/2019 Quals/very_simple_haskell/prob.hs
gpl-2.0
2,051
6
12
504
788
394
394
47
2
{-# LANGUAGE OverloadedStrings #-} module TestHttpConduit (runGoogle) where import Network.HTTP.Conduit import Data.Conduit import Data.Conduit.Binary(sinkFile) import qualified Data.ByteString.Lazy as L import Control.Monad.IO.Class (liftIO) -- Process the result byte string by saving the transaction in -- the database. parse aResponse = responseBody aResponse runGoogle :: IO () runGoogle = do -- We are in the IO monad runResourceT $ do -- Now we are in the resource transformer monad. -- the idea being that the exception path -- is handled inside the ResourceTransformer monad manager <- liftIO $ newManager def -- the newManager call returns an IO Manager so liftIO -- is a generic operation that lifts the manager from IO -- and puts it in the resource transformer. -- req <- liftIO $ parseUrl "http://www.google.com" res <- httpLbs req manager -- Process this response -- save it in the database, break out the components and do something like that. let resultByteString = parse res in liftIO $ L.putStr $ resultByteString
dservgun/haskell_test_code
src/TestHttpConduit.hs
gpl-2.0
1,227
0
14
353
165
93
72
17
1
{-# LANGUAGE OverloadedStrings #-} module Lib.Parallelism ( ParId , Parallelism, new , Cell , Priority(..) , startAlloc , withReleased ) where import Control.Concurrent.MVar import Control.Monad import Data.IORef import Lib.Exception (bracket, bracket_, finally) import Lib.IORef (atomicModifyIORef_) import Lib.PoolAlloc (PoolAlloc, Priority(..)) import qualified Control.Exception as E import qualified Lib.PoolAlloc as PoolAlloc -- NOTE: withReleased may be called multiple times on the same Cell, -- concurrently. This is allowed, but the parallelism will only be -- released and regained once. The regain will occur after all -- withReleased sections completed. This means that not every -- "withReleased" completion actually incurs a re-allocation -- so -- withReleased can complete without parallelism being allocated. This -- happens anywhere whenever there is hidden concurrency in a build -- step, so it's not a big deal. type ParId = Int data CellState = CellReleased Int (MVar ()) -- ^ Release overdraft and mvar to publish alloc result when allocation succeeds | CellAlloced ParId | CellAllocating (MVar ()) type Cell = IORef CellState type Parallelism = PoolAlloc ParId new :: ParId -> IO Parallelism new n = PoolAlloc.new [1..n] -- MUST be called under proper masking to avoid losing result bracket -- which MUST be invoked to avoid a leak! startAlloc :: Priority -> Parallelism -> IO ((Cell -> IO r) -> IO r) startAlloc priority parallelism = do alloc <- PoolAlloc.startAlloc priority parallelism return $ bracket (newIORef . CellAlloced =<< alloc) (release parallelism) release :: Parallelism -> Cell -> IO () release parallelism cell = go where go = do mvar <- newEmptyMVar E.mask_ $ do join $ atomicModifyIORef cell $ \cellState -> case cellState of CellReleased n oldMVar -> (CellReleased (n + 1) oldMVar, return ()) CellAlloced parId -> (CellReleased 0 mvar, PoolAlloc.release parallelism parId) CellAllocating oldMVar -> (cellState, readMVar oldMVar >> go) -- | Release the currently held item, run given action, then regain -- new item instead withReleased :: Priority -> Cell -> Parallelism -> IO a -> IO a withReleased priority cell parallelism = bracket_ (release parallelism cell) realloc where setAlloced parId = atomicModifyIORef_ cell $ \cellState -> case cellState of CellAllocating _ -> CellAlloced parId _ -> error "Somebody touched the cell when it was in CellAllocating?!" actualAlloc mvar = (PoolAlloc.alloc priority parallelism >>= setAlloced) `finally` putMVar mvar () realloc = join $ atomicModifyIORef cell $ \cellState -> case cellState of CellReleased 0 mvar -> (CellAllocating mvar, actualAlloc mvar) CellReleased n mvar -> (CellReleased (n-1) mvar, return ()) CellAllocating mvar -> (CellAllocating mvar, readMVar mvar >> realloc) CellAlloced _ -> error "More allocs than releases?!"
nadavshemer/buildsome
src/Lib/Parallelism.hs
gpl-2.0
3,029
0
20
624
712
377
335
56
5
module Codegen( cGen, runtimeCode, runtimeMain ) where import Bytecode import Data.List type CCode = String type Prototype = String runtimeCode :: IO String runtimeCode = readFile "lib/runtime.c" runtimeMain :: IO String runtimeMain = readFile "lib/runtime_main.c" cGen :: CompiledFun -> ([Prototype], CCode) cGen (n, ic, na, code) = (protos, glob_val ++ fun') where fun = "uint8_t __fun_" ++ n' ++ "(uint8_t n)\n{\n\t" ++ varCheck ++ ccode ++ "\n}\n" glob_val = "struct __val " ++ n' ++ "()\n{\n\t" ++ str ++ "\n}\n" struct = "struct __val v = {};\n\t" ++ "v.data = __fun_" ++ n' ++ ";\n\t" ++ "return v;" struct' = ccode ++ "\n\t" ++ "struct __val v = __read_val(0);\n\t" ++ "__pop();\n\t" ++ "return v;" protos = protoVal : if not ic then [protoFun] else [] protoVal = "struct __val " ++ n' ++ "();" protoFun = "uint8_t __fun_" ++ n' ++ "(uint8_t n);" varCheck = "if (n != " ++ show na ++ ") {\n\t\treturn 0;\n\t}\n\t" str = if ic then struct' else struct fun' = if ic then "" else fun n' = mangle n ccode = intercalate "\n\t" instrs instrs = map genInstr code genInstr :: Instruction -> String genInstr i = case i of PushNum i -> "__push_num(" ++ show i ++ ");" PushStr s -> "__push_str(" ++ show s ++ ");" PushVar i -> "__push_val(__read_val(" ++ show i ++ "));" PushGlobal g -> "__push_val(" ++ mangle g ++ "());" Call n -> "__call(" ++ show n ++ ");" Unwind n -> "__unwind(" ++ show n ++ ");" Pop -> "__pop();" Return -> "return 1;" Cond t e -> "if (__pop_num(0)) {" ++ tc ++ "} else {" ++ ec ++ "}" where tc = unwords (map genInstr t) ec = unwords (map genInstr e) mangle :: String -> String mangle s | head s == '$' = "builtin" ++ tail (init s) ++ "builtin" mangle s = "b_" ++ concatMap mangleChar s ++ "_b" mangleChar :: Char -> String mangleChar c = case c of '$' -> "builtin" ':' -> "_lambda_" '\'' -> "_prime_" x -> [x]
dosenfrucht/beagle
src/Codegen.hs
gpl-2.0
2,174
0
12
682
656
339
317
54
9
module Functions.Algebra (incSum ) where incSum :: (Float -> Float) -> Float -> Float -> Float incSum f sumMinBound sumMaxBound = sum [f i | i <- [sumMinBound .. sumMaxBound]]
LeoMingo/RPNMathParser
Functions/Algebra.hs
gpl-3.0
180
0
9
34
70
38
32
4
1
module Infsabot.Strategy.Random.Interface( complexity, cRandom, randomChecks ) where import Infsabot.Strategy.Random.Tests import Infsabot.Strategy.Random.Logic
kavigupta/Infsabot
Infsabot/Strategy/Random/Interface.hs
gpl-3.0
189
0
4
39
33
23
10
5
0
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -fno-warn-duplicate-exports #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} -- | -- Module : Network.Google.Resource.Compute.ExternalVPNGateways.TestIAMPermissions -- Copyright : (c) 2015-2016 Brendan Hay -- License : Mozilla Public License, v. 2.0. -- Maintainer : Brendan Hay <[email protected]> -- Stability : auto-generated -- Portability : non-portable (GHC extensions) -- -- Returns permissions that a caller has on the specified resource. -- -- /See:/ <https://developers.google.com/compute/docs/reference/latest/ Compute Engine API Reference> for @compute.externalVpnGateways.testIamPermissions@. module Network.Google.Resource.Compute.ExternalVPNGateways.TestIAMPermissions ( -- * REST Resource ExternalVPNGatewaysTestIAMPermissionsResource -- * Creating a Request , externalVPNGatewaysTestIAMPermissions , ExternalVPNGatewaysTestIAMPermissions -- * Request Lenses , evgtipProject , evgtipPayload , evgtipResource ) where import Network.Google.Compute.Types import Network.Google.Prelude -- | A resource alias for @compute.externalVpnGateways.testIamPermissions@ method which the -- 'ExternalVPNGatewaysTestIAMPermissions' request conforms to. type ExternalVPNGatewaysTestIAMPermissionsResource = "compute" :> "v1" :> "projects" :> Capture "project" Text :> "global" :> "externalVpnGateways" :> Capture "resource" Text :> "testIamPermissions" :> QueryParam "alt" AltJSON :> ReqBody '[JSON] TestPermissionsRequest :> Post '[JSON] TestPermissionsResponse -- | Returns permissions that a caller has on the specified resource. -- -- /See:/ 'externalVPNGatewaysTestIAMPermissions' smart constructor. data ExternalVPNGatewaysTestIAMPermissions = ExternalVPNGatewaysTestIAMPermissions' { _evgtipProject :: !Text , _evgtipPayload :: !TestPermissionsRequest , _evgtipResource :: !Text } deriving (Eq, Show, Data, Typeable, Generic) -- | Creates a value of 'ExternalVPNGatewaysTestIAMPermissions' with the minimum fields required to make a request. -- -- Use one of the following lenses to modify other fields as desired: -- -- * 'evgtipProject' -- -- * 'evgtipPayload' -- -- * 'evgtipResource' externalVPNGatewaysTestIAMPermissions :: Text -- ^ 'evgtipProject' -> TestPermissionsRequest -- ^ 'evgtipPayload' -> Text -- ^ 'evgtipResource' -> ExternalVPNGatewaysTestIAMPermissions externalVPNGatewaysTestIAMPermissions pEvgtipProject_ pEvgtipPayload_ pEvgtipResource_ = ExternalVPNGatewaysTestIAMPermissions' { _evgtipProject = pEvgtipProject_ , _evgtipPayload = pEvgtipPayload_ , _evgtipResource = pEvgtipResource_ } -- | Project ID for this request. evgtipProject :: Lens' ExternalVPNGatewaysTestIAMPermissions Text evgtipProject = lens _evgtipProject (\ s a -> s{_evgtipProject = a}) -- | Multipart request metadata. evgtipPayload :: Lens' ExternalVPNGatewaysTestIAMPermissions TestPermissionsRequest evgtipPayload = lens _evgtipPayload (\ s a -> s{_evgtipPayload = a}) -- | Name or id of the resource for this request. evgtipResource :: Lens' ExternalVPNGatewaysTestIAMPermissions Text evgtipResource = lens _evgtipResource (\ s a -> s{_evgtipResource = a}) instance GoogleRequest ExternalVPNGatewaysTestIAMPermissions where type Rs ExternalVPNGatewaysTestIAMPermissions = TestPermissionsResponse type Scopes ExternalVPNGatewaysTestIAMPermissions = '["https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/compute", "https://www.googleapis.com/auth/compute.readonly"] requestClient ExternalVPNGatewaysTestIAMPermissions'{..} = go _evgtipProject _evgtipResource (Just AltJSON) _evgtipPayload computeService where go = buildClient (Proxy :: Proxy ExternalVPNGatewaysTestIAMPermissionsResource) mempty
brendanhay/gogol
gogol-compute/gen/Network/Google/Resource/Compute/ExternalVPNGateways/TestIAMPermissions.hs
mpl-2.0
4,589
0
17
1,016
475
283
192
86
1
module Grouch.Simulation.PaperTrade where import Grouch.Data import Grouch.Games.Common import Grouch.Bots.Blackjack import Grouch.Games.Blackjack import Grouch.Logging.Logger import Data.Maybe import Control.Arrow ((&&&)) import Control.Concurrent (threadDelay) import Control.Monad.Trans.State import Control.Monad.Trans.Class (lift) import Control.Monad -- TODO Extract the core functionality of the paper trader and make it so that you can plug in behaviours type Odds = Double type Value = Double type PlayerId = Int data Bet = Bet { betSide :: Side , betPlayer :: PlayerId , betOdds :: Odds -- as in 6 for 5 to 1, or 2 for even , betVal :: Value } deriving (Show, Read) data Side = Lay | Back deriving (Show, Read) type Return = Double evalWin :: Bet -> Return evalWin (Bet Lay _ _ _) = 0 evalWin (Bet Back _ odds front) = odds * front evalLoss :: Bet -> Return evalLoss (Bet Lay _ odds front) = (front / odds) + front evalLoss (Bet Back _ _ _) = 0 -- | Given a game snapshot, tells if the player won or lost evaluateBet :: GameSnapshot -> Bet -> Return evaluateBet snapshot bet = if playerHand `beatsDealers` dealerHand then evalWin bet else evalLoss bet where hs = assembleGame snapshot pname = "Player " ++ show (betPlayer bet) dealerHand = handValue $ fromMaybe (error "No dealer in hand, need dealer to evaluate bet!") $ lookup "Dealer" hs playerHand = handValue $ fromMaybe (error $ "Could not find for " ++ pname ++ ", cannot eval bet") $ lookup pname hs data PlayerState = PlayerState { playerPot :: Double , playerBets :: [Bet] } deriving (Show, Read) defaultState :: PlayerState defaultState = PlayerState 1000.0 [] -- Will need to iterate over the game, keeping tracks of what bets I have made and making new bets as opportunities come up. -- Once the game ends, I will need to evaluate all the bets into a return, and work out my new pot. Actions should be written -- to a log that I can put on disk somewhere. type Simulation = StateT PlayerState IO () simulate :: PlayerState -> IO PlayerState simulate initialState = do grouchInfo "Grouch.Simulation.PaperTrade" "Starting simulation..." end <- execStateT simulateStep initialState grouchInfo "Grouch.Simulation.PaperTrade" $ "Simulation finished with state " ++ show end return end evaluateBets :: GameSnapshot -> Simulation evaluateBets snapshot = do pstate <- get let returns = map (evaluateBet snapshot) $ playerBets pstate lift $ grouchInfo "Grouch.Simulation.PaperTrade" $ "Final hands: " ++ show (asHandValues $ assembleGame snapshot) lift $ grouchInfo "Grouch.Simulation.PaperTrade" $ "Winning bets: " ++ show (map snd $ filter (( > 0) . fst) $ zip returns $ playerBets pstate) put $ pstate { playerBets = [], playerPot = playerPot pstate + sum returns } placeBet :: Bet -> Simulation placeBet bet = do pstate <- get unless (betAlreadyPlaced (betPlayer bet) (playerBets pstate)) (put $ pstate { playerBets = bet : playerBets pstate, playerPot = playerPot pstate - betVal bet }) betAlreadyPlaced :: PlayerId -> [Bet] -> Bool betAlreadyPlaced i bs = i `elem` map betPlayer bs getBestBack :: PlayerId -> GameSnapshot -> Maybe Price getBestBack player snapshot = listToMaybe =<< lookup playerName playerBacks where playerName = "Player " ++ show player selections = marketSelections $ gameMarket snapshot playerBacks = map (selectionName &&& selectionBestBackPrices) selections getBestLay :: PlayerId -> GameSnapshot -> Maybe Price getBestLay player snapshot = listToMaybe =<< lookup playerName playerLays where playerName = "Player " ++ show player selections = marketSelections $ gameMarket snapshot playerLays = map (selectionName &&& selectionBestLayPrices) selections getGoodBacks :: GameSnapshot -> [(PlayerId, Price, Double)] getGoodBacks snapshot = map (\((name, actual), price) -> (playerId name, fromJust price, actual)) $ filter (uncurry oddsAreBetter) $ zip bettingOdds bestBacks where bettingOdds = map (\x -> (fst x, probToOdds $ snd x)) $ fromMaybe [] probs probs = playerProbs $ assembleGame snapshot bestBacks = map (`getBestBack` snapshot) [1.. 4] playerId name = read [last name] getGoodLays :: GameSnapshot -> [(PlayerId, Price, Double)] getGoodLays snapshot = map (\((name, actual), price) -> (playerId name, fromJust price, actual)) $ filter (uncurry oddsAreWorse) $ zip bettingOdds bestLays where bettingOdds = map (\x -> (fst x, probToOdds $ snd x)) $ fromMaybe [] probs probs = playerProbs $ assembleGame snapshot bestLays = map (`getBestLay` snapshot) [1.. 4] playerId name = read [last name] probThreshold :: Double probThreshold = 0.2 oddsAreBetter :: (String, Double) -> Maybe Price -> Bool oddsAreBetter (_, odds) (Just price) | odds <= 2 = odds < (priceValue price - probThreshold) | otherwise = False oddsAreBetter _ _ = False oddsAreWorse :: (String, Double) -> Maybe Price -> Bool oddsAreWorse (_, odds) (Just price) | odds >= 3 = odds > (priceValue price + probThreshold) | otherwise = False oddsAreWorse _ _ = False {- oddsAreBetter :: (String, Double) -> Maybe Price -> Bool oddsAreBetter (_, odds) (Just price) = odds < priceValue price oddsAreBetter _ _ = False oddsAreWorse :: (String, Double) -> Maybe Price -> Bool oddsAreWorse (_, odds) (Just price) = odds > priceValue price oddsAreWorse _ _ = False -} constructDefaultBet :: Side -> (PlayerId, Price, Double) -> Bet constructDefaultBet side (player, price, _) = Bet side player (priceValue price) (min (priceAmountUnmatched price) 10) constructKellyBet :: Side -> Double -> (PlayerId, Price, Double) -> Bet constructKellyBet side pot (player, price, actual) = let kellyBet = pot * abs (kellyFrac (oddsToProb actual) (priceValue price)) in Bet side player (priceValue price) (min (priceAmountUnmatched price) kellyBet) simulateStep :: Simulation simulateStep = do snapshot <- lift getSnapshotTurbo let hands = map (\(p, h) -> ([head p, last p], handValue h)) $ assembleGame snapshot lift $ grouchDebug "Grouch.Simulation.PaperTrade" $ "Received new snapshot: " ++ show hands lift $ threadDelay 4000000 pstate <- get let lays = map (constructDefaultBet Lay) $ getGoodLays snapshot let backs = map (constructDefaultBet Back) $ getGoodBacks snapshot --let lays = map (constructKellyBet Lay $ playerPot pstate) $ getGoodLays snapshot --let backs = map (constructKellyBet Back $ playerPot pstate) $ getGoodBacks snapshot lift $ grouchInfo "Grouch.Simulation.PaperTrade" $ "Current state: " ++ show pstate unless (playerPot pstate <= 0.0) $ --unless (gameOver snapshot) $ --unless (null lays) (placeBet $ head lays) >> --unless (null backs) (placeBet $ head backs) >> mapM_ placeBet lays >> mapM_ placeBet backs >> when (gameOver snapshot) (evaluateBets snapshot) >> simulateStep kellyFrac :: Double -> Double -> Double kellyFrac p b = (p * b - 1) / (b - 1)
tetigi/hlol
src/HLol/Simulation/PaperTrade.hs
agpl-3.0
7,220
0
16
1,545
2,043
1,065
978
129
2
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE DeriveGeneric #-} module CountdownGame.State.Snapshots ( Snapshot , takeSnapshot )where import GHC.Generics (Generic) import Data.Aeson (ToJSON) import Data.Function (on) import Data.Text (Text) import Data.Time.Clock (UTCTime, getCurrentTime, diffUTCTime) import Data.Maybe (isJust, fromMaybe, listToMaybe) import Data.Map.Strict (Map) import qualified Data.Map.Strict as M import Data.List (sortBy) import Countdown.Game (Attempt, AttemptsMap, Challange, Player, PlayersMap, PlayerId) import qualified Countdown.Game as G import CountdownGame.References import CountdownGame.Database (getPlayersMap) import CountdownGame.State.Definitions (State (..), Ergebnisse) import qualified CountdownGame.State.Definitions as Def data Snapshot = Snapshot { goal :: Maybe Int , availableNrs :: [Int] , isWaiting :: Bool , isRunning :: Bool , secondsLeft :: Int , scoreBoard :: Ergebnisse } deriving (Generic, Show) instance ToJSON Snapshot takeSnapshot :: Bool -> State -> IO Snapshot takeSnapshot isAdmin state = do zielZ <- Def.zielZahl state verfNrs <- Def.verfuegbareZahlen state wartet <- Def.istWartend state laueft <- Def.istInRunde state seks <- Def.nochZuWartendeSekunden state ergs <- Def.ergebnisListe state return $ Snapshot zielZ verfNrs wartet laueft seks ergs
CarstenKoenig/DOS2015
CountdownGame/src/web/CountdownGame/State/Snapshots.hs
unlicense
1,390
0
9
234
382
220
162
39
1
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module Kubernetes.V1.Probe where import GHC.Generics import Kubernetes.V1.ExecAction import Kubernetes.V1.HTTPGetAction import Kubernetes.V1.TCPSocketAction import qualified Data.Aeson -- | Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. data Probe = Probe { exec :: Maybe ExecAction -- ^ One and only one of the following should be specified. Exec specifies the action to take. , httpGet :: Maybe HTTPGetAction -- ^ HTTPGet specifies the http request to perform. , tcpSocket :: Maybe TCPSocketAction -- ^ TCPSocket specifies an action involving a TCP port. TCP hooks not yet supported , initialDelaySeconds :: Maybe Integer -- ^ Number of seconds after the container has started before liveness probes are initiated. More info: http://releases.k8s.io/HEAD/docs/user-guide/pod-states.md#container-probes , timeoutSeconds :: Maybe Integer -- ^ Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. More info: http://releases.k8s.io/HEAD/docs/user-guide/pod-states.md#container-probes , periodSeconds :: Maybe Integer -- ^ How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. , successThreshold :: Maybe Integer -- ^ Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1. Must be 1 for liveness. Minimum value is 1. , failureThreshold :: Maybe Integer -- ^ Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3. Minimum value is 1. } deriving (Show, Eq, Generic) instance Data.Aeson.FromJSON Probe instance Data.Aeson.ToJSON Probe
minhdoboi/deprecated-openshift-haskell-api
kubernetes/lib/Kubernetes/V1/Probe.hs
apache-2.0
1,904
0
9
310
166
101
65
23
0
-- -- Copyright 2017 Andrew Dawson -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. -- module Test.Truncate.Arbitrary ( Bitstring32(..) , Bitstring64(..) , Hexstring32(..) , Hexstring64(..) , TiedWord32(..) , TiedWord64(..) ) where ------------------------------------------------------------------------ import Test.QuickCheck ------------------------------------------------------------------------ import Data.Bits import Data.Word ------------------------------------------------------------------------ -- 'Arbitrary' instances for bit-strings representing floating-point -- numbers newtype Bitstring32 = Bitstring32 String deriving (Show) instance Arbitrary Bitstring32 where arbitrary = Bitstring32 <$> genBitstring 32 newtype Bitstring64 = Bitstring64 String deriving (Show) instance Arbitrary Bitstring64 where arbitrary = Bitstring64 <$> genBitstring 64 genBitstring :: Int -> Gen String genBitstring n = (listOf . choose) ('0', '1') `suchThat` \ s -> length s == n ------------------------------------------------------------------------ -- 'Arbitrary' instances for hexadecimal-strings representing floating-point -- numbers newtype Hexstring32 = Hexstring32 String deriving (Show) instance Arbitrary Hexstring32 where arbitrary = Hexstring32 <$> genHexstring 8 newtype Hexstring64 = Hexstring64 String deriving (Show) instance Arbitrary Hexstring64 where arbitrary = Hexstring64 <$> genHexstring 16 genHexstring :: Int -> Gen String genHexstring n = (listOf . elements) "0123456789abcdef" `suchThat` \ s -> length s == n ------------------------------------------------------------------------ -- 'Arbitrary' instances for 'Word32' and 'Word64' types that produce -- a number with a '1' in a particular bit and '0's in the bits to then -- right of this newtype TiedWord32 = TiedWord32 (Word32, Int) deriving (Show) instance Arbitrary TiedWord32 where arbitrary = TiedWord32 <$> genTiedBits32 genTiedBits32 :: Gen (Word32, Int) genTiedBits32 = do n <- choose (1, 22) w <- arbitrary :: Gen Word32 return (tieBits w (22 - n), n) newtype TiedWord64 = TiedWord64 (Word64, Int) deriving (Show) instance Arbitrary TiedWord64 where arbitrary = TiedWord64 <$> genTiedBits64 genTiedBits64 :: Gen (Word64, Int) genTiedBits64 = do n <- choose (1, 51) w <- arbitrary :: Gen Word64 return (tieBits w (51 - n), n) tieBits :: Bits a => a -> Int -> a tieBits bits n = setBit (dropBits n bits) n where dropBits m = (`shiftL` m) . (`shiftR` m)
aopp-pred/fp-truncate
test/Test/Truncate/Arbitrary.hs
apache-2.0
3,208
0
11
663
624
358
266
53
1
{- Copyright 2020 The CodeWorld Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} main = drawingOf(codeWorldLogo)
google/codeworld
codeworld-compiler/test/testcases/programCalledMain/source.hs
apache-2.0
643
0
6
119
13
7
6
1
1
{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} -- | Constructors for K3 Expressions. This module should almost certainly be imported qualified. module Language.K3.Core.Constructor.Expression ( immut, mut, constant, variable, some, indirect, tuple, unit, record, empty, lambda, unop, binop, applyMany, block, send, project, letIn, assign, caseOf, bindAs, ifThenElse, address, self, Binder(..), Constant(..), Operator(..) ) where import Data.Tree import Language.K3.Core.Annotation import Language.K3.Core.Common import Language.K3.Core.Expression import Language.K3.Core.Type -- | Add mutability qualifier mutable :: Bool -> K3 Expression -> K3 Expression mutable b n = n @+ (if b then EMutable else EImmutable) -- | Shortcuts to the above mut :: K3 Expression -> K3 Expression mut = mutable True immut :: K3 Expression -> K3 Expression immut = mutable False -- | Create a constant expression. constant :: Constant -> K3 Expression constant c = Node (EConstant c :@: []) [] -- | Create a variable expression. variable :: Identifier -> K3 Expression variable v = Node (EVariable v :@: []) [] -- | Create an option value from a constituent expression. some :: K3 Expression -> K3 Expression some e = Node (ESome :@: []) [e] -- | Create an indirection to a the result of an expression. indirect :: K3 Expression -> K3 Expression indirect e = Node (EIndirect :@: []) [e] -- | Create a tuple from a list of members. tuple :: [K3 Expression] -> K3 Expression tuple = Node (ETuple :@: []) -- | Unit value. unit :: K3 Expression unit = Node (ETuple :@: []) [] -- | Create a record from a list of field names and initializers. record :: [(Identifier, K3 Expression)] -> K3 Expression record vs = Node (ERecord ids :@: []) es where (ids, es) = unzip vs -- | Create an empty collection. empty :: K3 Type -> K3 Expression empty t = Node (EConstant (CEmpty t) :@: []) [] -- | Create an anonymous function.. lambda :: Identifier -> K3 Expression -> K3 Expression lambda x b = Node (ELambda x :@: []) [b] -- | Create an application of a unary operator. unop :: Operator -> K3 Expression -> K3 Expression unop op a = Node (EOperate op :@: []) [a] -- | Create an application of a binary operator. binop :: Operator -> K3 Expression -> K3 Expression -> K3 Expression binop op a b = Node (EOperate op :@: []) [a, b] -- | Create a multi-argument function application. applyMany :: K3 Expression -> [K3 Expression] -> K3 Expression applyMany f args = foldl (\curried_f arg -> binop OApp curried_f arg) f args -- | Create a chain of sequential computation. block :: [K3 Expression] -> K3 Expression block [] = unit block [x] = x block exprs = foldl (\sq e -> binop OSeq sq e) (head exprs) (tail exprs) send :: K3 Expression -> K3 Expression -> K3 Expression -> K3 Expression send target addr arg = binop OSnd (tuple [qualifyE target, qualifyE addr]) arg where qualifyE e = if null $ filter isEQualified $ annotations e then e @+ EImmutable else e -- | Project a field from a record. project :: Identifier -> K3 Expression -> K3 Expression project i r = Node (EProject i :@: []) [r] -- | Create a let binding. letIn :: Identifier -> K3 Expression -> K3 Expression -> K3 Expression letIn i e b = Node (ELetIn i :@: []) [e, b] -- | Create an assignment. assign :: Identifier -> K3 Expression -> K3 Expression assign i v = Node (EAssign i :@: []) [v] -- | Create a case destruction. caseOf :: K3 Expression -> Identifier -> K3 Expression -> K3 Expression -> K3 Expression caseOf e x s n = Node (ECaseOf x :@: []) [e, s, n] -- | Create a binding destruction. bindAs :: K3 Expression -> Binder -> K3 Expression -> K3 Expression bindAs e x b = Node (EBindAs x :@: []) [e, b] -- | Create an if/then/else conditional expression. ifThenElse :: K3 Expression -> K3 Expression -> K3 Expression -> K3 Expression ifThenElse p t e = Node (EIfThenElse :@: []) [p, t, e] -- | Create an address expression address :: K3 Expression -> K3 Expression -> K3 Expression address ip port = Node (EAddress :@: []) [ip, port] -- | A self expression. self :: K3 Expression self = Node (ESelf :@: []) []
yliu120/K3
src/Language/K3/Core/Constructor/Expression.hs
apache-2.0
4,212
0
10
871
1,430
748
682
89
2
module Handler.Gallery where import Import import qualified Data.Map as M import Andon.Theme import Andon.Gallery getGalleryR :: Handler RepHtml getGalleryR = defaultLayout $ do setTitle "Gallery" $(widgetFile "gallery")
amutake/andon-yesod
Handler/Gallery.hs
bsd-2-clause
234
0
10
40
60
33
27
9
1
{-| PyValueInstances contains instances for the 'PyValue' typeclass. The typeclass 'PyValue' converts Haskell values to Python values. This module contains instances of this typeclass for several generic types. These instances are used in the Haskell to Python generation of opcodes and constants, for example. -} {- Copyright (C) 2013 Google Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} {-# LANGUAGE FlexibleInstances, OverlappingInstances, TypeSynonymInstances, IncoherentInstances #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Ganeti.PyValueInstances where import Data.List (intercalate) import Data.Map (Map) import qualified Data.Map as Map import qualified Data.Set as Set (toList) import Ganeti.BasicTypes import Ganeti.THH instance PyValue Bool where showValue = show instance PyValue Int where showValue = show instance PyValue Integer where showValue = show instance PyValue Double where showValue = show instance PyValue Char where showValue = show instance (PyValue a, PyValue b) => PyValue (a, b) where showValue (x, y) = "(" ++ showValue x ++ "," ++ showValue y ++ ")" instance (PyValue a, PyValue b, PyValue c) => PyValue (a, b, c) where showValue (x, y, z) = "(" ++ showValue x ++ "," ++ showValue y ++ "," ++ showValue z ++ ")" instance PyValue String where showValue = show instance PyValue a => PyValue [a] where showValue xs = "[" ++ intercalate "," (map showValue xs) ++ "]" instance (PyValue k, PyValue a) => PyValue (Map k a) where showValue mp = "{" ++ intercalate ", " (map showPair (Map.assocs mp)) ++ "}" where showPair (k, x) = showValue k ++ ":" ++ showValue x instance PyValue a => PyValue (ListSet a) where showValue = showValue . Set.toList . unListSet
apyrgio/snf-ganeti
src/Ganeti/PyValueInstances.hs
bsd-2-clause
2,991
0
13
533
473
253
220
39
0
module Exercises.BalancedParenthesesSpec (main, spec) where import Test.Hspec import Exercises.BalancedParentheses main :: IO () main = hspec spec spec :: Spec spec = describe "isValid" $ do context "when input string is empty" $ it "valid" $ isValid "" `shouldBe` True context "when input string contains balanced parentheses" $ it "valid" $ do isValid "()" `shouldBe` True isValid "((()))" `shouldBe` True isValid "()()()" `shouldBe` True isValid "()(())((()))" `shouldBe` True context "when input string contains not balanced parentehses" $ it "not valid" $ do isValid "(" `shouldBe` False isValid ")" `shouldBe` False isValid "(()" `shouldBe` False isValid ")))" `shouldBe` False isValid "((()))()(" `shouldBe` False
WarKnife/exercises
test/Exercises/BalancedParenthesesSpec.hs
bsd-3-clause
837
0
12
218
227
113
114
24
1
-- Copyright (c) 2016-present, Facebook, Inc. -- All rights reserved. -- -- This source code is licensed under the BSD-style license found in the -- LICENSE file in the root directory of this source tree. {-# LANGUAGE GADTs #-} {-# LANGUAGE OverloadedStrings #-} module Duckling.Duration.DA.Rules ( rules ) where import Control.Monad (join) import qualified Data.Text as Text import Prelude import Data.String import Duckling.Dimensions.Types import Duckling.Duration.Helpers import Duckling.Numeral.Helpers (parseInteger) import Duckling.Numeral.Types (NumeralData (..)) import qualified Duckling.Numeral.Types as TNumeral import Duckling.Regex.Types import qualified Duckling.TimeGrain.Types as TG import Duckling.Types ruleExactlyDuration :: Rule ruleExactlyDuration = Rule { name = "exactly <duration>" , pattern = [ regex "pr(æ)cis" , dimension Duration ] , prod = \tokens -> case tokens of -- TODO(jodent) +precision exact (_:token:_) -> Just token _ -> Nothing } ruleIntegerAndAnHalfHours :: Rule ruleIntegerAndAnHalfHours = Rule { name = "<integer> and an half hours" , pattern = [ Predicate isNatural , regex "og (en )?halv timer?" ] , prod = \tokens -> case tokens of (Token Numeral NumeralData{TNumeral.value = v}:_) -> Just . Token Duration . duration TG.Minute $ 30 + 60 * floor v _ -> Nothing } ruleAUnitofduration :: Rule ruleAUnitofduration = Rule { name = "a <unit-of-duration>" , pattern = [ regex "en|et?" , dimension TimeGrain ] , prod = \tokens -> case tokens of (_:Token TimeGrain grain:_) -> Just . Token Duration $ duration grain 1 _ -> Nothing } ruleIntegerMoreUnitofduration :: Rule ruleIntegerMoreUnitofduration = Rule { name = "<integer> more <unit-of-duration>" , pattern = [ Predicate isNatural , dimension TimeGrain , regex "mere|mindre" ] , prod = \tokens -> case tokens of (Token Numeral NumeralData{TNumeral.value = v}: Token TimeGrain grain: _) -> Just . Token Duration . duration grain $ floor v _ -> Nothing } ruleFortnight :: Rule ruleFortnight = Rule { name = "fortnight" , pattern = [ regex "(a|one)? fortnight" ] , prod = \_ -> Just . Token Duration $ duration TG.Day 14 } ruleAboutDuration :: Rule ruleAboutDuration = Rule { name = "about <duration>" , pattern = [ regex "(omkring|cirka|ca.)" , dimension Duration ] , prod = \tokens -> case tokens of -- TODO(jodent) +precision approximate (_:token:_) -> Just token _ -> Nothing } ruleNumeralnumberHours :: Rule ruleNumeralnumberHours = Rule { name = "number.number hours" , pattern = [ regex "(\\d+)\\,(\\d+)" , regex "timer?" ] , prod = \tokens -> case tokens of (Token RegexMatch (GroupMatch (h:m:_)):_) -> do hh <- parseInteger h mnum <- parseInteger m let mden = 10 ^ Text.length m Just . Token Duration $ minutesFromHourMixedFraction hh mnum mden _ -> Nothing } ruleHalfAnHour :: Rule ruleHalfAnHour = Rule { name = "half an hour" , pattern = [ regex "(1/2|en halv) time" ] , prod = \_ -> Just . Token Duration $ duration TG.Minute 30 } rules :: [Rule] rules = [ ruleAUnitofduration , ruleAboutDuration , ruleExactlyDuration , ruleFortnight , ruleHalfAnHour , ruleIntegerAndAnHalfHours , ruleIntegerMoreUnitofduration , ruleNumeralnumberHours ]
facebookincubator/duckling
Duckling/Duration/DA/Rules.hs
bsd-3-clause
3,472
0
18
809
909
510
399
100
2
{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE OverlappingInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ConstraintKinds #-} module Math.Coordinate.LogPolar where import Data.Typeable (Typeable) import Control.Applicative import Data.Array.Accelerate import Data.Array.Accelerate.Smart import Data.Array.Accelerate.Product import Data.Array.Accelerate.Array.Sugar import Data.Complex import qualified Data.Foldable as F import qualified Math.Coordinate.Cartesian as Cartesian import Math.Coordinate.Cartesian (Cartesian) import Math.Coordinate.Coordinate (CoordConversion(..), ManualConversion(..), convertCoord) import Math.Space.Space (Space2) import qualified Math.Constants as Const data LogPolar = LogPolar deriving (Show) data Point2 a = Point2 { rho :: !a , phi :: !a } deriving (Eq, Ord, Show, Read, Typeable) toLogPolar = convertCoord LogPolar -------------------------------------------------------------------------------- -- Instances -------------------------------------------------------------------------------- instance RealFloat a => CoordConversion ManualConversion Cartesian space (Point2 a) (Cartesian.Point2 a) where convertCoordBase _ _ _ pt@(Point2 rho phi) = Cartesian.Point2 (base * cos phi) (base * sin phi) where base = Const.e**rho instance RealFloat a => CoordConversion ManualConversion LogPolar space (Cartesian.Point2 a) (Point2 a) where convertCoordBase _ _ _ (Cartesian.Point2 x y) = Point2 rho phi where rho = log . sqrt $ (x*x) + (y*y) phi = atan2 y x -------------------------------------------------------------------------------- -- Point2 -------------------------------------------------------------------------------- instance Functor Point2 where fmap f (Point2 a b) = Point2 (f a) (f b) instance Applicative Point2 where pure a = Point2 a a {-# INLINE pure #-} Point2 a b <*> Point2 d e = Point2 (a d) (b e) {-# INLINE (<*>) #-} instance Num a => Num (Point2 a) where (+) = liftA2 (+) {-# INLINE (+) #-} (-) = liftA2 (-) {-# INLINE (-) #-} (*) = liftA2 (*) {-# INLINE (*) #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} fromInteger = pure . fromInteger {-# INLINE fromInteger #-} instance Fractional a => Fractional (Point2 a) where recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} fromRational = pure . fromRational {-# INLINE fromRational #-} type instance EltRepr (Point2 a) = EltRepr (a, a) instance Elt a => Elt (Point2 a) where eltType _ = eltType (undefined :: (a,a)) toElt p = case toElt p of (x, y) -> Point2 x y fromElt (Point2 x y) = fromElt (x, y) instance cst a => IsProduct cst (Point2 a) where type ProdRepr (Point2 a) = ProdRepr (a,a) fromProd cst (Point2 x y) = fromProd cst (x,y) toProd cst t = case toProd cst t of (x, y) -> Point2 x y prod cst _ = prod cst (undefined :: (a,a)) instance (Lift Exp a, Elt (Plain a)) => Lift Exp (Point2 a) where type Plain (Point2 a) = Point2 (Plain a) lift (Point2 x y) = Exp $ Tuple $ NilTup `SnocTup` lift x `SnocTup` lift y instance (Elt a, e ~ Exp a) => Unlift Exp (Point2 e) where unlift t = Point2 (Exp $ SuccTupIdx ZeroTupIdx `Prj` t) (Exp $ ZeroTupIdx `Prj` t)
wdanilo/algebraic
src/Math/Coordinate/LogPolar.hs
bsd-3-clause
3,802
0
11
892
1,125
618
507
87
1
-- ------------------------------------------------------------ {- | Module : Yuuko.Text.XML.HXT.Arrow.DocumentInput Copyright : Copyright (C) 2005 Uwe Schmidt License : MIT Maintainer : Uwe Schmidt ([email protected]) Stability : experimental Portability: portable Version : $Id$ State arrows for document input -} -- ------------------------------------------------------------ module Yuuko.Text.XML.HXT.Arrow.DocumentInput ( getURIContents , getXmlContents , getXmlEntityContents , getEncoding , getTextEncoding , decodeDocument ) where import Control.Arrow -- arrow classes import Yuuko.Control.Arrow.ArrowList import Yuuko.Control.Arrow.ArrowIf import Yuuko.Control.Arrow.ArrowTree import Yuuko.Control.Arrow.ArrowIO import Yuuko.Control.Arrow.ListArrow import Data.List ( isPrefixOf ) import System.FilePath ( takeExtension ) import Yuuko.Text.XML.HXT.DOM.Unicode ( getDecodingFct , guessEncoding , normalizeNL ) import qualified Yuuko.Text.XML.HXT.IO.GetFILE as FILE import qualified Yuuko.Text.XML.HXT.IO.GetHTTPLibCurl as LibCURL import Yuuko.Text.XML.HXT.DOM.Interface import Yuuko.Text.XML.HXT.Arrow.ParserInterface ( parseXmlDocEncodingSpec , parseXmlEntityEncodingSpec , removeEncodingSpec ) import Yuuko.Text.XML.HXT.Arrow.XmlArrow import Yuuko.Text.XML.HXT.Arrow.XmlIOStateArrow -- ---------------------------------------------------------- protocolHandlers :: AssocList String (IOStateArrow s XmlTree XmlTree) protocolHandlers = [ ("file", getFileContents) , ("http", getHttpContents) , ("stdin", getStdinContents) ] getProtocolHandler :: IOStateArrow s String (IOStateArrow s XmlTree XmlTree) getProtocolHandler = arr (\ s -> lookupDef getUnsupported s protocolHandlers) getUnsupported :: IOStateArrow s XmlTree XmlTree getUnsupported = perform ( getAttrValue a_source >>> arr (("unsupported protocol in URI " ++) . show) >>> applyA (arr issueFatal) ) >>> setDocumentStatusFromSystemState "accessing documents" getStringContents :: IOStateArrow s XmlTree XmlTree getStringContents = setCont $< getAttrValue a_source >>> addAttr transferMessage "OK" >>> addAttr transferStatus "200" where setCont contents = replaceChildren (txt contents') >>> addAttr transferURI (take 7 contents) -- the "string:" prefix is stored, this is required by setBaseURIFromDoc >>> addAttr a_source (show . prefix 48 $ contents') -- a quoted prefix of the content, max 48 chars is taken as source name where contents' = drop (length stringProtocol) contents prefix l s | length s' > l = take (l - 3) s' ++ "..." | otherwise = s' where s' = take (l + 1) s getFileContents :: IOStateArrow s XmlTree XmlTree getFileContents = applyA ( ( ( getAttrValue a_strict_input >>> arr isTrueValue ) &&& ( getAttrValue transferURI >>> getPathFromURI ) ) >>> traceValue 2 (\ (b, f) -> "read file " ++ show f ++ " (strict input = " ++ show b ++ ")") >>> arrIO (uncurry FILE.getCont) >>> ( arr (uncurry addError) -- io error occured ||| arr addTxtContent -- content read ) ) >>> addMimeType getStdinContents :: IOStateArrow s XmlTree XmlTree getStdinContents = applyA ( getAttrValue a_strict_input >>> arr isTrueValue >>> arrIO FILE.getStdinCont >>> ( arr (uncurry addError) -- io error occured ||| arr addTxtContent -- content read ) ) addError :: [(String, String)] -> String -> IOStateArrow s XmlTree XmlTree addError al e = issueFatal e >>> seqA (map (uncurry addAttr) al) >>> setDocumentStatusFromSystemState "accessing documents" addMimeType :: IOStateArrow s XmlTree XmlTree addMimeType = addMime $< ( getAttrValue transferURI >>> ( uriToMime $< getSysParam xio_mimeTypes ) ) where addMime mt = addAttr transferMimeType mt uriToMime mtt = arr $ ( \ uri -> extensionToMimeType (drop 1 . takeExtension $ uri) mtt ) addTxtContent :: String -> IOStateArrow s XmlTree XmlTree addTxtContent c = replaceChildren (txt c) >>> addAttr transferMessage "OK" >>> addAttr transferStatus "200" getHttpContents :: IOStateArrow s XmlTree XmlTree getHttpContents = getCont $<< ( getAttrValue transferURI &&& ( ( getAttrlAsAssoc -- get all attributes of root node &&& getAllParamsString -- get all system params ) >>^ uncurry addEntries -- merge them, attributes overwrite system params ) ) where getAttrlAsAssoc -- get the attributes as assoc list = listA ( getAttrl >>> ( getName &&& xshow getChildren ) ) getCont uri options = applyA ( ( traceMsg 2 ( "get HTTP via libcurl, uri=" ++ show uri ++ " options=" ++ show options ) >>> arrIO0 ( LibCURL.getCont options uri ) ) >>> ( arr (uncurry addError) ||| arr addContent ) ) addContent :: (AssocList String String, String) -> IOStateArrow s XmlTree XmlTree addContent (al, c) = replaceChildren (txt c) >>> seqA (map (uncurry addAttr) al) getURIContents :: IOStateArrow s XmlTree XmlTree getURIContents = getContentsFromString `orElse` getContentsFromDoc where getContentsFromString = ( getAttrValue a_source >>> isA (isPrefixOf stringProtocol) ) `guards` getStringContents getContentsFromDoc = ( ( addTransferURI $< getBaseURI >>> getCont ) `when` ( setAbsURI $< ( getAttrValue a_source >>^ ( \ src-> (if null src then "stdin:" else src) ) -- empty document name -> read from stdin ) ) ) >>> setDocumentStatusFromSystemState "getURIContents" setAbsURI src = ifA ( constA src >>> changeBaseURI ) this ( issueFatal ("illegal URI : " ++ show src) ) addTransferURI uri = addAttr transferURI uri getCont = applyA ( getBaseURI -- compute the handler and call it >>> traceValue 2 (("getURIContents: reading " ++) . show) >>> getSchemeFromURI >>> getProtocolHandler ) `orElse` this -- don't change tree, when no handler can be found setBaseURIFromDoc :: IOStateArrow s XmlTree XmlTree setBaseURIFromDoc = perform ( getAttrValue transferURI >>> isA (isPrefixOf stringProtocol) -- do not change base URI when reading from a string >>> setBaseURI ) {- | Read the content of a document. This routine is usually called from 'Yuuko.Text.XML.HXT.Arrow.ProcessDocument.getDocumentContents'. The input must be a root node (constructed with 'Yuuko.Text.XML.HXT.Arrow.XmlArrow.root'), usually without children. The attribute list contains all input parameters, e.g. URI or source file name, encoding preferences, ... If the source name is empty, the input is read from standard input. The source is transformed into an absolute URI. If the source is a relative URI, or a file name, it is expanded into an absolut URI with respect to the current base URI. The default base URI is of protocol \"file\" and points to the current working directory. The currently supported protocols are \"http\", \"file\", \"stdin\" and \"string\". The latter two are internal protocols. An uri of the form \"stdin:\" stands for the content of the standard input stream. \"string:some text\" means, that \"some text\" is taken as input. This internal protocol is used for reading from normal 'String' values. -} getXmlContents :: IOStateArrow s XmlTree XmlTree getXmlContents = getXmlContents' parseXmlDocEncodingSpec >>> setBaseURIFromDoc getXmlEntityContents :: IOStateArrow s XmlTree XmlTree getXmlEntityContents = getXmlContents' parseXmlEntityEncodingSpec >>> processChildren removeEncodingSpec >>> setBaseURIFromDoc getXmlContents' :: IOStateArrow s XmlTree XmlTree -> IOStateArrow s XmlTree XmlTree getXmlContents' parseEncodingSpec = ( getURIContents >>> choiceA [ isXmlHtmlDoc :-> ( parseEncodingSpec >>> filterErrorMsg >>> decodeDocument ) , isTextDoc :-> decodeDocument , this :-> this ] >>> perform ( getAttrValue transferURI >>> traceValue 1 (("getXmlContents: content read and decoded for " ++) . show) ) >>> traceTree >>> traceSource ) `when` isRoot isMimeDoc :: (String -> Bool) -> IOStateArrow s XmlTree XmlTree isMimeDoc isMT = fromLA $ ( ( getAttrValue transferMimeType >>^ stringToLower ) >>> isA (\ t -> null t || isMT t) ) `guards` this isTextDoc, isXmlHtmlDoc :: IOStateArrow s XmlTree XmlTree isTextDoc = isMimeDoc isTextMimeType isXmlHtmlDoc = isMimeDoc (\ mt -> isHtmlMimeType mt || isXmlMimeType mt) -- ------------------------------------------------------------ getEncoding :: IOStateArrow s XmlTree String getEncoding = catA [ xshow getChildren -- 1. guess: guess encoding by looking at the first few bytes >>> arr guessEncoding , getAttrValue transferEncoding -- 2. guess: take the transfer encoding , getAttrValue a_encoding -- 3. guess: take encoding parameter in root node , getParamString a_encoding -- 4. guess: take encoding parameter in global state , constA utf8 -- default : utf8 ] >. (head . filter (not . null)) -- make the filter deterministic: take 1. entry from list of guesses getTextEncoding :: IOStateArrow s XmlTree String getTextEncoding = catA [ getAttrValue transferEncoding -- 1. guess: take the transfer encoding , getAttrValue a_encoding -- 2. guess: take encoding parameter in root node , getParamString a_encoding -- 3. guess: take encoding parameter in global state , constA isoLatin1 -- default : no encoding ] >. (head . filter (not . null)) -- make the filter deterministic: take 1. entry from list of guesses decodeDocument :: IOStateArrow s XmlTree XmlTree decodeDocument = choiceA [ ( isRoot >>> isXmlHtmlDoc ) :-> ( decodeArr normalizeNL $< getEncoding ) , ( isRoot >>> isTextDoc ) :-> ( decodeArr id $< getTextEncoding ) , this :-> this ] where decodeArr :: (String -> String) -> String -> IOStateArrow s XmlTree XmlTree decodeArr normalizeNewline enc = maybe notFound found . getDecodingFct $ enc where found df = traceMsg 2 ("decodeDocument: encoding is " ++ show enc) >>> ( decodeText df $< getAttrValue a_ignore_encoding_errors ) >>> addAttr transferEncoding enc notFound = issueFatal ("encoding scheme not supported: " ++ show enc) >>> setDocumentStatusFromSystemState "decoding document" decodeText df ignoreErrs = processChildren ( getText -- get the document content >>> arr df -- decode the text, result is (string, [errMsg]) >>> ( ( (fst >>> normalizeNewline) -- take decoded string, normalize newline and build text node ^>> mkText ) <+> ( if isTrueValue ignoreErrs then none -- encoding errors are ignored else ( arrL snd -- take the error messages >>> arr ((enc ++) . (" encoding error" ++)) -- prefix with enc error >>> applyA (arr issueErr) -- build issueErr arrow and apply >>> none -- neccessary for type match with <+> ) ) ) ) -- ------------------------------------------------------------
nfjinjing/yuuko
src/Yuuko/Text/XML/HXT/Arrow/DocumentInput.hs
bsd-3-clause
11,803
312
19
3,012
2,491
1,344
1,147
279
2
{-# LANGUAGE OverloadedStrings, RecordWildCards, ScopedTypeVariables #-} -- Reindents the type signature of Haskell functions. {-# LANGUAGE OverloadedStrings, RecordWildCards, ScopedTypeVariables #-} -- For use within a text editor like Vim. module Main where import Text.Parsec import qualified Text.Parsec.Token as T (GenTokenParser(..)) import Text.Parsec.Language import qualified Data.Text.IO as T import Data.Monoid import Data.List (intersperse) -- parse :: Stream s Identity t => Parsec s () a -> SourceName -> s -> Either ParseError a -- main = case (parse numbers "" "11, 2, 43") of -- Left err -> print err -- Right xs -> print (sum xs) -- -- numbers = commaSep integer -- type signature parsing {- type Identifier = String data DoubleColon = DoubleColon Int -- ^ position data TypeParam = TypeParam Identifier (Maybe Comment) | FuncTypeParam [TypeParam] data Function = Function Identifier DoubleColon [TypeParam] -} T.TokenParser{..} = haskell data FunctionType = FunctionType String Int [TypeParam] deriving (Show) type Comment = Maybe String data TypeParam = TypeParam String Comment Int | FuncTypeParam [TypeParam] Comment Int deriving (Show) testparser :: Parsec String () (String, Int, Int, Maybe String) testparser = do whiteSpace f <- identifier n <- sourceColumn <$> getPosition symbol "::" x <- identifier' n2 <- sourceColumn <$> getPosition c <- comment return (x, n,n2, c) identStart = letter identLetter = alphaNum <|> oneOf "_'" -- parses identifiers but does not consume following comment whitespace identifier' :: Parsec String () String identifier' = do x <- identStart xs <- many identLetter spaces return (x:xs) parser :: Parsec String () FunctionType parser = do whiteSpace f <- identifier n <- getPosition symbol "::" xs <- typeParams return $ FunctionType f (sourceColumn n) xs typeParams :: Parsec String () [TypeParam] typeParams = sepBy (typeParam <|> functionParam) (symbol "->" ) typeParam :: Parsec String () TypeParam typeParam = do -- t <- (concat . intersperse " ") <$> (many1 identifier') t <- manyTill anyChar (try $ string "--") -- TODO CHANGEME string "--" n <- getCol spaces c <- (comment <* spaces) return $ TypeParam t c n comment :: Parsec String () (Maybe String) comment = do option Nothing $ fmap Just (try comment') comment' = string "--" >> manyTill anyChar (string "\n") getCol = sourceColumn <$> getPosition functionParam :: Parsec String () TypeParam functionParam = do xs <- between (string "(") (string ")") typeParams n <- getCol spaces c <- comment return $ FuncTypeParam xs c n main :: IO () main = do s <- getContents case (parse parser "" s) of Left err -> print err Right (xs ) -> print xs numbers :: Parsec String () [Integer] -- numbers = (commaSep haskell) (integer haskell) numbers = commaSep integer
danchoi/ftindent
Main.hs
bsd-3-clause
3,060
0
11
729
763
390
373
74
2
module Language.BCoPL.DataLevel.CompareNat ( -- * Types Nat (..) , Judge (..) -- * Deducer , deduce1 , deduce2 , deduce3 -- * Session for deriving judgement on comparing 'Nat' , session1 , session2 , session3 , session1' , session2' , session3' ) where import Language.BCoPL.DataLevel.Peano (Nat(..)) import Language.BCoPL.DataLevel.Derivation (Tree(..),Deducer,sessionGen,sessionGen') data Judge = LessThan Nat Nat deriving (Eq) instance Show Judge where show (LessThan m n) = unwords [show m,"is less than",show n] instance Read Judge where readsPrec _ s = case words s of n1:"is":"less":"than":n2:_ -> [(LessThan (read n1) (read n2),"")] _ -> error ("Invalid syntax for 'CompareNat judgement': "++s) deduce1 :: Deducer Judge deduce1 j = case j of LessThan n (S n') | n == n' -> [ Node ("L-Succ",j) [] ] LessThan n1 n3 -> [ Node ("L-Trans",j) [j1,j2 ] | n2 <- [S n1 .. n3] , j1 <- deduce1 (LessThan n1 n2) , j2 <- deduce1 (LessThan n2 n3) ] deduce2 :: Deducer Judge deduce2 j = case j of LessThan Z (S _) -> [ Node ("L-Zero",j) [] ] LessThan (S n1) (S n2) -> [ Node ("L-SuccSucc",j) [j'] | j' <- deduce2 (LessThan n1 n2) ] _ -> [] deduce3 :: Deducer Judge deduce3 j = case j of LessThan n (S n') | n == n' -> [ Node ("L-Succ",j) [] ] LessThan n1 (S n2) -> [ Node ("L-SuccR",j) [j'] | j' <- deduce3 (LessThan n1 n2) ] _ -> [] session1,session2,session3 :: IO () session1 = sessionGen ("CompareNat1> ",deduce1) session2 = sessionGen ("CompareNat2> ",deduce2) session3 = sessionGen ("CompareNat3> ",deduce3) session1',session2',session3' :: IO () session1' = sessionGen' ("CompareNat1> ",deduce1) session2' = sessionGen' ("CompareNat2> ",deduce2) session3' = sessionGen' ("CompareNat3> ",deduce3)
nobsun/hs-bcopl
src/Language/BCoPL/DataLevel/CompareNat.hs
bsd-3-clause
2,053
0
13
635
753
408
345
51
3
import Data.Numbers.Primes decompose :: Int -> [Int] decompose n = factor primes n where factor (p:ps) n | (p*p) > n = [n] | mod n p == 0 = p : (factor (p:ps) (div n p)) | otherwise = factor ps n main :: IO () main = print (last (decompose 600851475143))
JacksonGariety/euler.hs
003.hs
bsd-3-clause
289
0
10
87
160
80
80
9
1
module Network.Hawk.Internal.Server.Header ( header , headerSuccess , headerFail , timestampMessage ) where import Data.ByteString (ByteString) import qualified Data.ByteString.Char8 as S8 import Data.Time.Clock.POSIX import Data.Maybe (catMaybes) import Network.HTTP.Types.Status (Status, ok200, badRequest400, unauthorized401) import Network.HTTP.Types.Header (Header, hWWWAuthenticate) import Network.Hawk.Internal.Types import Network.Hawk.Internal.Server import Network.Hawk.Internal.Server.Types import Network.Hawk.Internal -- | Generates a suitable @Server-Authorization@ header to send back -- to the client. Credentials and artifacts would be provided by a -- previous call to 'authenticateRequest' (or 'authenticate'). -- -- If a payload is supplied, its hash will be included in the header. header :: AuthResult t -> Maybe PayloadInfo -> (Status, Header) header (Right a) p = (ok200, (hServerAuthorization, headerSuccess a p)) header (Left e) _ = (status e, (hWWWAuthenticate, headerFail e)) where status (AuthFailBadRequest _ _) = badRequest400 status (AuthFailUnauthorized _ _ _) = unauthorized401 status (AuthFailStaleTimeStamp _ _ _ _) = unauthorized401 headerSuccess :: AuthSuccess t -> Maybe PayloadInfo -> ByteString headerSuccess (AuthSuccess creds arts _) payload = hawkHeaderString (catMaybes parts) where parts :: [Maybe (ByteString, ByteString)] parts = [ Just ("mac", mac) , fmap ((,) "hash") hash , fmap ((,) "ext") ext] hash = calculatePayloadHash (scAlgorithm creds) <$> payload ext = escapeHeaderAttribute <$> haExt arts mac = serverMac creds HawkResponse (arts { haHash = hash }) headerFail :: AuthFail -> ByteString headerFail (AuthFailBadRequest e _) = hawkHeaderError e [] headerFail (AuthFailUnauthorized e _ _) = hawkHeaderError e [] headerFail (AuthFailStaleTimeStamp e now creds artifacts) = timestampMessage e now creds hawkHeaderError :: String -> [(ByteString, ByteString)] -> ByteString hawkHeaderError e ps = hawkHeaderString (("error", S8.pack e):ps) timestampMessage :: String -> POSIXTime -> Credentials -> ByteString timestampMessage e now creds = hawkHeaderError e parts where parts = [ ("ts", (S8.pack . show . floor) now) , ("tsm", calculateTsMac (scAlgorithm creds) now) ]
rvl/hsoz
src/Network/Hawk/Internal/Server/Header.hs
bsd-3-clause
2,398
0
13
463
670
372
298
40
3
{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE AllowAmbiguousTypes #-} {-# OPTIONS_GHC -fno-warn-duplicate-exports #-} {-# LANGUAGE AllowAmbiguousTypes #-} module Plots.Types.Others ( -- * Vertical line range createlinerangev , linerangevPlot , linerangevPlot' , linerangevPlotL , linerangevPlotwithPoint -- * Horizontal line range , createlinerangeh , linerangehPlot , linerangehPlot' , linerangehPlotL , linerangehPlotwithPoint -- * Vertical errorbar , errorbarvPlot , errorbarvPlotwithPoint -- * Horizontal errorbar , errorbarhPlot , errorbarhPlotwithPoint -- * Vertical crossbar , crossbarvPlot , crossbarvPlotwithPoint -- * Horizontal crossbar , crossbarhPlot , crossbarhPlotwithPoint -- * Boxplot , boxplotvPlot , boxplothPlot ) where import Control.Lens hiding (lmap, none, transform, ( # )) import Control.Monad.State.Lazy -- import qualified Data.Foldable as F import Data.Typeable -- import Data.List -- import Data.Function import Diagrams.Prelude -- import Diagrams.Coordinates.Isomorphic import Plots.Themes import Plots.Types import Plots.API -- import Plots.Axis import Plots.Types.Line import Plots.Types.Scatter ------------------------------------------------------------------------ -- Linerange Vertical ------------------------------------------------------------------------ createlinerangev :: (Double, Double) -> Double -> [(Double, Double)] createlinerangev (a, b) s = [(a+(s/2), b), (a-(s/2), b)] linerangevPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> m () linerangevPlot a s = linePlot (createlinerangev a s) linerangevPlot' :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> m () linerangevPlot' a s = linePlot (createlinerangev a s) linerangevPlotL :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => String -> (Double, Double) -> Double -> m () linerangevPlotL l a s = linePlotL l (createlinerangev a s) linerangevPlotwithPoint :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> m () linerangevPlotwithPoint a s = do linePlot' (createlinerangev a s) $ do plotColor .= purple addLegendEntry "data 1" scatterPlot' [a] $ do plotColor .= purple plotMarker %= scale 2 ------------------------------------------------------------------------ -- Linerange Horizontal ------------------------------------------------------------------------ createlinerangeh :: (Double, Double) -> Double -> [(Double, Double)] createlinerangeh (a, b) s = [(a, b+(s/2)), (a, b-(s/2))] linerangehPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> m () linerangehPlot a s = linePlot (createlinerangeh a s) linerangehPlot' :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> m () linerangehPlot' a s = linePlot (createlinerangeh a s) linerangehPlotL :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => String -> (Double, Double) -> Double -> m () linerangehPlotL l a s = linePlotL l (createlinerangeh a s) linerangehPlotwithPoint :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> m () linerangehPlotwithPoint a s = do linePlot' (createlinerangeh a s) $ do plotColor .= purple addLegendEntry "data 1" scatterPlot' [a] $ do plotColor .= purple plotMarker %= scale 2 ------------------------------------------------------------------------ -- Errorbar Vertical ------------------------------------------------------------------------ errorbarvPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () errorbarvPlot (a,b) s h = do linePlot' (createlinerangev (a, b) s) $ do plotColor .= red addLegendEntry "data 1" linePlot' (createlinerangeh (a+(s/2), b) h) $ do plotColor .= red linePlot' (createlinerangeh (a-(s/2), b) h) $ do plotColor .= red errorbarvPlotwithPoint :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () errorbarvPlotwithPoint (a,b) s h = do linePlot' (createlinerangev (a, b) s) $ do plotColor .= blue addLegendEntry "data 1" linePlot' (createlinerangeh (a+(s/2), b) h) $ do plotColor .= blue linePlot' (createlinerangeh (a-(s/2), b) h) $ do plotColor .= blue scatterPlot' [(a,b)] $ do plotColor .= blue ------------------------------------------------------------------------ -- Errorbar Horizontal ------------------------------------------------------------------------ errorbarhPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () errorbarhPlot (a,b) s h = do linePlot' (createlinerangeh (a, b) s) $ do plotColor .= red addLegendEntry "data n" linePlot' (createlinerangev (a, b+(s/2)) h) $ do plotColor .= red linePlot' (createlinerangev (a, b-(s/2)) h) $ do plotColor .= red errorbarhPlotwithPoint :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () errorbarhPlotwithPoint (a,b) s h = do linePlot' (createlinerangeh (a, b) s) $ do plotColor .= blue addLegendEntry "data n" linePlot' (createlinerangev (a, b+(s/2)) h) $ do plotColor .= blue linePlot' (createlinerangev (a, b-(s/2)) h) $ do plotColor .= blue scatterPlot' [(a,b)] $ do plotColor .= blue ------------------------------------------------------------------------ -- Crossbar Vertical ------------------------------------------------------------------------ crossbarvPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () crossbarvPlot (a,b) s h = do linePlot' (createlinerangeh (a, b) h) $ do plotColor .= red addLegendEntry "data n" linePlot' (createlinerangev (a, b+(h/2)) s) $ do plotColor .= red linePlot' (createlinerangev (a, b-(h/2)) s) $ do plotColor .= red linePlot' (createlinerangeh (a+(s/2), b) h) $ do plotColor .= red linePlot' (createlinerangeh (a-(s/2), b) h) $ do plotColor .= red crossbarvPlotwithPoint :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () crossbarvPlotwithPoint (a,b) s h = do linePlot' (createlinerangeh (a, b) h) $ do plotColor .= blue addLegendEntry "data n" linePlot' (createlinerangev (a, b+(h/2)) s) $ do plotColor .= blue linePlot' (createlinerangev (a, b-(h/2)) s) $ do plotColor .= blue linePlot' (createlinerangeh (a+(s/2), b) h) $ do plotColor .= blue linePlot' (createlinerangeh (a-(s/2), b) h) $ do plotColor .= blue scatterPlot' [(a,b)] $ do plotColor .= blue ------------------------------------------------------------------------ -- Crossbar Horizontal --options for colour and legends seperate ------------------------------------------------------------------------ crossbarhPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () crossbarhPlot (a,b) s h = do linePlot' (createlinerangev (a, b) s) $ do plotColor .= red addLegendEntry "data n" linePlot' (createlinerangev (a, b+(h/2)) s) $ do plotColor .= red linePlot' (createlinerangev (a, b-(h/2)) s) $ do plotColor .= red linePlot' (createlinerangeh (a+(s/2), b) h) $ do plotColor .= red linePlot' (createlinerangeh (a-(s/2), b) h) $ do plotColor .= red crossbarhPlotwithPoint :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> m () crossbarhPlotwithPoint (a,b) s h = do linePlot' (createlinerangev (a, b) s) $ do plotColor .= blue addLegendEntry "data n" linePlot' (createlinerangev (a, b+(h/2)) s) $ do plotColor .= blue linePlot' (createlinerangev (a, b-(h/2)) s) $ do plotColor .= blue linePlot' (createlinerangeh (a+(s/2), b) h) $ do plotColor .= blue linePlot' (createlinerangeh (a-(s/2), b) h) $ do plotColor .= blue scatterPlot' [(a,b)] $ do plotColor .= blue ------------------------------------------------------------------------ -- Boxplot Vertical ------------------------------------------------------------------------ boxplotvPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> Double -> m () boxplotvPlot (a,b) s1 s2 h = do crossbarhPlot (a,b) s1 h linePlot' (createlinerangeh (a-(s1/2), b) (s2-s1)) $ do plotColor .= red linePlot' (createlinerangeh (a+(s1/2), b) (s2-s1)) $ do plotColor .= red ------------------------------------------------------------------------ -- Boxplot Horizontal ------------------------------------------------------------------------ boxplothPlot :: (Typeable b, Renderable (Path V2 Double) b, MonadState (Axis b c Double) m, BaseSpace c ~ V2) => (Double, Double) -> Double -> Double -> Double -> m () boxplothPlot (a,b) s h1 h2= do crossbarhPlot (a,b) s h1 linePlot' (createlinerangeh (a, b1) hmean) $ do plotColor .= red linePlot' (createlinerangeh (a, b2) hmean) $ do plotColor .= red where b1 = b + (h1/2) + (h2/2) b2 = b - (h1/2) - (h2/2) hmean = h2-h1 ------------------------------------------------------------------------ -- Bar Plot ------------------------------------------------------------------------ -- $bar -- Bar plots are different in that you often want to specify the axis -- name along with the data. -- barPlot :: (R2Backend, Plotable (Path v n) b, F.Foldable f) -- => f (String, n) -> AxisState b v n -- barPlot d = addPlotable $ P.mkBarPlot' d -- barPlot' :: (R2Backend, Plotable (Path v n) b, F.Foldable f) -- => f (String, n) -> AxisState b v n -- barPlot' d s = addPlotable (P.mkBarPlot d) s -- barPlotL :: (R2Backend, Plotable (Path v n) b, F.Foldable f) -- => String -> f (String, n) -> AxisState b v n -- barPlotL s d = addPlotableL s (P.mkBarPlot d)
bergey/plots
src/Plots/Types/Others.hs
bsd-3-clause
13,554
0
14
4,464
3,953
2,054
1,899
227
1
import XMonad import XMonad.Config.Gnome import XMonad.Actions.CycleWS import XMonad.Hooks.SetWMName import XMonad.Layout.NoBorders (smartBorders) import XMonad.Layout.Spacing (smartSpacing) import qualified Data.Map as M myManageHook = composeAll ( [ manageHook gnomeConfig , className =? "Unity-2d-panel" --> doIgnore , className =? "Unity-2d-shell" --> doFloat ]) myLayoutHook = smartSpacing 2 $ smartBorders (layoutHook gnomeConfig) main = do xmonad $ gnomeConfig { -- use windows as mod instead of meta modMask = mod4Mask , keys = myKeys <+> keys defaultConfig , terminal = "gnome-terminal" , manageHook = myManageHook , startupHook = setWMName "LG3D" , layoutHook = myLayoutHook , focusedBorderColor = "#393" } myKeys conf@(XConfig {XMonad.modMask = modm}) = M.fromList [ ((modm, xK_p), spawn "dmenu_run -b" ) , ((modm, xK_o), nextScreen) , ((modm .|. shiftMask, xK_o), shiftNextScreen) , ((modm, xK_semicolon), toggleWS) , ((modm, xK_quoteright), moveTo Next HiddenNonEmptyWS) ]
dgtized/dotfiles
dot/xmonad/xmonad.hs
bsd-3-clause
1,162
0
11
305
296
176
120
27
1
module Main where import ABS (x:i:ni:num_div:obj:i_divides:f:n:primeb:reminder:res:nprimes:fv:the_end) = [1..] main_ :: Method main_ [] this wb k = Assign n (Val (I 1500)) $ Assign x (Sync check_primes [n]) $ k check_primes :: Method check_primes [pn] this wb k = Assign nprimes (Val (I 0)) $ Assign i (Val (I 2)) $ While (ILTE (Attr i) (I pn)) (\k' -> Assign obj New $ Assign f (Async obj is_prime [i]) $ Await f $ Assign fv (Get f) $ Assign nprimes (Val (Add (Attr nprimes) (Attr fv))) $ Assign i (Val (Add (Attr i) (I 1))) $ k' ) $ Return nprimes wb k is_prime :: Method is_prime [pn] this wb k = Assign i (Val (I 1)) $ Assign ni (Val (I pn)) $ Assign num_div (Val (I 0)) $ While (ILTE (Attr i) (Attr ni)) (\k' -> Assign obj New $ Assign f (Async obj divides [i,ni]) $ Await f $ Assign i_divides (Get f) $ Assign num_div (Val (Add (Attr num_div) (Attr i_divides))) $ Assign i (Val (Add (Attr i) (I 1))) $ k' ) $ If (IEq (Attr num_div) (I 2)) (\k' -> Assign primeb (Val (I 1)) k') (\k' -> Assign primeb (Val (I 0)) k') $ Return primeb wb k divides :: Method divides [pd, pn] this wb k = Assign reminder (Val (Mod (I pn) (I pd)) ) $ If (IEq (Attr reminder) (I 0)) (\k' -> Assign res (Val (I 1)) k') (\k' -> Assign res (Val (I 0)) k' ) $ Return res wb k main' :: IO () main' = run' 9999999999999999 main_ (head the_end) main :: IO () main = printHeap =<< run 9999999999999999 main_ (head the_end)
abstools/abs-haskell-formal
benchmarks/5_primes_range/progs/1500.hs
bsd-3-clause
1,528
0
20
408
916
457
459
51
1
module Database.Seakale.Request ( query , query_ , queryWith , execute , execute_ , executeMany , executeMany_ , returning , returningWith , returning_ , returningWith_ , MonadRequest , throwSeakaleError , getBackend ) where import Database.Seakale.Request.Internal (MonadRequest) import Database.Seakale.FromRow import Database.Seakale.ToRow import Database.Seakale.Types import qualified Database.Seakale.Request.Internal as I -- | Replace holes in the query with the provided values and send it to the -- database. This is to be used for @SELECT@ queries. query :: (MonadRequest b m, ToRow b n r, FromRow b n' s) => Query n -> r -> m [s] query = queryWith fromRow -- | Like 'query' but the query should not have any hole. query_ :: (MonadRequest b m, FromRow b n r) => Query Zero -> m [r] query_ req = query req () -- | Provide a way to specify a custom parser for 'query'. queryWith :: (MonadRequest b m, ToRow b n r) => RowParser b n' s -> Query n -> r -> m [s] queryWith parser req dat = do backend <- getBackend (cols, rows) <- I.query $ formatQuery req $ toRow backend dat case parseRows parser backend cols rows of Left err -> throwSeakaleError $ RowParseError err Right xs -> return xs -- | Replace holes in the query with the provided values, send it to the -- database and return the number of rows affected. This is to be used with -- @DELETE@, @UPDATE@ and @INSERT@ queries (without any @RETURNING@ clause). execute :: (MonadRequest b m, ToRow b n r) => Query n -> r -> m Integer execute req dat = do backend <- getBackend I.execute $ formatQuery req $ toRow backend dat -- | Like 'execute' but the query should not have any hole. execute_ :: MonadRequest b m => Query Zero -> m Integer execute_ req = I.execute $ formatQuery req Nil -- | Like 'execute' but for a 'RepeatQuery' where a piece of the query is -- repeated as many times as the number of values of type 'r2'. executeMany :: (MonadRequest b m, ToRow b n1 r1, ToRow b n2 r2, ToRow b n3 r3) => RepeatQuery n1 n2 n3 -> r1 -> r3 -> [r2] -> m Integer executeMany req bdat adat dat = do backend <- getBackend I.execute $ formatMany req (toRow backend bdat) (toRow backend adat) (map (toRow backend) dat) -- | Like 'executeMany' but the query should not have any hole before and after -- the repeating piece. executeMany_ :: (MonadRequest b m, ToRow b n r) => RepeatQuery Zero n Zero -> [r] -> m Integer executeMany_ req dat = executeMany req () () dat -- | Replace holes in a 'RepeatQuery' and send it to the database. This is to be -- used for @INSERT@ queries with a @RETURNING@ clause. returning :: ( MonadRequest b m, ToRow b n1 r1, ToRow b n2 r2, ToRow b n3 r3 , FromRow b n s ) => RepeatQuery n1 n2 n3 -> r1 -> r3 -> [r2] -> m [s] returning = returningWith fromRow -- | Provide a way to a custom parser for 'returning'. returningWith :: ( MonadRequest b m, ToRow b n1 r1, ToRow b n2 r2, ToRow b n3 r3 , FromRow b n s ) => RowParser b n s -> RepeatQuery n1 n2 n3 -> r1 -> r3 -> [r2] -> m [s] returningWith parser req bdat adat dat = do backend <- getBackend (cols, rows) <- I.query $ formatMany req (toRow backend bdat) (toRow backend adat) (map (toRow backend) dat) case parseRows parser backend cols rows of Left err -> throwSeakaleError $ RowParseError err Right xs -> return xs -- | Like 'returning' but the query should not have any hole before and after -- the repeating piece. returning_ :: (MonadRequest b m, ToRow b n r, FromRow b n' s) => RepeatQuery Zero n Zero -> [r] -> m [s] returning_ req dat = returningWith fromRow req () () dat -- | Like 'returningWith' but the query should not have any hole before and -- after the repeating piece. returningWith_ :: (MonadRequest b m, ToRow b n r, FromRow b n' s) => RowParser b n' s -> RepeatQuery Zero n Zero -> [r] -> m [s] returningWith_ parser req dat = returningWith parser req () () dat
thoferon/seakale
src/Database/Seakale/Request.hs
bsd-3-clause
4,084
0
13
977
1,211
622
589
69
2
module General.GetOpt( OptDescr(..), ArgDescr(..), getOpt, fmapFmapOptDescr, showOptDescr, mergeOptDescr, removeOverlap, optionsEnum, optionsEnumDesc ) where import qualified System.Console.GetOpt as O import System.Console.GetOpt hiding (getOpt) import qualified Data.HashSet as Set import Data.Maybe import Data.Either import Data.List.Extra getOpt :: [OptDescr (Either String a)] -> [String] -> ([a], [String], [String]) getOpt opts args = (flagGood, files, flagBad ++ errs) where (flags, files, errs) = O.getOpt O.Permute opts args (flagBad, flagGood) = partitionEithers flags fmapFmapOptDescr :: (a -> b) -> OptDescr (Either String a) -> OptDescr (Either String b) fmapFmapOptDescr f = fmap (fmap f) showOptDescr :: [OptDescr a] -> [String] showOptDescr xs = concat [ if nargs <= 26 then [" " ++ args ++ replicate (28 - nargs) ' ' ++ desc] else [" " ++ args, replicate 30 ' ' ++ desc] | Option s l arg desc <- xs , let args = intercalate ", " $ map (short arg) s ++ map (long arg) l , let nargs = length args] where short NoArg{} x = "-" ++ [x] short (ReqArg _ b) x = "-" ++ [x] ++ " " ++ b short (OptArg _ b) x = "-" ++ [x] ++ "[" ++ b ++ "]" long NoArg{} x = "--" ++ x long (ReqArg _ b) x = "--" ++ x ++ "=" ++ b long (OptArg _ b) x = "--" ++ x ++ "[=" ++ b ++ "]" -- | Remove flags from the first field that are present in the second removeOverlap :: [OptDescr b] -> [OptDescr a] -> [OptDescr a] removeOverlap bad = mapMaybe f where short = Set.fromList $ concat [x | Option x _ _ _ <- bad] long = Set.fromList $ concat [x | Option _ x _ _ <- bad] f (Option a b c d) | null a2 && null b2 = Nothing | otherwise = Just $ Option a2 b2 c d where a2 = filter (not . flip Set.member short) a b2 = filter (not . flip Set.member long) b mergeOptDescr :: [OptDescr (Either String a)] -> [OptDescr (Either String b)] -> [OptDescr (Either String (Either a b))] mergeOptDescr xs ys = map (fmapFmapOptDescr Left) xs ++ map (fmapFmapOptDescr Right) ys optionsEnum :: (Enum a, Bounded a, Show a) => [OptDescr (Either String a)] optionsEnum = optionsEnumDesc [(x, "Flag " ++ lower (show x) ++ ".") | x <- enumerate] optionsEnumDesc :: Show a => [(a, String)] -> [OptDescr (Either String a)] optionsEnumDesc xs = [Option "" [lower $ show x] (NoArg $ Right x) d | (x,d) <- xs]
ndmitchell/shake
src/General/GetOpt.hs
bsd-3-clause
2,509
0
15
665
1,094
573
521
48
6
{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ParallelListComp #-} {-# LANGUAGE MultiParamTypeClasses #-} module KMC.SymbolicSST.ActionSST(ActionSST, ConstOrAnyLab(..), actionToSST) where import Data.Functor.Identity import qualified Data.Map as M import Data.Maybe import qualified Data.Set as S import KMC.Kleenex.Actions (RegAction(..)) import KMC.Kleenex.Syntax (RegIdent(..)) import KMC.RangeSet (RangeSet) import KMC.SymbolicFST (FST(..)) import qualified KMC.SymbolicFST as FST import KMC.SymbolicFST.ActionMachine (ActionMachine, CodeInputLab(..), DecodeFunc(..)) import KMC.SymbolicSST import KMC.Theories {- Action machines are deterministic by construction, and thus may be seen as a deterministic SST with only one register. Register effects adjoined to the output alphabet can also be interpreted as SST actions. -} type ActionSST st digit sigma var = SST st (ConstOrAnyLab digit) (DecodeFunc (RangeSet sigma) digit (Identity sigma)) var ------------- -- Predicates ------------- -- | Single-symbol data type representing labels for action SSTs data ConstOrAnyLab b = ConstLab b -- ^ Read exactly this symbol | AnyLab -- ^ Read any symbol deriving (Eq, Ord) instance (Eq b) => SetLike (ConstOrAnyLab b) b where member _ AnyLab = True member x (ConstLab y) = x == y ----------------- -- SST generation ----------------- actionToSST :: forall st sigma digit. (Ord st, Ord sigma, Enum sigma, Bounded sigma, Enum digit, Bounded digit) => ActionMachine st sigma RegAction digit -> ActionSST (st, Int) digit sigma Int actionToSST actM = construct' (fstI actM, 0) edges outs where regs = M.fromList [ (r, maxBound - i) | r <- S.toList (registers actM) | i <- [0..] ] :: M.Map RegIdent Int (edges, outs) = go (S.singleton (fstI actM, 0)) S.empty [] [] go ws states es os | S.null ws = (es, os) | (s, ws') <- S.deleteFindMin ws, S.member s states = go ws' states es os | (s@(q,h),ws') <- S.deleteFindMin ws = let (y, q') = followEps actM q (h', kappa) = interp regs h y :: (Int, RegisterUpdate Int (DecodeFunc (RangeSet sigma) digit (Identity sigma))) os' = if S.member q' (fstF actM) then [(s, evalUpdateStringFunc [error "input function emitted along epsilon path"] $ fromMaybe [VarA 0] (M.lookup 0 kappa))] else [] es' = [ (s, ps, composeRegisterUpdate kappa ru, s') | (ps, ru, s') <- next actM regs (q',h') ] ws'' = S.fromList [ s' | (_, _, _, s') <- es' ] states' = S.insert s states in go (S.union ws'' ws') states' (es' ++ es) (os' ++ os) -- | Extract all occurrences of register identifiers in an action machine registers :: ActionMachine st sigma RegAction digit -> S.Set RegIdent registers actM = S.unions [ ext l | (_, l, _) <- FST.edgesToList $ fstE actM ] where ext (Left (_, DecodeArg _)) = S.empty ext (Left (_, DecodeConst xs)) = S.fromList $ concatMap extAct [ act | Right act <- xs ] ext (Right xs) = S.fromList $ concatMap extAct [ act | Right act <- xs ] extAct Push = [] extAct (Pop r) = [r] extAct (Write r) = [r] -- | Interpret a sequence of action symbols as a register update interp :: M.Map RegIdent Int -> Int -> [Either sigma RegAction] -> (Int, RegisterUpdate Int (DecodeFunc (RangeSet sigma) digit (Identity sigma))) interp regs = go where go h [] = (h, M.empty) go h (Left a:xs) = let (h', kappa) = go h xs kappa' = M.singleton h [VarA h, ConstA [a]] in (h', composeRegisterUpdate kappa' kappa) go h (Right Push:xs) = let (h', kappa) = go (h+1) xs in (h', kappa) go h (Right (Pop r):xs) = let (h', kappa) = go (h-1) xs kappa' = M.fromList [(h, []), (regs M.! r, [VarA h])] in (h', composeRegisterUpdate kappa' kappa) go h (Right (Write r):xs) = let (h', kappa) = go h xs kappa' = M.fromList [(regs M.! r, []), (h, [VarA h, VarA $ regs M.! r])] in (h', composeRegisterUpdate kappa' kappa) followEps :: (Ord st) => ActionMachine st sigma act digit -> st -> ([Either sigma act], st) followEps actM q = case FST.fstEvalEpsilonEdges actM q of [] -> ([], q) [(out, q')] -> let (out', q'') = followEps actM q' in (out ++ out', q'') _ -> error "non-deterministic action machine" next :: (Ord st) => ActionMachine st sigma RegAction digit -> M.Map RegIdent Int -> (st, Int) -> [([ConstOrAnyLab digit] ,RegisterUpdate Int (DecodeFunc (RangeSet sigma) digit (Identity sigma)) ,(st, Int))] next actM regs (q, h) = do (p, f, q'') <- fromMaybe [] (M.lookup q (FST.eForward . fstE $ actM)) let ps = case p of InputAny k -> replicate k AnyLab InputConst bs -> map ConstLab bs let (us, q') = followEps actM q'' let (h'', kappa) = case f of DecodeConst c -> interp regs h c DecodeArg es -> (h, M.singleton h [VarA h, FuncA (DecodeArg es)]) let (h', kappa') = interp regs h'' us return (ps, composeRegisterUpdate kappa kappa', (q', h'))
diku-kmc/repg
src/KMC/SymbolicSST/ActionSST.hs
mit
5,408
1
19
1,479
2,062
1,101
961
98
5
-- This Source Code Form is subject to the terms of the Mozilla Public -- License, v. 2.0. If a copy of the MPL was not distributed with this -- file, You can obtain one at http://mozilla.org/MPL/2.0/. {-# LANGUAGE ApplicativeDo #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} module Spec.Serializations where import Data.Aeson import Lib import qualified Maia.Aeson.Default as Default import qualified Maia.Example.Api as Ex import Maia.Lookup import Maia.Request import Maia.Response import qualified Spec.Serializations.NullCollapse as NullCollapse import Test.HUnit import Test.Tasty import qualified Test.Tasty.HUnit as Hu tests :: TestTree tests = testGroup "Serializations" [ requestSerializations , NullCollapse.tests ] -- Exercises anticipated serialization and printer/parser loop szTest :: forall t e r . (Ex.TestHandler t, Default.DefaultSerializer t) => String -> Lookup t e r -> Value -> Value -> TestTree szTest nm lk expectedReq expectedResp = let req :: Request t req = request lk resp :: Response t resp = Ex.runTestHandler req in testGroup nm [ Hu.testCase "request sz" (assert (ReqJsonIs req expectedReq)) , Hu.testCase "response sz" (assert (RespJsonIs resp expectedResp)) , Hu.testCase "request parses" (assert (RoundTripReqEquality req)) , Hu.testCase "response parses" (assert (RoundTripRespEquality resp)) ] requestSerializations :: TestTree requestSerializations = testGroup "Lookup requests" [ testGroup "Of NonType" [ let lk :: Lookup' Ex.NonType () lk = pure () exReq = object [] exResp = object [] in szTest "unit" lk exReq exResp ] , testGroup "Of Location" [ let lk = Ex.latitude exReq = object ["latitude" .= True] exResp = object ["latitude" .= Number 0.0] in szTest "latitude" lk exReq exResp , let lk = Ex.longitude exReq = object ["longitude" .= True] exResp = object ["longitude" .= Number 0.0] in szTest "longitude" lk exReq exResp , let lk = (,) <$> Ex.latitude <*> Ex.longitude exReq = object ["longitude" .= True, "latitude" .= True] exResp = object ["longitude" .= Number 0.0, "latitude" .= Number 0.0] in szTest "both" lk exReq exResp ] , testGroup "Of City" [ let lk = Ex.name exReq = object ["name" .= True] exResp = object ["name" .= String "Atlanta"] in szTest "name" lk exReq exResp , let lk = Ex.coordinates (pure ()) exReq = object ["coordinates" .= object []] exResp = object ["coordinates" .= object []] in szTest "coordinates, empty" lk exReq exResp , let lk = Ex.coordinates Ex.latitude exReq = object ["coordinates" .= object ["latitude" .= True]] exResp = object ["coordinates" .= object ["latitude" .= Number 33.749]] in szTest "coordinates, latitude" lk exReq exResp , let lk = Ex.coordinates ((,) <$> Ex.latitude <*> Ex.longitude) exReq = object [ "coordinates" .= object [ "latitude" .= True , "longitude" .= True ]] exResp = object [ "coordinates" .= object [ "latitude" .= Number 33.749 , "longitude" .= Number 84.388 ] ] in szTest "coordinates, both" lk exReq exResp ] , testGroup "Of Person" [ let lk = Ex.firstName exReq = object ["firstName" .= True] exResp = object ["firstName" .= String "Joseph"] in szTest "firstName" lk exReq exResp , let lk = Ex.lastName exReq = object ["lastName" .= True] exResp = object ["lastName" .= String "Abrahamson"] in szTest "lastName" lk exReq exResp , let lk = Ex.hometown $ do nm <- Ex.name crd <- Ex.coordinates $ do lat <- Ex.latitude lon <- Ex.longitude return (lat, lon) return (nm, crd) exReq = object [ "hometown" .= object [ "name" .= True , "coordinates" .= object [ "latitude" .= True , "longitude" .= True ] ] ] exResp = object [ "hometown" .= object [ "the" .= object [ "name" .= String "Atlanta" , "coordinates" .= object [ "latitude" .= Number 33.7490 , "longitude" .= Number 84.3880 ] ] ] ] in szTest "hometown name and coordinates" lk exReq exResp , let lk = Ex.hometown $ Ex.mayor $ Ex.hometown $ Ex.mayor $ Ex.hometown $ Ex.mayor $ pure () htmy x = object ["hometown" .= object [ "mayor" .= x]] htmyResp x = object ["hometown" .= object ["the" .= object [ "mayor" .= object ["the" .= x]]]] exReq = htmy (htmy (htmy (object []))) exResp = htmyResp (htmyResp (htmyResp (object []))) in szTest "mayor loop" lk exReq exResp ] , testGroup "Of Api" [ let lk1 = subLookup (Ex.getCity "Atlanta") (pure ()) lk2 = subLookup (Ex.getCity "Atlanta") Ex.name lk3 = subLookup (Ex.getCity "Fakeville") (pure ()) lk4 = subLookup (Ex.getCity "DoesNotExist") (pure ()) lk = (,,,) <$> lk1 <*> lk2 <*> lk3 <*> lk4 exReq = object ["getCity" .= -- NOTE: These have to be in Ord-order on args to get Value-equality [ toJSON (String "Atlanta", object ["name" .= True]) , toJSON (String "DoesNotExist", object []) , toJSON (String "Fakeville", object []) ] ] exResp = object ["getCity" .= -- NOTE: These have to be in Ord-order on args to get Value-equality [ toJSON ( String "Atlanta" , object ["the" .= object ["name" .= String "Atlanta"]] ) , toJSON ( String "DoesNotExist" , Null ) , toJSON ( String "Fakeville" , object ["the" .= object []] ) ] ] in szTest "getCity" lk exReq exResp , let lk = Ex.getAllCities (withErr Ex.name) exReq = object ["getAllCities" .= object ["name" .= True]] exResp = object ["getAllCities" .= object [ "ok" .= [ object ["name" .= String "Atlanta"] , object ["name" .= String "Fakeville"] ] ] ] in szTest "getAllCities (error ok)" lk exReq exResp , let lk = Ex.getCurrentUser (withErr Ex.firstName) exReq = object ["getCurrentUser" .= object ["firstName" .= True]] exResp = object ["getCurrentUser" .= object ["err" .= String "NotAuthorized"]] in szTest "getAllCities (error ok)" lk exReq exResp ] ]
tel/haskell-maia
maia-aeson/test/Spec/Serializations.hs
mpl-2.0
7,751
0
25
3,093
2,015
1,029
986
165
1
module Main where import Graphics.UI.WXCore import Graphics.UI.WX main :: IO () main = start gui gui :: IO () gui = do f <- frame [text := "Process test"] p <- panel f [] -- panel for tab-management etc. input <- comboBox p [processEnter := True, text := "cmd"] output <- textCtrlRich p [bgcolor := black, textColor := red, font := fontFixed{ _fontSize = 12 }] stop_ <- button p [text := "kill", enabled := False] focusOn input textCtrlSetEditable output False set f [layout := container p $ margin 10 $ column 5 [fill (widget output) ,row 5 [hfill (widget input), widget stop_]] ,clientSize := sz 600 400 ] let message txt = appendText output txt set input [on command := startProcess f input stop_ message] return () where startProcess f input stop_ message = do txt <- get input text appendText input txt (send,_process,pid) <- processExecAsyncTimed f txt True {- process all input on termination -} (onEndProcess f input stop_ message) (onReceive message) (onReceive message) let sendLn txt_ = send (txt_ ++ "\n") if (pid /= 0) then do message ("-- start process: '" ++ txt ++ "' --\n") set input [on command := sendCommand input sendLn] set stop_ [enabled := True, on command := unitIO (kill pid wxSIGKILL)] else return () sendCommand input send = do txt_ <- get input text count <- comboBoxGetCount input appendText input txt_ set input [selection := count] _ <- send txt_ return () onEndProcess f input stop_ message exitcode = do message ("\n-- process ended with exitcode " ++ show exitcode ++ " --\n") set input [on command := startProcess f input stop_ message] set stop_ [enabled := False, on command := return ()] onReceive message txt_ _streamStatus = message txt_
jacekszymanski/wxHaskell
samples/wx/Process.hs
lgpl-2.1
2,164
0
17
774
716
340
376
46
2
{-# LANGUAGE CPP #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleContexts #-} ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2013-15 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <[email protected]> -- Stability : experimental -- Portability : non-portable -- ----------------------------------------------------------------------------- module Succinct.Dictionary.Partitioned ( Partitioned(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative import Data.Foldable import Data.Monoid import Data.Traversable #endif import Succinct.Dictionary.Builder import Succinct.Dictionary.Class -- | A partitioned succinct dictionary only supports 'select0' and 'select1' operations -- -- This is sufficient to implement LOUDS with double-indexing data Partitioned t = PE | P0 t t | P1 t t deriving (Eq,Ord,Show) instance Functor Partitioned where fmap _ PE = PE fmap f (P0 r0 r1) = P0 (f r0) (f r1) fmap f (P1 r0 r1) = P1 (f r0) (f r1) instance Foldable Partitioned where foldMap _ PE = mempty foldMap f (P0 r0 r1) = f r0 `mappend` f r1 foldMap f (P1 r0 r1) = f r0 `mappend` f r1 instance Traversable Partitioned where traverse _ PE = pure PE traverse f (P0 r0 r1) = P0 <$> f r0 <*> f r1 traverse f (P1 r0 r1) = P1 <$> f r0 <*> f r1 instance Ranked t => Select0 (Partitioned t) where select0 PE _ = error "Partitioned.select0: empty" select0 (P0 r0 r1) i = select1 r1 (rank_ r0 i) + i select0 (P1 r0 r1) i = select1 r1 (rank_ r0 i + 1) + i instance Ranked t => Select1 (Partitioned t) where select1 PE _ = error "Partitioned.select1: empty" select1 (P0 r0 r1) i = select1 r0 (rank_ r1 i + 1) + i select1 (P1 r0 r1) i = select1 r0 (rank_ r1 i) + i data BP a b = BE !(Maybe Bool) a b | BT !Bool a b !Bool p :: Bool -> a -> a -> Partitioned a p False = P0 p True = P1 instance Buildable Bool a => Buildable Bool (Partitioned a) where builder = Builder $ case builder of Builder (Building k h z) -> Building stop step start where start = BE Nothing <$> z <*> z step (BE Nothing x y) b = return $ BE (Just b) x y step (BE (Just b) x y) c = return $ BT b x y c step (BT b x y True) c = do y' <- h y (not c) return $ BT b x y' c step (BT b x y False) c = do x' <- h x c return $ BT b x' y c stop (BE Nothing _ _) = return PE stop (BE (Just b) x y) = p b <$> k x <*> k y stop (BT b x y False) = do x' <- h x True p b <$> k x' <*> k y stop (BT b x y True) = do y' <- h y True p b <$> k x <*> k y'
Gabriel439/succinct
src/Succinct/Dictionary/Partitioned.hs
bsd-2-clause
2,697
0
17
689
1,070
532
538
65
1
{-# OPTIONS -fglasgow-exts #-} ----------------------------------------------------------------------------- {-| Module : Arrow.hs Copyright : (c) David Harley 2010 Project : qtHaskell Version : 1.1.4 Modified : 2010-09-02 17:02:47 Warning : this file is machine generated - do not modify. --} ----------------------------------------------------------------------------- module DiagramScene.Arrow ( Qarrow(..) ,arrow_delete ,setArrowColor ,updatePosition ,arrowPaint, arrowBoundingRect, arrowShape ) where import Qtc.Classes.Base import Qtc.Classes.Qccs import Qtc.Classes.Qccs_h import Qtc.Classes.Core import Qtc.Classes.Gui import Qtc.Classes.Gui_h import Qth.Core import Qtc.ClassTypes.Core import Qtc.ClassTypes.Gui import Qtc.Core.Base import Qtc.Gui.Base import Qtc.Enums.Base import Qtc.Enums.Classes.Core import Qtc.Enums.Core.Qt import Qtc.Core.QRectF import Qtc.Core.QPolygonF import Qtc.Core.QLineF import Qtc.Enums.Core.QLineF import Qtc.Core.QMatrix import Qtc.Gui.QPainterPath import Qtc.Gui.QColor import Qtc.Gui.QPen import Qtc.Gui.QBrush import Qtc.Gui.QPainter import Qtc.Gui.QGraphicsItem import Qtc.Enums.Gui.QGraphicsItem import Qtc.Gui.QGraphicsLineItem import Qtc.Gui.QGraphicsLineItem_h import Qtc.Gui.QGraphicsPolygonItem import Qtc.Gui.QGraphicsScene import Data.IORef import DiagramScene.ArrowType class Qarrow x1 where arrow :: Int -> Int -> x1 -> IO Arrow instance Qarrow (QGraphicsPolygonItem (), QGraphicsPolygonItem ()) where arrow xs xe (x1, x2) = do dlio <- qGraphicsLineItem_nf () arrow_s dlio xs xe x1 x2 instance Qarrow (QGraphicsPolygonItem (), QGraphicsPolygonItem (), QGraphicsItem a) where arrow xs xe (x1, x2, x3) = do dlio <- qGraphicsLineItem_nf (x3) arrow_s dlio xs xe x1 x2 instance Qarrow (QGraphicsPolygonItem (), QGraphicsPolygonItem (), QGraphicsItem a, QGraphicsScene b) where arrow xs xe (x1, x2, x3, x4) = do tso <- qCast_QGraphicsScene x4 dlio <- qGraphicsLineItem_nf (x3, tso) arrow_s dlio xs xe x1 x2 arrow_s :: QGraphicsLineItem () -> Int -> Int -> QGraphicsPolygonItem () -> QGraphicsPolygonItem () -> IO Arrow arrow_s dlio nava nave sdi edi = do setFlag dlio ((eItemIsSelectable::GraphicsItemFlag), True) tb <- qBrush eblack setPen dlio =<< qPen (tb, 2::Double, eSolidLine, eRoundCap, eRoundJoin) ar_cl_io <- newIORef =<< qColor eblack ar_ah <- newIORef =<< qPolygonF () setHandler dlio "(int)type()" arrowtype return $ Arrow dlio nava nave sdi edi ar_cl_io ar_ah arrow_delete :: Arrow -> IO () arrow_delete a = do qGraphicsLineItem_delete (ar_o a) setArrowColor :: QGraphicsLineItem () -> QColor () -> IO () setArrowColor li c = do cp <- pen li () setColor cp c setPen li cp updatePosition :: Arrow -> IO () updatePosition a = do let ao = ar_o a smp <- mapFromItem ao ((ar_startItem a), 0::Double, 0::Double) emp <- mapFromItem ao ((ar_endItem a), 0::Double, 0::Double) setLine ao $ lineP (smp, emp) arrowPaint :: Arrow -> QGraphicsLineItem () -> QPainter () -> QStyleOptionGraphicsItem () -> QWidget () -> IO () arrowPaint a ai ptr sgi w = do let si = ar_startItem a ei = ar_endItem a ao = ar_o a cw <- collidesWithItem si ei if (cw) then return () else do cp <- pen (ar_o a) () cc <- color cp () cb <- qBrush cc setPen ptr cp setBrush ptr cb sp <- pos si () ep <- pos ei () eg <- polygon ei () eps <- qpoints eg () cl <- qLineF (sp, ep) (it, ip) <- gip cl ep (ep + (head eps)) (tail eps) if (it == eBoundedIntersection) then do let nl = lineP (ip, sp) ta = acos (dx nl / len nl) angle = if (dy nl >= 0) then (pi * 2) - ta else ta as = 20.0 :: Double pd3 = pi / (3 :: Double) ap1 = ip + pointF ((sin (angle + pd3)) * as) ((cos (angle + pd3)) * as) ap2 = ip + pointF ((sin (angle + pi - pd3)) * as) ((cos (angle + pi - pd3)) * as) setLine ao nl arrowHead <- qPolygonFL [ip, ap1, ap2] modifyIORef (ar_head a) (\_ -> arrowHead) drawLine ptr nl drawPolygon ptr arrowHead iss <- isSelected ai () if (iss) then do setPen ptr =<< qPen (cb, (1::Double), eDashLine) nsl <- qqline ai () qtranslate nsl ((0::Double), (4::Double)) qdrawLine ptr nsl qtranslate nsl ((0::Double), ((-8)::Double)) qdrawLine ptr nsl else return () else return () where gip _ _ _ [] = return (eNoIntersection, pointF 0.0 0.0) gip cl ep p1 teps = do let p2 = ep + (head teps) pl = lineP (p1, p2) (it, ip) <- qintersect cl pl if (it == eBoundedIntersection) then return (it, ip) else gip cl ep p2 (tail teps) arrowBoundingRect :: Arrow -> QGraphicsLineItem () -> IO (QRectF ()) arrowBoundingRect a li = do tw <- pen li () >>= \p -> widthF p () tl <- qline li () let extra = (tw + (20 :: Double)) / (2 :: Double) tsize = sizeF ((x $ p2 tl) - (x $ p1 tl)) ((y $ p2 tl) - (y $ p1 tl)) ar <- qRectF (p1 tl, tsize) >>= \r -> qqnormalized r () >>= \nr -> qqadjusted nr ((-extra), (-extra), extra, extra) mdxl <- qleft ar () mdxt <- qtop ar () mdxw <- qwidth ar () mdxh <- qheight ar () return ar arrowShape :: Arrow -> QGraphicsLineItem () -> IO (QPainterPath ()) arrowShape a li = do pth <- shape_h li () addPolygon pth =<< readIORef (ar_head a) return pth
uduki/hsQt
examples/DiagramScene/Arrow.hs
bsd-2-clause
5,701
0
24
1,523
2,183
1,114
1,069
161
7
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} module Data.HashTable.Weak.Internal.Linear.Bucket ( Bucket, newBucketArray, newBucketSize, emptyWithSize, growBucketTo, snoc, size, lookup, delete, toList, fromList, mapM_, foldM, expandBucketArray, expandArray, nelemsAndOverheadInWords, bucketSplitSize ) where ------------------------------------------------------------------------------ import Control.Monad hiding (foldM, mapM_) import qualified Control.Monad import Control.Monad.ST (ST) #ifdef DEBUG import Data.HashTable.Weak.Internal.Utils (unsafeIOToST) #endif import Data.HashTable.Weak.Internal.Array import Data.Maybe (fromMaybe) import Data.STRef import Prelude hiding (lookup, mapM_) ------------------------------------------------------------------------------ import Data.HashTable.Weak.Internal.UnsafeTricks #ifdef DEBUG import System.IO #endif type Bucket s k v = Key (Bucket_ s k v) ------------------------------------------------------------------------------ data Bucket_ s k v = Bucket { _bucketSize :: {-# UNPACK #-} !Int , _highwater :: {-# UNPACK #-} !(STRef s Int) , _keys :: {-# UNPACK #-} !(MutableArray s k) , _values :: {-# UNPACK #-} !(MutableArray s v) } ------------------------------------------------------------------------------ bucketSplitSize :: Int bucketSplitSize = 16 ------------------------------------------------------------------------------ newBucketArray :: Int -> ST s (MutableArray s (Bucket s k v)) newBucketArray k = newArray k emptyRecord ------------------------------------------------------------------------------ nelemsAndOverheadInWords :: Bucket s k v -> ST s (Int,Int) nelemsAndOverheadInWords bKey = do if (not $ keyIsEmpty bKey) then do !hw <- readSTRef hwRef let !w = sz - hw return (hw, constOverhead + 2*w) else return (0, 0) where constOverhead = 8 b = fromKey bKey sz = _bucketSize b hwRef = _highwater b ------------------------------------------------------------------------------ emptyWithSize :: Int -> ST s (Bucket s k v) emptyWithSize !sz = do !keys <- newArray sz undefined !values <- newArray sz undefined !ref <- newSTRef 0 return $ toKey $ Bucket sz ref keys values ------------------------------------------------------------------------------ newBucketSize :: Int newBucketSize = 4 ------------------------------------------------------------------------------ expandArray :: a -- ^ default value -> Int -- ^ new size -> Int -- ^ number of elements to copy -> MutableArray s a -- ^ old array -> ST s (MutableArray s a) expandArray def !sz !hw !arr = do newArr <- newArray sz def cp newArr where cp !newArr = go 0 where go !i | i >= hw = return newArr | otherwise = do readArray arr i >>= writeArray newArr i go (i+1) ------------------------------------------------------------------------------ expandBucketArray :: Int -> Int -> MutableArray s (Bucket s k v) -> ST s (MutableArray s (Bucket s k v)) expandBucketArray = expandArray emptyRecord ------------------------------------------------------------------------------ growBucketTo :: Int -> Bucket s k v -> ST s (Bucket s k v) growBucketTo !sz bk | keyIsEmpty bk = emptyWithSize sz | otherwise = do if osz >= sz then return bk else do hw <- readSTRef hwRef k' <- expandArray undefined sz hw keys v' <- expandArray undefined sz hw values return $ toKey $ Bucket sz hwRef k' v' where bucket = fromKey bk osz = _bucketSize bucket hwRef = _highwater bucket keys = _keys bucket values = _values bucket ------------------------------------------------------------------------------ {-# INLINE snoc #-} -- Just return == new bucket object snoc :: Bucket s k v -> k -> v -> ST s (Int, Maybe (Bucket s k v)) snoc bucket | keyIsEmpty bucket = mkNew | otherwise = snoc' (fromKey bucket) where mkNew !k !v = do debug "Bucket.snoc: mkNew" keys <- newArray newBucketSize undefined values <- newArray newBucketSize undefined writeArray keys 0 k writeArray values 0 v ref <- newSTRef 1 return (1, Just $ toKey $ Bucket newBucketSize ref keys values) snoc' (Bucket bsz hwRef keys values) !k !v = readSTRef hwRef >>= check where check !hw | hw < bsz = bump hw | otherwise = spill hw bump hw = do debug $ "Bucket.snoc: bumping hw, bsz=" ++ show bsz ++ ", hw=" ++ show hw writeArray keys hw k writeArray values hw v let !hw' = hw + 1 writeSTRef hwRef hw' debug "Bucket.snoc: finished" return (hw', Nothing) doublingThreshold = bucketSplitSize `div` 2 growFactor = 1.5 :: Double newSize z | z == 0 = newBucketSize | z < doublingThreshold = z * 2 | otherwise = ceiling $ growFactor * fromIntegral z spill !hw = do let sz = newSize bsz debug $ "Bucket.snoc: spilling, old size=" ++ show bsz ++ ", new size=" ++ show sz bk <- growBucketTo sz bucket debug "Bucket.snoc: spill finished, snoccing element" let (Bucket _ hwRef' keys' values') = fromKey bk let !hw' = hw+1 writeArray keys' hw k writeArray values' hw v writeSTRef hwRef' hw' return (hw', Just bk) ------------------------------------------------------------------------------ {-# INLINE size #-} size :: Bucket s k v -> ST s Int size b | keyIsEmpty b = return 0 | otherwise = readSTRef $ _highwater $ fromKey b ------------------------------------------------------------------------------ -- note: search in reverse order! We prefer recently snoc'd keys. lookup :: (Eq k) => Bucket s k v -> k -> ST s (Maybe v) lookup bucketKey !k | keyIsEmpty bucketKey = return Nothing | otherwise = lookup' $ fromKey bucketKey where lookup' (Bucket _ hwRef keys values) = do hw <- readSTRef hwRef go (hw-1) where go !i | i < 0 = return Nothing | otherwise = do k' <- readArray keys i if k == k' then do !v <- readArray values i return $! Just v else go (i-1) ------------------------------------------------------------------------------ {-# INLINE toList #-} toList :: Bucket s k v -> ST s [(k,v)] toList bucketKey | keyIsEmpty bucketKey = return [] | otherwise = toList' $ fromKey bucketKey where toList' (Bucket _ hwRef keys values) = do hw <- readSTRef hwRef go [] hw 0 where go !l !hw !i | i >= hw = return l | otherwise = do k <- readArray keys i v <- readArray values i go ((k,v):l) hw $ i+1 ------------------------------------------------------------------------------ -- fromList needs to reverse the input in order to make fromList . toList == id {-# INLINE fromList #-} fromList :: [(k,v)] -> ST s (Bucket s k v) fromList l = Control.Monad.foldM f emptyRecord (reverse l) where f bucket (k,v) = do (_,m) <- snoc bucket k v return $ fromMaybe bucket m ------------------------------------------------------------------------------ delete :: (Eq k) => Bucket s k v -> k -> ST s Bool delete bucketKey !k | keyIsEmpty bucketKey = do debug $ "Bucket.delete: empty bucket" return False | otherwise = do debug "Bucket.delete: start" del $ fromKey bucketKey where del (Bucket sz hwRef keys values) = do hw <- readSTRef hwRef debug $ "Bucket.delete: hw=" ++ show hw ++ ", sz=" ++ show sz go hw $ hw - 1 where go !hw !i | i < 0 = return False | otherwise = do k' <- readArray keys i if k == k' then do debug $ "found entry to delete at " ++ show i move (hw-1) i keys move (hw-1) i values let !hw' = hw-1 writeSTRef hwRef hw' return True else go hw (i-1) ------------------------------------------------------------------------------ {-# INLINE mapM_ #-} mapM_ :: ((k,v) -> ST s a) -> Bucket s k v -> ST s () mapM_ f bucketKey | keyIsEmpty bucketKey = do debug $ "Bucket.mapM_: bucket was empty" return () | otherwise = doMap $ fromKey bucketKey where doMap (Bucket sz hwRef keys values) = do hw <- readSTRef hwRef debug $ "Bucket.mapM_: hw was " ++ show hw ++ ", sz was " ++ show sz go hw 0 where go !hw !i | i >= hw = return () | otherwise = do k <- readArray keys i v <- readArray values i _ <- f (k,v) go hw $ i+1 ------------------------------------------------------------------------------ {-# INLINE foldM #-} foldM :: (a -> (k,v) -> ST s a) -> a -> Bucket s k v -> ST s a foldM f !seed0 bucketKey | keyIsEmpty bucketKey = return seed0 | otherwise = doMap $ fromKey bucketKey where doMap (Bucket _ hwRef keys values) = do hw <- readSTRef hwRef go hw seed0 0 where go !hw !seed !i | i >= hw = return seed | otherwise = do k <- readArray keys i v <- readArray values i seed' <- f seed (k,v) go hw seed' (i+1) ------------------------------------------------------------------------------ -- move i into j move :: Int -> Int -> MutableArray s a -> ST s () move i j arr | i == j = do debug $ "move " ++ show i ++ " into " ++ show j return () | otherwise = do debug $ "move " ++ show i ++ " into " ++ show j readArray arr i >>= writeArray arr j {-# INLINE debug #-} debug :: String -> ST s () #ifdef DEBUG debug s = unsafeIOToST $ do putStrLn s hFlush stdout #else #ifdef TESTSUITE debug !s = do let !_ = length s return $! () #else debug _ = return () #endif #endif
cornell-pl/HsAdapton
weak-hashtables/src/Data/HashTable/Weak/Internal/Linear/Bucket.hs
bsd-3-clause
10,951
0
18
3,625
3,123
1,489
1,634
235
2
-- Copyright : Isaac Jones 2003-2004 {- All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Isaac Jones nor the names of other contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} -- | ComponentLocalBuildInfo for Cabal >= 1.21 module Language.Haskell.GhcMod.Cabal21 ( ComponentLocalBuildInfo , PackageIdentifier(..) , PackageName(..) , componentPackageDeps , componentLibraries ) where import Distribution.Package (InstalledPackageId) import Data.Version (Version) data LibraryName = LibraryName String deriving (Read, Show) newtype PackageName = PackageName { unPackageName :: String } deriving (Read, Show) data PackageIdentifier = PackageIdentifier { pkgName :: PackageName, pkgVersion :: Version } deriving (Read, Show) type PackageId = PackageIdentifier data ComponentLocalBuildInfo = LibComponentLocalBuildInfo { componentPackageDeps :: [(InstalledPackageId, PackageId)], componentLibraries :: [LibraryName] } | ExeComponentLocalBuildInfo { componentPackageDeps :: [(InstalledPackageId, PackageId)] } | TestComponentLocalBuildInfo { componentPackageDeps :: [(InstalledPackageId, PackageId)] } | BenchComponentLocalBuildInfo { componentPackageDeps :: [(InstalledPackageId, PackageId)] } deriving (Read, Show)
cabrera/ghc-mod
Language/Haskell/GhcMod/Cabal21.hs
bsd-3-clause
2,646
0
10
467
242
153
89
29
0
{-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} -- | Security specific migration module Distribution.Server.Features.Security.Migration ( migratePkgTarball_v1_to_v2 , migrateCandidatePkgTarball_v1_to_v2 ) where -- stdlib import Control.DeepSeq import Control.Exception import Data.Map (Map) import System.IO import System.IO.Error import qualified Data.Map as Map import qualified Data.Vector as Vec -- Cabal import Distribution.Package (PackageId) -- hackage import Distribution.Server.Features.Core.State import Distribution.Server.Features.PackageCandidates.State import Distribution.Server.Features.PackageCandidates.Types import Distribution.Server.Features.Security.Layout import Distribution.Server.Framework hiding (Length) import Distribution.Server.Framework.BlobStorage import Distribution.Server.Packages.Types import Distribution.Server.Util.ReadDigest import qualified Distribution.Server.Packages.PackageIndex as PackageIndex {------------------------------------------------------------------------------- Migration of core data structures -------------------------------------------------------------------------------} -- | Migrate from BlobId to BlobInfo in PkgTarball -- -- This is part of the security feature because this computes the additional -- information (SHA hashes) that we need for the TUF target files. migratePkgTarball_v1_to_v2 :: ServerEnv -> StateComponent AcidState PackagesState -> IO () migratePkgTarball_v1_to_v2 env@ServerEnv{ serverVerbosity = verbosity } packagesState = do precomputedHashes <- readPrecomputedHashes env PackagesState{packageIndex} <- queryState packagesState GetPackagesState let allPackages = PackageIndex.allPackages packageIndex partitionSz = PackageIndex.numPackageVersions packageIndex `div` 10 partitioned = partition partitionSz allPackages stats <- forM (zip [1..] partitioned) $ \(i, pkgs) -> logTiming verbosity (partitionLogMsg i (length partitioned)) $ migratePkgs env updatePackage precomputedHashes pkgs loginfo verbosity $ prettyMigrationStats (mconcat stats) where updatePackage :: PackageId -> PkgInfo -> IO () updatePackage pkgId pkgInfo = updateState packagesState $ UpdatePackageInfo pkgId pkgInfo partitionLogMsg :: Int -> Int -> String partitionLogMsg i n = "Computing blob info " ++ "(" ++ show i ++ "/" ++ show n ++ ")" -- | Similar migration for candidates migrateCandidatePkgTarball_v1_to_v2 :: ServerEnv -> StateComponent AcidState CandidatePackages -> IO () migrateCandidatePkgTarball_v1_to_v2 env@ServerEnv{ serverVerbosity = verbosity } candidatesState = do precomputedHashes <- readPrecomputedHashes env CandidatePackages{candidateList} <- queryState candidatesState GetCandidatePackages let allCandidates = PackageIndex.allPackages candidateList partitionSz = PackageIndex.numPackageVersions candidateList `div` 10 partitioned = partition partitionSz allCandidates stats <- forM (zip [1..] partitioned) $ \(i, candidates) -> do let pkgs = map candPkgInfo candidates logTiming verbosity (partitionLogMsg i (length partitioned)) $ migratePkgs env updatePackage precomputedHashes pkgs loginfo verbosity $ prettyMigrationStats (mconcat stats) where updatePackage :: PackageId -> PkgInfo -> IO () updatePackage pkgId pkgInfo = do _didUpdate <- updateState candidatesState $ UpdateCandidatePkgInfo pkgId pkgInfo return () partitionLogMsg :: Int -> Int -> String partitionLogMsg i n = "Computing candidates blob info " ++ "(" ++ show i ++ "/" ++ show n ++ ")" migratePkgs :: ServerEnv -> (PackageId -> PkgInfo -> IO ()) -> Precomputed -> [PkgInfo] -> IO MigrationStats migratePkgs ServerEnv{ serverBlobStore = store } updatePackage precomputed = liftM mconcat . mapM migratePkg where migratePkg :: PkgInfo -> IO MigrationStats migratePkg pkg = do tarballs' <- forM tarballs $ \(tarball, uploadInfo) -> do tarball' <- migrateTarball tarball return $ (, uploadInfo) <$> tarball' -- Avoid updating the state of all packages already migrated case sequence tarballs' of AlreadyMigrated _ -> return mempty Migrated stats tarballs'' -> do let pkg' = pkg { pkgTarballRevisions = Vec.fromList tarballs'' } updatePackage (pkgInfoId pkg) pkg' return stats where tarballs = Vec.toList (pkgTarballRevisions pkg) migrateTarball :: PkgTarball -> IO (Migrated PkgTarball) migrateTarball pkgTarball@PkgTarball{} = return $ AlreadyMigrated pkgTarball migrateTarball (PkgTarball_v2_v1 PkgTarball_v1{..}) = case Map.lookup (blobMd5 v1_pkgTarballGz) precomputed of Just (strSHA256, len) -> do -- We assume all SHA hashes in the precomputed list parse OK let Right sha256 = readDigest strSHA256 stats = MigrationStats 1 0 infoGz = BlobInfo { blobInfoId = v1_pkgTarballGz , blobInfoLength = len , blobInfoHashSHA256 = sha256 } return $ Migrated stats PkgTarball { pkgTarballGz = infoGz , pkgTarballNoGz = v1_pkgTarballNoGz } Nothing -> do infoGz <- blobInfoFromId store v1_pkgTarballGz let stats = MigrationStats 0 1 return $ Migrated stats PkgTarball { pkgTarballGz = infoGz , pkgTarballNoGz = v1_pkgTarballNoGz } {------------------------------------------------------------------------------- Precomputed hashes -------------------------------------------------------------------------------} type MD5 = String type SHA256 = String type Length = Int type Precomputed = Map MD5 (SHA256, Length) -- | Read precomputed hashes (if any) -- -- The result is guaranteed to be in normal form. readPrecomputedHashes :: ServerEnv -> IO Precomputed readPrecomputedHashes env@ServerEnv{ serverVerbosity = verbosity } = do precomputed <- handle emptyOnError $ withFile (onDiskPrecomputedHashes env) ReadMode $ \h -> do hashes <- Map.fromList . map parseEntry . lines <$> hGetContents h evaluate $ rnf hashes return hashes loginfo verbosity $ "Found " ++ show (Map.size precomputed) ++ " precomputed hashes" return precomputed where emptyOnError :: IOException -> IO Precomputed emptyOnError err = if isDoesNotExistError err then return Map.empty else throwIO err parseEntry :: String -> (MD5, (SHA256, Length)) parseEntry line = let [md5, sha256, len] = words line in (md5, (sha256, read len)) {------------------------------------------------------------------------------- Migration infrastructure -------------------------------------------------------------------------------} data MigrationStats = MigrationStats { -- | Number of hashes we lookup up in the precomputed map migrationStatsPrecomputed :: !Int -- | Number of hashes we had to compute , migrationStatsComputed :: !Int } prettyMigrationStats :: MigrationStats -> String prettyMigrationStats MigrationStats{..} = unwords [ show migrationStatsPrecomputed , "hashes were precomputed, computed" , show migrationStatsComputed ] instance Monoid MigrationStats where mempty = MigrationStats 0 0 (MigrationStats a b) `mappend` (MigrationStats a' b') = MigrationStats (a + a') (b + b') data Migrated a = Migrated MigrationStats a | AlreadyMigrated a deriving (Functor) instance Applicative Migrated where pure = return f <*> x = do f' <- f ; x' <- x ; return $ f' x' instance Monad Migrated where return = AlreadyMigrated AlreadyMigrated a >>= f = f a Migrated stats a >>= f = case f a of AlreadyMigrated b -> Migrated stats b Migrated stats' b -> Migrated (stats `mappend` stats') b {------------------------------------------------------------------------------- Additional auxiliary -------------------------------------------------------------------------------} -- | Partition list -- -- > partition 2 [1..5] = [[1,2],[3,4],[5]] -- -- If partition size is 0, returns a single partition partition :: Int -> [a] -> [[a]] partition 0 xs = [xs] partition _ [] = [] partition sz xs = let (firstPartition, xs') = splitAt sz xs in firstPartition : partition sz xs'
agrafix/hackage-server
Distribution/Server/Features/Security/Migration.hs
bsd-3-clause
9,132
0
20
2,306
1,934
1,001
933
164
4
-- | -- Copyright : Anders Claesson 2017 -- Maintainer : Anders Claesson <[email protected]> -- License : BSD-3 -- -- Quotient difference algorithm for S- and J-fractions module HOPS.GF.CFrac.QD ( stieltjes , jacobi , jacobi0 , jacobi1 ) where import Data.Function.Memoize import Data.Vector (Vector, (!)) import qualified Data.Vector as V import HOPS.GF.CFrac.Contraction jacobi0 :: Fractional a => Vector a -> Vector a jacobi0 = fst . jacobi jacobi1 :: Fractional a => Vector a -> Vector a jacobi1 = snd . jacobi -- XXX: Jacobi0/1 is currently broken: -- -- *Main> quickCheck (prop_Jacobi0_QD :: Series 3 -> Bool) -- *** Failed! (after 6 tests): -- Exception: -- ./Data/Vector/Generic.hs:245 ((!)): index out of bounds (2,2) -- CallStack (from HasCallStack): -- error, called at .<snip> -- series (Proxy :: Proxy 3) [Val (1 % 1),Val ((-3) % 4),Val (5 % 1)] jacobi :: Fractional a => Vector a -> (Vector a, Vector a) jacobi = contraction stieltjes -- S-fraction using the Quotient-Difference Algorithm stieltjes :: Fractional a => Vector a -> Vector a stieltjes cs = if V.null cs then V.empty else V.fromList (cs ! 0 : twine qs es) where (m, m') = case V.length cs of n | odd n -> let k = (n-1) `div` 2 in (k, k) | otherwise -> let k = n `div` 2 in (k, k-1) qs = map (q 0) [ 1 .. m ] es = map (e 0) [ 1 .. m' ] qM = memoize2 q eM = memoize2 e e _ 0 = 0 e k j = eM (k+1) (j-1) + qM (k+1) j - qM k j q k 1 = cs ! (k+1) / cs ! k q k j = qM (k+1) (j-1) * eM (k+1) (j-1) / eM k (j-1) twine :: [a] -> [a] -> [a] twine [] bs = bs twine (a:as) bs = a : twine bs as
akc/gfscript
HOPS/GF/CFrac/QD.hs
bsd-3-clause
1,707
0
17
458
626
337
289
35
4
{-# LANGUAGE Haskell98 #-} {-# LINE 1 "Data/Text/Internal.hs" #-} {-# LANGUAGE CPP, DeriveDataTypeable, UnboxedTuples #-} {-# OPTIONS_HADDOCK not-home #-} -- | -- Module : Data.Text.Internal -- Copyright : (c) 2008, 2009 Tom Harper, -- (c) 2009, 2010 Bryan O'Sullivan, -- (c) 2009 Duncan Coutts -- -- License : BSD-style -- Maintainer : [email protected] -- Stability : experimental -- Portability : GHC -- -- A module containing private 'Text' internals. This exposes the -- 'Text' representation and low level construction functions. -- Modules which extend the 'Text' system may need to use this module. -- -- You should not use this module unless you are determined to monkey -- with the internals, as the functions here do just about nothing to -- preserve data invariants. You have been warned! module Data.Text.Internal ( -- * Types -- $internals Text(..) -- * Construction , text , textP -- * Safety , safe -- * Code that must be here for accessibility , empty , empty_ -- * Utilities , firstf -- * Checked multiplication , mul , mul32 , mul64 -- * Debugging , showText ) where import Data.Bits import Data.Int (Int32, Int64) import Data.Text.Internal.Unsafe.Char (ord) import Data.Typeable (Typeable) import qualified Data.Text.Array as A -- | A space efficient, packed, unboxed Unicode text type. data Text = Text {-# UNPACK #-} !A.Array -- payload (Word16 elements) {-# UNPACK #-} !Int -- offset (units of Word16, not Char) {-# UNPACK #-} !Int -- length (units of Word16, not Char) deriving (Typeable) -- | Smart constructor. text_ :: A.Array -> Int -> Int -> Text text_ arr off len = Text arr off len {-# INLINE text_ #-} -- | /O(1)/ The empty 'Text'. empty :: Text empty = Text A.empty 0 0 {-# INLINE [1] empty #-} -- | A non-inlined version of 'empty'. empty_ :: Text empty_ = Text A.empty 0 0 {-# NOINLINE empty_ #-} -- | Construct a 'Text' without invisibly pinning its byte array in -- memory if its length has dwindled to zero. text :: A.Array -> Int -> Int -> Text text arr off len | len == 0 = empty | otherwise = text_ arr off len {-# INLINE text #-} textP :: A.Array -> Int -> Int -> Text {-# DEPRECATED textP "Use text instead" #-} textP = text -- | A useful 'show'-like function for debugging purposes. showText :: Text -> String showText (Text arr off len) = "Text " ++ show (A.toList arr off len) ++ ' ' : show off ++ ' ' : show len -- | Map a 'Char' to a 'Text'-safe value. -- -- UTF-16 surrogate code points are not included in the set of Unicode -- scalar values, but are unfortunately admitted as valid 'Char' -- values by Haskell. They cannot be represented in a 'Text'. This -- function remaps those code points to the Unicode replacement -- character (U+FFFD, \'&#xfffd;\'), and leaves other code points -- unchanged. safe :: Char -> Char safe c | ord c .&. 0x1ff800 /= 0xd800 = c | otherwise = '\xfffd' {-# INLINE [0] safe #-} -- | Apply a function to the first element of an optional pair. firstf :: (a -> c) -> Maybe (a,b) -> Maybe (c,b) firstf f (Just (a, b)) = Just (f a, b) firstf _ Nothing = Nothing -- | Checked multiplication. Calls 'error' if the result would -- overflow. mul :: Int -> Int -> Int mul a b = fromIntegral $ fromIntegral a `mul64` fromIntegral b {-# INLINE mul #-} infixl 7 `mul` -- | Checked multiplication. Calls 'error' if the result would -- overflow. mul64 :: Int64 -> Int64 -> Int64 mul64 a b | a >= 0 && b >= 0 = mul64_ a b | a >= 0 = -mul64_ a (-b) | b >= 0 = -mul64_ (-a) b | otherwise = mul64_ (-a) (-b) {-# INLINE mul64 #-} infixl 7 `mul64` mul64_ :: Int64 -> Int64 -> Int64 mul64_ a b | ahi > 0 && bhi > 0 = error "overflow" | top > 0x7fffffff = error "overflow" | total < 0 = error "overflow" | otherwise = total where (# ahi, alo #) = (# a `shiftR` 32, a .&. 0xffffffff #) (# bhi, blo #) = (# b `shiftR` 32, b .&. 0xffffffff #) top = ahi * blo + alo * bhi total = (top `shiftL` 32) + alo * blo {-# INLINE mul64_ #-} -- | Checked multiplication. Calls 'error' if the result would -- overflow. mul32 :: Int32 -> Int32 -> Int32 mul32 a b = case fromIntegral a * fromIntegral b of ab | ab < min32 || ab > max32 -> error "overflow" | otherwise -> fromIntegral ab where min32 = -0x80000000 :: Int64 max32 = 0x7fffffff {-# INLINE mul32 #-} infixl 7 `mul32` -- $internals -- -- Internally, the 'Text' type is represented as an array of 'Word16' -- UTF-16 code units. The offset and length fields in the constructor -- are in these units, /not/ units of 'Char'. -- -- Invariants that all functions must maintain: -- -- * Since the 'Text' type uses UTF-16 internally, it cannot represent -- characters in the reserved surrogate code point range U+D800 to -- U+DFFF. To maintain this invariant, the 'safe' function maps -- 'Char' values in this range to the replacement character (U+FFFD, -- \'&#xfffd;\'). -- -- * A leading (or \"high\") surrogate code unit (0xD800–0xDBFF) must -- always be followed by a trailing (or \"low\") surrogate code unit -- (0xDC00-0xDFFF). A trailing surrogate code unit must always be -- preceded by a leading surrogate code unit.
phischu/fragnix
tests/packages/scotty/Data.Text.Internal.hs
bsd-3-clause
5,899
2
13
1,811
1,006
567
439
87
1
module BenchmarkTypes where import Criterion type BElem = (Int, Int, ()) data BenchmarkSet = BenchmarkSet { bGroupName :: String , bMinView :: Pure , bLookup :: Pure , bInsertEmpty :: Pure , bInsertNew :: Pure , bInsertDuplicates :: Pure , bDelete :: Pure } runBenchmark :: [BenchmarkSet] -> [Benchmark] runBenchmark bset = [ bgroup "minView" $ map (bench' bMinView) bset , bgroup "lookup" $ map (bench' bLookup) bset , bgroup "insertEmpty" $ map (bench' bInsertEmpty) bset , bgroup "insertNew" $ map (bench' bInsertNew) bset , bgroup "insertDuplicates" $ map (bench' bInsertDuplicates) bset , bgroup "delete" $ map (bench' bDelete) bset ] where bench' f x = bench (bGroupName x) (f x)
ariep/psqueues
benchmarks/BenchmarkTypes.hs
bsd-3-clause
886
0
9
311
253
136
117
20
1
module Main where import Language.Hakaru.Runtime.Prelude import qualified System.Random.MWC as MWC import Control.Monad prog :: MWC.GenIO -> IO Double prog = normal (real_ 0) (prob_ 3) main :: IO () main = do g <- MWC.createSystemRandom forever $ run g prog
zaxtax/hakaru
haskell/Language/Hakaru/Runtime/NormTest.hs
bsd-3-clause
302
0
8
84
97
53
44
10
1
{-# LANGUAGE TemplateHaskell, FlexibleInstances, FlexibleContexts, TypeOperators, GADTs, KindSignatures, IncoherentInstances #-} -- base values module Multi.DataTypes.Comp where import Data.Comp.Derive import Data.Comp.Multi type ValueExpr = HTerm Value type ExprSig = Value :++: Op type Expr = HTerm ExprSig type SugarSig = Value :++: Op :++: Sugar type SugarExpr = HTerm SugarSig type BaseType = HTerm ValueT data ValueT e t = TInt | TBool | TPair (e t) (e t) deriving (Eq) data Value e t where VInt :: Int -> Value e Int VBool :: Bool -> Value e Bool VPair :: e s -> e t -> Value e (s,t) data Op e t where Plus :: e Int -> e Int -> Op e Int Mult :: e Int -> e Int -> Op e Int If :: e Bool -> e t -> e t -> Op e t Lt :: e Int -> e Int -> Op e Bool Eq :: e Int -> e Int -> Op e Bool And :: e Bool -> e Bool -> Op e Bool Not :: e Bool -> Op e Bool ProjLeft :: e (s,t) -> Op e s ProjRight :: e (s,t) -> Op e t data Sugar e t where Neg :: e Int -> Sugar e Int Minus :: e Int -> e Int -> Sugar e Int Gt :: e Int -> e Int -> Sugar e Bool Or :: e Bool -> e Bool -> Sugar e Bool Impl :: e Bool -> e Bool -> Sugar e Bool $(derive [makeHFunctor, makeHFoldable, makeHTraversable, makeHEqF, smartHConstructors] [''ValueT, ''Value, ''Op, ''Sugar]) showBinOp :: String -> String -> String -> String showBinOp op x y = "("++ x ++ op ++ y ++ ")" instance HShowF ValueT where hshowF' TInt = "Int" hshowF' TBool = "Bool" hshowF' (TPair (K x) (K y)) = showBinOp "," x y instance HShowF Value where hshowF' (VInt i) = show i hshowF' (VBool b) = show b hshowF' (VPair (K x) (K y)) = showBinOp "," x y instance HShowF Op where hshowF' (Plus (K x) (K y)) = showBinOp "+" x y hshowF' (Mult (K x) (K y)) = showBinOp "*" x y hshowF' (If (K b) (K x) (K y)) = "if " ++ b ++ " then " ++ x ++ " else " ++ y ++ " fi" hshowF' (Eq (K x) (K y)) = showBinOp "==" x y hshowF' (Lt (K x) (K y)) = showBinOp "<" x y hshowF' (And (K x) (K y)) = showBinOp "&&" x y hshowF' (Not (K x)) = "~" ++ x hshowF' (ProjLeft (K x)) = x ++ "!0" hshowF' (ProjRight (K x)) = x ++ "!1"
spacekitteh/compdata
benchmark/Multi/DataTypes/Comp.hs
bsd-3-clause
2,234
0
11
650
1,065
539
526
64
1
module HierarchicalImport where import Hierarchical.Export main :: Fay () main = putStrLn exported
beni55/fay
tests/HierarchicalImport.hs
bsd-3-clause
111
0
6
25
27
15
12
4
1
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="id-ID"> <title>Report Generation</title> <maps> <homeID>reports</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
thc202/zap-extensions
addOns/reports/src/main/javahelp/org/zaproxy/addon/reports/resources/help_id_ID/helpset_id_ID.hs
apache-2.0
966
82
52
156
390
206
184
-1
-1
module M1 (g) where import M {- f :: T -> Int -} {- f (C1 x y) = x + y -} g = error "f (C1 1 2) no longer defined for T at line: 4" l = k
kmate/HaRe
old/testing/removeCon/M1_TokOut.hs
bsd-3-clause
144
0
5
47
27
17
10
4
1
{-# LANGUAGE TypeFamilies, GADTs, EmptyDataDecls, FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} module SlowComp where import Control.Monad import Data.Kind ------------------------------------------------------------------------------- -- Usual Peano integers. class NatInt a where natInt :: a -> Int data D0 n = D0 {d0Arg :: n} data D1 n = D1 {d1Arg :: n} data C0 data C1 class DPosInt n where posInt :: n -> (Int,Int) instance DPosInt () where posInt _ = (0,1) instance DPosInt n => DPosInt (D0 n) where posInt a = (dsum,w*2) where (dsum,w) = posInt $ d0Arg a instance DPosInt n => DPosInt (D1 n) where posInt a = (dsum+w,w*2) where (dsum,w) = posInt $ d1Arg a instance NatInt () where natInt _ = 0 instance DPosInt n => NatInt (D0 n) where natInt a = fst $ posInt a instance DPosInt n => NatInt (D1 n) where natInt a = fst $ posInt a type family DRev a type instance DRev a = DRev' a () type family DRev' x acc type instance DRev' () acc = acc type instance DRev' (D0 a) acc = DRev' a (D0 acc) type instance DRev' (D1 a) acc = DRev' a (D1 acc) type family DAddC c a b type instance DAddC C0 (D0 a) (D0 b) = D0 (DAddC C0 a b) type instance DAddC C0 (D1 a) (D0 b) = D1 (DAddC C0 a b) type instance DAddC C0 (D0 a) (D1 b) = D1 (DAddC C0 a b) type instance DAddC C0 (D1 a) (D1 b) = D0 (DAddC C1 a b) type instance DAddC C1 (D0 a) (D0 b) = D1 (DAddC C0 a b) type instance DAddC C1 (D1 a) (D0 b) = D0 (DAddC C1 a b) type instance DAddC C1 (D0 a) (D1 b) = D0 (DAddC C1 a b) type instance DAddC C1 (D1 a) (D1 b) = D1 (DAddC C1 a b) type instance DAddC C0 () () = () type instance DAddC C1 () () = D1 () type instance DAddC c (D0 a) () = DAddC c (D0 a) (D0 ()) type instance DAddC c (D1 a) () = DAddC c (D1 a) (D0 ()) type instance DAddC c () (D0 b) = DAddC c (D0 b) (D0 ()) type instance DAddC c () (D1 b) = DAddC c (D1 b) (D0 ()) type family DNorm a type instance DNorm () = D0 () type instance DNorm (D0 ()) = D0 () type instance DNorm (D0 (D1 a)) = D1 a type instance DNorm (D0 (D0 a)) = DNorm a type instance DNorm (D1 a) = D1 a type family DPlus a b type instance DPlus a b = DNorm (DRev (DAddC C0 (DRev a) (DRev b))) type family DDepth a type instance DDepth () = D0 () type instance DDepth (D0 ()) = D0 () type instance DDepth (D1 ()) = D1 () type instance DDepth (D1 (D0 n)) = DPlus ONE (DDepth (D1 n)) type instance DDepth (D1 (D1 n)) = DPlus ONE (DDepth (D1 n)) type family DLog2 a type instance DLog2 a = DDepth a type ZERO = D0 () type ONE = D1 () type TWO = DPlus ONE ONE type THREE = DPlus ONE TWO type FOUR = DPlus TWO TWO type FIVE = DPlus ONE FOUR type SIX = DPlus TWO FOUR type SEVEN = DPlus ONE SIX type EIGHT = DPlus FOUR FOUR type NINE = DPlus FOUR FIVE type TEN = DPlus EIGHT TWO type SIZE8 = EIGHT type SIZE9 = NINE type SIZE10 = TEN type SIZE12 = DPlus SIX SIX type SIZE15 = DPlus EIGHT SEVEN type SIZE16 = DPlus EIGHT EIGHT type SIZE17 = DPlus ONE SIZE16 type SIZE24 = DPlus SIZE8 SIZE16 type SIZE32 = DPlus SIZE8 SIZE24 type SIZE30 = DPlus SIZE24 SIX ------------------------------------------------------------------------------- -- Description of CPU. class CPU cpu where -- register address. type RegAddrSize cpu -- register width type RegDataSize cpu -- immediate width. type ImmSize cpu -- variables in CPU - register indices, command format variables, etc. type CPUVars cpu :: Type -> Type data Const size = Const Integer data Var cpu size where Temp :: Int -> Var cpu size Var :: CPUVars cpu size -> Var cpu size ------------------------------------------------------------------------------- -- Command description monad. data Command cpu where Command :: (Var cpu size) -> (Operation cpu size) -> Command cpu type RegVar cpu = Var cpu (RegDataSize cpu) type Immediate cpu = Const (ImmSize cpu) data Operation cpu resultSize where Add :: RegVar cpu -> Either (Immediate cpu) (RegVar cpu) -> Operation cpu (RegDataSize cpu) Sub :: RegVar cpu -> Either (Immediate cpu) (RegVar cpu) -> Operation cpu (RegDataSize cpu) type CDM cpu a = IO a ($=) :: Var cpu size -> Operation cpu size -> CDM cpu () var $= op = undefined tempVar :: CDM cpu (Var cpu size) tempVar = do cnt <- liftM fst undefined return $ Temp cnt op :: Operation cpu size -> CDM cpu (Var cpu size) op operation = do v <- tempVar v $= operation return v ------------------------------------------------------------------------------- -- Dummy CPU. data DummyCPU = DummyCPU data DummyVar size where DummyFlag :: Flag -> DummyVar ONE DummyReg :: Int -> DummyVar SIZE16 DummyZero :: DummyVar SIZE16 data Flag = C | Z | N | V instance CPU DummyCPU where type RegAddrSize DummyCPU = FIVE type RegDataSize DummyCPU = SIZE16 type ImmSize DummyCPU = SIZE12 type CPUVars DummyCPU = DummyVar ------------------------------------------------------------------------------- -- Long compiling program. {- cnst has very simple code, and should be fast to typecheck But if you insist on normalising (Immediate DummyCPU) you get Immediate DummyCPU = Const (ImmSize DummyCPU) -> Const SIZE12 = Const (DPlus SIX SIX) ...etc... similarly for (RegVar DummyCPU). So you get a lot of work and big coercions, for no gain. -} cnst :: Integer -> Either (Immediate DummyCPU) (RegVar DummyCPU) cnst x = Left (Const x) longCompilingProgram :: CDM DummyCPU () longCompilingProgram = do -- the number of lines below greatly affects compilation time. x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) x10 <- op $ Add (Var DummyZero) (cnst 10) return ()
sdiehl/ghc
testsuite/tests/perf/compiler/T5030.hs
bsd-3-clause
6,608
0
11
1,741
2,554
1,328
1,226
-1
-1
import Test.Cabal.Prelude -- No cabal test because per-component is broken for it main = setupTest $ do withPackageDb $ do withDirectory "p" $ do setup_install ["q"] setup_install ["p"] setup_install ["foo"] runInstalledExe "foo" []
themoritz/cabal
cabal-testsuite/PackageTests/InternalLibraries/setup-per-component.test.hs
bsd-3-clause
276
0
15
76
71
33
38
8
1
{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} module Betfair.APING ( Context(..) , initializeContext -- GetResponse , getDecodedResponse -- Requests -- Login , sessionToken -- Logout , logout -- PlaceOrders , placeOrder , placeOrderWithParams -- KeepAlive , keepAlive , keepAliveOnceEvery10Minutes -- ListMarketBook , listMarketBook , marketBook , marketBooks -- ListMarketCatalogue , marketCatalogue -- CancelOrders , cancelOrder , cancelOrderWithParams -- Types , APINGException , AppKey , BettingException , CancelExecutionReport , CancelInstruction , CancelInstructionReport , Competition , Error , ErrorData , Event , EventType , ExBestOffersOverrides , ExchangePrices , ExecutionReportErrorCode , ExecutionReportStatus , InstructionReportErrorCode , InstructionReportStatus , LimitOnCloseOrder , LimitOrder , Login , MarketBettingType , MarketBook , MarketCatalogue , MarketDescription , MarketFilter , MarketOnCloseOrder , MarketProjection , MarketSort , MarketStatus , Match , MatchProjection , Order , OrderProjection , OrderStatus , OrderType , PersistenceType , PlaceExecutionReport , PlaceInstruction , PlaceInstructionReport , PriceData , PriceProjection , PriceSize -- ,ResponseCancelOrders -- ,ResponseMarketBook -- ,ResponseMarketCatalogue -- ,ResponsePlaceOrders , RollupModel , Runner , RunnerCatalog , RunnerStatus , Side , StartingPrices , TimeRange , Token -- common types , SelectionId , MarketId , EventName , MarketName , RunnerName , Price , Size ) where import Protolude -- API -- Context -- import Betfair.APING.API.APIRequest import Betfair.APING.API.Context import Betfair.APING.API.GetResponse -- import Betfair.APING.API.Headers -- import Betfair.APING.API.Log import Betfair.APING.Requests.CancelOrders import Betfair.APING.Requests.KeepAlive import Betfair.APING.Requests.ListMarketBook import Betfair.APING.Requests.ListMarketCatalogue import Betfair.APING.Requests.Login import Betfair.APING.Requests.Logout import Betfair.APING.Requests.PlaceOrders import Betfair.APING.Types.APINGException import Betfair.APING.Types.AppKey import Betfair.APING.Types.BettingException import Betfair.APING.Types.CancelExecutionReport import Betfair.APING.Types.CancelInstruction import Betfair.APING.Types.CancelInstructionReport import Betfair.APING.Types.Competition import Betfair.APING.Types.Error import Betfair.APING.Types.ErrorData import Betfair.APING.Types.Event import Betfair.APING.Types.EventType import Betfair.APING.Types.ExBestOffersOverrides import Betfair.APING.Types.ExchangePrices import Betfair.APING.Types.ExecutionReportErrorCode import Betfair.APING.Types.ExecutionReportStatus import Betfair.APING.Types.InstructionReportErrorCode import Betfair.APING.Types.InstructionReportStatus import Betfair.APING.Types.LimitOnCloseOrder import Betfair.APING.Types.LimitOrder import Betfair.APING.Types.Login import Betfair.APING.Types.MarketBettingType import Betfair.APING.Types.MarketBook import Betfair.APING.Types.MarketCatalogue import Betfair.APING.Types.MarketDescription import Betfair.APING.Types.MarketFilter import Betfair.APING.Types.MarketOnCloseOrder import Betfair.APING.Types.MarketProjection import Betfair.APING.Types.MarketSort import Betfair.APING.Types.MarketStatus import Betfair.APING.Types.Match import Betfair.APING.Types.MatchProjection import Betfair.APING.Types.Order import Betfair.APING.Types.OrderProjection import Betfair.APING.Types.OrderStatus import Betfair.APING.Types.OrderType import Betfair.APING.Types.PersistenceType import Betfair.APING.Types.PlaceExecutionReport import Betfair.APING.Types.PlaceInstruction import Betfair.APING.Types.PlaceInstructionReport import Betfair.APING.Types.PriceData import Betfair.APING.Types.PriceProjection import Betfair.APING.Types.PriceSize -- import Betfair.APING.Types.ResponseCancelOrders -- import Betfair.APING.Types.ResponseMarketBook -- import Betfair.APING.Types.ResponseMarketCatalogue -- import Betfair.APING.Types.ResponsePlaceOrders import Betfair.APING.Types.RollupModel import Betfair.APING.Types.Runner import Betfair.APING.Types.RunnerCatalog import Betfair.APING.Types.RunnerStatus import Betfair.APING.Types.Side import Betfair.APING.Types.StartingPrices import Betfair.APING.Types.TimeRange import Betfair.APING.Types.Token type MarketId = Text type SelectionId = Integer type EventName = Text type MarketName = Text type RunnerName = Text type Price = Double type Size = Double
joe9/betfair-api
src/Betfair/APING.hs
mit
4,712
0
5
585
714
505
209
144
0
---------------------------------------------------------------- -- -- | Compilation -- Monad and combinators for quickly assembling simple -- compilers. -- -- @Control\/Compilation\/Trees.hs@ -- -- A generic compilation monad for quickly assembling simple -- compilers for target languages that are primarily -- expression trees. -- ---------------------------------------------------------------- -- module Control.Compilation.Trees where import Control.Compilation ---------------------------------------------------------------- -- | State extension class definition, including combinators -- and convenient synonyms. () = () --eof
lapets/compilation
Control/Compilation/Trees.hs
mit
656
0
5
84
40
31
9
3
1
{-# LANGUAGE OverloadedStrings #-} module Ptt.Time.Clock ( hours , minutesOfHours , timeOfDay , secondsToText , secondsToLength , secondsFromText ) where import Prelude as P import qualified Data.Text as T import Control.Applicative import Ptt.Util hours :: Integral a => a -> Integer hours seconds = fromIntegral $ seconds `div` 3600 minutesOfHours :: Integral a => a -> Int minutesOfHours seconds = fromIntegral $ seconds `rem` 3600 `div` 60 secondsOfMinutes :: Integral a => a -> Int secondsOfMinutes seconds = fromIntegral $ seconds `rem` 60 timeOfDay :: Integral a => a -> a -> Integer timeOfDay hour minute = let hourSeconds = hour * 3600 minuteSeconds = minute * 60 in fromIntegral $ hourSeconds + minuteSeconds timeOfDayWithSeconds :: Integral a => a -> a -> a -> Integer timeOfDayWithSeconds hour minute second = timeOfDay hour minute + fromIntegral second secondsToText :: Integral a => a -> T.Text secondsToText seconds = let s = secondsOfMinutes seconds hs = pad $ hours seconds ms = pad $ minutesOfHours seconds hm = T.concat [hs, ":", ms] in if s == 0 then hm else T.concat [hm, ":", pad s] where pad i | i < 10 = T.append "0" (tshow (abs i)) | otherwise = tshow i secondsToLength :: Integral a => a -> T.Text secondsToLength seconds = let h = formatNonZero (hours seconds) "h" m = formatNonZero (minutesOfHours seconds) "m" in T.intercalate " " $ filter (not . T.null) [h, m] where formatNonZero i s = if i > 0 then T.append (tshow i) s else "" secondsFromText :: T.Text -> Maybe Integer secondsFromText time = case T.split isTimeSeparator time of (hs:ms:ss:[]) -> timeOfDayWithSeconds <$> readInt hs <*> readInt ms <*> readInt ss (hs:ms:[]) -> timeOfDay <$> readInt hs <*> readInt ms (hs:[]) -> timeOfDay <$> readInt hs <*> pure 0 _ -> Nothing isTimeSeparator :: Char -> Bool isTimeSeparator c = c `elem` ".:"
jkpl/ptt
src/Ptt/Time/Clock.hs
mit
1,943
0
12
428
730
376
354
52
4
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE CPP #-} {-# LANGUAGE PatternSynonyms #-} module Ringo.Generator.Populate.Dimension (dimensionTablePopulateSQL) where #if MIN_VERSION_base(4,8,0) #else import Control.Applicative ((<$>)) #endif import Control.Monad.Reader (Reader, asks, withReader) import Database.HsSqlPpp.Syntax (Statement, QueryExpr(..), Distinct(..), makeSelect, JoinType(..)) import Data.Maybe (fromJust) import Data.Text (Text) import Ringo.Extractor.Internal import Ringo.Generator.Internal import Ringo.Generator.Sql import Ringo.Types dimensionTablePopulateSQL :: TablePopulationMode -> Fact -> TableName -> Reader Env Text dimensionTablePopulateSQL popMode fact dimTableName = ppStatement <$> dimensionTablePopulateStmt popMode fact dimTableName dimensionTablePopulateStmt :: TablePopulationMode -> Fact -> TableName -> Reader Env Statement dimensionTablePopulateStmt popMode fact dimTableName = withReader envView $ do Settings {..} <- asks envSettings tables <- asks envTables defaults <- asks envTypeDefaults let factTable = fromJust $ findTable (factTableName fact) tables colMapping = dimColumnMapping settingDimPrefix fact dimTableName selectCols = [ flip sia (nmc cName) $ coalesceColumn defaults (factTableName fact) col | (_, cName) <- colMapping , let col = fromJust . findColumn cName $ tableColumns factTable ] timeCol = head ([ cName | DimTimeV cName <- factColumns fact ] :: [ColumnName]) isNotNullC = parens . foldBinop "or" . map (postop "isnotnull" . ei . snd) $ colMapping selectWhereC = Just . foldBinop "and" $ [ isNotNullC, binop "<" (ei timeCol) placeholder ] ++ [ binop ">=" (ei timeCol) placeholder | popMode == IncrementalPopulation ] selectC = makeSelect { selDistinct = Distinct , selSelectList = sl selectCols , selTref = [tref $ factTableName fact] , selWhere = selectWhereC } iTableName = suffixTableName popMode settingTableNameSuffixTemplate dimTableName insertC = insert iTableName (map fst colMapping) $ case popMode of FullPopulation -> selectC IncrementalPopulation -> let alias = "x" in makeSelect { selSelectList = sl [si $ qstar alias] , selTref = [ tjoin (subtrefa alias selectC) LeftOuter (tref dimTableName) . Just $ foldBinop "and" [ binop "=" (eqi dimTableName c1) (eqi alias c2) | (c1, c2) <- colMapping ] ] , selWhere = Just . foldBinop "and" . map (postop "isnull" . eqi dimTableName . fst) $ colMapping } return insertC
quintype/ringo
src/Ringo/Generator/Populate/Dimension.hs
mit
2,918
0
25
816
737
389
348
49
2
module OpenWeatherMap.Types ( module OpenWeatherMap.Types.Weather , module OpenWeatherMap.Types.Coordinate ) where import OpenWeatherMap.Types.Coordinate import OpenWeatherMap.Types.Weather
AndrewRademacher/open-weather-map
src/OpenWeatherMap/Types.hs
mit
223
0
5
47
34
23
11
5
0
module Yage.Wire.Resources ( -- * Resource Allocation Wires acquireOnce , allocationOnEvent ) where import Yage.Prelude hiding (any, on) import Yage.Resources import Control.Wire import Control.Wire.Unsafe.Event import Yage.Wire.Types -- | `YageResource` allocation wire -- -- allocates a `YageResource` which is never freed (!) -- (beside garbage collection of the haskell data structure) acquireOnce :: YageResource a -> YageWire t b a acquireOnce res = mkGenN $ \_ -> do (_key, a) <- allocateAcquire res return $ (Right a, mkConst $ Right a) {-# INLINE acquireOnce #-} -- | loads resources each time the carrying 'Event' occurs. The previous loaded -- resource is freed. allocationOnEvent :: YageWire t (Event (YageResource a)) (Event a) allocationOnEvent = unloaded where unloaded = mkGenN $ event (return (Right NoEvent, unloaded)) (\res -> do (k, a) <- allocateAcquire res return (Right $ Event a, loaded k) ) loaded key = mkGenN $ event (return (Right NoEvent, loaded key)) (\res -> do release key (k, a) <- allocateAcquire res return (Right $ Event a, loaded k) )
MaxDaten/yage
src/Yage/Wire/Resources.hs
mit
1,212
0
16
308
334
178
156
25
1
module BankAccount ( BankAccount , openAccount, closeAccount , getBalance, incrementBalance) where import Control.Concurrent.STM import Control.Applicative import Prelude newtype BankAccount = BankAccount { unBankAccount :: TVar (Maybe Int) } openAccount :: IO BankAccount openAccount = atomically $ BankAccount <$> newTVar (Just 0) closeAccount :: BankAccount -> IO () closeAccount = atomically . flip writeTVar Nothing . unBankAccount getBalance :: BankAccount -> IO (Maybe Int) getBalance = atomically . readTVar . unBankAccount incrementBalance :: BankAccount -> Int -> IO (Maybe Int) incrementBalance acct delta = atomically $ do let b = unBankAccount acct bal <- fmap (delta +) <$> readTVar b writeTVar b bal return bal
stevejb71/xhaskell
bank-account/example.hs
mit
777
0
11
155
233
121
112
19
1
module Rascal.API where import Control.Applicative ((<$>)) import Text.Printf (printf) import Control.Exception (handle) import Data.Aeson (parseJSON, FromJSON) import Network.Curl.Aeson (curlAeson, noData, CurlAesonException, errorMsg, curlCode) import Network.Curl.Opts (CurlOption(CurlUserAgent)) import Network.Curl.Code (CurlCode(CurlOK)) import Rascal.Constants import Rascal.Types -- |get posts according to selection in argument's subreddit as a listing getListing :: String -> String -> Int -> Maybe String -> String -> IO NamedListing getListing select subreddit cnt aftr uagent = let apiurl = "http://www.reddit.com/r/" ++ subreddit ++ "/%s.json?count=" ++ show cnt ++ maybe "" ("&after=" ++) aftr in NamedListing (subreddit ++ " -- " ++ select) cnt <$> getThing apiurl uagent select emptyListing -- |get posts or comments from an apiurl, a sort order and a default in case -- of error getThing :: FromJSON a => String -> String -> String -> a -> IO a getThing apiurl uagent sort emptyThing = let sort' = if sort `notElem` map snd availableSorts then snd . head $ availableSorts else sort apiurl' = printf apiurl sort' in handle (handleCurlAesonException emptyThing) $ do l <- curlAeson parseJSON "GET" apiurl' [CurlUserAgent uagent] noData return $! l -- |print error message if there is a cURL exception handleCurlAesonException :: a -> CurlAesonException -> IO a handleCurlAesonException x e = do putStrLn $ red ++ "Caught exception: " ++ reset ++ errorMsg e putStrLn $ if curlCode e == CurlOK then "(Might indicate a non-existing subreddit)" else "cURL code: " ++ (drop 4 . show . curlCode) e return x -- |request comments for a given article getComments :: String -> String -> String -> String -> IO Comments getComments subreddit article csort uagent = let apiurl = "http://www.reddit.com/r/" ++ subreddit ++ "/comments/" ++ article ++ ".json?sort=%s" in getThing apiurl uagent csort emptyComments
soli/rascal
src/Rascal/API.hs
mit
2,109
0
14
479
544
284
260
37
2
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies #-} {-# OPTIONS_GHC -Wall #-} -- {-# OPTIONS_GHC -fno-warn-missing-methods #-} ---------------------------------------------------------------------- -- | -- Module : Data.Dif -- Copyright : (c) Conal Elliott 2008 -- License : BSD3 -- -- Maintainer : [email protected] -- Stability : experimental -- -- Automatic differentiation, as in Jerzy Karczmarczuk's paper /Functional -- Differentiation of Computer Programs/ (ICFP version), -- <http://citeseer.ist.psu.edu/karczmarczuk98functional.html>. -- -- See also the blog post -- <http://conal.net/blog/posts/beautiful-differentiation/>. ---------------------------------------------------------------------- -- -- Modified by Ruben Zilibowitz 31st March 2017 -- To deal with derivatives w.r.t. more than one variable -- module Data.Dif (Dif(..), dId, dConst) where import Data.Function (on) import Data.NumInstances () -- | Tower of derivatives. data Dif e a = D { dVal :: a, deriv :: e -> Dif e a } -- | Differentiable identity function (sampled). Sometimes called "the -- derivation variable" or similar, but it's not really a variable. dId :: (Num a, Eq e) => e -> a -> Dif e a dId name x = D x (\i -> if i == name then 1 else 0) -- The papers refer to dId as a "derivation variable" or similar. I like -- to reserve "variable" for a name (if syntax) or storage (if -- semantics). @dId x@ is the derivative tower associated with the -- identity function sampled at x. -- | Differentiable constant function. See also 'dConstV'. dConst :: Num a => a -> Dif e a dConst x = D x (const 0) -- I'm not sure about the next three, which discard information instance Show a => Show (Dif e a) where show = show . dVal instance Eq a => Eq (Dif e a) where (==) = (==) `on` dVal instance Ord a => Ord (Dif e a) where compare = compare `on` dVal -- The chain rule infix 0 >-< (>-<) :: (Num a) => (a -> a) -> (Dif e a -> Dif e a) -> (Dif e a -> Dif e a) f >-< d = \ p@(D u u') -> D (f u) (\i -> d p * (u' i)) instance Num a => Num (Dif e a) where fromInteger = dConst . fromInteger D x x' + D y y' = D (x + y) (\i -> (x' i) + (y' i)) D x x' - D y y' = D (x - y) (\i -> (x' i) - (y' i)) p@(D x x') * q@(D y y') = D (x * y) (\i -> (x' i) * q + p * (y' i)) negate = negate >-< -1 abs = abs >-< signum signum = signum >-< 0 -- More efficiently: -- signum (D x _) = dConst (signum x) -- Though really, signum isn't differentiable at zero, without something -- like Dirac impulses. instance Fractional a => Fractional (Dif e a) where fromRational = dConst . fromRational recip = recip >-< - sqr recip -- More efficiently: -- recip (D x x') = ip -- where ip = D (recip x) (-x' * ip * ip) sqr :: Num a => a -> a sqr x = x*x instance (Fractional a, Floating a) => Floating (Dif e a) where pi = dConst pi exp = exp >-< exp log = log >-< recip sqrt = sqrt >-< recip (2 * sqrt) sin = sin >-< cos cos = cos >-< - sin sinh = sinh >-< cosh cosh = cosh >-< sinh asin = asin >-< recip (sqrt (1-sqr)) acos = acos >-< recip (- sqrt (1-sqr)) atan = atan >-< recip (1+sqr) asinh = asinh >-< recip (sqrt (1+sqr)) acosh = acosh >-< recip (- sqrt (sqr-1)) atanh = atanh >-< recip (1-sqr) -- More efficiently: -- exp (D x x') = r where r = D (exp x) (x' * r)
rzil/honours
DeepLearning/Data/Dif.hs
mit
3,440
3
13
837
1,034
564
470
44
2
{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} module Agent.PingPong.Manager.Send where import Agent.Generic import AgentSystem.Manager import Agent.PingPong import Control.Monad (when) import Control.Concurrent (yield) import Data.IORef -------------------------------------------------------------------------------- -- | First sends 'Ping' message to _pong_ agent. -- Then sends 'Ping' to _pong_ only in response to 'Pong' message. -- Total number of 'Ping' messages sent is _nPings_. pingDescriptor sys nPings = GenericAgentDescriptor{ agName = "Ping" , agDebug = _debug , initialState = do nPingsRef <- newIORef nPings firstTime <- newIORef True return (nPingsRef, sys, firstTime) , messageHandling = MessageHandling{ msgHandle = selectMessageHandler [ mbHandle $ \c Pong -> sendPing c ] , msgRespond = selectResponse [] } , action = AgentAction $ \c -> do let (_, _, firstTime') = agentState c firstTime <- readIORef firstTime' when firstTime $ do sendPing c firstTime' `writeIORef` False , emptyResult = EmptyResult :: EmptyResult () } sendPing c = do let (i', sys, _) = agentState c i <- readIORef i' Just pong <- sys `findAgent` AgentId "Pong" if i > 0 then do putStrLn $ "Ping (" ++ show i ++ ")" pong `send` Ping i' `writeIORef` (i-1) else do putStrLn "Terminating Ping" agentTerminate c -- | Sends 'Pong' message to _ping_ agent in response to 'Ping'. pongDescriptor sys = GenericAgentDescriptor{ agName = "Pong" , agDebug = _debug , initialState = return sys , messageHandling = MessageHandling{ msgHandle = selectMessageHandler [ mbHandle $ \c Ping -> do Just ping <- sys `findAgent` AgentId "Ping" putStrLn "Pong" ping `send` Pong ] , msgRespond = selectResponse [] } , action = agentNoAction , emptyResult = EmptyResult :: EmptyResult () } -------------------------------------------------------------------------------- runPingPong nPings = do putStrLn "<< Create Agents Manager >> " m <- newSimpleAgentsManager ping <- m `newAgent` pingDescriptor m nPings pong <- m `newAgent` pongDescriptor m putStrLn "Starting agents" startAllAgents m putStrLn "Waiting PING termination" agentWaitTermination ping putStrLn "Terminating agents" terminateAllAgents m putStrLn "Finished"
fehu/h-agents
test/Agent/PingPong/Manager/Send.hs
mit
3,009
0
17
1,114
605
312
293
58
2
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE StrictData #-} {-# LANGUAGE TupleSections #-} -- | http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesisanalytics-application-inputlambdaprocessor.html module Stratosphere.ResourceProperties.KinesisAnalyticsApplicationInputLambdaProcessor where import Stratosphere.ResourceImports -- | Full data type definition for -- KinesisAnalyticsApplicationInputLambdaProcessor. See -- 'kinesisAnalyticsApplicationInputLambdaProcessor' for a more convenient -- constructor. data KinesisAnalyticsApplicationInputLambdaProcessor = KinesisAnalyticsApplicationInputLambdaProcessor { _kinesisAnalyticsApplicationInputLambdaProcessorResourceARN :: Val Text , _kinesisAnalyticsApplicationInputLambdaProcessorRoleARN :: Val Text } deriving (Show, Eq) instance ToJSON KinesisAnalyticsApplicationInputLambdaProcessor where toJSON KinesisAnalyticsApplicationInputLambdaProcessor{..} = object $ catMaybes [ (Just . ("ResourceARN",) . toJSON) _kinesisAnalyticsApplicationInputLambdaProcessorResourceARN , (Just . ("RoleARN",) . toJSON) _kinesisAnalyticsApplicationInputLambdaProcessorRoleARN ] -- | Constructor for 'KinesisAnalyticsApplicationInputLambdaProcessor' -- containing required fields as arguments. kinesisAnalyticsApplicationInputLambdaProcessor :: Val Text -- ^ 'kaailpResourceARN' -> Val Text -- ^ 'kaailpRoleARN' -> KinesisAnalyticsApplicationInputLambdaProcessor kinesisAnalyticsApplicationInputLambdaProcessor resourceARNarg roleARNarg = KinesisAnalyticsApplicationInputLambdaProcessor { _kinesisAnalyticsApplicationInputLambdaProcessorResourceARN = resourceARNarg , _kinesisAnalyticsApplicationInputLambdaProcessorRoleARN = roleARNarg } -- | http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesisanalytics-application-inputlambdaprocessor.html#cfn-kinesisanalytics-application-inputlambdaprocessor-resourcearn kaailpResourceARN :: Lens' KinesisAnalyticsApplicationInputLambdaProcessor (Val Text) kaailpResourceARN = lens _kinesisAnalyticsApplicationInputLambdaProcessorResourceARN (\s a -> s { _kinesisAnalyticsApplicationInputLambdaProcessorResourceARN = a }) -- | http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesisanalytics-application-inputlambdaprocessor.html#cfn-kinesisanalytics-application-inputlambdaprocessor-rolearn kaailpRoleARN :: Lens' KinesisAnalyticsApplicationInputLambdaProcessor (Val Text) kaailpRoleARN = lens _kinesisAnalyticsApplicationInputLambdaProcessorRoleARN (\s a -> s { _kinesisAnalyticsApplicationInputLambdaProcessorRoleARN = a })
frontrowed/stratosphere
library-gen/Stratosphere/ResourceProperties/KinesisAnalyticsApplicationInputLambdaProcessor.hs
mit
2,683
0
13
222
267
153
114
29
1
{-# LANGUAGE FlexibleInstances, OverloadedStrings, RankNTypes, ScopedTypeVariables #-} module Main where import Codec.Binary.UTF8.String (encode) import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as L import Data.ListLike as ListLike (ListLike(..)) import Data.Maybe (mapMaybe) import Data.Monoid (Monoid(..), (<>)) import qualified Data.Text as T import qualified Data.Text.Lazy as LT import Prelude hiding (length, concat, null) import GHC.IO.Exception import System.Exit import System.Posix.Files (getFileStatus, fileMode, setFileMode, unionFileModes, ownerExecuteMode, groupExecuteMode, otherExecuteMode) import System.Process (CreateProcess, proc, shell) import System.Process.ListLike (readProcessWithExitCode, readCreateProcessWithExitCode, readCreateProcess, ListLikePlus(..), Chunk(..), readProcessChunks) import Test.HUnit hiding (path) -- | Merge adjacent and eliminate empty Stdout or Stderr chunks. This -- may not be a good idea if we are looking to get our output as soon -- as it becomes available. canonicalChunks :: ListLikePlus a c => [Chunk a] -> [Chunk a] canonicalChunks [] = [] canonicalChunks (Stdout a : Stdout b : more) = canonicalChunks (Stdout (a <> b) : more) canonicalChunks (Stderr a : Stderr b : more) = canonicalChunks (Stderr (a <> b) : more) canonicalChunks (Stdout a : more) | null a = canonicalChunks more canonicalChunks (Stderr a : more) | null a = canonicalChunks more canonicalChunks (a : more) = a : canonicalChunks more fromString :: String -> B.ByteString fromString = fromList . encode lazyFromString :: String -> L.ByteString lazyFromString = L.fromChunks . (: []) . fromString instance Monoid Test where mempty = TestList [] mappend (TestList a) (TestList b) = TestList (a ++ b) mappend (TestList a) b = TestList (a ++ [b]) mappend a (TestList b) = TestList ([a] ++ b) mappend a b = TestList [a, b] testInstances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testInstances mkTest = mappend (testCharInstances mkTest) (testWord8Instances mkTest) testStrictInstances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testStrictInstances mkTest = mappend (testStrictCharInstances mkTest) (testStrictWord8Instances mkTest) testLazyInstances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testLazyInstances mkTest = mappend (testLazyCharInstances mkTest) (testLazyWord8Instances mkTest) testCharInstances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testCharInstances mkTest = mappend (testLazyCharInstances mkTest) (testStrictCharInstances mkTest) testLazyCharInstances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testLazyCharInstances mkTest = TestList [ TestLabel "Lazy Text" $ mkTest LT.empty , TestLabel "String" $ mkTest ("" :: String) ] testStrictCharInstances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testStrictCharInstances mkTest = TestList [ TestLabel "Strict Text" $ mkTest T.empty ] testWord8Instances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testWord8Instances mkTest = mappend (testLazyWord8Instances mkTest) (testStrictWord8Instances mkTest) testLazyWord8Instances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testLazyWord8Instances mkTest = TestList [ TestLabel "Lazy ByteString" $ mkTest L.empty ] testStrictWord8Instances :: (forall a c. (Show a, ListLikePlus a c) => a -> Test) -> Test testStrictWord8Instances mkTest = TestList [ TestLabel "Strict ByteString" $ mkTest B.empty ] main :: IO () main = do chmod "Tests/Test1.hs" chmod "Tests/Test2.hs" chmod "Tests/Test4.hs" (c,st) <- runTestText putTextToShowS test1 -- (TestList (versionTests ++ sourcesListTests ++ dependencyTests ++ changesTests)) putStrLn (st "") case (failures c) + (errors c) of 0 -> return () _ -> exitFailure chmod :: FilePath -> IO () chmod path = getFileStatus "Tests/Test1.hs" >>= \ status -> setFileMode path (foldr unionFileModes (fileMode status) [ownerExecuteMode, groupExecuteMode, otherExecuteMode]) cps :: [CreateProcess] cps = [ proc "true" [] , proc "false" [] , shell "foo" , proc "foo" [] , shell "yes | cat -n | head 100" , shell "yes | cat -n" , proc "cat" ["Tests/text"] , proc "cat" ["Tests/houseisclean.jpg"] , proc "Tests/Test1.hs" [] ] test1 :: Test test1 = TestLabel "test1" (TestList [ TestLabel "[Output]" $ TestList [ testCharInstances (\ i -> TestCase (do b <- readProcessChunks (proc "cat" ["Tests/text"]) i assertEqual "UTF8" ["ProcessHandle <processhandle>", -- For Text, assuming your locale is set to utf8, the result is unicode. "Stdout \"Signed: Baishi laoren \\30333\\30707\\32769\\20154, painted in the artist\\8217s 87th year.\\n\"", "Result ExitSuccess"] (ListLike.map show (canonicalChunks b)))) , testWord8Instances (\ i -> TestCase (do b <- readProcessChunks (proc "cat" ["Tests/text"]) i assertEqual "UTF8" ["ProcessHandle <processhandle>", -- For ByteString we get utf8 encoded text "Stdout \"Signed: Baishi laoren \\231\\153\\189\\231\\159\\179\\232\\128\\129\\228\\186\\186, painted in the artist\\226\\128\\153s 87th year.\\n\"", "Result ExitSuccess"] (ListLike.map show (canonicalChunks b)))) , testInstances (\ i -> TestCase (do b <- readProcessChunks (proc "Tests/Test1.hs" []) i assertEqual "[Chunk]" ["ProcessHandle <processhandle>", "Stderr \"This is an error message.\\n\"", "Result (ExitFailure 123)"] (ListLike.map show (canonicalChunks b)))) ] -- This gets "hGetContents: invalid argument (invalid byte sequence)" if we don't call -- binary on the file handles in readProcessInterleaved. , TestLabel "JPG" $ TestList [ {- TestCase (do b <- readProcessChunks (proc "cat" ["Tests/houseisclean.jpg"]) B.empty >>= return . mapMaybe (\ x -> case x of Stdout s -> Just (length' s) Stderr s -> Just (length' s) _ -> Nothing) assertEqual "ByteString Chunk Size" [68668,0] b -- If we could read a jpg file into a string the chunks would look something like this: -- [2048,2048,2048,1952,2048,2048,2048,1952,2048,2048,2048,1952,2048,2048,2048,1952,2048,2048,2048,1952,2048,2048,2048,1952,2048,2048,2048,1952,2048,2048,2048,1952,2048,1852] ) , -} testLazyWord8Instances ( \ i -> TestCase (do b <- readProcessChunks (proc "cat" ["Tests/houseisclean.jpg"]) i >>= return . mapMaybe (\ x -> case x of Stdout s -> Just (length s) Stderr s -> Just (length s) _ -> Nothing) assertEqual "Chunk Size" [32752,32752,3164] b)) , testStrictWord8Instances ( \ i -> TestCase (do b <- readProcessChunks (proc "cat" ["Tests/houseisclean.jpg"]) i >>= return . mapMaybe (\ x -> case x of Stdout s -> Just (length s) Stderr s -> Just (length s) _ -> Nothing) assertEqual "Chunk Size" [68668,0] b)) {- -- We don't seem to get an InvalidArgument exception back. , TestCase (do b <- tryIOError (readProcessChunks (proc "cat" ["Tests/houseisclean.jpg"]) "") >>= return . either Left (Right . show) assertEqual "String decoding exception" (Left (IOError { ioe_handle = Nothing , ioe_type = InvalidArgument , ioe_location = "recoverDecode" , ioe_description = "invalid byte sequence" , ioe_errno = Nothing , ioe_filename = Nothing })) b) Related to https://ghc.haskell.org/trac/ghc/ticket/9236. Try this: import System.IO import System.IO.Error main = do h <- openFile "Tests/houseisclean.jpg" ReadMode r <- try (hGetContents h) >>= either exn str hClose h where exn (e :: IOError) = putStrLn ("exn=" ++ show (ioe_handle e, ioe_type e, ioe_location e, ioe_description e, ioe_errno e, ioe_filename e)) str s = putStrLn ("s=" ++ show s) The exception gets thrown and caught after the string result starts being printed. You can see the open quote. -} ] {- , TestLabel "ByteString" $ TestCase (do b <- readProcessWithExitCode "Tests/Test1.hs" [] B.empty assertEqual "ByteString" (ExitFailure 123, fromString "", fromString "This is an error message.\n") b) -} , TestLabel "Lazy" $ TestCase (do l <- readProcessWithExitCode "Tests/Test1.hs" [] L.empty assertEqual "Lazy ByteString" (ExitFailure 123, lazyFromString "", lazyFromString "This is an error message.\n") l) {- , TestLabel "Text" $ TestCase (do t <- readProcessWithExitCode "Tests/Test1.hs" [] T.empty assertEqual "Text" (ExitFailure 123, T.pack "", T.pack "This is an error message.\n") t) -} , TestLabel "LazyText" $ TestCase (do lt <- readProcessWithExitCode "Tests/Test1.hs" [] LT.empty assertEqual "LazyText" (ExitFailure 123, LT.pack "", LT.pack "This is an error message.\n") lt) {- , TestLabel "String" $ TestCase (do s <- readProcessWithExitCode "Tests/Test1.hs" [] "" assertEqual "String" (ExitFailure 123, "", "This is an error message.\n") s) -} , TestLabel "pnmfile" $ TestCase (do out <- L.readFile "Tests/penguin.jpg" >>= readCreateProcess (proc "djpeg" []) >>= readCreateProcess (proc "pnmfile" []) assertEqual "pnmfile" (lazyFromString "stdin:\tPPM raw, 96 by 96 maxval 255\n") out) , TestLabel "pnmfile2" $ TestCase (do jpg <- L.readFile "Tests/penguin.jpg" (code1, pnm, err1) <- readCreateProcessWithExitCode (proc "djpeg" []) jpg out2 <- readCreateProcess (proc "pnmfile" []) pnm assertEqual "pnmfile2" (ExitSuccess, empty, 2192, 27661, lazyFromString "stdin:\tPPM raw, 96 by 96 maxval 255\n") (code1, err1, length jpg, length pnm, out2)) , TestLabel "file closed 1" $ TestCase (do result <- readCreateProcessWithExitCode (proc "Tests/Test4.hs" []) (lazyFromString "a" :: L.ByteString) assertEqual "file closed 1" (ExitSuccess, (lazyFromString "a"), (lazyFromString "Read one character: 'a'\n")) result) , TestLabel "file closed 2" $ TestCase (do result <- readCreateProcessWithExitCode (proc "Tests/Test4.hs" []) (lazyFromString "" :: L.ByteString) assertEqual "file closed 2" (ExitFailure 1, empty, (lazyFromString "Test4.hs: <stdin>: hGetChar: end of file\n")) result) , TestLabel "file closed 3" $ TestCase (do result <- readCreateProcessWithExitCode (proc "Tests/Test4.hs" []) ("abcde" :: LT.Text) assertEqual "file closed 3" (ExitSuccess, "a", "Read one character: 'a'\n") result) , TestLabel "file closed 4" $ TestCase (do result <- readCreateProcessWithExitCode (proc "Tests/Test4.hs" []) ("abcde" :: LT.Text) assertEqual "file closed 4" (ExitSuccess, "a", "Read one character: 'a'\n") result) , TestLabel "exit code 0" $ TestCase (do result <- readCreateProcess (shell "echo \"hello, world\"") ("" :: LT.Text) assertEqual "exit code 1" "\"hello, world\\n\"" (show result) ) -- I'd like to test readCreateProcess but I can't seem to catch the exception it throws , TestLabel "exit code 1" $ TestCase (do result <- readCreateProcessWithExitCode (proc "bash" ["-e", "exit", "1"]) ("" :: LT.Text) assertEqual "exit code 1" "(ExitFailure 1,\"\",\"bash: exit: No such file or directory\\n\")" (show result) ) ])
ddssff/process-listlike-old
Tests/Main.hs
mit
13,726
0
29
4,575
2,759
1,434
1,325
160
5
{-# LANGUAGE PatternSynonyms, ForeignFunctionInterface, JavaScriptFFI #-} module GHCJS.DOM.JSFFI.Generated.HTMLOListElement (js_setCompact, setCompact, js_getCompact, getCompact, js_setStart, setStart, js_getStart, getStart, js_setReversed, setReversed, js_getReversed, getReversed, js_setType, setType, js_getType, getType, HTMLOListElement, castToHTMLOListElement, gTypeHTMLOListElement) where import Prelude ((.), (==), (>>=), return, IO, Int, Float, Double, Bool(..), Maybe, maybe, fromIntegral, round, fmap, Show, Read, Eq, Ord) import Data.Typeable (Typeable) import GHCJS.Types (JSVal(..), JSString) import GHCJS.Foreign (jsNull) import GHCJS.Foreign.Callback (syncCallback, asyncCallback, syncCallback1, asyncCallback1, syncCallback2, asyncCallback2, OnBlocked(..)) import GHCJS.Marshal (ToJSVal(..), FromJSVal(..)) import GHCJS.Marshal.Pure (PToJSVal(..), PFromJSVal(..)) import Control.Monad.IO.Class (MonadIO(..)) import Data.Int (Int64) import Data.Word (Word, Word64) import GHCJS.DOM.Types import Control.Applicative ((<$>)) import GHCJS.DOM.EventTargetClosures (EventName, unsafeEventName) import GHCJS.DOM.JSFFI.Generated.Enums foreign import javascript unsafe "$1[\"compact\"] = $2;" js_setCompact :: HTMLOListElement -> Bool -> IO () -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.compact Mozilla HTMLOListElement.compact documentation> setCompact :: (MonadIO m) => HTMLOListElement -> Bool -> m () setCompact self val = liftIO (js_setCompact (self) val) foreign import javascript unsafe "($1[\"compact\"] ? 1 : 0)" js_getCompact :: HTMLOListElement -> IO Bool -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.compact Mozilla HTMLOListElement.compact documentation> getCompact :: (MonadIO m) => HTMLOListElement -> m Bool getCompact self = liftIO (js_getCompact (self)) foreign import javascript unsafe "$1[\"start\"] = $2;" js_setStart :: HTMLOListElement -> Int -> IO () -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.start Mozilla HTMLOListElement.start documentation> setStart :: (MonadIO m) => HTMLOListElement -> Int -> m () setStart self val = liftIO (js_setStart (self) val) foreign import javascript unsafe "$1[\"start\"]" js_getStart :: HTMLOListElement -> IO Int -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.start Mozilla HTMLOListElement.start documentation> getStart :: (MonadIO m) => HTMLOListElement -> m Int getStart self = liftIO (js_getStart (self)) foreign import javascript unsafe "$1[\"reversed\"] = $2;" js_setReversed :: HTMLOListElement -> Bool -> IO () -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.reversed Mozilla HTMLOListElement.reversed documentation> setReversed :: (MonadIO m) => HTMLOListElement -> Bool -> m () setReversed self val = liftIO (js_setReversed (self) val) foreign import javascript unsafe "($1[\"reversed\"] ? 1 : 0)" js_getReversed :: HTMLOListElement -> IO Bool -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.reversed Mozilla HTMLOListElement.reversed documentation> getReversed :: (MonadIO m) => HTMLOListElement -> m Bool getReversed self = liftIO (js_getReversed (self)) foreign import javascript unsafe "$1[\"type\"] = $2;" js_setType :: HTMLOListElement -> JSString -> IO () -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.type Mozilla HTMLOListElement.type documentation> setType :: (MonadIO m, ToJSString val) => HTMLOListElement -> val -> m () setType self val = liftIO (js_setType (self) (toJSString val)) foreign import javascript unsafe "$1[\"type\"]" js_getType :: HTMLOListElement -> IO JSString -- | <https://developer.mozilla.org/en-US/docs/Web/API/HTMLOListElement.type Mozilla HTMLOListElement.type documentation> getType :: (MonadIO m, FromJSString result) => HTMLOListElement -> m result getType self = liftIO (fromJSString <$> (js_getType (self)))
manyoo/ghcjs-dom
ghcjs-dom-jsffi/src/GHCJS/DOM/JSFFI/Generated/HTMLOListElement.hs
mit
4,067
56
10
556
931
530
401
55
1
----------------------------------------------------------------------------- -- | -- Module : Data.Spellcheck.UniformLanguageModel -- Copyright : (C) 2013 Yorick Laupa -- License : (see the file LICENSE) -- -- Maintainer : Yorick Laupa <[email protected]> -- Stability : provisional -- Portability : non-portable -- -- A uniform language model. This simply counts the vocabulary size V of the -- training corpus and assigns p(w) = 1/V for any word. ---------------------------------------------------------------------------- module Data.Spellcheck.UniformLanguageModel ( UniformLanguageModel , train , score ) where import Data.Foldable (foldMap) import Data.Monoid import qualified Data.Set as S import qualified Data.Text as T import qualified Data.Vector as V import Data.Spellcheck.Datum import Data.Spellcheck.HolbrookCorpus import Data.Spellcheck.LanguageModel import Data.Spellcheck.Sentence data UniformLanguageModel = ULM !(S.Set T.Text) instance Monoid UniformLanguageModel where mempty = ULM S.empty mappend (ULM e) (ULM e') = ULM (S.union e e') instance LanguageModel UniformLanguageModel where train corpus = do xs <- corpusLoad corpus let model = foldMap (foldMap go) xs return model where go (SDatum d) = ULM $ S.singleton (datumWord d) go _ = ULM S.empty score (ULM s) stc = (fromIntegral $ V.length stc) * log (fromIntegral $ S.size s)
YoEight/spellcheck
lib/Data/Spellcheck/UniformLanguageModel.hs
mit
1,512
0
13
332
310
171
139
28
0
module Automata.Helpers where import Data.Set (Set) import qualified Data.Set as S import Automata.Types cartProd :: (Ord a, Ord b) => Set a -> Set b -> Set (a, b) cartProd set1 set2 = S.fromList [(x,y) | x <- S.toList set1, y <- S.toList set2]
terrelln/automata
src/Automata/Helpers.hs
mit
247
0
10
46
122
66
56
6
1
{-# LANGUAGE OverloadedStrings #-} module Process ( process , processPipe , htmlPipeline , mdPipeline , codePipeline ) where import Prelude hiding (readFile, writeFile, getContents, putStr) import Data.Text.IO (writeFile, readFile, getContents, putStr) import System.FilePath.Posix (takeFileName, dropExtension) import System.Directory import System.FilePath.Posix import Data.List (intercalate) import qualified Data.Text as T import Parse (encode) import Code import Html import Markdown import Types process pipes file = do stream <- readFile file processString writeFile stream fileName pipes >> return () where fileName = dropExtension $ takeFileName file processPipe pipes = do input <- getContents processString writeStdout input "-" pipes >> return () where writeStdout = (\name output -> putStr output) processString writeOutput input fileName pipes = do encoded <- return $ encode input mapM_ (\f -> f fileName encoded writeOutput) pipes >> return () htmlPipeline dir mCss mLang name enc writeOutput = do maybeCss <- cssRelativeToOutput dir mCss let path = (addTrailingPathSeparator dir) ++ name ++ ".html" output = Html.generate maybeCss mLang name enc writeOutput path output mdPipeline dir css mLang name enc writeOutput = writeOutput path output where path = (addTrailingPathSeparator dir) ++ name ++ ".md" output = Markdown.generate mLang name enc codePipeline dir css mLang name enc writeOutput = writeOutput path output where path = (addTrailingPathSeparator dir) ++ name output = Code.generate enc cssRelativeToOutput :: String -> Maybe String -> IO (Maybe String) cssRelativeToOutput output mCss = case mCss of Nothing -> return Nothing Just css -> do getCurrentDirectory >>= canonicalizePath >>= \path -> return $ Just $ (join' . helper' . trim' . split') path where moves = filter (\str -> str /= ".") $ splitDirectories output split' = splitDirectories trim' = trimToMatchLength moves helper' = reversePath moves [] join' path = (intercalate "/" path) </> css trimToMatchLength list listToTrim = let len1 = length list len2 = length listToTrim in drop (len2 - len1) listToTrim reversePath [] solution curPathParts = solution reversePath (fst:rest) solution curPathParts = if fst == ".." then reversePath rest ((last curPathParts) : solution) (init curPathParts) else reversePath rest (".." : solution) (curPathParts ++ [fst])
tcrs/lit
src/Process.hs
gpl-2.0
2,571
0
17
560
791
408
383
-1
-1
{-# LANGUAGE DuplicateRecordFields #-} {-# LANGUAGE OverloadedStrings #-} module Web.BitTorrent.Tracker.Handlers.Scrape ( handleScrapeRequest ) where import qualified Data.HashMap.Strict as Map import qualified Data.Sequence as Sequence import qualified Web.BitTorrent.Tracker.Utils as Utils import Web.BitTorrent.Tracker.Types import Web.BitTorrent.Tracker.Handlers.Common handleScrapeRequest :: ScrapeRequestInner -> AppM Response handleScrapeRequest innerRequest = do let transactionID = _transactionID (innerRequest :: ScrapeRequestInner) infoHashes = _infoHashes (innerRequest :: ScrapeRequestInner) peerLists <- getPeerLists infoHashes return $ ScrapeResponse $ ScrapeResponseInner { _transactionID = transactionID, _torrentStatistics = fmap buildStats peerLists } getPeerLists :: Sequence.Seq InfoHash -> AppM (Sequence.Seq (Sequence.Seq Peer)) getPeerLists infoHashes = do tm <- Utils.getTorrentMap return $ foldr (f tm) Sequence.empty infoHashes where f tm infoHash xs = case Map.lookup infoHash tm of Just peers -> peers Sequence.<| xs Nothing -> xs buildStats :: Sequence.Seq Peer -> TorrentScrapeStatistics buildStats peers = TorrentScrapeStatistics { _seeders = countSeeders peers, _completed = NumberOfDownloads 0, -- Not implemented _leechers = countLeechers peers }
greatest-ape/hs-bt-tracker
src/Web/BitTorrent/Tracker/Handlers/Scrape.hs
gpl-3.0
1,435
0
11
298
320
175
145
30
2
module WildFireFrontend where import Graphics.Rendering.OpenGL as GL import Graphics.UI.GLFW as GLFW import Graphics.Rendering.OpenGL (($=)) import Data.IORef import Control.Monad import WildFireBackend as Back winSizeX :: GLsizei winSizeX = 800 winSizeY :: GLsizei winSizeY = 800 winSize :: GL.Size winSize = (GL.Size winSizeX winSizeY) winDimXInt :: GL.Size -> Int winDimXInt (Size x y) = fromIntegral x winDimYInt :: GL.Size -> Int winDimYInt (Size x y) = fromIntegral y green :: GL.Color3 GLdouble green = GL.Color3 0.0 1.0 0.0 black :: GL.Color3 GLdouble black = GL.Color3 0.0 0.0 0.0 greenShade :: GLdouble -> GL.Color3 GLdouble greenShade s = GL.Color3 0.0 s 0.0 redShade :: GLdouble -> GL.Color3 GLdouble redShade s = GL.Color3 s 0.0 0.0 initialize = do GLFW.initialize -- open window GLFW.openWindow winSize [GLFW.DisplayAlphaBits 8] GLFW.Window GLFW.windowTitle $= "GLFW Demo" GL.shadeModel $= GL.Smooth -- enable antialiasing GL.lineSmooth $= GL.Enabled GL.blend $= GL.Enabled GL.blendFunc $= (GL.SrcAlpha, GL.OneMinusSrcAlpha) GL.lineWidth $= 1.5 -- set the color to clear background GL.clearColor $= Color4 1 1 1 0 -- set 2D orthogonal view inside windowSizeCallback because -- any change to the Window size should result in different -- OpenGL Viewport. GLFW.windowSizeCallback $= \ size@(GL.Size w h) -> do GL.viewport $= (GL.Position 0 0, size) GL.matrixMode $= GL.Projection GL.loadIdentity GL.ortho2D 0 (realToFrac w) (realToFrac h) 0 shutdown :: IO () shutdown = do GLFW.closeWindow GLFW.terminate renderFrame :: [Back.CellState] -> (Int, Int) -> IO () renderFrame cells (dimX, dimY) = do GL.clear [GL.ColorBuffer] GL.renderPrimitive GL.Quads $ mapM_ (\c -> renderCell c cellDimPixels ) cells GLFW.swapBuffers where cellDimPixels = cellDimensions (dimX, dimY) renderCell :: Back.CellState -> (GLdouble, GLdouble) -> IO () renderCell cell (cellWidth, cellHeight) = do GL.color $ color GL.vertex topLeft GL.vertex topRight GL.vertex bottomRight GL.vertex bottomLeft where (xIdx, yIdx) = csCoord cell xCoord = (cellWidth * fromIntegral xIdx) :: GLdouble yCoord = (cellHeight * fromIntegral yIdx) :: GLdouble topLeft = GL.Vertex3 xCoord yCoord 0.0 topRight = GL.Vertex3 (xCoord + cellWidth) yCoord 0.0 bottomLeft = GL.Vertex3 xCoord (yCoord + cellHeight) 0.0 bottomRight = GL.Vertex3 (xCoord + cellWidth) (yCoord + cellHeight) 0.0 color = cellColor cell cellColor :: Back.CellState -> GL.Color3 GLdouble cellColor cell | state == LIVING = greenShade fuel | state == BURNING = redShade fuel | state == DEAD = black where state = csStatus cell fuel = csFuel cell cellDimensions :: (Int, Int) -> (GLdouble, GLdouble) cellDimensions (dimX, dimY) = (cellWidth, cellHeight) where cellWidth = ( fromIntegral (winDimXInt winSize) / fromIntegral dimX ) :: GLdouble cellHeight = ( fromIntegral (winDimYInt winSize) / fromIntegral dimY ) :: GLdouble checkMousePressed :: IORef Bool -> IO (Maybe (Int, Int)) checkMousePressed ref = do b <- GLFW.getMouseButton GLFW.ButtonLeft case b of GLFW.Release -> do writeIORef ref True return Nothing GLFW.Press -> do previouslyReleased <- readIORef ref writeIORef ref False case previouslyReleased of True -> do (GL.Position x y) <- GL.get GLFW.mousePos return (Just (fromIntegral x, fromIntegral y)) otherwise -> do return Nothing pixelCoordToCellCoord :: (Int, Int) -> (Int, Int) -> CellCoord pixelCoordToCellCoord (xCoord, yCoord) (xDim, yDim) = (xIdx, yIdx) where x = fromIntegral xCoord y = fromIntegral yCoord xIdx = floor (x / cellWidth) yIdx = floor (y / cellHeight) (cellWidth, cellHeight) = cellDimensions (xDim, yDim)
thalerjonathan/phd
coding/prototyping/haskell/YampaWildfire/src/WildFireFrontend.hs
gpl-3.0
4,092
0
21
1,036
1,321
675
646
100
3
{-# LANGUAGE NamedFieldPuns, NoImplicitPrelude, OverloadedStrings, ExtendedDefaultRules, RecordWildCards#-} module Main where import BasicPrelude hiding ((</>), (<.>), FilePath) import Filesystem.Path.CurrentOS import Data.Set (Set) import qualified Data.Set as S import qualified Data.Map as M import Control.Error import Control.Lens import Test.Framework import Test.Framework.Providers.HUnit import Test.HUnit import Data.Attoparsec.Text import Nix.Packages import Nix.Commands import Nix.StorePaths import Utils import qualified Nix.OutputParser as P --------------------------- -- Tests --------------------------- ex_someInstalling :: [Text] ex_someInstalling = [ "installing `rxvt-unicode-9.16-with-perl'" , " installing `subversion-1.7.13'" , "installing `texlive-full'" ] ex_someInstalling2 :: [Text] ex_someInstalling2 = [ "installing `rxvt-unicode-9.16-with-perl'" , " installing `subversion-1.7.13'" , "these derivations will be built:" , " /nix/store/4w40vbz4cix0z474shpcnmfxjc7kh69z-texlive-core-2014.drv" , "installing `texlive-full'" ] ex_someUninstalling :: [Text] ex_someUninstalling = [ "uninstalling `texlive-full'" , " uninstalling `aspell-0.60.6.1'" , "uninstalling `aspell-dict-de-20030222-1'" , "uninstalling `aspell-dict-en-7.1-0'" ] ex_someBuilding :: [Text] ex_someBuilding = [ "/nix/store/njrzm1kkj9k22vr7xaggwjmz6cm7nsxv-haskell-env-ghc-7.6.3.drv" ] ex_someFetching :: [Text] ex_someFetching = [ " /nix/store/h3q083n3yaap9vhcsd1hlrkcs8qph7fb-clucene-core-2.3.3.4" , " /nix/store/hb2c7hbsxksgzl50n35dw42bp9z389s6-parcellite-1.1.6" , " /nix/store/hcz4gl5nhchawv4b162xmcnn4gqw9z49-alex-3.0.5" ] test_someInstalling = testCase "installing" $ rights (fmap (parseOnly P.fromInstalling) ex_someInstalling) @=? ["rxvt-unicode-9.16-with-perl","subversion-1.7.13","texlive-full"] test_someInstalling2 = testCase "installing2" $ rights (fmap (parseOnly P.fromInstalling) ex_someInstalling2) @=? ["rxvt-unicode-9.16-with-perl","subversion-1.7.13","texlive-full"] test_someUninstalling = testCase "uninstalling" $ rights (fmap (parseOnly P.fromUninstalling) ex_someUninstalling) @=? [ "texlive-full" , "aspell-0.60.6.1" , "aspell-dict-de-20030222-1" , "aspell-dict-en-7.1-0" ] test_someBuilding = testCase "building" $ rights (fmap (parseOnly p_fromBuilding) ex_someBuilding) @=? ["haskell-env-ghc-7.6.3"] test_someFetched = testCase "fetching" $ rights (fmap (parseOnly p_fromFetching) ex_someFetching) @=? [ "clucene-core-2.3.3.4" , "parcellite-1.1.6" , "alex-3.0.5" ] main :: IO () main = defaultMain [test_someInstalling , test_someBuilding , test_someUninstalling , test_someFetched , testGroup "successfull parses" $ [ testCase "local" $ parseOnly P.fromLocalQuery "clucene-core-2.3.3.4 /nix/store/bla" @?= Right (Just ("clucene-core-2.3.3.4", "/nix/store/bla", Present)) , testCase "remote prebuilt" $ parseOnly P.fromRemoteQuery "--S clucene-core-2.3.3.4 /nix/store/bla" @?= Right (Just ("clucene-core-2.3.3.4", "/nix/store/bla", Prebuilt)) , testCase "remote source" $ parseOnly P.fromRemoteQuery "--- clucene-core-2.3.3.4 /nix/store/bla" @?= Right (Just ("clucene-core-2.3.3.4", "/nix/store/bla", Source)) ] , testGroup "failing parses" $ [ testCase "missing path" $ (length . lefts . map (parseOnly P.fromQuery) $ ["texlive-full ", "texlive-full"]) @?= 2 , testCase "parse local with status" $ isLeft (parseOnly P.fromLocalQuery "--- clucene-core-2.3.3.4 /nix/store/bla") @?= True ] , testGroup "commands" $ [ testCase "install declared packages into profile" $ nixCmdStrings (Nix { nixCommand = (NixInstall (NIOs False Nothing)) , nixSelection = Nothing , nixDryRun = True , nixProfile = ("some" </> "profile") , nixFile = (Just $ "somedir" </> "declared-packages.nix") , nixInclude = Nothing }) @?= ("nix-env", [ "--dry-run" , "--profile", "some/profile" , "--file", "somedir/declared-packages.nix" , "--install" , "*" ]) , testCase "install selection of declared packages into profile" $ nixCmdStrings (Nix { nixCommand = (NixInstall (NIOs False Nothing)) , nixSelection = (Just ["a", "b", "c"]) , nixDryRun = True , nixProfile = ("some" </> "profile") , nixFile = (Just $ "somedir" </> "declared-packages.nix") , nixInclude = Nothing }) @?= ("nix-env", [ "--dry-run" , "--profile", "some/profile" , "--file", "somedir/declared-packages.nix" , "--install" , "a" , "b" , "c" ]) , testCase "install all packages from profile into profile" $ over _2 S.fromList (nixCmdStrings (Nix { nixCommand = (NixInstall (NIOs False (Just $ "source" </> "profile"))) , nixSelection = Nothing , nixDryRun = True , nixProfile = ("some" </> "profile") , nixFile = Nothing , nixInclude = Nothing })) @?= ("nix-env", S.fromList [ "--dry-run" , "--profile", "some/profile" , "--install" , "--from-profile", "source/profile" , "*" ]) , testCase "remove all packages from a profile" $ nixCmdStrings (Nix { nixCommand = (NixUninstall) , nixSelection = Nothing , nixDryRun = False , nixProfile = ("some" </> "profile") , nixFile = Nothing , nixInclude = Nothing }) @?= ("nix-env", [ "--profile", "some/profile", "-e", "*"]) ] , testGroup "update" [ testCase "match1" $ findUpdate' "cabal2nix-1.60" "cabal2nix-1.58" @?= Just (mkUpd ("cabal2nix", "1.58", "1.60")) , testCase "match2" $ findUpdate' "git-full-1.9.0 /nix/store/bla1" "git-1.8.5.2-full /nix/store/bla2" @?= Nothing , testCase "match3" $ findUpdate' "git-annex-5.20140306" "git-annex-5.20140108" @?= Just (mkUpd ("git-annex", "5.20140108", "5.20140306")) , testCase "no match" $ findUpdate' "git-1.8.5.2-full" "giti-full-1.9.0" @?= Nothing , testCase "no match, same prefix" $ findUpdate' "git-1.9.4" "git-annex-5.20140717" @?= Nothing , testCase "filterUpd" $ calculateUpdatesFromLists [ "cabal2nix-1.60" , "duplicity-0.6.23" , "feh-2.10" , "git-annex-5.20140306" ] [ "git-annex-5.20140108" , "cabal-dev-0.9.2" , "cabal2nix-1.58" , "duplicity-0.6.22" , "exif-0.6.21" ] @?= expectedUpdates [ ("cabal2nix", "1.58", "1.60") , ("duplicity", "0.6.22", "0.6.23") , ("git-annex", "5.20140108", "5.20140306") ] ["feh-2.10"] [ "cabal-dev-0.9.2" , "exif-0.6.21" ] , testCase "filterUpd_same_prefixes" $ calculateUpdatesFromLists [ "cabal2nix-1.60" , "duplicity-0.6.23" , "feh-2.10" , "git-2.0" , "git-annex-5.20140306" ] [ "git-annex-5.20140108" , "cabal-dev-0.9.2" , "cabal2nix-1.58" , "duplicity-0.6.22" , "git-1.8" , "exif-0.6.21" ] @?= expectedUpdates [ ("cabal2nix", "1.58" ,"1.60") , ("duplicity", "0.6.22" ,"0.6.23") , ("git-annex", "5.20140108", "5.20140306") , ("git", "1.8", "2.0") ] ["feh-2.10"] [ "cabal-dev-0.9.2" , "exif-0.6.21"] , testCase "unversioned" $ let texliveOld = packageWithPathFromText "texlive-full /nix/store/bla1" texliveNew = packageWithPathFromText "texlive-full /nix/store/bla2" in (view _1 $ calculateUpdates (M.fromList [texliveNew]) (S.fromList [fst texliveOld]) ) @?= S.fromList [ Upd { uName = "texlive-full" , uOld = "" , uOldPath = "/nix/store/bla1" , uNew = "" , uNewPath = "/nix/store/bla2" , uStatus = Present } ] ] , testGroup "Result views" [ testCase "wanted" $ wanted ex_result1 @?= fromPackageListWithStatus ["newpackage-1", "somepackage-1.1.1", "Agda-3.4", "emacs-24", "not-wanted-222", "libreoffice-2.3"] -- TODO: not-wanted-222 has the wrong name.. store paths are always wanted , testCase "wantedFromDeclared" $ wantedFromDeclared ex_result1 @?= fromPackageListWithStatus["newpackage-1", "somepackage-1.1.1"] , testCase "unversioned updates" $ wanted ex_texliveResults @?= M.fromList [ (Pwp { pwpPkg = VPkg { pName = "texlive-full" , pVer = ""} , pwpPath = "/nix/store/lynr5fvcpp21rzjaz1ahjzn1zd7r0dkr-TeXLive-linkdir" }, Present) ] , testCase "unversioned blocked updates" $ blockedUpdates (ex_texliveResults { rStorePaths = M.keysSet (rInstalled ex_texliveResults) }) @?= S.fromList [ Upd { uName = "texlive-full" , uOld = "" , uNew = "" , uOldPath = "/nix/store/4lyy252ablh9snx5cr4dvfic0k0fcr0y-TeXLive-linkdir" , uNewPath = "/nix/store/lynr5fvcpp21rzjaz1ahjzn1zd7r0dkr-TeXLive-linkdir" , uStatus = Present } ] ] , testGroup "Store paths" $ let twoResults = [ Right $ Pwp { pwpPkg = VPkg "auctex-zathura" "0.1.0.3" , pwpPath = "/nix/store/wjmb5383wknpb9v3q2dpqbvi0zvxcs1w-auctex-zathura-0.1.0.3"} , Right $ Pwp { pwpPkg = VPkg "owncloud-client" "1.7.1" , pwpPath = "/nix/store/l83r37rzk53f6qmyqfn8hnr4i02lgja8-owncloud-client-1.7.1"}] in [ testCase "Empty file" $ parsePackageFromStorePathContents "" @?= [] , testCase "Easy paths" $ parsePackageFromStorePathContents "\ \/nix/store/wjmb5383wknpb9v3q2dpqbvi0zvxcs1w-auctex-zathura-0.1.0.3\n\ \/nix/store/l83r37rzk53f6qmyqfn8hnr4i02lgja8-owncloud-client-1.7.1\n\ \" @?= twoResults , testCase "Easy path w/ newlines" $ parsePackageFromStorePathContents "\n\ \/nix/store/wjmb5383wknpb9v3q2dpqbvi0zvxcs1w-auctex-zathura-0.1.0.3\n\n\n\ \/nix/store/l83r37rzk53f6qmyqfn8hnr4i02lgja8-owncloud-client-1.7.1\n\ \" @?= twoResults , testCase "Easy path w/ newlines and comments" $ parsePackageFromStorePathContents "\n\ \/nix/store/wjmb5383wknpb9v3q2dpqbvi0zvxcs1w-auctex-zathura-0.1.0.3\n\n\n\ \ # A comment\n\n\ \/nix/store/l83r37rzk53f6qmyqfn8hnr4i02lgja8-owncloud-client-1.7.1\n\ \ ## Another one\n\n\ \" @?= twoResults , testCase "Easy path without trailing newlines" $ parsePackageFromStorePathContents "\n\ \/nix/store/wjmb5383wknpb9v3q2dpqbvi0zvxcs1w-auctex-zathura-0.1.0.3\n\n\n\ \ # A comment\n\n\ \/nix/store/l83r37rzk53f6qmyqfn8hnr4i02lgja8-owncloud-client-1.7.1" @?= twoResults ] ] ex_result1 = Results { rStorePaths = S.fromList $ map (mkOld . parseVersionedPackage) [ "libreoffice-2.3" , "Agda-3.4" , "emacs-24" , "not-wanted-222" ] , rDeclared = M.fromList $ map (addPresentStatus . mkOld . parseVersionedPackage) [ "libreoffice-2.4" , "somepackage-1.1.1" , "newpackage-1" , "Agda-3.4" , "emacs-25" ] , rInstalled = M.fromList $ map (addPresentStatus . mkOld . parseVersionedPackage) [ "libreoffice-2.4" , "somepackage-1.1.2" , "remove-me-1" ] } ex_texliveResults = Results { rStorePaths = S.empty , rDeclared = M.fromList . map (packageWithPathFromText) $ [ "texlive-full /nix/store/lynr5fvcpp21rzjaz1ahjzn1zd7r0dkr-TeXLive-linkdir" ] , rInstalled = M.fromList . map (packageWithPathFromText) $ [ "texlive-full /nix/store/4lyy252ablh9snx5cr4dvfic0k0fcr0y-TeXLive-linkdir" ] } findUpdate' p1 p2 = findUpdate (mkNew . parseVersionedPackage $ p1) (mkOld . parseVersionedPackage $ p2) fromPackageListWithStatus ps = M.fromList . map (addPresentStatus . mkOld . parseVersionedPackage) $ ps fromPackageList ps = S.fromList . map (mkOld . parseVersionedPackage) $ ps packageWithPathFromText s = fromJustE ("packageWithPathFromText: no parse of "<>s) . preview (_Right._Just) . P.parsePackageWithPath P.fromLocalQuery $ s mkUpd (uName, uOld, uNew) = Upd { uName, uOld, uNew , uOldPath = "/nix/store/bl1" , uNewPath = "/nix/store/bl2" , uStatus = Present } mkOld vpkg = Pwp { pwpPkg = vpkg, pwpPath = "/nix/store/bl1"} mkNew vpkg = (Pwp { pwpPkg = vpkg, pwpPath = "/nix/store/bl2"} , Present ) mkNewPackages = M.fromList . map (mkNew . parseVersionedPackage) mkOldPackages = S.fromList . map (mkOld . parseVersionedPackage) p_fromBuilding = P.fromBuilding "/nix/store" p_fromFetching = P.fromFetching "/nix/store" calculateUpdatesFromLists news olds = calculateUpdates (mkNewPackages news) (mkOldPackages olds) expectedUpdates :: [(Text, Text, Text)] -> [Text] -> [Text] -> (Set Upd, Map PackageWithPath PkgStatus, Set PackageWithPath) expectedUpdates upds added removed = ( S.fromList . map mkUpd $ upds , mkNewPackages added , mkOldPackages removed ) addPresentStatus p = (p, Present)
lu-fennell/nix-env-rebuild
src/Nix/Test/EnvRebuild.hs
gpl-3.0
15,581
0
23
5,423
2,645
1,489
1,156
306
1
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} -- Module : Network.AWS.DirectConnect.DescribeVirtualGateways -- Copyright : (c) 2013-2014 Brendan Hay <[email protected]> -- License : This Source Code Form is subject to the terms of -- the Mozilla Public License, v. 2.0. -- A copy of the MPL can be found in the LICENSE file or -- you can obtain it at http://mozilla.org/MPL/2.0/. -- Maintainer : Brendan Hay <[email protected]> -- Stability : experimental -- Portability : non-portable (GHC extensions) -- -- Derived from AWS service descriptions, licensed under Apache 2.0. -- | Returns a list of virtual private gateways owned by the AWS account. -- -- You can create one or more AWS Direct Connect private virtual interfaces -- linking to a virtual private gateway. A virtual private gateway can be -- managed via Amazon Virtual Private Cloud (VPC) console or the <http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-CreateVpnGateway.html EC2CreateVpnGateway> action. -- -- <http://docs.aws.amazon.com/directconnect/latest/APIReference/API_DescribeVirtualGateways.html> module Network.AWS.DirectConnect.DescribeVirtualGateways ( -- * Request DescribeVirtualGateways -- ** Request constructor , describeVirtualGateways -- * Response , DescribeVirtualGatewaysResponse -- ** Response constructor , describeVirtualGatewaysResponse -- ** Response lenses , dvgrVirtualGateways ) where import Network.AWS.Prelude import Network.AWS.Request.JSON import Network.AWS.DirectConnect.Types import qualified GHC.Exts data DescribeVirtualGateways = DescribeVirtualGateways deriving (Eq, Ord, Read, Show, Generic) -- | 'DescribeVirtualGateways' constructor. describeVirtualGateways :: DescribeVirtualGateways describeVirtualGateways = DescribeVirtualGateways newtype DescribeVirtualGatewaysResponse = DescribeVirtualGatewaysResponse { _dvgrVirtualGateways :: List "virtualGateways" VirtualGateway } deriving (Eq, Read, Show, Monoid, Semigroup) instance GHC.Exts.IsList DescribeVirtualGatewaysResponse where type Item DescribeVirtualGatewaysResponse = VirtualGateway fromList = DescribeVirtualGatewaysResponse . GHC.Exts.fromList toList = GHC.Exts.toList . _dvgrVirtualGateways -- | 'DescribeVirtualGatewaysResponse' constructor. -- -- The fields accessible through corresponding lenses are: -- -- * 'dvgrVirtualGateways' @::@ ['VirtualGateway'] -- describeVirtualGatewaysResponse :: DescribeVirtualGatewaysResponse describeVirtualGatewaysResponse = DescribeVirtualGatewaysResponse { _dvgrVirtualGateways = mempty } -- | A list of virtual private gateways. dvgrVirtualGateways :: Lens' DescribeVirtualGatewaysResponse [VirtualGateway] dvgrVirtualGateways = lens _dvgrVirtualGateways (\s a -> s { _dvgrVirtualGateways = a }) . _List instance ToPath DescribeVirtualGateways where toPath = const "/" instance ToQuery DescribeVirtualGateways where toQuery = const mempty instance ToHeaders DescribeVirtualGateways instance ToJSON DescribeVirtualGateways where toJSON = const (toJSON Empty) instance AWSRequest DescribeVirtualGateways where type Sv DescribeVirtualGateways = DirectConnect type Rs DescribeVirtualGateways = DescribeVirtualGatewaysResponse request = post "DescribeVirtualGateways" response = jsonResponse instance FromJSON DescribeVirtualGatewaysResponse where parseJSON = withObject "DescribeVirtualGatewaysResponse" $ \o -> DescribeVirtualGatewaysResponse <$> o .:? "virtualGateways" .!= mempty
dysinger/amazonka
amazonka-directconnect/gen/Network/AWS/DirectConnect/DescribeVirtualGateways.hs
mpl-2.0
4,042
0
10
720
417
252
165
54
1
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -fno-warn-duplicate-exports #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} -- | -- Module : Network.Google.Resource.Cloudbuild.Projects.Locations.Builds.Create -- Copyright : (c) 2015-2016 Brendan Hay -- License : Mozilla Public License, v. 2.0. -- Maintainer : Brendan Hay <[email protected]> -- Stability : auto-generated -- Portability : non-portable (GHC extensions) -- -- Starts a build with the specified configuration. This method returns a -- long-running \`Operation\`, which includes the build ID. Pass the build -- ID to \`GetBuild\` to determine the build status (such as \`SUCCESS\` or -- \`FAILURE\`). -- -- /See:/ <https://cloud.google.com/cloud-build/docs/ Cloud Build API Reference> for @cloudbuild.projects.locations.builds.create@. module Network.Google.Resource.Cloudbuild.Projects.Locations.Builds.Create ( -- * REST Resource ProjectsLocationsBuildsCreateResource -- * Creating a Request , projectsLocationsBuildsCreate , ProjectsLocationsBuildsCreate -- * Request Lenses , proParent , proXgafv , proUploadProtocol , proAccessToken , proUploadType , proPayload , proProjectId , proCallback ) where import Network.Google.ContainerBuilder.Types import Network.Google.Prelude -- | A resource alias for @cloudbuild.projects.locations.builds.create@ method which the -- 'ProjectsLocationsBuildsCreate' request conforms to. type ProjectsLocationsBuildsCreateResource = "v1" :> Capture "parent" Text :> "builds" :> QueryParam "$.xgafv" Xgafv :> QueryParam "upload_protocol" Text :> QueryParam "access_token" Text :> QueryParam "uploadType" Text :> QueryParam "projectId" Text :> QueryParam "callback" Text :> QueryParam "alt" AltJSON :> ReqBody '[JSON] Build :> Post '[JSON] Operation -- | Starts a build with the specified configuration. This method returns a -- long-running \`Operation\`, which includes the build ID. Pass the build -- ID to \`GetBuild\` to determine the build status (such as \`SUCCESS\` or -- \`FAILURE\`). -- -- /See:/ 'projectsLocationsBuildsCreate' smart constructor. data ProjectsLocationsBuildsCreate = ProjectsLocationsBuildsCreate' { _proParent :: !Text , _proXgafv :: !(Maybe Xgafv) , _proUploadProtocol :: !(Maybe Text) , _proAccessToken :: !(Maybe Text) , _proUploadType :: !(Maybe Text) , _proPayload :: !Build , _proProjectId :: !(Maybe Text) , _proCallback :: !(Maybe Text) } deriving (Eq, Show, Data, Typeable, Generic) -- | Creates a value of 'ProjectsLocationsBuildsCreate' with the minimum fields required to make a request. -- -- Use one of the following lenses to modify other fields as desired: -- -- * 'proParent' -- -- * 'proXgafv' -- -- * 'proUploadProtocol' -- -- * 'proAccessToken' -- -- * 'proUploadType' -- -- * 'proPayload' -- -- * 'proProjectId' -- -- * 'proCallback' projectsLocationsBuildsCreate :: Text -- ^ 'proParent' -> Build -- ^ 'proPayload' -> ProjectsLocationsBuildsCreate projectsLocationsBuildsCreate pProParent_ pProPayload_ = ProjectsLocationsBuildsCreate' { _proParent = pProParent_ , _proXgafv = Nothing , _proUploadProtocol = Nothing , _proAccessToken = Nothing , _proUploadType = Nothing , _proPayload = pProPayload_ , _proProjectId = Nothing , _proCallback = Nothing } -- | The parent resource where this build will be created. Format: -- \`projects\/{project}\/locations\/{location}\` proParent :: Lens' ProjectsLocationsBuildsCreate Text proParent = lens _proParent (\ s a -> s{_proParent = a}) -- | V1 error format. proXgafv :: Lens' ProjectsLocationsBuildsCreate (Maybe Xgafv) proXgafv = lens _proXgafv (\ s a -> s{_proXgafv = a}) -- | Upload protocol for media (e.g. \"raw\", \"multipart\"). proUploadProtocol :: Lens' ProjectsLocationsBuildsCreate (Maybe Text) proUploadProtocol = lens _proUploadProtocol (\ s a -> s{_proUploadProtocol = a}) -- | OAuth access token. proAccessToken :: Lens' ProjectsLocationsBuildsCreate (Maybe Text) proAccessToken = lens _proAccessToken (\ s a -> s{_proAccessToken = a}) -- | Legacy upload protocol for media (e.g. \"media\", \"multipart\"). proUploadType :: Lens' ProjectsLocationsBuildsCreate (Maybe Text) proUploadType = lens _proUploadType (\ s a -> s{_proUploadType = a}) -- | Multipart request metadata. proPayload :: Lens' ProjectsLocationsBuildsCreate Build proPayload = lens _proPayload (\ s a -> s{_proPayload = a}) -- | Required. ID of the project. proProjectId :: Lens' ProjectsLocationsBuildsCreate (Maybe Text) proProjectId = lens _proProjectId (\ s a -> s{_proProjectId = a}) -- | JSONP proCallback :: Lens' ProjectsLocationsBuildsCreate (Maybe Text) proCallback = lens _proCallback (\ s a -> s{_proCallback = a}) instance GoogleRequest ProjectsLocationsBuildsCreate where type Rs ProjectsLocationsBuildsCreate = Operation type Scopes ProjectsLocationsBuildsCreate = '["https://www.googleapis.com/auth/cloud-platform"] requestClient ProjectsLocationsBuildsCreate'{..} = go _proParent _proXgafv _proUploadProtocol _proAccessToken _proUploadType _proProjectId _proCallback (Just AltJSON) _proPayload containerBuilderService where go = buildClient (Proxy :: Proxy ProjectsLocationsBuildsCreateResource) mempty
brendanhay/gogol
gogol-containerbuilder/gen/Network/Google/Resource/Cloudbuild/Projects/Locations/Builds/Create.hs
mpl-2.0
6,083
0
18
1,351
867
507
360
124
1
module Codewars.Fibonacci where fibs = 0 : 1 : (zipWith (+) fibs $ tail fibs) sumFibs :: Int -> Integer sumFibs n = sum $ filter even $ take (n + 1) fibs
ice1000/OI-codes
codewars/101-200/sumfibs.hs
agpl-3.0
156
0
8
35
76
40
36
4
1
{-# LANGUAGE FlexibleInstances #-} module Data.UCI where data MessageIn = UCI | Debug (Maybe Bool) | IsReady | NewGame | Position (Maybe String) [String] | Go | Quit deriving Show data MessageOut = ID String String | OK | ReadyOK | BestMove String (Maybe String) | Info String deriving Show class ReadIn a where readIn :: a -> [MessageIn] class ShowOut a where showOut :: MessageOut -> [a] instance ReadIn [String] where readIn ["uci"] = [UCI] readIn ["debug"] = [Debug Nothing] readIn ["debug", "on"] = [Debug (Just True)] readIn ["debug", "off"] = [Debug (Just False)] readIn ["isready"] = [IsReady] readIn ["ucinewgame"] = [NewGame] readIn ("position":"fen":placement:_:_:_:_:_ :"moves":ws) = [Position undefined ws] readIn ("position":"startpos" :"moves":ws) = [Position undefined ws] readIn ("position" :"moves":ws) = [Position undefined ws] readIn ("go":_) = [Go] readIn ws = [] instance ShowOut [String] where showOut (ID name author) = [["id", "name", name], ["id", "author", author]] showOut OK = [["uciok"]] showOut ReadyOK = [["readyok"]] showOut (BestMove m1 Nothing) = [["bestmove", m1]] showOut (BestMove m1 (Just m2)) = [["bestmove", m1, "ponder", m2]] showOut (Info xs) = [["info", "string", xs]] instance ReadIn String where readIn = readIn . words instance ShowOut String where showOut m = map unwords (showOut m)
shockkolate/hs-uci
src/Data/UCI.hs
unlicense
2,018
0
16
885
610
336
274
39
0
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module Openshift.V1.RepositoryImportSpec where import GHC.Generics import Openshift.V1.ObjectReference import Openshift.V1.TagImportPolicy import qualified Data.Aeson -- | data RepositoryImportSpec = RepositoryImportSpec { from :: ObjectReference -- ^ the source for the image repository to import; only kind DockerImage and a name of a Docker image repository is allowed , importPolicy :: Maybe TagImportPolicy -- ^ policy controlling how the image is imported , includeManifest :: Maybe Bool -- ^ if true, return the manifest for each image in the response } deriving (Show, Eq, Generic) instance Data.Aeson.FromJSON RepositoryImportSpec instance Data.Aeson.ToJSON RepositoryImportSpec
minhdoboi/deprecated-openshift-haskell-api
openshift/lib/Openshift/V1/RepositoryImportSpec.hs
apache-2.0
880
0
9
132
107
66
41
17
0
module Interactive where import Parse(parseInit, parseQuery) import BackwardChaining(resolve) import Types import Data.List() import System.IO askForChange:: Either String ([Relation], Init, Query) -> IO() askForChange (Right parsed) = do print "Do you want to change the initial facts given? (y/n) :" rep <- getLine if rep == "y" then do {displayInitDatas (Right parsed);promptAddData (Right parsed); askForChange (Right parsed)} else print "Bye" askForChange (Left _) = print "Their was an error in your file correct it before using interactive maode with it"; displayInitDatas (Right(rls, i, q)) = let displayRule [r] = print r displayRule (r:rs) = do { print r ; displayRule rs} in do { displayRule rls; print i; print q} displayInitDatas _ = print "no datas from the previous resolution" prompt :: ([Relation], Init, Query) -> IO(Either String ([Relation], Init, Query)) prompt datas = do putStr "$> " hFlush stdout line <- getLine if line == "q" then return (Right datas) else readEntry datas line (+++) :: Either String a -> Either String a -> Either String a Left _ +++ other = other Right a +++ _ = Right a readEntry :: ([Relation], Init, Query) -> String ->IO(Either String ([Relation], Init, Query)) readEntry (r, i, q) line = let res = fmap (\x -> (r, x, q)) (parseInit line) +++ fmap (\x -> (r, i, x)) (parseQuery line) in case res of Right triple -> prompt triple Left err -> do {print ("input: " ++ err); prompt (r, i, q);} promptAddData :: Either String ([Relation], Init, Query) -> IO() promptAddData (Right triple) = do datas <- prompt triple print (datas >>= resolve) return () promptAddData _ = print "your previous file was incorrect, impossible to launch the interactive mode"
tmielcza/demiurge
src/Interactive.hs
apache-2.0
1,790
0
14
370
722
371
351
44
2