lang
stringclasses
10 values
seed
stringlengths
5
2.12k
python
df = DataFrame([[1, 2], [3, 4]], columns=['odds', 'evens']) # This is how you can create your own labels on the fly @test(EXAMPLE_LABEL_NAME, "My custom label test") def test_custom_label(): assert True return df
python
object.add_method(state, 'get_element3d_salinity') object.add_method(state, 'get_element3d_density') object.add_method('EDIT', 'set_node_coriolis_f') object.add_method('EDIT', 'set_node_barotropic_vel') object.add_method('EDIT', 'set_node_surface_state') object.add_method('EDIT', 'set_node3d_velocity_xvel') object.add_method('EDIT', 'set_node3d_velocity_yvel')
python
self.check_if_cmd_runs(figure_dir, "fig4b") def test_fig4c(self): self.check_if_cmd_runs(figure_dir, "fig4c") def test_fig5a(self): self.check_if_cmd_runs(figure_dir, "fig5a") def test_fig5b(self): self.check_if_cmd_runs(figure_dir, "fig5b") def test_fig5c(self): self.check_if_cmd_runs(figure_dir, "fig5c") def test_fig5d(self):
python
match 42: case x: y case 42: y z
python
# and the second one as update. elif type(res) is tuple and len(res) == 2 and type(res[1]) is dict: new_values_in_this_phase[key] = res[0] new_values_in_this_phase.update(res[1]) # Otherwise, it is not a valid result.
python
@app.route('/') @app.route('/quotes/') @app.route('/quotes/<int:quote_id>') def show_quotes(quote_id=None): if quote_id: quote = query_db('SELECT id, quote, author FROM quotes WHERE id = ?', [quote_id], one=True) return render_template('show_quote.html', q=quote) quotes = query_db('SELECT id, quote, author FROM quotes ORDER BY id DESC')
python
for k in rp: pw.append(pow(pw0, k, MODULE)) print('Primitive roots:', sorted(pw))
python
prob = models.FloatField(default=0.0) manual = models.BooleanField(default=False) user = models.ForeignKey(User, on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: abstract = True class Category(Label): objects = CategoryManager() example = models.ForeignKey( to=Example,
python
data = pd.read_csv(file_path, encoding='utf-8') return data def accuracy(self,label,predict): ''' :param Label: represents the observed value :param Predict: represents the predicted value :param epoch: :param steps: :return: ''' error = label - predict average_error = np.mean(np.fabs(error.astype(float))) print("mae is : %.6f" % (average_error))
python
return padded def random_cei(formatted=True): """Create a random, valid CEI identifier.""" uf = random.randint(11, 53)
python
# # In addition to the permissions in the GNU General Public License, the # authors give you unlimited permission to link or embed the compiled # version of this file into combinations with other programs, and to # distribute those combinations without any restriction coming from the # use of this file. (The General Public License restrictions do apply in # other respects; for example, they cover modification of the file, and # distribution when not linked into a combine executable.) # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of
python
from django.urls import path from public.views import index app_name = "public" urlpatterns = [ path("", index, name="index"), ]
python
commands_with_2_args = { '--version' : show_version, '--help' : visit_digolds } def run(): argc = len(sys.argv) if argc == 2: commands_with_2_args.get(sys.argv[1], show_version)() return
python
#calculate total return of our portfolio for the last x days total_return = 0 for item in allocation: total_return = total_return + (allocation[item]['perc_position'] * allocation[item]['return'] ) print(total_return)
python
import sys sys.path.insert(0, './app/app') from tools import decrypt # noqa print(decrypt(sys.argv[1]))
python
from datetime import datetime from infobip.util.models import DefaultObject, serializable from infobip.util.TimeUnit import TimeUnit class EmailData(DefaultObject): @property @serializable(name="subject", type='basestring') def subject(self): """ Property is of type: 'basestring' """ return self.get_field_value("subject") @subject.setter
python
user1, user2, user3 = users task = Task.objects.first() field = task.items.first().template.fields.get(name='output') item = task.items.first() df_probs = get_votings(item.annotations.all(), field)
python
from rest_framework import status from api.uploaders.dropbox_upload import DropboxLocalUpload, \ DropboxGCPRemoteUpload from api.tests.base import BaseAPITestCase from api.tests import test_settings class LocalDropboxUploadTests(BaseAPITestCase): def setUp(self): self.url = reverse('dropbox-upload')
python
def test_another_sample_pipeline_1(): parser = Parser(another_sample) cmds = parser.consume()
python
elif any([self.grasped(obj) for obj in range(1,self.num_objects+1)]): return self.state[0] = False # set gripper_free False self.state[obj] = True # grasp object return
python
data_iter_test = [] # data_entry_train 是一个dict,字段名称用FieldName来标记 # FieldName.FEAT_DYNAMIC_REAL 产生的数据形状和target长度相同 for k in range(num_ts): ts_length = randint(min_length, max_length) # 随机产生的一个长度 data_entry_train = { FieldName.START: start, FieldName.TARGET: [0.0] * ts_length, } if len(cardinality) > 0:
python
from pm import app # app.run(debug=False,host='0.0.0.0',port=9876) app.run(debug=True,port=5000)
python
# local imports from .database import Database class Parcel(Database): __table__ = 'parcels' return_columns = ('id', 'title', 'destination', 'current_location', 'quantity', 'status', 'date_ordered')
python
max_x = int(numpy.round(-270 + self.size_image[1]/2, 0)) min_x = int(numpy.round(-390 + self.size_image[1]/2, 0)) min_y = int(numpy.round(-820 + self.size_image[0]/2, 0)) max_y = int(numpy.round(-890 + self.size_image[0]/2, 0)) if min_x < 0: min_x = 0 if max_x > self.size_image[0] - 1: max_x = self.size_image[0] - 1 if min_y > self.size_image[1] - 1: min_y = self.size_image[1] - 1
python
return qmark_regex.join(fragment_to_regex(ff) for ff in f.split("?")) return re.escape(f) twostars_regex = "(?:.*/)*" onestar_regex = "[^/]*" qmark_regex = "[^/]" def fragments_to_regex(fragments): regex_str_pieces = [] for fragment in fragments: if fragment == "": regex_str_pieces.append("/") elif fragment == "**": regex_str_pieces.append(twostars_regex) else:
python
version_file = VSVersionInfo( ffi=FixedFileInfo( filevers=_ver_tuple, prodvers=_ver_tuple, mask=0x3F, flags=0x0, OS=0x4, fileType=0x1, subtype=0x0, date=(0, 0), ), kids=[ StringFileInfo( [
python
cars = data.cars() fuel_efficiency = alt.Chart(cars).mark_area().encode( x='Year', y='mean(Miles_per_Gallon)').properties(title="Fuel efficiency over time")
python
self._ACTIVE = False # Terminate context self._zmq_context.destroy(0) print("\n++ [INFO] Strategy safely terminated") ########################################################################## def set_status(self, _new_status=False): """ Set Status (to enable/disable strategy manually) """
python
reason=("Not passing in CI although it works locally. Will handle it later.") ) @pytest.mark.asyncio async def test_api_manager_list_runtime_envs(state_api_manager): data_source_client = state_api_manager.data_source_client data_source_client.get_all_registered_agent_ids = MagicMock() data_source_client.get_all_registered_agent_ids.return_value = ["1", "2", "3"] data_source_client.get_runtime_envs_info.side_effect = [ generate_runtime_env_info(RuntimeEnv(**{"pip": ["requests"]})), generate_runtime_env_info( RuntimeEnv(**{"pip": ["tensorflow"]}), creation_time=15 ),
python
from slack_bolt import App from .sample_view import sample_view_callback def register(app: App): app.view("sample_view_id")(sample_view_callback)
python
0: 0, 1: 24, 2: 48, 3: 72, 4: 96, 5: 120, 6: 144, 7: 168, 8: 192, 9: 216
python
for index in range(commonHead, len1 - commonTail): self.result.append({ #'debug' : 'common head & tail pretreatment processing -- only in array1', 'remove' : delim.join([path, str(index)]), 'value' : array1[index], 'details' : 'array-item' })
python
def create_plot(): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlabel('x axis') ax.set_ylabel('y axis') ax.set_zlabel('z axis') ax.set_autoscale_on(False) return fig, ax def update_plot(X, Y, Z, X1, Y1, Z1, fig, ax): X = np.reshape(X, (1, 7))
python
from pyspedas import tnames from pytplot import options def mms_eis_set_metadata(tplotnames, data_rate='srvy', datatype='extof', suffix=''):
python
# step 1 - extract dataframe from dataset step = PrimitiveStep( primitive_description=DatasetToDataFramePrimitive.metadata.query(), resolver=resolver, ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference="steps.0.produce", )
python
admin.site.register(ConferenceVars) admin.site.register(User, UserAdmin) admin.site.register(UserInfo, UserInfoAdmin) admin.site.register(Workshops) admin.site.register(Families)
python
class TestTable(unittest.TestCase): @classmethod def setUpClass(cls): d ={'ColA': np.linspace(0,1,100)+1,'ColB': np.random.normal(0,1,100)+0} cls.df1 = pd.DataFrame(data=d) d ={'ColA': np.linspace(0,1,100)+1,'ColB': np.random.normal(0,1,100)+0} cls.df2 = pd.DataFrame(data=d)
python
import csv import numpy as np with open('qet_sart_checked.csv') as csvfile: reader = csv.DictReader(csvfile) ppts = {} for row in reader: ppt = row['observation'] if not ppt in ppts: ppts[ppt] = []
python
query_3 = "select array_binary_search([0,0,0,1,1,1,2,2,2], 2)" verify_3 = "select 6" query_4 = "select array_binary_search([0,0,1,1,1,2,2,2], 0)" verify_4 = "select 0" query_5 = "select array_binary_search([0,0,1,1,1,2,2,2], 1)" verify_5 = "select 2" query_6 = "select array_binary_search([0,0,1,1,1,2,2,2], 2)"
python
import voluptuous as vol from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_USERNAME) from homeassistant.helpers import config_validation as cv from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.discovery import async_load_platform _LOGGER = logging.getLogger(__name__)
python
# pylint: disable=protected-access import unittest from pylib.base import base_test_result from pylib.base import mock_environment from pylib.base import mock_test_instance from pylib.local.device import local_device_instrumentation_test_run
python
parser_remove.add_argument("-scoutnet_adultgroup_without_accounts=", action="store", dest="awoa") # Oauth2 parser_oauth2 = subparsers.add_parser("oauth2", help="Setup Oauth2 authentication for Google. " "See https://github.com/eriste/scoutnet2google for " "instructions about how to create a secret file.",) parser_oauth2.set_defaults(func=oauth2) parser_oauth2.add_argument("-new-client-secret-file", help="Install a (new) client_secret file.", action="store", dest="csf") # Formalia parser.add_argument( "-v", "--verbose", dest="verbose", action="store_true", help="Enable verbose output" )
python
df = pd.DataFrame(index=range(0,ROWS),columns=range(0,10)) print(df.memory_usage()) gc.enable() for index, colLabel in enumerate(labels): df.iloc[:,index] = np.array(DATA) print(df.memory_usage())
python
def render_list_csv(l): str_l = ["'%s'" % (v) for v in l] return ", ".join(str_l) def render_list_csv_as_list(l): str_l = ["'%s'" % (v) for v in l] return "[%s]" % ", ".join(str_l)
python
) train_ds, valid_ds, test_ds = data.TabularDataset.splits( path=data_dir, format='tsv',
python
""" Provide constants for renter endpoint. """ SETTINGS_URL = '/renter' PRICES_URL = '/renter/prices' CONTRACTS_URL = '/renter/contracts' DOWNLOADS_URL = '/renter/downloads'
python
except RuntimeError as e: self.fail(e) self.info(" * check that {} server started successfully.".format(builder)) self.small_sleep() self.assertTrue(len(j.sal.process.getProcessPid(process))) self.info(" * {} builder: run stop method.".format(builder)) try: getattr(j.builders.db, builder).stop() except RuntimeError as e:
python
data_checksum,platform_msb,platform_lsb= i2c_read_transaction(handle,0x0,3) print("data_checksum:",hex(data_checksum)) print("platform_msb:",hex(platform_msb)) print("platform_lsb:",hex(platform_lsb)) platform_ID = (platform_msb << 8) + platform_lsb print("Platform ID:", hex(platform_ID)) if platform_ID != 0x4612: print("platform_ID mismatch the GPU baseboard") sys.exit(-1)
python
) measurements = self.process_data( self._meters_type[i], raw_measurements, date_to_get ) if len(measurements) > 0: reports.update(measurements) i += 1 time_series = TimeSeries((len(reports) > 0), date_to_get, reports) return time_series
python
) t = time.time() np.save("data/RBM/X_rbm_s" + str(int(sigma * 100)) + ".npy", X) np.save("data/RBM/score_X_rbm_s" + str(int(sigma * 100)) + ".npy", score_X) print("RBM data has been saved in data/RBM.")
python
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('aldryn_social_addthis', '0002_links_google'), ] operations = [ migrations.AddField(
python
def __str__(*args, **kwargs): """__str__(self) -> String""" return _gdi_.NativeFontInfo___str__(*args, **kwargs) def FromUserString(*args, **kwargs): """FromUserString(self, String s) -> bool""" return _gdi_.NativeFontInfo_FromUserString(*args, **kwargs) def ToUserString(*args, **kwargs):
python
dtype=torch.double).cuda()), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.float).cuda(),
python
def icecream_parlor(m: int, arr: List[int]) -> List[int]: n = len(arr) mapped = {} for i in range(0, n): mapped[arr[i]] = i for i in range(0, n): first = i
python
# Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out observation for Japan print(cars.loc['JAP']) # Print out observations for Australia and Egypt print(cars.loc[['AUS','EG']])
python
def count_bulls(secret_number, user_number): count_bulls = 0 for i in range(0, 4): if user_number[i] == secret_number[i]: count_bulls += 1 return count_bulls
python
# Make Experience Replay exp_replay = ExperienceReplay(intl_data=data, max_size=hyps['max_steps']) # Make Models h_size = hyps['h_size'] s_size = hyps['s_size'] a_size = data['actions'].shape[-1] min_sigma = hyps['min_sigma'] obs_shape = data['observs'].shape[1:] env_name = hyps['env_name'] bnorm = hyps['bnorm'] dynamics = Dynamics(obs_shape, h_size, s_size, a_size, bnorm=bnorm, env_name=env_name, min_sigma=min_sigma) if env_name=="Pendulum-v0": decoder = SimpleDecoder(dynamics.encoder.emb_shape, obs_shape, h_size, s_size, bnorm=bnorm)
python
faces.append( (i3,i4,i2,i1) ) i1+=1 return verts, faces def main(): Draw = Blender.Draw PREF_MAJOR_RAD = Draw.Create(1.0) PREF_MINOR_RAD = Draw.Create(0.25) PREF_MAJOR_SEG = Draw.Create(48) PREF_MINOR_SEG = Draw.Create(16)
python
def get_kernel_layer_represent_name(node: BaseNode) -> str: """ Returns the mapping between a layer's type and its name to appear in the visualization figure. We apply this function only to map types of layers that have kernels (other layers do not appear by name in the figures) Args:
python
# # # For second class requirement 2b: rankAdvancementData["2"]["2"]["b"] def readRankData(files): data = {} for file in files: filehdl = open(file, 'r') lines = filehdl.readlines() filehdl.close() for line in lines: (rank, requirement, subrequirement, reqtext) = line.split('%')
python
top_data[idx]=maxval; argmax_data[idx]=maxidx; } ''' kernel_backward = ''' extern "C" __global__ void roi_backward(const float* const top_diff, const int* const argmax_data,const float* const bottom_rois, float* bottom_diff, const int num_rois, const double spatial_scale, int channels, int height, int width, int pooled_height, int pooled_width,const int NN) {
python
tab.append(lista[0]['id']) print(test,len(df)) df['directorId']=pd.Series(tab) df=df[df['directorId'].notnull()] df=df.astype({'directorId':'int32'})
python
:param send_sns: :return: """ log_data: dict = { "function": f"{__name__}.{self.__class__.__name__}.{sys._getframe().f_code.co_name}", "message": "Function is not configured.",
python
for c in range(0, nr_cols): i = r * nr_cols + c if i < len(li_cat_feats): sns.boxplot(x=li_cat_feats[i], y=target, data=df, ax = axs[r][c]) plt.tight_layout()
python
while x != 0: if x > 0: remainder = x % 10 x = x // 10 if new_x > max_int // 10: return 0 elif new_x == max_int // 10 and remainder > 7: return 0 else: remainder = 10 - x % 10 # Eg. -10
python
# 获取录音列表出错。 FAILEDOPERATION_DESCRIBERECORDSERROR = 'FailedOperation.DescribeRecordsError' # 查询任务状态出错。 FAILEDOPERATION_DESCRIBETASKSTATUSERROR = 'FailedOperation.DescribeTaskStatusError' # 录音列表下载出错。 FAILEDOPERATION_DOWNLOADRECORDLISTERROR = 'FailedOperation.DownloadRecordListError'
python
network = np.empty((4,len(params['N_subs']))) kappas = np.empty((len(params['N_subs']),params['num_fits'])) for n, N_sub in enumerate(params['N_subs']): print 'N_sub = %d' % N_sub estimate = np.empty((params['B'],2,params['num_fits'])) network_obs = np.empty((4,params['num_fits'])) for num_fit in range(params['num_fits']): alpha_sub, kappa_sub, A_sub, x_sub = subnetwork(N_sub) print 'kappa_sub = %.2f' % kappa_sub network_obs[0,num_fit] = 1.0 * np.sum(A_sub) / N_sub network_obs[1,num_fit] = np.max(np.sum(A_sub, axis = 1)) network_obs[2,num_fit] = np.max(np.sum(A_sub, axis = 0)) network_obs[3,num_fit] = 1.0 * np.sum(np.diagonal(A_sub)) / N_sub
python
# MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
python
assert g.vertices == {0:(0.2,0.5), 5:(1,2)} assert g.edges == [(0,5)] b1 = network.PlanarGraphBuilder(g) assert b1.add_vertex(5,6) == 6 b1.add_edge(5,6) g1 = b1.build() assert g1.vertices == {0:(0.2,0.5), 5:(1,2), 6:(5,6)} assert g1.edges == [(0,5), (5,6)]
python
from opentmi_client import OpenTmiClient, Result client = OpenTmiClient() result = Result() result.tcid = "test-case-a" result.verdict = "pass" client.post_result(result)
python
""" d = { b:a for a,b in zip(widths,string.ascii_lowercase)} lines, count = 1,0 for c in S: if count + d[c] > 100: lines += 1 count = 0 count += d[c]
python
<gh_stars>1-10 /usr/lib/python2.6/_abcoll.py
python
'scripts': [], 'playbooks': [], 'integrations': [], 'TestPlaybooks': [], 'Classifiers': [], 'Dashboards': [], 'IncidentFields': [], 'IncidentTypes': [],
python
batches=batches, num_iters_per_epoch=3, shuffle=True, collate_fn=collate, ) for i in range(1, 10):
python
if False: yield self return GetCertificateAuthorityActivationResult( complete_certificate_chain=self.complete_certificate_chain, status=self.status)
python
def __init__(self): self._tasks: WorkerTask = [] self._context = None def register_tasks(self, tasks: Union[List[WorkerTask], WorkerTask]) -> Union[bool, Exception]: if isinstance(tasks, list): if all(isinstance(x, WorkerTask) for x in tasks):
python
def convert(func): @wraps(func) def _convert(sequence, *args, **kwargs): if isinstance(sequence, torch.Tensor): return func(sequence, *args, **kwargs) elif isinstance(sequence, (list, tuple)): return [ _convert(ip, *args, **kwargs) if ip is not None else None
python
type=int, default=10, help='log interval, one log per n updates (default: 10)') parser.add_argument( '--env-name', default='Cassie-v0',
python
actions: - rename: "found-regex.txt" """.format( b"Ertr\xc3\xa4gnisaufstellung\\.txt".decode("utf-8") ), ) main(["run", "--config-file=%s" % (tmp_path / "config.yaml")]) assertdir(tmp_path, "found-regex.txt") @pytest.mark.skip(reason="Todo") def test_normalization_glob(tmp_path):
python
'molecular data matrices for phylogenetic inference ' 'based on GenBank records.') # Add version argument ver = pkg_resources.require("MatPhylobi")[0].version parser.add_argument('-v', '--version', action='version', version='%(prog)s {version}'.format(version=ver)) # TODO add also citation to the version # Prepare subparsers for different actions actions = parser.add_subparsers(title="program action", help="either run an analysis or update an older run", dest='action') actions.required = True parser_analyze = actions.add_parser('analyze')
python
doc_1 = models.ImageField(upload_to="static/menu/images") doc_2 = models.ImageField(upload_to="static/menu/images") doc_3 = models.ImageField(upload_to="static/menu/images") nom_cite = models.CharField(max_length=60) batiment = models.CharField(max_length=60) inexistant = models.BooleanField(default=False) etage = models.IntegerField() porte = models.CharField(max_length=5) plan_masse_local = models.ImageField(upload_to="static/menu/images") def __str__(self): return self.site class TypeArticleMoto(models.Model):
python
if resname_b != "-": resnum_b += 1 if resname_a != "-" and resname_b != "-": numbering_dic[chain][resnum_b] = resnum_a izone_fname = Path(output_path, "lovoalign.izone") log.debug(f"Saving .izone to {izone_fname.name}") dump_as_izone(izone_fname, numbering_dic) return numbering_dic
python
chain_denoising (bool, optional): whether denoising should be performed during frame ordering """ # Read video frames and settings frames, fps_setting, frame_setting = read_video(video_path)
python
# Fakeroot is required to create some character devices that reside in the /var/lib/docker folder. subprocess.run(f"fakeroot tar xzf {gzip_with_files_for_integration_tests}", shell=True, check=True, cwd=tmp_path) else: subprocess.run(f"tar xzf {gzip_with_files_for_integration_tests}", shell=True, check=True, cwd=tmp_path) return Path(tmp_path)
python
self.__affiliations = Affiliations( ) self.__affiliations.setAncestor( self ) self.__note = Note( ) self.__note.setAncestor( self ) @property
python
logging.info(f"Challenge: {challenge}") logging.info(f"Type: {type}") # URL verification if type == 'url_verification': return func.HttpResponse(body=challenge, status_code=200)
python
n = len(list_obj) for x in list_obj: skew += (x - mean_) ** 3 skew = skew / n if not sample else n * skew / ((n - 1) * (n - 2)) SD_ = SD(list_obj, sample) skew = skew / (SD_ ** 3) return skew
python
from simple_ansible_api.callback import ResultsResultCallBack def v1(): cli = AnsiBleApi(hosts_list="/etc/ansible/hosts") # set custom callback object cli.set_callback(callback=ResultsResultCallBack()) cli.ansible_playbook(playbooks=["test.yaml"]) ret = cli.result(to_json=True) return ret
python
if tokens[0] == 'create-student': tokens[0] = '/home/coder/containers/codeserver/create_student.sh' if tokens[0] == 'delete-student': tokens[0] = '/home/coder/containers/codeserver/delete_student.sh'
python
self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setContentsMargins(0, 0, 0, 0) self.horizontalLayout.setObjectName("horizontalLayout") self.labelSearch = QtWidgets.QLabel(self.horizontalLayoutWidget)
python
# ### commands auto generated by Alembic - please adjust! ### op.create_table( "data_table_query_execution", sa.Column("id", sa.Integer(), autoincrement=True, nullable=False), sa.Column("table_id", sa.Integer(), nullable=False), sa.Column("cell_id", sa.Integer(), nullable=False), sa.Column("query_execution_id", sa.Integer(), nullable=False), sa.ForeignKeyConstraint( ["cell_id"], ["data_cell.id"], name="data_table_query_execution_ibfk_1" ), sa.ForeignKeyConstraint( ["query_execution_id"],
python
SUCCESS_CODE = 1 # Dictionary of all possible error codes in send API # and their corresponding exception. INIT_RESPONSE_MAPPER = { '-1': ApiKeyNotFoundException, '-2': AmountNotFoundException, '-3': AmountNotIntegerException, '-4': AmountNotCorrect, '-5': RedirectUrlNotFoundException,
python
F.conv3d( F.pad(x, list(self.padding)[::-1], mode='replicate'), self.kernel.repeat(CH, 1, 1, 1, 1).to(x.device, x.dtype), stride=1, groups=CH, ) .view(B, CH, -1, D, H, W) .max(dim=2, keepdim=False)[0] ) mask = x > max_non_center if mask_only: return mask
python
import argparse sys.path.append(os.path.dirname(__file__) + '/../') import vaetc def main(checkpoint_path: str): checkpoint = vaetc.load_checkpoint(checkpoint_path) vaetc.evaluate(checkpoint) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("checkpoint_path", type=str, help="checkpoint_path")
python
scilla_data, evm_data = plot_data # create plot fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 rects1 = plt.bar(index, scilla_data, bar_width, alpha=opacity, color='#D7191C', label='Scilla')
python
env_inc = _make_narrow_noise(bw, envrate, dur, fs, rise, rng) env_inc[env_inc < 0] = 0. env_inc = np.convolve(b, env_inc)[:len(t)] if k in use_group: env = np.sqrt(rho) * env_coh + np.sqrt(1 - rho ** 2) * env_inc
python
list_filter = CustomUserAdmin.list_filter + ('department',) list_display = CustomUserAdmin.list_display + ('department',) fieldsets = CustomUserAdmin.fieldsets + ( (None, {'fields' : ('department',)},), ) add_fieldsets = CustomUserAdmin.add_fieldsets + ( (None, { 'classes' : ('wide',), 'fields' : ('department',)}
python
""" Scene object base class. Subclass this to properly receive on_*_event() messages automatically. """ log = LOG FPS = 0 NAME = 'Unnamed Scene' VERSION = '0.0'
python
Returns ------- Area of box determined by these two anchors """ m = a2[0]-a1[0]+1 n = a2[1]-a1[1]+1 return m*n def mrmsdtw(X, Y, tau, debug=False, refine=True): """ An implementation of the approximate, memory-restricted
python
return False if __name__ == "__main__": my_parser = argparse.ArgumentParser( description="Returns indices of compounds that failed to generate conformers", allow_abbrev=False) my_parser.add_argument('--logfile',