lang
stringclasses 10
values | seed
stringlengths 5
2.12k
|
---|---|
python | os.chdir("./saved_models/")
# os.chdir("./noise_sigma0.1_modified_workbook_finalized_env.py_DDPG/")
# To resume a previously trained model:
# trainer.train_rl(models_to_train=80, episodes_per_model=1000, last_model_number=39)
# To train from scratch:
trainer.train_rl(models_to_train=40, episodes_per_model=1000)
os.chdir("../")
|
python |
def calc(n):
t = Decimal(0)
pi = Decimal(0)
deno = Decimal(0)
k = 0
for k in range(n):
t = (Decimal(-1) ** k) * (Decimal(math.factorial(6 * k)) / ((math.factorial(k) ** 3) * (math.factorial(3 * k))) * (13591409+545140134 * k) / (640320 ** (3 * k)))
deno = math.factorial(3 * k) * (math.factorial(k) ** Decimal(3)) * (640320 ** (3 * k))
pi += Decimal(t) / Decimal(deno)
pi = pi * Decimal(12) / Decimal(640320 ** Decimal(1.5))
|
python | GREEN = '\033[32m'
YELLOW = '\033[33m'
CYAN = '\033[36m'
GREY = '\033[90m'
RESET = '\033[0m'
MAX_FILENAME_LEN = 40
def _col(s, c):
return '{}{}{}'.format(c, s, RESET)
|
python |
with self.assertRaises(ValueError):
ResNetRS50(**invalid_parameters)
def test_pretrained_model_can_be_created_with_different_input_shape(self):
input_shape = (160, 160, 3)
parameters = {
"weights": "imagenet",
"include_top": True,
"input_shape": input_shape,
}
mock_input = self.rng.uniform((1, *input_shape))
model = ResNetRS50(**parameters)
output = model(mock_input, training=False) |
python | switch_results = 0
not_switch_results = 0
for sim in range(1000):
prizedoor, guess = prizedoor_and_guess()
goat_door = show_goat_door(prizedoor, guess)
if (not_switch_policy(prizedoor, guess) == True):
not_switch_results = not_switch_results + 1
if (switch_policy(prizedoor, guess, goat_door) == True):
switch_results = switch_results + 1
|
python | 609. Find Duplicate File in System
'''
class Solution:
def findDuplicate(self, paths: List[str]) -> List[List[str]]:
contents = collections.defaultdict(list)
for path in paths:
splitedpath = path.split()
root = splitedpath[0]
for file in splitedpath[1:]:
name, content = file.split('(')
contents[content].append('/'.join([root, name]))
return [contents[key] for key in contents if len(contents[key]) > 1] |
python |
def dot6fdot(x):
s = "%.6f" % (x,)
if ("." in s): return s
return "." + s
def dot6fdot_list(l):
s = ""
for x in l: s += " " + dot6fdot(x)
return s[1:]
def xtal6g(x):
import string
s = "%.6g" % (x,)
i = string.find(s, "e") |
python | for pi in particles:
self.channel_to_framework.append(self.code.particles.new_channel_to(pi))
self.channel_from_framework.append(pi.new_channel_to(self.code.particles))
@property
def model_time(self):
return self.code.model_time
@property
def stop(self):
return self.code.stop |
python | homepage = "http://python-blosc.blosc.org"
url = "https://github.com/Blosc/python-blosc/archive/v1.9.1.tar.gz"
git = "https://github.com/Blosc/python-blosc.git"
version('1.9.1', sha256='ffc884439a12409aa4e8945e21dc920d6bc21807357c51d24c7f0a27ae4f79b9')
depends_on('[email protected]:', type=('build', 'run')) |
python | is_palindrome = True # 🤩
return is_palindrome
# Easy Way 😛
# rvs_text = text[::-1]
# if text == rvs_text:
# return True |
python | [4,5,3],
[7,5],
[5,3],
[2,4],
[3,5,2],
[3,6],
[3,3], |
python | DATADIR = 'test_data'
DATAFILE = 'data.json'
def dlfile(url, dest):
try:
f = urlopen(url)
print "Test file not found locally, downloading: " |
python | def CreateDictionaryFromCsv(inputFile):
data = {}
with open(inputFile, 'r') as f:
# Create a csv reader object that uses the opened file.
csv_reader = csv.reader(f)
# Retrieve the header of the csv file. This is also used as the items that are present.
csvHeader = next(csv_reader)
|
python | from lakefs_client.model.credentials_list import CredentialsList
from lakefs_client.model.credentials_with_secret import CredentialsWithSecret
from lakefs_client.model.current_user import CurrentUser
from lakefs_client.model.diff import Diff
from lakefs_client.model.diff_list import DiffList
from lakefs_client.model.error import Error
from lakefs_client.model.group import Group
from lakefs_client.model.group_creation import GroupCreation |
python | def ReadToMysql(self):#读取距离并存入数据库
sqlStr=("INSERT INTO learn_soil(sensor_code, is_soil, soil_value, create_time, status) VALUES('{0}',{1},{2},'{3}',{4})".format('101',random.randint(0,99),random.uniform(1,99),datetime.datetime.now(),0))
self.Context.SaveData(sqlStr)
pass
sol = soil()
index = 1
while True:
sol.ReadToMysql()
print("index:"+str(index)+" time: " +str(datetime.datetime.now()))
index = index + 1
time.sleep(0.01)
|
python |
speech_output = "Unknown command"
reprompt_text = "Unknown command"
if 'slots' in intent:
if 'status' in intent['slots']:
if 'value' in intent['slots']['status']:
deviceStatus = intent['slots']['status']['value'].upper()
speech_output = "Turning device " + deviceStatus |
python | if(dog_detector(d)):
d_d_count += 1
d_d_ratio = (d_d_count / len(dog_files_short))
d_h_ratio = (d_h_count / len(human_files_short))
|
python |
# Subset df to the given category
df_cat = df.query('category==@cat')
# Set up the parameters for the plotting grid
nrows = len(titles)
ncols = 1
figsize = (10, 12)
|
python |
def get_modules(premodules):
"""premodules is a list of strings for file like object where each line is a module, first value is module name
and subsequent values are observations in that module. All are separated by tabs.
"""
modules = OrderedDict()
for line in premodules:
line = line.strip().split('\t') |
python | @pytest.fixture(scope="module")
async def ttftt_engine():
return await create_engine(sdl=_SDL, schema_name="test_issue82")
@pytest.mark.asyncio
async def test_issue82(ttftt_engine):
query = """
query {
viewer {
name
...UndefinedFragment
}
} |
python | speak("Running cowsay command.")
obj.show_output()
elif opt == 3:
speak("Running cowsay command.")
obj.show_output()
elif opt == 4:
LOOP = False
class FunCommand:
def sl(self):
if not check_prog("sl"):
if ask_install("sl"): |
python | def run_migrations_offline():
engine = interface.get_engine()
connection = engine.connect()
context.configure(connection=connection,
compare_type=True,
target_metadata=interface.schema.metadata,
sqlalchemy_module_prefix=None)
with context.begin_transaction(): |
python | class TipoConquista(db.Model):
id = db.Column(db.Integer, primary_key=True)
titulo = db.Column(db.String(128), nullable=False)
descricao = db.Column(db.String(255))
destaque = db.Column(db.Boolean, default=False)
icone = db.Column(db.String(128), default=False)
del_ = db.Column(db.Boolean, default=False)
|
python | pulumi.set(__self__, "request_message", request_message)
@property
@pulumi.getter(name="groupIds")
def group_ids(self) -> Optional[Sequence[str]]:
"""
The ID(s) of the group(s) obtained from the remote resource that this private endpoint should connect to. Required on PUT (CreateOrUpdate) requests.
"""
return pulumi.get(self, "group_ids") |
python |
# Calculate alternate Kappas (these are for Appendix)
# - Apply $\kappa$ calculations period by period
# - Do this for the pure TR data and pure scrape data
total_dft = beta_to_kappa(process_beta(f_betas_tr))
total_dfs = beta_to_kappa(process_beta(f_betas_sc))
final_df = pd.merge(total_dft, fix_scrape_cols(total_dfs),
on=['from', 'to', 'quarter'], how='outer')
|
python | '''
primes = []
for i in range(n, m):
if is_prime(i):
primes.append(i)
return primes
def main():
# input |
python | # https://atcoder.jp/contests/abc194/tasks/abc194_d
N = int(input())
ans = 0
for i in range(1, N):
ans += N / i
print(ans) |
python |
# beadcrumbs
@property
def zengoIdWorks(self) -> list[UserIllustInfo]:
return [UserIllustInfo(item) for item in self._item["zengoIdWorks"]] |
python | gain_combo=TTK.Combobox(window,width=4)
gain_combo['values']=(1,2,4,8,16)
gain_combo.current(0)
gain_combo.grid(column=1,row=3)
# add checkboxes
plot_dOD_state=tk.BooleanVar()
plot_dOD_state.set(False)
plot_dOD_chk=tk.Checkbutton(window,text='Plot delta OD',var=plot_dOD_state)
plot_dOD_chk.grid(column=1,row=5) |
python | from django.http import JsonResponse
from rest_framework.status import (
HTTP_400_BAD_REQUEST, HTTP_201_CREATED
)
|
python | self.assertEqual(top_dep_library_jar[0], 'scala-library-2.12.2.jar')
self.assertEqual(top_dep_library_jar[1], '/home/hugemane/.ivy2/cache/org.scala-lang/scala-library/jars/scala-library-2.12.2.jar')
self.assertEqual(top_dep_library_jar[1], '/home/artifact/repo/lib/org.scala-lang/scala-library/jars/scala-library-2.12.2.jar')
self.assertEqual(last_dep_library_jar[0], 'akka-remote_2.12-2.5.6.jar')
self.assertEqual(last_dep_library_jar[1], '/home/hugemane/.ivy2/cache/com.typesafe.akka/akka-remote_2.12/jars/akka-remote_2.12-2.5.6.jar')
self.assertEqual(last_dep_library_jar[2], '/home/artifact/repo/lib/com.typesafe.akka/akka-remote_2.12/jars/akka-remote_2.12-2.5.6.jar')
def test_generate_artifact_jar_library_dependency_file_jars_as_iterable_jar_dependencies_with_full_path(self):
artifact_host = ArtifactHost('artifact', 'artifact.lxd')
options = {
'deploy_jar_lib_dir': '--some-remote-deployment-lib-dir--',
'artifact_jar_lib_dep_file': '--some-artifact-jar-lib-dep-file--' |
python | k1 = str(letters[int(prediction1) + 1])
k2 = str(letters[int(prediction2) + 1])
if (flag1):
s1 += k1
if (flag2):
s2 += k2
flag1 = False
flag2 = False
|
python | hm3 = hp.read_map('test_map.fits', dtype=float)
hm3 = maps.HealpixSkyMap(hm3)
assert(hm1.compatible(hm3))
assert(np.allclose(hm1, hm3))
print('Checking healpy.write_map')
os.remove('test_map.fits')
hp.write_map('test_map.fits', np.asarray(hm3), dtype=float)
hm4 = maps.fitsio.load_skymap_fits('test_map.fits')['T']
assert(hm1.compatible(hm4)) |
python | queries_path = "../queries/project_creation_cypher.yml"
project_creation_cypher = ckg_utils.get_queries(os.path.join(directory, queries_path))
except Exception as err:
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
logger.error("Reading queries from file {}: {}, file: {},line: {}, err: {}".format(queries_path, sys.exc_info(), fname, exc_tb.tb_lineno, err))
return project_creation_cypher |
python | session_maker = sessionmaker(
autocommit=False, autoflush=False, bind=engine, future=True
)
class KeyTypes(Enum):
"""Class describing the variation in user keys."""
API = 0 |
python | temp.iat[row_marker, column_marker] = column.get_text()
column_marker += 1
if len(columns) > 0:
row_marker += 1
# insert week number as field in dataframe
temp['Week'] = week
temp['Position'] = position
for col in temp:
try:
temp[col] = temp[col].astype(float)
except ValueError: |
python | import re
class PuntuationCleaner(Cleaner):
def __init__(self):
spanish_punctuation = r"""!¡"#$%&'()*+,-./:;<=>¿?@[\]^_`{|}~¨´§«»¶\\"""
self.__pattern = re.compile(f"[{spanish_punctuation}]")
def clean(self, text: str) -> str:
cleaned_text = self.__pattern.sub(" ", text)
return cleaned_text |
python | __credits__ = ["<NAME>", "<NAME>"]
__license__ = "BSD-3"
__version__ = "2021.5.7a"
__maintainer__ = "<NAME>"
__email__ = "<EMAIL>" |
python | # def countNum(N, num):
# count = 0
# divNum = num
# while( N >= divNum):
# count = count + (N // divNum) |
python | num2 = num * 2
c1 = Counter(list(str(num)))
c2 = Counter(list(str(num2)))
if c1==c2:
print("Yes")
else:
print("No") |
python | return doc
def get_next_token(self):
if self.rs:
return self.rs.next_token
if self._next_token:
return self._next_token
return None
def set_next_token(self, token):
self._next_token = token
|
python | # Create your views here.
from django.http import HttpResponse
# Главная страница
def index(request):
return HttpResponse('Главная страница') |
python | """Artificial Base Module"""
# Author: <NAME> -- <<EMAIL>>
# License: MIT (c) 2016
from .state import State, GeneticState
from .environment import Environment |
python | if games[i]['result_team1'] != '':
expected.append(float(games[i]['probability_team1']))
expected.append(float(games[i]['probability_team2']))
actual.append(float(games[i]['result_team1']))
actual.append(float(games[i]['result_team2']))
mse = np.square(np.subtract(expected,actual)).mean()
if mse < best[1]:
best[0] = t
best[1] = mse
print(f'Best t: {best[0]}')
print(f'Best RSE: {best[1]}')
|
python |
def test_create_token_missing_field(self):
'''test that email and password is required'''
res= self.client.post(TOKEN_URL, {'ermail':'unknown', 'password':''})
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
|
python |
StringValue(SHIPPING_GROUP,
'TURN_AROUND_TIME',
description=_('Turn around time'),
help_text=_('Turn around time in hours. If declared here, this parameter \
will overwrite the one defined in the merchant\'s profile'),
default='24'),
BooleanValue(SHIPPING_GROUP, |
python | factoid = 'primary_interface'
def fact():
'''Returns the primary interface of this Mac'''
primary_interface = None
net_config = SCDynamicStoreCreate(None, "net", None, None)
try:
states = SCDynamicStoreCopyValue(net_config, "State:/Network/Global/IPv4")
primary_interface = states['PrimaryInterface']
except TypeError:
pass
|
python | if i not in kmers:
continue
hits.append([i, kmers[i], distance(seed, kmers[i]), max(i - s, i - e)])
# No hit
if len(hits) == 0:
return None, None, len(seed), None
# For HPC hits
if use_hpc and len(hits) > 1: |
python |
# show launch application window
start = StartDialog()
start.show()
# execute application
app.exec_() |
python | INPUT:
:param theoretical_model: (TheoreticalSemivariogram)
OUTPUT:
:return: (bool) True if Theoretical Semivariogram has calculated params or False otherwise
"""
# Test
if (theoretical_model.nugget is None) or (theoretical_model.sill is None) or (theoretical_model.range is None):
raise ValueError('Nugget, sill or range of TheoreticalSemivariogram is not set. Please update ' |
python | import json
import logging
import aws_lambda_logging
import requests
log = logging.getLogger()
def lambda_handler(event, context):
"""Sample pure Lambda function
|
python | container = os.path.dirname(f)
# probe
print("Considering:",f)
deps = [ l for l in open(f) if l.strip().startswith("#include") ]
deps = [ l.replace("#include","").strip() for l in deps ]
deps = [ l.replace("\"","") for l in deps if not l.startswith("<")] |
python | if options.check_chain:
check_block_chain(db_env)
if options.dump_blkindex:
dump_blkindex_summary(db_env)
if options.dump_transaction is not None:
dump_transaction(db_dir, db_env, options.dump_transaction)
if options.dump_block is not None:
if len(options.dump_block) < 7: # Probably an integer... |
python | import wave
from auto_editor.render.tsm.phasevocoder import phasevocoder
from auto_editor.timeline import Timeline
from auto_editor.utils.log import Log
from auto_editor.utils.progressbar import ProgressBar
from auto_editor.wavfile import read
def make_new_audio(
t: int,
temp: str, |
python | author_email='<EMAIL>',
url='https://github.com/kubilus1/pyaskpass',
install_requires=[
'pyglet'
],
scripts=['askpass']
) |
python |
from typing import List
class UnionFind:
def __init__(self, N):
self.node2par = {i: i for i in range(1, N + 1)}
self.rank = {i: 0 for i in range(1, N + 1)}
def find_par(self, x):
if self.node2par[x] != x:
x = self.find_par(self.node2par[x]) |
python | _lossfunc = dml.losses.TripletMarginLoss(
margin=configs.triplet.margin_euclidean,
reducer=dml.reducers.ThresholdReducer(low=0.),
distance=dml.distances.LpDistance(
p=2, power=1, normalize_embeddings=True)
)
_miner = dml.miners.TripletMarginMiner(
margin=configs.triplet.margin_euclidean,
type_of_triplets='semihard') |
python |
# Rebin and save new created histogram and axis
plot.histo[i] = plot.histo[i].Rebin(mergeNumberBins)
# set view range. it is important to note that the number of bins have changed with the rebinning
# the total number and the number of shift must be
# corrected with / mergeNumberBins
plot.histo[i].GetXaxis().SetRange(int(numberOfBins / (2 * mergeNumberBins) - binShift /
mergeNumberBins), int(numberOfBins / (2 * mergeNumberBins) + binShift / mergeNumberBins))
# save copy |
python | # strip and split
class Solution:
def lengthOfLastWord(self, s: str) -> int:
if len(s.strip()) == 0:
return 0
last_word = s[::-1].split()[0]
return len(last_word)
# pointer (faster)
# time-O(n)
# space-O(1)
class Solution:
def lengthOfLastWord(self, s: str) -> int: |
python | from .fixtures import trees
class TestTextRenderer(TestCase):
def setUp(self): |
python |
FOLDER = Path(__file__).parent
H5 = FOLDER / '_test.h5'
def test_write_LAMMPS_dump():
try:
traj = ParticleTrajectory(H5)
frame = traj.frames[0]
frame.array
frame.dataframe
output = FOLDER / 'lammps.test.dump'
frame.to_LAMMPS_dump(output)
output.unlink() |
python |
# Appending numbers in lists
for i in range(30):
samples.append(i)
linear.append(i)
quad.append(i**2)
cubic.append(i**3)
exp.append(1.5**i) |
python |
@seeder
async def tag_seeder(context: blnt.BolinetteContext):
if context.env['profile'] == 'development':
tag_service: TagService = context.service('tag') |
python | CREATE TRIGGER trigger_delete_old_rows_manpower_group
AFTER INSERT ON manpower_group
EXECUTE PROCEDURE delete_old_rows_manpower_group();
""")
session.execute("""
CREATE OR REPLACE FUNCTION delete_old_rows_manpower_individual() RETURNS TRIGGER
LANGUAGE plpgsql
AS
$$
BEGIN
DELETE FROM manpower_individual WHERE created_at < NOW() - INTERVAL '1095 days';
RETURN NULL;
END;
$$; |
python | from ..decorators import nested_repeatables, named_as, repeat
from ..envs import EnvFactory
ef1_prod = EnvFactory()
prod = ef1_prod.Env('prod')
def ce(line_num, *lines):
return config_error(__file__, line_num, *lines)
_access_undefined_attribute_expected_repr = """{
"__class__": "ConfigRoot #as: 'ConfigRoot', id: 0000",
"env": {
"__class__": "Env", |
python | from predict import text_to_emotion
st.title('Emotion classification from text')
st.write('Possible emotions are sadness, anger, love, surprise, fear and joy')
text = st.text_input('Enter a text', "I'm sad to be a data scientist") |
python | logger.info(f"updated widget {self.widgetName} at: {datetime.datetime.now()}")
def generateHtml(self) -> None:
# render html with output data
htmlList: list = [x["title"] for x in self.output][:self.config["displayNumberOfItems"]]
html: str = self.listToHtml(htmlList) |
python | name = "ntunnel_test" |
python | contents = [{'name': 'myname', 'segment_type': 'vlan'}]
self._test_list_resources(resources, cmd, tags=['a', 'b'],
response_contents=contents)
def test_list_networkprofile_fields(self):
"""List networkprofile: --fields a --fields b -- --fields c d."""
resources = 'network_profiles'
cmd = np.NetworkProfileList(test_cli20.MyApp(sys.stdout), None)
contents = [{'name': 'myname', 'segment_type': 'vlan'}]
self._test_list_resources(resources, cmd,
fields_1=['a', 'b'], fields_2=['c', 'd'],
response_contents=contents)
|
python |
from jet_django.models.view_settings import ViewSettings
class ViewSettingsFilterSet(django_filters.FilterSet):
class Meta:
model = ViewSettings
fields = (
'app_label',
'model',
'view', |
python | user.telegram_id = 1234
user.user_id = 9876
passed, alert = self.assert_params(user.firstname, "Newname")
assert passed, alert
passed, alert = self.assert_params(user.lastname, "Lastname1") |
python | para.append(runs)
return para
def li(runs, style):
"""
Returns a ``p`` (paragraph) with ordered or unordered list style for
text runs.
*runs* are a list of ``r`` (run) element, see :func:`run`.
*style*, an string of supported list style: ``circle``, ``number``,
``disc``and ``square``. |
python | os.makedirs(FOLDER_OUT + 'POD', exist_ok=True)
np.savez(FOLDER_OUT + '/POD/pod_spatial_basis',
phis=Phi_P, PHI_P_SIGMA_P=PHI_P_SIGMA_P)
else: |
python | def joincsv(prefix, out_filename='all_picks_phasenet.csv'):
"""Join in one csv the picks.csv generated for sgc_phasenet. The script
needs to be run in the general_data_dir.
Parameters |
python |
# not sure why this isn't working yet with lower=False
out = tt.slinalg.Cholesky(lower=False)(x)
out_fg = theano.gof.FunctionGraph([x], [out])
compare_jax_and_py(
out_fg, [(np.eye(10) + np.random.randn(10, 10) * 0.01).astype(tt.config.floatX)]
)
out = tt.slinalg.solve(x, b) |
python | click.echo(o)
ctx.ensure_object(dict)
ctx.obj["m"] = m
ctx.obj["o"] = o
return
cli.add_command(cmd1)
if __name__ == "__main__": |
python | from . import pedestal_residuals
from . import saturation_recovery
from . import spe_spectrum
from . import spe_spectrum_checm
from . import spe_spectrum_comparison
from . import tf_generation
from . import tf_lookup
from . import charge_extraction_window
from . import annotated_waveform
from . import pulse_shape
from . import enf_spectrum_comparison |
python | license="MIT",
packages=["rocrand"],
install_requires=["numpy"],
test_suite="tests",
command_options={
"build_sphinx": { |
python | for i in range (len(palabras)):
idx= lista_idioma1.index(palabras[i].strip())
if idx !=-1:
palabras [i] =lista_idioma2[idx]
traducido.write (" ".join(palabras)+"\n")
original.close()
traducido.close()
lista_idioma1=["mi","nombre","es","micaela"]
lista_idioma2=["my","name","is","Micaela"] |
python | def setUp(self):
super(WebhookControllerTest, self).setUp()
class DummyConfig(object):
bind_port = 8778
cfgopts = DummyConfig()
self.controller = webhooks.WebhookController(options=cfgopts) |
python | network.add_subnet(
user=self.user_object,
subnet='10.145.89.0/24'
)
network.del_subnet(
1,
user=self.user_object,
)
del_subnet = network.list_subnets(
user=self.user_object
) |
python | file = sys.argv[1]
print file
json_data=open(file).read()
data = json.loads(json_data)
for a in data['addresses']:
pubkeyArray=data['addresses'][a]['publicKey']['data']
pubkey=""
for pbk in pubkeyArray:
pubkey = "%s%02x" % (pubkey,pbk)
print "Address:%s" % a
print "Public Key:0x%s" % pubkey
print "Private Key:0x%s" % data['private_keys'][a]
|
python | "Error in room_assignments.py - file "
"write: "
+ repr(e), "Adirondack Error")
pass
# # # Remove this after testing - only for testing when no
# # # recent changes are found via the API
# # room_file = settings.ADIRONDACK_TXT_OUTPUT + \
# # settings.ADIRONDACK_ROOM_ASSIGNMENTS + '.csv'
# # if run_mode == 'auto':
|
python | def vowel_count(phrase):
"""Return frequency map of vowels, case-insensitive.
>>> vowel_count('rithm school')
{'i': 1, 'o': 2}
>>> vowel_count('HOW ARE YOU? i am great!')
{'o': 2, 'a': 3, 'e': 2, 'u': 1, 'i': 1}
"""
d = {}
v = set('aeiou')
for c in phrase.lower(): |
python |
class FlameSensor (SensorBase):
def __init__(self, thread_id, notification_queue, sleeptime, pin = 27):
super().__init__(thread_id, notification_queue, sleeptime) # python 3 syntax only
self.pin = pin
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) |
python | from .multimodal import *
|
python | :param kernel_options: A dictionary with all options for the kernel.
:type kernel_options: kernel_tuner.interface.Options
:param device_options: A dictionary with all options for the device
on which the kernel should be tuned. |
python | :type nums: List[int]
:type target: int
:rtype: List[int]
"""
if not nums: return None
if len(nums) < 2: return None
dict = {}
for i, x in enumerate(nums):
y = target - x |
python |
def __init__(self, optimizer, epsilon=1e-05, hyperpara=0.001, weight_decay=0.0, use_clip=False,
decay_filter=lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name,
lars_filter=lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name, loss_scale=1.0):
super(LARS, self).__init__(0.0, [Parameter(Tensor(0.0), name="trivial")])
self.opt = optimizer
self.parameters = optimizer.parameters
self.learning_rate = optimizer.learning_rate
self.lars = P.LARSUpdate(epsilon, hyperpara, use_clip)
self.reciprocal_scale = 1.0 / loss_scale |
python | Benchmark.debug()
"""
Tests to be integrated,
|
python |
def _write32(f, w):
f.write(bytearray([
(w >> 0) & 0xff,
(w >> 8) & 0xff,
(w >> 16) & 0xff,
(w >> 24) & 0xff])) |
python |
conf.x4.dmg = 129 / 100.0
conf.x4.sp = 360
conf.x4.startup = 0
conf.x4.recovery = 65 / 60.0
|
python | datetime.datetime(2024, 1, 20, 13, 0),
datetime.datetime(2024, 10, 26, 14, 0),
datetime.datetime(2025, 1, 18, 13, 0),
datetime.datetime(2025, 10, 25, 14, 0),
datetime.datetime(2026, 1, 17, 13, 0),
datetime.datetime(2026, 10, 24, 14, 0),
datetime.datetime(2027, 1, 23, 13, 0),
datetime.datetime(2027, 10, 23, 14, 0),
datetime.datetime(2028, 1, 22, 13, 0),
datetime.datetime(2028, 10, 21, 14, 0),
datetime.datetime(2029, 1, 20, 13, 0),
datetime.datetime(2029, 10, 20, 14, 0), |
python | self.cloud_admin_user = self.new_user_ref(
domain_id=self.admin_domain['id'])
password = uuid.uuid4().hex
self.cloud_admin_user['password'] = password
self.cloud_admin_user = (
self.identity_api.create_user(self.cloud_admin_user))
self.cloud_admin_user['password'] = password
self.just_a_user = self.new_user_ref(domain_id=self.domainA['id'])
password = uuid.uuid4().hex
self.just_a_user['password'] = password
self.just_a_user = self.identity_api.create_user(self.just_a_user)
self.just_a_user['password'] = password |
python | # self.next = None
class Solution:
def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:
len1, len2 = self.length(l1), self.length(l2)
if len1>len2:
l2 = self.pad(l2, len1-len2)
else:
l1 = self.pad(l1, len2-len1) |
python | }
transformed_history = sft.transform(history)
np.testing.assert_array_equal(
transformed_history["fitness"], [0.5, 1.5])
np.testing.assert_array_equal(
transformed_history["parameters"], np.array([[1, 2], [3, 4]])
)
|
python | #Test function
def test(arg):
print(arg*arg)
|
python | def queue_pre_commit(func, key=None):
"""
Queues a function to call before the transaction is committed. Use a
key when you want to ensure that an action won't get triggered multiple
times.
Eg. you might want queue this function (lambda: validate_account(123))
multiple times, but it only makes sense to run it once just before a
transaction is committed. In this case, you could use the key
'validate_account.123' to ensure it only runs once.
"""
pre_commit_function_pool.queue(func, key=key) |
python | print(r.text)
data = json.loads(r.text)
importerId = data["import"]["id"]
print "...importer successfuly created! importerId:'" + str(importerId) + "'"
print ""
print "STEP 2 - Going to load from filesystem the geotif to upload..."
upload = {'files': ('country.tiff', open(granule_abs_path, "rb"), 'application/octet-stream')}
print "...geotif successfuly loaded! ready to create a run a task for the importer " + str(importerId) + "..."
url += "/" + str(importerId) + "/tasks" |
python |
def select_partition(length: int, min_size: int = 1, max_size: int = None) -> Tuple[int, int]:
"""Select a partition of a chromosome.
:param length: Length of the chromosome.
:param min_size: Minimum length of the partition. Defaults to 1.
:param max_size: Maximum length of the partition. Defaults to length - 1.
:return: Start and end index of the partition.
"""
partition_size = randint(min_size, length - 1 if max_size is None else max_size)
partition_start = randint(0, length - partition_size) |
Subsets and Splits