Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
list | start_point
list | end_point
list | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
named_colorscales | () |
Returns lowercased names of built-in continuous colorscales.
|
Returns lowercased names of built-in continuous colorscales.
| def named_colorscales():
"""
Returns lowercased names of built-in continuous colorscales.
"""
from _plotly_utils.basevalidators import ColorscaleValidator
return [c for c in ColorscaleValidator("", "").named_colorscales] | [
"def",
"named_colorscales",
"(",
")",
":",
"from",
"_plotly_utils",
".",
"basevalidators",
"import",
"ColorscaleValidator",
"return",
"[",
"c",
"for",
"c",
"in",
"ColorscaleValidator",
"(",
"\"\"",
",",
"\"\"",
")",
".",
"named_colorscales",
"]"
] | [
801,
0
] | [
807,
69
] | python | en | ['en', 'error', 'th'] | False |
_normalize | (tensor, norm_layer) |
Broadcast layer norm.
|
Broadcast layer norm.
| def _normalize(tensor, norm_layer):
"""
Broadcast layer norm.
"""
is_cpu = tensor.device == 'cpu' or tensor.device.type == 'cpu'
if APEX_LAYER_NORM and not is_cpu:
# fused_layer_norm has a bug around multi-device networks.
# https://github.com/NVIDIA/apex/issues/770
# https://github.com/NVIDIA/apex/issues/371
with torch.cuda.device(tensor.device):
return norm_layer(tensor)
else:
return norm_layer(tensor) | [
"def",
"_normalize",
"(",
"tensor",
",",
"norm_layer",
")",
":",
"is_cpu",
"=",
"tensor",
".",
"device",
"==",
"'cpu'",
"or",
"tensor",
".",
"device",
".",
"type",
"==",
"'cpu'",
"if",
"APEX_LAYER_NORM",
"and",
"not",
"is_cpu",
":",
"# fused_layer_norm has a bug around multi-device networks.",
"# https://github.com/NVIDIA/apex/issues/770",
"# https://github.com/NVIDIA/apex/issues/371",
"with",
"torch",
".",
"cuda",
".",
"device",
"(",
"tensor",
".",
"device",
")",
":",
"return",
"norm_layer",
"(",
"tensor",
")",
"else",
":",
"return",
"norm_layer",
"(",
"tensor",
")"
] | [
43,
0
] | [
55,
33
] | python | en | ['en', 'error', 'th'] | False |
_create_embeddings | (dictionary, embedding_size, padding_idx) |
Create and initialize word embeddings.
|
Create and initialize word embeddings.
| def _create_embeddings(dictionary, embedding_size, padding_idx):
"""
Create and initialize word embeddings.
"""
e = nn.Embedding(len(dictionary), embedding_size, padding_idx)
nn.init.normal_(e.weight, mean=0, std=embedding_size ** -0.5)
nn.init.constant_(e.weight[padding_idx], 0)
return e | [
"def",
"_create_embeddings",
"(",
"dictionary",
",",
"embedding_size",
",",
"padding_idx",
")",
":",
"e",
"=",
"nn",
".",
"Embedding",
"(",
"len",
"(",
"dictionary",
")",
",",
"embedding_size",
",",
"padding_idx",
")",
"nn",
".",
"init",
".",
"normal_",
"(",
"e",
".",
"weight",
",",
"mean",
"=",
"0",
",",
"std",
"=",
"embedding_size",
"**",
"-",
"0.5",
")",
"nn",
".",
"init",
".",
"constant_",
"(",
"e",
".",
"weight",
"[",
"padding_idx",
"]",
",",
"0",
")",
"return",
"e"
] | [
58,
0
] | [
65,
12
] | python | en | ['en', 'error', 'th'] | False |
get_n_positions_from_options | (opt) |
Determine n_positions from options dict.
|
Determine n_positions from options dict.
| def get_n_positions_from_options(opt):
"""
Determine n_positions from options dict.
"""
if opt.get('n_positions'):
# if the number of positions is explicitly provided, use that
n_positions = opt['n_positions']
else:
# else, use the worst case from truncate
n_positions = max(
opt.get('truncate') or 0,
opt.get('text_truncate') or 0,
opt.get('label_truncate') or 0,
)
if n_positions == 0:
n_positions = 1024
return n_positions | [
"def",
"get_n_positions_from_options",
"(",
"opt",
")",
":",
"if",
"opt",
".",
"get",
"(",
"'n_positions'",
")",
":",
"# if the number of positions is explicitly provided, use that",
"n_positions",
"=",
"opt",
"[",
"'n_positions'",
"]",
"else",
":",
"# else, use the worst case from truncate",
"n_positions",
"=",
"max",
"(",
"opt",
".",
"get",
"(",
"'truncate'",
")",
"or",
"0",
",",
"opt",
".",
"get",
"(",
"'text_truncate'",
")",
"or",
"0",
",",
"opt",
".",
"get",
"(",
"'label_truncate'",
")",
"or",
"0",
",",
")",
"if",
"n_positions",
"==",
"0",
":",
"n_positions",
"=",
"1024",
"return",
"n_positions"
] | [
68,
0
] | [
84,
22
] | python | en | ['en', 'error', 'th'] | False |
create_position_codes | (n_pos, dim, out) |
Create positional codes and store them in ``out``.
|
Create positional codes and store them in ``out``.
| def create_position_codes(n_pos, dim, out):
"""
Create positional codes and store them in ``out``.
"""
position_enc = np.array(
[
[pos / np.power(10000, 2 * j / dim) for j in range(dim // 2)]
for pos in range(n_pos)
]
)
out.detach_()
out.requires_grad = False
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc)).type_as(out)
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc)).type_as(out) | [
"def",
"create_position_codes",
"(",
"n_pos",
",",
"dim",
",",
"out",
")",
":",
"position_enc",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"pos",
"/",
"np",
".",
"power",
"(",
"10000",
",",
"2",
"*",
"j",
"/",
"dim",
")",
"for",
"j",
"in",
"range",
"(",
"dim",
"//",
"2",
")",
"]",
"for",
"pos",
"in",
"range",
"(",
"n_pos",
")",
"]",
")",
"out",
".",
"detach_",
"(",
")",
"out",
".",
"requires_grad",
"=",
"False",
"out",
"[",
":",
",",
"0",
":",
":",
"2",
"]",
"=",
"torch",
".",
"FloatTensor",
"(",
"np",
".",
"sin",
"(",
"position_enc",
")",
")",
".",
"type_as",
"(",
"out",
")",
"out",
"[",
":",
",",
"1",
":",
":",
"2",
"]",
"=",
"torch",
".",
"FloatTensor",
"(",
"np",
".",
"cos",
"(",
"position_enc",
")",
")",
".",
"type_as",
"(",
"out",
")"
] | [
270,
0
] | [
284,
71
] | python | en | ['en', 'error', 'th'] | False |
TransformerMemNetModel.encode_cand | (self, words) |
Encode the candidates.
|
Encode the candidates.
| def encode_cand(self, words):
"""
Encode the candidates.
"""
if words is None:
return None
# flatten if there are many candidates
if words.dim() == 3:
oldshape = words.shape
words = words.reshape(oldshape[0] * oldshape[1], oldshape[2])
else:
oldshape = None
encoded = self.cand_encoder(words)
if oldshape is not None:
encoded = encoded.reshape(oldshape[0], oldshape[1], -1)
return encoded | [
"def",
"encode_cand",
"(",
"self",
",",
"words",
")",
":",
"if",
"words",
"is",
"None",
":",
"return",
"None",
"# flatten if there are many candidates",
"if",
"words",
".",
"dim",
"(",
")",
"==",
"3",
":",
"oldshape",
"=",
"words",
".",
"shape",
"words",
"=",
"words",
".",
"reshape",
"(",
"oldshape",
"[",
"0",
"]",
"*",
"oldshape",
"[",
"1",
"]",
",",
"oldshape",
"[",
"2",
"]",
")",
"else",
":",
"oldshape",
"=",
"None",
"encoded",
"=",
"self",
".",
"cand_encoder",
"(",
"words",
")",
"if",
"oldshape",
"is",
"not",
"None",
":",
"encoded",
"=",
"encoded",
".",
"reshape",
"(",
"oldshape",
"[",
"0",
"]",
",",
"oldshape",
"[",
"1",
"]",
",",
"-",
"1",
")",
"return",
"encoded"
] | [
199,
4
] | [
218,
22
] | python | en | ['en', 'error', 'th'] | False |
TransformerMemNetModel.encode_context_memory | (self, context_w, memories_w, context_segments=None) |
Encode the context and memories.
|
Encode the context and memories.
| def encode_context_memory(self, context_w, memories_w, context_segments=None):
"""
Encode the context and memories.
"""
# [batch, d]
if context_w is None:
# it's possible that only candidates were passed into the
# forward function, return None here for LHS representation
return None, None
context_h = self.context_encoder(context_w, segments=context_segments)
if memories_w is None:
return [], context_h
bsz = memories_w.size(0)
memories_w = memories_w.view(-1, memories_w.size(-1))
memories_h = self.memory_transformer(memories_w)
memories_h = memories_h.view(bsz, -1, memories_h.size(-1))
context_h = context_h.unsqueeze(1)
context_h, weights = self.attender(context_h, memories_h)
return weights, context_h | [
"def",
"encode_context_memory",
"(",
"self",
",",
"context_w",
",",
"memories_w",
",",
"context_segments",
"=",
"None",
")",
":",
"# [batch, d]",
"if",
"context_w",
"is",
"None",
":",
"# it's possible that only candidates were passed into the",
"# forward function, return None here for LHS representation",
"return",
"None",
",",
"None",
"context_h",
"=",
"self",
".",
"context_encoder",
"(",
"context_w",
",",
"segments",
"=",
"context_segments",
")",
"if",
"memories_w",
"is",
"None",
":",
"return",
"[",
"]",
",",
"context_h",
"bsz",
"=",
"memories_w",
".",
"size",
"(",
"0",
")",
"memories_w",
"=",
"memories_w",
".",
"view",
"(",
"-",
"1",
",",
"memories_w",
".",
"size",
"(",
"-",
"1",
")",
")",
"memories_h",
"=",
"self",
".",
"memory_transformer",
"(",
"memories_w",
")",
"memories_h",
"=",
"memories_h",
".",
"view",
"(",
"bsz",
",",
"-",
"1",
",",
"memories_h",
".",
"size",
"(",
"-",
"1",
")",
")",
"context_h",
"=",
"context_h",
".",
"unsqueeze",
"(",
"1",
")",
"context_h",
",",
"weights",
"=",
"self",
".",
"attender",
"(",
"context_h",
",",
"memories_h",
")",
"return",
"weights",
",",
"context_h"
] | [
220,
4
] | [
243,
33
] | python | en | ['en', 'error', 'th'] | False |
TransformerMemNetModel.forward | (self, xs, mems, cands, context_segments=None) |
Forward pass.
:param LongTensor[batch,seqlen] xs: input tokens IDs
:param LongTensor[batch,num_mems,seqlen] mems: memory token IDs
:param LongTensor[batch,num_cands,seqlen] cands: candidate token IDs
:param LongTensor[batch,seqlen] context_segments: segment IDs for xs,
used if n_segments is > 0 for the context encoder
|
Forward pass. | def forward(self, xs, mems, cands, context_segments=None):
"""
Forward pass.
:param LongTensor[batch,seqlen] xs: input tokens IDs
:param LongTensor[batch,num_mems,seqlen] mems: memory token IDs
:param LongTensor[batch,num_cands,seqlen] cands: candidate token IDs
:param LongTensor[batch,seqlen] context_segments: segment IDs for xs,
used if n_segments is > 0 for the context encoder
"""
# encode the context and memories together
weights, context_h = self.encode_context_memory(
xs, mems, context_segments=context_segments
)
# encode the candidates
cands_h = self.encode_cand(cands)
# possibly normalize the context and candidate representations
if self.opt['normalize_sent_emb']:
context_h = context_h / context_h.norm(2, dim=1, keepdim=True)
cands_h = cands_h / cands_h.norm(2, dim=1, keepdim=True)
return context_h, cands_h | [
"def",
"forward",
"(",
"self",
",",
"xs",
",",
"mems",
",",
"cands",
",",
"context_segments",
"=",
"None",
")",
":",
"# encode the context and memories together",
"weights",
",",
"context_h",
"=",
"self",
".",
"encode_context_memory",
"(",
"xs",
",",
"mems",
",",
"context_segments",
"=",
"context_segments",
")",
"# encode the candidates",
"cands_h",
"=",
"self",
".",
"encode_cand",
"(",
"cands",
")",
"# possibly normalize the context and candidate representations",
"if",
"self",
".",
"opt",
"[",
"'normalize_sent_emb'",
"]",
":",
"context_h",
"=",
"context_h",
"/",
"context_h",
".",
"norm",
"(",
"2",
",",
"dim",
"=",
"1",
",",
"keepdim",
"=",
"True",
")",
"cands_h",
"=",
"cands_h",
"/",
"cands_h",
".",
"norm",
"(",
"2",
",",
"dim",
"=",
"1",
",",
"keepdim",
"=",
"True",
")",
"return",
"context_h",
",",
"cands_h"
] | [
245,
4
] | [
267,
33
] | python | en | ['en', 'error', 'th'] | False |
TransformerResponseWrapper.forward | (self, *args) |
Forward pass.
|
Forward pass.
| def forward(self, *args):
"""
Forward pass.
"""
return self.mlp(self.transformer(*args)) | [
"def",
"forward",
"(",
"self",
",",
"*",
"args",
")",
":",
"return",
"self",
".",
"mlp",
"(",
"self",
".",
"transformer",
"(",
"*",
"args",
")",
")"
] | [
304,
4
] | [
308,
48
] | python | en | ['en', 'error', 'th'] | False |
TransformerLinearWrapper.forward | (self, *args) |
Forward pass.
Apply transformer, then additional linear layer.
|
Forward pass. | def forward(self, *args):
"""
Forward pass.
Apply transformer, then additional linear layer.
"""
context_h = self.transformer(*args)
return self.additional_linear_layer(context_h) | [
"def",
"forward",
"(",
"self",
",",
"*",
"args",
")",
":",
"context_h",
"=",
"self",
".",
"transformer",
"(",
"*",
"args",
")",
"return",
"self",
".",
"additional_linear_layer",
"(",
"context_h",
")"
] | [
322,
4
] | [
329,
54
] | python | en | ['en', 'error', 'th'] | False |
TransformerEncoder.forward_embedding | (
self,
input: torch.LongTensor,
positions: Optional[torch.LongTensor] = None,
segments: Optional[torch.LongTensor] = None,
) |
Embed tokens prior to feeding into transformer.
:param LongTensor[batch,seqlen] input:
The input IDs
:param LongTensor[batch,seqlen] positions:
Positions for input IDs
:param LongTensor[batch,seqlen]:
If provided, additionally adds ``segments`` as extra embedding features.
:return (tensor, mask):
return embedded input and mask
|
Embed tokens prior to feeding into transformer. | def forward_embedding(
self,
input: torch.LongTensor,
positions: Optional[torch.LongTensor] = None,
segments: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, torch.BoolTensor]:
"""
Embed tokens prior to feeding into transformer.
:param LongTensor[batch,seqlen] input:
The input IDs
:param LongTensor[batch,seqlen] positions:
Positions for input IDs
:param LongTensor[batch,seqlen]:
If provided, additionally adds ``segments`` as extra embedding features.
:return (tensor, mask):
return embedded input and mask
"""
mask = input != self.padding_idx
if positions is None:
positions = (mask.cumsum(dim=1, dtype=torch.int64) - 1).clamp_(min=0)
tensor = self.embeddings(input)
if self.embeddings_scale:
tensor = tensor * np.sqrt(self.dim)
if positions.max().item() > self.n_positions:
warn_once(
'You are inputting a sequence of {x} length, but only have '
'--n-positions {y}. Set --truncate or increase --n-positions'.format(
x=positions.max().item(), y=self.n_positions
)
)
position_embs = self.position_embeddings(positions).expand_as(tensor)
tensor = tensor + position_embs
if self.n_segments >= 1:
if segments is None:
segments = torch.zeros_like(input) # type: ignore
tensor = tensor + self.segment_embeddings(segments)
return tensor, mask | [
"def",
"forward_embedding",
"(",
"self",
",",
"input",
":",
"torch",
".",
"LongTensor",
",",
"positions",
":",
"Optional",
"[",
"torch",
".",
"LongTensor",
"]",
"=",
"None",
",",
"segments",
":",
"Optional",
"[",
"torch",
".",
"LongTensor",
"]",
"=",
"None",
",",
")",
"->",
"Tuple",
"[",
"torch",
".",
"Tensor",
",",
"torch",
".",
"BoolTensor",
"]",
":",
"mask",
"=",
"input",
"!=",
"self",
".",
"padding_idx",
"if",
"positions",
"is",
"None",
":",
"positions",
"=",
"(",
"mask",
".",
"cumsum",
"(",
"dim",
"=",
"1",
",",
"dtype",
"=",
"torch",
".",
"int64",
")",
"-",
"1",
")",
".",
"clamp_",
"(",
"min",
"=",
"0",
")",
"tensor",
"=",
"self",
".",
"embeddings",
"(",
"input",
")",
"if",
"self",
".",
"embeddings_scale",
":",
"tensor",
"=",
"tensor",
"*",
"np",
".",
"sqrt",
"(",
"self",
".",
"dim",
")",
"if",
"positions",
".",
"max",
"(",
")",
".",
"item",
"(",
")",
">",
"self",
".",
"n_positions",
":",
"warn_once",
"(",
"'You are inputting a sequence of {x} length, but only have '",
"'--n-positions {y}. Set --truncate or increase --n-positions'",
".",
"format",
"(",
"x",
"=",
"positions",
".",
"max",
"(",
")",
".",
"item",
"(",
")",
",",
"y",
"=",
"self",
".",
"n_positions",
")",
")",
"position_embs",
"=",
"self",
".",
"position_embeddings",
"(",
"positions",
")",
".",
"expand_as",
"(",
"tensor",
")",
"tensor",
"=",
"tensor",
"+",
"position_embs",
"if",
"self",
".",
"n_segments",
">=",
"1",
":",
"if",
"segments",
"is",
"None",
":",
"segments",
"=",
"torch",
".",
"zeros_like",
"(",
"input",
")",
"# type: ignore",
"tensor",
"=",
"tensor",
"+",
"self",
".",
"segment_embeddings",
"(",
"segments",
")",
"return",
"tensor",
",",
"mask"
] | [
471,
4
] | [
512,
27
] | python | en | ['en', 'error', 'th'] | False |
TransformerEncoder.forward_layers | (
self, tensor: torch.Tensor, mask: torch.BoolTensor
) |
Apply transformer layers to input.
:param tensor:
embedded input
:param mask:
mask of input
:return tensor:
return embedding after applying transformer layers
|
Apply transformer layers to input. | def forward_layers(
self, tensor: torch.Tensor, mask: torch.BoolTensor
) -> torch.Tensor:
"""
Apply transformer layers to input.
:param tensor:
embedded input
:param mask:
mask of input
:return tensor:
return embedding after applying transformer layers
"""
if getattr(self.layers, 'is_model_parallel', False):
# factored out for readability. It is equivalent to the other
# condition
tensor = self._apply_model_parallel(tensor, mask)
else:
for i in range(self.n_layers):
tensor = self.layers[i](tensor, mask)
return tensor | [
"def",
"forward_layers",
"(",
"self",
",",
"tensor",
":",
"torch",
".",
"Tensor",
",",
"mask",
":",
"torch",
".",
"BoolTensor",
")",
"->",
"torch",
".",
"Tensor",
":",
"if",
"getattr",
"(",
"self",
".",
"layers",
",",
"'is_model_parallel'",
",",
"False",
")",
":",
"# factored out for readability. It is equivalent to the other",
"# condition",
"tensor",
"=",
"self",
".",
"_apply_model_parallel",
"(",
"tensor",
",",
"mask",
")",
"else",
":",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"n_layers",
")",
":",
"tensor",
"=",
"self",
".",
"layers",
"[",
"i",
"]",
"(",
"tensor",
",",
"mask",
")",
"return",
"tensor"
] | [
514,
4
] | [
536,
21
] | python | en | ['en', 'error', 'th'] | False |
TransformerEncoder.reduce_output | (
self, tensor: torch.Tensor, mask: torch.BoolTensor
) |
Reduce transformer output at end of forward pass.
:param tensor:
encoded input
:param mask:
mask for encoded input
:return (tensor, mask):
returns the reduced tensor, and mask if appropriate
|
Reduce transformer output at end of forward pass. | def reduce_output(
self, tensor: torch.Tensor, mask: torch.BoolTensor
) -> Tuple[torch.Tensor, Optional[torch.BoolTensor]]:
"""
Reduce transformer output at end of forward pass.
:param tensor:
encoded input
:param mask:
mask for encoded input
:return (tensor, mask):
returns the reduced tensor, and mask if appropriate
"""
tensor *= self.output_scaling
if self.reduction_type == 'first':
return tensor[:, 0, :], None
elif self.reduction_type == 'max':
return tensor.max(dim=1)[0], None
elif self.reduction_type == 'mean':
divisor = mask.float().sum(dim=1).unsqueeze(-1).clamp(min=1).type_as(tensor)
output = tensor.sum(dim=1) / divisor
return output, None
elif self.reduction_type is None or 'none' in self.reduction_type:
return tensor, mask
else:
raise ValueError(
"Can't handle --reduction-type {}".format(self.reduction_type)
) | [
"def",
"reduce_output",
"(",
"self",
",",
"tensor",
":",
"torch",
".",
"Tensor",
",",
"mask",
":",
"torch",
".",
"BoolTensor",
")",
"->",
"Tuple",
"[",
"torch",
".",
"Tensor",
",",
"Optional",
"[",
"torch",
".",
"BoolTensor",
"]",
"]",
":",
"tensor",
"*=",
"self",
".",
"output_scaling",
"if",
"self",
".",
"reduction_type",
"==",
"'first'",
":",
"return",
"tensor",
"[",
":",
",",
"0",
",",
":",
"]",
",",
"None",
"elif",
"self",
".",
"reduction_type",
"==",
"'max'",
":",
"return",
"tensor",
".",
"max",
"(",
"dim",
"=",
"1",
")",
"[",
"0",
"]",
",",
"None",
"elif",
"self",
".",
"reduction_type",
"==",
"'mean'",
":",
"divisor",
"=",
"mask",
".",
"float",
"(",
")",
".",
"sum",
"(",
"dim",
"=",
"1",
")",
".",
"unsqueeze",
"(",
"-",
"1",
")",
".",
"clamp",
"(",
"min",
"=",
"1",
")",
".",
"type_as",
"(",
"tensor",
")",
"output",
"=",
"tensor",
".",
"sum",
"(",
"dim",
"=",
"1",
")",
"/",
"divisor",
"return",
"output",
",",
"None",
"elif",
"self",
".",
"reduction_type",
"is",
"None",
"or",
"'none'",
"in",
"self",
".",
"reduction_type",
":",
"return",
"tensor",
",",
"mask",
"else",
":",
"raise",
"ValueError",
"(",
"\"Can't handle --reduction-type {}\"",
".",
"format",
"(",
"self",
".",
"reduction_type",
")",
")"
] | [
538,
4
] | [
566,
13
] | python | en | ['en', 'error', 'th'] | False |
TransformerEncoder.forward | ( # type: ignore
self,
input: torch.LongTensor,
positions: Optional[torch.LongTensor] = None,
segments: Optional[torch.LongTensor] = None,
) |
Forward pass.
:param LongTensor[batch,seqlen] input:
The input IDs
:param LongTensor[batch,seqlen] positions:
Positions for input IDs
:param LongTensor[batch,seqlen] segments:
If provided, additionally adds ``segments`` as extra embedding features.
|
Forward pass. | def forward( # type: ignore
self,
input: torch.LongTensor,
positions: Optional[torch.LongTensor] = None,
segments: Optional[torch.LongTensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.BoolTensor]]:
"""
Forward pass.
:param LongTensor[batch,seqlen] input:
The input IDs
:param LongTensor[batch,seqlen] positions:
Positions for input IDs
:param LongTensor[batch,seqlen] segments:
If provided, additionally adds ``segments`` as extra embedding features.
"""
# embed input
tensor, mask = self.forward_embedding(input, positions, segments)
if self.variant == 'xlm' or self.variant == 'bart':
tensor = _normalize(tensor, self.norm_embeddings)
# --dropout on the embeddings
tensor = self.dropout(tensor)
tensor *= mask.unsqueeze(-1).type_as(tensor)
# apply transformer layers
tensor = self.forward_layers(tensor, mask)
if self.variant == 'prelayernorm':
tensor = _normalize(tensor, self.norm_embeddings)
# reduce output
tensor, out_mask = self.reduce_output(tensor, mask)
if out_mask is not None:
return tensor, out_mask
else:
return tensor | [
"def",
"forward",
"(",
"# type: ignore",
"self",
",",
"input",
":",
"torch",
".",
"LongTensor",
",",
"positions",
":",
"Optional",
"[",
"torch",
".",
"LongTensor",
"]",
"=",
"None",
",",
"segments",
":",
"Optional",
"[",
"torch",
".",
"LongTensor",
"]",
"=",
"None",
",",
")",
"->",
"Union",
"[",
"torch",
".",
"Tensor",
",",
"Tuple",
"[",
"torch",
".",
"Tensor",
",",
"torch",
".",
"BoolTensor",
"]",
"]",
":",
"# embed input",
"tensor",
",",
"mask",
"=",
"self",
".",
"forward_embedding",
"(",
"input",
",",
"positions",
",",
"segments",
")",
"if",
"self",
".",
"variant",
"==",
"'xlm'",
"or",
"self",
".",
"variant",
"==",
"'bart'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm_embeddings",
")",
"# --dropout on the embeddings",
"tensor",
"=",
"self",
".",
"dropout",
"(",
"tensor",
")",
"tensor",
"*=",
"mask",
".",
"unsqueeze",
"(",
"-",
"1",
")",
".",
"type_as",
"(",
"tensor",
")",
"# apply transformer layers",
"tensor",
"=",
"self",
".",
"forward_layers",
"(",
"tensor",
",",
"mask",
")",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm_embeddings",
")",
"# reduce output",
"tensor",
",",
"out_mask",
"=",
"self",
".",
"reduce_output",
"(",
"tensor",
",",
"mask",
")",
"if",
"out_mask",
"is",
"not",
"None",
":",
"return",
"tensor",
",",
"out_mask",
"else",
":",
"return",
"tensor"
] | [
568,
4
] | [
606,
25
] | python | en | ['en', 'error', 'th'] | False |
TransformerEncoder._apply_model_parallel | (self, tensor, mask) |
Pipeline application of model parallelism.
|
Pipeline application of model parallelism.
| def _apply_model_parallel(self, tensor, mask):
"""
Pipeline application of model parallelism.
"""
chunks = PipelineHelper.split((tensor, mask))
work_items = PipelineHelper.schedule_work_items(self.layers, chunks)
for chunk_idx, layer_nos, next_device in work_items:
s_tensor, s_mask = chunks[chunk_idx]
for layer_no in layer_nos:
s_tensor = self.layers[layer_no](s_tensor, s_mask)
chunks[chunk_idx] = PipelineHelper.chunk_to((s_tensor, s_mask), next_device)
tensor_out, mask_out = PipelineHelper.join(chunks)
return tensor_out | [
"def",
"_apply_model_parallel",
"(",
"self",
",",
"tensor",
",",
"mask",
")",
":",
"chunks",
"=",
"PipelineHelper",
".",
"split",
"(",
"(",
"tensor",
",",
"mask",
")",
")",
"work_items",
"=",
"PipelineHelper",
".",
"schedule_work_items",
"(",
"self",
".",
"layers",
",",
"chunks",
")",
"for",
"chunk_idx",
",",
"layer_nos",
",",
"next_device",
"in",
"work_items",
":",
"s_tensor",
",",
"s_mask",
"=",
"chunks",
"[",
"chunk_idx",
"]",
"for",
"layer_no",
"in",
"layer_nos",
":",
"s_tensor",
"=",
"self",
".",
"layers",
"[",
"layer_no",
"]",
"(",
"s_tensor",
",",
"s_mask",
")",
"chunks",
"[",
"chunk_idx",
"]",
"=",
"PipelineHelper",
".",
"chunk_to",
"(",
"(",
"s_tensor",
",",
"s_mask",
")",
",",
"next_device",
")",
"tensor_out",
",",
"mask_out",
"=",
"PipelineHelper",
".",
"join",
"(",
"chunks",
")",
"return",
"tensor_out"
] | [
608,
4
] | [
622,
25
] | python | en | ['en', 'error', 'th'] | False |
TransformerEncoderLayer.forward | (self, tensor, mask) |
Forward pass.
|
Forward pass.
| def forward(self, tensor, mask):
"""
Forward pass.
"""
residual = tensor
if self.variant == 'prelayernorm':
tensor = _normalize(tensor, self.norm1)
attended_tensor = self.attention(tensor, mask=mask)[0]
tensor = residual + self.dropout(attended_tensor)
if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart':
tensor = _normalize(tensor, self.norm1)
residual = tensor
if self.variant == 'prelayernorm':
tensor = _normalize(tensor, self.norm2)
tensor = residual + self.dropout(self.ffn(tensor))
if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart':
tensor = _normalize(tensor, self.norm2)
tensor *= mask.unsqueeze(-1).type_as(tensor)
return tensor | [
"def",
"forward",
"(",
"self",
",",
"tensor",
",",
"mask",
")",
":",
"residual",
"=",
"tensor",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm1",
")",
"attended_tensor",
"=",
"self",
".",
"attention",
"(",
"tensor",
",",
"mask",
"=",
"mask",
")",
"[",
"0",
"]",
"tensor",
"=",
"residual",
"+",
"self",
".",
"dropout",
"(",
"attended_tensor",
")",
"if",
"self",
".",
"variant",
"==",
"'aiayn'",
"or",
"self",
".",
"variant",
"==",
"'xlm'",
"or",
"self",
".",
"variant",
"==",
"'bart'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm1",
")",
"residual",
"=",
"tensor",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm2",
")",
"tensor",
"=",
"residual",
"+",
"self",
".",
"dropout",
"(",
"self",
".",
"ffn",
"(",
"tensor",
")",
")",
"if",
"self",
".",
"variant",
"==",
"'aiayn'",
"or",
"self",
".",
"variant",
"==",
"'xlm'",
"or",
"self",
".",
"variant",
"==",
"'bart'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm2",
")",
"tensor",
"*=",
"mask",
".",
"unsqueeze",
"(",
"-",
"1",
")",
".",
"type_as",
"(",
"tensor",
")",
"return",
"tensor"
] | [
659,
4
] | [
677,
21
] | python | en | ['en', 'error', 'th'] | False |
TransformerDecoder.forward_embedding | (
self,
input: torch.LongTensor,
positions: Optional[torch.LongTensor] = None,
segments: Optional[torch.LongTensor] = None,
) |
Embed tokens prior to feeding into transformer.
:param LongTensor[batch, seqlen] input:
The target input IDs
:param LongTensor[batch, seqlen] positions:
Positions for input IDs. If None, computes defaults.
:param LongTensor[batch, seqlen] segements:
Segment IDs for extra embedding features. If None, not used.
:return (tensor, mask):
embeded input and mask
|
Embed tokens prior to feeding into transformer. | def forward_embedding(
self,
input: torch.LongTensor,
positions: Optional[torch.LongTensor] = None,
segments: Optional[torch.LongTensor] = None,
):
"""
Embed tokens prior to feeding into transformer.
:param LongTensor[batch, seqlen] input:
The target input IDs
:param LongTensor[batch, seqlen] positions:
Positions for input IDs. If None, computes defaults.
:param LongTensor[batch, seqlen] segements:
Segment IDs for extra embedding features. If None, not used.
:return (tensor, mask):
embeded input and mask
"""
tensor = self.embeddings(input)
if self.embeddings_scale:
tensor = tensor * np.sqrt(self.dim)
if self.variant == 'xlm':
tensor = _normalize(tensor, self.norm_embeddings)
if positions.max().item() > self.n_positions:
warn_once(
'You are inputting a sequence of {x} length, but only have '
'--n-positions {y}. Set --truncate or increase --n-positions'.format(
x=positions.max().item(), y=self.n_positions
)
)
tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
if self.variant == 'bart':
tensor = _normalize(tensor, self.norm_embeddings)
return tensor | [
"def",
"forward_embedding",
"(",
"self",
",",
"input",
":",
"torch",
".",
"LongTensor",
",",
"positions",
":",
"Optional",
"[",
"torch",
".",
"LongTensor",
"]",
"=",
"None",
",",
"segments",
":",
"Optional",
"[",
"torch",
".",
"LongTensor",
"]",
"=",
"None",
",",
")",
":",
"tensor",
"=",
"self",
".",
"embeddings",
"(",
"input",
")",
"if",
"self",
".",
"embeddings_scale",
":",
"tensor",
"=",
"tensor",
"*",
"np",
".",
"sqrt",
"(",
"self",
".",
"dim",
")",
"if",
"self",
".",
"variant",
"==",
"'xlm'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm_embeddings",
")",
"if",
"positions",
".",
"max",
"(",
")",
".",
"item",
"(",
")",
">",
"self",
".",
"n_positions",
":",
"warn_once",
"(",
"'You are inputting a sequence of {x} length, but only have '",
"'--n-positions {y}. Set --truncate or increase --n-positions'",
".",
"format",
"(",
"x",
"=",
"positions",
".",
"max",
"(",
")",
".",
"item",
"(",
")",
",",
"y",
"=",
"self",
".",
"n_positions",
")",
")",
"tensor",
"=",
"tensor",
"+",
"self",
".",
"position_embeddings",
"(",
"positions",
")",
".",
"expand_as",
"(",
"tensor",
")",
"if",
"self",
".",
"variant",
"==",
"'bart'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm_embeddings",
")",
"return",
"tensor"
] | [
785,
4
] | [
820,
21
] | python | en | ['en', 'error', 'th'] | False |
TransformerDecoder.forward_layers | (
self,
tensor: torch.Tensor,
encoder_output: torch.Tensor,
encoder_mask: torch.Tensor,
incr_state: Dict[int, torch.Tensor],
) |
Forward pass of decoder layers.
:param tensor:
embedded input tensor for the decoder
:param enc_out:
encoder outputs
:param enc_mask:
encoder output mask
:param incr_state:
Dict mapping layer_idx to incremental state
:return (tensor, new_incr_state):
return encoding after applying decoder layers, as well
as new incremental decoding state.
|
Forward pass of decoder layers. | def forward_layers(
self,
tensor: torch.Tensor,
encoder_output: torch.Tensor,
encoder_mask: torch.Tensor,
incr_state: Dict[int, torch.Tensor],
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Forward pass of decoder layers.
:param tensor:
embedded input tensor for the decoder
:param enc_out:
encoder outputs
:param enc_mask:
encoder output mask
:param incr_state:
Dict mapping layer_idx to incremental state
:return (tensor, new_incr_state):
return encoding after applying decoder layers, as well
as new incremental decoding state.
"""
new_incr_state = {}
if getattr(self.layers, 'is_model_parallel', False):
tensor, new_incr_state = self._apply_model_parallel(
tensor, encoder_output, encoder_mask, incr_state
)
else:
for idx, layer in enumerate(self.layers):
tensor, new_incr_state[idx] = layer(
x=tensor,
encoder_output=encoder_output,
encoder_mask=encoder_mask,
incr_state=incr_state.get(idx),
)
return tensor, new_incr_state | [
"def",
"forward_layers",
"(",
"self",
",",
"tensor",
":",
"torch",
".",
"Tensor",
",",
"encoder_output",
":",
"torch",
".",
"Tensor",
",",
"encoder_mask",
":",
"torch",
".",
"Tensor",
",",
"incr_state",
":",
"Dict",
"[",
"int",
",",
"torch",
".",
"Tensor",
"]",
",",
")",
"->",
"Tuple",
"[",
"torch",
".",
"Tensor",
",",
"Dict",
"[",
"str",
",",
"torch",
".",
"Tensor",
"]",
"]",
":",
"new_incr_state",
"=",
"{",
"}",
"if",
"getattr",
"(",
"self",
".",
"layers",
",",
"'is_model_parallel'",
",",
"False",
")",
":",
"tensor",
",",
"new_incr_state",
"=",
"self",
".",
"_apply_model_parallel",
"(",
"tensor",
",",
"encoder_output",
",",
"encoder_mask",
",",
"incr_state",
")",
"else",
":",
"for",
"idx",
",",
"layer",
"in",
"enumerate",
"(",
"self",
".",
"layers",
")",
":",
"tensor",
",",
"new_incr_state",
"[",
"idx",
"]",
"=",
"layer",
"(",
"x",
"=",
"tensor",
",",
"encoder_output",
"=",
"encoder_output",
",",
"encoder_mask",
"=",
"encoder_mask",
",",
"incr_state",
"=",
"incr_state",
".",
"get",
"(",
"idx",
")",
",",
")",
"return",
"tensor",
",",
"new_incr_state"
] | [
822,
4
] | [
859,
37
] | python | en | ['en', 'error', 'th'] | False |
TransformerDecoder.forward | (self, input, encoder_state, incr_state=None) |
Forward pass.
:param LongTensor[batch,seqlen] input:
The decoder inputs (partial or full decoded token IDs).
:param encoder_state:
Output from the encoder module forward pass.
:param incr_state:
The incremental state: a dictionary whose keys index the layers and whose
values contain the incremental state for each layer.
|
Forward pass. | def forward(self, input, encoder_state, incr_state=None):
"""
Forward pass.
:param LongTensor[batch,seqlen] input:
The decoder inputs (partial or full decoded token IDs).
:param encoder_state:
Output from the encoder module forward pass.
:param incr_state:
The incremental state: a dictionary whose keys index the layers and whose
values contain the incremental state for each layer.
"""
encoder_output, encoder_mask = encoder_state
seq_len = input.size(1)
positions = input.new(seq_len).long()
positions = torch.arange(seq_len, out=positions).unsqueeze(0)
if incr_state is not None:
# We're doing incremental decoding, so select only the most recent position
input = input[:, -1:]
if positions is not None:
positions = positions[:, -1:]
else:
incr_state = {}
tensor = self.forward_embedding(input, positions)
tensor = self.dropout(tensor) # --dropout
tensor, new_incr_state = self.forward_layers(
tensor, encoder_output, encoder_mask, incr_state
)
if self.variant == 'prelayernorm':
tensor = _normalize(tensor, self.norm_embeddings)
return tensor, new_incr_state | [
"def",
"forward",
"(",
"self",
",",
"input",
",",
"encoder_state",
",",
"incr_state",
"=",
"None",
")",
":",
"encoder_output",
",",
"encoder_mask",
"=",
"encoder_state",
"seq_len",
"=",
"input",
".",
"size",
"(",
"1",
")",
"positions",
"=",
"input",
".",
"new",
"(",
"seq_len",
")",
".",
"long",
"(",
")",
"positions",
"=",
"torch",
".",
"arange",
"(",
"seq_len",
",",
"out",
"=",
"positions",
")",
".",
"unsqueeze",
"(",
"0",
")",
"if",
"incr_state",
"is",
"not",
"None",
":",
"# We're doing incremental decoding, so select only the most recent position",
"input",
"=",
"input",
"[",
":",
",",
"-",
"1",
":",
"]",
"if",
"positions",
"is",
"not",
"None",
":",
"positions",
"=",
"positions",
"[",
":",
",",
"-",
"1",
":",
"]",
"else",
":",
"incr_state",
"=",
"{",
"}",
"tensor",
"=",
"self",
".",
"forward_embedding",
"(",
"input",
",",
"positions",
")",
"tensor",
"=",
"self",
".",
"dropout",
"(",
"tensor",
")",
"# --dropout",
"tensor",
",",
"new_incr_state",
"=",
"self",
".",
"forward_layers",
"(",
"tensor",
",",
"encoder_output",
",",
"encoder_mask",
",",
"incr_state",
")",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"tensor",
"=",
"_normalize",
"(",
"tensor",
",",
"self",
".",
"norm_embeddings",
")",
"return",
"tensor",
",",
"new_incr_state"
] | [
861,
4
] | [
898,
37
] | python | en | ['en', 'error', 'th'] | False |
TransformerDecoder._apply_model_parallel | (self, tensor, encoder_output, encoder_mask, incr_state) |
Pipeline application of model parallelism.
|
Pipeline application of model parallelism.
| def _apply_model_parallel(self, tensor, encoder_output, encoder_mask, incr_state):
"""
Pipeline application of model parallelism.
"""
chunks = PipelineHelper.split(
(tensor, encoder_output, encoder_mask, incr_state)
)
work_items = PipelineHelper.schedule_work_items(self.layers, chunks)
new_incr_state = {i: [] for i, _ in enumerate(self.layers)}
for chunk_idx, layer_nos, next_device in work_items:
s_tensor, s_enc_out, s_enc_mask, s_incr_state = chunks[chunk_idx]
for layer_no in layer_nos:
s_tensor, nis = self.layers[layer_no](
x=s_tensor,
encoder_output=s_enc_out,
encoder_mask=s_enc_mask,
incr_state=s_incr_state.get(layer_no),
)
new_incr_state[layer_no].append(nis)
# don't move incr state, it's always on the correct device
s_tensor, s_enc_out, s_enc_mask = PipelineHelper.chunk_to(
(s_tensor, s_enc_out, s_enc_mask), next_device
)
chunks[chunk_idx] = (s_tensor, s_enc_out, s_enc_mask, s_incr_state)
tensor_out = PipelineHelper.join([c[0] for c in chunks])
new_incr_state = {
layer_no: PipelineHelper.join(pieces)
for layer_no, pieces in new_incr_state.items()
}
return tensor_out, new_incr_state | [
"def",
"_apply_model_parallel",
"(",
"self",
",",
"tensor",
",",
"encoder_output",
",",
"encoder_mask",
",",
"incr_state",
")",
":",
"chunks",
"=",
"PipelineHelper",
".",
"split",
"(",
"(",
"tensor",
",",
"encoder_output",
",",
"encoder_mask",
",",
"incr_state",
")",
")",
"work_items",
"=",
"PipelineHelper",
".",
"schedule_work_items",
"(",
"self",
".",
"layers",
",",
"chunks",
")",
"new_incr_state",
"=",
"{",
"i",
":",
"[",
"]",
"for",
"i",
",",
"_",
"in",
"enumerate",
"(",
"self",
".",
"layers",
")",
"}",
"for",
"chunk_idx",
",",
"layer_nos",
",",
"next_device",
"in",
"work_items",
":",
"s_tensor",
",",
"s_enc_out",
",",
"s_enc_mask",
",",
"s_incr_state",
"=",
"chunks",
"[",
"chunk_idx",
"]",
"for",
"layer_no",
"in",
"layer_nos",
":",
"s_tensor",
",",
"nis",
"=",
"self",
".",
"layers",
"[",
"layer_no",
"]",
"(",
"x",
"=",
"s_tensor",
",",
"encoder_output",
"=",
"s_enc_out",
",",
"encoder_mask",
"=",
"s_enc_mask",
",",
"incr_state",
"=",
"s_incr_state",
".",
"get",
"(",
"layer_no",
")",
",",
")",
"new_incr_state",
"[",
"layer_no",
"]",
".",
"append",
"(",
"nis",
")",
"# don't move incr state, it's always on the correct device",
"s_tensor",
",",
"s_enc_out",
",",
"s_enc_mask",
"=",
"PipelineHelper",
".",
"chunk_to",
"(",
"(",
"s_tensor",
",",
"s_enc_out",
",",
"s_enc_mask",
")",
",",
"next_device",
")",
"chunks",
"[",
"chunk_idx",
"]",
"=",
"(",
"s_tensor",
",",
"s_enc_out",
",",
"s_enc_mask",
",",
"s_incr_state",
")",
"tensor_out",
"=",
"PipelineHelper",
".",
"join",
"(",
"[",
"c",
"[",
"0",
"]",
"for",
"c",
"in",
"chunks",
"]",
")",
"new_incr_state",
"=",
"{",
"layer_no",
":",
"PipelineHelper",
".",
"join",
"(",
"pieces",
")",
"for",
"layer_no",
",",
"pieces",
"in",
"new_incr_state",
".",
"items",
"(",
")",
"}",
"return",
"tensor_out",
",",
"new_incr_state"
] | [
900,
4
] | [
933,
41
] | python | en | ['en', 'error', 'th'] | False |
TransformerDecoderLayer.forward | (self, x, encoder_output, encoder_mask, incr_state=None) |
Forward pass.
The incremental state is a dict with values for self- and encoder-attention
states.
|
Forward pass. | def forward(self, x, encoder_output, encoder_mask, incr_state=None):
"""
Forward pass.
The incremental state is a dict with values for self- and encoder-attention
states.
"""
if incr_state is None:
incr_state = {}
decoder_mask = self._create_selfattn_mask(x)
# first self attn
residual = x
if self.variant == 'prelayernorm':
x = _normalize(x, self.norm1)
# don't peak into the future!
x, final_self_attn_incr_state = self.self_attention(
query=x,
mask=decoder_mask,
incr_state=incr_state.get('self_attn'),
static_kv=False,
)[:2]
x = self.dropout(x) # --dropout
x = x + residual
if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart':
x = _normalize(x, self.norm1)
residual = x
# encoder_attn_layer_norm norm 2
if self.variant == 'prelayernorm':
x = _normalize(x, self.norm2)
x, final_encoder_attn_incr_state = self.encoder_attention(
query=x,
key=encoder_output,
value=encoder_output,
mask=encoder_mask,
incr_state=incr_state.get('encoder_attn'),
static_kv=True,
)[:2]
x = self.dropout(x) # --dropout
x = residual + x
if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart':
x = _normalize(x, self.norm2)
# finally the ffn
residual = x
if self.variant == 'prelayernorm':
x = _normalize(x, self.norm3)
x = self.ffn(x)
x = self.dropout(x) # --dropout
x = residual + x
if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart':
x = _normalize(x, self.norm3)
new_incr_state = {
'self_attn': final_self_attn_incr_state,
'encoder_attn': final_encoder_attn_incr_state,
}
return x, new_incr_state | [
"def",
"forward",
"(",
"self",
",",
"x",
",",
"encoder_output",
",",
"encoder_mask",
",",
"incr_state",
"=",
"None",
")",
":",
"if",
"incr_state",
"is",
"None",
":",
"incr_state",
"=",
"{",
"}",
"decoder_mask",
"=",
"self",
".",
"_create_selfattn_mask",
"(",
"x",
")",
"# first self attn",
"residual",
"=",
"x",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"x",
"=",
"_normalize",
"(",
"x",
",",
"self",
".",
"norm1",
")",
"# don't peak into the future!",
"x",
",",
"final_self_attn_incr_state",
"=",
"self",
".",
"self_attention",
"(",
"query",
"=",
"x",
",",
"mask",
"=",
"decoder_mask",
",",
"incr_state",
"=",
"incr_state",
".",
"get",
"(",
"'self_attn'",
")",
",",
"static_kv",
"=",
"False",
",",
")",
"[",
":",
"2",
"]",
"x",
"=",
"self",
".",
"dropout",
"(",
"x",
")",
"# --dropout",
"x",
"=",
"x",
"+",
"residual",
"if",
"self",
".",
"variant",
"==",
"'aiayn'",
"or",
"self",
".",
"variant",
"==",
"'xlm'",
"or",
"self",
".",
"variant",
"==",
"'bart'",
":",
"x",
"=",
"_normalize",
"(",
"x",
",",
"self",
".",
"norm1",
")",
"residual",
"=",
"x",
"# encoder_attn_layer_norm norm 2",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"x",
"=",
"_normalize",
"(",
"x",
",",
"self",
".",
"norm2",
")",
"x",
",",
"final_encoder_attn_incr_state",
"=",
"self",
".",
"encoder_attention",
"(",
"query",
"=",
"x",
",",
"key",
"=",
"encoder_output",
",",
"value",
"=",
"encoder_output",
",",
"mask",
"=",
"encoder_mask",
",",
"incr_state",
"=",
"incr_state",
".",
"get",
"(",
"'encoder_attn'",
")",
",",
"static_kv",
"=",
"True",
",",
")",
"[",
":",
"2",
"]",
"x",
"=",
"self",
".",
"dropout",
"(",
"x",
")",
"# --dropout",
"x",
"=",
"residual",
"+",
"x",
"if",
"self",
".",
"variant",
"==",
"'aiayn'",
"or",
"self",
".",
"variant",
"==",
"'xlm'",
"or",
"self",
".",
"variant",
"==",
"'bart'",
":",
"x",
"=",
"_normalize",
"(",
"x",
",",
"self",
".",
"norm2",
")",
"# finally the ffn",
"residual",
"=",
"x",
"if",
"self",
".",
"variant",
"==",
"'prelayernorm'",
":",
"x",
"=",
"_normalize",
"(",
"x",
",",
"self",
".",
"norm3",
")",
"x",
"=",
"self",
".",
"ffn",
"(",
"x",
")",
"x",
"=",
"self",
".",
"dropout",
"(",
"x",
")",
"# --dropout",
"x",
"=",
"residual",
"+",
"x",
"if",
"self",
".",
"variant",
"==",
"'aiayn'",
"or",
"self",
".",
"variant",
"==",
"'xlm'",
"or",
"self",
".",
"variant",
"==",
"'bart'",
":",
"x",
"=",
"_normalize",
"(",
"x",
",",
"self",
".",
"norm3",
")",
"new_incr_state",
"=",
"{",
"'self_attn'",
":",
"final_self_attn_incr_state",
",",
"'encoder_attn'",
":",
"final_encoder_attn_incr_state",
",",
"}",
"return",
"x",
",",
"new_incr_state"
] | [
979,
4
] | [
1039,
32
] | python | en | ['en', 'error', 'th'] | False |
TransformerDecoderLayer.reorder_incremental_state | (
self, incremental_state: Dict[str, dict], inds: torch.Tensor
) |
Reorder all incremental-state tensors for this layer.
|
Reorder all incremental-state tensors for this layer.
| def reorder_incremental_state(
self, incremental_state: Dict[str, dict], inds: torch.Tensor
) -> Dict[str, dict]:
"""
Reorder all incremental-state tensors for this layer.
"""
attn_types = {
'self_attn': self.self_attention,
'encoder_attn': self.encoder_attention,
}
return {
attn_type: attn.reorder_incremental_state(
incremental_state[attn_type], inds
)
for attn_type, attn in attn_types.items()
} | [
"def",
"reorder_incremental_state",
"(",
"self",
",",
"incremental_state",
":",
"Dict",
"[",
"str",
",",
"dict",
"]",
",",
"inds",
":",
"torch",
".",
"Tensor",
")",
"->",
"Dict",
"[",
"str",
",",
"dict",
"]",
":",
"attn_types",
"=",
"{",
"'self_attn'",
":",
"self",
".",
"self_attention",
",",
"'encoder_attn'",
":",
"self",
".",
"encoder_attention",
",",
"}",
"return",
"{",
"attn_type",
":",
"attn",
".",
"reorder_incremental_state",
"(",
"incremental_state",
"[",
"attn_type",
"]",
",",
"inds",
")",
"for",
"attn_type",
",",
"attn",
"in",
"attn_types",
".",
"items",
"(",
")",
"}"
] | [
1051,
4
] | [
1066,
9
] | python | en | ['en', 'error', 'th'] | False |
TransformerGeneratorModel.reorder_encoder_states | (self, encoder_states, indices) |
Reorder the encoder states.
See ``TorchGeneratorModel.reorder_encoder_states`` for a description.
|
Reorder the encoder states. | def reorder_encoder_states(self, encoder_states, indices):
"""
Reorder the encoder states.
See ``TorchGeneratorModel.reorder_encoder_states`` for a description.
"""
enc, mask = encoder_states
if not torch.is_tensor(indices):
indices = torch.LongTensor(indices).to(enc.device)
enc = torch.index_select(enc, 0, indices)
mask = torch.index_select(mask, 0, indices)
return enc, mask | [
"def",
"reorder_encoder_states",
"(",
"self",
",",
"encoder_states",
",",
"indices",
")",
":",
"enc",
",",
"mask",
"=",
"encoder_states",
"if",
"not",
"torch",
".",
"is_tensor",
"(",
"indices",
")",
":",
"indices",
"=",
"torch",
".",
"LongTensor",
"(",
"indices",
")",
".",
"to",
"(",
"enc",
".",
"device",
")",
"enc",
"=",
"torch",
".",
"index_select",
"(",
"enc",
",",
"0",
",",
"indices",
")",
"mask",
"=",
"torch",
".",
"index_select",
"(",
"mask",
",",
"0",
",",
"indices",
")",
"return",
"enc",
",",
"mask"
] | [
1185,
4
] | [
1196,
24
] | python | en | ['en', 'error', 'th'] | False |
TransformerGeneratorModel.reorder_decoder_incremental_state | (
self, incremental_state: Dict[int, dict], inds: torch.Tensor
) |
Reorder the decoder incremental state.
See ``TorchGeneratorModel.reorder_decoder_incremental_state`` for a description.
Here, incremental_state is a dict whose keys are layer indices and whose values
are dicts containing the incremental state for that layer.
|
Reorder the decoder incremental state. | def reorder_decoder_incremental_state(
self, incremental_state: Dict[int, dict], inds: torch.Tensor
) -> Dict[int, dict]:
"""
Reorder the decoder incremental state.
See ``TorchGeneratorModel.reorder_decoder_incremental_state`` for a description.
Here, incremental_state is a dict whose keys are layer indices and whose values
are dicts containing the incremental state for that layer.
"""
return {
idx: layer.reorder_incremental_state(incremental_state[idx], inds)
for idx, layer in enumerate(self.decoder.layers)
} | [
"def",
"reorder_decoder_incremental_state",
"(",
"self",
",",
"incremental_state",
":",
"Dict",
"[",
"int",
",",
"dict",
"]",
",",
"inds",
":",
"torch",
".",
"Tensor",
")",
"->",
"Dict",
"[",
"int",
",",
"dict",
"]",
":",
"return",
"{",
"idx",
":",
"layer",
".",
"reorder_incremental_state",
"(",
"incremental_state",
"[",
"idx",
"]",
",",
"inds",
")",
"for",
"idx",
",",
"layer",
"in",
"enumerate",
"(",
"self",
".",
"decoder",
".",
"layers",
")",
"}"
] | [
1198,
4
] | [
1212,
9
] | python | en | ['en', 'error', 'th'] | False |
TransformerGeneratorModel.output | (self, tensor) |
Compute output logits.
|
Compute output logits.
| def output(self, tensor):
"""
Compute output logits.
"""
# project back to vocabulary
output = F.linear(tensor, self.embeddings.weight)
# compatibility with fairseq: fairseq sometimes reuses BOS tokens and
# we need to force their probability of generation to be 0.
output[:, :, self.start_idx] = neginf(output.dtype)
return output | [
"def",
"output",
"(",
"self",
",",
"tensor",
")",
":",
"# project back to vocabulary",
"output",
"=",
"F",
".",
"linear",
"(",
"tensor",
",",
"self",
".",
"embeddings",
".",
"weight",
")",
"# compatibility with fairseq: fairseq sometimes reuses BOS tokens and",
"# we need to force their probability of generation to be 0.",
"output",
"[",
":",
",",
":",
",",
"self",
".",
"start_idx",
"]",
"=",
"neginf",
"(",
"output",
".",
"dtype",
")",
"return",
"output"
] | [
1214,
4
] | [
1223,
21
] | python | en | ['en', 'error', 'th'] | False |
BasicAttention.forward | (self, xs, ys, mask_ys=None, values=None) |
Compute attention.
Attend over ys with query xs to obtain weights, then apply weights to
values (ys if yalues is None)
Args:
xs: B x query_len x dim (queries)
ys: B x key_len x dim (keys)
mask_ys: B x key_len (mask)
values: B x value_len x dim (values); if None, default to ys
|
Compute attention. | def forward(self, xs, ys, mask_ys=None, values=None):
"""
Compute attention.
Attend over ys with query xs to obtain weights, then apply weights to
values (ys if yalues is None)
Args:
xs: B x query_len x dim (queries)
ys: B x key_len x dim (keys)
mask_ys: B x key_len (mask)
values: B x value_len x dim (values); if None, default to ys
"""
bsz = xs.size(0)
y_len = ys.size(1)
x_len = xs.size(1)
if self.attn == 'cosine':
l1 = self.cosine(xs, ys).unsqueeze(self.dim - 1)
else:
l1 = torch.bmm(xs, ys.transpose(1, 2))
if self.attn == 'sqrt':
d_k = ys.size(-1)
l1 = l1 / math.sqrt(d_k)
if mask_ys is not None:
attn_mask = (mask_ys == 0).view(bsz, 1, y_len)
attn_mask = attn_mask.repeat(1, x_len, 1)
l1.masked_fill_(attn_mask, neginf(l1.dtype))
l2 = F.softmax(l1, dim=self.dim, dtype=torch.float).type_as(l1)
if values is None:
values = ys
lhs_emb = torch.bmm(l2, values)
# # add back the query
if self.residual:
lhs_emb = lhs_emb.add(xs)
if self.get_weights:
return lhs_emb.squeeze(self.dim - 1), l2
else:
return lhs_emb.squeeze(self.dim - 1) | [
"def",
"forward",
"(",
"self",
",",
"xs",
",",
"ys",
",",
"mask_ys",
"=",
"None",
",",
"values",
"=",
"None",
")",
":",
"bsz",
"=",
"xs",
".",
"size",
"(",
"0",
")",
"y_len",
"=",
"ys",
".",
"size",
"(",
"1",
")",
"x_len",
"=",
"xs",
".",
"size",
"(",
"1",
")",
"if",
"self",
".",
"attn",
"==",
"'cosine'",
":",
"l1",
"=",
"self",
".",
"cosine",
"(",
"xs",
",",
"ys",
")",
".",
"unsqueeze",
"(",
"self",
".",
"dim",
"-",
"1",
")",
"else",
":",
"l1",
"=",
"torch",
".",
"bmm",
"(",
"xs",
",",
"ys",
".",
"transpose",
"(",
"1",
",",
"2",
")",
")",
"if",
"self",
".",
"attn",
"==",
"'sqrt'",
":",
"d_k",
"=",
"ys",
".",
"size",
"(",
"-",
"1",
")",
"l1",
"=",
"l1",
"/",
"math",
".",
"sqrt",
"(",
"d_k",
")",
"if",
"mask_ys",
"is",
"not",
"None",
":",
"attn_mask",
"=",
"(",
"mask_ys",
"==",
"0",
")",
".",
"view",
"(",
"bsz",
",",
"1",
",",
"y_len",
")",
"attn_mask",
"=",
"attn_mask",
".",
"repeat",
"(",
"1",
",",
"x_len",
",",
"1",
")",
"l1",
".",
"masked_fill_",
"(",
"attn_mask",
",",
"neginf",
"(",
"l1",
".",
"dtype",
")",
")",
"l2",
"=",
"F",
".",
"softmax",
"(",
"l1",
",",
"dim",
"=",
"self",
".",
"dim",
",",
"dtype",
"=",
"torch",
".",
"float",
")",
".",
"type_as",
"(",
"l1",
")",
"if",
"values",
"is",
"None",
":",
"values",
"=",
"ys",
"lhs_emb",
"=",
"torch",
".",
"bmm",
"(",
"l2",
",",
"values",
")",
"# # add back the query",
"if",
"self",
".",
"residual",
":",
"lhs_emb",
"=",
"lhs_emb",
".",
"add",
"(",
"xs",
")",
"if",
"self",
".",
"get_weights",
":",
"return",
"lhs_emb",
".",
"squeeze",
"(",
"self",
".",
"dim",
"-",
"1",
")",
",",
"l2",
"else",
":",
"return",
"lhs_emb",
".",
"squeeze",
"(",
"self",
".",
"dim",
"-",
"1",
")"
] | [
1240,
4
] | [
1279,
48
] | python | en | ['en', 'error', 'th'] | False |
MultiHeadAttention.forward | ( # type: ignore
# TODO: remove type ignore with pytorch 1.5:
# https://github.com/pytorch/pytorch/pull/31057
self,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None,
mask: torch.Tensor = None,
incr_state: Optional[Dict[str, torch.Tensor]] = None,
static_kv: bool = False,
) |
Forward pass.
:param query: attention query
:param key: attention key
:param value: attention value
:param mask: tensor in which True means that we are allowing attention and False
means we are blocking it. Mask is:
- [B, key_len] (encoder self-attn and decoder enc/dec attn)
- [B, query_len, key_len] (decoder self-attn)
- [B, 1, key_len] (decoder self-attn with incr_state caching)
:param incr_state: dictionary with values representing the previous states of
the key, value, and mask
:param static_kv: True if the key and value are held constant during decoding
(as in encoder/decoder attention)
:return: (
final attended tensor,
new incremental state,
key/value-multiplied tensor before softmax,
)
|
Forward pass. | def forward( # type: ignore
# TODO: remove type ignore with pytorch 1.5:
# https://github.com/pytorch/pytorch/pull/31057
self,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None,
mask: torch.Tensor = None,
incr_state: Optional[Dict[str, torch.Tensor]] = None,
static_kv: bool = False,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""
Forward pass.
:param query: attention query
:param key: attention key
:param value: attention value
:param mask: tensor in which True means that we are allowing attention and False
means we are blocking it. Mask is:
- [B, key_len] (encoder self-attn and decoder enc/dec attn)
- [B, query_len, key_len] (decoder self-attn)
- [B, 1, key_len] (decoder self-attn with incr_state caching)
:param incr_state: dictionary with values representing the previous states of
the key, value, and mask
:param static_kv: True if the key and value are held constant during decoding
(as in encoder/decoder attention)
:return: (
final attended tensor,
new incremental state,
key/value-multiplied tensor before softmax,
)
"""
batch_size, query_len, dim = query.size()
assert (
dim == self.dim
), 'Dimensions do not match: {} query vs {} configured'.format(dim, self.dim)
assert mask is not None, 'Mask is None, please specify a mask'
n_heads = self.n_heads
dim_per_head = dim // n_heads
scale = math.sqrt(dim_per_head)
def prepare_head(tensor):
# input is [batch_size, seq_len, n_heads * dim_per_head]
# output is [batch_size * n_heads, seq_len, dim_per_head]
bsz, seq_len, _ = tensor.size()
tensor = tensor.view(batch_size, tensor.size(1), n_heads, dim_per_head)
tensor = (
tensor.transpose(1, 2)
.contiguous()
.view(batch_size * n_heads, seq_len, dim_per_head)
)
return tensor
# q, k, v are the transformed values
if key is None and value is None:
# self attention
key = value = query
_, _key_len, dim = query.size()
elif value is None:
# key and value are the same, but query differs
# self attention
value = key
assert key is not None # let mypy know we sorted this
_, _key_len, dim = key.size()
q = prepare_head(self.q_lin(query))
k = prepare_head(self.k_lin(key))
v = prepare_head(self.v_lin(value))
# Prepend incremental states. For each of the key, value, and mask, see if
# a previous incremental state exists, and if so, reshape it to match the shape
# of the new state. Concatenate the previous and new states to match what the
# full state would have been if we had not cached. (If we are using static_kv,
# these three states are unchanging, so just re-use the cached states.)
if incr_state is None:
incr_state = {}
if 'prev_key' in incr_state:
prev_key = incr_state['prev_key'].view(
batch_size * n_heads, -1, dim_per_head
)
if static_kv:
k = prev_key
else:
k = torch.cat([prev_key, k], dim=1)
if 'prev_value' in incr_state:
prev_value = incr_state['prev_value'].view(
batch_size * n_heads, -1, dim_per_head
)
if static_kv:
v = prev_value
else:
v = torch.cat([prev_value, v], dim=1)
if 'prev_mask' in incr_state:
if static_kv:
mask = incr_state['prev_mask']
else:
mask = torch.cat([incr_state['prev_mask'], mask], dim=2)
# Prepend along the key_len dimension (analogous to
# incr_state['prev_key'])
# Save new incremental states. We reshape to allow for reordering along batch
# dimension.
new_incr_state = {
'prev_key': k.view(batch_size, n_heads, -1, dim_per_head),
'prev_value': v.view(batch_size, n_heads, -1, dim_per_head),
'prev_mask': mask,
}
full_key_len = k.size(1)
dot_prod = q.div_(scale).bmm(k.transpose(1, 2))
# [B * n_heads, query_len, key_len]
attn_mask = (
(mask == 0)
.view(batch_size, 1, -1, full_key_len)
.repeat(1, n_heads, 1, 1)
.expand(batch_size, n_heads, query_len, full_key_len)
.view(batch_size * n_heads, query_len, full_key_len)
)
assert attn_mask.shape == dot_prod.shape
dot_prod.masked_fill_(attn_mask, neginf(dot_prod.dtype))
attn_weights = F.softmax(
dot_prod, dim=-1, dtype=torch.float # type: ignore
).type_as(query)
attn_weights = self.attn_dropout(attn_weights) # --attention-dropout
attentioned = attn_weights.bmm(v)
attentioned = (
attentioned.type_as(query)
.view(batch_size, n_heads, query_len, dim_per_head)
.transpose(1, 2)
.contiguous()
.view(batch_size, query_len, dim)
)
out = self.out_lin(attentioned)
return out, new_incr_state, dot_prod | [
"def",
"forward",
"(",
"# type: ignore",
"# TODO: remove type ignore with pytorch 1.5:",
"# https://github.com/pytorch/pytorch/pull/31057",
"self",
",",
"query",
":",
"torch",
".",
"Tensor",
",",
"key",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"value",
":",
"Optional",
"[",
"torch",
".",
"Tensor",
"]",
"=",
"None",
",",
"mask",
":",
"torch",
".",
"Tensor",
"=",
"None",
",",
"incr_state",
":",
"Optional",
"[",
"Dict",
"[",
"str",
",",
"torch",
".",
"Tensor",
"]",
"]",
"=",
"None",
",",
"static_kv",
":",
"bool",
"=",
"False",
",",
")",
"->",
"Tuple",
"[",
"torch",
".",
"Tensor",
",",
"Dict",
"[",
"str",
",",
"torch",
".",
"Tensor",
"]",
",",
"torch",
".",
"Tensor",
"]",
":",
"batch_size",
",",
"query_len",
",",
"dim",
"=",
"query",
".",
"size",
"(",
")",
"assert",
"(",
"dim",
"==",
"self",
".",
"dim",
")",
",",
"'Dimensions do not match: {} query vs {} configured'",
".",
"format",
"(",
"dim",
",",
"self",
".",
"dim",
")",
"assert",
"mask",
"is",
"not",
"None",
",",
"'Mask is None, please specify a mask'",
"n_heads",
"=",
"self",
".",
"n_heads",
"dim_per_head",
"=",
"dim",
"//",
"n_heads",
"scale",
"=",
"math",
".",
"sqrt",
"(",
"dim_per_head",
")",
"def",
"prepare_head",
"(",
"tensor",
")",
":",
"# input is [batch_size, seq_len, n_heads * dim_per_head]",
"# output is [batch_size * n_heads, seq_len, dim_per_head]",
"bsz",
",",
"seq_len",
",",
"_",
"=",
"tensor",
".",
"size",
"(",
")",
"tensor",
"=",
"tensor",
".",
"view",
"(",
"batch_size",
",",
"tensor",
".",
"size",
"(",
"1",
")",
",",
"n_heads",
",",
"dim_per_head",
")",
"tensor",
"=",
"(",
"tensor",
".",
"transpose",
"(",
"1",
",",
"2",
")",
".",
"contiguous",
"(",
")",
".",
"view",
"(",
"batch_size",
"*",
"n_heads",
",",
"seq_len",
",",
"dim_per_head",
")",
")",
"return",
"tensor",
"# q, k, v are the transformed values",
"if",
"key",
"is",
"None",
"and",
"value",
"is",
"None",
":",
"# self attention",
"key",
"=",
"value",
"=",
"query",
"_",
",",
"_key_len",
",",
"dim",
"=",
"query",
".",
"size",
"(",
")",
"elif",
"value",
"is",
"None",
":",
"# key and value are the same, but query differs",
"# self attention",
"value",
"=",
"key",
"assert",
"key",
"is",
"not",
"None",
"# let mypy know we sorted this",
"_",
",",
"_key_len",
",",
"dim",
"=",
"key",
".",
"size",
"(",
")",
"q",
"=",
"prepare_head",
"(",
"self",
".",
"q_lin",
"(",
"query",
")",
")",
"k",
"=",
"prepare_head",
"(",
"self",
".",
"k_lin",
"(",
"key",
")",
")",
"v",
"=",
"prepare_head",
"(",
"self",
".",
"v_lin",
"(",
"value",
")",
")",
"# Prepend incremental states. For each of the key, value, and mask, see if",
"# a previous incremental state exists, and if so, reshape it to match the shape",
"# of the new state. Concatenate the previous and new states to match what the",
"# full state would have been if we had not cached. (If we are using static_kv,",
"# these three states are unchanging, so just re-use the cached states.)",
"if",
"incr_state",
"is",
"None",
":",
"incr_state",
"=",
"{",
"}",
"if",
"'prev_key'",
"in",
"incr_state",
":",
"prev_key",
"=",
"incr_state",
"[",
"'prev_key'",
"]",
".",
"view",
"(",
"batch_size",
"*",
"n_heads",
",",
"-",
"1",
",",
"dim_per_head",
")",
"if",
"static_kv",
":",
"k",
"=",
"prev_key",
"else",
":",
"k",
"=",
"torch",
".",
"cat",
"(",
"[",
"prev_key",
",",
"k",
"]",
",",
"dim",
"=",
"1",
")",
"if",
"'prev_value'",
"in",
"incr_state",
":",
"prev_value",
"=",
"incr_state",
"[",
"'prev_value'",
"]",
".",
"view",
"(",
"batch_size",
"*",
"n_heads",
",",
"-",
"1",
",",
"dim_per_head",
")",
"if",
"static_kv",
":",
"v",
"=",
"prev_value",
"else",
":",
"v",
"=",
"torch",
".",
"cat",
"(",
"[",
"prev_value",
",",
"v",
"]",
",",
"dim",
"=",
"1",
")",
"if",
"'prev_mask'",
"in",
"incr_state",
":",
"if",
"static_kv",
":",
"mask",
"=",
"incr_state",
"[",
"'prev_mask'",
"]",
"else",
":",
"mask",
"=",
"torch",
".",
"cat",
"(",
"[",
"incr_state",
"[",
"'prev_mask'",
"]",
",",
"mask",
"]",
",",
"dim",
"=",
"2",
")",
"# Prepend along the key_len dimension (analogous to",
"# incr_state['prev_key'])",
"# Save new incremental states. We reshape to allow for reordering along batch",
"# dimension.",
"new_incr_state",
"=",
"{",
"'prev_key'",
":",
"k",
".",
"view",
"(",
"batch_size",
",",
"n_heads",
",",
"-",
"1",
",",
"dim_per_head",
")",
",",
"'prev_value'",
":",
"v",
".",
"view",
"(",
"batch_size",
",",
"n_heads",
",",
"-",
"1",
",",
"dim_per_head",
")",
",",
"'prev_mask'",
":",
"mask",
",",
"}",
"full_key_len",
"=",
"k",
".",
"size",
"(",
"1",
")",
"dot_prod",
"=",
"q",
".",
"div_",
"(",
"scale",
")",
".",
"bmm",
"(",
"k",
".",
"transpose",
"(",
"1",
",",
"2",
")",
")",
"# [B * n_heads, query_len, key_len]",
"attn_mask",
"=",
"(",
"(",
"mask",
"==",
"0",
")",
".",
"view",
"(",
"batch_size",
",",
"1",
",",
"-",
"1",
",",
"full_key_len",
")",
".",
"repeat",
"(",
"1",
",",
"n_heads",
",",
"1",
",",
"1",
")",
".",
"expand",
"(",
"batch_size",
",",
"n_heads",
",",
"query_len",
",",
"full_key_len",
")",
".",
"view",
"(",
"batch_size",
"*",
"n_heads",
",",
"query_len",
",",
"full_key_len",
")",
")",
"assert",
"attn_mask",
".",
"shape",
"==",
"dot_prod",
".",
"shape",
"dot_prod",
".",
"masked_fill_",
"(",
"attn_mask",
",",
"neginf",
"(",
"dot_prod",
".",
"dtype",
")",
")",
"attn_weights",
"=",
"F",
".",
"softmax",
"(",
"dot_prod",
",",
"dim",
"=",
"-",
"1",
",",
"dtype",
"=",
"torch",
".",
"float",
"# type: ignore",
")",
".",
"type_as",
"(",
"query",
")",
"attn_weights",
"=",
"self",
".",
"attn_dropout",
"(",
"attn_weights",
")",
"# --attention-dropout",
"attentioned",
"=",
"attn_weights",
".",
"bmm",
"(",
"v",
")",
"attentioned",
"=",
"(",
"attentioned",
".",
"type_as",
"(",
"query",
")",
".",
"view",
"(",
"batch_size",
",",
"n_heads",
",",
"query_len",
",",
"dim_per_head",
")",
".",
"transpose",
"(",
"1",
",",
"2",
")",
".",
"contiguous",
"(",
")",
".",
"view",
"(",
"batch_size",
",",
"query_len",
",",
"dim",
")",
")",
"out",
"=",
"self",
".",
"out_lin",
"(",
"attentioned",
")",
"return",
"out",
",",
"new_incr_state",
",",
"dot_prod"
] | [
1307,
4
] | [
1446,
44
] | python | en | ['en', 'error', 'th'] | False |
MultiHeadAttention.reorder_incremental_state | (
self, incremental_state: Dict[str, torch.Tensor], inds: torch.Tensor
) |
Reorder the input incremental-state tensors.
|
Reorder the input incremental-state tensors.
| def reorder_incremental_state(
self, incremental_state: Dict[str, torch.Tensor], inds: torch.Tensor
) -> Dict[str, torch.Tensor]:
"""
Reorder the input incremental-state tensors.
"""
return {
key: torch.index_select(val, 0, inds.to(val.device)).contiguous()
for key, val in incremental_state.items()
} | [
"def",
"reorder_incremental_state",
"(",
"self",
",",
"incremental_state",
":",
"Dict",
"[",
"str",
",",
"torch",
".",
"Tensor",
"]",
",",
"inds",
":",
"torch",
".",
"Tensor",
")",
"->",
"Dict",
"[",
"str",
",",
"torch",
".",
"Tensor",
"]",
":",
"return",
"{",
"key",
":",
"torch",
".",
"index_select",
"(",
"val",
",",
"0",
",",
"inds",
".",
"to",
"(",
"val",
".",
"device",
")",
")",
".",
"contiguous",
"(",
")",
"for",
"key",
",",
"val",
"in",
"incremental_state",
".",
"items",
"(",
")",
"}"
] | [
1448,
4
] | [
1457,
9
] | python | en | ['en', 'error', 'th'] | False |
TransformerFFN.forward | (self, x) |
Forward pass.
|
Forward pass.
| def forward(self, x):
"""
Forward pass.
"""
x = self.nonlinear(self.lin1(x))
x = self.relu_dropout(x) # --relu-dropout
x = self.lin2(x)
return x | [
"def",
"forward",
"(",
"self",
",",
"x",
")",
":",
"x",
"=",
"self",
".",
"nonlinear",
"(",
"self",
".",
"lin1",
"(",
"x",
")",
")",
"x",
"=",
"self",
".",
"relu_dropout",
"(",
"x",
")",
"# --relu-dropout",
"x",
"=",
"self",
".",
"lin2",
"(",
"x",
")",
"return",
"x"
] | [
1482,
4
] | [
1489,
16
] | python | en | ['en', 'error', 'th'] | False |
polygon_to_bitmap | (polygons, height, width) | Convert masks from the form of polygons to bitmaps.
Args:
polygons (list[ndarray]): masks in polygon representation
height (int): mask height
width (int): mask width
Return:
ndarray: the converted masks in bitmap representation
| Convert masks from the form of polygons to bitmaps. | def polygon_to_bitmap(polygons, height, width):
"""Convert masks from the form of polygons to bitmaps.
Args:
polygons (list[ndarray]): masks in polygon representation
height (int): mask height
width (int): mask width
Return:
ndarray: the converted masks in bitmap representation
"""
rles = maskUtils.frPyObjects(polygons, height, width)
rle = maskUtils.merge(rles)
bitmap_mask = maskUtils.decode(rle).astype(np.bool)
return bitmap_mask | [
"def",
"polygon_to_bitmap",
"(",
"polygons",
",",
"height",
",",
"width",
")",
":",
"rles",
"=",
"maskUtils",
".",
"frPyObjects",
"(",
"polygons",
",",
"height",
",",
"width",
")",
"rle",
"=",
"maskUtils",
".",
"merge",
"(",
"rles",
")",
"bitmap_mask",
"=",
"maskUtils",
".",
"decode",
"(",
"rle",
")",
".",
"astype",
"(",
"np",
".",
"bool",
")",
"return",
"bitmap_mask"
] | [
560,
0
] | [
574,
22
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.rescale | (self, scale, interpolation='nearest') | Rescale masks as large as possible while keeping the aspect ratio.
For details can refer to `mmcv.imrescale`.
Args:
scale (tuple[int]): The maximum size (h, w) of rescaled mask.
interpolation (str): Same as :func:`mmcv.imrescale`.
Returns:
BaseInstanceMasks: The rescaled masks.
| Rescale masks as large as possible while keeping the aspect ratio.
For details can refer to `mmcv.imrescale`. | def rescale(self, scale, interpolation='nearest'):
"""Rescale masks as large as possible while keeping the aspect ratio.
For details can refer to `mmcv.imrescale`.
Args:
scale (tuple[int]): The maximum size (h, w) of rescaled mask.
interpolation (str): Same as :func:`mmcv.imrescale`.
Returns:
BaseInstanceMasks: The rescaled masks.
"""
pass | [
"def",
"rescale",
"(",
"self",
",",
"scale",
",",
"interpolation",
"=",
"'nearest'",
")",
":",
"pass"
] | [
13,
4
] | [
24,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.resize | (self, out_shape, interpolation='nearest') | Resize masks to the given out_shape.
Args:
out_shape: Target (h, w) of resized mask.
interpolation (str): See :func:`mmcv.imresize`.
Returns:
BaseInstanceMasks: The resized masks.
| Resize masks to the given out_shape. | def resize(self, out_shape, interpolation='nearest'):
"""Resize masks to the given out_shape.
Args:
out_shape: Target (h, w) of resized mask.
interpolation (str): See :func:`mmcv.imresize`.
Returns:
BaseInstanceMasks: The resized masks.
"""
pass | [
"def",
"resize",
"(",
"self",
",",
"out_shape",
",",
"interpolation",
"=",
"'nearest'",
")",
":",
"pass"
] | [
27,
4
] | [
37,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.flip | (self, flip_direction='horizontal') | Flip masks alone the given direction.
Args:
flip_direction (str): Either 'horizontal' or 'vertical'.
Returns:
BaseInstanceMasks: The flipped masks.
| Flip masks alone the given direction. | def flip(self, flip_direction='horizontal'):
"""Flip masks alone the given direction.
Args:
flip_direction (str): Either 'horizontal' or 'vertical'.
Returns:
BaseInstanceMasks: The flipped masks.
"""
pass | [
"def",
"flip",
"(",
"self",
",",
"flip_direction",
"=",
"'horizontal'",
")",
":",
"pass"
] | [
40,
4
] | [
49,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.pad | (self, out_shape, pad_val) | Pad masks to the given size of (h, w).
Args:
out_shape (tuple[int]): Target (h, w) of padded mask.
pad_val (int): The padded value.
Returns:
BaseInstanceMasks: The padded masks.
| Pad masks to the given size of (h, w). | def pad(self, out_shape, pad_val):
"""Pad masks to the given size of (h, w).
Args:
out_shape (tuple[int]): Target (h, w) of padded mask.
pad_val (int): The padded value.
Returns:
BaseInstanceMasks: The padded masks.
"""
pass | [
"def",
"pad",
"(",
"self",
",",
"out_shape",
",",
"pad_val",
")",
":",
"pass"
] | [
52,
4
] | [
62,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.crop | (self, bbox) | Crop each mask by the given bbox.
Args:
bbox (ndarray): Bbox in format [x1, y1, x2, y2], shape (4, ).
Return:
BaseInstanceMasks: The cropped masks.
| Crop each mask by the given bbox. | def crop(self, bbox):
"""Crop each mask by the given bbox.
Args:
bbox (ndarray): Bbox in format [x1, y1, x2, y2], shape (4, ).
Return:
BaseInstanceMasks: The cropped masks.
"""
pass | [
"def",
"crop",
"(",
"self",
",",
"bbox",
")",
":",
"pass"
] | [
65,
4
] | [
74,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.crop_and_resize | (self,
bboxes,
out_shape,
inds,
device,
interpolation='bilinear') | Crop and resize masks by the given bboxes.
This function is mainly used in mask targets computation.
It firstly align mask to bboxes by assigned_inds, then crop mask by the
assigned bbox and resize to the size of (mask_h, mask_w)
Args:
bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
out_shape (tuple[int]): Target (h, w) of resized mask
inds (ndarray): Indexes to assign masks to each bbox
device (str): Device of bboxes
interpolation (str): See `mmcv.imresize`
Return:
BaseInstanceMasks: the cropped and resized masks.
| Crop and resize masks by the given bboxes. | def crop_and_resize(self,
bboxes,
out_shape,
inds,
device,
interpolation='bilinear'):
"""Crop and resize masks by the given bboxes.
This function is mainly used in mask targets computation.
It firstly align mask to bboxes by assigned_inds, then crop mask by the
assigned bbox and resize to the size of (mask_h, mask_w)
Args:
bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
out_shape (tuple[int]): Target (h, w) of resized mask
inds (ndarray): Indexes to assign masks to each bbox
device (str): Device of bboxes
interpolation (str): See `mmcv.imresize`
Return:
BaseInstanceMasks: the cropped and resized masks.
"""
pass | [
"def",
"crop_and_resize",
"(",
"self",
",",
"bboxes",
",",
"out_shape",
",",
"inds",
",",
"device",
",",
"interpolation",
"=",
"'bilinear'",
")",
":",
"pass"
] | [
77,
4
] | [
99,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.expand | (self, expanded_h, expanded_w, top, left) | see :class:`Expand`. | see :class:`Expand`. | def expand(self, expanded_h, expanded_w, top, left):
"""see :class:`Expand`."""
pass | [
"def",
"expand",
"(",
"self",
",",
"expanded_h",
",",
"expanded_w",
",",
"top",
",",
"left",
")",
":",
"pass"
] | [
102,
4
] | [
104,
12
] | python | en | ['en', 'en', 'en'] | False |
BaseInstanceMasks.areas | (self) | ndarray: areas of each instance. | ndarray: areas of each instance. | def areas(self):
"""ndarray: areas of each instance."""
pass | [
"def",
"areas",
"(",
"self",
")",
":",
"pass"
] | [
108,
4
] | [
110,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.to_ndarray | (self) | Convert masks to the format of ndarray.
Return:
ndarray: Converted masks in the format of ndarray.
| Convert masks to the format of ndarray. | def to_ndarray(self):
"""Convert masks to the format of ndarray.
Return:
ndarray: Converted masks in the format of ndarray.
"""
pass | [
"def",
"to_ndarray",
"(",
"self",
")",
":",
"pass"
] | [
113,
4
] | [
119,
12
] | python | en | ['en', 'en', 'en'] | True |
BaseInstanceMasks.to_tensor | (self, dtype, device) | Convert masks to the format of Tensor.
Args:
dtype (str): Dtype of converted mask.
device (torch.device): Device of converted masks.
Returns:
Tensor: Converted masks in the format of Tensor.
| Convert masks to the format of Tensor. | def to_tensor(self, dtype, device):
"""Convert masks to the format of Tensor.
Args:
dtype (str): Dtype of converted mask.
device (torch.device): Device of converted masks.
Returns:
Tensor: Converted masks in the format of Tensor.
"""
pass | [
"def",
"to_tensor",
"(",
"self",
",",
"dtype",
",",
"device",
")",
":",
"pass"
] | [
122,
4
] | [
132,
12
] | python | en | ['en', 'en', 'en'] | True |
BitmapMasks.__getitem__ | (self, index) | Index the BitmapMask.
Args:
index (int | ndarray): Indices in the format of integer or ndarray.
Returns:
:obj:`BitmapMasks`: Indexed bitmap masks.
| Index the BitmapMask. | def __getitem__(self, index):
"""Index the BitmapMask.
Args:
index (int | ndarray): Indices in the format of integer or ndarray.
Returns:
:obj:`BitmapMasks`: Indexed bitmap masks.
"""
masks = self.masks[index].reshape(-1, self.height, self.width)
return BitmapMasks(masks, self.height, self.width) | [
"def",
"__getitem__",
"(",
"self",
",",
"index",
")",
":",
"masks",
"=",
"self",
".",
"masks",
"[",
"index",
"]",
".",
"reshape",
"(",
"-",
"1",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")",
"return",
"BitmapMasks",
"(",
"masks",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")"
] | [
162,
4
] | [
172,
58
] | python | en | ['en', 'zu', 'en'] | True |
BitmapMasks.__len__ | (self) | Number of masks. | Number of masks. | def __len__(self):
"""Number of masks."""
return len(self.masks) | [
"def",
"__len__",
"(",
"self",
")",
":",
"return",
"len",
"(",
"self",
".",
"masks",
")"
] | [
184,
4
] | [
186,
30
] | python | en | ['en', 'da', 'en'] | True |
BitmapMasks.rescale | (self, scale, interpolation='nearest') | See :func:`BaseInstanceMasks.rescale`. | See :func:`BaseInstanceMasks.rescale`. | def rescale(self, scale, interpolation='nearest'):
"""See :func:`BaseInstanceMasks.rescale`."""
if len(self.masks) == 0:
new_w, new_h = mmcv.rescale_size((self.width, self.height), scale)
rescaled_masks = np.empty((0, new_h, new_w), dtype=np.uint8)
else:
rescaled_masks = np.stack([
mmcv.imrescale(mask, scale, interpolation=interpolation)
for mask in self.masks
])
height, width = rescaled_masks.shape[1:]
return BitmapMasks(rescaled_masks, height, width) | [
"def",
"rescale",
"(",
"self",
",",
"scale",
",",
"interpolation",
"=",
"'nearest'",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"new_w",
",",
"new_h",
"=",
"mmcv",
".",
"rescale_size",
"(",
"(",
"self",
".",
"width",
",",
"self",
".",
"height",
")",
",",
"scale",
")",
"rescaled_masks",
"=",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"new_h",
",",
"new_w",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"else",
":",
"rescaled_masks",
"=",
"np",
".",
"stack",
"(",
"[",
"mmcv",
".",
"imrescale",
"(",
"mask",
",",
"scale",
",",
"interpolation",
"=",
"interpolation",
")",
"for",
"mask",
"in",
"self",
".",
"masks",
"]",
")",
"height",
",",
"width",
"=",
"rescaled_masks",
".",
"shape",
"[",
"1",
":",
"]",
"return",
"BitmapMasks",
"(",
"rescaled_masks",
",",
"height",
",",
"width",
")"
] | [
188,
4
] | [
199,
57
] | python | en | ['en', 'en', 'de'] | False |
BitmapMasks.resize | (self, out_shape, interpolation='nearest') | See :func:`BaseInstanceMasks.resize`. | See :func:`BaseInstanceMasks.resize`. | def resize(self, out_shape, interpolation='nearest'):
"""See :func:`BaseInstanceMasks.resize`."""
if len(self.masks) == 0:
resized_masks = np.empty((0, *out_shape), dtype=np.uint8)
else:
resized_masks = np.stack([
mmcv.imresize(mask, out_shape, interpolation=interpolation)
for mask in self.masks
])
return BitmapMasks(resized_masks, *out_shape) | [
"def",
"resize",
"(",
"self",
",",
"out_shape",
",",
"interpolation",
"=",
"'nearest'",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"resized_masks",
"=",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"*",
"out_shape",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"else",
":",
"resized_masks",
"=",
"np",
".",
"stack",
"(",
"[",
"mmcv",
".",
"imresize",
"(",
"mask",
",",
"out_shape",
",",
"interpolation",
"=",
"interpolation",
")",
"for",
"mask",
"in",
"self",
".",
"masks",
"]",
")",
"return",
"BitmapMasks",
"(",
"resized_masks",
",",
"*",
"out_shape",
")"
] | [
201,
4
] | [
210,
53
] | python | de | ['en', 'jv', 'de'] | False |
BitmapMasks.flip | (self, flip_direction='horizontal') | See :func:`BaseInstanceMasks.flip`. | See :func:`BaseInstanceMasks.flip`. | def flip(self, flip_direction='horizontal'):
"""See :func:`BaseInstanceMasks.flip`."""
assert flip_direction in ('horizontal', 'vertical')
if len(self.masks) == 0:
flipped_masks = self.masks
else:
flipped_masks = np.stack([
mmcv.imflip(mask, direction=flip_direction)
for mask in self.masks
])
return BitmapMasks(flipped_masks, self.height, self.width) | [
"def",
"flip",
"(",
"self",
",",
"flip_direction",
"=",
"'horizontal'",
")",
":",
"assert",
"flip_direction",
"in",
"(",
"'horizontal'",
",",
"'vertical'",
")",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"flipped_masks",
"=",
"self",
".",
"masks",
"else",
":",
"flipped_masks",
"=",
"np",
".",
"stack",
"(",
"[",
"mmcv",
".",
"imflip",
"(",
"mask",
",",
"direction",
"=",
"flip_direction",
")",
"for",
"mask",
"in",
"self",
".",
"masks",
"]",
")",
"return",
"BitmapMasks",
"(",
"flipped_masks",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")"
] | [
212,
4
] | [
223,
66
] | python | de | ['en', 'de', 'de'] | False |
BitmapMasks.pad | (self, out_shape, pad_val=0) | See :func:`BaseInstanceMasks.pad`. | See :func:`BaseInstanceMasks.pad`. | def pad(self, out_shape, pad_val=0):
"""See :func:`BaseInstanceMasks.pad`."""
if len(self.masks) == 0:
padded_masks = np.empty((0, *out_shape), dtype=np.uint8)
else:
padded_masks = np.stack([
mmcv.impad(mask, shape=out_shape, pad_val=pad_val)
for mask in self.masks
])
return BitmapMasks(padded_masks, *out_shape) | [
"def",
"pad",
"(",
"self",
",",
"out_shape",
",",
"pad_val",
"=",
"0",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"padded_masks",
"=",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"*",
"out_shape",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"else",
":",
"padded_masks",
"=",
"np",
".",
"stack",
"(",
"[",
"mmcv",
".",
"impad",
"(",
"mask",
",",
"shape",
"=",
"out_shape",
",",
"pad_val",
"=",
"pad_val",
")",
"for",
"mask",
"in",
"self",
".",
"masks",
"]",
")",
"return",
"BitmapMasks",
"(",
"padded_masks",
",",
"*",
"out_shape",
")"
] | [
225,
4
] | [
234,
52
] | python | de | ['en', 'fil', 'de'] | False |
BitmapMasks.crop | (self, bbox) | See :func:`BaseInstanceMasks.crop`. | See :func:`BaseInstanceMasks.crop`. | def crop(self, bbox):
"""See :func:`BaseInstanceMasks.crop`."""
assert isinstance(bbox, np.ndarray)
assert bbox.ndim == 1
# clip the boundary
bbox = bbox.copy()
bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1, 1)
h = np.maximum(y2 - y1, 1)
if len(self.masks) == 0:
cropped_masks = np.empty((0, h, w), dtype=np.uint8)
else:
cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w]
return BitmapMasks(cropped_masks, h, w) | [
"def",
"crop",
"(",
"self",
",",
"bbox",
")",
":",
"assert",
"isinstance",
"(",
"bbox",
",",
"np",
".",
"ndarray",
")",
"assert",
"bbox",
".",
"ndim",
"==",
"1",
"# clip the boundary",
"bbox",
"=",
"bbox",
".",
"copy",
"(",
")",
"bbox",
"[",
"0",
":",
":",
"2",
"]",
"=",
"np",
".",
"clip",
"(",
"bbox",
"[",
"0",
":",
":",
"2",
"]",
",",
"0",
",",
"self",
".",
"width",
")",
"bbox",
"[",
"1",
":",
":",
"2",
"]",
"=",
"np",
".",
"clip",
"(",
"bbox",
"[",
"1",
":",
":",
"2",
"]",
",",
"0",
",",
"self",
".",
"height",
")",
"x1",
",",
"y1",
",",
"x2",
",",
"y2",
"=",
"bbox",
"w",
"=",
"np",
".",
"maximum",
"(",
"x2",
"-",
"x1",
",",
"1",
")",
"h",
"=",
"np",
".",
"maximum",
"(",
"y2",
"-",
"y1",
",",
"1",
")",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"cropped_masks",
"=",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"h",
",",
"w",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"else",
":",
"cropped_masks",
"=",
"self",
".",
"masks",
"[",
":",
",",
"y1",
":",
"y1",
"+",
"h",
",",
"x1",
":",
"x1",
"+",
"w",
"]",
"return",
"BitmapMasks",
"(",
"cropped_masks",
",",
"h",
",",
"w",
")"
] | [
236,
4
] | [
253,
47
] | python | de | ['en', 'de', 'de'] | False |
BitmapMasks.crop_and_resize | (self,
bboxes,
out_shape,
inds,
device='cpu',
interpolation='bilinear') | See :func:`BaseInstanceMasks.crop_and_resize`. | See :func:`BaseInstanceMasks.crop_and_resize`. | def crop_and_resize(self,
bboxes,
out_shape,
inds,
device='cpu',
interpolation='bilinear'):
"""See :func:`BaseInstanceMasks.crop_and_resize`."""
if len(self.masks) == 0:
empty_masks = np.empty((0, *out_shape), dtype=np.uint8)
return BitmapMasks(empty_masks, *out_shape)
# convert bboxes to tensor
if isinstance(bboxes, np.ndarray):
bboxes = torch.from_numpy(bboxes).to(device=device)
if isinstance(inds, np.ndarray):
inds = torch.from_numpy(inds).to(device=device)
num_bbox = bboxes.shape[0]
fake_inds = torch.arange(
num_bbox, device=device).to(dtype=bboxes.dtype)[:, None]
rois = torch.cat([fake_inds, bboxes], dim=1) # Nx5
rois = rois.to(device=device)
if num_bbox > 0:
gt_masks_th = torch.from_numpy(self.masks).to(device).index_select(
0, inds).to(dtype=rois.dtype)
targets = roi_align(gt_masks_th[:, None, :, :], rois, out_shape,
1.0, 0, 'avg', True).squeeze(1)
resized_masks = (targets >= 0.5).cpu().numpy()
else:
resized_masks = []
return BitmapMasks(resized_masks, *out_shape) | [
"def",
"crop_and_resize",
"(",
"self",
",",
"bboxes",
",",
"out_shape",
",",
"inds",
",",
"device",
"=",
"'cpu'",
",",
"interpolation",
"=",
"'bilinear'",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"empty_masks",
"=",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"*",
"out_shape",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"return",
"BitmapMasks",
"(",
"empty_masks",
",",
"*",
"out_shape",
")",
"# convert bboxes to tensor",
"if",
"isinstance",
"(",
"bboxes",
",",
"np",
".",
"ndarray",
")",
":",
"bboxes",
"=",
"torch",
".",
"from_numpy",
"(",
"bboxes",
")",
".",
"to",
"(",
"device",
"=",
"device",
")",
"if",
"isinstance",
"(",
"inds",
",",
"np",
".",
"ndarray",
")",
":",
"inds",
"=",
"torch",
".",
"from_numpy",
"(",
"inds",
")",
".",
"to",
"(",
"device",
"=",
"device",
")",
"num_bbox",
"=",
"bboxes",
".",
"shape",
"[",
"0",
"]",
"fake_inds",
"=",
"torch",
".",
"arange",
"(",
"num_bbox",
",",
"device",
"=",
"device",
")",
".",
"to",
"(",
"dtype",
"=",
"bboxes",
".",
"dtype",
")",
"[",
":",
",",
"None",
"]",
"rois",
"=",
"torch",
".",
"cat",
"(",
"[",
"fake_inds",
",",
"bboxes",
"]",
",",
"dim",
"=",
"1",
")",
"# Nx5",
"rois",
"=",
"rois",
".",
"to",
"(",
"device",
"=",
"device",
")",
"if",
"num_bbox",
">",
"0",
":",
"gt_masks_th",
"=",
"torch",
".",
"from_numpy",
"(",
"self",
".",
"masks",
")",
".",
"to",
"(",
"device",
")",
".",
"index_select",
"(",
"0",
",",
"inds",
")",
".",
"to",
"(",
"dtype",
"=",
"rois",
".",
"dtype",
")",
"targets",
"=",
"roi_align",
"(",
"gt_masks_th",
"[",
":",
",",
"None",
",",
":",
",",
":",
"]",
",",
"rois",
",",
"out_shape",
",",
"1.0",
",",
"0",
",",
"'avg'",
",",
"True",
")",
".",
"squeeze",
"(",
"1",
")",
"resized_masks",
"=",
"(",
"targets",
">=",
"0.5",
")",
".",
"cpu",
"(",
")",
".",
"numpy",
"(",
")",
"else",
":",
"resized_masks",
"=",
"[",
"]",
"return",
"BitmapMasks",
"(",
"resized_masks",
",",
"*",
"out_shape",
")"
] | [
255,
4
] | [
285,
53
] | python | en | ['en', 'en', 'de'] | False |
BitmapMasks.expand | (self, expanded_h, expanded_w, top, left) | See :func:`BaseInstanceMasks.expand`. | See :func:`BaseInstanceMasks.expand`. | def expand(self, expanded_h, expanded_w, top, left):
"""See :func:`BaseInstanceMasks.expand`."""
if len(self.masks) == 0:
expanded_mask = np.empty((0, expanded_h, expanded_w),
dtype=np.uint8)
else:
expanded_mask = np.zeros((len(self), expanded_h, expanded_w),
dtype=np.uint8)
expanded_mask[:, top:top + self.height,
left:left + self.width] = self.masks
return BitmapMasks(expanded_mask, expanded_h, expanded_w) | [
"def",
"expand",
"(",
"self",
",",
"expanded_h",
",",
"expanded_w",
",",
"top",
",",
"left",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"expanded_mask",
"=",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"expanded_h",
",",
"expanded_w",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"else",
":",
"expanded_mask",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"self",
")",
",",
"expanded_h",
",",
"expanded_w",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"expanded_mask",
"[",
":",
",",
"top",
":",
"top",
"+",
"self",
".",
"height",
",",
"left",
":",
"left",
"+",
"self",
".",
"width",
"]",
"=",
"self",
".",
"masks",
"return",
"BitmapMasks",
"(",
"expanded_mask",
",",
"expanded_h",
",",
"expanded_w",
")"
] | [
287,
4
] | [
297,
65
] | python | en | ['en', 'en', 'de'] | False |
BitmapMasks.areas | (self) | See :py:attr:`BaseInstanceMasks.areas`. | See :py:attr:`BaseInstanceMasks.areas`. | def areas(self):
"""See :py:attr:`BaseInstanceMasks.areas`."""
return self.masks.sum((1, 2)) | [
"def",
"areas",
"(",
"self",
")",
":",
"return",
"self",
".",
"masks",
".",
"sum",
"(",
"(",
"1",
",",
"2",
")",
")"
] | [
300,
4
] | [
302,
37
] | python | de | ['en', 'de', 'de'] | False |
BitmapMasks.to_ndarray | (self) | See :func:`BaseInstanceMasks.to_ndarray`. | See :func:`BaseInstanceMasks.to_ndarray`. | def to_ndarray(self):
"""See :func:`BaseInstanceMasks.to_ndarray`."""
return self.masks | [
"def",
"to_ndarray",
"(",
"self",
")",
":",
"return",
"self",
".",
"masks"
] | [
304,
4
] | [
306,
25
] | python | en | ['en', 'en', 'hi'] | False |
BitmapMasks.to_tensor | (self, dtype, device) | See :func:`BaseInstanceMasks.to_tensor`. | See :func:`BaseInstanceMasks.to_tensor`. | def to_tensor(self, dtype, device):
"""See :func:`BaseInstanceMasks.to_tensor`."""
return torch.tensor(self.masks, dtype=dtype, device=device) | [
"def",
"to_tensor",
"(",
"self",
",",
"dtype",
",",
"device",
")",
":",
"return",
"torch",
".",
"tensor",
"(",
"self",
".",
"masks",
",",
"dtype",
"=",
"dtype",
",",
"device",
"=",
"device",
")"
] | [
308,
4
] | [
310,
67
] | python | en | ['en', 'en', 'de'] | False |
PolygonMasks.__getitem__ | (self, index) | Index the polygon masks.
Args:
index (ndarray | List): The indices.
Returns:
:obj:`PolygonMasks`: The indexed polygon masks.
| Index the polygon masks. | def __getitem__(self, index):
"""Index the polygon masks.
Args:
index (ndarray | List): The indices.
Returns:
:obj:`PolygonMasks`: The indexed polygon masks.
"""
if isinstance(index, np.ndarray):
index = index.tolist()
if isinstance(index, list):
masks = [self.masks[i] for i in index]
else:
try:
masks = self.masks[index]
except Exception:
raise ValueError(
f'Unsupported input of type {type(index)} for indexing!')
if isinstance(masks[0], np.ndarray):
masks = [masks] # ensure a list of three levels
return PolygonMasks(masks, self.height, self.width) | [
"def",
"__getitem__",
"(",
"self",
",",
"index",
")",
":",
"if",
"isinstance",
"(",
"index",
",",
"np",
".",
"ndarray",
")",
":",
"index",
"=",
"index",
".",
"tolist",
"(",
")",
"if",
"isinstance",
"(",
"index",
",",
"list",
")",
":",
"masks",
"=",
"[",
"self",
".",
"masks",
"[",
"i",
"]",
"for",
"i",
"in",
"index",
"]",
"else",
":",
"try",
":",
"masks",
"=",
"self",
".",
"masks",
"[",
"index",
"]",
"except",
"Exception",
":",
"raise",
"ValueError",
"(",
"f'Unsupported input of type {type(index)} for indexing!'",
")",
"if",
"isinstance",
"(",
"masks",
"[",
"0",
"]",
",",
"np",
".",
"ndarray",
")",
":",
"masks",
"=",
"[",
"masks",
"]",
"# ensure a list of three levels",
"return",
"PolygonMasks",
"(",
"masks",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")"
] | [
338,
4
] | [
359,
59
] | python | en | ['en', 'en', 'en'] | True |
PolygonMasks.__len__ | (self) | Number of masks. | Number of masks. | def __len__(self):
"""Number of masks."""
return len(self.masks) | [
"def",
"__len__",
"(",
"self",
")",
":",
"return",
"len",
"(",
"self",
".",
"masks",
")"
] | [
371,
4
] | [
373,
30
] | python | en | ['en', 'da', 'en'] | True |
PolygonMasks.rescale | (self, scale, interpolation=None) | see :func:`BaseInstanceMasks.rescale` | see :func:`BaseInstanceMasks.rescale` | def rescale(self, scale, interpolation=None):
"""see :func:`BaseInstanceMasks.rescale`"""
new_w, new_h = mmcv.rescale_size((self.width, self.height), scale)
if len(self.masks) == 0:
rescaled_masks = PolygonMasks([], new_h, new_w)
else:
rescaled_masks = self.resize((new_h, new_w))
return rescaled_masks | [
"def",
"rescale",
"(",
"self",
",",
"scale",
",",
"interpolation",
"=",
"None",
")",
":",
"new_w",
",",
"new_h",
"=",
"mmcv",
".",
"rescale_size",
"(",
"(",
"self",
".",
"width",
",",
"self",
".",
"height",
")",
",",
"scale",
")",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"rescaled_masks",
"=",
"PolygonMasks",
"(",
"[",
"]",
",",
"new_h",
",",
"new_w",
")",
"else",
":",
"rescaled_masks",
"=",
"self",
".",
"resize",
"(",
"(",
"new_h",
",",
"new_w",
")",
")",
"return",
"rescaled_masks"
] | [
375,
4
] | [
382,
29
] | python | en | ['en', 'en', 'it'] | False |
PolygonMasks.resize | (self, out_shape, interpolation=None) | see :func:`BaseInstanceMasks.resize` | see :func:`BaseInstanceMasks.resize` | def resize(self, out_shape, interpolation=None):
"""see :func:`BaseInstanceMasks.resize`"""
if len(self.masks) == 0:
resized_masks = PolygonMasks([], *out_shape)
else:
h_scale = out_shape[0] / self.height
w_scale = out_shape[1] / self.width
resized_masks = []
for poly_per_obj in self.masks:
resized_poly = []
for p in poly_per_obj:
p = p.copy()
p[0::2] *= w_scale
p[1::2] *= h_scale
resized_poly.append(p)
resized_masks.append(resized_poly)
resized_masks = PolygonMasks(resized_masks, *out_shape)
return resized_masks | [
"def",
"resize",
"(",
"self",
",",
"out_shape",
",",
"interpolation",
"=",
"None",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"resized_masks",
"=",
"PolygonMasks",
"(",
"[",
"]",
",",
"*",
"out_shape",
")",
"else",
":",
"h_scale",
"=",
"out_shape",
"[",
"0",
"]",
"/",
"self",
".",
"height",
"w_scale",
"=",
"out_shape",
"[",
"1",
"]",
"/",
"self",
".",
"width",
"resized_masks",
"=",
"[",
"]",
"for",
"poly_per_obj",
"in",
"self",
".",
"masks",
":",
"resized_poly",
"=",
"[",
"]",
"for",
"p",
"in",
"poly_per_obj",
":",
"p",
"=",
"p",
".",
"copy",
"(",
")",
"p",
"[",
"0",
":",
":",
"2",
"]",
"*=",
"w_scale",
"p",
"[",
"1",
":",
":",
"2",
"]",
"*=",
"h_scale",
"resized_poly",
".",
"append",
"(",
"p",
")",
"resized_masks",
".",
"append",
"(",
"resized_poly",
")",
"resized_masks",
"=",
"PolygonMasks",
"(",
"resized_masks",
",",
"*",
"out_shape",
")",
"return",
"resized_masks"
] | [
384,
4
] | [
401,
28
] | python | en | ['en', 'jv', 'it'] | False |
PolygonMasks.flip | (self, flip_direction='horizontal') | see :func:`BaseInstanceMasks.flip` | see :func:`BaseInstanceMasks.flip` | def flip(self, flip_direction='horizontal'):
"""see :func:`BaseInstanceMasks.flip`"""
assert flip_direction in ('horizontal', 'vertical')
if len(self.masks) == 0:
flipped_masks = PolygonMasks([], self.height, self.width)
else:
if flip_direction == 'horizontal':
dim = self.width
idx = 0
else:
dim = self.height
idx = 1
flipped_masks = []
for poly_per_obj in self.masks:
flipped_poly_per_obj = []
for p in poly_per_obj:
p = p.copy()
p[idx::2] = dim - p[idx::2]
flipped_poly_per_obj.append(p)
flipped_masks.append(flipped_poly_per_obj)
flipped_masks = PolygonMasks(flipped_masks, self.height,
self.width)
return flipped_masks | [
"def",
"flip",
"(",
"self",
",",
"flip_direction",
"=",
"'horizontal'",
")",
":",
"assert",
"flip_direction",
"in",
"(",
"'horizontal'",
",",
"'vertical'",
")",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"flipped_masks",
"=",
"PolygonMasks",
"(",
"[",
"]",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")",
"else",
":",
"if",
"flip_direction",
"==",
"'horizontal'",
":",
"dim",
"=",
"self",
".",
"width",
"idx",
"=",
"0",
"else",
":",
"dim",
"=",
"self",
".",
"height",
"idx",
"=",
"1",
"flipped_masks",
"=",
"[",
"]",
"for",
"poly_per_obj",
"in",
"self",
".",
"masks",
":",
"flipped_poly_per_obj",
"=",
"[",
"]",
"for",
"p",
"in",
"poly_per_obj",
":",
"p",
"=",
"p",
".",
"copy",
"(",
")",
"p",
"[",
"idx",
":",
":",
"2",
"]",
"=",
"dim",
"-",
"p",
"[",
"idx",
":",
":",
"2",
"]",
"flipped_poly_per_obj",
".",
"append",
"(",
"p",
")",
"flipped_masks",
".",
"append",
"(",
"flipped_poly_per_obj",
")",
"flipped_masks",
"=",
"PolygonMasks",
"(",
"flipped_masks",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")",
"return",
"flipped_masks"
] | [
403,
4
] | [
425,
28
] | python | de | ['en', 'de', 'it'] | False |
PolygonMasks.crop | (self, bbox) | see :func:`BaseInstanceMasks.crop` | see :func:`BaseInstanceMasks.crop` | def crop(self, bbox):
"""see :func:`BaseInstanceMasks.crop`"""
assert isinstance(bbox, np.ndarray)
assert bbox.ndim == 1
# clip the boundary
bbox = bbox.copy()
bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1, 1)
h = np.maximum(y2 - y1, 1)
if len(self.masks) == 0:
cropped_masks = PolygonMasks([], h, w)
else:
cropped_masks = []
for poly_per_obj in self.masks:
cropped_poly_per_obj = []
for p in poly_per_obj:
# pycocotools will clip the boundary
p = p.copy()
p[0::2] -= bbox[0]
p[1::2] -= bbox[1]
cropped_poly_per_obj.append(p)
cropped_masks.append(cropped_poly_per_obj)
cropped_masks = PolygonMasks(cropped_masks, h, w)
return cropped_masks | [
"def",
"crop",
"(",
"self",
",",
"bbox",
")",
":",
"assert",
"isinstance",
"(",
"bbox",
",",
"np",
".",
"ndarray",
")",
"assert",
"bbox",
".",
"ndim",
"==",
"1",
"# clip the boundary",
"bbox",
"=",
"bbox",
".",
"copy",
"(",
")",
"bbox",
"[",
"0",
":",
":",
"2",
"]",
"=",
"np",
".",
"clip",
"(",
"bbox",
"[",
"0",
":",
":",
"2",
"]",
",",
"0",
",",
"self",
".",
"width",
")",
"bbox",
"[",
"1",
":",
":",
"2",
"]",
"=",
"np",
".",
"clip",
"(",
"bbox",
"[",
"1",
":",
":",
"2",
"]",
",",
"0",
",",
"self",
".",
"height",
")",
"x1",
",",
"y1",
",",
"x2",
",",
"y2",
"=",
"bbox",
"w",
"=",
"np",
".",
"maximum",
"(",
"x2",
"-",
"x1",
",",
"1",
")",
"h",
"=",
"np",
".",
"maximum",
"(",
"y2",
"-",
"y1",
",",
"1",
")",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"cropped_masks",
"=",
"PolygonMasks",
"(",
"[",
"]",
",",
"h",
",",
"w",
")",
"else",
":",
"cropped_masks",
"=",
"[",
"]",
"for",
"poly_per_obj",
"in",
"self",
".",
"masks",
":",
"cropped_poly_per_obj",
"=",
"[",
"]",
"for",
"p",
"in",
"poly_per_obj",
":",
"# pycocotools will clip the boundary",
"p",
"=",
"p",
".",
"copy",
"(",
")",
"p",
"[",
"0",
":",
":",
"2",
"]",
"-=",
"bbox",
"[",
"0",
"]",
"p",
"[",
"1",
":",
":",
"2",
"]",
"-=",
"bbox",
"[",
"1",
"]",
"cropped_poly_per_obj",
".",
"append",
"(",
"p",
")",
"cropped_masks",
".",
"append",
"(",
"cropped_poly_per_obj",
")",
"cropped_masks",
"=",
"PolygonMasks",
"(",
"cropped_masks",
",",
"h",
",",
"w",
")",
"return",
"cropped_masks"
] | [
427,
4
] | [
454,
28
] | python | de | ['en', 'de', 'it'] | False |
PolygonMasks.pad | (self, out_shape, pad_val=0) | padding has no effect on polygons` | padding has no effect on polygons` | def pad(self, out_shape, pad_val=0):
"""padding has no effect on polygons`"""
return PolygonMasks(self.masks, *out_shape) | [
"def",
"pad",
"(",
"self",
",",
"out_shape",
",",
"pad_val",
"=",
"0",
")",
":",
"return",
"PolygonMasks",
"(",
"self",
".",
"masks",
",",
"*",
"out_shape",
")"
] | [
456,
4
] | [
458,
51
] | python | en | ['en', 'en', 'en'] | True |
PolygonMasks.expand | (self, *args, **kwargs) | TODO: Add expand for polygon | TODO: Add expand for polygon | def expand(self, *args, **kwargs):
"""TODO: Add expand for polygon"""
raise NotImplementedError | [
"def",
"expand",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"raise",
"NotImplementedError"
] | [
460,
4
] | [
462,
33
] | python | en | ['en', 'en', 'en'] | True |
PolygonMasks.crop_and_resize | (self,
bboxes,
out_shape,
inds,
device='cpu',
interpolation='bilinear') | see :func:`BaseInstanceMasks.crop_and_resize` | see :func:`BaseInstanceMasks.crop_and_resize` | def crop_and_resize(self,
bboxes,
out_shape,
inds,
device='cpu',
interpolation='bilinear'):
"""see :func:`BaseInstanceMasks.crop_and_resize`"""
out_h, out_w = out_shape
if len(self.masks) == 0:
return PolygonMasks([], out_h, out_w)
resized_masks = []
for i in range(len(bboxes)):
mask = self.masks[inds[i]]
bbox = bboxes[i, :]
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1, 1)
h = np.maximum(y2 - y1, 1)
h_scale = out_h / max(h, 0.1) # avoid too large scale
w_scale = out_w / max(w, 0.1)
resized_mask = []
for p in mask:
p = p.copy()
# crop
# pycocotools will clip the boundary
p[0::2] -= bbox[0]
p[1::2] -= bbox[1]
# resize
p[0::2] *= w_scale
p[1::2] *= h_scale
resized_mask.append(p)
resized_masks.append(resized_mask)
return PolygonMasks(resized_masks, *out_shape) | [
"def",
"crop_and_resize",
"(",
"self",
",",
"bboxes",
",",
"out_shape",
",",
"inds",
",",
"device",
"=",
"'cpu'",
",",
"interpolation",
"=",
"'bilinear'",
")",
":",
"out_h",
",",
"out_w",
"=",
"out_shape",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"return",
"PolygonMasks",
"(",
"[",
"]",
",",
"out_h",
",",
"out_w",
")",
"resized_masks",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"bboxes",
")",
")",
":",
"mask",
"=",
"self",
".",
"masks",
"[",
"inds",
"[",
"i",
"]",
"]",
"bbox",
"=",
"bboxes",
"[",
"i",
",",
":",
"]",
"x1",
",",
"y1",
",",
"x2",
",",
"y2",
"=",
"bbox",
"w",
"=",
"np",
".",
"maximum",
"(",
"x2",
"-",
"x1",
",",
"1",
")",
"h",
"=",
"np",
".",
"maximum",
"(",
"y2",
"-",
"y1",
",",
"1",
")",
"h_scale",
"=",
"out_h",
"/",
"max",
"(",
"h",
",",
"0.1",
")",
"# avoid too large scale",
"w_scale",
"=",
"out_w",
"/",
"max",
"(",
"w",
",",
"0.1",
")",
"resized_mask",
"=",
"[",
"]",
"for",
"p",
"in",
"mask",
":",
"p",
"=",
"p",
".",
"copy",
"(",
")",
"# crop",
"# pycocotools will clip the boundary",
"p",
"[",
"0",
":",
":",
"2",
"]",
"-=",
"bbox",
"[",
"0",
"]",
"p",
"[",
"1",
":",
":",
"2",
"]",
"-=",
"bbox",
"[",
"1",
"]",
"# resize",
"p",
"[",
"0",
":",
":",
"2",
"]",
"*=",
"w_scale",
"p",
"[",
"1",
":",
":",
"2",
"]",
"*=",
"h_scale",
"resized_mask",
".",
"append",
"(",
"p",
")",
"resized_masks",
".",
"append",
"(",
"resized_mask",
")",
"return",
"PolygonMasks",
"(",
"resized_masks",
",",
"*",
"out_shape",
")"
] | [
464,
4
] | [
498,
54
] | python | en | ['en', 'en', 'en'] | False |
PolygonMasks.to_bitmap | (self) | convert polygon masks to bitmap masks. | convert polygon masks to bitmap masks. | def to_bitmap(self):
"""convert polygon masks to bitmap masks."""
bitmap_masks = self.to_ndarray()
return BitmapMasks(bitmap_masks, self.height, self.width) | [
"def",
"to_bitmap",
"(",
"self",
")",
":",
"bitmap_masks",
"=",
"self",
".",
"to_ndarray",
"(",
")",
"return",
"BitmapMasks",
"(",
"bitmap_masks",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")"
] | [
500,
4
] | [
503,
65
] | python | en | ['en', 'fil', 'en'] | True |
PolygonMasks.areas | (self) | Compute areas of masks.
This func is modified from
https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387
Only works with Polygons, using the shoelace formula
Return:
ndarray: areas of each instance
| Compute areas of masks. | def areas(self):
"""Compute areas of masks.
This func is modified from
https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387
Only works with Polygons, using the shoelace formula
Return:
ndarray: areas of each instance
""" # noqa: W501
area = []
for polygons_per_obj in self.masks:
area_per_obj = 0
for p in polygons_per_obj:
area_per_obj += self._polygon_area(p[0::2], p[1::2])
area.append(area_per_obj)
return np.asarray(area) | [
"def",
"areas",
"(",
"self",
")",
":",
"# noqa: W501",
"area",
"=",
"[",
"]",
"for",
"polygons_per_obj",
"in",
"self",
".",
"masks",
":",
"area_per_obj",
"=",
"0",
"for",
"p",
"in",
"polygons_per_obj",
":",
"area_per_obj",
"+=",
"self",
".",
"_polygon_area",
"(",
"p",
"[",
"0",
":",
":",
"2",
"]",
",",
"p",
"[",
"1",
":",
":",
"2",
"]",
")",
"area",
".",
"append",
"(",
"area_per_obj",
")",
"return",
"np",
".",
"asarray",
"(",
"area",
")"
] | [
506,
4
] | [
522,
31
] | python | en | ['en', 'en', 'en'] | True |
PolygonMasks._polygon_area | (self, x, y) | Compute the area of a component of a polygon.
Using the shoelace formula:
https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
Args:
x (ndarray): x coordinates of the component
y (ndarray): y coordinates of the component
Return:
float: the are of the component
| Compute the area of a component of a polygon. | def _polygon_area(self, x, y):
"""Compute the area of a component of a polygon.
Using the shoelace formula:
https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
Args:
x (ndarray): x coordinates of the component
y (ndarray): y coordinates of the component
Return:
float: the are of the component
""" # noqa: 501
return 0.5 * np.abs(
np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) | [
"def",
"_polygon_area",
"(",
"self",
",",
"x",
",",
"y",
")",
":",
"# noqa: 501",
"return",
"0.5",
"*",
"np",
".",
"abs",
"(",
"np",
".",
"dot",
"(",
"x",
",",
"np",
".",
"roll",
"(",
"y",
",",
"1",
")",
")",
"-",
"np",
".",
"dot",
"(",
"y",
",",
"np",
".",
"roll",
"(",
"x",
",",
"1",
")",
")",
")"
] | [
524,
4
] | [
538,
64
] | python | en | ['en', 'en', 'en'] | True |
PolygonMasks.to_ndarray | (self) | Convert masks to the format of ndarray. | Convert masks to the format of ndarray. | def to_ndarray(self):
"""Convert masks to the format of ndarray."""
if len(self.masks) == 0:
return np.empty((0, self.height, self.width), dtype=np.uint8)
bitmap_masks = []
for poly_per_obj in self.masks:
bitmap_masks.append(
polygon_to_bitmap(poly_per_obj, self.height, self.width))
return np.stack(bitmap_masks) | [
"def",
"to_ndarray",
"(",
"self",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"return",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"bitmap_masks",
"=",
"[",
"]",
"for",
"poly_per_obj",
"in",
"self",
".",
"masks",
":",
"bitmap_masks",
".",
"append",
"(",
"polygon_to_bitmap",
"(",
"poly_per_obj",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")",
")",
"return",
"np",
".",
"stack",
"(",
"bitmap_masks",
")"
] | [
540,
4
] | [
548,
37
] | python | en | ['en', 'en', 'en'] | True |
PolygonMasks.to_tensor | (self, dtype, device) | See :func:`BaseInstanceMasks.to_tensor`. | See :func:`BaseInstanceMasks.to_tensor`. | def to_tensor(self, dtype, device):
"""See :func:`BaseInstanceMasks.to_tensor`."""
if len(self.masks) == 0:
return torch.empty((0, self.height, self.width),
dtype=dtype,
device=device)
ndarray_masks = self.to_ndarray()
return torch.tensor(ndarray_masks, dtype=dtype, device=device) | [
"def",
"to_tensor",
"(",
"self",
",",
"dtype",
",",
"device",
")",
":",
"if",
"len",
"(",
"self",
".",
"masks",
")",
"==",
"0",
":",
"return",
"torch",
".",
"empty",
"(",
"(",
"0",
",",
"self",
".",
"height",
",",
"self",
".",
"width",
")",
",",
"dtype",
"=",
"dtype",
",",
"device",
"=",
"device",
")",
"ndarray_masks",
"=",
"self",
".",
"to_ndarray",
"(",
")",
"return",
"torch",
".",
"tensor",
"(",
"ndarray_masks",
",",
"dtype",
"=",
"dtype",
",",
"device",
"=",
"device",
")"
] | [
550,
4
] | [
557,
70
] | python | en | ['en', 'en', 'de'] | False |
Font.color | (self) |
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
- A list or array of any of the above
Returns
-------
str|numpy.ndarray
|
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
- A list or array of any of the above | def color(self):
"""
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
- A list or array of any of the above
Returns
-------
str|numpy.ndarray
"""
return self["color"] | [
"def",
"color",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"color\"",
"]"
] | [
15,
4
] | [
64,
28
] | python | en | ['en', 'error', 'th'] | False |
Font.colorsrc | (self) |
Sets the source reference on Chart Studio Cloud for color .
The 'colorsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
|
Sets the source reference on Chart Studio Cloud for color .
The 'colorsrc' property must be specified as a string or
as a plotly.grid_objs.Column object | def colorsrc(self):
"""
Sets the source reference on Chart Studio Cloud for color .
The 'colorsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["colorsrc"] | [
"def",
"colorsrc",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"colorsrc\"",
"]"
] | [
73,
4
] | [
84,
31
] | python | en | ['en', 'error', 'th'] | False |
Font.family | (self) |
HTML font family - the typeface that will be applied by the web
browser. The web browser will only be able to apply a font if
it is available on the system which it operates. Provide
multiple font families, separated by commas, to indicate the
preference in which to apply fonts if they aren't available on
the system. The Chart Studio Cloud (at https://chart-
studio.plotly.com or on-premise) generates images on a server,
where only a select number of fonts are installed and
supported. These include "Arial", "Balto", "Courier New",
"Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
The 'family' property is a string and must be specified as:
- A non-empty string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
|
HTML font family - the typeface that will be applied by the web
browser. The web browser will only be able to apply a font if
it is available on the system which it operates. Provide
multiple font families, separated by commas, to indicate the
preference in which to apply fonts if they aren't available on
the system. The Chart Studio Cloud (at https://chart-
studio.plotly.com or on-premise) generates images on a server,
where only a select number of fonts are installed and
supported. These include "Arial", "Balto", "Courier New",
"Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
The 'family' property is a string and must be specified as:
- A non-empty string
- A tuple, list, or one-dimensional numpy array of the above | def family(self):
"""
HTML font family - the typeface that will be applied by the web
browser. The web browser will only be able to apply a font if
it is available on the system which it operates. Provide
multiple font families, separated by commas, to indicate the
preference in which to apply fonts if they aren't available on
the system. The Chart Studio Cloud (at https://chart-
studio.plotly.com or on-premise) generates images on a server,
where only a select number of fonts are installed and
supported. These include "Arial", "Balto", "Courier New",
"Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
The 'family' property is a string and must be specified as:
- A non-empty string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["family"] | [
"def",
"family",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"family\"",
"]"
] | [
93,
4
] | [
116,
29
] | python | en | ['en', 'error', 'th'] | False |
Font.familysrc | (self) |
Sets the source reference on Chart Studio Cloud for family .
The 'familysrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
|
Sets the source reference on Chart Studio Cloud for family .
The 'familysrc' property must be specified as a string or
as a plotly.grid_objs.Column object | def familysrc(self):
"""
Sets the source reference on Chart Studio Cloud for family .
The 'familysrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["familysrc"] | [
"def",
"familysrc",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"familysrc\"",
"]"
] | [
125,
4
] | [
136,
32
] | python | en | ['en', 'error', 'th'] | False |
Font.size | (self) |
The 'size' property is a number and may be specified as:
- An int or float in the interval [1, inf]
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
int|float|numpy.ndarray
|
The 'size' property is a number and may be specified as:
- An int or float in the interval [1, inf]
- A tuple, list, or one-dimensional numpy array of the above | def size(self):
"""
The 'size' property is a number and may be specified as:
- An int or float in the interval [1, inf]
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
int|float|numpy.ndarray
"""
return self["size"] | [
"def",
"size",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"size\"",
"]"
] | [
145,
4
] | [
155,
27
] | python | en | ['en', 'error', 'th'] | False |
Font.sizesrc | (self) |
Sets the source reference on Chart Studio Cloud for size .
The 'sizesrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
|
Sets the source reference on Chart Studio Cloud for size .
The 'sizesrc' property must be specified as a string or
as a plotly.grid_objs.Column object | def sizesrc(self):
"""
Sets the source reference on Chart Studio Cloud for size .
The 'sizesrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["sizesrc"] | [
"def",
"sizesrc",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"sizesrc\"",
"]"
] | [
164,
4
] | [
175,
30
] | python | en | ['en', 'error', 'th'] | False |
Font.__init__ | (
self,
arg=None,
color=None,
colorsrc=None,
family=None,
familysrc=None,
size=None,
sizesrc=None,
**kwargs
) |
Construct a new Font object
Sets the font used in hover labels.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.volume.hoverlabel.Font`
color
colorsrc
Sets the source reference on Chart Studio Cloud for
color .
family
HTML font family - the typeface that will be applied by
the web browser. The web browser will only be able to
apply a font if it is available on the system which it
operates. Provide multiple font families, separated by
commas, to indicate the preference in which to apply
fonts if they aren't available on the system. The Chart
Studio Cloud (at https://chart-studio.plotly.com or on-
premise) generates images on a server, where only a
select number of fonts are installed and supported.
These include "Arial", "Balto", "Courier New", "Droid
Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT
Sans Narrow", "Raleway", "Times New Roman".
familysrc
Sets the source reference on Chart Studio Cloud for
family .
size
sizesrc
Sets the source reference on Chart Studio Cloud for
size .
Returns
-------
Font
|
Construct a new Font object
Sets the font used in hover labels. | def __init__(
self,
arg=None,
color=None,
colorsrc=None,
family=None,
familysrc=None,
size=None,
sizesrc=None,
**kwargs
):
"""
Construct a new Font object
Sets the font used in hover labels.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.volume.hoverlabel.Font`
color
colorsrc
Sets the source reference on Chart Studio Cloud for
color .
family
HTML font family - the typeface that will be applied by
the web browser. The web browser will only be able to
apply a font if it is available on the system which it
operates. Provide multiple font families, separated by
commas, to indicate the preference in which to apply
fonts if they aren't available on the system. The Chart
Studio Cloud (at https://chart-studio.plotly.com or on-
premise) generates images on a server, where only a
select number of fonts are installed and supported.
These include "Arial", "Balto", "Courier New", "Droid
Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT
Sans Narrow", "Raleway", "Times New Roman".
familysrc
Sets the source reference on Chart Studio Cloud for
family .
size
sizesrc
Sets the source reference on Chart Studio Cloud for
size .
Returns
-------
Font
"""
super(Font, self).__init__("font")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.volume.hoverlabel.Font
constructor must be a dict or
an instance of :class:`plotly.graph_objs.volume.hoverlabel.Font`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("color", None)
_v = color if color is not None else _v
if _v is not None:
self["color"] = _v
_v = arg.pop("colorsrc", None)
_v = colorsrc if colorsrc is not None else _v
if _v is not None:
self["colorsrc"] = _v
_v = arg.pop("family", None)
_v = family if family is not None else _v
if _v is not None:
self["family"] = _v
_v = arg.pop("familysrc", None)
_v = familysrc if familysrc is not None else _v
if _v is not None:
self["familysrc"] = _v
_v = arg.pop("size", None)
_v = size if size is not None else _v
if _v is not None:
self["size"] = _v
_v = arg.pop("sizesrc", None)
_v = sizesrc if sizesrc is not None else _v
if _v is not None:
self["sizesrc"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False | [
"def",
"__init__",
"(",
"self",
",",
"arg",
"=",
"None",
",",
"color",
"=",
"None",
",",
"colorsrc",
"=",
"None",
",",
"family",
"=",
"None",
",",
"familysrc",
"=",
"None",
",",
"size",
"=",
"None",
",",
"sizesrc",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"super",
"(",
"Font",
",",
"self",
")",
".",
"__init__",
"(",
"\"font\"",
")",
"if",
"\"_parent\"",
"in",
"kwargs",
":",
"self",
".",
"_parent",
"=",
"kwargs",
"[",
"\"_parent\"",
"]",
"return",
"# Validate arg",
"# ------------",
"if",
"arg",
"is",
"None",
":",
"arg",
"=",
"{",
"}",
"elif",
"isinstance",
"(",
"arg",
",",
"self",
".",
"__class__",
")",
":",
"arg",
"=",
"arg",
".",
"to_plotly_json",
"(",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"dict",
")",
":",
"arg",
"=",
"_copy",
".",
"copy",
"(",
"arg",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"\"\"\\\nThe first argument to the plotly.graph_objs.volume.hoverlabel.Font \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.volume.hoverlabel.Font`\"\"\"",
")",
"# Handle skip_invalid",
"# -------------------",
"self",
".",
"_skip_invalid",
"=",
"kwargs",
".",
"pop",
"(",
"\"skip_invalid\"",
",",
"False",
")",
"self",
".",
"_validate",
"=",
"kwargs",
".",
"pop",
"(",
"\"_validate\"",
",",
"True",
")",
"# Populate data dict with properties",
"# ----------------------------------",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"color\"",
",",
"None",
")",
"_v",
"=",
"color",
"if",
"color",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"color\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"colorsrc\"",
",",
"None",
")",
"_v",
"=",
"colorsrc",
"if",
"colorsrc",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"colorsrc\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"family\"",
",",
"None",
")",
"_v",
"=",
"family",
"if",
"family",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"family\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"familysrc\"",
",",
"None",
")",
"_v",
"=",
"familysrc",
"if",
"familysrc",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"familysrc\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"size\"",
",",
"None",
")",
"_v",
"=",
"size",
"if",
"size",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"size\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"sizesrc\"",
",",
"None",
")",
"_v",
"=",
"sizesrc",
"if",
"sizesrc",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"sizesrc\"",
"]",
"=",
"_v",
"# Process unknown kwargs",
"# ----------------------",
"self",
".",
"_process_kwargs",
"(",
"*",
"*",
"dict",
"(",
"arg",
",",
"*",
"*",
"kwargs",
")",
")",
"# Reset skip_invalid",
"# ------------------",
"self",
".",
"_skip_invalid",
"=",
"False"
] | [
215,
4
] | [
329,
34
] | python | en | ['en', 'error', 'th'] | False |
SplitTeacher.observe | (self, observation) |
Process observation for metrics.
|
Process observation for metrics.
| def observe(self, observation):
"""
Process observation for metrics.
"""
if self.lastY is not None:
if self.asked_question:
self.metrics.evaluate_response(observation, self.lastY[0])
else:
self.factmetrics.evaluate_response(observation, self.lastY[1])
self.lastY = None
return observation | [
"def",
"observe",
"(",
"self",
",",
"observation",
")",
":",
"if",
"self",
".",
"lastY",
"is",
"not",
"None",
":",
"if",
"self",
".",
"asked_question",
":",
"self",
".",
"metrics",
".",
"evaluate_response",
"(",
"observation",
",",
"self",
".",
"lastY",
"[",
"0",
"]",
")",
"else",
":",
"self",
".",
"factmetrics",
".",
"evaluate_response",
"(",
"observation",
",",
"self",
".",
"lastY",
"[",
"1",
"]",
")",
"self",
".",
"lastY",
"=",
"None",
"return",
"observation"
] | [
103,
4
] | [
113,
26
] | python | en | ['en', 'error', 'th'] | False |
mccp_compress | (protocol, data) |
Handles zlib compression, if applicable.
Args:
data (str): Incoming data to compress.
Returns:
stream (binary): Zlib-compressed data.
|
Handles zlib compression, if applicable. | def mccp_compress(protocol, data):
"""
Handles zlib compression, if applicable.
Args:
data (str): Incoming data to compress.
Returns:
stream (binary): Zlib-compressed data.
"""
if hasattr(protocol, 'zlib'):
return protocol.zlib.compress(data) + protocol.zlib.flush(FLUSH)
return data | [
"def",
"mccp_compress",
"(",
"protocol",
",",
"data",
")",
":",
"if",
"hasattr",
"(",
"protocol",
",",
"'zlib'",
")",
":",
"return",
"protocol",
".",
"zlib",
".",
"compress",
"(",
"data",
")",
"+",
"protocol",
".",
"zlib",
".",
"flush",
"(",
"FLUSH",
")",
"return",
"data"
] | [
24,
0
] | [
37,
15
] | python | en | ['en', 'error', 'th'] | False |
Mccp.__init__ | (self, protocol) |
initialize MCCP by storing protocol on
ourselves and calling the client to see if
it supports MCCP. Sets callbacks to
start zlib compression in that case.
Args:
protocol (Protocol): The active protocol instance.
|
initialize MCCP by storing protocol on
ourselves and calling the client to see if
it supports MCCP. Sets callbacks to
start zlib compression in that case. | def __init__(self, protocol):
"""
initialize MCCP by storing protocol on
ourselves and calling the client to see if
it supports MCCP. Sets callbacks to
start zlib compression in that case.
Args:
protocol (Protocol): The active protocol instance.
"""
self.protocol = protocol
self.protocol.protocol_flags['MCCP'] = False
# ask if client will mccp, connect callbacks to handle answer
self.protocol.will(MCCP).addCallbacks(self.do_mccp, self.no_mccp) | [
"def",
"__init__",
"(",
"self",
",",
"protocol",
")",
":",
"self",
".",
"protocol",
"=",
"protocol",
"self",
".",
"protocol",
".",
"protocol_flags",
"[",
"'MCCP'",
"]",
"=",
"False",
"# ask if client will mccp, connect callbacks to handle answer",
"self",
".",
"protocol",
".",
"will",
"(",
"MCCP",
")",
".",
"addCallbacks",
"(",
"self",
".",
"do_mccp",
",",
"self",
".",
"no_mccp",
")"
] | [
47,
4
] | [
62,
73
] | python | en | ['en', 'error', 'th'] | False |
Mccp.no_mccp | (self, option) |
Called if client doesn't support mccp or chooses to turn it off.
Args:
option (Option): Option dict (not used).
|
Called if client doesn't support mccp or chooses to turn it off. | def no_mccp(self, option):
"""
Called if client doesn't support mccp or chooses to turn it off.
Args:
option (Option): Option dict (not used).
"""
if hasattr(self.protocol, 'zlib'):
del self.protocol.zlib
self.protocol.protocol_flags['MCCP'] = False
self.protocol.handshake_done() | [
"def",
"no_mccp",
"(",
"self",
",",
"option",
")",
":",
"if",
"hasattr",
"(",
"self",
".",
"protocol",
",",
"'zlib'",
")",
":",
"del",
"self",
".",
"protocol",
".",
"zlib",
"self",
".",
"protocol",
".",
"protocol_flags",
"[",
"'MCCP'",
"]",
"=",
"False",
"self",
".",
"protocol",
".",
"handshake_done",
"(",
")"
] | [
64,
4
] | [
75,
38
] | python | en | ['en', 'error', 'th'] | False |
Mccp.do_mccp | (self, option) |
The client supports MCCP. Set things up by
creating a zlib compression stream.
Args:
option (Option): Option dict (not used).
|
The client supports MCCP. Set things up by
creating a zlib compression stream. | def do_mccp(self, option):
"""
The client supports MCCP. Set things up by
creating a zlib compression stream.
Args:
option (Option): Option dict (not used).
"""
self.protocol.protocol_flags['MCCP'] = True
self.protocol.requestNegotiation(MCCP, '')
self.protocol.zlib = zlib.compressobj(9)
self.protocol.handshake_done() | [
"def",
"do_mccp",
"(",
"self",
",",
"option",
")",
":",
"self",
".",
"protocol",
".",
"protocol_flags",
"[",
"'MCCP'",
"]",
"=",
"True",
"self",
".",
"protocol",
".",
"requestNegotiation",
"(",
"MCCP",
",",
"''",
")",
"self",
".",
"protocol",
".",
"zlib",
"=",
"zlib",
".",
"compressobj",
"(",
"9",
")",
"self",
".",
"protocol",
".",
"handshake_done",
"(",
")"
] | [
77,
4
] | [
89,
38
] | python | en | ['en', 'error', 'th'] | False |
IndyIssuer.__init__ | (self, wallet) |
Initialize an IndyLedger instance.
Args:
wallet: IndyWallet instance
|
Initialize an IndyLedger instance. | def __init__(self, wallet):
"""
Initialize an IndyLedger instance.
Args:
wallet: IndyWallet instance
"""
self.logger = logging.getLogger(__name__)
self.wallet = wallet | [
"def",
"__init__",
"(",
"self",
",",
"wallet",
")",
":",
"self",
".",
"logger",
"=",
"logging",
".",
"getLogger",
"(",
"__name__",
")",
"self",
".",
"wallet",
"=",
"wallet"
] | [
20,
4
] | [
29,
28
] | python | en | ['en', 'error', 'th'] | False |
IndyIssuer.create_credential_offer | (self, credential_definition_id: str) |
Create a credential offer for the given credential definition id.
Args:
credential_definition_id: The credential definition to create an offer for
Returns:
A credential offer
|
Create a credential offer for the given credential definition id. | async def create_credential_offer(self, credential_definition_id: str):
"""
Create a credential offer for the given credential definition id.
Args:
credential_definition_id: The credential definition to create an offer for
Returns:
A credential offer
"""
credential_offer_json = await indy.anoncreds.issuer_create_credential_offer(
self.wallet.handle, credential_definition_id
)
credential_offer = json.loads(credential_offer_json)
return credential_offer | [
"async",
"def",
"create_credential_offer",
"(",
"self",
",",
"credential_definition_id",
":",
"str",
")",
":",
"credential_offer_json",
"=",
"await",
"indy",
".",
"anoncreds",
".",
"issuer_create_credential_offer",
"(",
"self",
".",
"wallet",
".",
"handle",
",",
"credential_definition_id",
")",
"credential_offer",
"=",
"json",
".",
"loads",
"(",
"credential_offer_json",
")",
"return",
"credential_offer"
] | [
31,
4
] | [
48,
31
] | python | en | ['en', 'error', 'th'] | False |
IndyIssuer.create_credential | (
self, schema, credential_offer, credential_request, credential_values
) |
Create a credential.
Args
schema: Schema to create credential for
credential_offer: Credential Offer to create credential for
credential_request: Credential request to create credential for
credential_values: Values to go in credential
Returns:
A tuple of created credential, revocation id
|
Create a credential. | async def create_credential(
self, schema, credential_offer, credential_request, credential_values
):
"""
Create a credential.
Args
schema: Schema to create credential for
credential_offer: Credential Offer to create credential for
credential_request: Credential request to create credential for
credential_values: Values to go in credential
Returns:
A tuple of created credential, revocation id
"""
encoded_values = {}
schema_attributes = schema["attrNames"]
for attribute in schema_attributes:
# Ensure every attribute present in schema to be set.
# Extraneous attribute names are ignored.
try:
credential_value = credential_values[attribute]
except KeyError:
raise IssuerError(
"Provided credential values are missing a value "
+ f"for the schema attribute '{attribute}'"
)
encoded_values[attribute] = {}
encoded_values[attribute]["raw"] = str(credential_value)
encoded_values[attribute]["encoded"] = encode(credential_value)
(
credential_json,
credential_revocation_id,
_,
) = await indy.anoncreds.issuer_create_credential(
self.wallet.handle,
json.dumps(credential_offer),
json.dumps(credential_request),
json.dumps(encoded_values),
None,
None,
)
return json.loads(credential_json), credential_revocation_id | [
"async",
"def",
"create_credential",
"(",
"self",
",",
"schema",
",",
"credential_offer",
",",
"credential_request",
",",
"credential_values",
")",
":",
"encoded_values",
"=",
"{",
"}",
"schema_attributes",
"=",
"schema",
"[",
"\"attrNames\"",
"]",
"for",
"attribute",
"in",
"schema_attributes",
":",
"# Ensure every attribute present in schema to be set.",
"# Extraneous attribute names are ignored.",
"try",
":",
"credential_value",
"=",
"credential_values",
"[",
"attribute",
"]",
"except",
"KeyError",
":",
"raise",
"IssuerError",
"(",
"\"Provided credential values are missing a value \"",
"+",
"f\"for the schema attribute '{attribute}'\"",
")",
"encoded_values",
"[",
"attribute",
"]",
"=",
"{",
"}",
"encoded_values",
"[",
"attribute",
"]",
"[",
"\"raw\"",
"]",
"=",
"str",
"(",
"credential_value",
")",
"encoded_values",
"[",
"attribute",
"]",
"[",
"\"encoded\"",
"]",
"=",
"encode",
"(",
"credential_value",
")",
"(",
"credential_json",
",",
"credential_revocation_id",
",",
"_",
",",
")",
"=",
"await",
"indy",
".",
"anoncreds",
".",
"issuer_create_credential",
"(",
"self",
".",
"wallet",
".",
"handle",
",",
"json",
".",
"dumps",
"(",
"credential_offer",
")",
",",
"json",
".",
"dumps",
"(",
"credential_request",
")",
",",
"json",
".",
"dumps",
"(",
"encoded_values",
")",
",",
"None",
",",
"None",
",",
")",
"return",
"json",
".",
"loads",
"(",
"credential_json",
")",
",",
"credential_revocation_id"
] | [
50,
4
] | [
97,
68
] | python | en | ['en', 'error', 'th'] | False |
Line.color | (self) |
Sets the color of the contour level. Has no effect if
`contours.coloring` is set to "lines".
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
Returns
-------
str
|
Sets the color of the contour level. Has no effect if
`contours.coloring` is set to "lines".
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen | def color(self):
"""
Sets the color of the contour level. Has no effect if
`contours.coloring` is set to "lines".
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
Returns
-------
str
"""
return self["color"] | [
"def",
"color",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"color\"",
"]"
] | [
15,
4
] | [
66,
28
] | python | en | ['en', 'error', 'th'] | False |
Line.dash | (self) |
Sets the dash style of lines. Set to a dash type string
("solid", "dot", "dash", "longdash", "dashdot", or
"longdashdot") or a dash length list in px (eg
"5px,10px,2px,2px").
The 'dash' property is an enumeration that may be specified as:
- One of the following dash styles:
['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot']
- A string containing a dash length list in pixels or percentages
(e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.)
Returns
-------
str
|
Sets the dash style of lines. Set to a dash type string
("solid", "dot", "dash", "longdash", "dashdot", or
"longdashdot") or a dash length list in px (eg
"5px,10px,2px,2px").
The 'dash' property is an enumeration that may be specified as:
- One of the following dash styles:
['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot']
- A string containing a dash length list in pixels or percentages
(e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.) | def dash(self):
"""
Sets the dash style of lines. Set to a dash type string
("solid", "dot", "dash", "longdash", "dashdot", or
"longdashdot") or a dash length list in px (eg
"5px,10px,2px,2px").
The 'dash' property is an enumeration that may be specified as:
- One of the following dash styles:
['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot']
- A string containing a dash length list in pixels or percentages
(e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.)
Returns
-------
str
"""
return self["dash"] | [
"def",
"dash",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"dash\"",
"]"
] | [
75,
4
] | [
92,
27
] | python | en | ['en', 'error', 'th'] | False |
Line.smoothing | (self) |
Sets the amount of smoothing for the contour lines, where 0
corresponds to no smoothing.
The 'smoothing' property is a number and may be specified as:
- An int or float in the interval [0, 1.3]
Returns
-------
int|float
|
Sets the amount of smoothing for the contour lines, where 0
corresponds to no smoothing.
The 'smoothing' property is a number and may be specified as:
- An int or float in the interval [0, 1.3] | def smoothing(self):
"""
Sets the amount of smoothing for the contour lines, where 0
corresponds to no smoothing.
The 'smoothing' property is a number and may be specified as:
- An int or float in the interval [0, 1.3]
Returns
-------
int|float
"""
return self["smoothing"] | [
"def",
"smoothing",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"smoothing\"",
"]"
] | [
101,
4
] | [
113,
32
] | python | en | ['en', 'error', 'th'] | False |
Line.width | (self) |
Sets the contour line width in (in px) Defaults to 0.5 when
`contours.type` is "levels". Defaults to 2 when `contour.type`
is "constraint".
The 'width' property is a number and may be specified as:
- An int or float in the interval [0, inf]
Returns
-------
int|float
|
Sets the contour line width in (in px) Defaults to 0.5 when
`contours.type` is "levels". Defaults to 2 when `contour.type`
is "constraint".
The 'width' property is a number and may be specified as:
- An int or float in the interval [0, inf] | def width(self):
"""
Sets the contour line width in (in px) Defaults to 0.5 when
`contours.type` is "levels". Defaults to 2 when `contour.type`
is "constraint".
The 'width' property is a number and may be specified as:
- An int or float in the interval [0, inf]
Returns
-------
int|float
"""
return self["width"] | [
"def",
"width",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"width\"",
"]"
] | [
122,
4
] | [
135,
28
] | python | en | ['en', 'error', 'th'] | False |
Line.__init__ | (
self, arg=None, color=None, dash=None, smoothing=None, width=None, **kwargs
) |
Construct a new Line object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.contourcarpet.Line`
color
Sets the color of the contour level. Has no effect if
`contours.coloring` is set to "lines".
dash
Sets the dash style of lines. Set to a dash type string
("solid", "dot", "dash", "longdash", "dashdot", or
"longdashdot") or a dash length list in px (eg
"5px,10px,2px,2px").
smoothing
Sets the amount of smoothing for the contour lines,
where 0 corresponds to no smoothing.
width
Sets the contour line width in (in px) Defaults to 0.5
when `contours.type` is "levels". Defaults to 2 when
`contour.type` is "constraint".
Returns
-------
Line
|
Construct a new Line object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.contourcarpet.Line`
color
Sets the color of the contour level. Has no effect if
`contours.coloring` is set to "lines".
dash
Sets the dash style of lines. Set to a dash type string
("solid", "dot", "dash", "longdash", "dashdot", or
"longdashdot") or a dash length list in px (eg
"5px,10px,2px,2px").
smoothing
Sets the amount of smoothing for the contour lines,
where 0 corresponds to no smoothing.
width
Sets the contour line width in (in px) Defaults to 0.5
when `contours.type` is "levels". Defaults to 2 when
`contour.type` is "constraint". | def __init__(
self, arg=None, color=None, dash=None, smoothing=None, width=None, **kwargs
):
"""
Construct a new Line object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.contourcarpet.Line`
color
Sets the color of the contour level. Has no effect if
`contours.coloring` is set to "lines".
dash
Sets the dash style of lines. Set to a dash type string
("solid", "dot", "dash", "longdash", "dashdot", or
"longdashdot") or a dash length list in px (eg
"5px,10px,2px,2px").
smoothing
Sets the amount of smoothing for the contour lines,
where 0 corresponds to no smoothing.
width
Sets the contour line width in (in px) Defaults to 0.5
when `contours.type` is "levels". Defaults to 2 when
`contour.type` is "constraint".
Returns
-------
Line
"""
super(Line, self).__init__("line")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.contourcarpet.Line
constructor must be a dict or
an instance of :class:`plotly.graph_objs.contourcarpet.Line`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("color", None)
_v = color if color is not None else _v
if _v is not None:
self["color"] = _v
_v = arg.pop("dash", None)
_v = dash if dash is not None else _v
if _v is not None:
self["dash"] = _v
_v = arg.pop("smoothing", None)
_v = smoothing if smoothing is not None else _v
if _v is not None:
self["smoothing"] = _v
_v = arg.pop("width", None)
_v = width if width is not None else _v
if _v is not None:
self["width"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False | [
"def",
"__init__",
"(",
"self",
",",
"arg",
"=",
"None",
",",
"color",
"=",
"None",
",",
"dash",
"=",
"None",
",",
"smoothing",
"=",
"None",
",",
"width",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"super",
"(",
"Line",
",",
"self",
")",
".",
"__init__",
"(",
"\"line\"",
")",
"if",
"\"_parent\"",
"in",
"kwargs",
":",
"self",
".",
"_parent",
"=",
"kwargs",
"[",
"\"_parent\"",
"]",
"return",
"# Validate arg",
"# ------------",
"if",
"arg",
"is",
"None",
":",
"arg",
"=",
"{",
"}",
"elif",
"isinstance",
"(",
"arg",
",",
"self",
".",
"__class__",
")",
":",
"arg",
"=",
"arg",
".",
"to_plotly_json",
"(",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"dict",
")",
":",
"arg",
"=",
"_copy",
".",
"copy",
"(",
"arg",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"\"\"\\\nThe first argument to the plotly.graph_objs.contourcarpet.Line \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.contourcarpet.Line`\"\"\"",
")",
"# Handle skip_invalid",
"# -------------------",
"self",
".",
"_skip_invalid",
"=",
"kwargs",
".",
"pop",
"(",
"\"skip_invalid\"",
",",
"False",
")",
"self",
".",
"_validate",
"=",
"kwargs",
".",
"pop",
"(",
"\"_validate\"",
",",
"True",
")",
"# Populate data dict with properties",
"# ----------------------------------",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"color\"",
",",
"None",
")",
"_v",
"=",
"color",
"if",
"color",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"color\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"dash\"",
",",
"None",
")",
"_v",
"=",
"dash",
"if",
"dash",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"dash\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"smoothing\"",
",",
"None",
")",
"_v",
"=",
"smoothing",
"if",
"smoothing",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"smoothing\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"width\"",
",",
"None",
")",
"_v",
"=",
"width",
"if",
"width",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"width\"",
"]",
"=",
"_v",
"# Process unknown kwargs",
"# ----------------------",
"self",
".",
"_process_kwargs",
"(",
"*",
"*",
"dict",
"(",
"arg",
",",
"*",
"*",
"kwargs",
")",
")",
"# Reset skip_invalid",
"# ------------------",
"self",
".",
"_skip_invalid",
"=",
"False"
] | [
163,
4
] | [
247,
34
] | python | en | ['en', 'error', 'th'] | False |
TimeoutUtils.get_timeout_act | (
agent: Agent,
timeout: int = DEFAULT_TIMEOUT,
quick_replies: Optional[List[str]] = None,
) |
Return an agent's act, with a specified timeout.
:param agent:
Agent who is acting
:param timeout:
how long to wait
:param quick_replies:
If given, agent's message *MUST* be one of the quick replies
:return:
An act dictionary if no timeout; else, None
|
Return an agent's act, with a specified timeout. | def get_timeout_act(
agent: Agent,
timeout: int = DEFAULT_TIMEOUT,
quick_replies: Optional[List[str]] = None,
) -> Optional[Message]:
"""
Return an agent's act, with a specified timeout.
:param agent:
Agent who is acting
:param timeout:
how long to wait
:param quick_replies:
If given, agent's message *MUST* be one of the quick replies
:return:
An act dictionary if no timeout; else, None
"""
def _is_valid(act):
return act.get("text", "") in quick_replies if quick_replies else True
act = None
curr_time = time.time()
allowed_timeout = timeout
while act is None and time.time() - curr_time < allowed_timeout:
act = agent.act()
if act is not None and not _is_valid(act):
agent.observe(
{
"id": "",
"text": "Invalid response. Please choose one of the quick replies",
"quick_replies": quick_replies,
}
)
time.sleep(THREAD_SLEEP) # TODO: use threading.Event() rather than polling
return act | [
"def",
"get_timeout_act",
"(",
"agent",
":",
"Agent",
",",
"timeout",
":",
"int",
"=",
"DEFAULT_TIMEOUT",
",",
"quick_replies",
":",
"Optional",
"[",
"List",
"[",
"str",
"]",
"]",
"=",
"None",
",",
")",
"->",
"Optional",
"[",
"Message",
"]",
":",
"def",
"_is_valid",
"(",
"act",
")",
":",
"return",
"act",
".",
"get",
"(",
"\"text\"",
",",
"\"\"",
")",
"in",
"quick_replies",
"if",
"quick_replies",
"else",
"True",
"act",
"=",
"None",
"curr_time",
"=",
"time",
".",
"time",
"(",
")",
"allowed_timeout",
"=",
"timeout",
"while",
"act",
"is",
"None",
"and",
"time",
".",
"time",
"(",
")",
"-",
"curr_time",
"<",
"allowed_timeout",
":",
"act",
"=",
"agent",
".",
"act",
"(",
")",
"if",
"act",
"is",
"not",
"None",
"and",
"not",
"_is_valid",
"(",
"act",
")",
":",
"agent",
".",
"observe",
"(",
"{",
"\"id\"",
":",
"\"\"",
",",
"\"text\"",
":",
"\"Invalid response. Please choose one of the quick replies\"",
",",
"\"quick_replies\"",
":",
"quick_replies",
",",
"}",
")",
"time",
".",
"sleep",
"(",
"THREAD_SLEEP",
")",
"# TODO: use threading.Event() rather than polling",
"return",
"act"
] | [
21,
4
] | [
57,
18
] | python | en | ['en', 'error', 'th'] | False |
TimeoutUtils._get_response_timeout_loop | (
agent: Agent,
world: World,
timeout: int = DEFAULT_TIMEOUT,
timeout_msg: str = 'You have timed out',
) |
Get a response from the agent.
:param agent:
agent who is acting
:param world:
world in which agent is acting
:param timeout:
timeout in secs
:param timeout_msg:
what to say to agent when they timeout
:return response:
Response if given, else None
|
Get a response from the agent. | def _get_response_timeout_loop(
agent: Agent,
world: World,
timeout: int = DEFAULT_TIMEOUT,
timeout_msg: str = 'You have timed out',
) -> Optional[Message]:
"""
Get a response from the agent.
:param agent:
agent who is acting
:param world:
world in which agent is acting
:param timeout:
timeout in secs
:param timeout_msg:
what to say to agent when they timeout
:return response:
Response if given, else None
"""
a = TimeoutUtils.get_timeout_act(agent, timeout)
if a is None:
world.episodeDone = True # type: ignore
agent.observe({"id": "", "text": timeout_msg})
return None
if (a.get("text", "") or "").upper() == "EXIT":
world.episodeDone = True # type: ignore
return None
return a | [
"def",
"_get_response_timeout_loop",
"(",
"agent",
":",
"Agent",
",",
"world",
":",
"World",
",",
"timeout",
":",
"int",
"=",
"DEFAULT_TIMEOUT",
",",
"timeout_msg",
":",
"str",
"=",
"'You have timed out'",
",",
")",
"->",
"Optional",
"[",
"Message",
"]",
":",
"a",
"=",
"TimeoutUtils",
".",
"get_timeout_act",
"(",
"agent",
",",
"timeout",
")",
"if",
"a",
"is",
"None",
":",
"world",
".",
"episodeDone",
"=",
"True",
"# type: ignore",
"agent",
".",
"observe",
"(",
"{",
"\"id\"",
":",
"\"\"",
",",
"\"text\"",
":",
"timeout_msg",
"}",
")",
"return",
"None",
"if",
"(",
"a",
".",
"get",
"(",
"\"text\"",
",",
"\"\"",
")",
"or",
"\"\"",
")",
".",
"upper",
"(",
")",
"==",
"\"EXIT\"",
":",
"world",
".",
"episodeDone",
"=",
"True",
"# type: ignore",
"return",
"None",
"return",
"a"
] | [
60,
4
] | [
90,
16
] | python | en | ['en', 'error', 'th'] | False |
test_Figure | () | if the fig is not associated with a canvas, FakeRenderer shall
not fail. | if the fig is not associated with a canvas, FakeRenderer shall
not fail. | def test_Figure():
""" if the fig is not associated with a canvas, FakeRenderer shall
not fail. """
fig = plt.Figure()
ax = fig.add_subplot(111)
ax.add_patch(plt.Circle((0, 0), 1))
ax.add_patch(plt.Rectangle((0, 0), 1, 2))
_assert_output_equal(fake_renderer_output(fig, FakeRenderer),
"""
opening figure
opening axes
draw path with 25 vertices
draw path with 4 vertices
closing axes
closing figure
""") | [
"def",
"test_Figure",
"(",
")",
":",
"fig",
"=",
"plt",
".",
"Figure",
"(",
")",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"111",
")",
"ax",
".",
"add_patch",
"(",
"plt",
".",
"Circle",
"(",
"(",
"0",
",",
"0",
")",
",",
"1",
")",
")",
"ax",
".",
"add_patch",
"(",
"plt",
".",
"Rectangle",
"(",
"(",
"0",
",",
"0",
")",
",",
"1",
",",
"2",
")",
")",
"_assert_output_equal",
"(",
"fake_renderer_output",
"(",
"fig",
",",
"FakeRenderer",
")",
",",
"\"\"\"\n opening figure\n opening axes\n draw path with 25 vertices\n draw path with 4 vertices\n closing axes\n closing figure\n \"\"\"",
")"
] | [
130,
0
] | [
146,
29
] | python | en | ['en', 'en', 'en'] | True |
test_new_DID_cannot_update_another_DID | (looper,
sdk_pool_handle,
sdk_wallet_trustee,
sdk_wallet_handle) | Create trustee | Create trustee | def test_new_DID_cannot_update_another_DID(looper,
sdk_pool_handle,
sdk_wallet_trustee,
sdk_wallet_handle):
"""Create trustee"""
trustee_did, trustee_verkey = looper.loop.run_until_complete(
did.create_and_store_my_did(sdk_wallet_trustee[0], "{}"))
"""Add trustee to ledger"""
sdk_add_new_nym(looper, sdk_pool_handle,
sdk_wallet_trustee, 'newTrustee', TRUSTEE_STRING, verkey=trustee_verkey, dest=trustee_did)
"""new DID (no role)"""
new_no_role_did, new_no_role_verkey = looper.loop.run_until_complete(
did.create_and_store_my_did(sdk_wallet_trustee[0], "{}"))
"""Adding new DID (no role) to ledger"""
sdk_add_new_nym(looper, sdk_pool_handle,
sdk_wallet_trustee,
'noRole',
verkey=new_no_role_verkey, dest=new_no_role_did)
"""Nym transaction to update Trustee DID that makes no change to verkey or role"""
op = {'type': '1',
'dest': trustee_did
}
"""Submitting the transaction fails"""
with pytest.raises(RequestRejectedException):
req = sdk_sign_and_submit_op(looper, sdk_pool_handle, sdk_wallet_trustee, op)
sdk_get_and_check_replies(looper, [req]) | [
"def",
"test_new_DID_cannot_update_another_DID",
"(",
"looper",
",",
"sdk_pool_handle",
",",
"sdk_wallet_trustee",
",",
"sdk_wallet_handle",
")",
":",
"trustee_did",
",",
"trustee_verkey",
"=",
"looper",
".",
"loop",
".",
"run_until_complete",
"(",
"did",
".",
"create_and_store_my_did",
"(",
"sdk_wallet_trustee",
"[",
"0",
"]",
",",
"\"{}\"",
")",
")",
"\"\"\"Add trustee to ledger\"\"\"",
"sdk_add_new_nym",
"(",
"looper",
",",
"sdk_pool_handle",
",",
"sdk_wallet_trustee",
",",
"'newTrustee'",
",",
"TRUSTEE_STRING",
",",
"verkey",
"=",
"trustee_verkey",
",",
"dest",
"=",
"trustee_did",
")",
"\"\"\"new DID (no role)\"\"\"",
"new_no_role_did",
",",
"new_no_role_verkey",
"=",
"looper",
".",
"loop",
".",
"run_until_complete",
"(",
"did",
".",
"create_and_store_my_did",
"(",
"sdk_wallet_trustee",
"[",
"0",
"]",
",",
"\"{}\"",
")",
")",
"\"\"\"Adding new DID (no role) to ledger\"\"\"",
"sdk_add_new_nym",
"(",
"looper",
",",
"sdk_pool_handle",
",",
"sdk_wallet_trustee",
",",
"'noRole'",
",",
"verkey",
"=",
"new_no_role_verkey",
",",
"dest",
"=",
"new_no_role_did",
")",
"\"\"\"Nym transaction to update Trustee DID that makes no change to verkey or role\"\"\"",
"op",
"=",
"{",
"'type'",
":",
"'1'",
",",
"'dest'",
":",
"trustee_did",
"}",
"\"\"\"Submitting the transaction fails\"\"\"",
"with",
"pytest",
".",
"raises",
"(",
"RequestRejectedException",
")",
":",
"req",
"=",
"sdk_sign_and_submit_op",
"(",
"looper",
",",
"sdk_pool_handle",
",",
"sdk_wallet_trustee",
",",
"op",
")",
"sdk_get_and_check_replies",
"(",
"looper",
",",
"[",
"req",
"]",
")"
] | [
9,
0
] | [
39,
48
] | python | en | ['et', 'ro', 'en'] | False |
Font.color | (self) |
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
Returns
-------
str
|
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen | def color(self):
"""
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
Returns
-------
str
"""
return self["color"] | [
"def",
"color",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"color\"",
"]"
] | [
15,
4
] | [
63,
28
] | python | en | ['en', 'error', 'th'] | False |
Font.family | (self) |
HTML font family - the typeface that will be applied by the web
browser. The web browser will only be able to apply a font if
it is available on the system which it operates. Provide
multiple font families, separated by commas, to indicate the
preference in which to apply fonts if they aren't available on
the system. The Chart Studio Cloud (at https://chart-
studio.plotly.com or on-premise) generates images on a server,
where only a select number of fonts are installed and
supported. These include "Arial", "Balto", "Courier New",
"Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
The 'family' property is a string and must be specified as:
- A non-empty string
Returns
-------
str
|
HTML font family - the typeface that will be applied by the web
browser. The web browser will only be able to apply a font if
it is available on the system which it operates. Provide
multiple font families, separated by commas, to indicate the
preference in which to apply fonts if they aren't available on
the system. The Chart Studio Cloud (at https://chart-
studio.plotly.com or on-premise) generates images on a server,
where only a select number of fonts are installed and
supported. These include "Arial", "Balto", "Courier New",
"Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
The 'family' property is a string and must be specified as:
- A non-empty string | def family(self):
"""
HTML font family - the typeface that will be applied by the web
browser. The web browser will only be able to apply a font if
it is available on the system which it operates. Provide
multiple font families, separated by commas, to indicate the
preference in which to apply fonts if they aren't available on
the system. The Chart Studio Cloud (at https://chart-
studio.plotly.com or on-premise) generates images on a server,
where only a select number of fonts are installed and
supported. These include "Arial", "Balto", "Courier New",
"Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
The 'family' property is a string and must be specified as:
- A non-empty string
Returns
-------
str
"""
return self["family"] | [
"def",
"family",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"family\"",
"]"
] | [
72,
4
] | [
94,
29
] | python | en | ['en', 'error', 'th'] | False |
Font.size | (self) |
The 'size' property is a number and may be specified as:
- An int or float in the interval [1, inf]
Returns
-------
int|float
|
The 'size' property is a number and may be specified as:
- An int or float in the interval [1, inf] | def size(self):
"""
The 'size' property is a number and may be specified as:
- An int or float in the interval [1, inf]
Returns
-------
int|float
"""
return self["size"] | [
"def",
"size",
"(",
"self",
")",
":",
"return",
"self",
"[",
"\"size\"",
"]"
] | [
103,
4
] | [
112,
27
] | python | en | ['en', 'error', 'th'] | False |
Font.__init__ | (self, arg=None, color=None, family=None, size=None, **kwargs) |
Construct a new Font object
Sets this legend's title font.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.legend.title.Font`
color
family
HTML font family - the typeface that will be applied by
the web browser. The web browser will only be able to
apply a font if it is available on the system which it
operates. Provide multiple font families, separated by
commas, to indicate the preference in which to apply
fonts if they aren't available on the system. The Chart
Studio Cloud (at https://chart-studio.plotly.com or on-
premise) generates images on a server, where only a
select number of fonts are installed and supported.
These include "Arial", "Balto", "Courier New", "Droid
Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT
Sans Narrow", "Raleway", "Times New Roman".
size
Returns
-------
Font
|
Construct a new Font object
Sets this legend's title font. | def __init__(self, arg=None, color=None, family=None, size=None, **kwargs):
"""
Construct a new Font object
Sets this legend's title font.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.legend.title.Font`
color
family
HTML font family - the typeface that will be applied by
the web browser. The web browser will only be able to
apply a font if it is available on the system which it
operates. Provide multiple font families, separated by
commas, to indicate the preference in which to apply
fonts if they aren't available on the system. The Chart
Studio Cloud (at https://chart-studio.plotly.com or on-
premise) generates images on a server, where only a
select number of fonts are installed and supported.
These include "Arial", "Balto", "Courier New", "Droid
Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT
Sans Narrow", "Raleway", "Times New Roman".
size
Returns
-------
Font
"""
super(Font, self).__init__("font")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.legend.title.Font
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.legend.title.Font`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("color", None)
_v = color if color is not None else _v
if _v is not None:
self["color"] = _v
_v = arg.pop("family", None)
_v = family if family is not None else _v
if _v is not None:
self["family"] = _v
_v = arg.pop("size", None)
_v = size if size is not None else _v
if _v is not None:
self["size"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False | [
"def",
"__init__",
"(",
"self",
",",
"arg",
"=",
"None",
",",
"color",
"=",
"None",
",",
"family",
"=",
"None",
",",
"size",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"super",
"(",
"Font",
",",
"self",
")",
".",
"__init__",
"(",
"\"font\"",
")",
"if",
"\"_parent\"",
"in",
"kwargs",
":",
"self",
".",
"_parent",
"=",
"kwargs",
"[",
"\"_parent\"",
"]",
"return",
"# Validate arg",
"# ------------",
"if",
"arg",
"is",
"None",
":",
"arg",
"=",
"{",
"}",
"elif",
"isinstance",
"(",
"arg",
",",
"self",
".",
"__class__",
")",
":",
"arg",
"=",
"arg",
".",
"to_plotly_json",
"(",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"dict",
")",
":",
"arg",
"=",
"_copy",
".",
"copy",
"(",
"arg",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"\"\"\\\nThe first argument to the plotly.graph_objs.layout.legend.title.Font \nconstructor must be a dict or \nan instance of :class:`plotly.graph_objs.layout.legend.title.Font`\"\"\"",
")",
"# Handle skip_invalid",
"# -------------------",
"self",
".",
"_skip_invalid",
"=",
"kwargs",
".",
"pop",
"(",
"\"skip_invalid\"",
",",
"False",
")",
"self",
".",
"_validate",
"=",
"kwargs",
".",
"pop",
"(",
"\"_validate\"",
",",
"True",
")",
"# Populate data dict with properties",
"# ----------------------------------",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"color\"",
",",
"None",
")",
"_v",
"=",
"color",
"if",
"color",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"color\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"family\"",
",",
"None",
")",
"_v",
"=",
"family",
"if",
"family",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"family\"",
"]",
"=",
"_v",
"_v",
"=",
"arg",
".",
"pop",
"(",
"\"size\"",
",",
"None",
")",
"_v",
"=",
"size",
"if",
"size",
"is",
"not",
"None",
"else",
"_v",
"if",
"_v",
"is",
"not",
"None",
":",
"self",
"[",
"\"size\"",
"]",
"=",
"_v",
"# Process unknown kwargs",
"# ----------------------",
"self",
".",
"_process_kwargs",
"(",
"*",
"*",
"dict",
"(",
"arg",
",",
"*",
"*",
"kwargs",
")",
")",
"# Reset skip_invalid",
"# ------------------",
"self",
".",
"_skip_invalid",
"=",
"False"
] | [
143,
4
] | [
226,
34
] | python | en | ['en', 'error', 'th'] | False |
load_json | (*path) | Convenience function to load a JSON file from DEFS_DIR. | Convenience function to load a JSON file from DEFS_DIR. | def load_json(*path):
"""Convenience function to load a JSON file from DEFS_DIR."""
if len(path) == 1 and path[0].startswith("/"):
filename = path[0]
else:
filename = os.path.join(DEFS_DIR, *path)
with open(filename) as f:
return json.load(f, object_pairs_hook=OrderedDict) | [
"def",
"load_json",
"(",
"*",
"path",
")",
":",
"if",
"len",
"(",
"path",
")",
"==",
"1",
"and",
"path",
"[",
"0",
"]",
".",
"startswith",
"(",
"\"/\"",
")",
":",
"filename",
"=",
"path",
"[",
"0",
"]",
"else",
":",
"filename",
"=",
"os",
".",
"path",
".",
"join",
"(",
"DEFS_DIR",
",",
"*",
"path",
")",
"with",
"open",
"(",
"filename",
")",
"as",
"f",
":",
"return",
"json",
".",
"load",
"(",
"f",
",",
"object_pairs_hook",
"=",
"OrderedDict",
")"
] | [
20,
0
] | [
28,
58
] | python | en | ['en', 'en', 'en'] | True |
_load_btc_coins | () | Load btc-like coins from `bitcoin/*.json` | Load btc-like coins from `bitcoin/*.json` | def _load_btc_coins():
"""Load btc-like coins from `bitcoin/*.json`"""
coins = []
for filename in glob.glob(os.path.join(DEFS_DIR, "bitcoin", "*.json")):
coin = load_json(filename)
coin.update(
name=coin["coin_label"],
shortcut=coin["coin_shortcut"],
key="bitcoin:{}".format(coin["coin_shortcut"]),
icon=filename.replace(".json", ".png"),
)
coins.append(coin)
return coins | [
"def",
"_load_btc_coins",
"(",
")",
":",
"coins",
"=",
"[",
"]",
"for",
"filename",
"in",
"glob",
".",
"glob",
"(",
"os",
".",
"path",
".",
"join",
"(",
"DEFS_DIR",
",",
"\"bitcoin\"",
",",
"\"*.json\"",
")",
")",
":",
"coin",
"=",
"load_json",
"(",
"filename",
")",
"coin",
".",
"update",
"(",
"name",
"=",
"coin",
"[",
"\"coin_label\"",
"]",
",",
"shortcut",
"=",
"coin",
"[",
"\"coin_shortcut\"",
"]",
",",
"key",
"=",
"\"bitcoin:{}\"",
".",
"format",
"(",
"coin",
"[",
"\"coin_shortcut\"",
"]",
")",
",",
"icon",
"=",
"filename",
".",
"replace",
"(",
"\".json\"",
",",
"\".png\"",
")",
",",
")",
"coins",
".",
"append",
"(",
"coin",
")",
"return",
"coins"
] | [
213,
0
] | [
226,
16
] | python | en | ['en', 'en', 'en'] | True |
_load_ethereum_networks | () | Load ethereum networks from `ethereum/networks.json` | Load ethereum networks from `ethereum/networks.json` | def _load_ethereum_networks():
"""Load ethereum networks from `ethereum/networks.json`"""
networks = load_json("ethereum", "networks.json")
for network in networks:
network.update(key="eth:{}".format(network["shortcut"]))
return networks | [
"def",
"_load_ethereum_networks",
"(",
")",
":",
"networks",
"=",
"load_json",
"(",
"\"ethereum\"",
",",
"\"networks.json\"",
")",
"for",
"network",
"in",
"networks",
":",
"network",
".",
"update",
"(",
"key",
"=",
"\"eth:{}\"",
".",
"format",
"(",
"network",
"[",
"\"shortcut\"",
"]",
")",
")",
"return",
"networks"
] | [
229,
0
] | [
234,
19
] | python | en | ['en', 'en', 'en'] | True |
_load_erc20_tokens | () | Load ERC20 tokens from `ethereum/tokens` submodule. | Load ERC20 tokens from `ethereum/tokens` submodule. | def _load_erc20_tokens():
"""Load ERC20 tokens from `ethereum/tokens` submodule."""
networks = _load_ethereum_networks()
tokens = []
for network in networks:
chain = network["chain"]
chain_path = os.path.join(DEFS_DIR, "ethereum", "tokens", "tokens", chain)
for filename in sorted(glob.glob(os.path.join(chain_path, "*.json"))):
token = load_json(filename)
token.update(
chain=chain,
chain_id=network["chain_id"],
address_bytes=bytes.fromhex(token["address"][2:]),
shortcut=token["symbol"],
key="erc20:{}:{}".format(chain, token["symbol"]),
)
tokens.append(token)
return tokens | [
"def",
"_load_erc20_tokens",
"(",
")",
":",
"networks",
"=",
"_load_ethereum_networks",
"(",
")",
"tokens",
"=",
"[",
"]",
"for",
"network",
"in",
"networks",
":",
"chain",
"=",
"network",
"[",
"\"chain\"",
"]",
"chain_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"DEFS_DIR",
",",
"\"ethereum\"",
",",
"\"tokens\"",
",",
"\"tokens\"",
",",
"chain",
")",
"for",
"filename",
"in",
"sorted",
"(",
"glob",
".",
"glob",
"(",
"os",
".",
"path",
".",
"join",
"(",
"chain_path",
",",
"\"*.json\"",
")",
")",
")",
":",
"token",
"=",
"load_json",
"(",
"filename",
")",
"token",
".",
"update",
"(",
"chain",
"=",
"chain",
",",
"chain_id",
"=",
"network",
"[",
"\"chain_id\"",
"]",
",",
"address_bytes",
"=",
"bytes",
".",
"fromhex",
"(",
"token",
"[",
"\"address\"",
"]",
"[",
"2",
":",
"]",
")",
",",
"shortcut",
"=",
"token",
"[",
"\"symbol\"",
"]",
",",
"key",
"=",
"\"erc20:{}:{}\"",
".",
"format",
"(",
"chain",
",",
"token",
"[",
"\"symbol\"",
"]",
")",
",",
")",
"tokens",
".",
"append",
"(",
"token",
")",
"return",
"tokens"
] | [
237,
0
] | [
256,
17
] | python | en | ['en', 'en', 'en'] | True |
_load_nem_mosaics | () | Loads NEM mosaics from `nem/nem_mosaics.json` | Loads NEM mosaics from `nem/nem_mosaics.json` | def _load_nem_mosaics():
"""Loads NEM mosaics from `nem/nem_mosaics.json`"""
mosaics = load_json("nem", "nem_mosaics.json")
for mosaic in mosaics:
shortcut = mosaic["ticker"].strip()
mosaic.update(shortcut=shortcut, key="nem:{}".format(shortcut))
return mosaics | [
"def",
"_load_nem_mosaics",
"(",
")",
":",
"mosaics",
"=",
"load_json",
"(",
"\"nem\"",
",",
"\"nem_mosaics.json\"",
")",
"for",
"mosaic",
"in",
"mosaics",
":",
"shortcut",
"=",
"mosaic",
"[",
"\"ticker\"",
"]",
".",
"strip",
"(",
")",
"mosaic",
".",
"update",
"(",
"shortcut",
"=",
"shortcut",
",",
"key",
"=",
"\"nem:{}\"",
".",
"format",
"(",
"shortcut",
")",
")",
"return",
"mosaics"
] | [
259,
0
] | [
265,
18
] | python | en | ['en', 'fr', 'en'] | True |
_load_misc | () | Loads miscellaneous networks from `misc/misc.json` | Loads miscellaneous networks from `misc/misc.json` | def _load_misc():
"""Loads miscellaneous networks from `misc/misc.json`"""
others = load_json("misc/misc.json")
for other in others:
other.update(key="misc:{}".format(other["shortcut"]))
return others | [
"def",
"_load_misc",
"(",
")",
":",
"others",
"=",
"load_json",
"(",
"\"misc/misc.json\"",
")",
"for",
"other",
"in",
"others",
":",
"other",
".",
"update",
"(",
"key",
"=",
"\"misc:{}\"",
".",
"format",
"(",
"other",
"[",
"\"shortcut\"",
"]",
")",
")",
"return",
"others"
] | [
268,
0
] | [
273,
17
] | python | en | ['en', 'en', 'en'] | True |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.