Search is not available for this dataset
identifier
stringlengths
1
155
parameters
stringlengths
2
6.09k
docstring
stringlengths
11
63.4k
docstring_summary
stringlengths
0
63.4k
function
stringlengths
29
99.8k
function_tokens
sequence
start_point
sequence
end_point
sequence
language
stringclasses
1 value
docstring_language
stringlengths
2
7
docstring_language_predictions
stringlengths
18
23
is_langid_reliable
stringclasses
2 values
serve_tcp
( handler, port, *, host=None, backlog=None, handler_nursery=None, task_status=trio.TASK_STATUS_IGNORED, )
Listen for incoming TCP connections, and for each one start a task running ``handler(stream)``. This is a thin convenience wrapper around :func:`open_tcp_listeners` and :func:`serve_listeners` – see them for full details. .. warning:: If ``handler`` raises an exception, then this function doesn't do anything special to catch it – so by default the exception will propagate out and crash your server. If you don't want this, then catch exceptions inside your ``handler``, or use a ``handler_nursery`` object that responds to exceptions in some other way. When used with ``nursery.start`` you get back the newly opened listeners. So, for example, if you want to start a server in your test suite and then connect to it to check that it's working properly, you can use something like:: from trio.testing import open_stream_to_socket_listener async with trio.open_nursery() as nursery: listeners = await nursery.start(serve_tcp, handler, 0) client_stream = await open_stream_to_socket_listener(listeners[0]) # Then send and receive data on 'client_stream', for example: await client_stream.send_all(b"GET / HTTP/1.0\\r\\n\\r\\n") This avoids several common pitfalls: 1. It lets the kernel pick a random open port, so your test suite doesn't depend on any particular port being open. 2. It waits for the server to be accepting connections on that port before ``start`` returns, so there's no race condition where the incoming connection arrives before the server is ready. 3. It uses the Listener object to find out which port was picked, so it can connect to the right place. Args: handler: The handler to start for each incoming connection. Passed to :func:`serve_listeners`. port: The port to listen on. Use 0 to let the kernel pick an open port. Passed to :func:`open_tcp_listeners`. host (str, bytes, or None): The host interface to listen on; use ``None`` to bind to the wildcard address. Passed to :func:`open_tcp_listeners`. backlog: The listen backlog, or None to have a good default picked. Passed to :func:`open_tcp_listeners`. handler_nursery: The nursery to start handlers in, or None to use an internal nursery. Passed to :func:`serve_listeners`. task_status: This function can be used with ``nursery.start``. Returns: This function only returns when cancelled.
Listen for incoming TCP connections, and for each one start a task running ``handler(stream)``.
async def serve_tcp( handler, port, *, host=None, backlog=None, handler_nursery=None, task_status=trio.TASK_STATUS_IGNORED, ): """Listen for incoming TCP connections, and for each one start a task running ``handler(stream)``. This is a thin convenience wrapper around :func:`open_tcp_listeners` and :func:`serve_listeners` – see them for full details. .. warning:: If ``handler`` raises an exception, then this function doesn't do anything special to catch it – so by default the exception will propagate out and crash your server. If you don't want this, then catch exceptions inside your ``handler``, or use a ``handler_nursery`` object that responds to exceptions in some other way. When used with ``nursery.start`` you get back the newly opened listeners. So, for example, if you want to start a server in your test suite and then connect to it to check that it's working properly, you can use something like:: from trio.testing import open_stream_to_socket_listener async with trio.open_nursery() as nursery: listeners = await nursery.start(serve_tcp, handler, 0) client_stream = await open_stream_to_socket_listener(listeners[0]) # Then send and receive data on 'client_stream', for example: await client_stream.send_all(b"GET / HTTP/1.0\\r\\n\\r\\n") This avoids several common pitfalls: 1. It lets the kernel pick a random open port, so your test suite doesn't depend on any particular port being open. 2. It waits for the server to be accepting connections on that port before ``start`` returns, so there's no race condition where the incoming connection arrives before the server is ready. 3. It uses the Listener object to find out which port was picked, so it can connect to the right place. Args: handler: The handler to start for each incoming connection. Passed to :func:`serve_listeners`. port: The port to listen on. Use 0 to let the kernel pick an open port. Passed to :func:`open_tcp_listeners`. host (str, bytes, or None): The host interface to listen on; use ``None`` to bind to the wildcard address. Passed to :func:`open_tcp_listeners`. backlog: The listen backlog, or None to have a good default picked. Passed to :func:`open_tcp_listeners`. handler_nursery: The nursery to start handlers in, or None to use an internal nursery. Passed to :func:`serve_listeners`. task_status: This function can be used with ``nursery.start``. Returns: This function only returns when cancelled. """ listeners = await trio.open_tcp_listeners(port, host=host, backlog=backlog) await trio.serve_listeners( handler, listeners, handler_nursery=handler_nursery, task_status=task_status )
[ "async", "def", "serve_tcp", "(", "handler", ",", "port", ",", "*", ",", "host", "=", "None", ",", "backlog", "=", "None", ",", "handler_nursery", "=", "None", ",", "task_status", "=", "trio", ".", "TASK_STATUS_IGNORED", ",", ")", ":", "listeners", "=", "await", "trio", ".", "open_tcp_listeners", "(", "port", ",", "host", "=", "host", ",", "backlog", "=", "backlog", ")", "await", "trio", ".", "serve_listeners", "(", "handler", ",", "listeners", ",", "handler_nursery", "=", "handler_nursery", ",", "task_status", "=", "task_status", ")" ]
[ 145, 0 ]
[ 220, 5 ]
python
en
['en', 'en', 'en']
True
fix_calldef_decls
(decls, enums, cxx_std)
some times gccxml report typedefs defined in no namespace it happens for example in next situation template< typename X> void ddd(){ typedef typename X::Y YY;} if I will fail on this bug next time, the right way to fix it may be different
some times gccxml report typedefs defined in no namespace it happens for example in next situation template< typename X> void ddd(){ typedef typename X::Y YY;} if I will fail on this bug next time, the right way to fix it may be different
def fix_calldef_decls(decls, enums, cxx_std): """ some times gccxml report typedefs defined in no namespace it happens for example in next situation template< typename X> void ddd(){ typedef typename X::Y YY;} if I will fail on this bug next time, the right way to fix it may be different """ default_arg_patcher = default_argument_patcher_t(enums, cxx_std) # decls should be flat list of all declarations, you want to apply patch on for decl in decls: default_arg_patcher(decl) if isinstance(decl, declarations.casting_operator_t): _casting_oper_patcher_(decl)
[ "def", "fix_calldef_decls", "(", "decls", ",", "enums", ",", "cxx_std", ")", ":", "default_arg_patcher", "=", "default_argument_patcher_t", "(", "enums", ",", "cxx_std", ")", "# decls should be flat list of all declarations, you want to apply patch on", "for", "decl", "in", "decls", ":", "default_arg_patcher", "(", "decl", ")", "if", "isinstance", "(", "decl", ",", "declarations", ".", "casting_operator_t", ")", ":", "_casting_oper_patcher_", "(", "decl", ")" ]
[ 248, 0 ]
[ 262, 40 ]
python
en
['en', 'error', 'th']
False
update_unnamed_class
(decls)
Adds name to class_t declarations. If CastXML is being used, the type definitions with an unnamed class/struct are split across two nodes in the XML tree. For example, typedef struct {} cls; produces <Struct id="_7" name="" context="_1" .../> <Typedef id="_8" name="cls" type="_7" context="_1" .../> For each typedef, we look at which class it refers to, and update the name accordingly. This helps the matcher classes finding these declarations. This was the behaviour with gccxml too, so this is important for backward compatibility. If the castxml epic version 1 is used, there is even an elaborated type declaration between the typedef and the struct/class, that also needs to be taken care of. Args: decls (list[declaration_t]): a list of declarations to be patched. Returns: None
Adds name to class_t declarations.
def update_unnamed_class(decls): """ Adds name to class_t declarations. If CastXML is being used, the type definitions with an unnamed class/struct are split across two nodes in the XML tree. For example, typedef struct {} cls; produces <Struct id="_7" name="" context="_1" .../> <Typedef id="_8" name="cls" type="_7" context="_1" .../> For each typedef, we look at which class it refers to, and update the name accordingly. This helps the matcher classes finding these declarations. This was the behaviour with gccxml too, so this is important for backward compatibility. If the castxml epic version 1 is used, there is even an elaborated type declaration between the typedef and the struct/class, that also needs to be taken care of. Args: decls (list[declaration_t]): a list of declarations to be patched. Returns: None """ for decl in decls: if isinstance(decl, declarations.typedef_t): referent = decl.decl_type if isinstance(referent, declarations.elaborated_t): referent = referent.base if not isinstance(referent, declarations.declarated_t): continue referent = referent.declaration if referent.name or not isinstance(referent, declarations.class_t): continue referent.name = decl.name
[ "def", "update_unnamed_class", "(", "decls", ")", ":", "for", "decl", "in", "decls", ":", "if", "isinstance", "(", "decl", ",", "declarations", ".", "typedef_t", ")", ":", "referent", "=", "decl", ".", "decl_type", "if", "isinstance", "(", "referent", ",", "declarations", ".", "elaborated_t", ")", ":", "referent", "=", "referent", ".", "base", "if", "not", "isinstance", "(", "referent", ",", "declarations", ".", "declarated_t", ")", ":", "continue", "referent", "=", "referent", ".", "declaration", "if", "referent", ".", "name", "or", "not", "isinstance", "(", "referent", ",", "declarations", ".", "class_t", ")", ":", "continue", "referent", ".", "name", "=", "decl", ".", "name" ]
[ 265, 0 ]
[ 304, 37 ]
python
en
['en', 'error', 'th']
False
test_anonymize_datasource_info_v2_api_custom_subclass
()
What does this test and why? We should be able to discern the GE parent class for a custom type and construct a useful usage stats event message. Custom v2 API Datasources should continue to be supported.
What does this test and why? We should be able to discern the GE parent class for a custom type and construct a useful usage stats event message. Custom v2 API Datasources should continue to be supported.
def test_anonymize_datasource_info_v2_api_custom_subclass(): """ What does this test and why? We should be able to discern the GE parent class for a custom type and construct a useful usage stats event message. Custom v2 API Datasources should continue to be supported. """ name = "test_pandas_datasource" yaml_config = f""" module_name: tests.data_context.fixtures.plugins.my_custom_v2_api_datasource class_name: MyCustomV2ApiDatasource """ config: CommentedMap = yaml.load(yaml_config) datasource_anonymizer = DatasourceAnonymizer(salt=CONSISTENT_SALT) anonymized_datasource = datasource_anonymizer.anonymize_datasource_info( name=name, config=config ) assert anonymized_datasource == { "anonymized_class": "c454ace824bf401ea42815c84d0f5717", "anonymized_name": "2642802d79d90ce6d147b0f9f61c3569", "parent_class": "PandasDatasource", }
[ "def", "test_anonymize_datasource_info_v2_api_custom_subclass", "(", ")", ":", "name", "=", "\"test_pandas_datasource\"", "yaml_config", "=", "f\"\"\"\nmodule_name: tests.data_context.fixtures.plugins.my_custom_v2_api_datasource\nclass_name: MyCustomV2ApiDatasource\n\"\"\"", "config", ":", "CommentedMap", "=", "yaml", ".", "load", "(", "yaml_config", ")", "datasource_anonymizer", "=", "DatasourceAnonymizer", "(", "salt", "=", "CONSISTENT_SALT", ")", "anonymized_datasource", "=", "datasource_anonymizer", ".", "anonymize_datasource_info", "(", "name", "=", "name", ",", "config", "=", "config", ")", "assert", "anonymized_datasource", "==", "{", "\"anonymized_class\"", ":", "\"c454ace824bf401ea42815c84d0f5717\"", ",", "\"anonymized_name\"", ":", "\"2642802d79d90ce6d147b0f9f61c3569\"", ",", "\"parent_class\"", ":", "\"PandasDatasource\"", ",", "}" ]
[ 131, 0 ]
[ 152, 5 ]
python
en
['en', 'error', 'th']
False
ExpectTableRowCountToBeBetween.validate_configuration
(self, configuration: Optional[ExpectationConfiguration])
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation.
def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception """ # Setting up a configuration super().validate_configuration(configuration) self.validate_metric_value_between_configuration(configuration=configuration)
[ "def", "validate_configuration", "(", "self", ",", "configuration", ":", "Optional", "[", "ExpectationConfiguration", "]", ")", ":", "# Setting up a configuration", "super", "(", ")", ".", "validate_configuration", "(", "configuration", ")", "self", ".", "validate_metric_value_between_configuration", "(", "configuration", "=", "configuration", ")" ]
[ 91, 4 ]
[ 105, 85 ]
python
en
['en', 'error', 'th']
False
check_store_backend_store_backend_id_functionality
( store_backend: StoreBackend, store_backend_id: str = None )
Assertions to check if a store backend is handling reading and writing a store_backend_id appropriately. Args: store_backend: Instance of subclass of StoreBackend to test e.g. TupleFilesystemStoreBackend store_backend_id: Manually input store_backend_id Returns: None
Assertions to check if a store backend is handling reading and writing a store_backend_id appropriately. Args: store_backend: Instance of subclass of StoreBackend to test e.g. TupleFilesystemStoreBackend store_backend_id: Manually input store_backend_id Returns: None
def check_store_backend_store_backend_id_functionality( store_backend: StoreBackend, store_backend_id: str = None ) -> None: """ Assertions to check if a store backend is handling reading and writing a store_backend_id appropriately. Args: store_backend: Instance of subclass of StoreBackend to test e.g. TupleFilesystemStoreBackend store_backend_id: Manually input store_backend_id Returns: None """ # Check that store_backend_id exists can be read assert store_backend.store_backend_id is not None store_error_uuid = "00000000-0000-0000-0000-00000000e003" assert store_backend.store_backend_id != store_error_uuid if store_backend_id: assert store_backend.store_backend_id == store_backend_id # Check that store_backend_id is a valid UUID assert test_utils.validate_uuid4(store_backend.store_backend_id) # Check in file stores that the actual file exists assert store_backend.has_key(key=(".ge_store_backend_id",)) # Check file stores for the file in the correct format store_backend_id_from_file = store_backend.get(key=(".ge_store_backend_id",)) store_backend_id_file_parser = "store_backend_id = " + pp.Word(pp.hexnums + "-") parsed_store_backend_id = store_backend_id_file_parser.parseString( store_backend_id_from_file ) assert test_utils.validate_uuid4(parsed_store_backend_id[1])
[ "def", "check_store_backend_store_backend_id_functionality", "(", "store_backend", ":", "StoreBackend", ",", "store_backend_id", ":", "str", "=", "None", ")", "->", "None", ":", "# Check that store_backend_id exists can be read", "assert", "store_backend", ".", "store_backend_id", "is", "not", "None", "store_error_uuid", "=", "\"00000000-0000-0000-0000-00000000e003\"", "assert", "store_backend", ".", "store_backend_id", "!=", "store_error_uuid", "if", "store_backend_id", ":", "assert", "store_backend", ".", "store_backend_id", "==", "store_backend_id", "# Check that store_backend_id is a valid UUID", "assert", "test_utils", ".", "validate_uuid4", "(", "store_backend", ".", "store_backend_id", ")", "# Check in file stores that the actual file exists", "assert", "store_backend", ".", "has_key", "(", "key", "=", "(", "\".ge_store_backend_id\"", ",", ")", ")", "# Check file stores for the file in the correct format", "store_backend_id_from_file", "=", "store_backend", ".", "get", "(", "key", "=", "(", "\".ge_store_backend_id\"", ",", ")", ")", "store_backend_id_file_parser", "=", "\"store_backend_id = \"", "+", "pp", ".", "Word", "(", "pp", ".", "hexnums", "+", "\"-\"", ")", "parsed_store_backend_id", "=", "store_backend_id_file_parser", ".", "parseString", "(", "store_backend_id_from_file", ")", "assert", "test_utils", ".", "validate_uuid4", "(", "parsed_store_backend_id", "[", "1", "]", ")" ]
[ 49, 0 ]
[ 77, 64 ]
python
en
['en', 'error', 'th']
False
test_StoreBackend_id_initialization
(tmp_path_factory)
What does this test and why? A StoreBackend should have a store_backend_id property. That store_backend_id should be read and initialized from an existing persistent store_backend_id during instantiation, or a new store_backend_id should be generated and persisted. The store_backend_id should be a valid UUIDv4 If a new store_backend_id cannot be persisted, use an ephemeral store_backend_id. Persistence should be in a .ge_store_backend_id file for for filesystem and blob-stores. Note: StoreBackend & TupleStoreBackend are abstract classes, so we will test the concrete classes that inherit from them. See also test_database_store_backend::test_database_store_backend_id_initialization
What does this test and why?
def test_StoreBackend_id_initialization(tmp_path_factory): """ What does this test and why? A StoreBackend should have a store_backend_id property. That store_backend_id should be read and initialized from an existing persistent store_backend_id during instantiation, or a new store_backend_id should be generated and persisted. The store_backend_id should be a valid UUIDv4 If a new store_backend_id cannot be persisted, use an ephemeral store_backend_id. Persistence should be in a .ge_store_backend_id file for for filesystem and blob-stores. Note: StoreBackend & TupleStoreBackend are abstract classes, so we will test the concrete classes that inherit from them. See also test_database_store_backend::test_database_store_backend_id_initialization """ # InMemoryStoreBackend # Initialize without store_backend_id and check that it is generated correctly in_memory_store_backend = InMemoryStoreBackend() check_store_backend_store_backend_id_functionality( store_backend=in_memory_store_backend ) # Create a new store with the same config and make sure it reports the same store_backend_id # in_memory_store_backend_duplicate = InMemoryStoreBackend() # assert in_memory_store_backend.store_backend_id == in_memory_store_backend_duplicate.store_backend_id # This is not currently implemented for the InMemoryStoreBackend, the store_backend_id is ephemeral since # there is no place to persist it. # TupleFilesystemStoreBackend # Initialize without store_backend_id and check that it is generated correctly path = "dummy_str" project_path = str( tmp_path_factory.mktemp("test_StoreBackend_id_initialization__dir") ) tuple_filesystem_store_backend = TupleFilesystemStoreBackend( root_directory=project_path, base_directory=os.path.join(project_path, path), ) # Check that store_backend_id is created on instantiation, before being accessed desired_directory_tree_str = """\ test_StoreBackend_id_initialization__dir0/ dummy_str/ .ge_store_backend_id """ assert gen_directory_tree_str(project_path) == desired_directory_tree_str check_store_backend_store_backend_id_functionality( store_backend=tuple_filesystem_store_backend ) assert gen_directory_tree_str(project_path) == desired_directory_tree_str # Repeat the above with a filepath template project_path_with_filepath_template = str( tmp_path_factory.mktemp("test_StoreBackend_id_initialization__dir") ) tuple_filesystem_store_backend_with_filepath_template = TupleFilesystemStoreBackend( root_directory=os.path.join(project_path, path), base_directory=project_path_with_filepath_template, filepath_template="my_file_{0}", ) check_store_backend_store_backend_id_functionality( store_backend=tuple_filesystem_store_backend_with_filepath_template ) assert ( gen_directory_tree_str(project_path_with_filepath_template) == """\ test_StoreBackend_id_initialization__dir1/ .ge_store_backend_id """ ) # Create a new store with the same config and make sure it reports the same store_backend_id tuple_filesystem_store_backend_duplicate = TupleFilesystemStoreBackend( root_directory=project_path, base_directory=os.path.join(project_path, path), # filepath_template="my_file_{0}", ) check_store_backend_store_backend_id_functionality( store_backend=tuple_filesystem_store_backend_duplicate ) assert ( tuple_filesystem_store_backend.store_backend_id == tuple_filesystem_store_backend_duplicate.store_backend_id ) # TupleS3StoreBackend # Initialize without store_backend_id and check that it is generated correctly bucket = "leakybucket" prefix = "this_is_a_test_prefix" # create a bucket in Moto's mock AWS environment conn = boto3.resource("s3", region_name="us-east-1") conn.create_bucket(Bucket=bucket) s3_store_backend = TupleS3StoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, ) check_store_backend_store_backend_id_functionality(store_backend=s3_store_backend) # Create a new store with the same config and make sure it reports the same store_backend_id s3_store_backend_duplicate = TupleS3StoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, ) check_store_backend_store_backend_id_functionality( store_backend=s3_store_backend_duplicate ) assert ( s3_store_backend.store_backend_id == s3_store_backend_duplicate.store_backend_id ) # TODO: Fix GCS Testing # TupleGCSStoreBackend # Initialize without store_backend_id and check that it is generated correctly bucket = "leakybucket" prefix = "this_is_a_test_prefix" project = "dummy-project" base_public_path = "http://www.test.com/" with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: gcs_store_backend_with_base_public_path = TupleGCSStoreBackend( filepath_template=None, bucket=bucket, prefix=prefix, project=project, base_public_path=base_public_path, ) gcs_store_backend_with_base_public_path_duplicate = TupleGCSStoreBackend( filepath_template=None, bucket=bucket, prefix=prefix, project=project, base_public_path=base_public_path, ) assert gcs_store_backend_with_base_public_path.store_backend_id is not None # Currently we don't have a good way to mock GCS functionality # check_store_backend_store_backend_id_functionality(store_backend=gcs_store_backend_with_base_public_path) # Create a new store with the same config and make sure it reports the same store_backend_id assert ( gcs_store_backend_with_base_public_path.store_backend_id == gcs_store_backend_with_base_public_path_duplicate.store_backend_id ) store_error_uuid = "00000000-0000-0000-0000-00000000e003" assert ( gcs_store_backend_with_base_public_path.store_backend_id != store_error_uuid ) assert ( gcs_store_backend_with_base_public_path_duplicate.store_backend_id != store_error_uuid )
[ "def", "test_StoreBackend_id_initialization", "(", "tmp_path_factory", ")", ":", "# InMemoryStoreBackend", "# Initialize without store_backend_id and check that it is generated correctly", "in_memory_store_backend", "=", "InMemoryStoreBackend", "(", ")", "check_store_backend_store_backend_id_functionality", "(", "store_backend", "=", "in_memory_store_backend", ")", "# Create a new store with the same config and make sure it reports the same store_backend_id", "# in_memory_store_backend_duplicate = InMemoryStoreBackend()", "# assert in_memory_store_backend.store_backend_id == in_memory_store_backend_duplicate.store_backend_id", "# This is not currently implemented for the InMemoryStoreBackend, the store_backend_id is ephemeral since", "# there is no place to persist it.", "# TupleFilesystemStoreBackend", "# Initialize without store_backend_id and check that it is generated correctly", "path", "=", "\"dummy_str\"", "project_path", "=", "str", "(", "tmp_path_factory", ".", "mktemp", "(", "\"test_StoreBackend_id_initialization__dir\"", ")", ")", "tuple_filesystem_store_backend", "=", "TupleFilesystemStoreBackend", "(", "root_directory", "=", "project_path", ",", "base_directory", "=", "os", ".", "path", ".", "join", "(", "project_path", ",", "path", ")", ",", ")", "# Check that store_backend_id is created on instantiation, before being accessed", "desired_directory_tree_str", "=", "\"\"\"\\\ntest_StoreBackend_id_initialization__dir0/\n dummy_str/\n .ge_store_backend_id\n\"\"\"", "assert", "gen_directory_tree_str", "(", "project_path", ")", "==", "desired_directory_tree_str", "check_store_backend_store_backend_id_functionality", "(", "store_backend", "=", "tuple_filesystem_store_backend", ")", "assert", "gen_directory_tree_str", "(", "project_path", ")", "==", "desired_directory_tree_str", "# Repeat the above with a filepath template", "project_path_with_filepath_template", "=", "str", "(", "tmp_path_factory", ".", "mktemp", "(", "\"test_StoreBackend_id_initialization__dir\"", ")", ")", "tuple_filesystem_store_backend_with_filepath_template", "=", "TupleFilesystemStoreBackend", "(", "root_directory", "=", "os", ".", "path", ".", "join", "(", "project_path", ",", "path", ")", ",", "base_directory", "=", "project_path_with_filepath_template", ",", "filepath_template", "=", "\"my_file_{0}\"", ",", ")", "check_store_backend_store_backend_id_functionality", "(", "store_backend", "=", "tuple_filesystem_store_backend_with_filepath_template", ")", "assert", "(", "gen_directory_tree_str", "(", "project_path_with_filepath_template", ")", "==", "\"\"\"\\\ntest_StoreBackend_id_initialization__dir1/\n .ge_store_backend_id\n\"\"\"", ")", "# Create a new store with the same config and make sure it reports the same store_backend_id", "tuple_filesystem_store_backend_duplicate", "=", "TupleFilesystemStoreBackend", "(", "root_directory", "=", "project_path", ",", "base_directory", "=", "os", ".", "path", ".", "join", "(", "project_path", ",", "path", ")", ",", "# filepath_template=\"my_file_{0}\",", ")", "check_store_backend_store_backend_id_functionality", "(", "store_backend", "=", "tuple_filesystem_store_backend_duplicate", ")", "assert", "(", "tuple_filesystem_store_backend", ".", "store_backend_id", "==", "tuple_filesystem_store_backend_duplicate", ".", "store_backend_id", ")", "# TupleS3StoreBackend", "# Initialize without store_backend_id and check that it is generated correctly", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"this_is_a_test_prefix\"", "# create a bucket in Moto's mock AWS environment", "conn", "=", "boto3", ".", "resource", "(", "\"s3\"", ",", "region_name", "=", "\"us-east-1\"", ")", "conn", ".", "create_bucket", "(", "Bucket", "=", "bucket", ")", "s3_store_backend", "=", "TupleS3StoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", ")", "check_store_backend_store_backend_id_functionality", "(", "store_backend", "=", "s3_store_backend", ")", "# Create a new store with the same config and make sure it reports the same store_backend_id", "s3_store_backend_duplicate", "=", "TupleS3StoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", ")", "check_store_backend_store_backend_id_functionality", "(", "store_backend", "=", "s3_store_backend_duplicate", ")", "assert", "(", "s3_store_backend", ".", "store_backend_id", "==", "s3_store_backend_duplicate", ".", "store_backend_id", ")", "# TODO: Fix GCS Testing", "# TupleGCSStoreBackend", "# Initialize without store_backend_id and check that it is generated correctly", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"this_is_a_test_prefix\"", "project", "=", "\"dummy-project\"", "base_public_path", "=", "\"http://www.test.com/\"", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "gcs_store_backend_with_base_public_path", "=", "TupleGCSStoreBackend", "(", "filepath_template", "=", "None", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", "project", "=", "project", ",", "base_public_path", "=", "base_public_path", ",", ")", "gcs_store_backend_with_base_public_path_duplicate", "=", "TupleGCSStoreBackend", "(", "filepath_template", "=", "None", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", "project", "=", "project", ",", "base_public_path", "=", "base_public_path", ",", ")", "assert", "gcs_store_backend_with_base_public_path", ".", "store_backend_id", "is", "not", "None", "# Currently we don't have a good way to mock GCS functionality", "# check_store_backend_store_backend_id_functionality(store_backend=gcs_store_backend_with_base_public_path)", "# Create a new store with the same config and make sure it reports the same store_backend_id", "assert", "(", "gcs_store_backend_with_base_public_path", ".", "store_backend_id", "==", "gcs_store_backend_with_base_public_path_duplicate", ".", "store_backend_id", ")", "store_error_uuid", "=", "\"00000000-0000-0000-0000-00000000e003\"", "assert", "(", "gcs_store_backend_with_base_public_path", ".", "store_backend_id", "!=", "store_error_uuid", ")", "assert", "(", "gcs_store_backend_with_base_public_path_duplicate", ".", "store_backend_id", "!=", "store_error_uuid", ")" ]
[ 81, 0 ]
[ 237, 9 ]
python
en
['en', 'error', 'th']
False
test_TupleS3StoreBackend_with_prefix
()
What does this test test and why? We will exercise the store backend's set method twice and then verify that the we calling get and list methods will return the expected keys. We will also check that the objects are stored on S3 at the expected location, and that the correct S3 URL for the object can be retrieved.
What does this test test and why?
def test_TupleS3StoreBackend_with_prefix(): """ What does this test test and why? We will exercise the store backend's set method twice and then verify that the we calling get and list methods will return the expected keys. We will also check that the objects are stored on S3 at the expected location, and that the correct S3 URL for the object can be retrieved. """ bucket = "leakybucket" prefix = "this_is_a_test_prefix" base_public_path = "http://www.test.com/" # create a bucket in Moto's mock AWS environment conn = boto3.resource("s3", region_name="us-east-1") conn.create_bucket(Bucket=bucket) my_store = TupleS3StoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, ) # We should be able to list keys, even when empty keys = my_store.list_keys() assert len(keys) == 1 my_store.set(("AAA",), "aaa", content_type="text/html; charset=utf-8") assert my_store.get(("AAA",)) == "aaa" obj = boto3.client("s3").get_object(Bucket=bucket, Key=prefix + "/my_file_AAA") assert obj["ContentType"] == "text/html; charset=utf-8" assert obj["ContentEncoding"] == "utf-8" my_store.set(("BBB",), "bbb") assert my_store.get(("BBB",)) == "bbb" assert set(my_store.list_keys()) == {("AAA",), ("BBB",), (".ge_store_backend_id",)} assert { s3_object_info["Key"] for s3_object_info in boto3.client("s3").list_objects_v2( Bucket=bucket, Prefix=prefix )["Contents"] } == { "this_is_a_test_prefix/.ge_store_backend_id", "this_is_a_test_prefix/my_file_AAA", "this_is_a_test_prefix/my_file_BBB", } assert my_store.get_url_for_key( ("AAA",) ) == "https://s3.amazonaws.com/{}/{}/my_file_AAA".format(bucket, prefix) assert my_store.get_url_for_key( ("BBB",) ) == "https://s3.amazonaws.com/{}/{}/my_file_BBB".format(bucket, prefix) my_store.remove_key(("BBB",)) with pytest.raises(InvalidKeyError): my_store.get(("BBB",)) # testing base_public_path my_new_store = TupleS3StoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, base_public_path=base_public_path, ) my_new_store.set(("BBB",), "bbb", content_type="text/html; charset=utf-8") assert ( my_new_store.get_public_url_for_key(("BBB",)) == "http://www.test.com/my_file_BBB" )
[ "def", "test_TupleS3StoreBackend_with_prefix", "(", ")", ":", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"this_is_a_test_prefix\"", "base_public_path", "=", "\"http://www.test.com/\"", "# create a bucket in Moto's mock AWS environment", "conn", "=", "boto3", ".", "resource", "(", "\"s3\"", ",", "region_name", "=", "\"us-east-1\"", ")", "conn", ".", "create_bucket", "(", "Bucket", "=", "bucket", ")", "my_store", "=", "TupleS3StoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", ")", "# We should be able to list keys, even when empty", "keys", "=", "my_store", ".", "list_keys", "(", ")", "assert", "len", "(", "keys", ")", "==", "1", "my_store", ".", "set", "(", "(", "\"AAA\"", ",", ")", ",", "\"aaa\"", ",", "content_type", "=", "\"text/html; charset=utf-8\"", ")", "assert", "my_store", ".", "get", "(", "(", "\"AAA\"", ",", ")", ")", "==", "\"aaa\"", "obj", "=", "boto3", ".", "client", "(", "\"s3\"", ")", ".", "get_object", "(", "Bucket", "=", "bucket", ",", "Key", "=", "prefix", "+", "\"/my_file_AAA\"", ")", "assert", "obj", "[", "\"ContentType\"", "]", "==", "\"text/html; charset=utf-8\"", "assert", "obj", "[", "\"ContentEncoding\"", "]", "==", "\"utf-8\"", "my_store", ".", "set", "(", "(", "\"BBB\"", ",", ")", ",", "\"bbb\"", ")", "assert", "my_store", ".", "get", "(", "(", "\"BBB\"", ",", ")", ")", "==", "\"bbb\"", "assert", "set", "(", "my_store", ".", "list_keys", "(", ")", ")", "==", "{", "(", "\"AAA\"", ",", ")", ",", "(", "\"BBB\"", ",", ")", ",", "(", "\".ge_store_backend_id\"", ",", ")", "}", "assert", "{", "s3_object_info", "[", "\"Key\"", "]", "for", "s3_object_info", "in", "boto3", ".", "client", "(", "\"s3\"", ")", ".", "list_objects_v2", "(", "Bucket", "=", "bucket", ",", "Prefix", "=", "prefix", ")", "[", "\"Contents\"", "]", "}", "==", "{", "\"this_is_a_test_prefix/.ge_store_backend_id\"", ",", "\"this_is_a_test_prefix/my_file_AAA\"", ",", "\"this_is_a_test_prefix/my_file_BBB\"", ",", "}", "assert", "my_store", ".", "get_url_for_key", "(", "(", "\"AAA\"", ",", ")", ")", "==", "\"https://s3.amazonaws.com/{}/{}/my_file_AAA\"", ".", "format", "(", "bucket", ",", "prefix", ")", "assert", "my_store", ".", "get_url_for_key", "(", "(", "\"BBB\"", ",", ")", ")", "==", "\"https://s3.amazonaws.com/{}/{}/my_file_BBB\"", ".", "format", "(", "bucket", ",", "prefix", ")", "my_store", ".", "remove_key", "(", "(", "\"BBB\"", ",", ")", ")", "with", "pytest", ".", "raises", "(", "InvalidKeyError", ")", ":", "my_store", ".", "get", "(", "(", "\"BBB\"", ",", ")", ")", "# testing base_public_path", "my_new_store", "=", "TupleS3StoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", "base_public_path", "=", "base_public_path", ",", ")", "my_new_store", ".", "set", "(", "(", "\"BBB\"", ",", ")", ",", "\"bbb\"", ",", "content_type", "=", "\"text/html; charset=utf-8\"", ")", "assert", "(", "my_new_store", ".", "get_public_url_for_key", "(", "(", "\"BBB\"", ",", ")", ")", "==", "\"http://www.test.com/my_file_BBB\"", ")" ]
[ 431, 0 ]
[ 506, 5 ]
python
en
['en', 'error', 'th']
False
test_TupleS3StoreBackend_with_empty_prefixes
()
What does this test test and why? We will exercise the store backend's set method twice and then verify that the we calling get and list methods will return the expected keys. We will also check that the objects are stored on S3 at the expected location, and that the correct S3 URL for the object can be retrieved.
What does this test test and why?
def test_TupleS3StoreBackend_with_empty_prefixes(): """ What does this test test and why? We will exercise the store backend's set method twice and then verify that the we calling get and list methods will return the expected keys. We will also check that the objects are stored on S3 at the expected location, and that the correct S3 URL for the object can be retrieved. """ bucket = "leakybucket" prefix = "" # create a bucket in Moto's mock AWS environment conn = boto3.resource("s3", region_name="us-east-1") conn.create_bucket(Bucket=bucket) my_store = TupleS3StoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, ) # We should be able to list keys, even when empty keys = my_store.list_keys() assert len(keys) == 1 my_store.set(("AAA",), "aaa", content_type="text/html; charset=utf-8") assert my_store.get(("AAA",)) == "aaa" obj = boto3.client("s3").get_object(Bucket=bucket, Key=prefix + "my_file_AAA") assert my_store._build_s3_object_key(("AAA",)) == "my_file_AAA" assert obj["ContentType"] == "text/html; charset=utf-8" assert obj["ContentEncoding"] == "utf-8" my_store.set(("BBB",), "bbb") assert my_store.get(("BBB",)) == "bbb" assert set(my_store.list_keys()) == {("AAA",), ("BBB",), (".ge_store_backend_id",)} assert { s3_object_info["Key"] for s3_object_info in boto3.client("s3").list_objects_v2( Bucket=bucket, Prefix=prefix )["Contents"] } == {"my_file_AAA", "my_file_BBB", ".ge_store_backend_id"} assert ( my_store.get_url_for_key(("AAA",)) == "https://s3.amazonaws.com/leakybucket/my_file_AAA" ) assert ( my_store.get_url_for_key(("BBB",)) == "https://s3.amazonaws.com/leakybucket/my_file_BBB" )
[ "def", "test_TupleS3StoreBackend_with_empty_prefixes", "(", ")", ":", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"\"", "# create a bucket in Moto's mock AWS environment", "conn", "=", "boto3", ".", "resource", "(", "\"s3\"", ",", "region_name", "=", "\"us-east-1\"", ")", "conn", ".", "create_bucket", "(", "Bucket", "=", "bucket", ")", "my_store", "=", "TupleS3StoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", ")", "# We should be able to list keys, even when empty", "keys", "=", "my_store", ".", "list_keys", "(", ")", "assert", "len", "(", "keys", ")", "==", "1", "my_store", ".", "set", "(", "(", "\"AAA\"", ",", ")", ",", "\"aaa\"", ",", "content_type", "=", "\"text/html; charset=utf-8\"", ")", "assert", "my_store", ".", "get", "(", "(", "\"AAA\"", ",", ")", ")", "==", "\"aaa\"", "obj", "=", "boto3", ".", "client", "(", "\"s3\"", ")", ".", "get_object", "(", "Bucket", "=", "bucket", ",", "Key", "=", "prefix", "+", "\"my_file_AAA\"", ")", "assert", "my_store", ".", "_build_s3_object_key", "(", "(", "\"AAA\"", ",", ")", ")", "==", "\"my_file_AAA\"", "assert", "obj", "[", "\"ContentType\"", "]", "==", "\"text/html; charset=utf-8\"", "assert", "obj", "[", "\"ContentEncoding\"", "]", "==", "\"utf-8\"", "my_store", ".", "set", "(", "(", "\"BBB\"", ",", ")", ",", "\"bbb\"", ")", "assert", "my_store", ".", "get", "(", "(", "\"BBB\"", ",", ")", ")", "==", "\"bbb\"", "assert", "set", "(", "my_store", ".", "list_keys", "(", ")", ")", "==", "{", "(", "\"AAA\"", ",", ")", ",", "(", "\"BBB\"", ",", ")", ",", "(", "\".ge_store_backend_id\"", ",", ")", "}", "assert", "{", "s3_object_info", "[", "\"Key\"", "]", "for", "s3_object_info", "in", "boto3", ".", "client", "(", "\"s3\"", ")", ".", "list_objects_v2", "(", "Bucket", "=", "bucket", ",", "Prefix", "=", "prefix", ")", "[", "\"Contents\"", "]", "}", "==", "{", "\"my_file_AAA\"", ",", "\"my_file_BBB\"", ",", "\".ge_store_backend_id\"", "}", "assert", "(", "my_store", ".", "get_url_for_key", "(", "(", "\"AAA\"", ",", ")", ")", "==", "\"https://s3.amazonaws.com/leakybucket/my_file_AAA\"", ")", "assert", "(", "my_store", ".", "get_url_for_key", "(", "(", "\"BBB\"", ",", ")", ")", "==", "\"https://s3.amazonaws.com/leakybucket/my_file_BBB\"", ")" ]
[ 698, 0 ]
[ 751, 5 ]
python
en
['en', 'error', 'th']
False
test_TupleGCSStoreBackend_base_public_path
()
What does this test and why? the base_public_path parameter allows users to point to a custom DNS when hosting Data docs. This test will exercise the get_url_for_key method twice to see that we are getting the expected url, with or without base_public_path
What does this test and why?
def test_TupleGCSStoreBackend_base_public_path(): """ What does this test and why? the base_public_path parameter allows users to point to a custom DNS when hosting Data docs. This test will exercise the get_url_for_key method twice to see that we are getting the expected url, with or without base_public_path """ bucket = "leakybucket" prefix = "this_is_a_test_prefix" project = "dummy-project" base_public_path = "http://www.test.com/" with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: mock_client = mock_gcs_client.return_value mock_bucket = mock_client.get_bucket.return_value mock_blob = mock_bucket.blob.return_value my_store_with_base_public_path = TupleGCSStoreBackend( filepath_template=None, bucket=bucket, prefix=prefix, project=project, base_public_path=base_public_path, ) my_store_with_base_public_path.set( ("BBB",), b"bbb", content_encoding=None, content_type="image/png" ) run_id = RunIdentifier("my_run_id", datetime.datetime.utcnow()) key = ValidationResultIdentifier( ExpectationSuiteIdentifier(expectation_suite_name="my_suite_name"), run_id, "my_batch_id", ) run_time_string = run_id.to_tuple()[1] url = my_store_with_base_public_path.get_public_url_for_key(key.to_tuple()) assert ( url == "http://www.test.com/leakybucket" + f"/this_is_a_test_prefix/my_suite_name/my_run_id/{run_time_string}/my_batch_id" )
[ "def", "test_TupleGCSStoreBackend_base_public_path", "(", ")", ":", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"this_is_a_test_prefix\"", "project", "=", "\"dummy-project\"", "base_public_path", "=", "\"http://www.test.com/\"", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "mock_client", "=", "mock_gcs_client", ".", "return_value", "mock_bucket", "=", "mock_client", ".", "get_bucket", ".", "return_value", "mock_blob", "=", "mock_bucket", ".", "blob", ".", "return_value", "my_store_with_base_public_path", "=", "TupleGCSStoreBackend", "(", "filepath_template", "=", "None", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", "project", "=", "project", ",", "base_public_path", "=", "base_public_path", ",", ")", "my_store_with_base_public_path", ".", "set", "(", "(", "\"BBB\"", ",", ")", ",", "b\"bbb\"", ",", "content_encoding", "=", "None", ",", "content_type", "=", "\"image/png\"", ")", "run_id", "=", "RunIdentifier", "(", "\"my_run_id\"", ",", "datetime", ".", "datetime", ".", "utcnow", "(", ")", ")", "key", "=", "ValidationResultIdentifier", "(", "ExpectationSuiteIdentifier", "(", "expectation_suite_name", "=", "\"my_suite_name\"", ")", ",", "run_id", ",", "\"my_batch_id\"", ",", ")", "run_time_string", "=", "run_id", ".", "to_tuple", "(", ")", "[", "1", "]", "url", "=", "my_store_with_base_public_path", ".", "get_public_url_for_key", "(", "key", ".", "to_tuple", "(", ")", ")", "assert", "(", "url", "==", "\"http://www.test.com/leakybucket\"", "+", "f\"/this_is_a_test_prefix/my_suite_name/my_run_id/{run_time_string}/my_batch_id\"", ")" ]
[ 754, 0 ]
[ 798, 5 ]
python
en
['en', 'error', 'th']
False
test_TupleGCSStoreBackend
()
What does this test test and why? Since no package like moto exists for GCP services, we mock the GCS client and assert that the store backend makes the right calls for set, get, and list. TODO : One option may be to have a GCS Store in Docker, which can be use to "actually" run these tests.
What does this test test and why?
def test_TupleGCSStoreBackend(): # pytest.importorskip("google-cloud-storage") """ What does this test test and why? Since no package like moto exists for GCP services, we mock the GCS client and assert that the store backend makes the right calls for set, get, and list. TODO : One option may be to have a GCS Store in Docker, which can be use to "actually" run these tests. """ bucket = "leakybucket" prefix = "this_is_a_test_prefix" project = "dummy-project" base_public_path = "http://www.test.com/" with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: mock_client = mock_gcs_client.return_value mock_bucket = mock_client.get_bucket.return_value mock_blob = mock_bucket.blob.return_value my_store = TupleGCSStoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, project=project, ) my_store.set(("AAA",), "aaa", content_type="text/html") mock_gcs_client.assert_called_with("dummy-project") mock_client.get_bucket.assert_called_with("leakybucket") mock_bucket.blob.assert_called_with("this_is_a_test_prefix/my_file_AAA") # mock_bucket.blob.assert_any_call("this_is_a_test_prefix/.ge_store_backend_id") mock_blob.upload_from_string.assert_called_with( b"aaa", content_type="text/html" ) with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: mock_client = mock_gcs_client.return_value mock_bucket = mock_client.get_bucket.return_value mock_blob = mock_bucket.blob.return_value my_store_with_no_filepath_template = TupleGCSStoreBackend( filepath_template=None, bucket=bucket, prefix=prefix, project=project ) my_store_with_no_filepath_template.set( ("AAA",), b"aaa", content_encoding=None, content_type="image/png" ) mock_gcs_client.assert_called_with("dummy-project") mock_client.get_bucket.assert_called_with("leakybucket") mock_bucket.blob.assert_called_with("this_is_a_test_prefix/AAA") # mock_bucket.blob.assert_any_call("this_is_a_test_prefix/.ge_store_backend_id") mock_blob.upload_from_string.assert_called_with( b"aaa", content_type="image/png" ) with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: mock_client = mock_gcs_client.return_value mock_bucket = mock_client.get_bucket.return_value mock_blob = mock_bucket.get_blob.return_value mock_str = mock_blob.download_as_string.return_value my_store.get(("BBB",)) mock_gcs_client.assert_called_once_with("dummy-project") mock_client.get_bucket.assert_called_once_with("leakybucket") mock_bucket.get_blob.assert_called_once_with( "this_is_a_test_prefix/my_file_BBB" ) mock_blob.download_as_string.assert_called_once() mock_str.decode.assert_called_once_with("utf-8") with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: mock_client = mock_gcs_client.return_value my_store.list_keys() mock_client.list_blobs.assert_called_once_with( "leakybucket", prefix="this_is_a_test_prefix" ) my_store.remove_key("leakybucket") from google.cloud.exceptions import NotFound try: mock_client.get_bucket.assert_called_once_with("leakybucket") except NotFound: pass with patch("google.cloud.storage.Client", autospec=True) as mock_gcs_client: mock_gcs_client.side_effect = InvalidKeyError("Hi I am an InvalidKeyError") with pytest.raises(InvalidKeyError): my_store.get(("non_existent_key",)) run_id = RunIdentifier("my_run_id", datetime.datetime.utcnow()) key = ValidationResultIdentifier( ExpectationSuiteIdentifier(expectation_suite_name="my_suite_name"), run_id, "my_batch_id", ) run_time_string = run_id.to_tuple()[1] url = my_store_with_no_filepath_template.get_url_for_key(key.to_tuple()) assert ( url == "https://storage.googleapis.com/leakybucket" + f"/this_is_a_test_prefix/my_suite_name/my_run_id/{run_time_string}/my_batch_id" )
[ "def", "test_TupleGCSStoreBackend", "(", ")", ":", "# pytest.importorskip(\"google-cloud-storage\")", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"this_is_a_test_prefix\"", "project", "=", "\"dummy-project\"", "base_public_path", "=", "\"http://www.test.com/\"", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "mock_client", "=", "mock_gcs_client", ".", "return_value", "mock_bucket", "=", "mock_client", ".", "get_bucket", ".", "return_value", "mock_blob", "=", "mock_bucket", ".", "blob", ".", "return_value", "my_store", "=", "TupleGCSStoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", "project", "=", "project", ",", ")", "my_store", ".", "set", "(", "(", "\"AAA\"", ",", ")", ",", "\"aaa\"", ",", "content_type", "=", "\"text/html\"", ")", "mock_gcs_client", ".", "assert_called_with", "(", "\"dummy-project\"", ")", "mock_client", ".", "get_bucket", ".", "assert_called_with", "(", "\"leakybucket\"", ")", "mock_bucket", ".", "blob", ".", "assert_called_with", "(", "\"this_is_a_test_prefix/my_file_AAA\"", ")", "# mock_bucket.blob.assert_any_call(\"this_is_a_test_prefix/.ge_store_backend_id\")", "mock_blob", ".", "upload_from_string", ".", "assert_called_with", "(", "b\"aaa\"", ",", "content_type", "=", "\"text/html\"", ")", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "mock_client", "=", "mock_gcs_client", ".", "return_value", "mock_bucket", "=", "mock_client", ".", "get_bucket", ".", "return_value", "mock_blob", "=", "mock_bucket", ".", "blob", ".", "return_value", "my_store_with_no_filepath_template", "=", "TupleGCSStoreBackend", "(", "filepath_template", "=", "None", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", "project", "=", "project", ")", "my_store_with_no_filepath_template", ".", "set", "(", "(", "\"AAA\"", ",", ")", ",", "b\"aaa\"", ",", "content_encoding", "=", "None", ",", "content_type", "=", "\"image/png\"", ")", "mock_gcs_client", ".", "assert_called_with", "(", "\"dummy-project\"", ")", "mock_client", ".", "get_bucket", ".", "assert_called_with", "(", "\"leakybucket\"", ")", "mock_bucket", ".", "blob", ".", "assert_called_with", "(", "\"this_is_a_test_prefix/AAA\"", ")", "# mock_bucket.blob.assert_any_call(\"this_is_a_test_prefix/.ge_store_backend_id\")", "mock_blob", ".", "upload_from_string", ".", "assert_called_with", "(", "b\"aaa\"", ",", "content_type", "=", "\"image/png\"", ")", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "mock_client", "=", "mock_gcs_client", ".", "return_value", "mock_bucket", "=", "mock_client", ".", "get_bucket", ".", "return_value", "mock_blob", "=", "mock_bucket", ".", "get_blob", ".", "return_value", "mock_str", "=", "mock_blob", ".", "download_as_string", ".", "return_value", "my_store", ".", "get", "(", "(", "\"BBB\"", ",", ")", ")", "mock_gcs_client", ".", "assert_called_once_with", "(", "\"dummy-project\"", ")", "mock_client", ".", "get_bucket", ".", "assert_called_once_with", "(", "\"leakybucket\"", ")", "mock_bucket", ".", "get_blob", ".", "assert_called_once_with", "(", "\"this_is_a_test_prefix/my_file_BBB\"", ")", "mock_blob", ".", "download_as_string", ".", "assert_called_once", "(", ")", "mock_str", ".", "decode", ".", "assert_called_once_with", "(", "\"utf-8\"", ")", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "mock_client", "=", "mock_gcs_client", ".", "return_value", "my_store", ".", "list_keys", "(", ")", "mock_client", ".", "list_blobs", ".", "assert_called_once_with", "(", "\"leakybucket\"", ",", "prefix", "=", "\"this_is_a_test_prefix\"", ")", "my_store", ".", "remove_key", "(", "\"leakybucket\"", ")", "from", "google", ".", "cloud", ".", "exceptions", "import", "NotFound", "try", ":", "mock_client", ".", "get_bucket", ".", "assert_called_once_with", "(", "\"leakybucket\"", ")", "except", "NotFound", ":", "pass", "with", "patch", "(", "\"google.cloud.storage.Client\"", ",", "autospec", "=", "True", ")", "as", "mock_gcs_client", ":", "mock_gcs_client", ".", "side_effect", "=", "InvalidKeyError", "(", "\"Hi I am an InvalidKeyError\"", ")", "with", "pytest", ".", "raises", "(", "InvalidKeyError", ")", ":", "my_store", ".", "get", "(", "(", "\"non_existent_key\"", ",", ")", ")", "run_id", "=", "RunIdentifier", "(", "\"my_run_id\"", ",", "datetime", ".", "datetime", ".", "utcnow", "(", ")", ")", "key", "=", "ValidationResultIdentifier", "(", "ExpectationSuiteIdentifier", "(", "expectation_suite_name", "=", "\"my_suite_name\"", ")", ",", "run_id", ",", "\"my_batch_id\"", ",", ")", "run_time_string", "=", "run_id", ".", "to_tuple", "(", ")", "[", "1", "]", "url", "=", "my_store_with_no_filepath_template", ".", "get_url_for_key", "(", "key", ".", "to_tuple", "(", ")", ")", "assert", "(", "url", "==", "\"https://storage.googleapis.com/leakybucket\"", "+", "f\"/this_is_a_test_prefix/my_suite_name/my_run_id/{run_time_string}/my_batch_id\"", ")" ]
[ 801, 0 ]
[ 915, 5 ]
python
en
['en', 'error', 'th']
False
test_TupleAzureBlobStoreBackend
()
What does this test test and why? Since no package like moto exists for Azure-Blob services, we mock the Azure-blob client and assert that the store backend makes the right calls for set, get, and list.
What does this test test and why? Since no package like moto exists for Azure-Blob services, we mock the Azure-blob client and assert that the store backend makes the right calls for set, get, and list.
def test_TupleAzureBlobStoreBackend(): pytest.importorskip("azure-storage-blob") """ What does this test test and why? Since no package like moto exists for Azure-Blob services, we mock the Azure-blob client and assert that the store backend makes the right calls for set, get, and list. """ connection_string = "this_is_a_test_conn_string" prefix = "this_is_a_test_prefix" container = "dummy-container" my_store = TupleAzureBlobStoreBackend( connection_string=connection_string, prefix=prefix, container=container ) with patch( "azure.storage.blob.BlobServiceClient", autospec=True ) as mock_azure_blob_client: mock_container_client = mock_azure_blob_client.get_container_client.return_value my_store.set(("AAA",), "aaa") mock_azure_blob_client.from_connection_string.assert_called_once() mock_container_client.assert_called_once() mock_container_client.upload_blob.assert_called_once_with( name="AAA", data=b"aaa", encoding="utf-8" ) with patch( "azure.storage.blob.BlobServiceClient", autospec=True ) as mock_azure_blob_client: mock_container_client = mock_azure_blob_client.get_container_client.return_value my_store.set(("BBB",), b"bbb") mock_azure_blob_client.from_connection_string.assert_called_once() mock_container_client.assert_called_once() mock_container_client.upload_blob.assert_called_once_with( name="AAA", data=b"aaa" ) with patch( "azure.storage.blob.BlobServiceClient", autospec=True ) as mock_azure_blob_client: mock_container_client = mock_azure_blob_client.get_container_client.return_value my_store.get(("BBB",)) mock_azure_blob_client.from_connection_string.assert_called_once() mock_container_client.assert_called_once() mock_container_client.download_blob.assert_called_once_with("BBB") with patch( "azure.storage.blob.BlobServiceClient", autospec=True ) as mock_azure_blob_client: mock_container_client = mock_azure_blob_client.get_container_client.return_value my_store.list_keys() mock_azure_blob_client.from_connection_string.assert_called_once() mock_container_client.assert_called_once() mock_container_client.list_blobs.assert_called_once_with("this_is_a_prefix")
[ "def", "test_TupleAzureBlobStoreBackend", "(", ")", ":", "pytest", ".", "importorskip", "(", "\"azure-storage-blob\"", ")", "connection_string", "=", "\"this_is_a_test_conn_string\"", "prefix", "=", "\"this_is_a_test_prefix\"", "container", "=", "\"dummy-container\"", "my_store", "=", "TupleAzureBlobStoreBackend", "(", "connection_string", "=", "connection_string", ",", "prefix", "=", "prefix", ",", "container", "=", "container", ")", "with", "patch", "(", "\"azure.storage.blob.BlobServiceClient\"", ",", "autospec", "=", "True", ")", "as", "mock_azure_blob_client", ":", "mock_container_client", "=", "mock_azure_blob_client", ".", "get_container_client", ".", "return_value", "my_store", ".", "set", "(", "(", "\"AAA\"", ",", ")", ",", "\"aaa\"", ")", "mock_azure_blob_client", ".", "from_connection_string", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "upload_blob", ".", "assert_called_once_with", "(", "name", "=", "\"AAA\"", ",", "data", "=", "b\"aaa\"", ",", "encoding", "=", "\"utf-8\"", ")", "with", "patch", "(", "\"azure.storage.blob.BlobServiceClient\"", ",", "autospec", "=", "True", ")", "as", "mock_azure_blob_client", ":", "mock_container_client", "=", "mock_azure_blob_client", ".", "get_container_client", ".", "return_value", "my_store", ".", "set", "(", "(", "\"BBB\"", ",", ")", ",", "b\"bbb\"", ")", "mock_azure_blob_client", ".", "from_connection_string", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "upload_blob", ".", "assert_called_once_with", "(", "name", "=", "\"AAA\"", ",", "data", "=", "b\"aaa\"", ")", "with", "patch", "(", "\"azure.storage.blob.BlobServiceClient\"", ",", "autospec", "=", "True", ")", "as", "mock_azure_blob_client", ":", "mock_container_client", "=", "mock_azure_blob_client", ".", "get_container_client", ".", "return_value", "my_store", ".", "get", "(", "(", "\"BBB\"", ",", ")", ")", "mock_azure_blob_client", ".", "from_connection_string", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "download_blob", ".", "assert_called_once_with", "(", "\"BBB\"", ")", "with", "patch", "(", "\"azure.storage.blob.BlobServiceClient\"", ",", "autospec", "=", "True", ")", "as", "mock_azure_blob_client", ":", "mock_container_client", "=", "mock_azure_blob_client", ".", "get_container_client", ".", "return_value", "my_store", ".", "list_keys", "(", ")", "mock_azure_blob_client", ".", "from_connection_string", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "assert_called_once", "(", ")", "mock_container_client", ".", "list_blobs", ".", "assert_called_once_with", "(", "\"this_is_a_prefix\"", ")" ]
[ 918, 0 ]
[ 983, 84 ]
python
en
['en', 'error', 'th']
False
test_TupleS3StoreBackend_list_over_1000_keys
()
What does this test test and why? TupleS3StoreBackend.list_keys() should be able to list over 1000 keys which is the current limit for boto3.list_objects and boto3.list_objects_v2 methods. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/paginators.html We will create a bucket with over 1000 keys, list them with TupleS3StoreBackend.list_keys() and make sure all are accounted for.
What does this test test and why?
def test_TupleS3StoreBackend_list_over_1000_keys(): """ What does this test test and why? TupleS3StoreBackend.list_keys() should be able to list over 1000 keys which is the current limit for boto3.list_objects and boto3.list_objects_v2 methods. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/paginators.html We will create a bucket with over 1000 keys, list them with TupleS3StoreBackend.list_keys() and make sure all are accounted for. """ bucket = "leakybucket" prefix = "my_prefix" # create a bucket in Moto's mock AWS environment conn = boto3.resource("s3", region_name="us-east-1") conn.create_bucket(Bucket=bucket) # Assert that the bucket is empty before creating store assert ( boto3.client("s3").list_objects_v2(Bucket=bucket, Prefix=prefix).get("Contents") is None ) my_store = TupleS3StoreBackend( filepath_template="my_file_{0}", bucket=bucket, prefix=prefix, ) # We should be able to list keys, even when empty # len(keys) == 1 because of the .ge_store_backend_id keys = my_store.list_keys() assert len(keys) == 1 # Add more than 1000 keys max_keys_in_a_single_call = 1000 num_keys_to_add = int(1.2 * max_keys_in_a_single_call) for key_num in range(num_keys_to_add): my_store.set( (f"AAA_{key_num}",), f"aaa_{key_num}", content_type="text/html; charset=utf-8", ) assert my_store.get(("AAA_0",)) == "aaa_0" assert my_store.get((f"AAA_{num_keys_to_add-1}",)) == f"aaa_{num_keys_to_add-1}" # Without pagination only list max_keys_in_a_single_call # This is belt and suspenders to make sure mocking s3 list_objects_v2 implements # the same limit as the actual s3 api assert ( len( boto3.client("s3").list_objects_v2(Bucket=bucket, Prefix=prefix)["Contents"] ) == max_keys_in_a_single_call ) # With pagination list all keys keys = my_store.list_keys() # len(keys) == num_keys_to_add + 1 because of the .ge_store_backend_id assert len(keys) == num_keys_to_add + 1
[ "def", "test_TupleS3StoreBackend_list_over_1000_keys", "(", ")", ":", "bucket", "=", "\"leakybucket\"", "prefix", "=", "\"my_prefix\"", "# create a bucket in Moto's mock AWS environment", "conn", "=", "boto3", ".", "resource", "(", "\"s3\"", ",", "region_name", "=", "\"us-east-1\"", ")", "conn", ".", "create_bucket", "(", "Bucket", "=", "bucket", ")", "# Assert that the bucket is empty before creating store", "assert", "(", "boto3", ".", "client", "(", "\"s3\"", ")", ".", "list_objects_v2", "(", "Bucket", "=", "bucket", ",", "Prefix", "=", "prefix", ")", ".", "get", "(", "\"Contents\"", ")", "is", "None", ")", "my_store", "=", "TupleS3StoreBackend", "(", "filepath_template", "=", "\"my_file_{0}\"", ",", "bucket", "=", "bucket", ",", "prefix", "=", "prefix", ",", ")", "# We should be able to list keys, even when empty", "# len(keys) == 1 because of the .ge_store_backend_id", "keys", "=", "my_store", ".", "list_keys", "(", ")", "assert", "len", "(", "keys", ")", "==", "1", "# Add more than 1000 keys", "max_keys_in_a_single_call", "=", "1000", "num_keys_to_add", "=", "int", "(", "1.2", "*", "max_keys_in_a_single_call", ")", "for", "key_num", "in", "range", "(", "num_keys_to_add", ")", ":", "my_store", ".", "set", "(", "(", "f\"AAA_{key_num}\"", ",", ")", ",", "f\"aaa_{key_num}\"", ",", "content_type", "=", "\"text/html; charset=utf-8\"", ",", ")", "assert", "my_store", ".", "get", "(", "(", "\"AAA_0\"", ",", ")", ")", "==", "\"aaa_0\"", "assert", "my_store", ".", "get", "(", "(", "f\"AAA_{num_keys_to_add-1}\"", ",", ")", ")", "==", "f\"aaa_{num_keys_to_add-1}\"", "# Without pagination only list max_keys_in_a_single_call", "# This is belt and suspenders to make sure mocking s3 list_objects_v2 implements", "# the same limit as the actual s3 api", "assert", "(", "len", "(", "boto3", ".", "client", "(", "\"s3\"", ")", ".", "list_objects_v2", "(", "Bucket", "=", "bucket", ",", "Prefix", "=", "prefix", ")", "[", "\"Contents\"", "]", ")", "==", "max_keys_in_a_single_call", ")", "# With pagination list all keys", "keys", "=", "my_store", ".", "list_keys", "(", ")", "# len(keys) == num_keys_to_add + 1 because of the .ge_store_backend_id", "assert", "len", "(", "keys", ")", "==", "num_keys_to_add", "+", "1" ]
[ 987, 0 ]
[ 1048, 43 ]
python
en
['en', 'error', 'th']
False
test_GeCloudStoreBackend
()
What does this test test and why? Since GeCloudStoreBackend relies on GE Cloud, we mock requests.post, requests.get, and requests.patch and assert that the right calls are made for set, get, list, and remove_key.
What does this test test and why?
def test_GeCloudStoreBackend(): """ What does this test test and why? Since GeCloudStoreBackend relies on GE Cloud, we mock requests.post, requests.get, and requests.patch and assert that the right calls are made for set, get, list, and remove_key. """ ge_cloud_base_url = "https://app.greatexpectations.io/" ge_cloud_credentials = { "access_token": "1234", "account_id": "51379b8b-86d3-4fe7-84e9-e1a52f4a414c", } ge_cloud_resource_type = "checkpoint" my_simple_checkpoint_config: CheckpointConfig = CheckpointConfig( name="my_minimal_simple_checkpoint", class_name="SimpleCheckpoint", config_version=1, ) my_simple_checkpoint_config_serialized = ( my_simple_checkpoint_config.get_schema_class()().dump( my_simple_checkpoint_config ) ) # test .set with patch("requests.post", autospec=True) as mock_post: my_store_backend = GeCloudStoreBackend( ge_cloud_base_url=ge_cloud_base_url, ge_cloud_credentials=ge_cloud_credentials, ge_cloud_resource_type=ge_cloud_resource_type, ) my_store_backend.set( ("my_checkpoint_name",), my_simple_checkpoint_config_serialized ) mock_post.assert_called_with( "https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints", json={ "data": { "type": "checkpoint", "attributes": { "account_id": "51379b8b-86d3-4fe7-84e9-e1a52f4a414c", "checkpoint_config": OrderedDict( [ ("name", "my_minimal_simple_checkpoint"), ("config_version", 1.0), ("template_name", None), ("module_name", "great_expectations.checkpoint"), ("class_name", "SimpleCheckpoint"), ("run_name_template", None), ("expectation_suite_name", None), ("batch_request", None), ("action_list", []), ("evaluation_parameters", {}), ("runtime_configuration", {}), ("validations", []), ("profilers", []), ("ge_cloud_id", None), ] ), }, } }, headers={ "Content-Type": "application/vnd.api+json", "Authorization": "Bearer 1234", }, ) # test .get with patch("requests.get", autospec=True) as mock_get: my_store_backend = GeCloudStoreBackend( ge_cloud_base_url=ge_cloud_base_url, ge_cloud_credentials=ge_cloud_credentials, ge_cloud_resource_type=ge_cloud_resource_type, ) my_store_backend.get(("0ccac18e-7631-4bdd-8a42-3c35cce574c6",)) mock_get.assert_called_with( "https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints/0ccac18e-7631-4bdd-8a42-3c35cce574c6", headers={ "Content-Type": "application/vnd.api+json", "Authorization": "Bearer 1234", }, ) # test .list_keys with patch("requests.get", autospec=True) as mock_get: my_store_backend = GeCloudStoreBackend( ge_cloud_base_url=ge_cloud_base_url, ge_cloud_credentials=ge_cloud_credentials, ge_cloud_resource_type=ge_cloud_resource_type, ) my_store_backend.list_keys() mock_get.assert_called_with( "https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints", headers={ "Content-Type": "application/vnd.api+json", "Authorization": "Bearer 1234", }, ) # test .remove_key with patch("requests.patch", autospec=True) as mock_patch: mock_response = mock_patch.return_value mock_response.status_code = 200 my_store_backend = GeCloudStoreBackend( ge_cloud_base_url=ge_cloud_base_url, ge_cloud_credentials=ge_cloud_credentials, ge_cloud_resource_type=ge_cloud_resource_type, ) my_store_backend.remove_key(("0ccac18e-7631-4bdd-8a42-3c35cce574c6",)) mock_patch.assert_called_with( "https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints/0ccac18e-7631-4bdd-8a42-3c35cce574c6", json={ "data": { "type": "checkpoint", "id": "0ccac18e-7631-4bdd-8a42-3c35cce574c6", "attributes": {"deleted": True}, } }, headers={ "Content-Type": "application/vnd.api+json", "Authorization": "Bearer 1234", }, )
[ "def", "test_GeCloudStoreBackend", "(", ")", ":", "ge_cloud_base_url", "=", "\"https://app.greatexpectations.io/\"", "ge_cloud_credentials", "=", "{", "\"access_token\"", ":", "\"1234\"", ",", "\"account_id\"", ":", "\"51379b8b-86d3-4fe7-84e9-e1a52f4a414c\"", ",", "}", "ge_cloud_resource_type", "=", "\"checkpoint\"", "my_simple_checkpoint_config", ":", "CheckpointConfig", "=", "CheckpointConfig", "(", "name", "=", "\"my_minimal_simple_checkpoint\"", ",", "class_name", "=", "\"SimpleCheckpoint\"", ",", "config_version", "=", "1", ",", ")", "my_simple_checkpoint_config_serialized", "=", "(", "my_simple_checkpoint_config", ".", "get_schema_class", "(", ")", "(", ")", ".", "dump", "(", "my_simple_checkpoint_config", ")", ")", "# test .set", "with", "patch", "(", "\"requests.post\"", ",", "autospec", "=", "True", ")", "as", "mock_post", ":", "my_store_backend", "=", "GeCloudStoreBackend", "(", "ge_cloud_base_url", "=", "ge_cloud_base_url", ",", "ge_cloud_credentials", "=", "ge_cloud_credentials", ",", "ge_cloud_resource_type", "=", "ge_cloud_resource_type", ",", ")", "my_store_backend", ".", "set", "(", "(", "\"my_checkpoint_name\"", ",", ")", ",", "my_simple_checkpoint_config_serialized", ")", "mock_post", ".", "assert_called_with", "(", "\"https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints\"", ",", "json", "=", "{", "\"data\"", ":", "{", "\"type\"", ":", "\"checkpoint\"", ",", "\"attributes\"", ":", "{", "\"account_id\"", ":", "\"51379b8b-86d3-4fe7-84e9-e1a52f4a414c\"", ",", "\"checkpoint_config\"", ":", "OrderedDict", "(", "[", "(", "\"name\"", ",", "\"my_minimal_simple_checkpoint\"", ")", ",", "(", "\"config_version\"", ",", "1.0", ")", ",", "(", "\"template_name\"", ",", "None", ")", ",", "(", "\"module_name\"", ",", "\"great_expectations.checkpoint\"", ")", ",", "(", "\"class_name\"", ",", "\"SimpleCheckpoint\"", ")", ",", "(", "\"run_name_template\"", ",", "None", ")", ",", "(", "\"expectation_suite_name\"", ",", "None", ")", ",", "(", "\"batch_request\"", ",", "None", ")", ",", "(", "\"action_list\"", ",", "[", "]", ")", ",", "(", "\"evaluation_parameters\"", ",", "{", "}", ")", ",", "(", "\"runtime_configuration\"", ",", "{", "}", ")", ",", "(", "\"validations\"", ",", "[", "]", ")", ",", "(", "\"profilers\"", ",", "[", "]", ")", ",", "(", "\"ge_cloud_id\"", ",", "None", ")", ",", "]", ")", ",", "}", ",", "}", "}", ",", "headers", "=", "{", "\"Content-Type\"", ":", "\"application/vnd.api+json\"", ",", "\"Authorization\"", ":", "\"Bearer 1234\"", ",", "}", ",", ")", "# test .get", "with", "patch", "(", "\"requests.get\"", ",", "autospec", "=", "True", ")", "as", "mock_get", ":", "my_store_backend", "=", "GeCloudStoreBackend", "(", "ge_cloud_base_url", "=", "ge_cloud_base_url", ",", "ge_cloud_credentials", "=", "ge_cloud_credentials", ",", "ge_cloud_resource_type", "=", "ge_cloud_resource_type", ",", ")", "my_store_backend", ".", "get", "(", "(", "\"0ccac18e-7631-4bdd-8a42-3c35cce574c6\"", ",", ")", ")", "mock_get", ".", "assert_called_with", "(", "\"https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints/0ccac18e-7631-4bdd-8a42-3c35cce574c6\"", ",", "headers", "=", "{", "\"Content-Type\"", ":", "\"application/vnd.api+json\"", ",", "\"Authorization\"", ":", "\"Bearer 1234\"", ",", "}", ",", ")", "# test .list_keys", "with", "patch", "(", "\"requests.get\"", ",", "autospec", "=", "True", ")", "as", "mock_get", ":", "my_store_backend", "=", "GeCloudStoreBackend", "(", "ge_cloud_base_url", "=", "ge_cloud_base_url", ",", "ge_cloud_credentials", "=", "ge_cloud_credentials", ",", "ge_cloud_resource_type", "=", "ge_cloud_resource_type", ",", ")", "my_store_backend", ".", "list_keys", "(", ")", "mock_get", ".", "assert_called_with", "(", "\"https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints\"", ",", "headers", "=", "{", "\"Content-Type\"", ":", "\"application/vnd.api+json\"", ",", "\"Authorization\"", ":", "\"Bearer 1234\"", ",", "}", ",", ")", "# test .remove_key", "with", "patch", "(", "\"requests.patch\"", ",", "autospec", "=", "True", ")", "as", "mock_patch", ":", "mock_response", "=", "mock_patch", ".", "return_value", "mock_response", ".", "status_code", "=", "200", "my_store_backend", "=", "GeCloudStoreBackend", "(", "ge_cloud_base_url", "=", "ge_cloud_base_url", ",", "ge_cloud_credentials", "=", "ge_cloud_credentials", ",", "ge_cloud_resource_type", "=", "ge_cloud_resource_type", ",", ")", "my_store_backend", ".", "remove_key", "(", "(", "\"0ccac18e-7631-4bdd-8a42-3c35cce574c6\"", ",", ")", ")", "mock_patch", ".", "assert_called_with", "(", "\"https://app.greatexpectations.io/accounts/51379b8b-86d3-4fe7-84e9-e1a52f4a414c/checkpoints/0ccac18e-7631-4bdd-8a42-3c35cce574c6\"", ",", "json", "=", "{", "\"data\"", ":", "{", "\"type\"", ":", "\"checkpoint\"", ",", "\"id\"", ":", "\"0ccac18e-7631-4bdd-8a42-3c35cce574c6\"", ",", "\"attributes\"", ":", "{", "\"deleted\"", ":", "True", "}", ",", "}", "}", ",", "headers", "=", "{", "\"Content-Type\"", ":", "\"application/vnd.api+json\"", ",", "\"Authorization\"", ":", "\"Bearer 1234\"", ",", "}", ",", ")" ]
[ 1051, 0 ]
[ 1175, 13 ]
python
en
['en', 'error', 'th']
False
assertDeepAlmostEqual
(expected, actual, *args, **kwargs)
Assert that two complex structures have almost equal contents. Compares lists, dicts and tuples recursively. Checks numeric values using pyteset.approx and checks all other values with an assertion equality statement Accepts additional positional and keyword arguments and pass those intact to pytest.approx() (that's how you specify comparison precision).
Assert that two complex structures have almost equal contents.
def assertDeepAlmostEqual(expected, actual, *args, **kwargs): """ Assert that two complex structures have almost equal contents. Compares lists, dicts and tuples recursively. Checks numeric values using pyteset.approx and checks all other values with an assertion equality statement Accepts additional positional and keyword arguments and pass those intact to pytest.approx() (that's how you specify comparison precision). """ is_root = "__trace" not in kwargs trace = kwargs.pop("__trace", "ROOT") try: # if isinstance(expected, (int, float, long, complex)): if isinstance(expected, (int, float, complex)): assert expected == pytest.approx(actual, *args, **kwargs) elif isinstance(expected, (list, tuple, np.ndarray)): assert len(expected) == len(actual) for index in range(len(expected)): v1, v2 = expected[index], actual[index] assertDeepAlmostEqual(v1, v2, __trace=repr(index), *args, **kwargs) elif isinstance(expected, dict): assert set(expected) == set(actual) for key in expected: assertDeepAlmostEqual( expected[key], actual[key], __trace=repr(key), *args, **kwargs ) else: assert expected == actual except AssertionError as exc: exc.__dict__.setdefault("traces", []).append(trace) if is_root: trace = " -> ".join(reversed(exc.traces)) exc = AssertionError("{}\nTRACE: {}".format(str(exc), trace)) raise exc
[ "def", "assertDeepAlmostEqual", "(", "expected", ",", "actual", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "is_root", "=", "\"__trace\"", "not", "in", "kwargs", "trace", "=", "kwargs", ".", "pop", "(", "\"__trace\"", ",", "\"ROOT\"", ")", "try", ":", "# if isinstance(expected, (int, float, long, complex)):", "if", "isinstance", "(", "expected", ",", "(", "int", ",", "float", ",", "complex", ")", ")", ":", "assert", "expected", "==", "pytest", ".", "approx", "(", "actual", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "isinstance", "(", "expected", ",", "(", "list", ",", "tuple", ",", "np", ".", "ndarray", ")", ")", ":", "assert", "len", "(", "expected", ")", "==", "len", "(", "actual", ")", "for", "index", "in", "range", "(", "len", "(", "expected", ")", ")", ":", "v1", ",", "v2", "=", "expected", "[", "index", "]", ",", "actual", "[", "index", "]", "assertDeepAlmostEqual", "(", "v1", ",", "v2", ",", "__trace", "=", "repr", "(", "index", ")", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "isinstance", "(", "expected", ",", "dict", ")", ":", "assert", "set", "(", "expected", ")", "==", "set", "(", "actual", ")", "for", "key", "in", "expected", ":", "assertDeepAlmostEqual", "(", "expected", "[", "key", "]", ",", "actual", "[", "key", "]", ",", "__trace", "=", "repr", "(", "key", ")", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "assert", "expected", "==", "actual", "except", "AssertionError", "as", "exc", ":", "exc", ".", "__dict__", ".", "setdefault", "(", "\"traces\"", ",", "[", "]", ")", ".", "append", "(", "trace", ")", "if", "is_root", ":", "trace", "=", "\" -> \"", ".", "join", "(", "reversed", "(", "exc", ".", "traces", ")", ")", "exc", "=", "AssertionError", "(", "\"{}\\nTRACE: {}\"", ".", "format", "(", "str", "(", "exc", ")", ",", "trace", ")", ")", "raise", "exc" ]
[ 27, 0 ]
[ 62, 17 ]
python
en
['en', 'error', 'th']
False
validate_uuid4
(uuid_string: str)
Validate that a UUID string is in fact a valid uuid4. Happily, the uuid module does the actual checking for us. It is vital that the 'version' kwarg be passed to the UUID() call, otherwise any 32-character hex string is considered valid. From https://gist.github.com/ShawnMilo/7777304 Args: uuid_string: string to check whether it is a valid UUID or not Returns: True if uuid_string is a valid UUID or False if not
Validate that a UUID string is in fact a valid uuid4. Happily, the uuid module does the actual checking for us. It is vital that the 'version' kwarg be passed to the UUID() call, otherwise any 32-character hex string is considered valid. From https://gist.github.com/ShawnMilo/7777304
def validate_uuid4(uuid_string: str) -> bool: """ Validate that a UUID string is in fact a valid uuid4. Happily, the uuid module does the actual checking for us. It is vital that the 'version' kwarg be passed to the UUID() call, otherwise any 32-character hex string is considered valid. From https://gist.github.com/ShawnMilo/7777304 Args: uuid_string: string to check whether it is a valid UUID or not Returns: True if uuid_string is a valid UUID or False if not """ try: val = uuid.UUID(uuid_string, version=4) except ValueError: # If it's a value error, then the string # is not a valid hex code for a UUID. return False # If the uuid_string is a valid hex code, # but an invalid uuid4, # the UUID.__init__ will convert it to a # valid uuid4. This is bad for validation purposes. return val.hex == uuid_string.replace("-", "")
[ "def", "validate_uuid4", "(", "uuid_string", ":", "str", ")", "->", "bool", ":", "try", ":", "val", "=", "uuid", ".", "UUID", "(", "uuid_string", ",", "version", "=", "4", ")", "except", "ValueError", ":", "# If it's a value error, then the string", "# is not a valid hex code for a UUID.", "return", "False", "# If the uuid_string is a valid hex code,", "# but an invalid uuid4,", "# the UUID.__init__ will convert it to a", "# valid uuid4. This is bad for validation purposes.", "return", "val", ".", "hex", "==", "uuid_string", ".", "replace", "(", "\"-\"", ",", "\"\"", ")" ]
[ 137, 0 ]
[ 164, 50 ]
python
en
['en', 'error', 'th']
False
CEVAE.__init__
(self, outcome_dist="studentt", latent_dim=20, hidden_dim=200, num_epochs=50, num_layers=3, batch_size=100, learning_rate=1e-3, learning_rate_decay=0.1, num_samples=1000, weight_decay=1e-4)
Initializes CEVAE. Args: outcome_dist (str): Outcome distribution as one of: "bernoulli" , "exponential", "laplace", "normal", and "studentt" latent_dim (int) : Dimension of the latent variable hidden_dim (int) : Dimension of hidden layers of fully connected networks num_epochs (int): Number of training epochs num_layers (int): Number of hidden layers in fully connected networks batch_size (int): Batch size learning_rate (int): Learning rate learning_rate_decay (float/int): Learning rate decay over all epochs; the per-step decay rate will depend on batch size and number of epochs such that the initial learning rate will be learning_rate and the final learning rate will be learning_rate * learning_rate_decay num_samples (int) : Number of samples to calculate ITE weight_decay (float) : Weight decay
Initializes CEVAE.
def __init__(self, outcome_dist="studentt", latent_dim=20, hidden_dim=200, num_epochs=50, num_layers=3, batch_size=100, learning_rate=1e-3, learning_rate_decay=0.1, num_samples=1000, weight_decay=1e-4): """ Initializes CEVAE. Args: outcome_dist (str): Outcome distribution as one of: "bernoulli" , "exponential", "laplace", "normal", and "studentt" latent_dim (int) : Dimension of the latent variable hidden_dim (int) : Dimension of hidden layers of fully connected networks num_epochs (int): Number of training epochs num_layers (int): Number of hidden layers in fully connected networks batch_size (int): Batch size learning_rate (int): Learning rate learning_rate_decay (float/int): Learning rate decay over all epochs; the per-step decay rate will depend on batch size and number of epochs such that the initial learning rate will be learning_rate and the final learning rate will be learning_rate * learning_rate_decay num_samples (int) : Number of samples to calculate ITE weight_decay (float) : Weight decay """ self.outcome_dist = outcome_dist self.latent_dim = latent_dim self.hidden_dim = hidden_dim self.num_epochs = num_epochs self.num_layers = num_layers self.batch_size = batch_size self.learning_rate = learning_rate self.learning_rate_decay = learning_rate_decay self.num_samples = num_samples self.weight_decay = weight_decay
[ "def", "__init__", "(", "self", ",", "outcome_dist", "=", "\"studentt\"", ",", "latent_dim", "=", "20", ",", "hidden_dim", "=", "200", ",", "num_epochs", "=", "50", ",", "num_layers", "=", "3", ",", "batch_size", "=", "100", ",", "learning_rate", "=", "1e-3", ",", "learning_rate_decay", "=", "0.1", ",", "num_samples", "=", "1000", ",", "weight_decay", "=", "1e-4", ")", ":", "self", ".", "outcome_dist", "=", "outcome_dist", "self", ".", "latent_dim", "=", "latent_dim", "self", ".", "hidden_dim", "=", "hidden_dim", "self", ".", "num_epochs", "=", "num_epochs", "self", ".", "num_layers", "=", "num_layers", "self", ".", "batch_size", "=", "batch_size", "self", ".", "learning_rate", "=", "learning_rate", "self", ".", "learning_rate_decay", "=", "learning_rate_decay", "self", ".", "num_samples", "=", "num_samples", "self", ".", "weight_decay", "=", "weight_decay" ]
[ 37, 4 ]
[ 67, 40 ]
python
en
['en', 'error', 'th']
False
CEVAE.fit
(self, X, treatment, y, p=None)
Fits CEVAE. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector
Fits CEVAE.
def fit(self, X, treatment, y, p=None): """ Fits CEVAE. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector """ X, treatment, y = convert_pd_to_np(X, treatment, y) self.cevae = CEVAEModel(outcome_dist=self.outcome_dist, feature_dim=X.shape[-1], latent_dim=self.latent_dim, hidden_dim=self.hidden_dim, num_layers=self.num_layers) self.cevae.fit(x=torch.tensor(X, dtype=torch.float), t=torch.tensor(treatment, dtype=torch.float), y=torch.tensor(y, dtype=torch.float), num_epochs=self.num_epochs, batch_size=self.batch_size, learning_rate=self.learning_rate, learning_rate_decay=self.learning_rate_decay, weight_decay=self.weight_decay)
[ "def", "fit", "(", "self", ",", "X", ",", "treatment", ",", "y", ",", "p", "=", "None", ")", ":", "X", ",", "treatment", ",", "y", "=", "convert_pd_to_np", "(", "X", ",", "treatment", ",", "y", ")", "self", ".", "cevae", "=", "CEVAEModel", "(", "outcome_dist", "=", "self", ".", "outcome_dist", ",", "feature_dim", "=", "X", ".", "shape", "[", "-", "1", "]", ",", "latent_dim", "=", "self", ".", "latent_dim", ",", "hidden_dim", "=", "self", ".", "hidden_dim", ",", "num_layers", "=", "self", ".", "num_layers", ")", "self", ".", "cevae", ".", "fit", "(", "x", "=", "torch", ".", "tensor", "(", "X", ",", "dtype", "=", "torch", ".", "float", ")", ",", "t", "=", "torch", ".", "tensor", "(", "treatment", ",", "dtype", "=", "torch", ".", "float", ")", ",", "y", "=", "torch", ".", "tensor", "(", "y", ",", "dtype", "=", "torch", ".", "float", ")", ",", "num_epochs", "=", "self", ".", "num_epochs", ",", "batch_size", "=", "self", ".", "batch_size", ",", "learning_rate", "=", "self", ".", "learning_rate", ",", "learning_rate_decay", "=", "self", ".", "learning_rate_decay", ",", "weight_decay", "=", "self", ".", "weight_decay", ")" ]
[ 69, 4 ]
[ 93, 54 ]
python
en
['en', 'error', 'th']
False
CEVAE.predict
(self, X, treatment=None, y=None, p=None)
Calls predict on fitted DragonNet. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix Returns: (np.ndarray): Predictions of treatment effects.
Calls predict on fitted DragonNet.
def predict(self, X, treatment=None, y=None, p=None): """ Calls predict on fitted DragonNet. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix Returns: (np.ndarray): Predictions of treatment effects. """ return self.cevae.ite(torch.tensor(X, dtype=torch.float), num_samples=self.num_samples, batch_size=self.batch_size).cpu().numpy()
[ "def", "predict", "(", "self", ",", "X", ",", "treatment", "=", "None", ",", "y", "=", "None", ",", "p", "=", "None", ")", ":", "return", "self", ".", "cevae", ".", "ite", "(", "torch", ".", "tensor", "(", "X", ",", "dtype", "=", "torch", ".", "float", ")", ",", "num_samples", "=", "self", ".", "num_samples", ",", "batch_size", "=", "self", ".", "batch_size", ")", ".", "cpu", "(", ")", ".", "numpy", "(", ")" ]
[ 95, 4 ]
[ 106, 71 ]
python
en
['en', 'error', 'th']
False
CEVAE.fit_predict
(self, X, treatment, y, p=None)
Fits the CEVAE model and then predicts. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector Returns: (np.ndarray): Predictions of treatment effects.
Fits the CEVAE model and then predicts.
def fit_predict(self, X, treatment, y, p=None): """ Fits the CEVAE model and then predicts. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector Returns: (np.ndarray): Predictions of treatment effects. """ self.fit(X, treatment, y) return self.predict(X)
[ "def", "fit_predict", "(", "self", ",", "X", ",", "treatment", ",", "y", ",", "p", "=", "None", ")", ":", "self", ".", "fit", "(", "X", ",", "treatment", ",", "y", ")", "return", "self", ".", "predict", "(", "X", ")" ]
[ 108, 4 ]
[ 120, 30 ]
python
en
['en', 'error', 'th']
False
XmlToString
(content, encoding='utf-8', pretty=False)
Writes the XML content to disk, touching the file only if it has changed. Visual Studio files have a lot of pre-defined structures. This function makes it easy to represent these structures as Python data structures, instead of having to create a lot of function calls. Each XML element of the content is represented as a list composed of: 1. The name of the element, a string, 2. The attributes of the element, a dictionary (optional), and 3+. The content of the element, if any. Strings are simple text nodes and lists are child elements. Example 1: <test/> becomes ['test'] Example 2: <myelement a='value1' b='value2'> <childtype>This is</childtype> <childtype>it!</childtype> </myelement> becomes ['myelement', {'a':'value1', 'b':'value2'}, ['childtype', 'This is'], ['childtype', 'it!'], ] Args: content: The structured content to be converted. encoding: The encoding to report on the first XML line. pretty: True if we want pretty printing with indents and new lines. Returns: The XML content as a string.
Writes the XML content to disk, touching the file only if it has changed.
def XmlToString(content, encoding='utf-8', pretty=False): """ Writes the XML content to disk, touching the file only if it has changed. Visual Studio files have a lot of pre-defined structures. This function makes it easy to represent these structures as Python data structures, instead of having to create a lot of function calls. Each XML element of the content is represented as a list composed of: 1. The name of the element, a string, 2. The attributes of the element, a dictionary (optional), and 3+. The content of the element, if any. Strings are simple text nodes and lists are child elements. Example 1: <test/> becomes ['test'] Example 2: <myelement a='value1' b='value2'> <childtype>This is</childtype> <childtype>it!</childtype> </myelement> becomes ['myelement', {'a':'value1', 'b':'value2'}, ['childtype', 'This is'], ['childtype', 'it!'], ] Args: content: The structured content to be converted. encoding: The encoding to report on the first XML line. pretty: True if we want pretty printing with indents and new lines. Returns: The XML content as a string. """ # We create a huge list of all the elements of the file. xml_parts = ['<?xml version="1.0" encoding="%s"?>' % encoding] if pretty: xml_parts.append('\n') _ConstructContentList(xml_parts, content, pretty) # Convert it to a string return ''.join(xml_parts)
[ "def", "XmlToString", "(", "content", ",", "encoding", "=", "'utf-8'", ",", "pretty", "=", "False", ")", ":", "# We create a huge list of all the elements of the file.", "xml_parts", "=", "[", "'<?xml version=\"1.0\" encoding=\"%s\"?>'", "%", "encoding", "]", "if", "pretty", ":", "xml_parts", ".", "append", "(", "'\\n'", ")", "_ConstructContentList", "(", "xml_parts", ",", "content", ",", "pretty", ")", "# Convert it to a string", "return", "''", ".", "join", "(", "xml_parts", ")" ]
[ 9, 0 ]
[ 54, 27 ]
python
en
['en', 'en', 'en']
True
_ConstructContentList
(xml_parts, specification, pretty, level=0)
Appends the XML parts corresponding to the specification. Args: xml_parts: A list of XML parts to be appended to. specification: The specification of the element. See EasyXml docs. pretty: True if we want pretty printing with indents and new lines. level: Indentation level.
Appends the XML parts corresponding to the specification.
def _ConstructContentList(xml_parts, specification, pretty, level=0): """ Appends the XML parts corresponding to the specification. Args: xml_parts: A list of XML parts to be appended to. specification: The specification of the element. See EasyXml docs. pretty: True if we want pretty printing with indents and new lines. level: Indentation level. """ # The first item in a specification is the name of the element. if pretty: indentation = ' ' * level new_line = '\n' else: indentation = '' new_line = '' name = specification[0] if not isinstance(name, str): raise Exception('The first item of an EasyXml specification should be ' 'a string. Specification was ' + str(specification)) xml_parts.append(indentation + '<' + name) # Optionally in second position is a dictionary of the attributes. rest = specification[1:] if rest and isinstance(rest[0], dict): for at, val in sorted(rest[0].iteritems()): xml_parts.append(' %s="%s"' % (at, _XmlEscape(val, attr=True))) rest = rest[1:] if rest: xml_parts.append('>') all_strings = reduce(lambda x, y: x and isinstance(y, str), rest, True) multi_line = not all_strings if multi_line and new_line: xml_parts.append(new_line) for child_spec in rest: # If it's a string, append a text node. # Otherwise recurse over that child definition if isinstance(child_spec, str): xml_parts.append(_XmlEscape(child_spec)) else: _ConstructContentList(xml_parts, child_spec, pretty, level + 1) if multi_line and indentation: xml_parts.append(indentation) xml_parts.append('</%s>%s' % (name, new_line)) else: xml_parts.append('/>%s' % new_line)
[ "def", "_ConstructContentList", "(", "xml_parts", ",", "specification", ",", "pretty", ",", "level", "=", "0", ")", ":", "# The first item in a specification is the name of the element.", "if", "pretty", ":", "indentation", "=", "' '", "*", "level", "new_line", "=", "'\\n'", "else", ":", "indentation", "=", "''", "new_line", "=", "''", "name", "=", "specification", "[", "0", "]", "if", "not", "isinstance", "(", "name", ",", "str", ")", ":", "raise", "Exception", "(", "'The first item of an EasyXml specification should be '", "'a string. Specification was '", "+", "str", "(", "specification", ")", ")", "xml_parts", ".", "append", "(", "indentation", "+", "'<'", "+", "name", ")", "# Optionally in second position is a dictionary of the attributes.", "rest", "=", "specification", "[", "1", ":", "]", "if", "rest", "and", "isinstance", "(", "rest", "[", "0", "]", ",", "dict", ")", ":", "for", "at", ",", "val", "in", "sorted", "(", "rest", "[", "0", "]", ".", "iteritems", "(", ")", ")", ":", "xml_parts", ".", "append", "(", "' %s=\"%s\"'", "%", "(", "at", ",", "_XmlEscape", "(", "val", ",", "attr", "=", "True", ")", ")", ")", "rest", "=", "rest", "[", "1", ":", "]", "if", "rest", ":", "xml_parts", ".", "append", "(", "'>'", ")", "all_strings", "=", "reduce", "(", "lambda", "x", ",", "y", ":", "x", "and", "isinstance", "(", "y", ",", "str", ")", ",", "rest", ",", "True", ")", "multi_line", "=", "not", "all_strings", "if", "multi_line", "and", "new_line", ":", "xml_parts", ".", "append", "(", "new_line", ")", "for", "child_spec", "in", "rest", ":", "# If it's a string, append a text node.", "# Otherwise recurse over that child definition", "if", "isinstance", "(", "child_spec", ",", "str", ")", ":", "xml_parts", ".", "append", "(", "_XmlEscape", "(", "child_spec", ")", ")", "else", ":", "_ConstructContentList", "(", "xml_parts", ",", "child_spec", ",", "pretty", ",", "level", "+", "1", ")", "if", "multi_line", "and", "indentation", ":", "xml_parts", ".", "append", "(", "indentation", ")", "xml_parts", ".", "append", "(", "'</%s>%s'", "%", "(", "name", ",", "new_line", ")", ")", "else", ":", "xml_parts", ".", "append", "(", "'/>%s'", "%", "new_line", ")" ]
[ 57, 0 ]
[ 102, 39 ]
python
en
['en', 'en', 'en']
True
WriteXmlIfChanged
(content, path, encoding='utf-8', pretty=False, win32=False)
Writes the XML content to disk, touching the file only if it has changed. Args: content: The structured content to be written. path: Location of the file. encoding: The encoding to report on the first line of the XML file. pretty: True if we want pretty printing with indents and new lines.
Writes the XML content to disk, touching the file only if it has changed.
def WriteXmlIfChanged(content, path, encoding='utf-8', pretty=False, win32=False): """ Writes the XML content to disk, touching the file only if it has changed. Args: content: The structured content to be written. path: Location of the file. encoding: The encoding to report on the first line of the XML file. pretty: True if we want pretty printing with indents and new lines. """ xml_string = XmlToString(content, encoding, pretty) if win32 and os.linesep != '\r\n': xml_string = xml_string.replace('\n', '\r\n') default_encoding = locale.getdefaultlocale()[1] if default_encoding.upper() != encoding.upper(): xml_string = xml_string.decode(default_encoding).encode(encoding) # Get the old content try: f = open(path, 'r') existing = f.read() f.close() except: existing = None # It has changed, write it if existing != xml_string: f = open(path, 'w') f.write(xml_string) f.close()
[ "def", "WriteXmlIfChanged", "(", "content", ",", "path", ",", "encoding", "=", "'utf-8'", ",", "pretty", "=", "False", ",", "win32", "=", "False", ")", ":", "xml_string", "=", "XmlToString", "(", "content", ",", "encoding", ",", "pretty", ")", "if", "win32", "and", "os", ".", "linesep", "!=", "'\\r\\n'", ":", "xml_string", "=", "xml_string", ".", "replace", "(", "'\\n'", ",", "'\\r\\n'", ")", "default_encoding", "=", "locale", ".", "getdefaultlocale", "(", ")", "[", "1", "]", "if", "default_encoding", ".", "upper", "(", ")", "!=", "encoding", ".", "upper", "(", ")", ":", "xml_string", "=", "xml_string", ".", "decode", "(", "default_encoding", ")", ".", "encode", "(", "encoding", ")", "# Get the old content", "try", ":", "f", "=", "open", "(", "path", ",", "'r'", ")", "existing", "=", "f", ".", "read", "(", ")", "f", ".", "close", "(", ")", "except", ":", "existing", "=", "None", "# It has changed, write it", "if", "existing", "!=", "xml_string", ":", "f", "=", "open", "(", "path", ",", "'w'", ")", "f", ".", "write", "(", "xml_string", ")", "f", ".", "close", "(", ")" ]
[ 105, 0 ]
[ 135, 13 ]
python
en
['en', 'en', 'en']
True
_XmlEscape
(value, attr=False)
Escape a string for inclusion in XML.
Escape a string for inclusion in XML.
def _XmlEscape(value, attr=False): """ Escape a string for inclusion in XML.""" def replace(match): m = match.string[match.start() : match.end()] # don't replace single quotes in attrs if attr and m == "'": return m return _xml_escape_map[m] return _xml_escape_re.sub(replace, value)
[ "def", "_XmlEscape", "(", "value", ",", "attr", "=", "False", ")", ":", "def", "replace", "(", "match", ")", ":", "m", "=", "match", ".", "string", "[", "match", ".", "start", "(", ")", ":", "match", ".", "end", "(", ")", "]", "# don't replace single quotes in attrs", "if", "attr", "and", "m", "==", "\"'\"", ":", "return", "m", "return", "_xml_escape_map", "[", "m", "]", "return", "_xml_escape_re", ".", "sub", "(", "replace", ",", "value", ")" ]
[ 153, 0 ]
[ 161, 43 ]
python
en
['en', 'it', 'en']
True
store
()
Store operations
Store operations
def store(): """Store operations""" pass
[ "def", "store", "(", ")", ":", "pass" ]
[ 7, 0 ]
[ 9, 8 ]
python
en
['en', 'en', 'en']
False
store_list
(directory)
List known Stores.
List known Stores.
def store_list(directory): """List known Stores.""" context = toolkit.load_data_context_with_error_handling(directory) try: stores = context.list_stores() if len(stores) == 0: cli_message("No Stores found") toolkit.send_usage_message( data_context=context, event="cli.store.list", success=True ) return elif len(stores) == 1: list_intro_string = "1 Store found:" else: list_intro_string = "{} Stores found:".format(len(stores)) cli_message(list_intro_string) for store in stores: cli_message("") cli_message_dict(store) toolkit.send_usage_message( data_context=context, event="cli.store.list", success=True ) except Exception as e: toolkit.send_usage_message( data_context=context, event="cli.store.list", success=False ) raise e
[ "def", "store_list", "(", "directory", ")", ":", "context", "=", "toolkit", ".", "load_data_context_with_error_handling", "(", "directory", ")", "try", ":", "stores", "=", "context", ".", "list_stores", "(", ")", "if", "len", "(", "stores", ")", "==", "0", ":", "cli_message", "(", "\"No Stores found\"", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "\"cli.store.list\"", ",", "success", "=", "True", ")", "return", "elif", "len", "(", "stores", ")", "==", "1", ":", "list_intro_string", "=", "\"1 Store found:\"", "else", ":", "list_intro_string", "=", "\"{} Stores found:\"", ".", "format", "(", "len", "(", "stores", ")", ")", "cli_message", "(", "list_intro_string", ")", "for", "store", "in", "stores", ":", "cli_message", "(", "\"\"", ")", "cli_message_dict", "(", "store", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "\"cli.store.list\"", ",", "success", "=", "True", ")", "except", "Exception", "as", "e", ":", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "\"cli.store.list\"", ",", "success", "=", "False", ")", "raise", "e" ]
[ 19, 0 ]
[ 50, 15 ]
python
en
['en', 'en', 'en']
True
Finder.__init__
(self, reader: Optional[BaseReader], retriever: Optional[BaseRetriever])
Initialize a Finder instance. :param reader: Reader instance :param retriever: Retriever instance
Initialize a Finder instance.
def __init__(self, reader: Optional[BaseReader], retriever: Optional[BaseRetriever]): """ Initialize a Finder instance. :param reader: Reader instance :param retriever: Retriever instance """ logger.warning( """DEPRECATION WARNINGS: 1. The 'Finder' class will be deprecated in the next Haystack release in favour of a new `Pipeline` class that supports building custom search pipelines using Haystack components including Retriever, Readers, and Generators. For more details, please refer to the issue: https://github.com/deepset-ai/haystack/issues/544 2. The `question` parameter in search requests & results is renamed to `query`.""" ) self.retriever = retriever self.reader = reader if self.reader is None and self.retriever is None: raise AttributeError("Finder: self.reader and self.retriever can not be both None")
[ "def", "__init__", "(", "self", ",", "reader", ":", "Optional", "[", "BaseReader", "]", ",", "retriever", ":", "Optional", "[", "BaseRetriever", "]", ")", ":", "logger", ".", "warning", "(", "\"\"\"DEPRECATION WARNINGS: \n 1. The 'Finder' class will be deprecated in the next Haystack release in \n favour of a new `Pipeline` class that supports building custom search pipelines using Haystack components\n including Retriever, Readers, and Generators.\n For more details, please refer to the issue: https://github.com/deepset-ai/haystack/issues/544\n 2. The `question` parameter in search requests & results is renamed to `query`.\"\"\"", ")", "self", ".", "retriever", "=", "retriever", "self", ".", "reader", "=", "reader", "if", "self", ".", "reader", "is", "None", "and", "self", ".", "retriever", "is", "None", ":", "raise", "AttributeError", "(", "\"Finder: self.reader and self.retriever can not be both None\"", ")" ]
[ 23, 4 ]
[ 41, 95 ]
python
en
['en', 'error', 'th']
False
Finder.get_answers
(self, question: str, top_k_reader: int = 1, top_k_retriever: int = 10, filters: Optional[dict] = None, index: str = None)
Get top k answers for a given question. :param question: The question string :param top_k_reader: Number of answers returned by the reader :param top_k_retriever: Number of text units to be retrieved :param filters: Limit scope to documents having the given meta data values. The format for the dict is `{"key-1": ["value-1", "value-2"], "key-2": ["value-3]" ...}`` :param index: Index to retrieve documents from :return:
Get top k answers for a given question.
def get_answers(self, question: str, top_k_reader: int = 1, top_k_retriever: int = 10, filters: Optional[dict] = None, index: str = None): """ Get top k answers for a given question. :param question: The question string :param top_k_reader: Number of answers returned by the reader :param top_k_retriever: Number of text units to be retrieved :param filters: Limit scope to documents having the given meta data values. The format for the dict is `{"key-1": ["value-1", "value-2"], "key-2": ["value-3]" ...}`` :param index: Index to retrieve documents from :return: """ logger.warning( """DEPRECATION WARNINGS: 1. The 'Finder' class will be deprecated in the next Haystack release in favour of a new `Pipeline` class that supports building custom search pipelines using Haystack components including Retriever, Readers, and Generators. For more details, please refer to the issue: https://github.com/deepset-ai/haystack/issues/544 2. The `question` parameter in search requests & results is renamed to `query`.""" ) if self.retriever is None or self.reader is None: raise AttributeError("Finder.get_answers requires self.retriever AND self.reader") # 1) Apply retriever(with optional filters) to get fast candidate documents documents = self.retriever.retrieve(question, filters=filters, top_k=top_k_retriever, index=index) logger.info(f"Got {len(documents)} candidates from retriever") logger.debug(f"Retrieved document IDs: {[doc.id for doc in documents]}") if len(documents) == 0: logger.info("Retriever did not return any documents. Skipping reader ...") empty_result = {"question": question, "answers": []} return empty_result # 2) Apply reader to get granular answer(s) len_chars = sum([len(d.text) for d in documents]) logger.info(f"Reader is looking for detailed answer in {len_chars} chars ...") results = self.reader.predict(query=question, documents=documents, top_k=top_k_reader) # type: Dict[str, Any] results["question"] = results["query"] # Add corresponding document_name and more meta data, if an answer contains the document_id for ans in results["answers"]: ans["meta"] = {} for doc in documents: if doc.id == ans["document_id"]: ans["meta"] = deepcopy(doc.meta) return results
[ "def", "get_answers", "(", "self", ",", "question", ":", "str", ",", "top_k_reader", ":", "int", "=", "1", ",", "top_k_retriever", ":", "int", "=", "10", ",", "filters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "index", ":", "str", "=", "None", ")", ":", "logger", ".", "warning", "(", "\"\"\"DEPRECATION WARNINGS: \n 1. The 'Finder' class will be deprecated in the next Haystack release in \n favour of a new `Pipeline` class that supports building custom search pipelines using Haystack components\n including Retriever, Readers, and Generators.\n For more details, please refer to the issue: https://github.com/deepset-ai/haystack/issues/544\n 2. The `question` parameter in search requests & results is renamed to `query`.\"\"\"", ")", "if", "self", ".", "retriever", "is", "None", "or", "self", ".", "reader", "is", "None", ":", "raise", "AttributeError", "(", "\"Finder.get_answers requires self.retriever AND self.reader\"", ")", "# 1) Apply retriever(with optional filters) to get fast candidate documents", "documents", "=", "self", ".", "retriever", ".", "retrieve", "(", "question", ",", "filters", "=", "filters", ",", "top_k", "=", "top_k_retriever", ",", "index", "=", "index", ")", "logger", ".", "info", "(", "f\"Got {len(documents)} candidates from retriever\"", ")", "logger", ".", "debug", "(", "f\"Retrieved document IDs: {[doc.id for doc in documents]}\"", ")", "if", "len", "(", "documents", ")", "==", "0", ":", "logger", ".", "info", "(", "\"Retriever did not return any documents. Skipping reader ...\"", ")", "empty_result", "=", "{", "\"question\"", ":", "question", ",", "\"answers\"", ":", "[", "]", "}", "return", "empty_result", "# 2) Apply reader to get granular answer(s)", "len_chars", "=", "sum", "(", "[", "len", "(", "d", ".", "text", ")", "for", "d", "in", "documents", "]", ")", "logger", ".", "info", "(", "f\"Reader is looking for detailed answer in {len_chars} chars ...\"", ")", "results", "=", "self", ".", "reader", ".", "predict", "(", "query", "=", "question", ",", "documents", "=", "documents", ",", "top_k", "=", "top_k_reader", ")", "# type: Dict[str, Any]", "results", "[", "\"question\"", "]", "=", "results", "[", "\"query\"", "]", "# Add corresponding document_name and more meta data, if an answer contains the document_id", "for", "ans", "in", "results", "[", "\"answers\"", "]", ":", "ans", "[", "\"meta\"", "]", "=", "{", "}", "for", "doc", "in", "documents", ":", "if", "doc", ".", "id", "==", "ans", "[", "\"document_id\"", "]", ":", "ans", "[", "\"meta\"", "]", "=", "deepcopy", "(", "doc", ".", "meta", ")", "return", "results" ]
[ 43, 4 ]
[ 93, 22 ]
python
en
['en', 'error', 'th']
False
Finder.get_answers_via_similar_questions
(self, question: str, top_k_retriever: int = 10, filters: Optional[dict] = None, index: str = None)
Get top k answers for a given question using only a retriever. :param question: The question string :param top_k_retriever: Number of text units to be retrieved :param filters: Limit scope to documents having the given meta data values. The format for the dict is ``{"key-1": ["value-1", "value-2"], "key-2": ["value-3]" ...}`` :param index: Index to retrieve documents from :return:
Get top k answers for a given question using only a retriever.
def get_answers_via_similar_questions(self, question: str, top_k_retriever: int = 10, filters: Optional[dict] = None, index: str = None): """ Get top k answers for a given question using only a retriever. :param question: The question string :param top_k_retriever: Number of text units to be retrieved :param filters: Limit scope to documents having the given meta data values. The format for the dict is ``{"key-1": ["value-1", "value-2"], "key-2": ["value-3]" ...}`` :param index: Index to retrieve documents from :return: """ if self.retriever is None: raise AttributeError("Finder.get_answers_via_similar_questions requires self.retriever") results = {"question": question, "answers": []} # type: Dict[str, Any] # 1) Apply retriever to match similar questions via cosine similarity of embeddings documents = self.retriever.retrieve(question, top_k=top_k_retriever, filters=filters, index=index) # 2) Format response for doc in documents: #TODO proper calibratation of pseudo probabilities cur_answer = { "question": doc.question, "answer": doc.text, "document_id": doc.id, "context": doc.text, "score": doc.score, "probability": doc.probability, "offset_start": 0, "offset_end": len(doc.text), "meta": doc.meta } results["answers"].append(cur_answer) return results
[ "def", "get_answers_via_similar_questions", "(", "self", ",", "question", ":", "str", ",", "top_k_retriever", ":", "int", "=", "10", ",", "filters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "index", ":", "str", "=", "None", ")", ":", "if", "self", ".", "retriever", "is", "None", ":", "raise", "AttributeError", "(", "\"Finder.get_answers_via_similar_questions requires self.retriever\"", ")", "results", "=", "{", "\"question\"", ":", "question", ",", "\"answers\"", ":", "[", "]", "}", "# type: Dict[str, Any]", "# 1) Apply retriever to match similar questions via cosine similarity of embeddings", "documents", "=", "self", ".", "retriever", ".", "retrieve", "(", "question", ",", "top_k", "=", "top_k_retriever", ",", "filters", "=", "filters", ",", "index", "=", "index", ")", "# 2) Format response", "for", "doc", "in", "documents", ":", "#TODO proper calibratation of pseudo probabilities", "cur_answer", "=", "{", "\"question\"", ":", "doc", ".", "question", ",", "\"answer\"", ":", "doc", ".", "text", ",", "\"document_id\"", ":", "doc", ".", "id", ",", "\"context\"", ":", "doc", ".", "text", ",", "\"score\"", ":", "doc", ".", "score", ",", "\"probability\"", ":", "doc", ".", "probability", ",", "\"offset_start\"", ":", "0", ",", "\"offset_end\"", ":", "len", "(", "doc", ".", "text", ")", ",", "\"meta\"", ":", "doc", ".", "meta", "}", "results", "[", "\"answers\"", "]", ".", "append", "(", "cur_answer", ")", "return", "results" ]
[ 95, 4 ]
[ 133, 22 ]
python
en
['en', 'error', 'th']
False
Finder.eval
( self, label_index: str, doc_index: str, label_origin: str = "gold_label", top_k_retriever: int = 10, top_k_reader: int = 10, return_preds: bool = False, )
Evaluation of the whole pipeline by first evaluating the Retriever and then evaluating the Reader on the result of the Retriever. Returns a dict containing the following metrics: - ``"retriever_recall"``: Proportion of questions for which correct document is among retrieved documents - ``"retriever_map"``: Mean of average precision for each question. Rewards retrievers that give relevant documents a higher rank. Considers all retrieved relevant documents. Average precision is normalized by the number of all relevant documents per query. - ``"retriever_mrr"``: Mean of reciprocal rank for each question. Rewards retrievers that give relevant documents a higher rank. Only considers the highest ranked relevant document. - ``"reader_top1_accuracy"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer - ``"reader_top1_accuracy_has_answer"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top_k_accuracy"``: Proportion of predicted answers that overlap with corresponding correct answer - ``"reader_topk_accuracy_has_answer"``: Proportion of predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top1_em"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers - ``"reader_top1_em_has_answer"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers for answerable questions - ``"reader_topk_em"``: Proportion of exact matches of predicted answers with their corresponding correct answers - ``"reader_topk_em_has_answer"``: Proportion of exact matches of predicted answers with their corresponding correct answers for answerable questions - ``"reader_top1_f1"``: Average overlap between highest ranked predicted answers and their corresponding correct answers - ``"reader_top1_f1_has_answer"``: Average overlap between highest ranked predicted answers and their corresponding correct answers for answerable questions - ``"reader_topk_f1"``: Average overlap between predicted answers and their corresponding correct answers - ``"reader_topk_f1_has_answer"``: Average overlap between predicted answers and their corresponding correct answers for answerable questions - ``"reader_top1_no_answer_accuracy"``: Proportion of correct predicting unanswerable question at highest ranked prediction - ``"reader_topk_no_answer_accuracy"``: Proportion of correct predicting unanswerable question among all predictions - ``"total_retrieve_time"``: Time retriever needed to retrieve documents for all questions - ``"avg_retrieve_time"``: Average time needed to retrieve documents for one question - ``"total_reader_time"``: Time reader needed to extract answer out of retrieved documents for all questions where the correct document is among the retrieved ones - ``"avg_reader_time"``: Average time needed to extract answer out of retrieved documents for one question - ``"total_finder_time"``: Total time for whole pipeline :param label_index: Elasticsearch index where labeled questions are stored :type label_index: str :param doc_index: Elasticsearch index where documents that are used for evaluation are stored :type doc_index: str :param top_k_retriever: How many documents per question to return and pass to reader :type top_k_retriever: int :param top_k_reader: How many answers to return per question :type top_k_reader: int :param return_preds: Whether to add predictions in the returned dictionary. If True, the returned dictionary contains the keys "predictions" and "metrics". :type return_preds: bool
Evaluation of the whole pipeline by first evaluating the Retriever and then evaluating the Reader on the result of the Retriever. Returns a dict containing the following metrics: - ``"retriever_recall"``: Proportion of questions for which correct document is among retrieved documents - ``"retriever_map"``: Mean of average precision for each question. Rewards retrievers that give relevant documents a higher rank. Considers all retrieved relevant documents. Average precision is normalized by the number of all relevant documents per query. - ``"retriever_mrr"``: Mean of reciprocal rank for each question. Rewards retrievers that give relevant documents a higher rank. Only considers the highest ranked relevant document. - ``"reader_top1_accuracy"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer - ``"reader_top1_accuracy_has_answer"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top_k_accuracy"``: Proportion of predicted answers that overlap with corresponding correct answer - ``"reader_topk_accuracy_has_answer"``: Proportion of predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top1_em"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers - ``"reader_top1_em_has_answer"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers for answerable questions - ``"reader_topk_em"``: Proportion of exact matches of predicted answers with their corresponding correct answers - ``"reader_topk_em_has_answer"``: Proportion of exact matches of predicted answers with their corresponding correct answers for answerable questions - ``"reader_top1_f1"``: Average overlap between highest ranked predicted answers and their corresponding correct answers - ``"reader_top1_f1_has_answer"``: Average overlap between highest ranked predicted answers and their corresponding correct answers for answerable questions - ``"reader_topk_f1"``: Average overlap between predicted answers and their corresponding correct answers - ``"reader_topk_f1_has_answer"``: Average overlap between predicted answers and their corresponding correct answers for answerable questions - ``"reader_top1_no_answer_accuracy"``: Proportion of correct predicting unanswerable question at highest ranked prediction - ``"reader_topk_no_answer_accuracy"``: Proportion of correct predicting unanswerable question among all predictions - ``"total_retrieve_time"``: Time retriever needed to retrieve documents for all questions - ``"avg_retrieve_time"``: Average time needed to retrieve documents for one question - ``"total_reader_time"``: Time reader needed to extract answer out of retrieved documents for all questions where the correct document is among the retrieved ones - ``"avg_reader_time"``: Average time needed to extract answer out of retrieved documents for one question - ``"total_finder_time"``: Total time for whole pipeline
def eval( self, label_index: str, doc_index: str, label_origin: str = "gold_label", top_k_retriever: int = 10, top_k_reader: int = 10, return_preds: bool = False, ): """ Evaluation of the whole pipeline by first evaluating the Retriever and then evaluating the Reader on the result of the Retriever. Returns a dict containing the following metrics: - ``"retriever_recall"``: Proportion of questions for which correct document is among retrieved documents - ``"retriever_map"``: Mean of average precision for each question. Rewards retrievers that give relevant documents a higher rank. Considers all retrieved relevant documents. Average precision is normalized by the number of all relevant documents per query. - ``"retriever_mrr"``: Mean of reciprocal rank for each question. Rewards retrievers that give relevant documents a higher rank. Only considers the highest ranked relevant document. - ``"reader_top1_accuracy"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer - ``"reader_top1_accuracy_has_answer"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top_k_accuracy"``: Proportion of predicted answers that overlap with corresponding correct answer - ``"reader_topk_accuracy_has_answer"``: Proportion of predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top1_em"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers - ``"reader_top1_em_has_answer"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers for answerable questions - ``"reader_topk_em"``: Proportion of exact matches of predicted answers with their corresponding correct answers - ``"reader_topk_em_has_answer"``: Proportion of exact matches of predicted answers with their corresponding correct answers for answerable questions - ``"reader_top1_f1"``: Average overlap between highest ranked predicted answers and their corresponding correct answers - ``"reader_top1_f1_has_answer"``: Average overlap between highest ranked predicted answers and their corresponding correct answers for answerable questions - ``"reader_topk_f1"``: Average overlap between predicted answers and their corresponding correct answers - ``"reader_topk_f1_has_answer"``: Average overlap between predicted answers and their corresponding correct answers for answerable questions - ``"reader_top1_no_answer_accuracy"``: Proportion of correct predicting unanswerable question at highest ranked prediction - ``"reader_topk_no_answer_accuracy"``: Proportion of correct predicting unanswerable question among all predictions - ``"total_retrieve_time"``: Time retriever needed to retrieve documents for all questions - ``"avg_retrieve_time"``: Average time needed to retrieve documents for one question - ``"total_reader_time"``: Time reader needed to extract answer out of retrieved documents for all questions where the correct document is among the retrieved ones - ``"avg_reader_time"``: Average time needed to extract answer out of retrieved documents for one question - ``"total_finder_time"``: Total time for whole pipeline :param label_index: Elasticsearch index where labeled questions are stored :type label_index: str :param doc_index: Elasticsearch index where documents that are used for evaluation are stored :type doc_index: str :param top_k_retriever: How many documents per question to return and pass to reader :type top_k_retriever: int :param top_k_reader: How many answers to return per question :type top_k_reader: int :param return_preds: Whether to add predictions in the returned dictionary. If True, the returned dictionary contains the keys "predictions" and "metrics". :type return_preds: bool """ if not self.reader or not self.retriever: raise Exception("Finder needs to have a reader and retriever for the evaluation.") finder_start_time = time.time() # extract all questions for evaluation filters = {"origin": [label_origin]} questions = self.retriever.document_store.get_all_labels_aggregated(index=label_index, filters=filters) counts = defaultdict(float) # type: Dict[str, float] retrieve_times = [] read_times = [] # retrieve documents questions_with_docs = [] retriever_start_time = time.time() for q_idx, question in enumerate(questions): question_string = question.question single_retrieve_start = time.time() retrieved_docs = self.retriever.retrieve(question_string, top_k=top_k_retriever, index=doc_index) retrieve_times.append(time.time() - single_retrieve_start) number_relevant_docs = len(set(question.multiple_document_ids)) # check if correct doc among retrieved docs found_relevant_doc = False relevant_docs_found = 0 current_avg_precision = 0.0 for doc_idx, doc in enumerate(retrieved_docs): if doc.id in question.multiple_document_ids: relevant_docs_found += 1 if not found_relevant_doc: counts["correct_retrievals"] += 1 counts["summed_reciprocal_rank_retriever"] += 1 / (doc_idx + 1) current_avg_precision += relevant_docs_found / (doc_idx + 1) found_relevant_doc = True if relevant_docs_found == number_relevant_docs: break if found_relevant_doc: all_relevant_docs = len(set(question.multiple_document_ids)) counts["summed_avg_precision_retriever"] += current_avg_precision / all_relevant_docs if found_relevant_doc: questions_with_docs.append({ "question": question, "docs": retrieved_docs }) retriever_total_time = time.time() - retriever_start_time counts["number_of_questions"] = q_idx + 1 previous_return_no_answers = self.reader.return_no_answers self.reader.return_no_answers = True predictions = [] # extract answers reader_start_time = time.time() for q_idx, question_docs in enumerate(questions_with_docs): if (q_idx + 1) % 100 == 0: print(f"Processed {q_idx+1} questions.") question = question_docs["question"] # type: ignore question_string = question.question docs = question_docs["docs"] # type: ignore single_reader_start = time.time() predicted_answers = self.reader.predict(question_string, docs, top_k=top_k_reader) # type: ignore read_times.append(time.time() - single_reader_start) if return_preds: predictions.append(predicted_answers) counts = eval_counts_reader(question, predicted_answers, counts) counts["number_of_has_answer"] = counts["correct_retrievals"] - counts["number_of_no_answer"] reader_total_time = time.time() - reader_start_time finder_total_time = time.time() - finder_start_time self.reader.return_no_answers = previous_return_no_answers # type: ignore logger.info((f"{counts['correct_readings_topk']} out of {counts['number_of_questions']} questions were correctly" f" answered {(counts['correct_readings_topk']/counts['number_of_questions']):.2%}).")) logger.info((f"{counts['number_of_questions']-counts['correct_retrievals']} questions could not be answered due " f"to the retriever.")) logger.info((f"{counts['correct_retrievals']-counts['correct_readings_topk']} questions could not be answered " f"due to the reader.")) eval_results = self.calc_eval_results(counts) eval_results["total_retrieve_time"] = retriever_total_time eval_results["avg_retrieve_time"] = mean(retrieve_times) eval_results["total_reader_time"] = reader_total_time eval_results["avg_reader_time"] = mean(read_times) eval_results["total_finder_time"] = finder_total_time if return_preds: return {"metrics": eval_results, "predictions": predictions} else: return eval_results
[ "def", "eval", "(", "self", ",", "label_index", ":", "str", ",", "doc_index", ":", "str", ",", "label_origin", ":", "str", "=", "\"gold_label\"", ",", "top_k_retriever", ":", "int", "=", "10", ",", "top_k_reader", ":", "int", "=", "10", ",", "return_preds", ":", "bool", "=", "False", ",", ")", ":", "if", "not", "self", ".", "reader", "or", "not", "self", ".", "retriever", ":", "raise", "Exception", "(", "\"Finder needs to have a reader and retriever for the evaluation.\"", ")", "finder_start_time", "=", "time", ".", "time", "(", ")", "# extract all questions for evaluation", "filters", "=", "{", "\"origin\"", ":", "[", "label_origin", "]", "}", "questions", "=", "self", ".", "retriever", ".", "document_store", ".", "get_all_labels_aggregated", "(", "index", "=", "label_index", ",", "filters", "=", "filters", ")", "counts", "=", "defaultdict", "(", "float", ")", "# type: Dict[str, float]", "retrieve_times", "=", "[", "]", "read_times", "=", "[", "]", "# retrieve documents", "questions_with_docs", "=", "[", "]", "retriever_start_time", "=", "time", ".", "time", "(", ")", "for", "q_idx", ",", "question", "in", "enumerate", "(", "questions", ")", ":", "question_string", "=", "question", ".", "question", "single_retrieve_start", "=", "time", ".", "time", "(", ")", "retrieved_docs", "=", "self", ".", "retriever", ".", "retrieve", "(", "question_string", ",", "top_k", "=", "top_k_retriever", ",", "index", "=", "doc_index", ")", "retrieve_times", ".", "append", "(", "time", ".", "time", "(", ")", "-", "single_retrieve_start", ")", "number_relevant_docs", "=", "len", "(", "set", "(", "question", ".", "multiple_document_ids", ")", ")", "# check if correct doc among retrieved docs", "found_relevant_doc", "=", "False", "relevant_docs_found", "=", "0", "current_avg_precision", "=", "0.0", "for", "doc_idx", ",", "doc", "in", "enumerate", "(", "retrieved_docs", ")", ":", "if", "doc", ".", "id", "in", "question", ".", "multiple_document_ids", ":", "relevant_docs_found", "+=", "1", "if", "not", "found_relevant_doc", ":", "counts", "[", "\"correct_retrievals\"", "]", "+=", "1", "counts", "[", "\"summed_reciprocal_rank_retriever\"", "]", "+=", "1", "/", "(", "doc_idx", "+", "1", ")", "current_avg_precision", "+=", "relevant_docs_found", "/", "(", "doc_idx", "+", "1", ")", "found_relevant_doc", "=", "True", "if", "relevant_docs_found", "==", "number_relevant_docs", ":", "break", "if", "found_relevant_doc", ":", "all_relevant_docs", "=", "len", "(", "set", "(", "question", ".", "multiple_document_ids", ")", ")", "counts", "[", "\"summed_avg_precision_retriever\"", "]", "+=", "current_avg_precision", "/", "all_relevant_docs", "if", "found_relevant_doc", ":", "questions_with_docs", ".", "append", "(", "{", "\"question\"", ":", "question", ",", "\"docs\"", ":", "retrieved_docs", "}", ")", "retriever_total_time", "=", "time", ".", "time", "(", ")", "-", "retriever_start_time", "counts", "[", "\"number_of_questions\"", "]", "=", "q_idx", "+", "1", "previous_return_no_answers", "=", "self", ".", "reader", ".", "return_no_answers", "self", ".", "reader", ".", "return_no_answers", "=", "True", "predictions", "=", "[", "]", "# extract answers", "reader_start_time", "=", "time", ".", "time", "(", ")", "for", "q_idx", ",", "question_docs", "in", "enumerate", "(", "questions_with_docs", ")", ":", "if", "(", "q_idx", "+", "1", ")", "%", "100", "==", "0", ":", "print", "(", "f\"Processed {q_idx+1} questions.\"", ")", "question", "=", "question_docs", "[", "\"question\"", "]", "# type: ignore", "question_string", "=", "question", ".", "question", "docs", "=", "question_docs", "[", "\"docs\"", "]", "# type: ignore", "single_reader_start", "=", "time", ".", "time", "(", ")", "predicted_answers", "=", "self", ".", "reader", ".", "predict", "(", "question_string", ",", "docs", ",", "top_k", "=", "top_k_reader", ")", "# type: ignore", "read_times", ".", "append", "(", "time", ".", "time", "(", ")", "-", "single_reader_start", ")", "if", "return_preds", ":", "predictions", ".", "append", "(", "predicted_answers", ")", "counts", "=", "eval_counts_reader", "(", "question", ",", "predicted_answers", ",", "counts", ")", "counts", "[", "\"number_of_has_answer\"", "]", "=", "counts", "[", "\"correct_retrievals\"", "]", "-", "counts", "[", "\"number_of_no_answer\"", "]", "reader_total_time", "=", "time", ".", "time", "(", ")", "-", "reader_start_time", "finder_total_time", "=", "time", ".", "time", "(", ")", "-", "finder_start_time", "self", ".", "reader", ".", "return_no_answers", "=", "previous_return_no_answers", "# type: ignore", "logger", ".", "info", "(", "(", "f\"{counts['correct_readings_topk']} out of {counts['number_of_questions']} questions were correctly\"", "f\" answered {(counts['correct_readings_topk']/counts['number_of_questions']):.2%}).\"", ")", ")", "logger", ".", "info", "(", "(", "f\"{counts['number_of_questions']-counts['correct_retrievals']} questions could not be answered due \"", "f\"to the retriever.\"", ")", ")", "logger", ".", "info", "(", "(", "f\"{counts['correct_retrievals']-counts['correct_readings_topk']} questions could not be answered \"", "f\"due to the reader.\"", ")", ")", "eval_results", "=", "self", ".", "calc_eval_results", "(", "counts", ")", "eval_results", "[", "\"total_retrieve_time\"", "]", "=", "retriever_total_time", "eval_results", "[", "\"avg_retrieve_time\"", "]", "=", "mean", "(", "retrieve_times", ")", "eval_results", "[", "\"total_reader_time\"", "]", "=", "reader_total_time", "eval_results", "[", "\"avg_reader_time\"", "]", "=", "mean", "(", "read_times", ")", "eval_results", "[", "\"total_finder_time\"", "]", "=", "finder_total_time", "if", "return_preds", ":", "return", "{", "\"metrics\"", ":", "eval_results", ",", "\"predictions\"", ":", "predictions", "}", "else", ":", "return", "eval_results" ]
[ 135, 4 ]
[ 289, 31 ]
python
en
['en', 'error', 'th']
False
Finder.eval_batch
( self, label_index: str, doc_index : str, label_origin: str = "gold_label", top_k_retriever: int = 10, top_k_reader: int = 10, batch_size: int = 50, return_preds: bool = False, )
Evaluation of the whole pipeline by first evaluating the Retriever and then evaluating the Reader on the result of the Retriever. Passes all retrieved question-document pairs to the Reader at once. Returns a dict containing the following metrics: - ``"retriever_recall"``: Proportion of questions for which correct document is among retrieved documents - ``"retriever_map"``: Mean of average precision for each question. Rewards retrievers that give relevant documents a higher rank. Considers all retrieved relevant documents. Average precision is normalized by the number of all relevant documents per query. - ``"retriever_mrr"``: Mean of reciprocal rank for each question. Rewards retrievers that give relevant documents a higher rank. Only considers the highest ranked relevant document. - ``"reader_top1_accuracy"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer - ``"reader_top1_accuracy_has_answer"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top_k_accuracy"``: Proportion of predicted answers that overlap with corresponding correct answer - ``"reader_topk_accuracy_has_answer"``: Proportion of predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top1_em"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers - ``"reader_top1_em_has_answer"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers for answerable questions - ``"reader_topk_em"``: Proportion of exact matches of predicted answers with their corresponding correct answers - ``"reader_topk_em_has_answer"``: Proportion of exact matches of predicted answers with their corresponding correct answers for answerable questions - ``"reader_top1_f1"``: Average overlap between highest ranked predicted answers and their corresponding correct answers - ``"reader_top1_f1_has_answer"``: Average overlap between highest ranked predicted answers and their corresponding correct answers for answerable questions - ``"reader_topk_f1"``: Average overlap between predicted answers and their corresponding correct answers - ``"reader_topk_f1_has_answer"``: Average overlap between predicted answers and their corresponding correct answers for answerable questions - ``"reader_top1_no_answer_accuracy"``: Proportion of correct predicting unanswerable question at highest ranked prediction - ``"reader_topk_no_answer_accuracy"``: Proportion of correct predicting unanswerable question among all predictions - ``"total_retrieve_time"``: Time retriever needed to retrieve documents for all questions - ``"avg_retrieve_time"``: Average time needed to retrieve documents for one question - ``"total_reader_time"``: Time reader needed to extract answer out of retrieved documents for all questions where the correct document is among the retrieved ones - ``"avg_reader_time"``: Average time needed to extract answer out of retrieved documents for one question - ``"total_finder_time"``: Total time for whole pipeline :param label_index: Elasticsearch index where labeled questions are stored :type label_index: str :param doc_index: Elasticsearch index where documents that are used for evaluation are stored :type doc_index: str :param top_k_retriever: How many documents per question to return and pass to reader :type top_k_retriever: int :param top_k_reader: How many answers to return per question :type top_k_reader: int :param batch_size: Number of samples per batch computed at once :type batch_size: int :param return_preds: Whether to add predictions in the returned dictionary. If True, the returned dictionary contains the keys "predictions" and "metrics". :type return_preds: bool
Evaluation of the whole pipeline by first evaluating the Retriever and then evaluating the Reader on the result of the Retriever. Passes all retrieved question-document pairs to the Reader at once. Returns a dict containing the following metrics: - ``"retriever_recall"``: Proportion of questions for which correct document is among retrieved documents - ``"retriever_map"``: Mean of average precision for each question. Rewards retrievers that give relevant documents a higher rank. Considers all retrieved relevant documents. Average precision is normalized by the number of all relevant documents per query. - ``"retriever_mrr"``: Mean of reciprocal rank for each question. Rewards retrievers that give relevant documents a higher rank. Only considers the highest ranked relevant document. - ``"reader_top1_accuracy"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer - ``"reader_top1_accuracy_has_answer"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top_k_accuracy"``: Proportion of predicted answers that overlap with corresponding correct answer - ``"reader_topk_accuracy_has_answer"``: Proportion of predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top1_em"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers - ``"reader_top1_em_has_answer"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers for answerable questions - ``"reader_topk_em"``: Proportion of exact matches of predicted answers with their corresponding correct answers - ``"reader_topk_em_has_answer"``: Proportion of exact matches of predicted answers with their corresponding correct answers for answerable questions - ``"reader_top1_f1"``: Average overlap between highest ranked predicted answers and their corresponding correct answers - ``"reader_top1_f1_has_answer"``: Average overlap between highest ranked predicted answers and their corresponding correct answers for answerable questions - ``"reader_topk_f1"``: Average overlap between predicted answers and their corresponding correct answers - ``"reader_topk_f1_has_answer"``: Average overlap between predicted answers and their corresponding correct answers for answerable questions - ``"reader_top1_no_answer_accuracy"``: Proportion of correct predicting unanswerable question at highest ranked prediction - ``"reader_topk_no_answer_accuracy"``: Proportion of correct predicting unanswerable question among all predictions - ``"total_retrieve_time"``: Time retriever needed to retrieve documents for all questions - ``"avg_retrieve_time"``: Average time needed to retrieve documents for one question - ``"total_reader_time"``: Time reader needed to extract answer out of retrieved documents for all questions where the correct document is among the retrieved ones - ``"avg_reader_time"``: Average time needed to extract answer out of retrieved documents for one question - ``"total_finder_time"``: Total time for whole pipeline
def eval_batch( self, label_index: str, doc_index : str, label_origin: str = "gold_label", top_k_retriever: int = 10, top_k_reader: int = 10, batch_size: int = 50, return_preds: bool = False, ): """ Evaluation of the whole pipeline by first evaluating the Retriever and then evaluating the Reader on the result of the Retriever. Passes all retrieved question-document pairs to the Reader at once. Returns a dict containing the following metrics: - ``"retriever_recall"``: Proportion of questions for which correct document is among retrieved documents - ``"retriever_map"``: Mean of average precision for each question. Rewards retrievers that give relevant documents a higher rank. Considers all retrieved relevant documents. Average precision is normalized by the number of all relevant documents per query. - ``"retriever_mrr"``: Mean of reciprocal rank for each question. Rewards retrievers that give relevant documents a higher rank. Only considers the highest ranked relevant document. - ``"reader_top1_accuracy"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer - ``"reader_top1_accuracy_has_answer"``: Proportion of highest ranked predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top_k_accuracy"``: Proportion of predicted answers that overlap with corresponding correct answer - ``"reader_topk_accuracy_has_answer"``: Proportion of predicted answers that overlap with corresponding correct answer for answerable questions - ``"reader_top1_em"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers - ``"reader_top1_em_has_answer"``: Proportion of exact matches of highest ranked predicted answers with their corresponding correct answers for answerable questions - ``"reader_topk_em"``: Proportion of exact matches of predicted answers with their corresponding correct answers - ``"reader_topk_em_has_answer"``: Proportion of exact matches of predicted answers with their corresponding correct answers for answerable questions - ``"reader_top1_f1"``: Average overlap between highest ranked predicted answers and their corresponding correct answers - ``"reader_top1_f1_has_answer"``: Average overlap between highest ranked predicted answers and their corresponding correct answers for answerable questions - ``"reader_topk_f1"``: Average overlap between predicted answers and their corresponding correct answers - ``"reader_topk_f1_has_answer"``: Average overlap between predicted answers and their corresponding correct answers for answerable questions - ``"reader_top1_no_answer_accuracy"``: Proportion of correct predicting unanswerable question at highest ranked prediction - ``"reader_topk_no_answer_accuracy"``: Proportion of correct predicting unanswerable question among all predictions - ``"total_retrieve_time"``: Time retriever needed to retrieve documents for all questions - ``"avg_retrieve_time"``: Average time needed to retrieve documents for one question - ``"total_reader_time"``: Time reader needed to extract answer out of retrieved documents for all questions where the correct document is among the retrieved ones - ``"avg_reader_time"``: Average time needed to extract answer out of retrieved documents for one question - ``"total_finder_time"``: Total time for whole pipeline :param label_index: Elasticsearch index where labeled questions are stored :type label_index: str :param doc_index: Elasticsearch index where documents that are used for evaluation are stored :type doc_index: str :param top_k_retriever: How many documents per question to return and pass to reader :type top_k_retriever: int :param top_k_reader: How many answers to return per question :type top_k_reader: int :param batch_size: Number of samples per batch computed at once :type batch_size: int :param return_preds: Whether to add predictions in the returned dictionary. If True, the returned dictionary contains the keys "predictions" and "metrics". :type return_preds: bool """ if not self.reader or not self.retriever: raise Exception("Finder needs to have a reader and retriever for the evaluation.") counts = defaultdict(float) # type: Dict[str, float] finder_start_time = time.time() # extract all questions for evaluation filters = {"origin": [label_origin]} questions = self.retriever.document_store.get_all_labels_aggregated(index=label_index, filters=filters) number_of_questions = len(questions) # retrieve documents retriever_start_time = time.time() questions_with_docs = self._retrieve_docs(questions, top_k=top_k_retriever, doc_index=doc_index) retriever_total_time = time.time() - retriever_start_time questions_with_correct_doc, \ summed_avg_precision_retriever, \ summed_reciprocal_rank_retriever = calculate_average_precision_and_reciprocal_rank(questions_with_docs) correct_retrievals = len(questions_with_correct_doc) # extract answers previous_return_no_answers = self.reader.return_no_answers self.reader.return_no_answers = True reader_start_time = time.time() predictions = self.reader.predict_batch(questions_with_correct_doc, top_k=top_k_reader, batch_size=batch_size) reader_total_time = time.time() - reader_start_time for pred in predictions: counts = eval_counts_reader_batch(pred, counts) finder_total_time = time.time() - finder_start_time results = calculate_reader_metrics(counts, correct_retrievals) results["retriever_recall"] = correct_retrievals / number_of_questions results["retriever_map"] = summed_avg_precision_retriever / number_of_questions results["retriever_mrr"] = summed_reciprocal_rank_retriever / number_of_questions results["total_retrieve_time"] = retriever_total_time results["avg_retrieve_time"] = retriever_total_time / number_of_questions results["total_reader_time"] = reader_total_time results["avg_reader_time"] = reader_total_time / correct_retrievals results["total_finder_time"] = finder_total_time logger.info((f"{counts['correct_readings_topk']} out of {number_of_questions} questions were correctly " f"answered ({(counts['correct_readings_topk'] / number_of_questions):.2%}).")) logger.info(f"{number_of_questions - correct_retrievals} questions could not be answered due to the retriever.") logger.info(f"{correct_retrievals - counts['correct_readings_topk']} questions could not be answered due to the reader.") if return_preds: return {"metrics": results, "predictions": predictions} else: return results
[ "def", "eval_batch", "(", "self", ",", "label_index", ":", "str", ",", "doc_index", ":", "str", ",", "label_origin", ":", "str", "=", "\"gold_label\"", ",", "top_k_retriever", ":", "int", "=", "10", ",", "top_k_reader", ":", "int", "=", "10", ",", "batch_size", ":", "int", "=", "50", ",", "return_preds", ":", "bool", "=", "False", ",", ")", ":", "if", "not", "self", ".", "reader", "or", "not", "self", ".", "retriever", ":", "raise", "Exception", "(", "\"Finder needs to have a reader and retriever for the evaluation.\"", ")", "counts", "=", "defaultdict", "(", "float", ")", "# type: Dict[str, float]", "finder_start_time", "=", "time", ".", "time", "(", ")", "# extract all questions for evaluation", "filters", "=", "{", "\"origin\"", ":", "[", "label_origin", "]", "}", "questions", "=", "self", ".", "retriever", ".", "document_store", ".", "get_all_labels_aggregated", "(", "index", "=", "label_index", ",", "filters", "=", "filters", ")", "number_of_questions", "=", "len", "(", "questions", ")", "# retrieve documents", "retriever_start_time", "=", "time", ".", "time", "(", ")", "questions_with_docs", "=", "self", ".", "_retrieve_docs", "(", "questions", ",", "top_k", "=", "top_k_retriever", ",", "doc_index", "=", "doc_index", ")", "retriever_total_time", "=", "time", ".", "time", "(", ")", "-", "retriever_start_time", "questions_with_correct_doc", ",", "summed_avg_precision_retriever", ",", "summed_reciprocal_rank_retriever", "=", "calculate_average_precision_and_reciprocal_rank", "(", "questions_with_docs", ")", "correct_retrievals", "=", "len", "(", "questions_with_correct_doc", ")", "# extract answers", "previous_return_no_answers", "=", "self", ".", "reader", ".", "return_no_answers", "self", ".", "reader", ".", "return_no_answers", "=", "True", "reader_start_time", "=", "time", ".", "time", "(", ")", "predictions", "=", "self", ".", "reader", ".", "predict_batch", "(", "questions_with_correct_doc", ",", "top_k", "=", "top_k_reader", ",", "batch_size", "=", "batch_size", ")", "reader_total_time", "=", "time", ".", "time", "(", ")", "-", "reader_start_time", "for", "pred", "in", "predictions", ":", "counts", "=", "eval_counts_reader_batch", "(", "pred", ",", "counts", ")", "finder_total_time", "=", "time", ".", "time", "(", ")", "-", "finder_start_time", "results", "=", "calculate_reader_metrics", "(", "counts", ",", "correct_retrievals", ")", "results", "[", "\"retriever_recall\"", "]", "=", "correct_retrievals", "/", "number_of_questions", "results", "[", "\"retriever_map\"", "]", "=", "summed_avg_precision_retriever", "/", "number_of_questions", "results", "[", "\"retriever_mrr\"", "]", "=", "summed_reciprocal_rank_retriever", "/", "number_of_questions", "results", "[", "\"total_retrieve_time\"", "]", "=", "retriever_total_time", "results", "[", "\"avg_retrieve_time\"", "]", "=", "retriever_total_time", "/", "number_of_questions", "results", "[", "\"total_reader_time\"", "]", "=", "reader_total_time", "results", "[", "\"avg_reader_time\"", "]", "=", "reader_total_time", "/", "correct_retrievals", "results", "[", "\"total_finder_time\"", "]", "=", "finder_total_time", "logger", ".", "info", "(", "(", "f\"{counts['correct_readings_topk']} out of {number_of_questions} questions were correctly \"", "f\"answered ({(counts['correct_readings_topk'] / number_of_questions):.2%}).\"", ")", ")", "logger", ".", "info", "(", "f\"{number_of_questions - correct_retrievals} questions could not be answered due to the retriever.\"", ")", "logger", ".", "info", "(", "f\"{correct_retrievals - counts['correct_readings_topk']} questions could not be answered due to the reader.\"", ")", "if", "return_preds", ":", "return", "{", "\"metrics\"", ":", "results", ",", "\"predictions\"", ":", "predictions", "}", "else", ":", "return", "results" ]
[ 291, 4 ]
[ 407, 26 ]
python
en
['en', 'error', 'th']
False
suite
(ctx)
Expectation Suite operations
Expectation Suite operations
def suite(ctx): """Expectation Suite operations""" directory: str = toolkit.parse_cli_config_file_location( config_file_location=ctx.obj.config_file_location ).get("directory") context: DataContext = toolkit.load_data_context_with_error_handling( directory=directory, from_cli_upgrade_command=False, ) # TODO consider moving this all the way up in to the CLIState constructor ctx.obj.data_context = context usage_stats_prefix = f"cli.suite.{ctx.invoked_subcommand}" toolkit.send_usage_message( data_context=context, event=f"{usage_stats_prefix}.begin", success=True, ) ctx.obj.usage_event_end = f"{usage_stats_prefix}.end"
[ "def", "suite", "(", "ctx", ")", ":", "directory", ":", "str", "=", "toolkit", ".", "parse_cli_config_file_location", "(", "config_file_location", "=", "ctx", ".", "obj", ".", "config_file_location", ")", ".", "get", "(", "\"directory\"", ")", "context", ":", "DataContext", "=", "toolkit", ".", "load_data_context_with_error_handling", "(", "directory", "=", "directory", ",", "from_cli_upgrade_command", "=", "False", ",", ")", "# TODO consider moving this all the way up in to the CLIState constructor", "ctx", ".", "obj", ".", "data_context", "=", "context", "usage_stats_prefix", "=", "f\"cli.suite.{ctx.invoked_subcommand}\"", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "f\"{usage_stats_prefix}.begin\"", ",", "success", "=", "True", ",", ")", "ctx", ".", "obj", ".", "usage_event_end", "=", "f\"{usage_stats_prefix}.end\"" ]
[ 34, 0 ]
[ 52, 57 ]
python
en
['ca', 'en', 'en']
True
suite_new
( ctx, expectation_suite, interactive_flag, manual_flag, profile, batch_request, no_jupyter, )
Create a new Expectation Suite. Edit in jupyter notebooks, or skip with the --no-jupyter flag.
Create a new Expectation Suite. Edit in jupyter notebooks, or skip with the --no-jupyter flag.
def suite_new( ctx, expectation_suite, interactive_flag, manual_flag, profile, batch_request, no_jupyter, ): """ Create a new Expectation Suite. Edit in jupyter notebooks, or skip with the --no-jupyter flag. """ context: DataContext = ctx.obj.data_context usage_event_end: str = ctx.obj.usage_event_end processed_flags: Dict[str, Optional[bool]] = _process_suite_new_flags_and_prompt( context=context, usage_event_end=usage_event_end, interactive_flag=interactive_flag, manual_flag=manual_flag, profile=profile, batch_request=batch_request, ) _suite_new_workflow( context=context, expectation_suite_name=expectation_suite, interactive=processed_flags["interactive"], profile=processed_flags["profile"], no_jupyter=no_jupyter, usage_event=usage_event_end, batch_request=batch_request, )
[ "def", "suite_new", "(", "ctx", ",", "expectation_suite", ",", "interactive_flag", ",", "manual_flag", ",", "profile", ",", "batch_request", ",", "no_jupyter", ",", ")", ":", "context", ":", "DataContext", "=", "ctx", ".", "obj", ".", "data_context", "usage_event_end", ":", "str", "=", "ctx", ".", "obj", ".", "usage_event_end", "processed_flags", ":", "Dict", "[", "str", ",", "Optional", "[", "bool", "]", "]", "=", "_process_suite_new_flags_and_prompt", "(", "context", "=", "context", ",", "usage_event_end", "=", "usage_event_end", ",", "interactive_flag", "=", "interactive_flag", ",", "manual_flag", "=", "manual_flag", ",", "profile", "=", "profile", ",", "batch_request", "=", "batch_request", ",", ")", "_suite_new_workflow", "(", "context", "=", "context", ",", "expectation_suite_name", "=", "expectation_suite", ",", "interactive", "=", "processed_flags", "[", "\"interactive\"", "]", ",", "profile", "=", "processed_flags", "[", "\"profile\"", "]", ",", "no_jupyter", "=", "no_jupyter", ",", "usage_event", "=", "usage_event_end", ",", "batch_request", "=", "batch_request", ",", ")" ]
[ 105, 0 ]
[ 138, 5 ]
python
en
['en', 'error', 'th']
False
_process_suite_new_flags_and_prompt
( context: DataContext, usage_event_end: str, interactive_flag: bool, manual_flag: bool, profile: bool, batch_request: Optional[str] = None, )
Process various optional suite new flags and prompt if there is not enough information from the flags. Args: context: Data Context for use in sending error messages if any usage_event_end: event name for ending usage stats message interactive_flag: --interactive from the `suite new` CLI command manual_flag: --manual from the `suite new` CLI command profile: --profile from the `suite new` CLI command batch_request: --batch-request from the `suite new` CLI command Returns: Dictionary with keys of processed parameters and boolean values e.g. {"interactive": True, "profile": False}
Process various optional suite new flags and prompt if there is not enough information from the flags. Args: context: Data Context for use in sending error messages if any usage_event_end: event name for ending usage stats message interactive_flag: --interactive from the `suite new` CLI command manual_flag: --manual from the `suite new` CLI command profile: --profile from the `suite new` CLI command batch_request: --batch-request from the `suite new` CLI command
def _process_suite_new_flags_and_prompt( context: DataContext, usage_event_end: str, interactive_flag: bool, manual_flag: bool, profile: bool, batch_request: Optional[str] = None, ) -> Dict[str, Optional[bool]]: """ Process various optional suite new flags and prompt if there is not enough information from the flags. Args: context: Data Context for use in sending error messages if any usage_event_end: event name for ending usage stats message interactive_flag: --interactive from the `suite new` CLI command manual_flag: --manual from the `suite new` CLI command profile: --profile from the `suite new` CLI command batch_request: --batch-request from the `suite new` CLI command Returns: Dictionary with keys of processed parameters and boolean values e.g. {"interactive": True, "profile": False} """ error_message: Optional[str] = None # Convert interactive / no-interactive flags to interactive interactive: Optional[bool] = None if interactive_flag is True and manual_flag is True: error_message = """Please choose either --interactive or --manual, you may not choose both.""" elif interactive_flag is False and manual_flag is False: interactive = None elif interactive_flag is True and manual_flag is False: interactive = True elif interactive_flag is False and manual_flag is True: interactive = False if error_message is not None: cli_message(string=f"<red>{error_message}</red>") toolkit.send_usage_message( data_context=context, event=usage_event_end, success=False ) sys.exit(1) user_provided_any_flag_skip_prompt: bool = any( ((interactive is not None), (profile is True), (batch_request is not None)) ) # Note - explicit check for boolean or None for `interactive: Optional[bool]` is necessary because None indicates # that a user did not supply either flag. if user_provided_any_flag_skip_prompt: # Assume batch needed if user passes --profile if profile and interactive is None: cli_message( "<green>Entering interactive mode since you passed the --profile flag</green>" ) interactive = True elif profile and interactive is False: cli_message( "<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --profile flag</yellow>" ) interactive = True # Assume batch needed if user passes --batch-request elif (batch_request is not None) and (interactive is None): cli_message( "<green>Entering interactive mode since you passed the --batch-request flag</green>" ) interactive = True elif (batch_request is not None) and (interactive is False): cli_message( "<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --batch-request flag</yellow>" ) interactive = True else: suite_create_method: str = click.prompt( """\ How would you like to create your Expectation Suite? 1. Manually, without interacting with a sample batch of data (default) 2. Interactively, with a sample batch of data 3. Automatically, using a profiler """, type=click.Choice(["1", "2", "3"]), show_choices=False, default="1", show_default=False, ) # Default option if suite_create_method == "": interactive = False profile = False elif suite_create_method == "1": interactive = False profile = False elif suite_create_method == "2": interactive = True profile = False elif suite_create_method == "3": interactive = True profile = True return {"interactive": interactive, "profile": profile}
[ "def", "_process_suite_new_flags_and_prompt", "(", "context", ":", "DataContext", ",", "usage_event_end", ":", "str", ",", "interactive_flag", ":", "bool", ",", "manual_flag", ":", "bool", ",", "profile", ":", "bool", ",", "batch_request", ":", "Optional", "[", "str", "]", "=", "None", ",", ")", "->", "Dict", "[", "str", ",", "Optional", "[", "bool", "]", "]", ":", "error_message", ":", "Optional", "[", "str", "]", "=", "None", "# Convert interactive / no-interactive flags to interactive", "interactive", ":", "Optional", "[", "bool", "]", "=", "None", "if", "interactive_flag", "is", "True", "and", "manual_flag", "is", "True", ":", "error_message", "=", "\"\"\"Please choose either --interactive or --manual, you may not choose both.\"\"\"", "elif", "interactive_flag", "is", "False", "and", "manual_flag", "is", "False", ":", "interactive", "=", "None", "elif", "interactive_flag", "is", "True", "and", "manual_flag", "is", "False", ":", "interactive", "=", "True", "elif", "interactive_flag", "is", "False", "and", "manual_flag", "is", "True", ":", "interactive", "=", "False", "if", "error_message", "is", "not", "None", ":", "cli_message", "(", "string", "=", "f\"<red>{error_message}</red>\"", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "False", ")", "sys", ".", "exit", "(", "1", ")", "user_provided_any_flag_skip_prompt", ":", "bool", "=", "any", "(", "(", "(", "interactive", "is", "not", "None", ")", ",", "(", "profile", "is", "True", ")", ",", "(", "batch_request", "is", "not", "None", ")", ")", ")", "# Note - explicit check for boolean or None for `interactive: Optional[bool]` is necessary because None indicates", "# that a user did not supply either flag.", "if", "user_provided_any_flag_skip_prompt", ":", "# Assume batch needed if user passes --profile", "if", "profile", "and", "interactive", "is", "None", ":", "cli_message", "(", "\"<green>Entering interactive mode since you passed the --profile flag</green>\"", ")", "interactive", "=", "True", "elif", "profile", "and", "interactive", "is", "False", ":", "cli_message", "(", "\"<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --profile flag</yellow>\"", ")", "interactive", "=", "True", "# Assume batch needed if user passes --batch-request", "elif", "(", "batch_request", "is", "not", "None", ")", "and", "(", "interactive", "is", "None", ")", ":", "cli_message", "(", "\"<green>Entering interactive mode since you passed the --batch-request flag</green>\"", ")", "interactive", "=", "True", "elif", "(", "batch_request", "is", "not", "None", ")", "and", "(", "interactive", "is", "False", ")", ":", "cli_message", "(", "\"<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --batch-request flag</yellow>\"", ")", "interactive", "=", "True", "else", ":", "suite_create_method", ":", "str", "=", "click", ".", "prompt", "(", "\"\"\"\\\nHow would you like to create your Expectation Suite?\n 1. Manually, without interacting with a sample batch of data (default)\n 2. Interactively, with a sample batch of data\n 3. Automatically, using a profiler\n\"\"\"", ",", "type", "=", "click", ".", "Choice", "(", "[", "\"1\"", ",", "\"2\"", ",", "\"3\"", "]", ")", ",", "show_choices", "=", "False", ",", "default", "=", "\"1\"", ",", "show_default", "=", "False", ",", ")", "# Default option", "if", "suite_create_method", "==", "\"\"", ":", "interactive", "=", "False", "profile", "=", "False", "elif", "suite_create_method", "==", "\"1\"", ":", "interactive", "=", "False", "profile", "=", "False", "elif", "suite_create_method", "==", "\"2\"", ":", "interactive", "=", "True", "profile", "=", "False", "elif", "suite_create_method", "==", "\"3\"", ":", "interactive", "=", "True", "profile", "=", "True", "return", "{", "\"interactive\"", ":", "interactive", ",", "\"profile\"", ":", "profile", "}" ]
[ 141, 0 ]
[ 240, 59 ]
python
en
['en', 'error', 'th']
False
suite_edit
( ctx, expectation_suite, interactive_flag, manual_flag, datasource_name, batch_request, no_jupyter, )
Edit an existing Expectation Suite. The SUITE argument is required. This is the name you gave to the suite when you created it. The edit command will help you specify a batch interactively. Or you can specify them manually by providing --batch-request in valid JSON format. Read more about specifying batches of data in the documentation: https://docs.greatexpectations.io/
Edit an existing Expectation Suite.
def suite_edit( ctx, expectation_suite, interactive_flag, manual_flag, datasource_name, batch_request, no_jupyter, ): """ Edit an existing Expectation Suite. The SUITE argument is required. This is the name you gave to the suite when you created it. The edit command will help you specify a batch interactively. Or you can specify them manually by providing --batch-request in valid JSON format. Read more about specifying batches of data in the documentation: https://docs.greatexpectations.io/ """ context: DataContext = ctx.obj.data_context usage_event_end: str = ctx.obj.usage_event_end interactive: bool = _process_suite_edit_flags_and_prompt( context=context, usage_event_end=usage_event_end, interactive_flag=interactive_flag, manual_flag=manual_flag, datasource_name=datasource_name, batch_request=batch_request, ) additional_batch_request_args: Optional[ Dict[str, Union[str, int, Dict[str, Any]]] ] = {"limit": 1000} _suite_edit_workflow( context=context, expectation_suite_name=expectation_suite, profile=False, usage_event=usage_event_end, interactive=interactive, no_jupyter=no_jupyter, create_if_not_exist=False, datasource_name=datasource_name, batch_request=batch_request, additional_batch_request_args=additional_batch_request_args, suppress_usage_message=False, assume_yes=False, )
[ "def", "suite_edit", "(", "ctx", ",", "expectation_suite", ",", "interactive_flag", ",", "manual_flag", ",", "datasource_name", ",", "batch_request", ",", "no_jupyter", ",", ")", ":", "context", ":", "DataContext", "=", "ctx", ".", "obj", ".", "data_context", "usage_event_end", ":", "str", "=", "ctx", ".", "obj", ".", "usage_event_end", "interactive", ":", "bool", "=", "_process_suite_edit_flags_and_prompt", "(", "context", "=", "context", ",", "usage_event_end", "=", "usage_event_end", ",", "interactive_flag", "=", "interactive_flag", ",", "manual_flag", "=", "manual_flag", ",", "datasource_name", "=", "datasource_name", ",", "batch_request", "=", "batch_request", ",", ")", "additional_batch_request_args", ":", "Optional", "[", "Dict", "[", "str", ",", "Union", "[", "str", ",", "int", ",", "Dict", "[", "str", ",", "Any", "]", "]", "]", "]", "=", "{", "\"limit\"", ":", "1000", "}", "_suite_edit_workflow", "(", "context", "=", "context", ",", "expectation_suite_name", "=", "expectation_suite", ",", "profile", "=", "False", ",", "usage_event", "=", "usage_event_end", ",", "interactive", "=", "interactive", ",", "no_jupyter", "=", "no_jupyter", ",", "create_if_not_exist", "=", "False", ",", "datasource_name", "=", "datasource_name", ",", "batch_request", "=", "batch_request", ",", "additional_batch_request_args", "=", "additional_batch_request_args", ",", "suppress_usage_message", "=", "False", ",", "assume_yes", "=", "False", ",", ")" ]
[ 391, 0 ]
[ 440, 5 ]
python
en
['en', 'error', 'th']
False
_process_suite_edit_flags_and_prompt
( context: DataContext, usage_event_end: str, interactive_flag: bool, manual_flag: bool, datasource_name: Optional[str] = None, batch_request: Optional[str] = None, )
Process various optional suite edit flags and prompt if there is not enough information from the flags. Args: context: Data Context for use in sending error messages if any usage_event_end: event name for ending usage stats message interactive_flag: --interactive from the `suite new` CLI command manual_flag: --manual from the `suite new` CLI command datasource_name: --datasource-name from the `suite new` CLI command batch_request: --batch-request from the `suite new` CLI command Returns: boolean of whether to enter interactive mode
Process various optional suite edit flags and prompt if there is not enough information from the flags. Args: context: Data Context for use in sending error messages if any usage_event_end: event name for ending usage stats message interactive_flag: --interactive from the `suite new` CLI command manual_flag: --manual from the `suite new` CLI command datasource_name: --datasource-name from the `suite new` CLI command batch_request: --batch-request from the `suite new` CLI command
def _process_suite_edit_flags_and_prompt( context: DataContext, usage_event_end: str, interactive_flag: bool, manual_flag: bool, datasource_name: Optional[str] = None, batch_request: Optional[str] = None, ) -> bool: """ Process various optional suite edit flags and prompt if there is not enough information from the flags. Args: context: Data Context for use in sending error messages if any usage_event_end: event name for ending usage stats message interactive_flag: --interactive from the `suite new` CLI command manual_flag: --manual from the `suite new` CLI command datasource_name: --datasource-name from the `suite new` CLI command batch_request: --batch-request from the `suite new` CLI command Returns: boolean of whether to enter interactive mode """ error_message: Optional[str] = None # Convert interactive / no-interactive flags to interactive interactive: Optional[bool] = None if interactive_flag is True and manual_flag is True: error_message = """Please choose either --interactive or --manual, you may not choose both.""" elif interactive_flag is False and manual_flag is False: interactive = None elif interactive_flag is True and manual_flag is False: interactive = True elif interactive_flag is False and manual_flag is True: interactive = False if (datasource_name is not None) and (batch_request is not None): error_message = """Only one of --datasource-name DATASOURCE_NAME and --batch-request <path to JSON file> \ options can be used. """ if error_message is not None: cli_message(string=f"<red>{error_message}</red>") toolkit.send_usage_message( data_context=context, event=usage_event_end, success=False ) sys.exit(1) user_provided_any_flag_skip_prompt: bool = any( ( (interactive is not None), (datasource_name is not None), (batch_request is not None), ) ) # Note - explicit check for boolean or None for `interactive: Optional[bool]` is necessary because None indicates # that a user did not supply either flag. if user_provided_any_flag_skip_prompt: if datasource_name is not None: if interactive is None: cli_message( "<green>Entering interactive mode since you passed the --datasource-name flag</green>" ) elif interactive is False: cli_message( "<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --datasource-name flag</yellow>" ) interactive = True elif batch_request is not None: if interactive is None: cli_message( "<green>Entering interactive mode since you passed the --batch-request flag</green>" ) elif interactive is False: cli_message( "<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --batch-request flag</yellow>" ) interactive = True else: suite_edit_method: str = click.prompt( """\ How would you like to edit your Expectation Suite? 1. Manually, without interacting with a sample batch of data (default) 2. Interactively, with a sample batch of data """, type=click.Choice(["1", "2"]), show_choices=False, default="1", show_default=False, ) # Default option if suite_edit_method == "": interactive = False if suite_edit_method == "1": interactive = False elif suite_edit_method == "2": interactive = True return interactive
[ "def", "_process_suite_edit_flags_and_prompt", "(", "context", ":", "DataContext", ",", "usage_event_end", ":", "str", ",", "interactive_flag", ":", "bool", ",", "manual_flag", ":", "bool", ",", "datasource_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "batch_request", ":", "Optional", "[", "str", "]", "=", "None", ",", ")", "->", "bool", ":", "error_message", ":", "Optional", "[", "str", "]", "=", "None", "# Convert interactive / no-interactive flags to interactive", "interactive", ":", "Optional", "[", "bool", "]", "=", "None", "if", "interactive_flag", "is", "True", "and", "manual_flag", "is", "True", ":", "error_message", "=", "\"\"\"Please choose either --interactive or --manual, you may not choose both.\"\"\"", "elif", "interactive_flag", "is", "False", "and", "manual_flag", "is", "False", ":", "interactive", "=", "None", "elif", "interactive_flag", "is", "True", "and", "manual_flag", "is", "False", ":", "interactive", "=", "True", "elif", "interactive_flag", "is", "False", "and", "manual_flag", "is", "True", ":", "interactive", "=", "False", "if", "(", "datasource_name", "is", "not", "None", ")", "and", "(", "batch_request", "is", "not", "None", ")", ":", "error_message", "=", "\"\"\"Only one of --datasource-name DATASOURCE_NAME and --batch-request <path to JSON file> \\\noptions can be used.\n\"\"\"", "if", "error_message", "is", "not", "None", ":", "cli_message", "(", "string", "=", "f\"<red>{error_message}</red>\"", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "False", ")", "sys", ".", "exit", "(", "1", ")", "user_provided_any_flag_skip_prompt", ":", "bool", "=", "any", "(", "(", "(", "interactive", "is", "not", "None", ")", ",", "(", "datasource_name", "is", "not", "None", ")", ",", "(", "batch_request", "is", "not", "None", ")", ",", ")", ")", "# Note - explicit check for boolean or None for `interactive: Optional[bool]` is necessary because None indicates", "# that a user did not supply either flag.", "if", "user_provided_any_flag_skip_prompt", ":", "if", "datasource_name", "is", "not", "None", ":", "if", "interactive", "is", "None", ":", "cli_message", "(", "\"<green>Entering interactive mode since you passed the --datasource-name flag</green>\"", ")", "elif", "interactive", "is", "False", ":", "cli_message", "(", "\"<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --datasource-name flag</yellow>\"", ")", "interactive", "=", "True", "elif", "batch_request", "is", "not", "None", ":", "if", "interactive", "is", "None", ":", "cli_message", "(", "\"<green>Entering interactive mode since you passed the --batch-request flag</green>\"", ")", "elif", "interactive", "is", "False", ":", "cli_message", "(", "\"<yellow>Warning: Ignoring the --manual flag and entering interactive mode since you passed the --batch-request flag</yellow>\"", ")", "interactive", "=", "True", "else", ":", "suite_edit_method", ":", "str", "=", "click", ".", "prompt", "(", "\"\"\"\\\nHow would you like to edit your Expectation Suite?\n 1. Manually, without interacting with a sample batch of data (default)\n 2. Interactively, with a sample batch of data\n\"\"\"", ",", "type", "=", "click", ".", "Choice", "(", "[", "\"1\"", ",", "\"2\"", "]", ")", ",", "show_choices", "=", "False", ",", "default", "=", "\"1\"", ",", "show_default", "=", "False", ",", ")", "# Default option", "if", "suite_edit_method", "==", "\"\"", ":", "interactive", "=", "False", "if", "suite_edit_method", "==", "\"1\"", ":", "interactive", "=", "False", "elif", "suite_edit_method", "==", "\"2\"", ":", "interactive", "=", "True", "return", "interactive" ]
[ 443, 0 ]
[ 541, 22 ]
python
en
['en', 'error', 'th']
False
suite_demo
(ctx)
This command is not supported in the v3 (Batch Request) API.
This command is not supported in the v3 (Batch Request) API.
def suite_demo(ctx): """This command is not supported in the v3 (Batch Request) API.""" context: DataContext = ctx.obj.data_context usage_event_end: str = ctx.obj.usage_event_end toolkit.send_usage_message( data_context=context, event=usage_event_end, success=True ) cli_message( string="This command is not supported in the v3 (Batch Request) API. Please use `suite new` instead." )
[ "def", "suite_demo", "(", "ctx", ")", ":", "context", ":", "DataContext", "=", "ctx", ".", "obj", ".", "data_context", "usage_event_end", ":", "str", "=", "ctx", ".", "obj", ".", "usage_event_end", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "True", ")", "cli_message", "(", "string", "=", "\"This command is not supported in the v3 (Batch Request) API. Please use `suite new` instead.\"", ")" ]
[ 695, 0 ]
[ 704, 5 ]
python
en
['en', 'en', 'en']
True
suite_delete
(ctx, suite)
Delete an Expectation Suite from the Expectation Store.
Delete an Expectation Suite from the Expectation Store.
def suite_delete(ctx, suite): """ Delete an Expectation Suite from the Expectation Store. """ context: DataContext = ctx.obj.data_context usage_event_end: str = ctx.obj.usage_event_end try: suite_names: List[str] = context.list_expectation_suite_names() except Exception as e: toolkit.send_usage_message( data_context=context, event=usage_event_end, success=False ) raise e if not suite_names: toolkit.exit_with_failure_message_and_stats( data_context=context, usage_event=usage_event_end, suppress_usage_message=False, message="<red>No expectation suites found in the project.</red>", ) if suite not in suite_names: toolkit.exit_with_failure_message_and_stats( data_context=context, usage_event=usage_event_end, suppress_usage_message=False, message=f"<red>No expectation suite named {suite} found.</red>", ) if not ( ctx.obj.assume_yes or toolkit.confirm_proceed_or_exit( exit_on_no=False, data_context=context, usage_stats_event=usage_event_end ) ): cli_message(string=f"Suite `{suite}` was not deleted.") sys.exit(0) context.delete_expectation_suite(suite) cli_message(string=f"Deleted the expectation suite named: {suite}") toolkit.send_usage_message( data_context=context, event=usage_event_end, success=True )
[ "def", "suite_delete", "(", "ctx", ",", "suite", ")", ":", "context", ":", "DataContext", "=", "ctx", ".", "obj", ".", "data_context", "usage_event_end", ":", "str", "=", "ctx", ".", "obj", ".", "usage_event_end", "try", ":", "suite_names", ":", "List", "[", "str", "]", "=", "context", ".", "list_expectation_suite_names", "(", ")", "except", "Exception", "as", "e", ":", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "False", ")", "raise", "e", "if", "not", "suite_names", ":", "toolkit", ".", "exit_with_failure_message_and_stats", "(", "data_context", "=", "context", ",", "usage_event", "=", "usage_event_end", ",", "suppress_usage_message", "=", "False", ",", "message", "=", "\"<red>No expectation suites found in the project.</red>\"", ",", ")", "if", "suite", "not", "in", "suite_names", ":", "toolkit", ".", "exit_with_failure_message_and_stats", "(", "data_context", "=", "context", ",", "usage_event", "=", "usage_event_end", ",", "suppress_usage_message", "=", "False", ",", "message", "=", "f\"<red>No expectation suite named {suite} found.</red>\"", ",", ")", "if", "not", "(", "ctx", ".", "obj", ".", "assume_yes", "or", "toolkit", ".", "confirm_proceed_or_exit", "(", "exit_on_no", "=", "False", ",", "data_context", "=", "context", ",", "usage_stats_event", "=", "usage_event_end", ")", ")", ":", "cli_message", "(", "string", "=", "f\"Suite `{suite}` was not deleted.\"", ")", "sys", ".", "exit", "(", "0", ")", "context", ".", "delete_expectation_suite", "(", "suite", ")", "cli_message", "(", "string", "=", "f\"Deleted the expectation suite named: {suite}\"", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "True", ")" ]
[ 710, 0 ]
[ 752, 5 ]
python
en
['en', 'error', 'th']
False
suite_list
(ctx)
List existing Expectation Suites.
List existing Expectation Suites.
def suite_list(ctx): """List existing Expectation Suites.""" context: DataContext = ctx.obj.data_context usage_event_end: str = ctx.obj.usage_event_end try: suite_names: List[str] = context.list_expectation_suite_names() except Exception as e: toolkit.send_usage_message( data_context=context, event=usage_event_end, success=False ) raise e suite_names_styled: List[str] = [ f" - <cyan>{suite_name}</cyan>" for suite_name in suite_names ] if len(suite_names_styled) == 0: cli_message(string="No Expectation Suites found") toolkit.send_usage_message( data_context=context, event=usage_event_end, success=True ) return list_intro_string: str if len(suite_names_styled) == 1: list_intro_string = "1 Expectation Suite found:" else: list_intro_string = f"{len(suite_names_styled)} Expectation Suites found:" cli_message_list( string_list=suite_names_styled, list_intro_string=list_intro_string ) toolkit.send_usage_message( data_context=context, event=usage_event_end, success=True )
[ "def", "suite_list", "(", "ctx", ")", ":", "context", ":", "DataContext", "=", "ctx", ".", "obj", ".", "data_context", "usage_event_end", ":", "str", "=", "ctx", ".", "obj", ".", "usage_event_end", "try", ":", "suite_names", ":", "List", "[", "str", "]", "=", "context", ".", "list_expectation_suite_names", "(", ")", "except", "Exception", "as", "e", ":", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "False", ")", "raise", "e", "suite_names_styled", ":", "List", "[", "str", "]", "=", "[", "f\" - <cyan>{suite_name}</cyan>\"", "for", "suite_name", "in", "suite_names", "]", "if", "len", "(", "suite_names_styled", ")", "==", "0", ":", "cli_message", "(", "string", "=", "\"No Expectation Suites found\"", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "True", ")", "return", "list_intro_string", ":", "str", "if", "len", "(", "suite_names_styled", ")", "==", "1", ":", "list_intro_string", "=", "\"1 Expectation Suite found:\"", "else", ":", "list_intro_string", "=", "f\"{len(suite_names_styled)} Expectation Suites found:\"", "cli_message_list", "(", "string_list", "=", "suite_names_styled", ",", "list_intro_string", "=", "list_intro_string", ")", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "usage_event_end", ",", "success", "=", "True", ")" ]
[ 757, 0 ]
[ 789, 5 ]
python
en
['ca', 'en', 'en']
True
ColumnsExistProfiler._profile
(cls, dataset, configuration=None)
This function will take a dataset and add expectations that each column present exists. Args: dataset (great_expectations.dataset): The dataset to profile and to which to add expectations. configuration: Configuration for select profilers.
This function will take a dataset and add expectations that each column present exists.
def _profile(cls, dataset, configuration=None): """ This function will take a dataset and add expectations that each column present exists. Args: dataset (great_expectations.dataset): The dataset to profile and to which to add expectations. configuration: Configuration for select profilers. """ if not hasattr(dataset, "get_table_columns"): warnings.warn("No columns list found in dataset; no profiling performed.") raise NotImplementedError( "ColumnsExistProfiler._profile is not implemented for data assests without the table_columns property" ) table_columns = dataset.get_table_columns() if table_columns is None: warnings.warn("No columns list found in dataset; no profiling performed.") raise NotImplementedError( "ColumnsExistProfiler._profile is not implemented for data assests without the table_columns property" ) create_multiple_expectations(dataset, table_columns, "expect_column_to_exist") return dataset.get_expectation_suite(suppress_warnings=True)
[ "def", "_profile", "(", "cls", ",", "dataset", ",", "configuration", "=", "None", ")", ":", "if", "not", "hasattr", "(", "dataset", ",", "\"get_table_columns\"", ")", ":", "warnings", ".", "warn", "(", "\"No columns list found in dataset; no profiling performed.\"", ")", "raise", "NotImplementedError", "(", "\"ColumnsExistProfiler._profile is not implemented for data assests without the table_columns property\"", ")", "table_columns", "=", "dataset", ".", "get_table_columns", "(", ")", "if", "table_columns", "is", "None", ":", "warnings", ".", "warn", "(", "\"No columns list found in dataset; no profiling performed.\"", ")", "raise", "NotImplementedError", "(", "\"ColumnsExistProfiler._profile is not implemented for data assests without the table_columns property\"", ")", "create_multiple_expectations", "(", "dataset", ",", "table_columns", ",", "\"expect_column_to_exist\"", ")", "return", "dataset", ".", "get_expectation_suite", "(", "suppress_warnings", "=", "True", ")" ]
[ 9, 4 ]
[ 34, 68 ]
python
en
['en', 'error', 'th']
False
ExpectColumnMostCommonValueToBeInSet.validate_configuration
(self, configuration: Optional[ExpectationConfiguration])
Validating that user has inputted a value set and that configuration has been initialized
Validating that user has inputted a value set and that configuration has been initialized
def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): """Validating that user has inputted a value set and that configuration has been initialized""" super().validate_configuration(configuration) if configuration is None: configuration = self.configuration try: assert "value_set" in configuration.kwargs, "value_set is required" assert isinstance( configuration.kwargs["value_set"], (list, set, dict) ), "value_set must be a list or a set" if isinstance(configuration.kwargs["value_set"], dict): assert ( "$PARAMETER" in configuration.kwargs["value_set"] ), 'Evaluation Parameter dict for value_set_kwarg must have "$PARAMETER" key' except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True
[ "def", "validate_configuration", "(", "self", ",", "configuration", ":", "Optional", "[", "ExpectationConfiguration", "]", ")", ":", "super", "(", ")", ".", "validate_configuration", "(", "configuration", ")", "if", "configuration", "is", "None", ":", "configuration", "=", "self", ".", "configuration", "try", ":", "assert", "\"value_set\"", "in", "configuration", ".", "kwargs", ",", "\"value_set is required\"", "assert", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"value_set\"", "]", ",", "(", "list", ",", "set", ",", "dict", ")", ")", ",", "\"value_set must be a list or a set\"", "if", "isinstance", "(", "configuration", ".", "kwargs", "[", "\"value_set\"", "]", ",", "dict", ")", ":", "assert", "(", "\"$PARAMETER\"", "in", "configuration", ".", "kwargs", "[", "\"value_set\"", "]", ")", ",", "'Evaluation Parameter dict for value_set_kwarg must have \"$PARAMETER\" key'", "except", "AssertionError", "as", "e", ":", "raise", "InvalidExpectationConfigurationError", "(", "str", "(", "e", ")", ")", "return", "True" ]
[ 96, 4 ]
[ 112, 19 ]
python
en
['en', 'en', 'en']
True
open_process
( command, *, stdin=None, stdout=None, stderr=None, **options )
r"""Execute a child program in a new process. After construction, you can interact with the child process by writing data to its `~Process.stdin` stream (a `~trio.abc.SendStream`), reading data from its `~Process.stdout` and/or `~Process.stderr` streams (both `~trio.abc.ReceiveStream`\s), sending it signals using `~Process.terminate`, `~Process.kill`, or `~Process.send_signal`, and waiting for it to exit using `~Process.wait`. See `Process` for details. Each standard stream is only available if you specify that a pipe should be created for it. For example, if you pass ``stdin=subprocess.PIPE``, you can write to the `~Process.stdin` stream, else `~Process.stdin` will be ``None``. Args: command (list or str): The command to run. Typically this is a sequence of strings such as ``['ls', '-l', 'directory with spaces']``, where the first element names the executable to invoke and the other elements specify its arguments. With ``shell=True`` in the ``**options``, or on Windows, ``command`` may alternatively be a string, which will be parsed following platform-dependent :ref:`quoting rules <subprocess-quoting>`. stdin: Specifies what the child process's standard input stream should connect to: output written by the parent (``subprocess.PIPE``), nothing (``subprocess.DEVNULL``), or an open file (pass a file descriptor or something whose ``fileno`` method returns one). If ``stdin`` is unspecified, the child process will have the same standard input stream as its parent. stdout: Like ``stdin``, but for the child process's standard output stream. stderr: Like ``stdin``, but for the child process's standard error stream. An additional value ``subprocess.STDOUT`` is supported, which causes the child's standard output and standard error messages to be intermixed on a single standard output stream, attached to whatever the ``stdout`` option says to attach it to. **options: Other :ref:`general subprocess options <subprocess-options>` are also accepted. Returns: A new `Process` object. Raises: OSError: if the process spawning fails, for example because the specified command could not be found.
r"""Execute a child program in a new process.
async def open_process( command, *, stdin=None, stdout=None, stderr=None, **options ) -> Process: r"""Execute a child program in a new process. After construction, you can interact with the child process by writing data to its `~Process.stdin` stream (a `~trio.abc.SendStream`), reading data from its `~Process.stdout` and/or `~Process.stderr` streams (both `~trio.abc.ReceiveStream`\s), sending it signals using `~Process.terminate`, `~Process.kill`, or `~Process.send_signal`, and waiting for it to exit using `~Process.wait`. See `Process` for details. Each standard stream is only available if you specify that a pipe should be created for it. For example, if you pass ``stdin=subprocess.PIPE``, you can write to the `~Process.stdin` stream, else `~Process.stdin` will be ``None``. Args: command (list or str): The command to run. Typically this is a sequence of strings such as ``['ls', '-l', 'directory with spaces']``, where the first element names the executable to invoke and the other elements specify its arguments. With ``shell=True`` in the ``**options``, or on Windows, ``command`` may alternatively be a string, which will be parsed following platform-dependent :ref:`quoting rules <subprocess-quoting>`. stdin: Specifies what the child process's standard input stream should connect to: output written by the parent (``subprocess.PIPE``), nothing (``subprocess.DEVNULL``), or an open file (pass a file descriptor or something whose ``fileno`` method returns one). If ``stdin`` is unspecified, the child process will have the same standard input stream as its parent. stdout: Like ``stdin``, but for the child process's standard output stream. stderr: Like ``stdin``, but for the child process's standard error stream. An additional value ``subprocess.STDOUT`` is supported, which causes the child's standard output and standard error messages to be intermixed on a single standard output stream, attached to whatever the ``stdout`` option says to attach it to. **options: Other :ref:`general subprocess options <subprocess-options>` are also accepted. Returns: A new `Process` object. Raises: OSError: if the process spawning fails, for example because the specified command could not be found. """ for key in ("universal_newlines", "text", "encoding", "errors", "bufsize"): if options.get(key): raise TypeError( "trio.Process only supports communicating over " "unbuffered byte streams; the '{}' option is not supported".format(key) ) if os.name == "posix": if isinstance(command, str) and not options.get("shell"): raise TypeError( "command must be a sequence (not a string) if shell=False " "on UNIX systems" ) if not isinstance(command, str) and options.get("shell"): raise TypeError( "command must be a string (not a sequence) if shell=True " "on UNIX systems" ) trio_stdin = None # type: Optional[SendStream] trio_stdout = None # type: Optional[ReceiveStream] trio_stderr = None # type: Optional[ReceiveStream] if stdin == subprocess.PIPE: trio_stdin, stdin = create_pipe_to_child_stdin() if stdout == subprocess.PIPE: trio_stdout, stdout = create_pipe_from_child_output() if stderr == subprocess.STDOUT: # If we created a pipe for stdout, pass the same pipe for # stderr. If stdout was some non-pipe thing (DEVNULL or a # given FD), pass the same thing. If stdout was passed as # None, keep stderr as STDOUT to allow subprocess to dup # our stdout. Regardless of which of these is applicable, # don't create a new Trio stream for stderr -- if stdout # is piped, stderr will be intermixed on the stdout stream. if stdout is not None: stderr = stdout elif stderr == subprocess.PIPE: trio_stderr, stderr = create_pipe_from_child_output() try: popen = await trio.to_thread.run_sync( partial( subprocess.Popen, command, stdin=stdin, stdout=stdout, stderr=stderr, **options, ) ) finally: # Close the parent's handle for each child side of a pipe; # we want the child to have the only copy, so that when # it exits we can read EOF on our side. if trio_stdin is not None: os.close(stdin) if trio_stdout is not None: os.close(stdout) if trio_stderr is not None: os.close(stderr) return Process._create(popen, trio_stdin, trio_stdout, trio_stderr)
[ "async", "def", "open_process", "(", "command", ",", "*", ",", "stdin", "=", "None", ",", "stdout", "=", "None", ",", "stderr", "=", "None", ",", "*", "*", "options", ")", "->", "Process", ":", "for", "key", "in", "(", "\"universal_newlines\"", ",", "\"text\"", ",", "\"encoding\"", ",", "\"errors\"", ",", "\"bufsize\"", ")", ":", "if", "options", ".", "get", "(", "key", ")", ":", "raise", "TypeError", "(", "\"trio.Process only supports communicating over \"", "\"unbuffered byte streams; the '{}' option is not supported\"", ".", "format", "(", "key", ")", ")", "if", "os", ".", "name", "==", "\"posix\"", ":", "if", "isinstance", "(", "command", ",", "str", ")", "and", "not", "options", ".", "get", "(", "\"shell\"", ")", ":", "raise", "TypeError", "(", "\"command must be a sequence (not a string) if shell=False \"", "\"on UNIX systems\"", ")", "if", "not", "isinstance", "(", "command", ",", "str", ")", "and", "options", ".", "get", "(", "\"shell\"", ")", ":", "raise", "TypeError", "(", "\"command must be a string (not a sequence) if shell=True \"", "\"on UNIX systems\"", ")", "trio_stdin", "=", "None", "# type: Optional[SendStream]", "trio_stdout", "=", "None", "# type: Optional[ReceiveStream]", "trio_stderr", "=", "None", "# type: Optional[ReceiveStream]", "if", "stdin", "==", "subprocess", ".", "PIPE", ":", "trio_stdin", ",", "stdin", "=", "create_pipe_to_child_stdin", "(", ")", "if", "stdout", "==", "subprocess", ".", "PIPE", ":", "trio_stdout", ",", "stdout", "=", "create_pipe_from_child_output", "(", ")", "if", "stderr", "==", "subprocess", ".", "STDOUT", ":", "# If we created a pipe for stdout, pass the same pipe for", "# stderr. If stdout was some non-pipe thing (DEVNULL or a", "# given FD), pass the same thing. If stdout was passed as", "# None, keep stderr as STDOUT to allow subprocess to dup", "# our stdout. Regardless of which of these is applicable,", "# don't create a new Trio stream for stderr -- if stdout", "# is piped, stderr will be intermixed on the stdout stream.", "if", "stdout", "is", "not", "None", ":", "stderr", "=", "stdout", "elif", "stderr", "==", "subprocess", ".", "PIPE", ":", "trio_stderr", ",", "stderr", "=", "create_pipe_from_child_output", "(", ")", "try", ":", "popen", "=", "await", "trio", ".", "to_thread", ".", "run_sync", "(", "partial", "(", "subprocess", ".", "Popen", ",", "command", ",", "stdin", "=", "stdin", ",", "stdout", "=", "stdout", ",", "stderr", "=", "stderr", ",", "*", "*", "options", ",", ")", ")", "finally", ":", "# Close the parent's handle for each child side of a pipe;", "# we want the child to have the only copy, so that when", "# it exits we can read EOF on our side.", "if", "trio_stdin", "is", "not", "None", ":", "os", ".", "close", "(", "stdin", ")", "if", "trio_stdout", "is", "not", "None", ":", "os", ".", "close", "(", "stdout", ")", "if", "trio_stderr", "is", "not", "None", ":", "os", ".", "close", "(", "stderr", ")", "return", "Process", ".", "_create", "(", "popen", ",", "trio_stdin", ",", "trio_stdout", ",", "trio_stderr", ")" ]
[ 278, 0 ]
[ 390, 71 ]
python
en
['en', 'en', 'en']
True
run_process
( command, *, stdin=b"", capture_stdout=False, capture_stderr=False, check=True, deliver_cancel=None, **options, )
Run ``command`` in a subprocess, wait for it to complete, and return a :class:`subprocess.CompletedProcess` instance describing the results. If cancelled, :func:`run_process` terminates the subprocess and waits for it to exit before propagating the cancellation, like :meth:`Process.aclose`. **Input:** The subprocess's standard input stream is set up to receive the bytes provided as ``stdin``. Once the given input has been fully delivered, or if none is provided, the subprocess will receive end-of-file when reading from its standard input. Alternatively, if you want the subprocess to read its standard input from the same place as the parent Trio process, you can pass ``stdin=None``. **Output:** By default, any output produced by the subprocess is passed through to the standard output and error streams of the parent Trio process. If you would like to capture this output and do something with it, you can pass ``capture_stdout=True`` to capture the subprocess's standard output, and/or ``capture_stderr=True`` to capture its standard error. Captured data is provided as the :attr:`~subprocess.CompletedProcess.stdout` and/or :attr:`~subprocess.CompletedProcess.stderr` attributes of the returned :class:`~subprocess.CompletedProcess` object. The value for any stream that was not captured will be ``None``. If you want to capture both stdout and stderr while keeping them separate, pass ``capture_stdout=True, capture_stderr=True``. If you want to capture both stdout and stderr but mixed together in the order they were printed, use: ``capture_stdout=True, stderr=subprocess.STDOUT``. This directs the child's stderr into its stdout, so the combined output will be available in the `~subprocess.CompletedProcess.stdout` attribute. **Error checking:** If the subprocess exits with a nonzero status code, indicating failure, :func:`run_process` raises a :exc:`subprocess.CalledProcessError` exception rather than returning normally. The captured outputs are still available as the :attr:`~subprocess.CalledProcessError.stdout` and :attr:`~subprocess.CalledProcessError.stderr` attributes of that exception. To disable this behavior, so that :func:`run_process` returns normally even if the subprocess exits abnormally, pass ``check=False``. Args: command (list or str): The command to run. Typically this is a sequence of strings such as ``['ls', '-l', 'directory with spaces']``, where the first element names the executable to invoke and the other elements specify its arguments. With ``shell=True`` in the ``**options``, or on Windows, ``command`` may alternatively be a string, which will be parsed following platform-dependent :ref:`quoting rules <subprocess-quoting>`. stdin (:obj:`bytes`, file descriptor, or None): The bytes to provide to the subprocess on its standard input stream, or ``None`` if the subprocess's standard input should come from the same place as the parent Trio process's standard input. As is the case with the :mod:`subprocess` module, you can also pass a file descriptor or an object with a ``fileno()`` method, in which case the subprocess's standard input will come from that file. capture_stdout (bool): If true, capture the bytes that the subprocess writes to its standard output stream and return them in the :attr:`~subprocess.CompletedProcess.stdout` attribute of the returned :class:`~subprocess.CompletedProcess` object. capture_stderr (bool): If true, capture the bytes that the subprocess writes to its standard error stream and return them in the :attr:`~subprocess.CompletedProcess.stderr` attribute of the returned :class:`~subprocess.CompletedProcess` object. check (bool): If false, don't validate that the subprocess exits successfully. You should be sure to check the ``returncode`` attribute of the returned object if you pass ``check=False``, so that errors don't pass silently. deliver_cancel (async function or None): If `run_process` is cancelled, then it needs to kill the child process. There are multiple ways to do this, so we let you customize it. If you pass None (the default), then the behavior depends on the platform: - On Windows, Trio calls ``TerminateProcess``, which should kill the process immediately. - On Unix-likes, the default behavior is to send a ``SIGTERM``, wait 5 seconds, and send a ``SIGKILL``. Alternatively, you can customize this behavior by passing in an arbitrary async function, which will be called with the `Process` object as an argument. For example, the default Unix behavior could be implemented like this:: async def my_deliver_cancel(process): process.send_signal(signal.SIGTERM) await trio.sleep(5) process.send_signal(signal.SIGKILL) When the process actually exits, the ``deliver_cancel`` function will automatically be cancelled – so if the process exits after ``SIGTERM``, then we'll never reach the ``SIGKILL``. In any case, `run_process` will always wait for the child process to exit before raising `Cancelled`. **options: :func:`run_process` also accepts any :ref:`general subprocess options <subprocess-options>` and passes them on to the :class:`~trio.Process` constructor. This includes the ``stdout`` and ``stderr`` options, which provide additional redirection possibilities such as ``stderr=subprocess.STDOUT``, ``stdout=subprocess.DEVNULL``, or file descriptors. Returns: A :class:`subprocess.CompletedProcess` instance describing the return code and outputs. Raises: UnicodeError: if ``stdin`` is specified as a Unicode string, rather than bytes ValueError: if multiple redirections are specified for the same stream, e.g., both ``capture_stdout=True`` and ``stdout=subprocess.DEVNULL`` subprocess.CalledProcessError: if ``check=False`` is not passed and the process exits with a nonzero exit status OSError: if an error is encountered starting or communicating with the process .. note:: The child process runs in the same process group as the parent Trio process, so a Ctrl+C will be delivered simultaneously to both parent and child. If you don't want this behavior, consult your platform's documentation for starting child processes in a different process group.
Run ``command`` in a subprocess, wait for it to complete, and return a :class:`subprocess.CompletedProcess` instance describing the results.
async def run_process( command, *, stdin=b"", capture_stdout=False, capture_stderr=False, check=True, deliver_cancel=None, **options, ): """Run ``command`` in a subprocess, wait for it to complete, and return a :class:`subprocess.CompletedProcess` instance describing the results. If cancelled, :func:`run_process` terminates the subprocess and waits for it to exit before propagating the cancellation, like :meth:`Process.aclose`. **Input:** The subprocess's standard input stream is set up to receive the bytes provided as ``stdin``. Once the given input has been fully delivered, or if none is provided, the subprocess will receive end-of-file when reading from its standard input. Alternatively, if you want the subprocess to read its standard input from the same place as the parent Trio process, you can pass ``stdin=None``. **Output:** By default, any output produced by the subprocess is passed through to the standard output and error streams of the parent Trio process. If you would like to capture this output and do something with it, you can pass ``capture_stdout=True`` to capture the subprocess's standard output, and/or ``capture_stderr=True`` to capture its standard error. Captured data is provided as the :attr:`~subprocess.CompletedProcess.stdout` and/or :attr:`~subprocess.CompletedProcess.stderr` attributes of the returned :class:`~subprocess.CompletedProcess` object. The value for any stream that was not captured will be ``None``. If you want to capture both stdout and stderr while keeping them separate, pass ``capture_stdout=True, capture_stderr=True``. If you want to capture both stdout and stderr but mixed together in the order they were printed, use: ``capture_stdout=True, stderr=subprocess.STDOUT``. This directs the child's stderr into its stdout, so the combined output will be available in the `~subprocess.CompletedProcess.stdout` attribute. **Error checking:** If the subprocess exits with a nonzero status code, indicating failure, :func:`run_process` raises a :exc:`subprocess.CalledProcessError` exception rather than returning normally. The captured outputs are still available as the :attr:`~subprocess.CalledProcessError.stdout` and :attr:`~subprocess.CalledProcessError.stderr` attributes of that exception. To disable this behavior, so that :func:`run_process` returns normally even if the subprocess exits abnormally, pass ``check=False``. Args: command (list or str): The command to run. Typically this is a sequence of strings such as ``['ls', '-l', 'directory with spaces']``, where the first element names the executable to invoke and the other elements specify its arguments. With ``shell=True`` in the ``**options``, or on Windows, ``command`` may alternatively be a string, which will be parsed following platform-dependent :ref:`quoting rules <subprocess-quoting>`. stdin (:obj:`bytes`, file descriptor, or None): The bytes to provide to the subprocess on its standard input stream, or ``None`` if the subprocess's standard input should come from the same place as the parent Trio process's standard input. As is the case with the :mod:`subprocess` module, you can also pass a file descriptor or an object with a ``fileno()`` method, in which case the subprocess's standard input will come from that file. capture_stdout (bool): If true, capture the bytes that the subprocess writes to its standard output stream and return them in the :attr:`~subprocess.CompletedProcess.stdout` attribute of the returned :class:`~subprocess.CompletedProcess` object. capture_stderr (bool): If true, capture the bytes that the subprocess writes to its standard error stream and return them in the :attr:`~subprocess.CompletedProcess.stderr` attribute of the returned :class:`~subprocess.CompletedProcess` object. check (bool): If false, don't validate that the subprocess exits successfully. You should be sure to check the ``returncode`` attribute of the returned object if you pass ``check=False``, so that errors don't pass silently. deliver_cancel (async function or None): If `run_process` is cancelled, then it needs to kill the child process. There are multiple ways to do this, so we let you customize it. If you pass None (the default), then the behavior depends on the platform: - On Windows, Trio calls ``TerminateProcess``, which should kill the process immediately. - On Unix-likes, the default behavior is to send a ``SIGTERM``, wait 5 seconds, and send a ``SIGKILL``. Alternatively, you can customize this behavior by passing in an arbitrary async function, which will be called with the `Process` object as an argument. For example, the default Unix behavior could be implemented like this:: async def my_deliver_cancel(process): process.send_signal(signal.SIGTERM) await trio.sleep(5) process.send_signal(signal.SIGKILL) When the process actually exits, the ``deliver_cancel`` function will automatically be cancelled – so if the process exits after ``SIGTERM``, then we'll never reach the ``SIGKILL``. In any case, `run_process` will always wait for the child process to exit before raising `Cancelled`. **options: :func:`run_process` also accepts any :ref:`general subprocess options <subprocess-options>` and passes them on to the :class:`~trio.Process` constructor. This includes the ``stdout`` and ``stderr`` options, which provide additional redirection possibilities such as ``stderr=subprocess.STDOUT``, ``stdout=subprocess.DEVNULL``, or file descriptors. Returns: A :class:`subprocess.CompletedProcess` instance describing the return code and outputs. Raises: UnicodeError: if ``stdin`` is specified as a Unicode string, rather than bytes ValueError: if multiple redirections are specified for the same stream, e.g., both ``capture_stdout=True`` and ``stdout=subprocess.DEVNULL`` subprocess.CalledProcessError: if ``check=False`` is not passed and the process exits with a nonzero exit status OSError: if an error is encountered starting or communicating with the process .. note:: The child process runs in the same process group as the parent Trio process, so a Ctrl+C will be delivered simultaneously to both parent and child. If you don't want this behavior, consult your platform's documentation for starting child processes in a different process group. """ if isinstance(stdin, str): raise UnicodeError("process stdin must be bytes, not str") if stdin == subprocess.PIPE: raise ValueError( "stdin=subprocess.PIPE doesn't make sense since the pipe " "is internal to run_process(); pass the actual data you " "want to send over that pipe instead" ) if isinstance(stdin, (bytes, bytearray, memoryview)): input = stdin options["stdin"] = subprocess.PIPE else: # stdin should be something acceptable to Process # (None, DEVNULL, a file descriptor, etc) and Process # will raise if it's not input = None options["stdin"] = stdin if capture_stdout: if "stdout" in options: raise ValueError("can't specify both stdout and capture_stdout") options["stdout"] = subprocess.PIPE if capture_stderr: if "stderr" in options: raise ValueError("can't specify both stderr and capture_stderr") options["stderr"] = subprocess.PIPE if deliver_cancel is None: if os.name == "nt": deliver_cancel = _windows_deliver_cancel else: assert os.name == "posix" deliver_cancel = _posix_deliver_cancel stdout_chunks = [] stderr_chunks = [] async with await open_process(command, **options) as proc: async def feed_input(): async with proc.stdin: try: await proc.stdin.send_all(input) except trio.BrokenResourceError: pass async def read_output(stream, chunks): async with stream: async for chunk in stream: chunks.append(chunk) async with trio.open_nursery() as nursery: if proc.stdin is not None: nursery.start_soon(feed_input) if proc.stdout is not None: nursery.start_soon(read_output, proc.stdout, stdout_chunks) if proc.stderr is not None: nursery.start_soon(read_output, proc.stderr, stderr_chunks) try: await proc.wait() except trio.Cancelled: with trio.CancelScope(shield=True): killer_cscope = trio.CancelScope(shield=True) async def killer(): with killer_cscope: await deliver_cancel(proc) nursery.start_soon(killer) await proc.wait() killer_cscope.cancel() raise stdout = b"".join(stdout_chunks) if proc.stdout is not None else None stderr = b"".join(stderr_chunks) if proc.stderr is not None else None if proc.returncode and check: raise subprocess.CalledProcessError( proc.returncode, proc.args, output=stdout, stderr=stderr ) else: return subprocess.CompletedProcess(proc.args, proc.returncode, stdout, stderr)
[ "async", "def", "run_process", "(", "command", ",", "*", ",", "stdin", "=", "b\"\"", ",", "capture_stdout", "=", "False", ",", "capture_stderr", "=", "False", ",", "check", "=", "True", ",", "deliver_cancel", "=", "None", ",", "*", "*", "options", ",", ")", ":", "if", "isinstance", "(", "stdin", ",", "str", ")", ":", "raise", "UnicodeError", "(", "\"process stdin must be bytes, not str\"", ")", "if", "stdin", "==", "subprocess", ".", "PIPE", ":", "raise", "ValueError", "(", "\"stdin=subprocess.PIPE doesn't make sense since the pipe \"", "\"is internal to run_process(); pass the actual data you \"", "\"want to send over that pipe instead\"", ")", "if", "isinstance", "(", "stdin", ",", "(", "bytes", ",", "bytearray", ",", "memoryview", ")", ")", ":", "input", "=", "stdin", "options", "[", "\"stdin\"", "]", "=", "subprocess", ".", "PIPE", "else", ":", "# stdin should be something acceptable to Process", "# (None, DEVNULL, a file descriptor, etc) and Process", "# will raise if it's not", "input", "=", "None", "options", "[", "\"stdin\"", "]", "=", "stdin", "if", "capture_stdout", ":", "if", "\"stdout\"", "in", "options", ":", "raise", "ValueError", "(", "\"can't specify both stdout and capture_stdout\"", ")", "options", "[", "\"stdout\"", "]", "=", "subprocess", ".", "PIPE", "if", "capture_stderr", ":", "if", "\"stderr\"", "in", "options", ":", "raise", "ValueError", "(", "\"can't specify both stderr and capture_stderr\"", ")", "options", "[", "\"stderr\"", "]", "=", "subprocess", ".", "PIPE", "if", "deliver_cancel", "is", "None", ":", "if", "os", ".", "name", "==", "\"nt\"", ":", "deliver_cancel", "=", "_windows_deliver_cancel", "else", ":", "assert", "os", ".", "name", "==", "\"posix\"", "deliver_cancel", "=", "_posix_deliver_cancel", "stdout_chunks", "=", "[", "]", "stderr_chunks", "=", "[", "]", "async", "with", "await", "open_process", "(", "command", ",", "*", "*", "options", ")", "as", "proc", ":", "async", "def", "feed_input", "(", ")", ":", "async", "with", "proc", ".", "stdin", ":", "try", ":", "await", "proc", ".", "stdin", ".", "send_all", "(", "input", ")", "except", "trio", ".", "BrokenResourceError", ":", "pass", "async", "def", "read_output", "(", "stream", ",", "chunks", ")", ":", "async", "with", "stream", ":", "async", "for", "chunk", "in", "stream", ":", "chunks", ".", "append", "(", "chunk", ")", "async", "with", "trio", ".", "open_nursery", "(", ")", "as", "nursery", ":", "if", "proc", ".", "stdin", "is", "not", "None", ":", "nursery", ".", "start_soon", "(", "feed_input", ")", "if", "proc", ".", "stdout", "is", "not", "None", ":", "nursery", ".", "start_soon", "(", "read_output", ",", "proc", ".", "stdout", ",", "stdout_chunks", ")", "if", "proc", ".", "stderr", "is", "not", "None", ":", "nursery", ".", "start_soon", "(", "read_output", ",", "proc", ".", "stderr", ",", "stderr_chunks", ")", "try", ":", "await", "proc", ".", "wait", "(", ")", "except", "trio", ".", "Cancelled", ":", "with", "trio", ".", "CancelScope", "(", "shield", "=", "True", ")", ":", "killer_cscope", "=", "trio", ".", "CancelScope", "(", "shield", "=", "True", ")", "async", "def", "killer", "(", ")", ":", "with", "killer_cscope", ":", "await", "deliver_cancel", "(", "proc", ")", "nursery", ".", "start_soon", "(", "killer", ")", "await", "proc", ".", "wait", "(", ")", "killer_cscope", ".", "cancel", "(", ")", "raise", "stdout", "=", "b\"\"", ".", "join", "(", "stdout_chunks", ")", "if", "proc", ".", "stdout", "is", "not", "None", "else", "None", "stderr", "=", "b\"\"", ".", "join", "(", "stderr_chunks", ")", "if", "proc", ".", "stderr", "is", "not", "None", "else", "None", "if", "proc", ".", "returncode", "and", "check", ":", "raise", "subprocess", ".", "CalledProcessError", "(", "proc", ".", "returncode", ",", "proc", ".", "args", ",", "output", "=", "stdout", ",", "stderr", "=", "stderr", ")", "else", ":", "return", "subprocess", ".", "CompletedProcess", "(", "proc", ".", "args", ",", "proc", ".", "returncode", ",", "stdout", ",", "stderr", ")" ]
[ 418, 0 ]
[ 649, 86 ]
python
en
['en', 'en', 'en']
True
Process.returncode
(self)
The exit status of the process (an integer), or ``None`` if it's still running. By convention, a return code of zero indicates success. On UNIX, negative values indicate termination due to a signal, e.g., -11 if terminated by signal 11 (``SIGSEGV``). On Windows, a process that exits due to a call to :meth:`Process.terminate` will have an exit status of 1. Unlike the standard library `subprocess.Popen.returncode`, you don't have to call `poll` or `wait` to update this attribute; it's automatically updated as needed, and will always give you the latest information.
The exit status of the process (an integer), or ``None`` if it's still running.
def returncode(self): """The exit status of the process (an integer), or ``None`` if it's still running. By convention, a return code of zero indicates success. On UNIX, negative values indicate termination due to a signal, e.g., -11 if terminated by signal 11 (``SIGSEGV``). On Windows, a process that exits due to a call to :meth:`Process.terminate` will have an exit status of 1. Unlike the standard library `subprocess.Popen.returncode`, you don't have to call `poll` or `wait` to update this attribute; it's automatically updated as needed, and will always give you the latest information. """ result = self._proc.poll() if result is not None: self._close_pidfd() return result
[ "def", "returncode", "(", "self", ")", ":", "result", "=", "self", ".", "_proc", ".", "poll", "(", ")", "if", "result", "is", "not", "None", ":", "self", ".", "_close_pidfd", "(", ")", "return", "result" ]
[ 161, 4 ]
[ 180, 21 ]
python
en
['en', 'en', 'en']
True
Process.aclose
(self)
Close any pipes we have to the process (both input and output) and wait for it to exit. If cancelled, kills the process and waits for it to finish exiting before propagating the cancellation.
Close any pipes we have to the process (both input and output) and wait for it to exit.
async def aclose(self): """Close any pipes we have to the process (both input and output) and wait for it to exit. If cancelled, kills the process and waits for it to finish exiting before propagating the cancellation. """ with trio.CancelScope(shield=True): if self.stdin is not None: await self.stdin.aclose() if self.stdout is not None: await self.stdout.aclose() if self.stderr is not None: await self.stderr.aclose() try: await self.wait() finally: if self._proc.returncode is None: self.kill() with trio.CancelScope(shield=True): await self.wait()
[ "async", "def", "aclose", "(", "self", ")", ":", "with", "trio", ".", "CancelScope", "(", "shield", "=", "True", ")", ":", "if", "self", ".", "stdin", "is", "not", "None", ":", "await", "self", ".", "stdin", ".", "aclose", "(", ")", "if", "self", ".", "stdout", "is", "not", "None", ":", "await", "self", ".", "stdout", ".", "aclose", "(", ")", "if", "self", ".", "stderr", "is", "not", "None", ":", "await", "self", ".", "stderr", ".", "aclose", "(", ")", "try", ":", "await", "self", ".", "wait", "(", ")", "finally", ":", "if", "self", ".", "_proc", ".", "returncode", "is", "None", ":", "self", ".", "kill", "(", ")", "with", "trio", ".", "CancelScope", "(", "shield", "=", "True", ")", ":", "await", "self", ".", "wait", "(", ")" ]
[ 182, 4 ]
[ 202, 37 ]
python
en
['en', 'en', 'en']
True
Process.wait
(self)
Block until the process exits. Returns: The exit status of the process; see :attr:`returncode`.
Block until the process exits.
async def wait(self): """Block until the process exits. Returns: The exit status of the process; see :attr:`returncode`. """ async with self._wait_lock: if self.poll() is None: if self._pidfd is not None: await trio.lowlevel.wait_readable(self._pidfd) else: await wait_child_exiting(self) # We have to use .wait() here, not .poll(), because on macOS # (and maybe other systems, who knows), there's a race # condition inside the kernel that creates a tiny window where # kqueue reports that the process has exited, but # waitpid(WNOHANG) can't yet reap it. So this .wait() may # actually block for a tiny fraction of a second. self._proc.wait() self._close_pidfd() assert self._proc.returncode is not None return self._proc.returncode
[ "async", "def", "wait", "(", "self", ")", ":", "async", "with", "self", ".", "_wait_lock", ":", "if", "self", ".", "poll", "(", ")", "is", "None", ":", "if", "self", ".", "_pidfd", "is", "not", "None", ":", "await", "trio", ".", "lowlevel", ".", "wait_readable", "(", "self", ".", "_pidfd", ")", "else", ":", "await", "wait_child_exiting", "(", "self", ")", "# We have to use .wait() here, not .poll(), because on macOS", "# (and maybe other systems, who knows), there's a race", "# condition inside the kernel that creates a tiny window where", "# kqueue reports that the process has exited, but", "# waitpid(WNOHANG) can't yet reap it. So this .wait() may", "# actually block for a tiny fraction of a second.", "self", ".", "_proc", ".", "wait", "(", ")", "self", ".", "_close_pidfd", "(", ")", "assert", "self", ".", "_proc", ".", "returncode", "is", "not", "None", "return", "self", ".", "_proc", ".", "returncode" ]
[ 209, 4 ]
[ 230, 36 ]
python
en
['en', 'ca', 'en']
True
Process.poll
(self)
Returns the exit status of the process (an integer), or ``None`` if it's still running. Note that on Trio (unlike the standard library `subprocess.Popen`), ``process.poll()`` and ``process.returncode`` always give the same result. See `returncode` for more details. This method is only included to make it easier to port code from `subprocess`.
Returns the exit status of the process (an integer), or ``None`` if it's still running.
def poll(self): """Returns the exit status of the process (an integer), or ``None`` if it's still running. Note that on Trio (unlike the standard library `subprocess.Popen`), ``process.poll()`` and ``process.returncode`` always give the same result. See `returncode` for more details. This method is only included to make it easier to port code from `subprocess`. """ return self.returncode
[ "def", "poll", "(", "self", ")", ":", "return", "self", ".", "returncode" ]
[ 232, 4 ]
[ 242, 30 ]
python
en
['en', 'en', 'en']
True
Process.send_signal
(self, sig)
Send signal ``sig`` to the process. On UNIX, ``sig`` may be any signal defined in the :mod:`signal` module, such as ``signal.SIGINT`` or ``signal.SIGTERM``. On Windows, it may be anything accepted by the standard library :meth:`subprocess.Popen.send_signal`.
Send signal ``sig`` to the process.
def send_signal(self, sig): """Send signal ``sig`` to the process. On UNIX, ``sig`` may be any signal defined in the :mod:`signal` module, such as ``signal.SIGINT`` or ``signal.SIGTERM``. On Windows, it may be anything accepted by the standard library :meth:`subprocess.Popen.send_signal`. """ self._proc.send_signal(sig)
[ "def", "send_signal", "(", "self", ",", "sig", ")", ":", "self", ".", "_proc", ".", "send_signal", "(", "sig", ")" ]
[ 244, 4 ]
[ 252, 35 ]
python
en
['en', 'en', 'en']
True
Process.terminate
(self)
Terminate the process, politely if possible. On UNIX, this is equivalent to ``send_signal(signal.SIGTERM)``; by convention this requests graceful termination, but a misbehaving or buggy process might ignore it. On Windows, :meth:`terminate` forcibly terminates the process in the same manner as :meth:`kill`.
Terminate the process, politely if possible.
def terminate(self): """Terminate the process, politely if possible. On UNIX, this is equivalent to ``send_signal(signal.SIGTERM)``; by convention this requests graceful termination, but a misbehaving or buggy process might ignore it. On Windows, :meth:`terminate` forcibly terminates the process in the same manner as :meth:`kill`. """ self._proc.terminate()
[ "def", "terminate", "(", "self", ")", ":", "self", ".", "_proc", ".", "terminate", "(", ")" ]
[ 254, 4 ]
[ 263, 30 ]
python
en
['en', 'en', 'en']
True
Process.kill
(self)
Immediately terminate the process. On UNIX, this is equivalent to ``send_signal(signal.SIGKILL)``. On Windows, it calls ``TerminateProcess``. In both cases, the process cannot prevent itself from being killed, but the termination will be delivered asynchronously; use :meth:`wait` if you want to ensure the process is actually dead before proceeding.
Immediately terminate the process.
def kill(self): """Immediately terminate the process. On UNIX, this is equivalent to ``send_signal(signal.SIGKILL)``. On Windows, it calls ``TerminateProcess``. In both cases, the process cannot prevent itself from being killed, but the termination will be delivered asynchronously; use :meth:`wait` if you want to ensure the process is actually dead before proceeding. """ self._proc.kill()
[ "def", "kill", "(", "self", ")", ":", "self", ".", "_proc", ".", "kill", "(", ")" ]
[ 265, 4 ]
[ 275, 25 ]
python
en
['en', 'en', 'en']
True
BaseLearner.bootstrap
(self, X, treatment, y, p=None, size=10000)
Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population.
Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population.
def bootstrap(self, X, treatment, y, p=None, size=10000): """Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population.""" idxs = np.random.choice(np.arange(0, X.shape[0]), size=size) X_b = X[idxs] if p is not None: p_b = {group: _p[idxs] for group, _p in p.items()} else: p_b = None treatment_b = treatment[idxs] y_b = y[idxs] self.fit(X=X_b, treatment=treatment_b, y=y_b, p=p_b) return self.predict(X=X, p=p)
[ "def", "bootstrap", "(", "self", ",", "X", ",", "treatment", ",", "y", ",", "p", "=", "None", ",", "size", "=", "10000", ")", ":", "idxs", "=", "np", ".", "random", ".", "choice", "(", "np", ".", "arange", "(", "0", ",", "X", ".", "shape", "[", "0", "]", ")", ",", "size", "=", "size", ")", "X_b", "=", "X", "[", "idxs", "]", "if", "p", "is", "not", "None", ":", "p_b", "=", "{", "group", ":", "_p", "[", "idxs", "]", "for", "group", ",", "_p", "in", "p", ".", "items", "(", ")", "}", "else", ":", "p_b", "=", "None", "treatment_b", "=", "treatment", "[", "idxs", "]", "y_b", "=", "y", "[", "idxs", "]", "self", ".", "fit", "(", "X", "=", "X_b", ",", "treatment", "=", "treatment_b", ",", "y", "=", "y_b", ",", "p", "=", "p_b", ")", "return", "self", ".", "predict", "(", "X", "=", "X", ",", "p", "=", "p", ")" ]
[ 32, 4 ]
[ 45, 37 ]
python
en
['en', 'en', 'en']
True
BaseLearner._format_p
(p, t_groups)
Format propensity scores into a dictionary of {treatment group: propensity scores}. Args: p (np.ndarray, pd.Series, or dict): propensity scores t_groups (list): treatment group names. Returns: dict of {treatment group: propensity scores}
Format propensity scores into a dictionary of {treatment group: propensity scores}.
def _format_p(p, t_groups): """Format propensity scores into a dictionary of {treatment group: propensity scores}. Args: p (np.ndarray, pd.Series, or dict): propensity scores t_groups (list): treatment group names. Returns: dict of {treatment group: propensity scores} """ check_p_conditions(p, t_groups) if isinstance(p, (np.ndarray, pd.Series)): treatment_name = t_groups[0] p = {treatment_name: convert_pd_to_np(p)} elif isinstance(p, dict): p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()} return p
[ "def", "_format_p", "(", "p", ",", "t_groups", ")", ":", "check_p_conditions", "(", "p", ",", "t_groups", ")", "if", "isinstance", "(", "p", ",", "(", "np", ".", "ndarray", ",", "pd", ".", "Series", ")", ")", ":", "treatment_name", "=", "t_groups", "[", "0", "]", "p", "=", "{", "treatment_name", ":", "convert_pd_to_np", "(", "p", ")", "}", "elif", "isinstance", "(", "p", ",", "dict", ")", ":", "p", "=", "{", "treatment_name", ":", "convert_pd_to_np", "(", "_p", ")", "for", "treatment_name", ",", "_p", "in", "p", ".", "items", "(", ")", "}", "return", "p" ]
[ 48, 4 ]
[ 66, 16 ]
python
en
['en', 'en', 'en']
True
BaseLearner._set_propensity_models
(self, X, treatment, y)
Set self.propensity and self.propensity_models. It trains propensity models for all treatment groups, save them in self.propensity_models, and save propensity scores in self.propensity in dictionaries with treatment groups as keys. It will use self.model_p if available to train propensity models. Otherwise, it will use a default PropensityModel (i.e. ElasticNetPropensityModel). Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector
Set self.propensity and self.propensity_models.
def _set_propensity_models(self, X, treatment, y): """Set self.propensity and self.propensity_models. It trains propensity models for all treatment groups, save them in self.propensity_models, and save propensity scores in self.propensity in dictionaries with treatment groups as keys. It will use self.model_p if available to train propensity models. Otherwise, it will use a default PropensityModel (i.e. ElasticNetPropensityModel). Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector """ logger.info('Generating propensity score') p = dict() p_model = dict() for group in self.t_groups: mask = (treatment == group) | (treatment == self.control_name) treatment_filt = treatment[mask] X_filt = X[mask] w_filt = (treatment_filt == group).astype(int) w = (treatment == group).astype(int) propensity_model = self.model_p if hasattr(self, 'model_p') else None p[group], p_model[group] = compute_propensity_score(X=X_filt, treatment=w_filt, p_model=propensity_model, X_pred=X, treatment_pred=w) self.propensity_model = p_model self.propensity = p
[ "def", "_set_propensity_models", "(", "self", ",", "X", ",", "treatment", ",", "y", ")", ":", "logger", ".", "info", "(", "'Generating propensity score'", ")", "p", "=", "dict", "(", ")", "p_model", "=", "dict", "(", ")", "for", "group", "in", "self", ".", "t_groups", ":", "mask", "=", "(", "treatment", "==", "group", ")", "|", "(", "treatment", "==", "self", ".", "control_name", ")", "treatment_filt", "=", "treatment", "[", "mask", "]", "X_filt", "=", "X", "[", "mask", "]", "w_filt", "=", "(", "treatment_filt", "==", "group", ")", ".", "astype", "(", "int", ")", "w", "=", "(", "treatment", "==", "group", ")", ".", "astype", "(", "int", ")", "propensity_model", "=", "self", ".", "model_p", "if", "hasattr", "(", "self", ",", "'model_p'", ")", "else", "None", "p", "[", "group", "]", ",", "p_model", "[", "group", "]", "=", "compute_propensity_score", "(", "X", "=", "X_filt", ",", "treatment", "=", "w_filt", ",", "p_model", "=", "propensity_model", ",", "X_pred", "=", "X", ",", "treatment_pred", "=", "w", ")", "self", ".", "propensity_model", "=", "p_model", "self", ".", "propensity", "=", "p" ]
[ 68, 4 ]
[ 96, 27 ]
python
en
['en', 'en', 'en']
True
BaseLearner.get_importance
(self, X=None, tau=None, model_tau_feature=None, features=None, method='auto', normalize=True, test_size=0.3, random_state=None)
Builds a model (using X to predict estimated/actual tau), and then calculates feature importances based on a specified method. Currently supported methods are: - auto (calculates importance based on estimator's default implementation of feature importance; estimator must be tree-based) Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as importance type - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form) Hint: for permutation, downsample data for better performance especially if X.shape[1] is large Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (np.array): list/array of feature names. If None, an enumerated list will be used method (str): auto, permutation normalize (bool): normalize by sum of importances if method=auto (defaults to True) test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance) random_state (int/RandomState instance/None): random state used in permutation importance estimation
Builds a model (using X to predict estimated/actual tau), and then calculates feature importances based on a specified method.
def get_importance(self, X=None, tau=None, model_tau_feature=None, features=None, method='auto', normalize=True, test_size=0.3, random_state=None): """ Builds a model (using X to predict estimated/actual tau), and then calculates feature importances based on a specified method. Currently supported methods are: - auto (calculates importance based on estimator's default implementation of feature importance; estimator must be tree-based) Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as importance type - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form) Hint: for permutation, downsample data for better performance especially if X.shape[1] is large Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (np.array): list/array of feature names. If None, an enumerated list will be used method (str): auto, permutation normalize (bool): normalize by sum of importances if method=auto (defaults to True) test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance) random_state (int/RandomState instance/None): random state used in permutation importance estimation """ explainer = Explainer(method=method, control_name=self.control_name, X=X, tau=tau, model_tau=model_tau_feature, features=features, classes=self._classes, normalize=normalize, test_size=test_size, random_state=random_state) return explainer.get_importance()
[ "def", "get_importance", "(", "self", ",", "X", "=", "None", ",", "tau", "=", "None", ",", "model_tau_feature", "=", "None", ",", "features", "=", "None", ",", "method", "=", "'auto'", ",", "normalize", "=", "True", ",", "test_size", "=", "0.3", ",", "random_state", "=", "None", ")", ":", "explainer", "=", "Explainer", "(", "method", "=", "method", ",", "control_name", "=", "self", ".", "control_name", ",", "X", "=", "X", ",", "tau", "=", "tau", ",", "model_tau", "=", "model_tau_feature", ",", "features", "=", "features", ",", "classes", "=", "self", ".", "_classes", ",", "normalize", "=", "normalize", ",", "test_size", "=", "test_size", ",", "random_state", "=", "random_state", ")", "return", "explainer", ".", "get_importance", "(", ")" ]
[ 98, 4 ]
[ 129, 41 ]
python
en
['en', 'error', 'th']
False
BaseLearner.get_shap_values
(self, X=None, model_tau_feature=None, tau=None, features=None)
Builds a model (using X to predict estimated/actual tau), and then calculates shapley values. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used.
Builds a model (using X to predict estimated/actual tau), and then calculates shapley values. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used.
def get_shap_values(self, X=None, model_tau_feature=None, tau=None, features=None): """ Builds a model (using X to predict estimated/actual tau), and then calculates shapley values. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used. """ explainer = Explainer(method='shapley', control_name=self.control_name, X=X, tau=tau, model_tau=model_tau_feature, features=features, classes=self._classes) return explainer.get_shap_values()
[ "def", "get_shap_values", "(", "self", ",", "X", "=", "None", ",", "model_tau_feature", "=", "None", ",", "tau", "=", "None", ",", "features", "=", "None", ")", ":", "explainer", "=", "Explainer", "(", "method", "=", "'shapley'", ",", "control_name", "=", "self", ".", "control_name", ",", "X", "=", "X", ",", "tau", "=", "tau", ",", "model_tau", "=", "model_tau_feature", ",", "features", "=", "features", ",", "classes", "=", "self", ".", "_classes", ")", "return", "explainer", ".", "get_shap_values", "(", ")" ]
[ 131, 4 ]
[ 143, 42 ]
python
en
['en', 'error', 'th']
False
BaseLearner.plot_importance
(self, X=None, tau=None, model_tau_feature=None, features=None, method='auto', normalize=True, test_size=0.3, random_state=None)
Builds a model (using X to predict estimated/actual tau), and then plots feature importances based on a specified method. Currently supported methods are: - auto (calculates importance based on estimator's default implementation of feature importance; estimator must be tree-based) Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as importance type - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form) Hint: for permutation, downsample data for better performance especially if X.shape[1] is large Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used method (str): auto, permutation normalize (bool): normalize by sum of importances if method=auto (defaults to True) test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance) random_state (int/RandomState instance/None): random state used in permutation importance estimation
Builds a model (using X to predict estimated/actual tau), and then plots feature importances based on a specified method.
def plot_importance(self, X=None, tau=None, model_tau_feature=None, features=None, method='auto', normalize=True, test_size=0.3, random_state=None): """ Builds a model (using X to predict estimated/actual tau), and then plots feature importances based on a specified method. Currently supported methods are: - auto (calculates importance based on estimator's default implementation of feature importance; estimator must be tree-based) Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as importance type - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form) Hint: for permutation, downsample data for better performance especially if X.shape[1] is large Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used method (str): auto, permutation normalize (bool): normalize by sum of importances if method=auto (defaults to True) test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance) random_state (int/RandomState instance/None): random state used in permutation importance estimation """ explainer = Explainer(method=method, control_name=self.control_name, X=X, tau=tau, model_tau=model_tau_feature, features=features, classes=self._classes, normalize=normalize, test_size=test_size, random_state=random_state) explainer.plot_importance()
[ "def", "plot_importance", "(", "self", ",", "X", "=", "None", ",", "tau", "=", "None", ",", "model_tau_feature", "=", "None", ",", "features", "=", "None", ",", "method", "=", "'auto'", ",", "normalize", "=", "True", ",", "test_size", "=", "0.3", ",", "random_state", "=", "None", ")", ":", "explainer", "=", "Explainer", "(", "method", "=", "method", ",", "control_name", "=", "self", ".", "control_name", ",", "X", "=", "X", ",", "tau", "=", "tau", ",", "model_tau", "=", "model_tau_feature", ",", "features", "=", "features", ",", "classes", "=", "self", ".", "_classes", ",", "normalize", "=", "normalize", ",", "test_size", "=", "test_size", ",", "random_state", "=", "random_state", ")", "explainer", ".", "plot_importance", "(", ")" ]
[ 145, 4 ]
[ 176, 35 ]
python
en
['en', 'error', 'th']
False
BaseLearner.plot_shap_values
(self, X=None, tau=None, model_tau_feature=None, features=None, shap_dict=None, **kwargs)
Plots distribution of shapley values. If shapley values have been pre-computed, pass it through the shap_dict parameter. If shap_dict is not provided, this builds a new model (using X to predict estimated/actual tau), and then calculates shapley values. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix. Required if shap_dict is None. tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used. shap_dict (optional, dict): a dict of shapley value matrices. If None, shap_dict will be computed.
Plots distribution of shapley values.
def plot_shap_values(self, X=None, tau=None, model_tau_feature=None, features=None, shap_dict=None, **kwargs): """ Plots distribution of shapley values. If shapley values have been pre-computed, pass it through the shap_dict parameter. If shap_dict is not provided, this builds a new model (using X to predict estimated/actual tau), and then calculates shapley values. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix. Required if shap_dict is None. tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used. shap_dict (optional, dict): a dict of shapley value matrices. If None, shap_dict will be computed. """ override_checks = False if shap_dict is None else True explainer = Explainer(method='shapley', control_name=self.control_name, X=X, tau=tau, model_tau=model_tau_feature, features=features, override_checks=override_checks, classes=self._classes) explainer.plot_shap_values(shap_dict=shap_dict)
[ "def", "plot_shap_values", "(", "self", ",", "X", "=", "None", ",", "tau", "=", "None", ",", "model_tau_feature", "=", "None", ",", "features", "=", "None", ",", "shap_dict", "=", "None", ",", "*", "*", "kwargs", ")", ":", "override_checks", "=", "False", "if", "shap_dict", "is", "None", "else", "True", "explainer", "=", "Explainer", "(", "method", "=", "'shapley'", ",", "control_name", "=", "self", ".", "control_name", ",", "X", "=", "X", ",", "tau", "=", "tau", ",", "model_tau", "=", "model_tau_feature", ",", "features", "=", "features", ",", "override_checks", "=", "override_checks", ",", "classes", "=", "self", ".", "_classes", ")", "explainer", ".", "plot_shap_values", "(", "shap_dict", "=", "shap_dict", ")" ]
[ 178, 4 ]
[ 197, 55 ]
python
en
['en', 'error', 'th']
False
BaseLearner.plot_shap_dependence
(self, treatment_group, feature_idx, X, tau, model_tau_feature=None, features=None, shap_dict=None, interaction_idx='auto', **kwargs)
Plots dependency of shapley values for a specified feature, colored by an interaction feature. If shapley values have been pre-computed, pass it through the shap_dict parameter. If shap_dict is not provided, this builds a new model (using X to predict estimated/actual tau), and then calculates shapley values. This plots the value of the feature on the x-axis and the SHAP value of the same feature on the y-axis. This shows how the model depends on the given feature, and is like a richer extension of the classical partial dependence plots. Vertical dispersion of the data points represents interaction effects. Args: treatment_group (str or int): name of treatment group to create dependency plot on feature_idx (str or int): feature index / name to create dependency plot on X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used. shap_dict (optional, dict): a dict of shapley value matrices. If None, shap_dict will be computed. interaction_idx (optional, str or int): feature index / name used in coloring scheme as interaction feature. If "auto" then shap.common.approximate_interactions is used to pick what seems to be the strongest interaction (note that to find to true strongest interaction you need to compute the SHAP interaction values).
Plots dependency of shapley values for a specified feature, colored by an interaction feature.
def plot_shap_dependence(self, treatment_group, feature_idx, X, tau, model_tau_feature=None, features=None, shap_dict=None, interaction_idx='auto', **kwargs): """ Plots dependency of shapley values for a specified feature, colored by an interaction feature. If shapley values have been pre-computed, pass it through the shap_dict parameter. If shap_dict is not provided, this builds a new model (using X to predict estimated/actual tau), and then calculates shapley values. This plots the value of the feature on the x-axis and the SHAP value of the same feature on the y-axis. This shows how the model depends on the given feature, and is like a richer extension of the classical partial dependence plots. Vertical dispersion of the data points represents interaction effects. Args: treatment_group (str or int): name of treatment group to create dependency plot on feature_idx (str or int): feature index / name to create dependency plot on X (np.matrix or np.array or pd.Dataframe): a feature matrix tau (np.array): a treatment effect vector (estimated/actual) model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object features (optional, np.array): list/array of feature names. If None, an enumerated list will be used. shap_dict (optional, dict): a dict of shapley value matrices. If None, shap_dict will be computed. interaction_idx (optional, str or int): feature index / name used in coloring scheme as interaction feature. If "auto" then shap.common.approximate_interactions is used to pick what seems to be the strongest interaction (note that to find to true strongest interaction you need to compute the SHAP interaction values). """ override_checks = False if shap_dict is None else True explainer = Explainer(method='shapley', control_name=self.control_name, X=X, tau=tau, model_tau=model_tau_feature, features=features, override_checks=override_checks, classes=self._classes) explainer.plot_shap_dependence(treatment_group=treatment_group, feature_idx=feature_idx, shap_dict=shap_dict, interaction_idx=interaction_idx, **kwargs)
[ "def", "plot_shap_dependence", "(", "self", ",", "treatment_group", ",", "feature_idx", ",", "X", ",", "tau", ",", "model_tau_feature", "=", "None", ",", "features", "=", "None", ",", "shap_dict", "=", "None", ",", "interaction_idx", "=", "'auto'", ",", "*", "*", "kwargs", ")", ":", "override_checks", "=", "False", "if", "shap_dict", "is", "None", "else", "True", "explainer", "=", "Explainer", "(", "method", "=", "'shapley'", ",", "control_name", "=", "self", ".", "control_name", ",", "X", "=", "X", ",", "tau", "=", "tau", ",", "model_tau", "=", "model_tau_feature", ",", "features", "=", "features", ",", "override_checks", "=", "override_checks", ",", "classes", "=", "self", ".", "_classes", ")", "explainer", ".", "plot_shap_dependence", "(", "treatment_group", "=", "treatment_group", ",", "feature_idx", "=", "feature_idx", ",", "shap_dict", "=", "shap_dict", ",", "interaction_idx", "=", "interaction_idx", ",", "*", "*", "kwargs", ")" ]
[ 199, 4 ]
[ 235, 48 ]
python
en
['en', 'error', 'th']
False
VimLexer.is_in
(self, w, mapping)
r""" It's kind of difficult to decide if something might be a keyword in VimL because it allows you to abbreviate them. In fact, 'ab[breviate]' is a good example. :ab, :abbre, or :abbreviate are valid ways to call it so rather than making really awful regexps like:: \bab(?:b(?:r(?:e(?:v(?:i(?:a(?:t(?:e)?)?)?)?)?)?)?)?\b we match `\b\w+\b` and then call is_in() on those tokens. See `scripts/get_vimkw.py` for how the lists are extracted.
r""" It's kind of difficult to decide if something might be a keyword in VimL because it allows you to abbreviate them. In fact, 'ab[breviate]' is a good example. :ab, :abbre, or :abbreviate are valid ways to call it so rather than making really awful regexps like::
def is_in(self, w, mapping): r""" It's kind of difficult to decide if something might be a keyword in VimL because it allows you to abbreviate them. In fact, 'ab[breviate]' is a good example. :ab, :abbre, or :abbreviate are valid ways to call it so rather than making really awful regexps like:: \bab(?:b(?:r(?:e(?:v(?:i(?:a(?:t(?:e)?)?)?)?)?)?)?)?\b we match `\b\w+\b` and then call is_in() on those tokens. See `scripts/get_vimkw.py` for how the lists are extracted. """ p = bisect(mapping, (w,)) if p > 0: if mapping[p-1][0] == w[:len(mapping[p-1][0])] and \ mapping[p-1][1][:len(w)] == w: return True if p < len(mapping): return mapping[p][0] == w[:len(mapping[p][0])] and \ mapping[p][1][:len(w)] == w return False
[ "def", "is_in", "(", "self", ",", "w", ",", "mapping", ")", ":", "p", "=", "bisect", "(", "mapping", ",", "(", "w", ",", ")", ")", "if", "p", ">", "0", ":", "if", "mapping", "[", "p", "-", "1", "]", "[", "0", "]", "==", "w", "[", ":", "len", "(", "mapping", "[", "p", "-", "1", "]", "[", "0", "]", ")", "]", "and", "mapping", "[", "p", "-", "1", "]", "[", "1", "]", "[", ":", "len", "(", "w", ")", "]", "==", "w", ":", "return", "True", "if", "p", "<", "len", "(", "mapping", ")", ":", "return", "mapping", "[", "p", "]", "[", "0", "]", "==", "w", "[", ":", "len", "(", "mapping", "[", "p", "]", "[", "0", "]", ")", "]", "and", "mapping", "[", "p", "]", "[", "1", "]", "[", ":", "len", "(", "w", ")", "]", "==", "w", "return", "False" ]
[ 130, 4 ]
[ 151, 20 ]
python
cy
['en', 'cy', 'hi']
False
_sql_session_rollback
(self, attr)
Inject SQLDocumentStore at runtime to do a session rollback each time it is called. This allows to catch errors where an intended operation is still in a transaction, but not committed to the database.
Inject SQLDocumentStore at runtime to do a session rollback each time it is called. This allows to catch errors where an intended operation is still in a transaction, but not committed to the database.
def _sql_session_rollback(self, attr): """ Inject SQLDocumentStore at runtime to do a session rollback each time it is called. This allows to catch errors where an intended operation is still in a transaction, but not committed to the database. """ method = object.__getattribute__(self, attr) if callable(method): try: self.session.rollback() except AttributeError: pass return method
[ "def", "_sql_session_rollback", "(", "self", ",", "attr", ")", ":", "method", "=", "object", ".", "__getattribute__", "(", "self", ",", "attr", ")", "if", "callable", "(", "method", ")", ":", "try", ":", "self", ".", "session", ".", "rollback", "(", ")", "except", "AttributeError", ":", "pass", "return", "method" ]
[ 28, 0 ]
[ 40, 17 ]
python
en
['en', 'error', 'th']
False
project
()
Project operations
Project operations
def project(): """Project operations""" pass
[ "def", "project", "(", ")", ":", "pass" ]
[ 14, 0 ]
[ 16, 8 ]
python
en
['en', 'en', 'en']
False
project_check_config
(ctx)
Check a config for validity and help with migrations.
Check a config for validity and help with migrations.
def project_check_config(ctx): """Check a config for validity and help with migrations.""" cli_message("Checking your config files for validity...\n") directory = toolkit.parse_cli_config_file_location( config_file_location=ctx.obj.config_file_location ).get("directory") is_config_ok, error_message, context = do_config_check(directory) if context: toolkit.send_usage_message( data_context=context, event="cli.project.check_config", success=True ) if not is_config_ok: cli_message("Unfortunately, your config appears to be invalid:\n") cli_message("<red>{}</red>".format(error_message)) sys.exit(1) cli_message("<green>Your config file appears valid!</green>")
[ "def", "project_check_config", "(", "ctx", ")", ":", "cli_message", "(", "\"Checking your config files for validity...\\n\"", ")", "directory", "=", "toolkit", ".", "parse_cli_config_file_location", "(", "config_file_location", "=", "ctx", ".", "obj", ".", "config_file_location", ")", ".", "get", "(", "\"directory\"", ")", "is_config_ok", ",", "error_message", ",", "context", "=", "do_config_check", "(", "directory", ")", "if", "context", ":", "toolkit", ".", "send_usage_message", "(", "data_context", "=", "context", ",", "event", "=", "\"cli.project.check_config\"", ",", "success", "=", "True", ")", "if", "not", "is_config_ok", ":", "cli_message", "(", "\"Unfortunately, your config appears to be invalid:\\n\"", ")", "cli_message", "(", "\"<red>{}</red>\"", ".", "format", "(", "error_message", ")", ")", "sys", ".", "exit", "(", "1", ")", "cli_message", "(", "\"<green>Your config file appears valid!</green>\"", ")" ]
[ 21, 0 ]
[ 37, 65 ]
python
en
['en', 'en', 'en']
True
project_upgrade
(ctx)
Upgrade a project after installing the next Great Expectations major version.
Upgrade a project after installing the next Great Expectations major version.
def project_upgrade(ctx): """Upgrade a project after installing the next Great Expectations major version.""" cli_message("\nChecking project...") cli_message(SECTION_SEPARATOR) directory = toolkit.parse_cli_config_file_location( config_file_location=ctx.obj.config_file_location ).get("directory") if load_data_context_with_error_handling( directory=directory, from_cli_upgrade_command=True ): up_to_date_message = ( "Your project is up-to-date - no further upgrade is necessary.\n" ) cli_message(f"<green>{up_to_date_message}</green>") sys.exit(0)
[ "def", "project_upgrade", "(", "ctx", ")", ":", "cli_message", "(", "\"\\nChecking project...\"", ")", "cli_message", "(", "SECTION_SEPARATOR", ")", "directory", "=", "toolkit", ".", "parse_cli_config_file_location", "(", "config_file_location", "=", "ctx", ".", "obj", ".", "config_file_location", ")", ".", "get", "(", "\"directory\"", ")", "if", "load_data_context_with_error_handling", "(", "directory", "=", "directory", ",", "from_cli_upgrade_command", "=", "True", ")", ":", "up_to_date_message", "=", "(", "\"Your project is up-to-date - no further upgrade is necessary.\\n\"", ")", "cli_message", "(", "f\"<green>{up_to_date_message}</green>\"", ")", "sys", ".", "exit", "(", "0", ")" ]
[ 42, 0 ]
[ 56, 19 ]
python
en
['en', 'en', 'en']
True
binary_classification_loss
(concat_true, concat_pred)
Implements a classification (binary cross-entropy) loss function for DragonNet architecture. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): binary cross-entropy loss
Implements a classification (binary cross-entropy) loss function for DragonNet architecture.
def binary_classification_loss(concat_true, concat_pred): """ Implements a classification (binary cross-entropy) loss function for DragonNet architecture. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): binary cross-entropy loss """ t_true = concat_true[:, 1] t_pred = concat_pred[:, 2] t_pred = (t_pred + 0.001) / 1.002 losst = tf.reduce_sum(K.binary_crossentropy(t_true, t_pred)) return losst
[ "def", "binary_classification_loss", "(", "concat_true", ",", "concat_pred", ")", ":", "t_true", "=", "concat_true", "[", ":", ",", "1", "]", "t_pred", "=", "concat_pred", "[", ":", ",", "2", "]", "t_pred", "=", "(", "t_pred", "+", "0.001", ")", "/", "1.002", "losst", "=", "tf", ".", "reduce_sum", "(", "K", ".", "binary_crossentropy", "(", "t_true", ",", "t_pred", ")", ")", "return", "losst" ]
[ 6, 0 ]
[ 23, 16 ]
python
en
['en', 'error', 'th']
False
regression_loss
(concat_true, concat_pred)
Implements a regression (squared error) loss function for DragonNet architecture. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): aggregated regression loss
Implements a regression (squared error) loss function for DragonNet architecture.
def regression_loss(concat_true, concat_pred): """ Implements a regression (squared error) loss function for DragonNet architecture. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): aggregated regression loss """ y_true = concat_true[:, 0] t_true = concat_true[:, 1] y0_pred = concat_pred[:, 0] y1_pred = concat_pred[:, 1] loss0 = tf.reduce_sum((1. - t_true) * tf.square(y_true - y0_pred)) loss1 = tf.reduce_sum(t_true * tf.square(y_true - y1_pred)) return loss0 + loss1
[ "def", "regression_loss", "(", "concat_true", ",", "concat_pred", ")", ":", "y_true", "=", "concat_true", "[", ":", ",", "0", "]", "t_true", "=", "concat_true", "[", ":", ",", "1", "]", "y0_pred", "=", "concat_pred", "[", ":", ",", "0", "]", "y1_pred", "=", "concat_pred", "[", ":", ",", "1", "]", "loss0", "=", "tf", ".", "reduce_sum", "(", "(", "1.", "-", "t_true", ")", "*", "tf", ".", "square", "(", "y_true", "-", "y0_pred", ")", ")", "loss1", "=", "tf", ".", "reduce_sum", "(", "t_true", "*", "tf", ".", "square", "(", "y_true", "-", "y1_pred", ")", ")", "return", "loss0", "+", "loss1" ]
[ 26, 0 ]
[ 47, 24 ]
python
en
['en', 'error', 'th']
False
dragonnet_loss_binarycross
(concat_true, concat_pred)
Implements regression + classification loss in one wrapper function. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): aggregated regression + classification loss
Implements regression + classification loss in one wrapper function.
def dragonnet_loss_binarycross(concat_true, concat_pred): """ Implements regression + classification loss in one wrapper function. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): aggregated regression + classification loss """ return regression_loss(concat_true, concat_pred) + binary_classification_loss(concat_true, concat_pred)
[ "def", "dragonnet_loss_binarycross", "(", "concat_true", ",", "concat_pred", ")", ":", "return", "regression_loss", "(", "concat_true", ",", "concat_pred", ")", "+", "binary_classification_loss", "(", "concat_true", ",", "concat_pred", ")" ]
[ 50, 0 ]
[ 62, 107 ]
python
en
['en', 'error', 'th']
False
treatment_accuracy
(concat_true, concat_pred)
Returns keras' binary_accuracy between treatment and prediction of propensity. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): binary accuracy
Returns keras' binary_accuracy between treatment and prediction of propensity.
def treatment_accuracy(concat_true, concat_pred): """ Returns keras' binary_accuracy between treatment and prediction of propensity. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): binary accuracy """ t_true = concat_true[:, 1] t_pred = concat_pred[:, 2] return binary_accuracy(t_true, t_pred)
[ "def", "treatment_accuracy", "(", "concat_true", ",", "concat_pred", ")", ":", "t_true", "=", "concat_true", "[", ":", ",", "1", "]", "t_pred", "=", "concat_pred", "[", ":", ",", "2", "]", "return", "binary_accuracy", "(", "t_true", ",", "t_pred", ")" ]
[ 65, 0 ]
[ 79, 42 ]
python
en
['en', 'error', 'th']
False
track_epsilon
(concat_true, concat_pred)
Tracks the mean absolute value of epsilon. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): mean absolute value of epsilon
Tracks the mean absolute value of epsilon.
def track_epsilon(concat_true, concat_pred): """ Tracks the mean absolute value of epsilon. Args: - concat_true (tf.tensor): tensor of true samples, with shape (n_samples, 2) Each row in concat_true is comprised of (y, treatment) - concat_pred (tf.tensor): tensor of predictions, with shape (n_samples, 4) Each row in concat_pred is comprised of (y0, y1, propensity, epsilon) Returns: - (float): mean absolute value of epsilon """ epsilons = concat_pred[:, 3] return tf.abs(tf.reduce_mean(epsilons))
[ "def", "track_epsilon", "(", "concat_true", ",", "concat_pred", ")", ":", "epsilons", "=", "concat_pred", "[", ":", ",", "3", "]", "return", "tf", ".", "abs", "(", "tf", ".", "reduce_mean", "(", "epsilons", ")", ")" ]
[ 82, 0 ]
[ 95, 43 ]
python
en
['en', 'error', 'th']
False
make_tarreg_loss
(ratio=1., dragonnet_loss=dragonnet_loss_binarycross)
Given a specified loss function, returns the same loss function with targeted regularization. Args: ratio (float): weight assigned to the targeted regularization loss component dragonnet_loss (function): a loss function Returns: (function): loss function with targeted regularization, weighted by specified ratio
Given a specified loss function, returns the same loss function with targeted regularization.
def make_tarreg_loss(ratio=1., dragonnet_loss=dragonnet_loss_binarycross): """ Given a specified loss function, returns the same loss function with targeted regularization. Args: ratio (float): weight assigned to the targeted regularization loss component dragonnet_loss (function): a loss function Returns: (function): loss function with targeted regularization, weighted by specified ratio """ def tarreg_ATE_unbounded_domain_loss(concat_true, concat_pred): """ Returns the loss function (specified in outer function) with targeted regularization. """ vanilla_loss = dragonnet_loss(concat_true, concat_pred) y_true = concat_true[:, 0] t_true = concat_true[:, 1] y0_pred = concat_pred[:, 0] y1_pred = concat_pred[:, 1] t_pred = concat_pred[:, 2] epsilons = concat_pred[:, 3] t_pred = (t_pred + 0.01) / 1.02 # t_pred = tf.clip_by_value(t_pred,0.01, 0.99,name='t_pred') y_pred = t_true * y1_pred + (1 - t_true) * y0_pred h = t_true / t_pred - (1 - t_true) / (1 - t_pred) y_pert = y_pred + epsilons * h targeted_regularization = tf.reduce_sum(tf.square(y_true - y_pert)) # final loss = vanilla_loss + ratio * targeted_regularization return loss return tarreg_ATE_unbounded_domain_loss
[ "def", "make_tarreg_loss", "(", "ratio", "=", "1.", ",", "dragonnet_loss", "=", "dragonnet_loss_binarycross", ")", ":", "def", "tarreg_ATE_unbounded_domain_loss", "(", "concat_true", ",", "concat_pred", ")", ":", "\"\"\"\n Returns the loss function (specified in outer function) with targeted regularization.\n \"\"\"", "vanilla_loss", "=", "dragonnet_loss", "(", "concat_true", ",", "concat_pred", ")", "y_true", "=", "concat_true", "[", ":", ",", "0", "]", "t_true", "=", "concat_true", "[", ":", ",", "1", "]", "y0_pred", "=", "concat_pred", "[", ":", ",", "0", "]", "y1_pred", "=", "concat_pred", "[", ":", ",", "1", "]", "t_pred", "=", "concat_pred", "[", ":", ",", "2", "]", "epsilons", "=", "concat_pred", "[", ":", ",", "3", "]", "t_pred", "=", "(", "t_pred", "+", "0.01", ")", "/", "1.02", "# t_pred = tf.clip_by_value(t_pred,0.01, 0.99,name='t_pred')", "y_pred", "=", "t_true", "*", "y1_pred", "+", "(", "1", "-", "t_true", ")", "*", "y0_pred", "h", "=", "t_true", "/", "t_pred", "-", "(", "1", "-", "t_true", ")", "/", "(", "1", "-", "t_pred", ")", "y_pert", "=", "y_pred", "+", "epsilons", "*", "h", "targeted_regularization", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "square", "(", "y_true", "-", "y_pert", ")", ")", "# final", "loss", "=", "vanilla_loss", "+", "ratio", "*", "targeted_regularization", "return", "loss", "return", "tarreg_ATE_unbounded_domain_loss" ]
[ 98, 0 ]
[ 136, 43 ]
python
en
['en', 'error', 'th']
False
EpsilonLayer.__init__
(self)
Inherits keras' Layer object.
Inherits keras' Layer object.
def __init__(self): """ Inherits keras' Layer object. """ super(EpsilonLayer, self).__init__()
[ "def", "__init__", "(", "self", ")", ":", "super", "(", "EpsilonLayer", ",", "self", ")", ".", "__init__", "(", ")" ]
[ 143, 4 ]
[ 147, 44 ]
python
en
['en', 'error', 'th']
False
EpsilonLayer.build
(self, input_shape)
Creates a trainable weight variable for this layer.
Creates a trainable weight variable for this layer.
def build(self, input_shape): """ Creates a trainable weight variable for this layer. """ self.epsilon = self.add_weight(name='epsilon', shape=[1, 1], initializer='RandomNormal', trainable=True) super(EpsilonLayer, self).build(input_shape)
[ "def", "build", "(", "self", ",", "input_shape", ")", ":", "self", ".", "epsilon", "=", "self", ".", "add_weight", "(", "name", "=", "'epsilon'", ",", "shape", "=", "[", "1", ",", "1", "]", ",", "initializer", "=", "'RandomNormal'", ",", "trainable", "=", "True", ")", "super", "(", "EpsilonLayer", ",", "self", ")", ".", "build", "(", "input_shape", ")" ]
[ 149, 4 ]
[ 157, 52 ]
python
en
['en', 'error', 'th']
False
test_glob_reader_generator
(basic_pandas_datasource, tmp_path_factory)
Provides an example of how glob generator works: we specify our own names for data_assets, and an associated glob; the generator will take care of providing batches consisting of one file per batch corresponding to the glob.
Provides an example of how glob generator works: we specify our own names for data_assets, and an associated glob; the generator will take care of providing batches consisting of one file per batch corresponding to the glob.
def test_glob_reader_generator(basic_pandas_datasource, tmp_path_factory): """Provides an example of how glob generator works: we specify our own names for data_assets, and an associated glob; the generator will take care of providing batches consisting of one file per batch corresponding to the glob.""" basedir = str(tmp_path_factory.mktemp("test_glob_reader_generator")) with open(os.path.join(basedir, "f1.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f2.csv"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f3.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f4.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f5.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f6.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f7.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f8.parquet"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f9.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f0.json"), "w") as outfile: outfile.write("\n\n\n") g2 = GlobReaderBatchKwargsGenerator( base_directory=basedir, datasource=basic_pandas_datasource, asset_globs={"blargs": {"glob": "*.blarg"}, "fs": {"glob": "f*"}}, ) g2_assets = g2.get_available_data_asset_names() # Use set in test to avoid order issues assert set(g2_assets["names"]) == {("blargs", "path"), ("fs", "path")} blargs_kwargs = [x["path"] for x in g2.get_iterator(data_asset_name="blargs")] real_blargs = [ os.path.join(basedir, "f1.blarg"), os.path.join(basedir, "f3.blarg"), os.path.join(basedir, "f4.blarg"), os.path.join(basedir, "f5.blarg"), os.path.join(basedir, "f6.blarg"), ] for kwargs in real_blargs: assert kwargs in blargs_kwargs assert len(blargs_kwargs) == len(real_blargs)
[ "def", "test_glob_reader_generator", "(", "basic_pandas_datasource", ",", "tmp_path_factory", ")", ":", "basedir", "=", "str", "(", "tmp_path_factory", ".", "mktemp", "(", "\"test_glob_reader_generator\"", ")", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f1.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f2.csv\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f3.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f4.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f5.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f6.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f7.xls\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f8.parquet\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f9.xls\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f0.json\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "g2", "=", "GlobReaderBatchKwargsGenerator", "(", "base_directory", "=", "basedir", ",", "datasource", "=", "basic_pandas_datasource", ",", "asset_globs", "=", "{", "\"blargs\"", ":", "{", "\"glob\"", ":", "\"*.blarg\"", "}", ",", "\"fs\"", ":", "{", "\"glob\"", ":", "\"f*\"", "}", "}", ",", ")", "g2_assets", "=", "g2", ".", "get_available_data_asset_names", "(", ")", "# Use set in test to avoid order issues", "assert", "set", "(", "g2_assets", "[", "\"names\"", "]", ")", "==", "{", "(", "\"blargs\"", ",", "\"path\"", ")", ",", "(", "\"fs\"", ",", "\"path\"", ")", "}", "blargs_kwargs", "=", "[", "x", "[", "\"path\"", "]", "for", "x", "in", "g2", ".", "get_iterator", "(", "data_asset_name", "=", "\"blargs\"", ")", "]", "real_blargs", "=", "[", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f1.blarg\"", ")", ",", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f3.blarg\"", ")", ",", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f4.blarg\"", ")", ",", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f5.blarg\"", ")", ",", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f6.blarg\"", ")", ",", "]", "for", "kwargs", "in", "real_blargs", ":", "assert", "kwargs", "in", "blargs_kwargs", "assert", "len", "(", "blargs_kwargs", ")", "==", "len", "(", "real_blargs", ")" ]
[ 63, 0 ]
[ 113, 49 ]
python
en
['en', 'en', 'en']
True
test_file_kwargs_generator_extensions
(tmp_path_factory)
csv, xls, parquet, json should be recognized file extensions
csv, xls, parquet, json should be recognized file extensions
def test_file_kwargs_generator_extensions(tmp_path_factory): """csv, xls, parquet, json should be recognized file extensions""" basedir = str(tmp_path_factory.mktemp("test_file_kwargs_generator_extensions")) # Do not include: invalid extension with open(os.path.join(basedir, "f1.blarg"), "w") as outfile: outfile.write("\n\n\n") # Include with open(os.path.join(basedir, "f2.csv"), "w") as outfile: outfile.write("\n\n\n") # Do not include: valid subdir, but no valid files in it os.mkdir(os.path.join(basedir, "f3")) with open(os.path.join(basedir, "f3", "f3_1.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f3", "f3_2.blarg"), "w") as outfile: outfile.write("\n\n\n") # Include: valid subdir with valid files os.mkdir(os.path.join(basedir, "f4")) with open(os.path.join(basedir, "f4", "f4_1.csv"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f4", "f4_2.csv"), "w") as outfile: outfile.write("\n\n\n") # Do not include: valid extension, but dot prefix with open(os.path.join(basedir, ".f5.csv"), "w") as outfile: outfile.write("\n\n\n") # Include: valid extensions with open(os.path.join(basedir, "f6.tsv"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f7.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f8.parquet"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f9.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f0.json"), "w") as outfile: outfile.write("\n\n\n") g1 = SubdirReaderBatchKwargsGenerator(datasource="foo", base_directory=basedir) g1_assets = g1.get_available_data_asset_names() # Use set in test to avoid order issues assert set(g1_assets["names"]) == { ("f7", "file"), ("f4", "directory"), ("f6", "file"), ("f0", "file"), ("f2", "file"), ("f9", "file"), ("f8", "file"), }
[ "def", "test_file_kwargs_generator_extensions", "(", "tmp_path_factory", ")", ":", "basedir", "=", "str", "(", "tmp_path_factory", ".", "mktemp", "(", "\"test_file_kwargs_generator_extensions\"", ")", ")", "# Do not include: invalid extension", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f1.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "# Include", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f2.csv\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "# Do not include: valid subdir, but no valid files in it", "os", ".", "mkdir", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f3\"", ")", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f3\"", ",", "\"f3_1.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f3\"", ",", "\"f3_2.blarg\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "# Include: valid subdir with valid files", "os", ".", "mkdir", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f4\"", ")", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f4\"", ",", "\"f4_1.csv\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f4\"", ",", "\"f4_2.csv\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "# Do not include: valid extension, but dot prefix", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\".f5.csv\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "# Include: valid extensions", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f6.tsv\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f7.xls\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f8.parquet\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f9.xls\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "basedir", ",", "\"f0.json\"", ")", ",", "\"w\"", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "\"\\n\\n\\n\"", ")", "g1", "=", "SubdirReaderBatchKwargsGenerator", "(", "datasource", "=", "\"foo\"", ",", "base_directory", "=", "basedir", ")", "g1_assets", "=", "g1", ".", "get_available_data_asset_names", "(", ")", "# Use set in test to avoid order issues", "assert", "set", "(", "g1_assets", "[", "\"names\"", "]", ")", "==", "{", "(", "\"f7\"", ",", "\"file\"", ")", ",", "(", "\"f4\"", ",", "\"directory\"", ")", ",", "(", "\"f6\"", ",", "\"file\"", ")", ",", "(", "\"f0\"", ",", "\"file\"", ")", ",", "(", "\"f2\"", ",", "\"file\"", ")", ",", "(", "\"f9\"", ",", "\"file\"", ")", ",", "(", "\"f8\"", ",", "\"file\"", ")", ",", "}" ]
[ 116, 0 ]
[ 166, 5 ]
python
en
['en', 'fr', 'en']
True
__init__
(self, project_config, context_root_dir=None, runtime_environment=None)
DataContext constructor Args: context_root_dir: location to look for the ``great_expectations.yml`` file. If None, searches for the file \ based on conventions for project subdirectories. runtime_environment: a dictionary of config variables that override both those set in config_variables.yml and the environment Returns: None
DataContext constructor
def __init__(self, project_config, context_root_dir=None, runtime_environment=None): """DataContext constructor Args: context_root_dir: location to look for the ``great_expectations.yml`` file. If None, searches for the file \ based on conventions for project subdirectories. runtime_environment: a dictionary of config variables that override both those set in config_variables.yml and the environment Returns: None """ if not BaseDataContext.validate_config(project_config): raise ge_exceptions.InvalidConfigError( "Your project_config is not valid. Try using the CLI check-config command." ) self._project_config = project_config self._apply_global_config_overrides() if context_root_dir is not None: context_root_dir = os.path.abspath(context_root_dir) self._context_root_directory = context_root_dir self.runtime_environment = runtime_environment or {} # Init plugin support if self.plugins_directory is not None and os.path.exists( self.plugins_directory ): sys.path.append(self.plugins_directory) # We want to have directories set up before initializing usage statistics so that we can obtain a context instance id self._in_memory_instance_id = ( None # This variable *may* be used in case we cannot save an instance id ) # Init stores self._stores = dict() self._init_stores(self.project_config_with_variables_substituted.stores) # Init data_context_id self._data_context_id = self._construct_data_context_id() # Override the project_config data_context_id if an expectations_store was already set up self._project_config.anonymous_usage_statistics.data_context_id = ( self._data_context_id ) self._initialize_usage_statistics( self._project_config.anonymous_usage_statistics ) # Store cached datasources but don't init them self._cached_datasources = {} # Build the datasources we know about and have access to self._init_datasources(self.project_config_with_variables_substituted) # Init validation operators # NOTE - 20200522 - JPC - A consistent approach to lazy loading for plugins will be useful here, harmonizing # the way that execution environments (AKA datasources), validation operators, site builders and other # plugins are built. self.validation_operators = {} # NOTE - 20210112 - Alex Sherstinsky - Validation Operators are planned to be deprecated. if ( "validation_operators" in self.get_config().commented_map and self._project_config.validation_operators ): for ( validation_operator_name, validation_operator_config, ) in self._project_config.validation_operators.items(): self.add_validation_operator( validation_operator_name, validation_operator_config, ) self._evaluation_parameter_dependencies_compiled = False self._evaluation_parameter_dependencies = {}
[ "def", "__init__", "(", "self", ",", "project_config", ",", "context_root_dir", "=", "None", ",", "runtime_environment", "=", "None", ")", ":", "if", "not", "BaseDataContext", ".", "validate_config", "(", "project_config", ")", ":", "raise", "ge_exceptions", ".", "InvalidConfigError", "(", "\"Your project_config is not valid. Try using the CLI check-config command.\"", ")", "self", ".", "_project_config", "=", "project_config", "self", ".", "_apply_global_config_overrides", "(", ")", "if", "context_root_dir", "is", "not", "None", ":", "context_root_dir", "=", "os", ".", "path", ".", "abspath", "(", "context_root_dir", ")", "self", ".", "_context_root_directory", "=", "context_root_dir", "self", ".", "runtime_environment", "=", "runtime_environment", "or", "{", "}", "# Init plugin support", "if", "self", ".", "plugins_directory", "is", "not", "None", "and", "os", ".", "path", ".", "exists", "(", "self", ".", "plugins_directory", ")", ":", "sys", ".", "path", ".", "append", "(", "self", ".", "plugins_directory", ")", "# We want to have directories set up before initializing usage statistics so that we can obtain a context instance id", "self", ".", "_in_memory_instance_id", "=", "(", "None", "# This variable *may* be used in case we cannot save an instance id", ")", "# Init stores", "self", ".", "_stores", "=", "dict", "(", ")", "self", ".", "_init_stores", "(", "self", ".", "project_config_with_variables_substituted", ".", "stores", ")", "# Init data_context_id", "self", ".", "_data_context_id", "=", "self", ".", "_construct_data_context_id", "(", ")", "# Override the project_config data_context_id if an expectations_store was already set up", "self", ".", "_project_config", ".", "anonymous_usage_statistics", ".", "data_context_id", "=", "(", "self", ".", "_data_context_id", ")", "self", ".", "_initialize_usage_statistics", "(", "self", ".", "_project_config", ".", "anonymous_usage_statistics", ")", "# Store cached datasources but don't init them", "self", ".", "_cached_datasources", "=", "{", "}", "# Build the datasources we know about and have access to", "self", ".", "_init_datasources", "(", "self", ".", "project_config_with_variables_substituted", ")", "# Init validation operators", "# NOTE - 20200522 - JPC - A consistent approach to lazy loading for plugins will be useful here, harmonizing", "# the way that execution environments (AKA datasources), validation operators, site builders and other", "# plugins are built.", "self", ".", "validation_operators", "=", "{", "}", "# NOTE - 20210112 - Alex Sherstinsky - Validation Operators are planned to be deprecated.", "if", "(", "\"validation_operators\"", "in", "self", ".", "get_config", "(", ")", ".", "commented_map", "and", "self", ".", "_project_config", ".", "validation_operators", ")", ":", "for", "(", "validation_operator_name", ",", "validation_operator_config", ",", ")", "in", "self", ".", "_project_config", ".", "validation_operators", ".", "items", "(", ")", ":", "self", ".", "add_validation_operator", "(", "validation_operator_name", ",", "validation_operator_config", ",", ")", "self", ".", "_evaluation_parameter_dependencies_compiled", "=", "False", "self", ".", "_evaluation_parameter_dependencies", "=", "{", "}" ]
[ 298, 4 ]
[ 375, 52 ]
python
en
['en', 'lb', 'en']
False
_init_stores
(self, store_configs)
Initialize all Stores for this DataContext. Stores are a good fit for reading/writing objects that: 1. follow a clear key-value pattern, and 2. are usually edited programmatically, using the Context Note that stores do NOT manage plugins.
Initialize all Stores for this DataContext.
def _init_stores(self, store_configs): """Initialize all Stores for this DataContext. Stores are a good fit for reading/writing objects that: 1. follow a clear key-value pattern, and 2. are usually edited programmatically, using the Context Note that stores do NOT manage plugins. """ for store_name, store_config in store_configs.items(): self._build_store_from_config(store_name, store_config)
[ "def", "_init_stores", "(", "self", ",", "store_configs", ")", ":", "for", "store_name", ",", "store_config", "in", "store_configs", ".", "items", "(", ")", ":", "self", ".", "_build_store_from_config", "(", "store_name", ",", "store_config", ")" ]
[ 410, 4 ]
[ 420, 67 ]
python
en
['en', 'en', 'en']
True
_construct_data_context_id
(self)
Choose the id of the currently-configured expectations store, if available and a persistent store. If not, it should choose the id stored in DataContextConfig. Returns: UUID to use as the data_context_id
Choose the id of the currently-configured expectations store, if available and a persistent store. If not, it should choose the id stored in DataContextConfig. Returns: UUID to use as the data_context_id
def _construct_data_context_id(self) -> str: """ Choose the id of the currently-configured expectations store, if available and a persistent store. If not, it should choose the id stored in DataContextConfig. Returns: UUID to use as the data_context_id """ # Choose the id of the currently-configured expectations store, if it is a persistent store expectations_store = self._stores[ self.project_config_with_variables_substituted.expectations_store_name ] if isinstance(expectations_store.store_backend, TupleStoreBackend): # suppress_warnings since a warning will already have been issued during the store creation if there was an invalid store config return expectations_store.store_backend_id_warnings_suppressed # Otherwise choose the id stored in the project_config else: return ( self.project_config_with_variables_substituted.anonymous_usage_statistics.data_context_id )
[ "def", "_construct_data_context_id", "(", "self", ")", "->", "str", ":", "# Choose the id of the currently-configured expectations store, if it is a persistent store", "expectations_store", "=", "self", ".", "_stores", "[", "self", ".", "project_config_with_variables_substituted", ".", "expectations_store_name", "]", "if", "isinstance", "(", "expectations_store", ".", "store_backend", ",", "TupleStoreBackend", ")", ":", "# suppress_warnings since a warning will already have been issued during the store creation if there was an invalid store config", "return", "expectations_store", ".", "store_backend_id_warnings_suppressed", "# Otherwise choose the id stored in the project_config", "else", ":", "return", "(", "self", ".", "project_config_with_variables_substituted", ".", "anonymous_usage_statistics", ".", "data_context_id", ")" ]
[ 539, 4 ]
[ 559, 13 ]
python
en
['en', 'error', 'th']
False
_initialize_usage_statistics
( self, usage_statistics_config: AnonymizedUsageStatisticsConfig )
Initialize the usage statistics system.
Initialize the usage statistics system.
def _initialize_usage_statistics( self, usage_statistics_config: AnonymizedUsageStatisticsConfig ): """Initialize the usage statistics system.""" if not usage_statistics_config.enabled: logger.info("Usage statistics is disabled; skipping initialization.") self._usage_statistics_handler = None return self._usage_statistics_handler = UsageStatisticsHandler( data_context=self, data_context_id=self._data_context_id, usage_statistics_url=usage_statistics_config.usage_statistics_url, )
[ "def", "_initialize_usage_statistics", "(", "self", ",", "usage_statistics_config", ":", "AnonymizedUsageStatisticsConfig", ")", ":", "if", "not", "usage_statistics_config", ".", "enabled", ":", "logger", ".", "info", "(", "\"Usage statistics is disabled; skipping initialization.\"", ")", "self", ".", "_usage_statistics_handler", "=", "None", "return", "self", ".", "_usage_statistics_handler", "=", "UsageStatisticsHandler", "(", "data_context", "=", "self", ",", "data_context_id", "=", "self", ".", "_data_context_id", ",", "usage_statistics_url", "=", "usage_statistics_config", ".", "usage_statistics_url", ",", ")" ]
[ 561, 4 ]
[ 574, 9 ]
python
en
['en', 'en', 'en']
True
add_store
(self, store_name, store_config)
Add a new Store to the DataContext and (for convenience) return the instantiated Store object. Args: store_name (str): a key for the new Store in in self._stores store_config (dict): a config for the Store to add Returns: store (Store)
Add a new Store to the DataContext and (for convenience) return the instantiated Store object.
def add_store(self, store_name, store_config): """Add a new Store to the DataContext and (for convenience) return the instantiated Store object. Args: store_name (str): a key for the new Store in in self._stores store_config (dict): a config for the Store to add Returns: store (Store) """ self._project_config["stores"][store_name] = store_config return self._build_store_from_config(store_name, store_config)
[ "def", "add_store", "(", "self", ",", "store_name", ",", "store_config", ")", ":", "self", ".", "_project_config", "[", "\"stores\"", "]", "[", "store_name", "]", "=", "store_config", "return", "self", ".", "_build_store_from_config", "(", "store_name", ",", "store_config", ")" ]
[ 576, 4 ]
[ 588, 70 ]
python
en
['en', 'en', 'en']
True
add_validation_operator
( self, validation_operator_name, validation_operator_config )
Add a new ValidationOperator to the DataContext and (for convenience) return the instantiated object. Args: validation_operator_name (str): a key for the new ValidationOperator in in self._validation_operators validation_operator_config (dict): a config for the ValidationOperator to add Returns: validation_operator (ValidationOperator)
Add a new ValidationOperator to the DataContext and (for convenience) return the instantiated object.
def add_validation_operator( self, validation_operator_name, validation_operator_config ): """Add a new ValidationOperator to the DataContext and (for convenience) return the instantiated object. Args: validation_operator_name (str): a key for the new ValidationOperator in in self._validation_operators validation_operator_config (dict): a config for the ValidationOperator to add Returns: validation_operator (ValidationOperator) """ self._project_config["validation_operators"][ validation_operator_name ] = validation_operator_config config = self.project_config_with_variables_substituted.validation_operators[ validation_operator_name ] module_name = "great_expectations.validation_operators" new_validation_operator = instantiate_class_from_config( config=config, runtime_environment={ "data_context": self, "name": validation_operator_name, }, config_defaults={"module_name": module_name}, ) if not new_validation_operator: raise ge_exceptions.ClassInstantiationError( module_name=module_name, package_name=None, class_name=config["class_name"], ) self.validation_operators[validation_operator_name] = new_validation_operator return new_validation_operator
[ "def", "add_validation_operator", "(", "self", ",", "validation_operator_name", ",", "validation_operator_config", ")", ":", "self", ".", "_project_config", "[", "\"validation_operators\"", "]", "[", "validation_operator_name", "]", "=", "validation_operator_config", "config", "=", "self", ".", "project_config_with_variables_substituted", ".", "validation_operators", "[", "validation_operator_name", "]", "module_name", "=", "\"great_expectations.validation_operators\"", "new_validation_operator", "=", "instantiate_class_from_config", "(", "config", "=", "config", ",", "runtime_environment", "=", "{", "\"data_context\"", ":", "self", ",", "\"name\"", ":", "validation_operator_name", ",", "}", ",", "config_defaults", "=", "{", "\"module_name\"", ":", "module_name", "}", ",", ")", "if", "not", "new_validation_operator", ":", "raise", "ge_exceptions", ".", "ClassInstantiationError", "(", "module_name", "=", "module_name", ",", "package_name", "=", "None", ",", "class_name", "=", "config", "[", "\"class_name\"", "]", ",", ")", "self", ".", "validation_operators", "[", "validation_operator_name", "]", "=", "new_validation_operator", "return", "new_validation_operator" ]
[ 590, 4 ]
[ 625, 38 ]
python
en
['en', 'en', 'en']
True
get_site_names
(self)
Get a list of configured site names.
Get a list of configured site names.
def get_site_names(self) -> List[str]: """Get a list of configured site names.""" return list( self.project_config_with_variables_substituted.data_docs_sites.keys() )
[ "def", "get_site_names", "(", "self", ")", "->", "List", "[", "str", "]", ":", "return", "list", "(", "self", ".", "project_config_with_variables_substituted", ".", "data_docs_sites", ".", "keys", "(", ")", ")" ]
[ 643, 4 ]
[ 647, 9 ]
python
en
['en', 'en', 'en']
True
get_docs_sites_urls
( self, resource_identifier=None, site_name: Optional[str] = None, only_if_exists=True, site_names: Optional[List[str]] = None, )
Get URLs for a resource for all data docs sites. This function will return URLs for any configured site even if the sites have not been built yet. Args: resource_identifier (object): optional. It can be an identifier of ExpectationSuite's, ValidationResults and other resources that have typed identifiers. If not provided, the method will return the URLs of the index page. site_name: Optionally specify which site to open. If not specified, return all urls in the project. site_names: Optionally specify which sites are active. Sites not in this list are not processed, even if specified in site_name. Returns: list: a list of URLs. Each item is the URL for the resource for a data docs site
Get URLs for a resource for all data docs sites.
def get_docs_sites_urls( self, resource_identifier=None, site_name: Optional[str] = None, only_if_exists=True, site_names: Optional[List[str]] = None, ) -> List[Dict[str, str]]: """ Get URLs for a resource for all data docs sites. This function will return URLs for any configured site even if the sites have not been built yet. Args: resource_identifier (object): optional. It can be an identifier of ExpectationSuite's, ValidationResults and other resources that have typed identifiers. If not provided, the method will return the URLs of the index page. site_name: Optionally specify which site to open. If not specified, return all urls in the project. site_names: Optionally specify which sites are active. Sites not in this list are not processed, even if specified in site_name. Returns: list: a list of URLs. Each item is the URL for the resource for a data docs site """ unfiltered_sites = ( self.project_config_with_variables_substituted.data_docs_sites ) # Filter out sites that are not in site_names sites = ( {k: v for k, v in unfiltered_sites.items() if k in site_names} if site_names else unfiltered_sites ) if not sites: logger.debug("Found no data_docs_sites.") return [] logger.debug(f"Found {len(sites)} data_docs_sites.") if site_name: if site_name not in sites.keys(): raise ge_exceptions.DataContextError( f"Could not find site named {site_name}. Please check your configurations" ) site = sites[site_name] site_builder = self._load_site_builder_from_site_config(site) url = site_builder.get_resource_url( resource_identifier=resource_identifier, only_if_exists=only_if_exists ) return [{"site_name": site_name, "site_url": url}] site_urls = [] for _site_name, site_config in sites.items(): site_builder = self._load_site_builder_from_site_config(site_config) url = site_builder.get_resource_url( resource_identifier=resource_identifier, only_if_exists=only_if_exists ) site_urls.append({"site_name": _site_name, "site_url": url}) return site_urls
[ "def", "get_docs_sites_urls", "(", "self", ",", "resource_identifier", "=", "None", ",", "site_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "only_if_exists", "=", "True", ",", "site_names", ":", "Optional", "[", "List", "[", "str", "]", "]", "=", "None", ",", ")", "->", "List", "[", "Dict", "[", "str", ",", "str", "]", "]", ":", "unfiltered_sites", "=", "(", "self", ".", "project_config_with_variables_substituted", ".", "data_docs_sites", ")", "# Filter out sites that are not in site_names", "sites", "=", "(", "{", "k", ":", "v", "for", "k", ",", "v", "in", "unfiltered_sites", ".", "items", "(", ")", "if", "k", "in", "site_names", "}", "if", "site_names", "else", "unfiltered_sites", ")", "if", "not", "sites", ":", "logger", ".", "debug", "(", "\"Found no data_docs_sites.\"", ")", "return", "[", "]", "logger", ".", "debug", "(", "f\"Found {len(sites)} data_docs_sites.\"", ")", "if", "site_name", ":", "if", "site_name", "not", "in", "sites", ".", "keys", "(", ")", ":", "raise", "ge_exceptions", ".", "DataContextError", "(", "f\"Could not find site named {site_name}. Please check your configurations\"", ")", "site", "=", "sites", "[", "site_name", "]", "site_builder", "=", "self", ".", "_load_site_builder_from_site_config", "(", "site", ")", "url", "=", "site_builder", ".", "get_resource_url", "(", "resource_identifier", "=", "resource_identifier", ",", "only_if_exists", "=", "only_if_exists", ")", "return", "[", "{", "\"site_name\"", ":", "site_name", ",", "\"site_url\"", ":", "url", "}", "]", "site_urls", "=", "[", "]", "for", "_site_name", ",", "site_config", "in", "sites", ".", "items", "(", ")", ":", "site_builder", "=", "self", ".", "_load_site_builder_from_site_config", "(", "site_config", ")", "url", "=", "site_builder", ".", "get_resource_url", "(", "resource_identifier", "=", "resource_identifier", ",", "only_if_exists", "=", "only_if_exists", ")", "site_urls", ".", "append", "(", "{", "\"site_name\"", ":", "_site_name", ",", "\"site_url\"", ":", "url", "}", ")", "return", "site_urls" ]
[ 649, 4 ]
[ 712, 24 ]
python
en
['en', 'error', 'th']
False
open_data_docs
( self, resource_identifier: Optional[str] = None, site_name: Optional[str] = None, only_if_exists: Optional[bool] = True, )
A stdlib cross-platform way to open a file in a browser. Args: resource_identifier: ExpectationSuiteIdentifier, ValidationResultIdentifier or any other type's identifier. The argument is optional - when not supplied, the method returns the URL of the index page. site_name: Optionally specify which site to open. If not specified, open all docs found in the project. only_if_exists: Optionally specify flag to pass to "self.get_docs_sites_urls()".
A stdlib cross-platform way to open a file in a browser.
def open_data_docs( self, resource_identifier: Optional[str] = None, site_name: Optional[str] = None, only_if_exists: Optional[bool] = True, ) -> None: """ A stdlib cross-platform way to open a file in a browser. Args: resource_identifier: ExpectationSuiteIdentifier, ValidationResultIdentifier or any other type's identifier. The argument is optional - when not supplied, the method returns the URL of the index page. site_name: Optionally specify which site to open. If not specified, open all docs found in the project. only_if_exists: Optionally specify flag to pass to "self.get_docs_sites_urls()". """ data_docs_urls: List[Dict[str, str]] = self.get_docs_sites_urls( resource_identifier=resource_identifier, site_name=site_name, only_if_exists=only_if_exists, ) urls_to_open: List[str] = [site["site_url"] for site in data_docs_urls] for url in urls_to_open: if url is not None: logger.debug(f"Opening Data Docs found here: {url}") webbrowser.open(url)
[ "def", "open_data_docs", "(", "self", ",", "resource_identifier", ":", "Optional", "[", "str", "]", "=", "None", ",", "site_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "only_if_exists", ":", "Optional", "[", "bool", "]", "=", "True", ",", ")", "->", "None", ":", "data_docs_urls", ":", "List", "[", "Dict", "[", "str", ",", "str", "]", "]", "=", "self", ".", "get_docs_sites_urls", "(", "resource_identifier", "=", "resource_identifier", ",", "site_name", "=", "site_name", ",", "only_if_exists", "=", "only_if_exists", ",", ")", "urls_to_open", ":", "List", "[", "str", "]", "=", "[", "site", "[", "\"site_url\"", "]", "for", "site", "in", "data_docs_urls", "]", "for", "url", "in", "urls_to_open", ":", "if", "url", "is", "not", "None", ":", "logger", ".", "debug", "(", "f\"Opening Data Docs found here: {url}\"", ")", "webbrowser", ".", "open", "(", "url", ")" ]
[ 735, 4 ]
[ 763, 36 ]
python
en
['en', 'error', 'th']
False
root_directory
(self)
The root directory for configuration objects in the data context; the location in which ``great_expectations.yml`` is located.
The root directory for configuration objects in the data context; the location in which ``great_expectations.yml`` is located.
def root_directory(self): """The root directory for configuration objects in the data context; the location in which ``great_expectations.yml`` is located.""" return self._context_root_directory
[ "def", "root_directory", "(", "self", ")", ":", "return", "self", ".", "_context_root_directory" ]
[ 766, 4 ]
[ 769, 43 ]
python
en
['en', 'en', 'en']
True
plugins_directory
(self)
The directory in which custom plugin modules should be placed.
The directory in which custom plugin modules should be placed.
def plugins_directory(self): """The directory in which custom plugin modules should be placed.""" return self._normalize_absolute_or_relative_path( self.project_config_with_variables_substituted.plugins_directory )
[ "def", "plugins_directory", "(", "self", ")", ":", "return", "self", ".", "_normalize_absolute_or_relative_path", "(", "self", ".", "project_config_with_variables_substituted", ".", "plugins_directory", ")" ]
[ 772, 4 ]
[ 776, 9 ]
python
en
['en', 'en', 'en']
True
stores
(self)
A single holder for all Stores in this context
A single holder for all Stores in this context
def stores(self): """A single holder for all Stores in this context""" return self._stores
[ "def", "stores", "(", "self", ")", ":", "return", "self", ".", "_stores" ]
[ 791, 4 ]
[ 793, 27 ]
python
en
['en', 'en', 'en']
True
datasources
(self)
A single holder for all Datasources in this context
A single holder for all Datasources in this context
def datasources(self) -> Dict[str, Union[LegacyDatasource, BaseDatasource]]: """A single holder for all Datasources in this context""" return self._cached_datasources
[ "def", "datasources", "(", "self", ")", "->", "Dict", "[", "str", ",", "Union", "[", "LegacyDatasource", ",", "BaseDatasource", "]", "]", ":", "return", "self", ".", "_cached_datasources" ]
[ 796, 4 ]
[ 798, 39 ]
python
en
['en', 'en', 'en']
True
_load_config_variables_file
(self)
Get all config variables from the default location.
Get all config variables from the default location.
def _load_config_variables_file(self): """Get all config variables from the default location.""" config_variables_file_path = self.get_config().config_variables_file_path if config_variables_file_path: try: # If the user specifies the config variable path with an environment variable, we want to substitute it defined_path = substitute_config_variable( config_variables_file_path, dict(os.environ) ) if not os.path.isabs(defined_path): # A BaseDataContext will not have a root directory; in that case use the current directory # for any non-absolute path root_directory = self.root_directory or os.curdir else: root_directory = "" var_path = os.path.join(root_directory, defined_path) with open(var_path) as config_variables_file: return yaml.load(config_variables_file) or {} except OSError as e: if e.errno != errno.ENOENT: raise logger.debug("Generating empty config variables file.") return {} else: return {}
[ "def", "_load_config_variables_file", "(", "self", ")", ":", "config_variables_file_path", "=", "self", ".", "get_config", "(", ")", ".", "config_variables_file_path", "if", "config_variables_file_path", ":", "try", ":", "# If the user specifies the config variable path with an environment variable, we want to substitute it", "defined_path", "=", "substitute_config_variable", "(", "config_variables_file_path", ",", "dict", "(", "os", ".", "environ", ")", ")", "if", "not", "os", ".", "path", ".", "isabs", "(", "defined_path", ")", ":", "# A BaseDataContext will not have a root directory; in that case use the current directory", "# for any non-absolute path", "root_directory", "=", "self", ".", "root_directory", "or", "os", ".", "curdir", "else", ":", "root_directory", "=", "\"\"", "var_path", "=", "os", ".", "path", ".", "join", "(", "root_directory", ",", "defined_path", ")", "with", "open", "(", "var_path", ")", "as", "config_variables_file", ":", "return", "yaml", ".", "load", "(", "config_variables_file", ")", "or", "{", "}", "except", "OSError", "as", "e", ":", "if", "e", ".", "errno", "!=", "errno", ".", "ENOENT", ":", "raise", "logger", ".", "debug", "(", "\"Generating empty config variables file.\"", ")", "return", "{", "}", "else", ":", "return", "{", "}" ]
[ 878, 4 ]
[ 902, 21 ]
python
en
['en', 'en', 'en']
True
escape_all_config_variables
( self, value: Union[str, dict, list], dollar_sign_escape_string: str = DOLLAR_SIGN_ESCAPE_STRING, skip_if_substitution_variable: bool = True, )
Replace all `$` characters with the DOLLAR_SIGN_ESCAPE_STRING Args: value: config variable value dollar_sign_escape_string: replaces instances of `$` skip_if_substitution_variable: skip if the value is of the form ${MYVAR} or $MYVAR Returns: input value with all `$` characters replaced with the escape string
Replace all `$` characters with the DOLLAR_SIGN_ESCAPE_STRING
def escape_all_config_variables( self, value: Union[str, dict, list], dollar_sign_escape_string: str = DOLLAR_SIGN_ESCAPE_STRING, skip_if_substitution_variable: bool = True, ) -> Union[str, dict, list]: """ Replace all `$` characters with the DOLLAR_SIGN_ESCAPE_STRING Args: value: config variable value dollar_sign_escape_string: replaces instances of `$` skip_if_substitution_variable: skip if the value is of the form ${MYVAR} or $MYVAR Returns: input value with all `$` characters replaced with the escape string """ if isinstance(value, dict) or isinstance(value, OrderedDict): return { k: self.escape_all_config_variables( v, dollar_sign_escape_string, skip_if_substitution_variable ) for k, v in value.items() } elif isinstance(value, list): return [ self.escape_all_config_variables( v, dollar_sign_escape_string, skip_if_substitution_variable ) for v in value ] if skip_if_substitution_variable: if parse_substitution_variable(value) is None: return value.replace("$", dollar_sign_escape_string) else: return value else: return value.replace("$", dollar_sign_escape_string)
[ "def", "escape_all_config_variables", "(", "self", ",", "value", ":", "Union", "[", "str", ",", "dict", ",", "list", "]", ",", "dollar_sign_escape_string", ":", "str", "=", "DOLLAR_SIGN_ESCAPE_STRING", ",", "skip_if_substitution_variable", ":", "bool", "=", "True", ",", ")", "->", "Union", "[", "str", ",", "dict", ",", "list", "]", ":", "if", "isinstance", "(", "value", ",", "dict", ")", "or", "isinstance", "(", "value", ",", "OrderedDict", ")", ":", "return", "{", "k", ":", "self", ".", "escape_all_config_variables", "(", "v", ",", "dollar_sign_escape_string", ",", "skip_if_substitution_variable", ")", "for", "k", ",", "v", "in", "value", ".", "items", "(", ")", "}", "elif", "isinstance", "(", "value", ",", "list", ")", ":", "return", "[", "self", ".", "escape_all_config_variables", "(", "v", ",", "dollar_sign_escape_string", ",", "skip_if_substitution_variable", ")", "for", "v", "in", "value", "]", "if", "skip_if_substitution_variable", ":", "if", "parse_substitution_variable", "(", "value", ")", "is", "None", ":", "return", "value", ".", "replace", "(", "\"$\"", ",", "dollar_sign_escape_string", ")", "else", ":", "return", "value", "else", ":", "return", "value", ".", "replace", "(", "\"$\"", ",", "dollar_sign_escape_string", ")" ]
[ 927, 4 ]
[ 966, 64 ]
python
en
['en', 'error', 'th']
False
save_config_variable
( self, config_variable_name, value, skip_if_substitution_variable: bool = True )
r"""Save config variable value Escapes $ unless they are used in substitution variables e.g. the $ characters in ${SOME_VAR} or $SOME_VAR are not escaped Args: config_variable_name: name of the property value: the value to save for the property skip_if_substitution_variable: set to False to escape $ in values in substitution variable form e.g. ${SOME_VAR} -> r"\${SOME_VAR}" or $SOME_VAR -> r"\$SOME_VAR" Returns: None
r"""Save config variable value Escapes $ unless they are used in substitution variables e.g. the $ characters in ${SOME_VAR} or $SOME_VAR are not escaped
def save_config_variable( self, config_variable_name, value, skip_if_substitution_variable: bool = True ): r"""Save config variable value Escapes $ unless they are used in substitution variables e.g. the $ characters in ${SOME_VAR} or $SOME_VAR are not escaped Args: config_variable_name: name of the property value: the value to save for the property skip_if_substitution_variable: set to False to escape $ in values in substitution variable form e.g. ${SOME_VAR} -> r"\${SOME_VAR}" or $SOME_VAR -> r"\$SOME_VAR" Returns: None """ config_variables = self._load_config_variables_file() value = self.escape_all_config_variables( value, self.DOLLAR_SIGN_ESCAPE_STRING, skip_if_substitution_variable=skip_if_substitution_variable, ) config_variables[config_variable_name] = value config_variables_filepath = self.get_config().config_variables_file_path if not config_variables_filepath: raise ge_exceptions.InvalidConfigError( "'config_variables_file_path' property is not found in config - setting it is required to use this feature" ) config_variables_filepath = os.path.join( self.root_directory, config_variables_filepath ) os.makedirs(os.path.dirname(config_variables_filepath), exist_ok=True) if not os.path.isfile(config_variables_filepath): logger.info( "Creating new substitution_variables file at {config_variables_filepath}".format( config_variables_filepath=config_variables_filepath ) ) with open(config_variables_filepath, "w") as template: template.write(CONFIG_VARIABLES_TEMPLATE) with open(config_variables_filepath, "w") as config_variables_file: yaml.dump(config_variables, config_variables_file)
[ "def", "save_config_variable", "(", "self", ",", "config_variable_name", ",", "value", ",", "skip_if_substitution_variable", ":", "bool", "=", "True", ")", ":", "config_variables", "=", "self", ".", "_load_config_variables_file", "(", ")", "value", "=", "self", ".", "escape_all_config_variables", "(", "value", ",", "self", ".", "DOLLAR_SIGN_ESCAPE_STRING", ",", "skip_if_substitution_variable", "=", "skip_if_substitution_variable", ",", ")", "config_variables", "[", "config_variable_name", "]", "=", "value", "config_variables_filepath", "=", "self", ".", "get_config", "(", ")", ".", "config_variables_file_path", "if", "not", "config_variables_filepath", ":", "raise", "ge_exceptions", ".", "InvalidConfigError", "(", "\"'config_variables_file_path' property is not found in config - setting it is required to use this feature\"", ")", "config_variables_filepath", "=", "os", ".", "path", ".", "join", "(", "self", ".", "root_directory", ",", "config_variables_filepath", ")", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "config_variables_filepath", ")", ",", "exist_ok", "=", "True", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "config_variables_filepath", ")", ":", "logger", ".", "info", "(", "\"Creating new substitution_variables file at {config_variables_filepath}\"", ".", "format", "(", "config_variables_filepath", "=", "config_variables_filepath", ")", ")", "with", "open", "(", "config_variables_filepath", ",", "\"w\"", ")", "as", "template", ":", "template", ".", "write", "(", "CONFIG_VARIABLES_TEMPLATE", ")", "with", "open", "(", "config_variables_filepath", ",", "\"w\"", ")", "as", "config_variables_file", ":", "yaml", ".", "dump", "(", "config_variables", ",", "config_variables_file", ")" ]
[ 968, 4 ]
[ 1010, 62 ]
python
en
['nl', 'en', 'en']
True
delete_datasource
(self, datasource_name: str)
Delete a data source Args: datasource_name: The name of the datasource to delete. Raises: ValueError: If the datasource name isn't provided or cannot be found.
Delete a data source Args: datasource_name: The name of the datasource to delete.
def delete_datasource(self, datasource_name: str): """Delete a data source Args: datasource_name: The name of the datasource to delete. Raises: ValueError: If the datasource name isn't provided or cannot be found. """ if datasource_name is None: raise ValueError("Datasource names must be a datasource name") else: datasource = self.get_datasource(datasource_name=datasource_name) if datasource: # remove key until we have a delete method on project_config # self.project_config_with_variables_substituted.datasources[ # datasource_name].remove() del self._project_config["datasources"][datasource_name] del self._cached_datasources[datasource_name] else: raise ValueError(f"Datasource {datasource_name} not found")
[ "def", "delete_datasource", "(", "self", ",", "datasource_name", ":", "str", ")", ":", "if", "datasource_name", "is", "None", ":", "raise", "ValueError", "(", "\"Datasource names must be a datasource name\"", ")", "else", ":", "datasource", "=", "self", ".", "get_datasource", "(", "datasource_name", "=", "datasource_name", ")", "if", "datasource", ":", "# remove key until we have a delete method on project_config", "# self.project_config_with_variables_substituted.datasources[", "# datasource_name].remove()", "del", "self", ".", "_project_config", "[", "\"datasources\"", "]", "[", "datasource_name", "]", "del", "self", ".", "_cached_datasources", "[", "datasource_name", "]", "else", ":", "raise", "ValueError", "(", "f\"Datasource {datasource_name} not found\"", ")" ]
[ 1012, 4 ]
[ 1031, 75 ]
python
en
['en', 'it', 'en']
True
get_available_data_asset_names
( self, datasource_names=None, batch_kwargs_generator_names=None )
Inspect datasource and batch kwargs generators to provide available data_asset objects. Args: datasource_names: list of datasources for which to provide available data_asset_name objects. If None, \ return available data assets for all datasources. batch_kwargs_generator_names: list of batch kwargs generators for which to provide available data_asset_name objects. Returns: data_asset_names (dict): Dictionary describing available data assets :: { datasource_name: { batch_kwargs_generator_name: [ data_asset_1, data_asset_2, ... ] ... } ... }
Inspect datasource and batch kwargs generators to provide available data_asset objects.
def get_available_data_asset_names( self, datasource_names=None, batch_kwargs_generator_names=None ): """Inspect datasource and batch kwargs generators to provide available data_asset objects. Args: datasource_names: list of datasources for which to provide available data_asset_name objects. If None, \ return available data assets for all datasources. batch_kwargs_generator_names: list of batch kwargs generators for which to provide available data_asset_name objects. Returns: data_asset_names (dict): Dictionary describing available data assets :: { datasource_name: { batch_kwargs_generator_name: [ data_asset_1, data_asset_2, ... ] ... } ... } """ data_asset_names = {} if datasource_names is None: datasource_names = [ datasource["name"] for datasource in self.list_datasources() ] elif isinstance(datasource_names, str): datasource_names = [datasource_names] elif not isinstance(datasource_names, list): raise ValueError( "Datasource names must be a datasource name, list of datasource names or None (to list all datasources)" ) if batch_kwargs_generator_names is not None: if isinstance(batch_kwargs_generator_names, str): batch_kwargs_generator_names = [batch_kwargs_generator_names] if len(batch_kwargs_generator_names) == len( datasource_names ): # Iterate over both together for idx, datasource_name in enumerate(datasource_names): datasource = self.get_datasource(datasource_name) data_asset_names[ datasource_name ] = datasource.get_available_data_asset_names( batch_kwargs_generator_names[idx] ) elif len(batch_kwargs_generator_names) == 1: datasource = self.get_datasource(datasource_names[0]) datasource_names[ datasource_names[0] ] = datasource.get_available_data_asset_names( batch_kwargs_generator_names ) else: raise ValueError( "If providing batch kwargs generator, you must either specify one for each datasource or only " "one datasource." ) else: # generator_names is None for datasource_name in datasource_names: try: datasource = self.get_datasource(datasource_name) data_asset_names[ datasource_name ] = datasource.get_available_data_asset_names() except ValueError: # handle the edge case of a non-existent datasource data_asset_names[datasource_name] = {} return data_asset_names
[ "def", "get_available_data_asset_names", "(", "self", ",", "datasource_names", "=", "None", ",", "batch_kwargs_generator_names", "=", "None", ")", ":", "data_asset_names", "=", "{", "}", "if", "datasource_names", "is", "None", ":", "datasource_names", "=", "[", "datasource", "[", "\"name\"", "]", "for", "datasource", "in", "self", ".", "list_datasources", "(", ")", "]", "elif", "isinstance", "(", "datasource_names", ",", "str", ")", ":", "datasource_names", "=", "[", "datasource_names", "]", "elif", "not", "isinstance", "(", "datasource_names", ",", "list", ")", ":", "raise", "ValueError", "(", "\"Datasource names must be a datasource name, list of datasource names or None (to list all datasources)\"", ")", "if", "batch_kwargs_generator_names", "is", "not", "None", ":", "if", "isinstance", "(", "batch_kwargs_generator_names", ",", "str", ")", ":", "batch_kwargs_generator_names", "=", "[", "batch_kwargs_generator_names", "]", "if", "len", "(", "batch_kwargs_generator_names", ")", "==", "len", "(", "datasource_names", ")", ":", "# Iterate over both together", "for", "idx", ",", "datasource_name", "in", "enumerate", "(", "datasource_names", ")", ":", "datasource", "=", "self", ".", "get_datasource", "(", "datasource_name", ")", "data_asset_names", "[", "datasource_name", "]", "=", "datasource", ".", "get_available_data_asset_names", "(", "batch_kwargs_generator_names", "[", "idx", "]", ")", "elif", "len", "(", "batch_kwargs_generator_names", ")", "==", "1", ":", "datasource", "=", "self", ".", "get_datasource", "(", "datasource_names", "[", "0", "]", ")", "datasource_names", "[", "datasource_names", "[", "0", "]", "]", "=", "datasource", ".", "get_available_data_asset_names", "(", "batch_kwargs_generator_names", ")", "else", ":", "raise", "ValueError", "(", "\"If providing batch kwargs generator, you must either specify one for each datasource or only \"", "\"one datasource.\"", ")", "else", ":", "# generator_names is None", "for", "datasource_name", "in", "datasource_names", ":", "try", ":", "datasource", "=", "self", ".", "get_datasource", "(", "datasource_name", ")", "data_asset_names", "[", "datasource_name", "]", "=", "datasource", ".", "get_available_data_asset_names", "(", ")", "except", "ValueError", ":", "# handle the edge case of a non-existent datasource", "data_asset_names", "[", "datasource_name", "]", "=", "{", "}", "return", "data_asset_names" ]
[ 1033, 4 ]
[ 1107, 31 ]
python
en
['en', 'en', 'en']
True
build_batch_kwargs
( self, datasource, batch_kwargs_generator, data_asset_name=None, partition_id=None, **kwargs, )
Builds batch kwargs using the provided datasource, batch kwargs generator, and batch_parameters. Args: datasource (str): the name of the datasource for which to build batch_kwargs batch_kwargs_generator (str): the name of the batch kwargs generator to use to build batch_kwargs data_asset_name (str): an optional name batch_parameter **kwargs: additional batch_parameters Returns: BatchKwargs
Builds batch kwargs using the provided datasource, batch kwargs generator, and batch_parameters.
def build_batch_kwargs( self, datasource, batch_kwargs_generator, data_asset_name=None, partition_id=None, **kwargs, ): """Builds batch kwargs using the provided datasource, batch kwargs generator, and batch_parameters. Args: datasource (str): the name of the datasource for which to build batch_kwargs batch_kwargs_generator (str): the name of the batch kwargs generator to use to build batch_kwargs data_asset_name (str): an optional name batch_parameter **kwargs: additional batch_parameters Returns: BatchKwargs """ if kwargs.get("name"): if data_asset_name: raise ValueError( "Cannot provide both 'name' and 'data_asset_name'. Please use 'data_asset_name' only." ) warnings.warn( "name is being deprecated as a batch_parameter. Please use data_asset_name instead.", DeprecationWarning, ) data_asset_name = kwargs.pop("name") datasource_obj = self.get_datasource(datasource) batch_kwargs = datasource_obj.build_batch_kwargs( batch_kwargs_generator=batch_kwargs_generator, data_asset_name=data_asset_name, partition_id=partition_id, **kwargs, ) return batch_kwargs
[ "def", "build_batch_kwargs", "(", "self", ",", "datasource", ",", "batch_kwargs_generator", ",", "data_asset_name", "=", "None", ",", "partition_id", "=", "None", ",", "*", "*", "kwargs", ",", ")", ":", "if", "kwargs", ".", "get", "(", "\"name\"", ")", ":", "if", "data_asset_name", ":", "raise", "ValueError", "(", "\"Cannot provide both 'name' and 'data_asset_name'. Please use 'data_asset_name' only.\"", ")", "warnings", ".", "warn", "(", "\"name is being deprecated as a batch_parameter. Please use data_asset_name instead.\"", ",", "DeprecationWarning", ",", ")", "data_asset_name", "=", "kwargs", ".", "pop", "(", "\"name\"", ")", "datasource_obj", "=", "self", ".", "get_datasource", "(", "datasource", ")", "batch_kwargs", "=", "datasource_obj", ".", "build_batch_kwargs", "(", "batch_kwargs_generator", "=", "batch_kwargs_generator", ",", "data_asset_name", "=", "data_asset_name", ",", "partition_id", "=", "partition_id", ",", "*", "*", "kwargs", ",", ")", "return", "batch_kwargs" ]
[ 1109, 4 ]
[ 1146, 27 ]
python
en
['en', 'en', 'en']
True
_get_batch_v2
( self, batch_kwargs: Union[dict, BatchKwargs], expectation_suite_name: Union[str, ExpectationSuite], data_asset_type=None, batch_parameters=None, )
Build a batch of data using batch_kwargs, and return a DataAsset with expectation_suite_name attached. If batch_parameters are included, they will be available as attributes of the batch. Args: batch_kwargs: the batch_kwargs to use; must include a datasource key expectation_suite_name: The ExpectationSuite or the name of the expectation_suite to get data_asset_type: the type of data_asset to build, with associated expectation implementations. This can generally be inferred from the datasource. batch_parameters: optional parameters to store as the reference description of the batch. They should reflect parameters that would provide the passed BatchKwargs. Returns: DataAsset
Build a batch of data using batch_kwargs, and return a DataAsset with expectation_suite_name attached. If batch_parameters are included, they will be available as attributes of the batch. Args: batch_kwargs: the batch_kwargs to use; must include a datasource key expectation_suite_name: The ExpectationSuite or the name of the expectation_suite to get data_asset_type: the type of data_asset to build, with associated expectation implementations. This can generally be inferred from the datasource. batch_parameters: optional parameters to store as the reference description of the batch. They should reflect parameters that would provide the passed BatchKwargs. Returns: DataAsset
def _get_batch_v2( self, batch_kwargs: Union[dict, BatchKwargs], expectation_suite_name: Union[str, ExpectationSuite], data_asset_type=None, batch_parameters=None, ) -> DataAsset: """Build a batch of data using batch_kwargs, and return a DataAsset with expectation_suite_name attached. If batch_parameters are included, they will be available as attributes of the batch. Args: batch_kwargs: the batch_kwargs to use; must include a datasource key expectation_suite_name: The ExpectationSuite or the name of the expectation_suite to get data_asset_type: the type of data_asset to build, with associated expectation implementations. This can generally be inferred from the datasource. batch_parameters: optional parameters to store as the reference description of the batch. They should reflect parameters that would provide the passed BatchKwargs. Returns: DataAsset """ if isinstance(batch_kwargs, dict): batch_kwargs = BatchKwargs(batch_kwargs) if not isinstance(batch_kwargs, BatchKwargs): raise ge_exceptions.BatchKwargsError( "BatchKwargs must be a BatchKwargs object or dictionary." ) if not isinstance( expectation_suite_name, (ExpectationSuite, ExpectationSuiteIdentifier, str) ): raise ge_exceptions.DataContextError( "expectation_suite_name must be an ExpectationSuite, " "ExpectationSuiteIdentifier or string." ) if isinstance(expectation_suite_name, ExpectationSuite): expectation_suite = expectation_suite_name elif isinstance(expectation_suite_name, ExpectationSuiteIdentifier): expectation_suite = self.get_expectation_suite( expectation_suite_name.expectation_suite_name ) else: expectation_suite = self.get_expectation_suite(expectation_suite_name) datasource = self.get_datasource(batch_kwargs.get("datasource")) batch = datasource.get_batch( batch_kwargs=batch_kwargs, batch_parameters=batch_parameters ) if data_asset_type is None: data_asset_type = datasource.config.get("data_asset_type") validator = BridgeValidator( batch=batch, expectation_suite=expectation_suite, expectation_engine=data_asset_type, ) return validator.get_dataset()
[ "def", "_get_batch_v2", "(", "self", ",", "batch_kwargs", ":", "Union", "[", "dict", ",", "BatchKwargs", "]", ",", "expectation_suite_name", ":", "Union", "[", "str", ",", "ExpectationSuite", "]", ",", "data_asset_type", "=", "None", ",", "batch_parameters", "=", "None", ",", ")", "->", "DataAsset", ":", "if", "isinstance", "(", "batch_kwargs", ",", "dict", ")", ":", "batch_kwargs", "=", "BatchKwargs", "(", "batch_kwargs", ")", "if", "not", "isinstance", "(", "batch_kwargs", ",", "BatchKwargs", ")", ":", "raise", "ge_exceptions", ".", "BatchKwargsError", "(", "\"BatchKwargs must be a BatchKwargs object or dictionary.\"", ")", "if", "not", "isinstance", "(", "expectation_suite_name", ",", "(", "ExpectationSuite", ",", "ExpectationSuiteIdentifier", ",", "str", ")", ")", ":", "raise", "ge_exceptions", ".", "DataContextError", "(", "\"expectation_suite_name must be an ExpectationSuite, \"", "\"ExpectationSuiteIdentifier or string.\"", ")", "if", "isinstance", "(", "expectation_suite_name", ",", "ExpectationSuite", ")", ":", "expectation_suite", "=", "expectation_suite_name", "elif", "isinstance", "(", "expectation_suite_name", ",", "ExpectationSuiteIdentifier", ")", ":", "expectation_suite", "=", "self", ".", "get_expectation_suite", "(", "expectation_suite_name", ".", "expectation_suite_name", ")", "else", ":", "expectation_suite", "=", "self", ".", "get_expectation_suite", "(", "expectation_suite_name", ")", "datasource", "=", "self", ".", "get_datasource", "(", "batch_kwargs", ".", "get", "(", "\"datasource\"", ")", ")", "batch", "=", "datasource", ".", "get_batch", "(", "batch_kwargs", "=", "batch_kwargs", ",", "batch_parameters", "=", "batch_parameters", ")", "if", "data_asset_type", "is", "None", ":", "data_asset_type", "=", "datasource", ".", "config", ".", "get", "(", "\"data_asset_type\"", ")", "validator", "=", "BridgeValidator", "(", "batch", "=", "batch", ",", "expectation_suite", "=", "expectation_suite", ",", "expectation_engine", "=", "data_asset_type", ",", ")", "return", "validator", ".", "get_dataset", "(", ")" ]
[ 1148, 4 ]
[ 1203, 38 ]
python
en
['en', 'en', 'en']
True
_get_batch_v3
( self, datasource_name: Optional[str] = None, data_connector_name: Optional[str] = None, data_asset_name: Optional[str] = None, *, batch_request: Optional[Union[BatchRequest, RuntimeBatchRequest]] = None, batch_data: Optional[Any] = None, data_connector_query: Optional[Union[IDDict, dict]] = None, batch_identifiers: Optional[dict] = None, limit: Optional[int] = None, index: Optional[Union[int, list, tuple, slice, str]] = None, custom_filter_function: Optional[Callable] = None, batch_spec_passthrough: Optional[dict] = None, sampling_method: Optional[str] = None, sampling_kwargs: Optional[dict] = None, splitter_method: Optional[str] = None, splitter_kwargs: Optional[dict] = None, runtime_parameters: Optional[dict] = None, query: Optional[str] = None, path: Optional[str] = None, batch_filter_parameters: Optional[dict] = None, **kwargs, )
Get exactly one batch, based on a variety of flexible input types. Args: datasource_name data_connector_name data_asset_name batch_request batch_data data_connector_query batch_identifiers batch_filter_parameters limit index custom_filter_function batch_spec_passthrough sampling_method sampling_kwargs splitter_method splitter_kwargs **kwargs Returns: (Batch) The requested batch This method does not require typed or nested inputs. Instead, it is intended to help the user pick the right parameters. This method attempts to return exactly one batch. If 0 or more than 1 batches would be returned, it raises an error.
Get exactly one batch, based on a variety of flexible input types.
def _get_batch_v3( self, datasource_name: Optional[str] = None, data_connector_name: Optional[str] = None, data_asset_name: Optional[str] = None, *, batch_request: Optional[Union[BatchRequest, RuntimeBatchRequest]] = None, batch_data: Optional[Any] = None, data_connector_query: Optional[Union[IDDict, dict]] = None, batch_identifiers: Optional[dict] = None, limit: Optional[int] = None, index: Optional[Union[int, list, tuple, slice, str]] = None, custom_filter_function: Optional[Callable] = None, batch_spec_passthrough: Optional[dict] = None, sampling_method: Optional[str] = None, sampling_kwargs: Optional[dict] = None, splitter_method: Optional[str] = None, splitter_kwargs: Optional[dict] = None, runtime_parameters: Optional[dict] = None, query: Optional[str] = None, path: Optional[str] = None, batch_filter_parameters: Optional[dict] = None, **kwargs, ) -> Union[Batch, DataAsset]: """Get exactly one batch, based on a variety of flexible input types. Args: datasource_name data_connector_name data_asset_name batch_request batch_data data_connector_query batch_identifiers batch_filter_parameters limit index custom_filter_function batch_spec_passthrough sampling_method sampling_kwargs splitter_method splitter_kwargs **kwargs Returns: (Batch) The requested batch This method does not require typed or nested inputs. Instead, it is intended to help the user pick the right parameters. This method attempts to return exactly one batch. If 0 or more than 1 batches would be returned, it raises an error. """ batch_list: List[Batch] = self.get_batch_list( datasource_name=datasource_name, data_connector_name=data_connector_name, data_asset_name=data_asset_name, batch_request=batch_request, batch_data=batch_data, data_connector_query=data_connector_query, batch_identifiers=batch_identifiers, limit=limit, index=index, custom_filter_function=custom_filter_function, batch_spec_passthrough=batch_spec_passthrough, sampling_method=sampling_method, sampling_kwargs=sampling_kwargs, splitter_method=splitter_method, splitter_kwargs=splitter_kwargs, runtime_parameters=runtime_parameters, query=query, path=path, batch_filter_parameters=batch_filter_parameters, **kwargs, ) # NOTE: Alex 20201202 - The check below is duplicate of code in Datasource.get_single_batch_from_batch_request() warnings.warn( "get_batch will be deprecated for the V3 Batch Request API in a future version of GE. Please use" "get_batch_list instead.", DeprecationWarning, ) if len(batch_list) != 1: raise ValueError( f"Got {len(batch_list)} batches instead of a single batch. If you would like to use a BatchRequest to " f"return multiple batches, please use get_batch_list directly instead of calling get_batch" ) return batch_list[0]
[ "def", "_get_batch_v3", "(", "self", ",", "datasource_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "data_connector_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "data_asset_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "*", ",", "batch_request", ":", "Optional", "[", "Union", "[", "BatchRequest", ",", "RuntimeBatchRequest", "]", "]", "=", "None", ",", "batch_data", ":", "Optional", "[", "Any", "]", "=", "None", ",", "data_connector_query", ":", "Optional", "[", "Union", "[", "IDDict", ",", "dict", "]", "]", "=", "None", ",", "batch_identifiers", ":", "Optional", "[", "dict", "]", "=", "None", ",", "limit", ":", "Optional", "[", "int", "]", "=", "None", ",", "index", ":", "Optional", "[", "Union", "[", "int", ",", "list", ",", "tuple", ",", "slice", ",", "str", "]", "]", "=", "None", ",", "custom_filter_function", ":", "Optional", "[", "Callable", "]", "=", "None", ",", "batch_spec_passthrough", ":", "Optional", "[", "dict", "]", "=", "None", ",", "sampling_method", ":", "Optional", "[", "str", "]", "=", "None", ",", "sampling_kwargs", ":", "Optional", "[", "dict", "]", "=", "None", ",", "splitter_method", ":", "Optional", "[", "str", "]", "=", "None", ",", "splitter_kwargs", ":", "Optional", "[", "dict", "]", "=", "None", ",", "runtime_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "query", ":", "Optional", "[", "str", "]", "=", "None", ",", "path", ":", "Optional", "[", "str", "]", "=", "None", ",", "batch_filter_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "*", "*", "kwargs", ",", ")", "->", "Union", "[", "Batch", ",", "DataAsset", "]", ":", "batch_list", ":", "List", "[", "Batch", "]", "=", "self", ".", "get_batch_list", "(", "datasource_name", "=", "datasource_name", ",", "data_connector_name", "=", "data_connector_name", ",", "data_asset_name", "=", "data_asset_name", ",", "batch_request", "=", "batch_request", ",", "batch_data", "=", "batch_data", ",", "data_connector_query", "=", "data_connector_query", ",", "batch_identifiers", "=", "batch_identifiers", ",", "limit", "=", "limit", ",", "index", "=", "index", ",", "custom_filter_function", "=", "custom_filter_function", ",", "batch_spec_passthrough", "=", "batch_spec_passthrough", ",", "sampling_method", "=", "sampling_method", ",", "sampling_kwargs", "=", "sampling_kwargs", ",", "splitter_method", "=", "splitter_method", ",", "splitter_kwargs", "=", "splitter_kwargs", ",", "runtime_parameters", "=", "runtime_parameters", ",", "query", "=", "query", ",", "path", "=", "path", ",", "batch_filter_parameters", "=", "batch_filter_parameters", ",", "*", "*", "kwargs", ",", ")", "# NOTE: Alex 20201202 - The check below is duplicate of code in Datasource.get_single_batch_from_batch_request()", "warnings", ".", "warn", "(", "\"get_batch will be deprecated for the V3 Batch Request API in a future version of GE. Please use\"", "\"get_batch_list instead.\"", ",", "DeprecationWarning", ",", ")", "if", "len", "(", "batch_list", ")", "!=", "1", ":", "raise", "ValueError", "(", "f\"Got {len(batch_list)} batches instead of a single batch. If you would like to use a BatchRequest to \"", "f\"return multiple batches, please use get_batch_list directly instead of calling get_batch\"", ")", "return", "batch_list", "[", "0", "]" ]
[ 1205, 4 ]
[ 1298, 28 ]
python
en
['en', 'en', 'en']
True
run_validation_operator
( self, validation_operator_name: str, assets_to_validate: List, run_id: Optional[Union[str, RunIdentifier]] = None, evaluation_parameters: Optional[dict] = None, run_name: Optional[str] = None, run_time: Optional[Union[str, datetime.datetime]] = None, result_format: Optional[Union[str, dict]] = None, **kwargs, )
Run a validation operator to validate data assets and to perform the business logic around validation that the operator implements. Args: validation_operator_name: name of the operator, as appears in the context's config file assets_to_validate: a list that specifies the data assets that the operator will validate. The members of the list can be either batches, or a tuple that will allow the operator to fetch the batch: (batch_kwargs, expectation_suite_name) run_name: The run_name for the validation; if None, a default value will be used **kwargs: Additional kwargs to pass to the validation operator Returns: ValidationOperatorResult
Run a validation operator to validate data assets and to perform the business logic around validation that the operator implements.
def run_validation_operator( self, validation_operator_name: str, assets_to_validate: List, run_id: Optional[Union[str, RunIdentifier]] = None, evaluation_parameters: Optional[dict] = None, run_name: Optional[str] = None, run_time: Optional[Union[str, datetime.datetime]] = None, result_format: Optional[Union[str, dict]] = None, **kwargs, ): """ Run a validation operator to validate data assets and to perform the business logic around validation that the operator implements. Args: validation_operator_name: name of the operator, as appears in the context's config file assets_to_validate: a list that specifies the data assets that the operator will validate. The members of the list can be either batches, or a tuple that will allow the operator to fetch the batch: (batch_kwargs, expectation_suite_name) run_name: The run_name for the validation; if None, a default value will be used **kwargs: Additional kwargs to pass to the validation operator Returns: ValidationOperatorResult """ result_format = result_format or {"result_format": "SUMMARY"} if not assets_to_validate: raise ge_exceptions.DataContextError( "No batches of data were passed in. These are required" ) for batch in assets_to_validate: if not isinstance(batch, (tuple, DataAsset, Validator)): raise ge_exceptions.DataContextError( "Batches are required to be of type DataAsset or Validator" ) try: validation_operator = self.validation_operators[validation_operator_name] except KeyError: raise ge_exceptions.DataContextError( f"No validation operator `{validation_operator_name}` was found in your project. Please verify this in your great_expectations.yml" ) if run_id is None and run_name is None: run_name = datetime.datetime.now(datetime.timezone.utc).strftime( "%Y%m%dT%H%M%S.%fZ" ) logger.info("Setting run_name to: {}".format(run_name)) if evaluation_parameters is None: return validation_operator.run( assets_to_validate=assets_to_validate, run_id=run_id, run_name=run_name, run_time=run_time, result_format=result_format, **kwargs, ) else: return validation_operator.run( assets_to_validate=assets_to_validate, run_id=run_id, evaluation_parameters=evaluation_parameters, run_name=run_name, run_time=run_time, result_format=result_format, **kwargs, )
[ "def", "run_validation_operator", "(", "self", ",", "validation_operator_name", ":", "str", ",", "assets_to_validate", ":", "List", ",", "run_id", ":", "Optional", "[", "Union", "[", "str", ",", "RunIdentifier", "]", "]", "=", "None", ",", "evaluation_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "run_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "run_time", ":", "Optional", "[", "Union", "[", "str", ",", "datetime", ".", "datetime", "]", "]", "=", "None", ",", "result_format", ":", "Optional", "[", "Union", "[", "str", ",", "dict", "]", "]", "=", "None", ",", "*", "*", "kwargs", ",", ")", ":", "result_format", "=", "result_format", "or", "{", "\"result_format\"", ":", "\"SUMMARY\"", "}", "if", "not", "assets_to_validate", ":", "raise", "ge_exceptions", ".", "DataContextError", "(", "\"No batches of data were passed in. These are required\"", ")", "for", "batch", "in", "assets_to_validate", ":", "if", "not", "isinstance", "(", "batch", ",", "(", "tuple", ",", "DataAsset", ",", "Validator", ")", ")", ":", "raise", "ge_exceptions", ".", "DataContextError", "(", "\"Batches are required to be of type DataAsset or Validator\"", ")", "try", ":", "validation_operator", "=", "self", ".", "validation_operators", "[", "validation_operator_name", "]", "except", "KeyError", ":", "raise", "ge_exceptions", ".", "DataContextError", "(", "f\"No validation operator `{validation_operator_name}` was found in your project. Please verify this in your great_expectations.yml\"", ")", "if", "run_id", "is", "None", "and", "run_name", "is", "None", ":", "run_name", "=", "datetime", ".", "datetime", ".", "now", "(", "datetime", ".", "timezone", ".", "utc", ")", ".", "strftime", "(", "\"%Y%m%dT%H%M%S.%fZ\"", ")", "logger", ".", "info", "(", "\"Setting run_name to: {}\"", ".", "format", "(", "run_name", ")", ")", "if", "evaluation_parameters", "is", "None", ":", "return", "validation_operator", ".", "run", "(", "assets_to_validate", "=", "assets_to_validate", ",", "run_id", "=", "run_id", ",", "run_name", "=", "run_name", ",", "run_time", "=", "run_time", ",", "result_format", "=", "result_format", ",", "*", "*", "kwargs", ",", ")", "else", ":", "return", "validation_operator", ".", "run", "(", "assets_to_validate", "=", "assets_to_validate", ",", "run_id", "=", "run_id", ",", "evaluation_parameters", "=", "evaluation_parameters", ",", "run_name", "=", "run_name", ",", "run_time", "=", "run_time", ",", "result_format", "=", "result_format", ",", "*", "*", "kwargs", ",", ")" ]
[ 1304, 4 ]
[ 1372, 13 ]
python
en
['en', 'error', 'th']
False
_get_data_context_version
(self, arg1: Any, **kwargs)
arg1: the first positional argument (can take on various types) **kwargs: variable arguments First check: Returns "v3" if the "0.13" entities are specified in the **kwargs. Otherwise: Returns None if no datasources have been configured (or if there is an exception while getting the datasource). Returns "v3" if the datasource is a subclass of the BaseDatasource class. Returns "v2" if the datasource is an instance of the LegacyDatasource class.
arg1: the first positional argument (can take on various types)
def _get_data_context_version(self, arg1: Any, **kwargs) -> Optional[str]: """ arg1: the first positional argument (can take on various types) **kwargs: variable arguments First check: Returns "v3" if the "0.13" entities are specified in the **kwargs. Otherwise: Returns None if no datasources have been configured (or if there is an exception while getting the datasource). Returns "v3" if the datasource is a subclass of the BaseDatasource class. Returns "v2" if the datasource is an instance of the LegacyDatasource class. """ if { "datasource_name", "data_connector_name", "data_asset_name", "batch_request", "batch_data", }.intersection(set(kwargs.keys())): return "v3" if not self.datasources: return None api_version: Optional[str] = None datasource_name: Any if "datasource_name" in kwargs: datasource_name = kwargs.pop("datasource_name", None) else: datasource_name = arg1 try: datasource: Union[LegacyDatasource, BaseDatasource] = self.get_datasource( datasource_name=datasource_name ) if issubclass(type(datasource), BaseDatasource): api_version = "v3" except (ValueError, TypeError): if "batch_kwargs" in kwargs: batch_kwargs = kwargs.get("batch_kwargs", None) else: batch_kwargs = arg1 if isinstance(batch_kwargs, dict): datasource_name = batch_kwargs.get("datasource") if datasource_name is not None: try: datasource: Union[ LegacyDatasource, BaseDatasource ] = self.get_datasource(datasource_name=datasource_name) if isinstance(datasource, LegacyDatasource): api_version = "v2" except (ValueError, TypeError): pass return api_version
[ "def", "_get_data_context_version", "(", "self", ",", "arg1", ":", "Any", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "str", "]", ":", "if", "{", "\"datasource_name\"", ",", "\"data_connector_name\"", ",", "\"data_asset_name\"", ",", "\"batch_request\"", ",", "\"batch_data\"", ",", "}", ".", "intersection", "(", "set", "(", "kwargs", ".", "keys", "(", ")", ")", ")", ":", "return", "\"v3\"", "if", "not", "self", ".", "datasources", ":", "return", "None", "api_version", ":", "Optional", "[", "str", "]", "=", "None", "datasource_name", ":", "Any", "if", "\"datasource_name\"", "in", "kwargs", ":", "datasource_name", "=", "kwargs", ".", "pop", "(", "\"datasource_name\"", ",", "None", ")", "else", ":", "datasource_name", "=", "arg1", "try", ":", "datasource", ":", "Union", "[", "LegacyDatasource", ",", "BaseDatasource", "]", "=", "self", ".", "get_datasource", "(", "datasource_name", "=", "datasource_name", ")", "if", "issubclass", "(", "type", "(", "datasource", ")", ",", "BaseDatasource", ")", ":", "api_version", "=", "\"v3\"", "except", "(", "ValueError", ",", "TypeError", ")", ":", "if", "\"batch_kwargs\"", "in", "kwargs", ":", "batch_kwargs", "=", "kwargs", ".", "get", "(", "\"batch_kwargs\"", ",", "None", ")", "else", ":", "batch_kwargs", "=", "arg1", "if", "isinstance", "(", "batch_kwargs", ",", "dict", ")", ":", "datasource_name", "=", "batch_kwargs", ".", "get", "(", "\"datasource\"", ")", "if", "datasource_name", "is", "not", "None", ":", "try", ":", "datasource", ":", "Union", "[", "LegacyDatasource", ",", "BaseDatasource", "]", "=", "self", ".", "get_datasource", "(", "datasource_name", "=", "datasource_name", ")", "if", "isinstance", "(", "datasource", ",", "LegacyDatasource", ")", ":", "api_version", "=", "\"v2\"", "except", "(", "ValueError", ",", "TypeError", ")", ":", "pass", "return", "api_version" ]
[ 1374, 4 ]
[ 1429, 26 ]
python
en
['en', 'error', 'th']
False
get_batch
( self, arg1: Any = None, arg2: Any = None, arg3: Any = None, **kwargs )
Get exactly one batch, based on a variety of flexible input types. The method `get_batch` is the main user-facing method for getting batches; it supports both the new (V3) and the Legacy (V2) Datasource schemas. The version-specific implementations are contained in "_get_batch_v2()" and "_get_batch_v3()", respectively, both of which are in the present module. For the V3 API parameters, please refer to the signature and parameter description of method "_get_batch_v3()". For the Legacy usage, please refer to the signature and parameter description of the method "_get_batch_v2()". Args: arg1: the first positional argument (can take on various types) arg2: the second positional argument (can take on various types) arg3: the third positional argument (can take on various types) **kwargs: variable arguments Returns: Batch (V3) or DataAsset (V2) -- the requested batch Processing Steps: 1. Determine the version (possible values are "v3" or "v2"). 2. Convert the positional arguments to the appropriate named arguments, based on the version. 3. Package the remaining arguments as variable keyword arguments (applies only to V3). 4. Call the version-specific method ("_get_batch_v3()" or "_get_batch_v2()") with the appropriate arguments.
Get exactly one batch, based on a variety of flexible input types. The method `get_batch` is the main user-facing method for getting batches; it supports both the new (V3) and the Legacy (V2) Datasource schemas. The version-specific implementations are contained in "_get_batch_v2()" and "_get_batch_v3()", respectively, both of which are in the present module.
def get_batch( self, arg1: Any = None, arg2: Any = None, arg3: Any = None, **kwargs ) -> Union[Batch, DataAsset]: """Get exactly one batch, based on a variety of flexible input types. The method `get_batch` is the main user-facing method for getting batches; it supports both the new (V3) and the Legacy (V2) Datasource schemas. The version-specific implementations are contained in "_get_batch_v2()" and "_get_batch_v3()", respectively, both of which are in the present module. For the V3 API parameters, please refer to the signature and parameter description of method "_get_batch_v3()". For the Legacy usage, please refer to the signature and parameter description of the method "_get_batch_v2()". Args: arg1: the first positional argument (can take on various types) arg2: the second positional argument (can take on various types) arg3: the third positional argument (can take on various types) **kwargs: variable arguments Returns: Batch (V3) or DataAsset (V2) -- the requested batch Processing Steps: 1. Determine the version (possible values are "v3" or "v2"). 2. Convert the positional arguments to the appropriate named arguments, based on the version. 3. Package the remaining arguments as variable keyword arguments (applies only to V3). 4. Call the version-specific method ("_get_batch_v3()" or "_get_batch_v2()") with the appropriate arguments. """ api_version: Optional[str] = self._get_data_context_version(arg1=arg1, **kwargs) if api_version == "v3": if "datasource_name" in kwargs: datasource_name = kwargs.pop("datasource_name", None) else: datasource_name = arg1 if "data_connector_name" in kwargs: data_connector_name = kwargs.pop("data_connector_name", None) else: data_connector_name = arg2 if "data_asset_name" in kwargs: data_asset_name = kwargs.pop("data_asset_name", None) else: data_asset_name = arg3 return self._get_batch_v3( datasource_name=datasource_name, data_connector_name=data_connector_name, data_asset_name=data_asset_name, **kwargs, ) if "batch_kwargs" in kwargs: batch_kwargs = kwargs.get("batch_kwargs", None) else: batch_kwargs = arg1 if "expectation_suite_name" in kwargs: expectation_suite_name = kwargs.get("expectation_suite_name", None) else: expectation_suite_name = arg2 if "data_asset_type" in kwargs: data_asset_type = kwargs.get("data_asset_type", None) else: data_asset_type = arg3 batch_parameters = kwargs.get("batch_parameters") return self._get_batch_v2( batch_kwargs=batch_kwargs, expectation_suite_name=expectation_suite_name, data_asset_type=data_asset_type, batch_parameters=batch_parameters, )
[ "def", "get_batch", "(", "self", ",", "arg1", ":", "Any", "=", "None", ",", "arg2", ":", "Any", "=", "None", ",", "arg3", ":", "Any", "=", "None", ",", "*", "*", "kwargs", ")", "->", "Union", "[", "Batch", ",", "DataAsset", "]", ":", "api_version", ":", "Optional", "[", "str", "]", "=", "self", ".", "_get_data_context_version", "(", "arg1", "=", "arg1", ",", "*", "*", "kwargs", ")", "if", "api_version", "==", "\"v3\"", ":", "if", "\"datasource_name\"", "in", "kwargs", ":", "datasource_name", "=", "kwargs", ".", "pop", "(", "\"datasource_name\"", ",", "None", ")", "else", ":", "datasource_name", "=", "arg1", "if", "\"data_connector_name\"", "in", "kwargs", ":", "data_connector_name", "=", "kwargs", ".", "pop", "(", "\"data_connector_name\"", ",", "None", ")", "else", ":", "data_connector_name", "=", "arg2", "if", "\"data_asset_name\"", "in", "kwargs", ":", "data_asset_name", "=", "kwargs", ".", "pop", "(", "\"data_asset_name\"", ",", "None", ")", "else", ":", "data_asset_name", "=", "arg3", "return", "self", ".", "_get_batch_v3", "(", "datasource_name", "=", "datasource_name", ",", "data_connector_name", "=", "data_connector_name", ",", "data_asset_name", "=", "data_asset_name", ",", "*", "*", "kwargs", ",", ")", "if", "\"batch_kwargs\"", "in", "kwargs", ":", "batch_kwargs", "=", "kwargs", ".", "get", "(", "\"batch_kwargs\"", ",", "None", ")", "else", ":", "batch_kwargs", "=", "arg1", "if", "\"expectation_suite_name\"", "in", "kwargs", ":", "expectation_suite_name", "=", "kwargs", ".", "get", "(", "\"expectation_suite_name\"", ",", "None", ")", "else", ":", "expectation_suite_name", "=", "arg2", "if", "\"data_asset_type\"", "in", "kwargs", ":", "data_asset_type", "=", "kwargs", ".", "get", "(", "\"data_asset_type\"", ",", "None", ")", "else", ":", "data_asset_type", "=", "arg3", "batch_parameters", "=", "kwargs", ".", "get", "(", "\"batch_parameters\"", ")", "return", "self", ".", "_get_batch_v2", "(", "batch_kwargs", "=", "batch_kwargs", ",", "expectation_suite_name", "=", "expectation_suite_name", ",", "data_asset_type", "=", "data_asset_type", ",", "batch_parameters", "=", "batch_parameters", ",", ")" ]
[ 1431, 4 ]
[ 1497, 9 ]
python
en
['en', 'en', 'en']
True
get_batch_list
( self, datasource_name: Optional[str] = None, data_connector_name: Optional[str] = None, data_asset_name: Optional[str] = None, *, batch_request: Optional[Union[BatchRequest, RuntimeBatchRequest]] = None, batch_data: Optional[Any] = None, data_connector_query: Optional[Union[IDDict, dict]] = None, batch_identifiers: Optional[dict] = None, limit: Optional[int] = None, index: Optional[Union[int, list, tuple, slice, str]] = None, custom_filter_function: Optional[Callable] = None, batch_spec_passthrough: Optional[dict] = None, sampling_method: Optional[str] = None, sampling_kwargs: Optional[dict] = None, splitter_method: Optional[str] = None, splitter_kwargs: Optional[dict] = None, runtime_parameters: Optional[dict] = None, query: Optional[str] = None, path: Optional[str] = None, batch_filter_parameters: Optional[dict] = None, **kwargs, )
Get the list of zero or more batches, based on a variety of flexible input types. This method applies only to the new (V3) Datasource schema. Args: batch_request datasource_name data_connector_name data_asset_name batch_request batch_data query runtime_parameters data_connector_query batch_identifiers batch_filter_parameters limit index custom_filter_function sampling_method sampling_kwargs splitter_method splitter_kwargs batch_spec_passthrough **kwargs Returns: (Batch) The requested batch `get_batch` is the main user-facing API for getting batches. In contrast to virtually all other methods in the class, it does not require typed or nested inputs. Instead, this method is intended to help the user pick the right parameters This method attempts to return any number of batches, including an empty list.
Get the list of zero or more batches, based on a variety of flexible input types. This method applies only to the new (V3) Datasource schema.
def get_batch_list( self, datasource_name: Optional[str] = None, data_connector_name: Optional[str] = None, data_asset_name: Optional[str] = None, *, batch_request: Optional[Union[BatchRequest, RuntimeBatchRequest]] = None, batch_data: Optional[Any] = None, data_connector_query: Optional[Union[IDDict, dict]] = None, batch_identifiers: Optional[dict] = None, limit: Optional[int] = None, index: Optional[Union[int, list, tuple, slice, str]] = None, custom_filter_function: Optional[Callable] = None, batch_spec_passthrough: Optional[dict] = None, sampling_method: Optional[str] = None, sampling_kwargs: Optional[dict] = None, splitter_method: Optional[str] = None, splitter_kwargs: Optional[dict] = None, runtime_parameters: Optional[dict] = None, query: Optional[str] = None, path: Optional[str] = None, batch_filter_parameters: Optional[dict] = None, **kwargs, ) -> List[Batch]: """Get the list of zero or more batches, based on a variety of flexible input types. This method applies only to the new (V3) Datasource schema. Args: batch_request datasource_name data_connector_name data_asset_name batch_request batch_data query runtime_parameters data_connector_query batch_identifiers batch_filter_parameters limit index custom_filter_function sampling_method sampling_kwargs splitter_method splitter_kwargs batch_spec_passthrough **kwargs Returns: (Batch) The requested batch `get_batch` is the main user-facing API for getting batches. In contrast to virtually all other methods in the class, it does not require typed or nested inputs. Instead, this method is intended to help the user pick the right parameters This method attempts to return any number of batches, including an empty list. """ datasource_name: str if batch_request: if not isinstance(batch_request, BatchRequest): raise TypeError( f"batch_request must be an instance of BatchRequest object, not {type(batch_request)}" ) datasource_name = batch_request.datasource_name datasource: Datasource = cast(Datasource, self.datasources[datasource_name]) if len([arg for arg in [batch_data, query, path] if arg is not None]) > 1: raise ValueError("Must provide only one of batch_data, query, or path.") if any( [ batch_data is not None and runtime_parameters and "batch_data" in runtime_parameters, query and runtime_parameters and "query" in runtime_parameters, path and runtime_parameters and "path" in runtime_parameters, ] ): raise ValueError( "If batch_data, query, or path arguments are provided, the same keys cannot appear in the " "runtime_parameters argument." ) if batch_request: # TODO: Raise a warning if any parameters besides batch_requests are specified return datasource.get_batch_list_from_batch_request( batch_request=batch_request ) elif any([batch_data is not None, query, path, runtime_parameters]): runtime_parameters = runtime_parameters or {} if batch_data is not None: runtime_parameters["batch_data"] = batch_data elif query is not None: runtime_parameters["query"] = query elif path is not None: runtime_parameters["path"] = path if batch_identifiers is None: batch_identifiers = kwargs else: # Raise a warning if kwargs exist pass batch_request = RuntimeBatchRequest( datasource_name=datasource_name, data_connector_name=data_connector_name, data_asset_name=data_asset_name, batch_spec_passthrough=batch_spec_passthrough, runtime_parameters=runtime_parameters, batch_identifiers=batch_identifiers, ) else: if data_connector_query is None: if ( batch_filter_parameters is not None and batch_identifiers is not None ): raise ValueError( 'Must provide either "batch_filter_parameters" or "batch_identifiers", not both.' ) elif batch_filter_parameters is None and batch_identifiers is not None: logger.warning( 'Attempting to build data_connector_query but "batch_identifiers" was provided ' 'instead of "batch_filter_parameters". The "batch_identifiers" key on ' 'data_connector_query has been renamed to "batch_filter_parameters". Please update ' 'your code. Falling back on provided "batch_identifiers".' ) batch_filter_parameters = batch_identifiers elif batch_filter_parameters is None and batch_identifiers is None: batch_filter_parameters = kwargs else: # Raise a warning if kwargs exist pass data_connector_query_params: dict = { "batch_filter_parameters": batch_filter_parameters, "limit": limit, "index": index, "custom_filter_function": custom_filter_function, } data_connector_query = IDDict(data_connector_query_params) else: # Raise a warning if batch_filter_parameters or kwargs exist data_connector_query = IDDict(data_connector_query) if batch_spec_passthrough is None: batch_spec_passthrough = {} if sampling_method is not None: sampling_params: dict = { "sampling_method": sampling_method, } if sampling_kwargs is not None: sampling_params["sampling_kwargs"] = sampling_kwargs batch_spec_passthrough.update(sampling_params) if splitter_method is not None: splitter_params: dict = { "splitter_method": splitter_method, } if splitter_kwargs is not None: splitter_params["splitter_kwargs"] = splitter_kwargs batch_spec_passthrough.update(splitter_params) batch_request: BatchRequest = BatchRequest( datasource_name=datasource_name, data_connector_name=data_connector_name, data_asset_name=data_asset_name, data_connector_query=data_connector_query, batch_spec_passthrough=batch_spec_passthrough, ) return datasource.get_batch_list_from_batch_request(batch_request=batch_request)
[ "def", "get_batch_list", "(", "self", ",", "datasource_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "data_connector_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "data_asset_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "*", ",", "batch_request", ":", "Optional", "[", "Union", "[", "BatchRequest", ",", "RuntimeBatchRequest", "]", "]", "=", "None", ",", "batch_data", ":", "Optional", "[", "Any", "]", "=", "None", ",", "data_connector_query", ":", "Optional", "[", "Union", "[", "IDDict", ",", "dict", "]", "]", "=", "None", ",", "batch_identifiers", ":", "Optional", "[", "dict", "]", "=", "None", ",", "limit", ":", "Optional", "[", "int", "]", "=", "None", ",", "index", ":", "Optional", "[", "Union", "[", "int", ",", "list", ",", "tuple", ",", "slice", ",", "str", "]", "]", "=", "None", ",", "custom_filter_function", ":", "Optional", "[", "Callable", "]", "=", "None", ",", "batch_spec_passthrough", ":", "Optional", "[", "dict", "]", "=", "None", ",", "sampling_method", ":", "Optional", "[", "str", "]", "=", "None", ",", "sampling_kwargs", ":", "Optional", "[", "dict", "]", "=", "None", ",", "splitter_method", ":", "Optional", "[", "str", "]", "=", "None", ",", "splitter_kwargs", ":", "Optional", "[", "dict", "]", "=", "None", ",", "runtime_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "query", ":", "Optional", "[", "str", "]", "=", "None", ",", "path", ":", "Optional", "[", "str", "]", "=", "None", ",", "batch_filter_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "*", "*", "kwargs", ",", ")", "->", "List", "[", "Batch", "]", ":", "datasource_name", ":", "str", "if", "batch_request", ":", "if", "not", "isinstance", "(", "batch_request", ",", "BatchRequest", ")", ":", "raise", "TypeError", "(", "f\"batch_request must be an instance of BatchRequest object, not {type(batch_request)}\"", ")", "datasource_name", "=", "batch_request", ".", "datasource_name", "datasource", ":", "Datasource", "=", "cast", "(", "Datasource", ",", "self", ".", "datasources", "[", "datasource_name", "]", ")", "if", "len", "(", "[", "arg", "for", "arg", "in", "[", "batch_data", ",", "query", ",", "path", "]", "if", "arg", "is", "not", "None", "]", ")", ">", "1", ":", "raise", "ValueError", "(", "\"Must provide only one of batch_data, query, or path.\"", ")", "if", "any", "(", "[", "batch_data", "is", "not", "None", "and", "runtime_parameters", "and", "\"batch_data\"", "in", "runtime_parameters", ",", "query", "and", "runtime_parameters", "and", "\"query\"", "in", "runtime_parameters", ",", "path", "and", "runtime_parameters", "and", "\"path\"", "in", "runtime_parameters", ",", "]", ")", ":", "raise", "ValueError", "(", "\"If batch_data, query, or path arguments are provided, the same keys cannot appear in the \"", "\"runtime_parameters argument.\"", ")", "if", "batch_request", ":", "# TODO: Raise a warning if any parameters besides batch_requests are specified", "return", "datasource", ".", "get_batch_list_from_batch_request", "(", "batch_request", "=", "batch_request", ")", "elif", "any", "(", "[", "batch_data", "is", "not", "None", ",", "query", ",", "path", ",", "runtime_parameters", "]", ")", ":", "runtime_parameters", "=", "runtime_parameters", "or", "{", "}", "if", "batch_data", "is", "not", "None", ":", "runtime_parameters", "[", "\"batch_data\"", "]", "=", "batch_data", "elif", "query", "is", "not", "None", ":", "runtime_parameters", "[", "\"query\"", "]", "=", "query", "elif", "path", "is", "not", "None", ":", "runtime_parameters", "[", "\"path\"", "]", "=", "path", "if", "batch_identifiers", "is", "None", ":", "batch_identifiers", "=", "kwargs", "else", ":", "# Raise a warning if kwargs exist", "pass", "batch_request", "=", "RuntimeBatchRequest", "(", "datasource_name", "=", "datasource_name", ",", "data_connector_name", "=", "data_connector_name", ",", "data_asset_name", "=", "data_asset_name", ",", "batch_spec_passthrough", "=", "batch_spec_passthrough", ",", "runtime_parameters", "=", "runtime_parameters", ",", "batch_identifiers", "=", "batch_identifiers", ",", ")", "else", ":", "if", "data_connector_query", "is", "None", ":", "if", "(", "batch_filter_parameters", "is", "not", "None", "and", "batch_identifiers", "is", "not", "None", ")", ":", "raise", "ValueError", "(", "'Must provide either \"batch_filter_parameters\" or \"batch_identifiers\", not both.'", ")", "elif", "batch_filter_parameters", "is", "None", "and", "batch_identifiers", "is", "not", "None", ":", "logger", ".", "warning", "(", "'Attempting to build data_connector_query but \"batch_identifiers\" was provided '", "'instead of \"batch_filter_parameters\". The \"batch_identifiers\" key on '", "'data_connector_query has been renamed to \"batch_filter_parameters\". Please update '", "'your code. Falling back on provided \"batch_identifiers\".'", ")", "batch_filter_parameters", "=", "batch_identifiers", "elif", "batch_filter_parameters", "is", "None", "and", "batch_identifiers", "is", "None", ":", "batch_filter_parameters", "=", "kwargs", "else", ":", "# Raise a warning if kwargs exist", "pass", "data_connector_query_params", ":", "dict", "=", "{", "\"batch_filter_parameters\"", ":", "batch_filter_parameters", ",", "\"limit\"", ":", "limit", ",", "\"index\"", ":", "index", ",", "\"custom_filter_function\"", ":", "custom_filter_function", ",", "}", "data_connector_query", "=", "IDDict", "(", "data_connector_query_params", ")", "else", ":", "# Raise a warning if batch_filter_parameters or kwargs exist", "data_connector_query", "=", "IDDict", "(", "data_connector_query", ")", "if", "batch_spec_passthrough", "is", "None", ":", "batch_spec_passthrough", "=", "{", "}", "if", "sampling_method", "is", "not", "None", ":", "sampling_params", ":", "dict", "=", "{", "\"sampling_method\"", ":", "sampling_method", ",", "}", "if", "sampling_kwargs", "is", "not", "None", ":", "sampling_params", "[", "\"sampling_kwargs\"", "]", "=", "sampling_kwargs", "batch_spec_passthrough", ".", "update", "(", "sampling_params", ")", "if", "splitter_method", "is", "not", "None", ":", "splitter_params", ":", "dict", "=", "{", "\"splitter_method\"", ":", "splitter_method", ",", "}", "if", "splitter_kwargs", "is", "not", "None", ":", "splitter_params", "[", "\"splitter_kwargs\"", "]", "=", "splitter_kwargs", "batch_spec_passthrough", ".", "update", "(", "splitter_params", ")", "batch_request", ":", "BatchRequest", "=", "BatchRequest", "(", "datasource_name", "=", "datasource_name", ",", "data_connector_name", "=", "data_connector_name", ",", "data_asset_name", "=", "data_asset_name", ",", "data_connector_query", "=", "data_connector_query", ",", "batch_spec_passthrough", "=", "batch_spec_passthrough", ",", ")", "return", "datasource", ".", "get_batch_list_from_batch_request", "(", "batch_request", "=", "batch_request", ")" ]
[ 1499, 4 ]
[ 1678, 88 ]
python
en
['en', 'en', 'en']
True
get_validator
( self, datasource_name: Optional[str] = None, data_connector_name: Optional[str] = None, data_asset_name: Optional[str] = None, *, batch_request: Optional[Union[BatchRequest, RuntimeBatchRequest]] = None, batch_request_list: List[ Optional[Union[BatchRequest, RuntimeBatchRequest]] ] = None, batch_data: Optional[Any] = None, data_connector_query: Optional[Union[IDDict, dict]] = None, batch_identifiers: Optional[dict] = None, limit: Optional[int] = None, index: Optional[Union[int, list, tuple, slice, str]] = None, custom_filter_function: Optional[Callable] = None, expectation_suite_name: Optional[str] = None, expectation_suite: Optional[ExpectationSuite] = None, create_expectation_suite_with_name: Optional[str] = None, batch_spec_passthrough: Optional[dict] = None, sampling_method: Optional[str] = None, sampling_kwargs: Optional[dict] = None, splitter_method: Optional[str] = None, splitter_kwargs: Optional[dict] = None, runtime_parameters: Optional[dict] = None, query: Optional[str] = None, path: Optional[str] = None, batch_filter_parameters: Optional[dict] = None, **kwargs, )
This method applies only to the new (V3) Datasource schema.
This method applies only to the new (V3) Datasource schema.
def get_validator( self, datasource_name: Optional[str] = None, data_connector_name: Optional[str] = None, data_asset_name: Optional[str] = None, *, batch_request: Optional[Union[BatchRequest, RuntimeBatchRequest]] = None, batch_request_list: List[ Optional[Union[BatchRequest, RuntimeBatchRequest]] ] = None, batch_data: Optional[Any] = None, data_connector_query: Optional[Union[IDDict, dict]] = None, batch_identifiers: Optional[dict] = None, limit: Optional[int] = None, index: Optional[Union[int, list, tuple, slice, str]] = None, custom_filter_function: Optional[Callable] = None, expectation_suite_name: Optional[str] = None, expectation_suite: Optional[ExpectationSuite] = None, create_expectation_suite_with_name: Optional[str] = None, batch_spec_passthrough: Optional[dict] = None, sampling_method: Optional[str] = None, sampling_kwargs: Optional[dict] = None, splitter_method: Optional[str] = None, splitter_kwargs: Optional[dict] = None, runtime_parameters: Optional[dict] = None, query: Optional[str] = None, path: Optional[str] = None, batch_filter_parameters: Optional[dict] = None, **kwargs, ) -> Validator: """ This method applies only to the new (V3) Datasource schema. """ if ( sum( bool(x) for x in [ expectation_suite is not None, expectation_suite_name is not None, create_expectation_suite_with_name is not None, ] ) != 1 ): raise ValueError( "Exactly one of expectation_suite_name, expectation_suite, or create_expectation_suite_with_name must be specified" ) if expectation_suite_name is not None: expectation_suite = self.get_expectation_suite(expectation_suite_name) if create_expectation_suite_with_name is not None: expectation_suite = self.create_expectation_suite( expectation_suite_name=create_expectation_suite_with_name ) if ( sum( bool(x) for x in [batch_request is not None, batch_request_list is not None] ) > 1 ): raise ValueError( "Only one of batch_request or batch_request_list may be specified" ) if not batch_request_list: batch_request_list = [batch_request] batch_list: List = [] for batch_request in batch_request_list: batch_list.extend( self.get_batch_list( datasource_name=datasource_name, data_connector_name=data_connector_name, data_asset_name=data_asset_name, batch_request=batch_request, batch_data=batch_data, data_connector_query=data_connector_query, batch_identifiers=batch_identifiers, limit=limit, index=index, custom_filter_function=custom_filter_function, batch_spec_passthrough=batch_spec_passthrough, sampling_method=sampling_method, sampling_kwargs=sampling_kwargs, splitter_method=splitter_method, splitter_kwargs=splitter_kwargs, runtime_parameters=runtime_parameters, query=query, path=path, batch_filter_parameters=batch_filter_parameters, **kwargs, ) ) # We get a single batch_definition so we can get the execution_engine here. All batches will share the same one # So the batch itself doesn't matter. But we use -1 because that will be the latest batch loaded. batch_definition = batch_list[-1].batch_definition execution_engine = self.datasources[ batch_definition.datasource_name ].execution_engine validator = Validator( execution_engine=execution_engine, interactive_evaluation=True, expectation_suite=expectation_suite, data_context=self, batches=batch_list, ) return validator
[ "def", "get_validator", "(", "self", ",", "datasource_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "data_connector_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "data_asset_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "*", ",", "batch_request", ":", "Optional", "[", "Union", "[", "BatchRequest", ",", "RuntimeBatchRequest", "]", "]", "=", "None", ",", "batch_request_list", ":", "List", "[", "Optional", "[", "Union", "[", "BatchRequest", ",", "RuntimeBatchRequest", "]", "]", "]", "=", "None", ",", "batch_data", ":", "Optional", "[", "Any", "]", "=", "None", ",", "data_connector_query", ":", "Optional", "[", "Union", "[", "IDDict", ",", "dict", "]", "]", "=", "None", ",", "batch_identifiers", ":", "Optional", "[", "dict", "]", "=", "None", ",", "limit", ":", "Optional", "[", "int", "]", "=", "None", ",", "index", ":", "Optional", "[", "Union", "[", "int", ",", "list", ",", "tuple", ",", "slice", ",", "str", "]", "]", "=", "None", ",", "custom_filter_function", ":", "Optional", "[", "Callable", "]", "=", "None", ",", "expectation_suite_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "expectation_suite", ":", "Optional", "[", "ExpectationSuite", "]", "=", "None", ",", "create_expectation_suite_with_name", ":", "Optional", "[", "str", "]", "=", "None", ",", "batch_spec_passthrough", ":", "Optional", "[", "dict", "]", "=", "None", ",", "sampling_method", ":", "Optional", "[", "str", "]", "=", "None", ",", "sampling_kwargs", ":", "Optional", "[", "dict", "]", "=", "None", ",", "splitter_method", ":", "Optional", "[", "str", "]", "=", "None", ",", "splitter_kwargs", ":", "Optional", "[", "dict", "]", "=", "None", ",", "runtime_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "query", ":", "Optional", "[", "str", "]", "=", "None", ",", "path", ":", "Optional", "[", "str", "]", "=", "None", ",", "batch_filter_parameters", ":", "Optional", "[", "dict", "]", "=", "None", ",", "*", "*", "kwargs", ",", ")", "->", "Validator", ":", "if", "(", "sum", "(", "bool", "(", "x", ")", "for", "x", "in", "[", "expectation_suite", "is", "not", "None", ",", "expectation_suite_name", "is", "not", "None", ",", "create_expectation_suite_with_name", "is", "not", "None", ",", "]", ")", "!=", "1", ")", ":", "raise", "ValueError", "(", "\"Exactly one of expectation_suite_name, expectation_suite, or create_expectation_suite_with_name must be specified\"", ")", "if", "expectation_suite_name", "is", "not", "None", ":", "expectation_suite", "=", "self", ".", "get_expectation_suite", "(", "expectation_suite_name", ")", "if", "create_expectation_suite_with_name", "is", "not", "None", ":", "expectation_suite", "=", "self", ".", "create_expectation_suite", "(", "expectation_suite_name", "=", "create_expectation_suite_with_name", ")", "if", "(", "sum", "(", "bool", "(", "x", ")", "for", "x", "in", "[", "batch_request", "is", "not", "None", ",", "batch_request_list", "is", "not", "None", "]", ")", ">", "1", ")", ":", "raise", "ValueError", "(", "\"Only one of batch_request or batch_request_list may be specified\"", ")", "if", "not", "batch_request_list", ":", "batch_request_list", "=", "[", "batch_request", "]", "batch_list", ":", "List", "=", "[", "]", "for", "batch_request", "in", "batch_request_list", ":", "batch_list", ".", "extend", "(", "self", ".", "get_batch_list", "(", "datasource_name", "=", "datasource_name", ",", "data_connector_name", "=", "data_connector_name", ",", "data_asset_name", "=", "data_asset_name", ",", "batch_request", "=", "batch_request", ",", "batch_data", "=", "batch_data", ",", "data_connector_query", "=", "data_connector_query", ",", "batch_identifiers", "=", "batch_identifiers", ",", "limit", "=", "limit", ",", "index", "=", "index", ",", "custom_filter_function", "=", "custom_filter_function", ",", "batch_spec_passthrough", "=", "batch_spec_passthrough", ",", "sampling_method", "=", "sampling_method", ",", "sampling_kwargs", "=", "sampling_kwargs", ",", "splitter_method", "=", "splitter_method", ",", "splitter_kwargs", "=", "splitter_kwargs", ",", "runtime_parameters", "=", "runtime_parameters", ",", "query", "=", "query", ",", "path", "=", "path", ",", "batch_filter_parameters", "=", "batch_filter_parameters", ",", "*", "*", "kwargs", ",", ")", ")", "# We get a single batch_definition so we can get the execution_engine here. All batches will share the same one", "# So the batch itself doesn't matter. But we use -1 because that will be the latest batch loaded.", "batch_definition", "=", "batch_list", "[", "-", "1", "]", ".", "batch_definition", "execution_engine", "=", "self", ".", "datasources", "[", "batch_definition", ".", "datasource_name", "]", ".", "execution_engine", "validator", "=", "Validator", "(", "execution_engine", "=", "execution_engine", ",", "interactive_evaluation", "=", "True", ",", "expectation_suite", "=", "expectation_suite", ",", "data_context", "=", "self", ",", "batches", "=", "batch_list", ",", ")", "return", "validator" ]
[ 1680, 4 ]
[ 1792, 24 ]
python
en
['en', 'error', 'th']
False
add_datasource
( self, name, initialize=True, **kwargs )
Add a new datasource to the data context, with configuration provided as kwargs. Args: name: the name for the new datasource to add initialize: if False, add the datasource to the config, but do not initialize it, for example if a user needs to debug database connectivity. kwargs (keyword arguments): the configuration for the new datasource Returns: datasource (Datasource)
Add a new datasource to the data context, with configuration provided as kwargs. Args: name: the name for the new datasource to add initialize: if False, add the datasource to the config, but do not initialize it, for example if a user needs to debug database connectivity. kwargs (keyword arguments): the configuration for the new datasource
def add_datasource( self, name, initialize=True, **kwargs ) -> Optional[Dict[str, Union[LegacyDatasource, BaseDatasource]]]: """Add a new datasource to the data context, with configuration provided as kwargs. Args: name: the name for the new datasource to add initialize: if False, add the datasource to the config, but do not initialize it, for example if a user needs to debug database connectivity. kwargs (keyword arguments): the configuration for the new datasource Returns: datasource (Datasource) """ logger.debug("Starting BaseDataContext.add_datasource for %s" % name) module_name = kwargs.get("module_name", "great_expectations.datasource") verify_dynamic_loading_support(module_name=module_name) class_name = kwargs.get("class_name") datasource_class = load_class(module_name=module_name, class_name=class_name) # For any class that should be loaded, it may control its configuration construction # by implementing a classmethod called build_configuration config: Union[CommentedMap, dict] if hasattr(datasource_class, "build_configuration"): config = datasource_class.build_configuration(**kwargs) else: config = kwargs return self._instantiate_datasource_from_config_and_update_project_config( name=name, config=config, initialize=initialize, )
[ "def", "add_datasource", "(", "self", ",", "name", ",", "initialize", "=", "True", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "Dict", "[", "str", ",", "Union", "[", "LegacyDatasource", ",", "BaseDatasource", "]", "]", "]", ":", "logger", ".", "debug", "(", "\"Starting BaseDataContext.add_datasource for %s\"", "%", "name", ")", "module_name", "=", "kwargs", ".", "get", "(", "\"module_name\"", ",", "\"great_expectations.datasource\"", ")", "verify_dynamic_loading_support", "(", "module_name", "=", "module_name", ")", "class_name", "=", "kwargs", ".", "get", "(", "\"class_name\"", ")", "datasource_class", "=", "load_class", "(", "module_name", "=", "module_name", ",", "class_name", "=", "class_name", ")", "# For any class that should be loaded, it may control its configuration construction", "# by implementing a classmethod called build_configuration", "config", ":", "Union", "[", "CommentedMap", ",", "dict", "]", "if", "hasattr", "(", "datasource_class", ",", "\"build_configuration\"", ")", ":", "config", "=", "datasource_class", ".", "build_configuration", "(", "*", "*", "kwargs", ")", "else", ":", "config", "=", "kwargs", "return", "self", ".", "_instantiate_datasource_from_config_and_update_project_config", "(", "name", "=", "name", ",", "config", "=", "config", ",", "initialize", "=", "initialize", ",", ")" ]
[ 1803, 4 ]
[ 1835, 9 ]
python
en
['en', 'en', 'en']
True