Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
sequence | start_point
sequence | end_point
sequence | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
DBReporting.addFailure | (self, test, err, capt=None, tbinfo=None) |
After a test failure, we want to record testcase run information.
|
After a test failure, we want to record testcase run information.
| def addFailure(self, test, err, capt=None, tbinfo=None):
"""
After a test failure, we want to record testcase run information.
"""
self.__insert_test_result(constants.State.FAILURE, test, err) | [
"def",
"addFailure",
"(",
"self",
",",
"test",
",",
"err",
",",
"capt",
"=",
"None",
",",
"tbinfo",
"=",
"None",
")",
":",
"self",
".",
"__insert_test_result",
"(",
"constants",
".",
"State",
".",
"FAILURE",
",",
"test",
",",
"err",
")"
] | [
128,
4
] | [
132,
69
] | python | en | ['en', 'error', 'th'] | False |
_waitid_system_task | (pid: int, event: Event) | Spawn a thread that waits for ``pid`` to exit, then wake any tasks
that were waiting on it.
| Spawn a thread that waits for ``pid`` to exit, then wake any tasks
that were waiting on it.
| async def _waitid_system_task(pid: int, event: Event) -> None:
"""Spawn a thread that waits for ``pid`` to exit, then wake any tasks
that were waiting on it.
"""
# cancellable=True: if this task is cancelled, then we abandon the
# thread to keep running waitpid in the background. Since this is
# always run as a system task, this will only happen if the whole
# call to trio.run is shutting down.
try:
await to_thread_run_sync(
sync_wait_reapable, pid, cancellable=True, limiter=waitid_limiter
)
except OSError:
# If waitid fails, waitpid will fail too, so it still makes
# sense to wake up the callers of wait_process_exiting(). The
# most likely reason for this error in practice is a child
# exiting when wait() is not possible because SIGCHLD is
# ignored.
pass
finally:
event.set() | [
"async",
"def",
"_waitid_system_task",
"(",
"pid",
":",
"int",
",",
"event",
":",
"Event",
")",
"->",
"None",
":",
"# cancellable=True: if this task is cancelled, then we abandon the",
"# thread to keep running waitpid in the background. Since this is",
"# always run as a system task, this will only happen if the whole",
"# call to trio.run is shutting down.",
"try",
":",
"await",
"to_thread_run_sync",
"(",
"sync_wait_reapable",
",",
"pid",
",",
"cancellable",
"=",
"True",
",",
"limiter",
"=",
"waitid_limiter",
")",
"except",
"OSError",
":",
"# If waitid fails, waitpid will fail too, so it still makes",
"# sense to wake up the callers of wait_process_exiting(). The",
"# most likely reason for this error in practice is a child",
"# exiting when wait() is not possible because SIGCHLD is",
"# ignored.",
"pass",
"finally",
":",
"event",
".",
"set",
"(",
")"
] | [
68,
0
] | [
89,
19
] | python | en | ['en', 'en', 'en'] | True |
TLSContextTest._go_close_connection_error | (url) |
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
|
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
| def _go_close_connection_error(url):
"""
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
"""
return "Get {}: EOF".format(url) | [
"def",
"_go_close_connection_error",
"(",
"url",
")",
":",
"return",
"\"Get {}: EOF\"",
".",
"format",
"(",
"url",
")"
] | [
615,
4
] | [
620,
40
] | python | en | ['en', 'error', 'th'] | False |
TLSIngressTest._go_close_connection_error | (url) |
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
|
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
| def _go_close_connection_error(url):
"""
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
"""
return "Get {}: EOF".format(url) | [
"def",
"_go_close_connection_error",
"(",
"url",
")",
":",
"return",
"\"Get {}: EOF\"",
".",
"format",
"(",
"url",
")"
] | [
863,
4
] | [
868,
40
] | python | en | ['en', 'error', 'th'] | False |
TLSContextProtocolMaxVersion._go_close_connection_error | (url) |
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
|
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
| def _go_close_connection_error(url):
"""
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
"""
return "Get {}: EOF".format(url) | [
"def",
"_go_close_connection_error",
"(",
"url",
")",
":",
"return",
"\"Get {}: EOF\"",
".",
"format",
"(",
"url",
")"
] | [
1032,
4
] | [
1037,
40
] | python | en | ['en', 'error', 'th'] | False |
TLSContextProtocolMinVersion._go_close_connection_error | (url) |
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
|
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
| def _go_close_connection_error(url):
"""
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
"""
return "Get {}: EOF".format(url) | [
"def",
"_go_close_connection_error",
"(",
"url",
")",
":",
"return",
"\"Get {}: EOF\"",
".",
"format",
"(",
"url",
")"
] | [
1144,
4
] | [
1149,
40
] | python | en | ['en', 'error', 'th'] | False |
TLSContextCipherSuites._go_close_connection_error | (url) |
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
|
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
| def _go_close_connection_error(url):
"""
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
"""
return "Get {}: EOF".format(url) | [
"def",
"_go_close_connection_error",
"(",
"url",
")",
":",
"return",
"\"Get {}: EOF\"",
".",
"format",
"(",
"url",
")"
] | [
1247,
4
] | [
1252,
40
] | python | en | ['en', 'error', 'th'] | False |
TLSCoalescing._go_close_connection_error | (url) |
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
|
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
| def _go_close_connection_error(url):
"""
:param url: url passed to the query
:return: error message string that Go's net/http package throws when server closes connection
"""
return "Get {}: EOF".format(url) | [
"def",
"_go_close_connection_error",
"(",
"url",
")",
":",
"return",
"\"Get {}: EOF\"",
".",
"format",
"(",
"url",
")"
] | [
1384,
4
] | [
1389,
40
] | python | en | ['en', 'error', 'th'] | False |
_ToGypPath | (path) | Converts a path to the format used by gyp. | Converts a path to the format used by gyp. | def _ToGypPath(path):
"""Converts a path to the format used by gyp."""
if os.sep == '\\' and os.altsep == '/':
return path.replace('\\', '/')
return path | [
"def",
"_ToGypPath",
"(",
"path",
")",
":",
"if",
"os",
".",
"sep",
"==",
"'\\\\'",
"and",
"os",
".",
"altsep",
"==",
"'/'",
":",
"return",
"path",
".",
"replace",
"(",
"'\\\\'",
",",
"'/'",
")",
"return",
"path"
] | [
111,
0
] | [
115,
13
] | python | en | ['en', 'en', 'en'] | True |
_ResolveParent | (path, base_path_components) | Resolves |path|, which starts with at least one '../'. Returns an empty
string if the path shouldn't be considered. See _AddSources() for a
description of |base_path_components|. | Resolves |path|, which starts with at least one '../'. Returns an empty
string if the path shouldn't be considered. See _AddSources() for a
description of |base_path_components|. | def _ResolveParent(path, base_path_components):
"""Resolves |path|, which starts with at least one '../'. Returns an empty
string if the path shouldn't be considered. See _AddSources() for a
description of |base_path_components|."""
depth = 0
while path.startswith('../'):
depth += 1
path = path[3:]
# Relative includes may go outside the source tree. For example, an action may
# have inputs in /usr/include, which are not in the source tree.
if depth > len(base_path_components):
return ''
if depth == len(base_path_components):
return path
return '/'.join(base_path_components[0:len(base_path_components) - depth]) + \
'/' + path | [
"def",
"_ResolveParent",
"(",
"path",
",",
"base_path_components",
")",
":",
"depth",
"=",
"0",
"while",
"path",
".",
"startswith",
"(",
"'../'",
")",
":",
"depth",
"+=",
"1",
"path",
"=",
"path",
"[",
"3",
":",
"]",
"# Relative includes may go outside the source tree. For example, an action may",
"# have inputs in /usr/include, which are not in the source tree.",
"if",
"depth",
">",
"len",
"(",
"base_path_components",
")",
":",
"return",
"''",
"if",
"depth",
"==",
"len",
"(",
"base_path_components",
")",
":",
"return",
"path",
"return",
"'/'",
".",
"join",
"(",
"base_path_components",
"[",
"0",
":",
"len",
"(",
"base_path_components",
")",
"-",
"depth",
"]",
")",
"+",
"'/'",
"+",
"path"
] | [
118,
0
] | [
133,
16
] | python | en | ['en', 'en', 'en'] | True |
_AddSources | (sources, base_path, base_path_components, result) | Extracts valid sources from |sources| and adds them to |result|. Each
source file is relative to |base_path|, but may contain '..'. To make
resolving '..' easier |base_path_components| contains each of the
directories in |base_path|. Additionally each source may contain variables.
Such sources are ignored as it is assumed dependencies on them are expressed
and tracked in some other means. | Extracts valid sources from |sources| and adds them to |result|. Each
source file is relative to |base_path|, but may contain '..'. To make
resolving '..' easier |base_path_components| contains each of the
directories in |base_path|. Additionally each source may contain variables.
Such sources are ignored as it is assumed dependencies on them are expressed
and tracked in some other means. | def _AddSources(sources, base_path, base_path_components, result):
"""Extracts valid sources from |sources| and adds them to |result|. Each
source file is relative to |base_path|, but may contain '..'. To make
resolving '..' easier |base_path_components| contains each of the
directories in |base_path|. Additionally each source may contain variables.
Such sources are ignored as it is assumed dependencies on them are expressed
and tracked in some other means."""
# NOTE: gyp paths are always posix style.
for source in sources:
if not len(source) or source.startswith('!!!') or source.startswith('$'):
continue
# variable expansion may lead to //.
org_source = source
source = source[0] + source[1:].replace('//', '/')
if source.startswith('../'):
source = _ResolveParent(source, base_path_components)
if len(source):
result.append(source)
continue
result.append(base_path + source)
if debug:
print 'AddSource', org_source, result[len(result) - 1] | [
"def",
"_AddSources",
"(",
"sources",
",",
"base_path",
",",
"base_path_components",
",",
"result",
")",
":",
"# NOTE: gyp paths are always posix style.",
"for",
"source",
"in",
"sources",
":",
"if",
"not",
"len",
"(",
"source",
")",
"or",
"source",
".",
"startswith",
"(",
"'!!!'",
")",
"or",
"source",
".",
"startswith",
"(",
"'$'",
")",
":",
"continue",
"# variable expansion may lead to //.",
"org_source",
"=",
"source",
"source",
"=",
"source",
"[",
"0",
"]",
"+",
"source",
"[",
"1",
":",
"]",
".",
"replace",
"(",
"'//'",
",",
"'/'",
")",
"if",
"source",
".",
"startswith",
"(",
"'../'",
")",
":",
"source",
"=",
"_ResolveParent",
"(",
"source",
",",
"base_path_components",
")",
"if",
"len",
"(",
"source",
")",
":",
"result",
".",
"append",
"(",
"source",
")",
"continue",
"result",
".",
"append",
"(",
"base_path",
"+",
"source",
")",
"if",
"debug",
":",
"print",
"'AddSource'",
",",
"org_source",
",",
"result",
"[",
"len",
"(",
"result",
")",
"-",
"1",
"]"
] | [
136,
0
] | [
157,
60
] | python | en | ['en', 'en', 'en'] | True |
_ToLocalPath | (toplevel_dir, path) | Converts |path| to a path relative to |toplevel_dir|. | Converts |path| to a path relative to |toplevel_dir|. | def _ToLocalPath(toplevel_dir, path):
"""Converts |path| to a path relative to |toplevel_dir|."""
if path == toplevel_dir:
return ''
if path.startswith(toplevel_dir + '/'):
return path[len(toplevel_dir) + len('/'):]
return path | [
"def",
"_ToLocalPath",
"(",
"toplevel_dir",
",",
"path",
")",
":",
"if",
"path",
"==",
"toplevel_dir",
":",
"return",
"''",
"if",
"path",
".",
"startswith",
"(",
"toplevel_dir",
"+",
"'/'",
")",
":",
"return",
"path",
"[",
"len",
"(",
"toplevel_dir",
")",
"+",
"len",
"(",
"'/'",
")",
":",
"]",
"return",
"path"
] | [
166,
0
] | [
172,
13
] | python | en | ['en', 'en', 'en'] | True |
_WasBuildFileModified | (build_file, data, files, toplevel_dir) | Returns true if the build file |build_file| is either in |files| or
one of the files included by |build_file| is in |files|. |toplevel_dir| is
the root of the source tree. | Returns true if the build file |build_file| is either in |files| or
one of the files included by |build_file| is in |files|. |toplevel_dir| is
the root of the source tree. | def _WasBuildFileModified(build_file, data, files, toplevel_dir):
"""Returns true if the build file |build_file| is either in |files| or
one of the files included by |build_file| is in |files|. |toplevel_dir| is
the root of the source tree."""
if _ToLocalPath(toplevel_dir, _ToGypPath(build_file)) in files:
if debug:
print 'gyp file modified', build_file
return True
# First element of included_files is the file itself.
if len(data[build_file]['included_files']) <= 1:
return False
for include_file in data[build_file]['included_files'][1:]:
# |included_files| are relative to the directory of the |build_file|.
rel_include_file = \
_ToGypPath(gyp.common.UnrelativePath(include_file, build_file))
if _ToLocalPath(toplevel_dir, rel_include_file) in files:
if debug:
print 'included gyp file modified, gyp_file=', build_file, \
'included file=', rel_include_file
return True
return False | [
"def",
"_WasBuildFileModified",
"(",
"build_file",
",",
"data",
",",
"files",
",",
"toplevel_dir",
")",
":",
"if",
"_ToLocalPath",
"(",
"toplevel_dir",
",",
"_ToGypPath",
"(",
"build_file",
")",
")",
"in",
"files",
":",
"if",
"debug",
":",
"print",
"'gyp file modified'",
",",
"build_file",
"return",
"True",
"# First element of included_files is the file itself.",
"if",
"len",
"(",
"data",
"[",
"build_file",
"]",
"[",
"'included_files'",
"]",
")",
"<=",
"1",
":",
"return",
"False",
"for",
"include_file",
"in",
"data",
"[",
"build_file",
"]",
"[",
"'included_files'",
"]",
"[",
"1",
":",
"]",
":",
"# |included_files| are relative to the directory of the |build_file|.",
"rel_include_file",
"=",
"_ToGypPath",
"(",
"gyp",
".",
"common",
".",
"UnrelativePath",
"(",
"include_file",
",",
"build_file",
")",
")",
"if",
"_ToLocalPath",
"(",
"toplevel_dir",
",",
"rel_include_file",
")",
"in",
"files",
":",
"if",
"debug",
":",
"print",
"'included gyp file modified, gyp_file='",
",",
"build_file",
",",
"'included file='",
",",
"rel_include_file",
"return",
"True",
"return",
"False"
] | [
274,
0
] | [
296,
14
] | python | en | ['en', 'en', 'en'] | True |
_GetOrCreateTargetByName | (targets, target_name) | Creates or returns the Target at targets[target_name]. If there is no
Target for |target_name| one is created. Returns a tuple of whether a new
Target was created and the Target. | Creates or returns the Target at targets[target_name]. If there is no
Target for |target_name| one is created. Returns a tuple of whether a new
Target was created and the Target. | def _GetOrCreateTargetByName(targets, target_name):
"""Creates or returns the Target at targets[target_name]. If there is no
Target for |target_name| one is created. Returns a tuple of whether a new
Target was created and the Target."""
if target_name in targets:
return False, targets[target_name]
target = Target(target_name)
targets[target_name] = target
return True, target | [
"def",
"_GetOrCreateTargetByName",
"(",
"targets",
",",
"target_name",
")",
":",
"if",
"target_name",
"in",
"targets",
":",
"return",
"False",
",",
"targets",
"[",
"target_name",
"]",
"target",
"=",
"Target",
"(",
"target_name",
")",
"targets",
"[",
"target_name",
"]",
"=",
"target",
"return",
"True",
",",
"target"
] | [
299,
0
] | [
307,
21
] | python | en | ['en', 'en', 'en'] | True |
_DoesTargetTypeRequireBuild | (target_dict) | Returns true if the target type is such that it needs to be built. | Returns true if the target type is such that it needs to be built. | def _DoesTargetTypeRequireBuild(target_dict):
"""Returns true if the target type is such that it needs to be built."""
# If a 'none' target has rules or actions we assume it requires a build.
return bool(target_dict['type'] != 'none' or
target_dict.get('actions') or target_dict.get('rules')) | [
"def",
"_DoesTargetTypeRequireBuild",
"(",
"target_dict",
")",
":",
"# If a 'none' target has rules or actions we assume it requires a build.",
"return",
"bool",
"(",
"target_dict",
"[",
"'type'",
"]",
"!=",
"'none'",
"or",
"target_dict",
".",
"get",
"(",
"'actions'",
")",
"or",
"target_dict",
".",
"get",
"(",
"'rules'",
")",
")"
] | [
310,
0
] | [
314,
69
] | python | en | ['en', 'en', 'en'] | True |
_GenerateTargets | (data, target_list, target_dicts, toplevel_dir, files,
build_files) | Returns a tuple of the following:
. A dictionary mapping from fully qualified name to Target.
. A list of the targets that have a source file in |files|.
. Targets that constitute the 'all' target. See description at top of file
for details on the 'all' target.
This sets the |match_status| of the targets that contain any of the source
files in |files| to MATCH_STATUS_MATCHES.
|toplevel_dir| is the root of the source tree. | Returns a tuple of the following:
. A dictionary mapping from fully qualified name to Target.
. A list of the targets that have a source file in |files|.
. Targets that constitute the 'all' target. See description at top of file
for details on the 'all' target.
This sets the |match_status| of the targets that contain any of the source
files in |files| to MATCH_STATUS_MATCHES.
|toplevel_dir| is the root of the source tree. | def _GenerateTargets(data, target_list, target_dicts, toplevel_dir, files,
build_files):
"""Returns a tuple of the following:
. A dictionary mapping from fully qualified name to Target.
. A list of the targets that have a source file in |files|.
. Targets that constitute the 'all' target. See description at top of file
for details on the 'all' target.
This sets the |match_status| of the targets that contain any of the source
files in |files| to MATCH_STATUS_MATCHES.
|toplevel_dir| is the root of the source tree."""
# Maps from target name to Target.
name_to_target = {}
# Targets that matched.
matching_targets = []
# Queue of targets to visit.
targets_to_visit = target_list[:]
# Maps from build file to a boolean indicating whether the build file is in
# |files|.
build_file_in_files = {}
# Root targets across all files.
roots = set()
# Set of Targets in |build_files|.
build_file_targets = set()
while len(targets_to_visit) > 0:
target_name = targets_to_visit.pop()
created_target, target = _GetOrCreateTargetByName(name_to_target,
target_name)
if created_target:
roots.add(target)
elif target.visited:
continue
target.visited = True
target.requires_build = _DoesTargetTypeRequireBuild(
target_dicts[target_name])
target_type = target_dicts[target_name]['type']
target.is_executable = target_type == 'executable'
target.is_static_library = target_type == 'static_library'
target.is_or_has_linked_ancestor = (target_type == 'executable' or
target_type == 'shared_library')
build_file = gyp.common.ParseQualifiedTarget(target_name)[0]
if not build_file in build_file_in_files:
build_file_in_files[build_file] = \
_WasBuildFileModified(build_file, data, files, toplevel_dir)
if build_file in build_files:
build_file_targets.add(target)
# If a build file (or any of its included files) is modified we assume all
# targets in the file are modified.
if build_file_in_files[build_file]:
print 'matching target from modified build file', target_name
target.match_status = MATCH_STATUS_MATCHES
matching_targets.append(target)
else:
sources = _ExtractSources(target_name, target_dicts[target_name],
toplevel_dir)
for source in sources:
if _ToGypPath(os.path.normpath(source)) in files:
print 'target', target_name, 'matches', source
target.match_status = MATCH_STATUS_MATCHES
matching_targets.append(target)
break
# Add dependencies to visit as well as updating back pointers for deps.
for dep in target_dicts[target_name].get('dependencies', []):
targets_to_visit.append(dep)
created_dep_target, dep_target = _GetOrCreateTargetByName(name_to_target,
dep)
if not created_dep_target:
roots.discard(dep_target)
target.deps.add(dep_target)
dep_target.back_deps.add(target)
return name_to_target, matching_targets, roots & build_file_targets | [
"def",
"_GenerateTargets",
"(",
"data",
",",
"target_list",
",",
"target_dicts",
",",
"toplevel_dir",
",",
"files",
",",
"build_files",
")",
":",
"# Maps from target name to Target.",
"name_to_target",
"=",
"{",
"}",
"# Targets that matched.",
"matching_targets",
"=",
"[",
"]",
"# Queue of targets to visit.",
"targets_to_visit",
"=",
"target_list",
"[",
":",
"]",
"# Maps from build file to a boolean indicating whether the build file is in",
"# |files|.",
"build_file_in_files",
"=",
"{",
"}",
"# Root targets across all files.",
"roots",
"=",
"set",
"(",
")",
"# Set of Targets in |build_files|.",
"build_file_targets",
"=",
"set",
"(",
")",
"while",
"len",
"(",
"targets_to_visit",
")",
">",
"0",
":",
"target_name",
"=",
"targets_to_visit",
".",
"pop",
"(",
")",
"created_target",
",",
"target",
"=",
"_GetOrCreateTargetByName",
"(",
"name_to_target",
",",
"target_name",
")",
"if",
"created_target",
":",
"roots",
".",
"add",
"(",
"target",
")",
"elif",
"target",
".",
"visited",
":",
"continue",
"target",
".",
"visited",
"=",
"True",
"target",
".",
"requires_build",
"=",
"_DoesTargetTypeRequireBuild",
"(",
"target_dicts",
"[",
"target_name",
"]",
")",
"target_type",
"=",
"target_dicts",
"[",
"target_name",
"]",
"[",
"'type'",
"]",
"target",
".",
"is_executable",
"=",
"target_type",
"==",
"'executable'",
"target",
".",
"is_static_library",
"=",
"target_type",
"==",
"'static_library'",
"target",
".",
"is_or_has_linked_ancestor",
"=",
"(",
"target_type",
"==",
"'executable'",
"or",
"target_type",
"==",
"'shared_library'",
")",
"build_file",
"=",
"gyp",
".",
"common",
".",
"ParseQualifiedTarget",
"(",
"target_name",
")",
"[",
"0",
"]",
"if",
"not",
"build_file",
"in",
"build_file_in_files",
":",
"build_file_in_files",
"[",
"build_file",
"]",
"=",
"_WasBuildFileModified",
"(",
"build_file",
",",
"data",
",",
"files",
",",
"toplevel_dir",
")",
"if",
"build_file",
"in",
"build_files",
":",
"build_file_targets",
".",
"add",
"(",
"target",
")",
"# If a build file (or any of its included files) is modified we assume all",
"# targets in the file are modified.",
"if",
"build_file_in_files",
"[",
"build_file",
"]",
":",
"print",
"'matching target from modified build file'",
",",
"target_name",
"target",
".",
"match_status",
"=",
"MATCH_STATUS_MATCHES",
"matching_targets",
".",
"append",
"(",
"target",
")",
"else",
":",
"sources",
"=",
"_ExtractSources",
"(",
"target_name",
",",
"target_dicts",
"[",
"target_name",
"]",
",",
"toplevel_dir",
")",
"for",
"source",
"in",
"sources",
":",
"if",
"_ToGypPath",
"(",
"os",
".",
"path",
".",
"normpath",
"(",
"source",
")",
")",
"in",
"files",
":",
"print",
"'target'",
",",
"target_name",
",",
"'matches'",
",",
"source",
"target",
".",
"match_status",
"=",
"MATCH_STATUS_MATCHES",
"matching_targets",
".",
"append",
"(",
"target",
")",
"break",
"# Add dependencies to visit as well as updating back pointers for deps.",
"for",
"dep",
"in",
"target_dicts",
"[",
"target_name",
"]",
".",
"get",
"(",
"'dependencies'",
",",
"[",
"]",
")",
":",
"targets_to_visit",
".",
"append",
"(",
"dep",
")",
"created_dep_target",
",",
"dep_target",
"=",
"_GetOrCreateTargetByName",
"(",
"name_to_target",
",",
"dep",
")",
"if",
"not",
"created_dep_target",
":",
"roots",
".",
"discard",
"(",
"dep_target",
")",
"target",
".",
"deps",
".",
"add",
"(",
"dep_target",
")",
"dep_target",
".",
"back_deps",
".",
"add",
"(",
"target",
")",
"return",
"name_to_target",
",",
"matching_targets",
",",
"roots",
"&",
"build_file_targets"
] | [
317,
0
] | [
400,
69
] | python | en | ['en', 'en', 'en'] | True |
_GetUnqualifiedToTargetMapping | (all_targets, to_find) | Returns a tuple of the following:
. mapping (dictionary) from unqualified name to Target for all the
Targets in |to_find|.
. any target names not found. If this is empty all targets were found. | Returns a tuple of the following:
. mapping (dictionary) from unqualified name to Target for all the
Targets in |to_find|.
. any target names not found. If this is empty all targets were found. | def _GetUnqualifiedToTargetMapping(all_targets, to_find):
"""Returns a tuple of the following:
. mapping (dictionary) from unqualified name to Target for all the
Targets in |to_find|.
. any target names not found. If this is empty all targets were found."""
result = {}
if not to_find:
return {}, []
to_find = set(to_find)
for target_name in all_targets.keys():
extracted = gyp.common.ParseQualifiedTarget(target_name)
if len(extracted) > 1 and extracted[1] in to_find:
to_find.remove(extracted[1])
result[extracted[1]] = all_targets[target_name]
if not to_find:
return result, []
return result, [x for x in to_find] | [
"def",
"_GetUnqualifiedToTargetMapping",
"(",
"all_targets",
",",
"to_find",
")",
":",
"result",
"=",
"{",
"}",
"if",
"not",
"to_find",
":",
"return",
"{",
"}",
",",
"[",
"]",
"to_find",
"=",
"set",
"(",
"to_find",
")",
"for",
"target_name",
"in",
"all_targets",
".",
"keys",
"(",
")",
":",
"extracted",
"=",
"gyp",
".",
"common",
".",
"ParseQualifiedTarget",
"(",
"target_name",
")",
"if",
"len",
"(",
"extracted",
")",
">",
"1",
"and",
"extracted",
"[",
"1",
"]",
"in",
"to_find",
":",
"to_find",
".",
"remove",
"(",
"extracted",
"[",
"1",
"]",
")",
"result",
"[",
"extracted",
"[",
"1",
"]",
"]",
"=",
"all_targets",
"[",
"target_name",
"]",
"if",
"not",
"to_find",
":",
"return",
"result",
",",
"[",
"]",
"return",
"result",
",",
"[",
"x",
"for",
"x",
"in",
"to_find",
"]"
] | [
403,
0
] | [
419,
37
] | python | en | ['en', 'en', 'en'] | True |
_DoesTargetDependOnMatchingTargets | (target) | Returns true if |target| or any of its dependencies is one of the
targets containing the files supplied as input to analyzer. This updates
|matches| of the Targets as it recurses.
target: the Target to look for. | Returns true if |target| or any of its dependencies is one of the
targets containing the files supplied as input to analyzer. This updates
|matches| of the Targets as it recurses.
target: the Target to look for. | def _DoesTargetDependOnMatchingTargets(target):
"""Returns true if |target| or any of its dependencies is one of the
targets containing the files supplied as input to analyzer. This updates
|matches| of the Targets as it recurses.
target: the Target to look for."""
if target.match_status == MATCH_STATUS_DOESNT_MATCH:
return False
if target.match_status == MATCH_STATUS_MATCHES or \
target.match_status == MATCH_STATUS_MATCHES_BY_DEPENDENCY:
return True
for dep in target.deps:
if _DoesTargetDependOnMatchingTargets(dep):
target.match_status = MATCH_STATUS_MATCHES_BY_DEPENDENCY
print '\t', target.name, 'matches by dep', dep.name
return True
target.match_status = MATCH_STATUS_DOESNT_MATCH
return False | [
"def",
"_DoesTargetDependOnMatchingTargets",
"(",
"target",
")",
":",
"if",
"target",
".",
"match_status",
"==",
"MATCH_STATUS_DOESNT_MATCH",
":",
"return",
"False",
"if",
"target",
".",
"match_status",
"==",
"MATCH_STATUS_MATCHES",
"or",
"target",
".",
"match_status",
"==",
"MATCH_STATUS_MATCHES_BY_DEPENDENCY",
":",
"return",
"True",
"for",
"dep",
"in",
"target",
".",
"deps",
":",
"if",
"_DoesTargetDependOnMatchingTargets",
"(",
"dep",
")",
":",
"target",
".",
"match_status",
"=",
"MATCH_STATUS_MATCHES_BY_DEPENDENCY",
"print",
"'\\t'",
",",
"target",
".",
"name",
",",
"'matches by dep'",
",",
"dep",
".",
"name",
"return",
"True",
"target",
".",
"match_status",
"=",
"MATCH_STATUS_DOESNT_MATCH",
"return",
"False"
] | [
422,
0
] | [
438,
14
] | python | en | ['en', 'en', 'en'] | True |
_GetTargetsDependingOnMatchingTargets | (possible_targets) | Returns the list of Targets in |possible_targets| that depend (either
directly on indirectly) on at least one of the targets containing the files
supplied as input to analyzer.
possible_targets: targets to search from. | Returns the list of Targets in |possible_targets| that depend (either
directly on indirectly) on at least one of the targets containing the files
supplied as input to analyzer.
possible_targets: targets to search from. | def _GetTargetsDependingOnMatchingTargets(possible_targets):
"""Returns the list of Targets in |possible_targets| that depend (either
directly on indirectly) on at least one of the targets containing the files
supplied as input to analyzer.
possible_targets: targets to search from."""
found = []
print 'Targets that matched by dependency:'
for target in possible_targets:
if _DoesTargetDependOnMatchingTargets(target):
found.append(target)
return found | [
"def",
"_GetTargetsDependingOnMatchingTargets",
"(",
"possible_targets",
")",
":",
"found",
"=",
"[",
"]",
"print",
"'Targets that matched by dependency:'",
"for",
"target",
"in",
"possible_targets",
":",
"if",
"_DoesTargetDependOnMatchingTargets",
"(",
"target",
")",
":",
"found",
".",
"append",
"(",
"target",
")",
"return",
"found"
] | [
441,
0
] | [
451,
14
] | python | en | ['en', 'en', 'en'] | True |
_AddCompileTargets | (target, roots, add_if_no_ancestor, result) | Recurses through all targets that depend on |target|, adding all targets
that need to be built (and are in |roots|) to |result|.
roots: set of root targets.
add_if_no_ancestor: If true and there are no ancestors of |target| then add
|target| to |result|. |target| must still be in |roots|.
result: targets that need to be built are added here. | Recurses through all targets that depend on |target|, adding all targets
that need to be built (and are in |roots|) to |result|.
roots: set of root targets.
add_if_no_ancestor: If true and there are no ancestors of |target| then add
|target| to |result|. |target| must still be in |roots|.
result: targets that need to be built are added here. | def _AddCompileTargets(target, roots, add_if_no_ancestor, result):
"""Recurses through all targets that depend on |target|, adding all targets
that need to be built (and are in |roots|) to |result|.
roots: set of root targets.
add_if_no_ancestor: If true and there are no ancestors of |target| then add
|target| to |result|. |target| must still be in |roots|.
result: targets that need to be built are added here."""
if target.visited:
return
target.visited = True
target.in_roots = target in roots
for back_dep_target in target.back_deps:
_AddCompileTargets(back_dep_target, roots, False, result)
target.added_to_compile_targets |= back_dep_target.added_to_compile_targets
target.in_roots |= back_dep_target.in_roots
target.is_or_has_linked_ancestor |= (
back_dep_target.is_or_has_linked_ancestor)
# Always add 'executable' targets. Even though they may be built by other
# targets that depend upon them it makes detection of what is going to be
# built easier.
# And always add static_libraries that have no dependencies on them from
# linkables. This is necessary as the other dependencies on them may be
# static libraries themselves, which are not compile time dependencies.
if target.in_roots and \
(target.is_executable or
(not target.added_to_compile_targets and
(add_if_no_ancestor or target.requires_build)) or
(target.is_static_library and add_if_no_ancestor and
not target.is_or_has_linked_ancestor)):
print '\t\tadding to compile targets', target.name, 'executable', \
target.is_executable, 'added_to_compile_targets', \
target.added_to_compile_targets, 'add_if_no_ancestor', \
add_if_no_ancestor, 'requires_build', target.requires_build, \
'is_static_library', target.is_static_library, \
'is_or_has_linked_ancestor', target.is_or_has_linked_ancestor
result.add(target)
target.added_to_compile_targets = True | [
"def",
"_AddCompileTargets",
"(",
"target",
",",
"roots",
",",
"add_if_no_ancestor",
",",
"result",
")",
":",
"if",
"target",
".",
"visited",
":",
"return",
"target",
".",
"visited",
"=",
"True",
"target",
".",
"in_roots",
"=",
"target",
"in",
"roots",
"for",
"back_dep_target",
"in",
"target",
".",
"back_deps",
":",
"_AddCompileTargets",
"(",
"back_dep_target",
",",
"roots",
",",
"False",
",",
"result",
")",
"target",
".",
"added_to_compile_targets",
"|=",
"back_dep_target",
".",
"added_to_compile_targets",
"target",
".",
"in_roots",
"|=",
"back_dep_target",
".",
"in_roots",
"target",
".",
"is_or_has_linked_ancestor",
"|=",
"(",
"back_dep_target",
".",
"is_or_has_linked_ancestor",
")",
"# Always add 'executable' targets. Even though they may be built by other",
"# targets that depend upon them it makes detection of what is going to be",
"# built easier.",
"# And always add static_libraries that have no dependencies on them from",
"# linkables. This is necessary as the other dependencies on them may be",
"# static libraries themselves, which are not compile time dependencies.",
"if",
"target",
".",
"in_roots",
"and",
"(",
"target",
".",
"is_executable",
"or",
"(",
"not",
"target",
".",
"added_to_compile_targets",
"and",
"(",
"add_if_no_ancestor",
"or",
"target",
".",
"requires_build",
")",
")",
"or",
"(",
"target",
".",
"is_static_library",
"and",
"add_if_no_ancestor",
"and",
"not",
"target",
".",
"is_or_has_linked_ancestor",
")",
")",
":",
"print",
"'\\t\\tadding to compile targets'",
",",
"target",
".",
"name",
",",
"'executable'",
",",
"target",
".",
"is_executable",
",",
"'added_to_compile_targets'",
",",
"target",
".",
"added_to_compile_targets",
",",
"'add_if_no_ancestor'",
",",
"add_if_no_ancestor",
",",
"'requires_build'",
",",
"target",
".",
"requires_build",
",",
"'is_static_library'",
",",
"target",
".",
"is_static_library",
",",
"'is_or_has_linked_ancestor'",
",",
"target",
".",
"is_or_has_linked_ancestor",
"result",
".",
"add",
"(",
"target",
")",
"target",
".",
"added_to_compile_targets",
"=",
"True"
] | [
454,
0
] | [
493,
42
] | python | en | ['en', 'en', 'en'] | True |
_GetCompileTargets | (matching_targets, supplied_targets) | Returns the set of Targets that require a build.
matching_targets: targets that changed and need to be built.
supplied_targets: set of targets supplied to analyzer to search from. | Returns the set of Targets that require a build.
matching_targets: targets that changed and need to be built.
supplied_targets: set of targets supplied to analyzer to search from. | def _GetCompileTargets(matching_targets, supplied_targets):
"""Returns the set of Targets that require a build.
matching_targets: targets that changed and need to be built.
supplied_targets: set of targets supplied to analyzer to search from."""
result = set()
for target in matching_targets:
print 'finding compile targets for match', target.name
_AddCompileTargets(target, supplied_targets, True, result)
return result | [
"def",
"_GetCompileTargets",
"(",
"matching_targets",
",",
"supplied_targets",
")",
":",
"result",
"=",
"set",
"(",
")",
"for",
"target",
"in",
"matching_targets",
":",
"print",
"'finding compile targets for match'",
",",
"target",
".",
"name",
"_AddCompileTargets",
"(",
"target",
",",
"supplied_targets",
",",
"True",
",",
"result",
")",
"return",
"result"
] | [
496,
0
] | [
504,
15
] | python | en | ['en', 'en', 'en'] | True |
_WriteOutput | (params, **values) | Writes the output, either to stdout or a file is specified. | Writes the output, either to stdout or a file is specified. | def _WriteOutput(params, **values):
"""Writes the output, either to stdout or a file is specified."""
if 'error' in values:
print 'Error:', values['error']
if 'status' in values:
print values['status']
if 'targets' in values:
values['targets'].sort()
print 'Supplied targets that depend on changed files:'
for target in values['targets']:
print '\t', target
if 'invalid_targets' in values:
values['invalid_targets'].sort()
print 'The following targets were not found:'
for target in values['invalid_targets']:
print '\t', target
if 'build_targets' in values:
values['build_targets'].sort()
print 'Targets that require a build:'
for target in values['build_targets']:
print '\t', target
if 'compile_targets' in values:
values['compile_targets'].sort()
print 'Targets that need to be built:'
for target in values['compile_targets']:
print '\t', target
if 'test_targets' in values:
values['test_targets'].sort()
print 'Test targets:'
for target in values['test_targets']:
print '\t', target
output_path = params.get('generator_flags', {}).get(
'analyzer_output_path', None)
if not output_path:
print json.dumps(values)
return
try:
f = open(output_path, 'w')
f.write(json.dumps(values) + '\n')
f.close()
except IOError as e:
print 'Error writing to output file', output_path, str(e) | [
"def",
"_WriteOutput",
"(",
"params",
",",
"*",
"*",
"values",
")",
":",
"if",
"'error'",
"in",
"values",
":",
"print",
"'Error:'",
",",
"values",
"[",
"'error'",
"]",
"if",
"'status'",
"in",
"values",
":",
"print",
"values",
"[",
"'status'",
"]",
"if",
"'targets'",
"in",
"values",
":",
"values",
"[",
"'targets'",
"]",
".",
"sort",
"(",
")",
"print",
"'Supplied targets that depend on changed files:'",
"for",
"target",
"in",
"values",
"[",
"'targets'",
"]",
":",
"print",
"'\\t'",
",",
"target",
"if",
"'invalid_targets'",
"in",
"values",
":",
"values",
"[",
"'invalid_targets'",
"]",
".",
"sort",
"(",
")",
"print",
"'The following targets were not found:'",
"for",
"target",
"in",
"values",
"[",
"'invalid_targets'",
"]",
":",
"print",
"'\\t'",
",",
"target",
"if",
"'build_targets'",
"in",
"values",
":",
"values",
"[",
"'build_targets'",
"]",
".",
"sort",
"(",
")",
"print",
"'Targets that require a build:'",
"for",
"target",
"in",
"values",
"[",
"'build_targets'",
"]",
":",
"print",
"'\\t'",
",",
"target",
"if",
"'compile_targets'",
"in",
"values",
":",
"values",
"[",
"'compile_targets'",
"]",
".",
"sort",
"(",
")",
"print",
"'Targets that need to be built:'",
"for",
"target",
"in",
"values",
"[",
"'compile_targets'",
"]",
":",
"print",
"'\\t'",
",",
"target",
"if",
"'test_targets'",
"in",
"values",
":",
"values",
"[",
"'test_targets'",
"]",
".",
"sort",
"(",
")",
"print",
"'Test targets:'",
"for",
"target",
"in",
"values",
"[",
"'test_targets'",
"]",
":",
"print",
"'\\t'",
",",
"target",
"output_path",
"=",
"params",
".",
"get",
"(",
"'generator_flags'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'analyzer_output_path'",
",",
"None",
")",
"if",
"not",
"output_path",
":",
"print",
"json",
".",
"dumps",
"(",
"values",
")",
"return",
"try",
":",
"f",
"=",
"open",
"(",
"output_path",
",",
"'w'",
")",
"f",
".",
"write",
"(",
"json",
".",
"dumps",
"(",
"values",
")",
"+",
"'\\n'",
")",
"f",
".",
"close",
"(",
")",
"except",
"IOError",
"as",
"e",
":",
"print",
"'Error writing to output file'",
",",
"output_path",
",",
"str",
"(",
"e",
")"
] | [
507,
0
] | [
549,
61
] | python | en | ['en', 'en', 'en'] | True |
_WasGypIncludeFileModified | (params, files) | Returns true if one of the files in |files| is in the set of included
files. | Returns true if one of the files in |files| is in the set of included
files. | def _WasGypIncludeFileModified(params, files):
"""Returns true if one of the files in |files| is in the set of included
files."""
if params['options'].includes:
for include in params['options'].includes:
if _ToGypPath(os.path.normpath(include)) in files:
print 'Include file modified, assuming all changed', include
return True
return False | [
"def",
"_WasGypIncludeFileModified",
"(",
"params",
",",
"files",
")",
":",
"if",
"params",
"[",
"'options'",
"]",
".",
"includes",
":",
"for",
"include",
"in",
"params",
"[",
"'options'",
"]",
".",
"includes",
":",
"if",
"_ToGypPath",
"(",
"os",
".",
"path",
".",
"normpath",
"(",
"include",
")",
")",
"in",
"files",
":",
"print",
"'Include file modified, assuming all changed'",
",",
"include",
"return",
"True",
"return",
"False"
] | [
552,
0
] | [
560,
14
] | python | en | ['en', 'en', 'en'] | True |
_NamesNotIn | (names, mapping) | Returns a list of the values in |names| that are not in |mapping|. | Returns a list of the values in |names| that are not in |mapping|. | def _NamesNotIn(names, mapping):
"""Returns a list of the values in |names| that are not in |mapping|."""
return [name for name in names if name not in mapping] | [
"def",
"_NamesNotIn",
"(",
"names",
",",
"mapping",
")",
":",
"return",
"[",
"name",
"for",
"name",
"in",
"names",
"if",
"name",
"not",
"in",
"mapping",
"]"
] | [
563,
0
] | [
565,
56
] | python | en | ['en', 'en', 'en'] | True |
_LookupTargets | (names, mapping) | Returns a list of the mapping[name] for each value in |names| that is in
|mapping|. | Returns a list of the mapping[name] for each value in |names| that is in
|mapping|. | def _LookupTargets(names, mapping):
"""Returns a list of the mapping[name] for each value in |names| that is in
|mapping|."""
return [mapping[name] for name in names if name in mapping] | [
"def",
"_LookupTargets",
"(",
"names",
",",
"mapping",
")",
":",
"return",
"[",
"mapping",
"[",
"name",
"]",
"for",
"name",
"in",
"names",
"if",
"name",
"in",
"mapping",
"]"
] | [
568,
0
] | [
571,
61
] | python | en | ['en', 'en', 'en'] | True |
CalculateVariables | (default_variables, params) | Calculate additional variables for use in the build (called by gyp). | Calculate additional variables for use in the build (called by gyp). | def CalculateVariables(default_variables, params):
"""Calculate additional variables for use in the build (called by gyp)."""
flavor = gyp.common.GetFlavor(params)
if flavor == 'mac':
default_variables.setdefault('OS', 'mac')
elif flavor == 'win':
default_variables.setdefault('OS', 'win')
# Copy additional generator configuration data from VS, which is shared
# by the Windows Ninja generator.
import gyp.generator.msvs as msvs_generator
generator_additional_non_configuration_keys = getattr(msvs_generator,
'generator_additional_non_configuration_keys', [])
generator_additional_path_sections = getattr(msvs_generator,
'generator_additional_path_sections', [])
gyp.msvs_emulation.CalculateCommonVariables(default_variables, params)
else:
operating_system = flavor
if flavor == 'android':
operating_system = 'linux' # Keep this legacy behavior for now.
default_variables.setdefault('OS', operating_system) | [
"def",
"CalculateVariables",
"(",
"default_variables",
",",
"params",
")",
":",
"flavor",
"=",
"gyp",
".",
"common",
".",
"GetFlavor",
"(",
"params",
")",
"if",
"flavor",
"==",
"'mac'",
":",
"default_variables",
".",
"setdefault",
"(",
"'OS'",
",",
"'mac'",
")",
"elif",
"flavor",
"==",
"'win'",
":",
"default_variables",
".",
"setdefault",
"(",
"'OS'",
",",
"'win'",
")",
"# Copy additional generator configuration data from VS, which is shared",
"# by the Windows Ninja generator.",
"import",
"gyp",
".",
"generator",
".",
"msvs",
"as",
"msvs_generator",
"generator_additional_non_configuration_keys",
"=",
"getattr",
"(",
"msvs_generator",
",",
"'generator_additional_non_configuration_keys'",
",",
"[",
"]",
")",
"generator_additional_path_sections",
"=",
"getattr",
"(",
"msvs_generator",
",",
"'generator_additional_path_sections'",
",",
"[",
"]",
")",
"gyp",
".",
"msvs_emulation",
".",
"CalculateCommonVariables",
"(",
"default_variables",
",",
"params",
")",
"else",
":",
"operating_system",
"=",
"flavor",
"if",
"flavor",
"==",
"'android'",
":",
"operating_system",
"=",
"'linux'",
"# Keep this legacy behavior for now.",
"default_variables",
".",
"setdefault",
"(",
"'OS'",
",",
"operating_system",
")"
] | [
574,
0
] | [
594,
56
] | python | en | ['en', 'en', 'en'] | True |
GenerateOutput | (target_list, target_dicts, data, params) | Called by gyp as the final stage. Outputs results. | Called by gyp as the final stage. Outputs results. | def GenerateOutput(target_list, target_dicts, data, params):
"""Called by gyp as the final stage. Outputs results."""
config = Config()
try:
config.Init(params)
if not config.files:
raise Exception('Must specify files to analyze via config_path generator '
'flag')
toplevel_dir = _ToGypPath(os.path.abspath(params['options'].toplevel_dir))
if debug:
print 'toplevel_dir', toplevel_dir
if _WasGypIncludeFileModified(params, config.files):
result_dict = { 'status': all_changed_string,
'test_targets': list(config.test_target_names),
'compile_targets': list(
config.additional_compile_target_names |
config.test_target_names) }
_WriteOutput(params, **result_dict)
return
calculator = TargetCalculator(config.files,
config.additional_compile_target_names,
config.test_target_names, data,
target_list, target_dicts, toplevel_dir,
params['build_files'])
if not calculator.is_build_impacted():
result_dict = { 'status': no_dependency_string,
'test_targets': [],
'compile_targets': [] }
if calculator.invalid_targets:
result_dict['invalid_targets'] = calculator.invalid_targets
_WriteOutput(params, **result_dict)
return
test_target_names = calculator.find_matching_test_target_names()
compile_target_names = calculator.find_matching_compile_target_names()
found_at_least_one_target = compile_target_names or test_target_names
result_dict = { 'test_targets': test_target_names,
'status': found_dependency_string if
found_at_least_one_target else no_dependency_string,
'compile_targets': list(
set(compile_target_names) |
set(test_target_names)) }
if calculator.invalid_targets:
result_dict['invalid_targets'] = calculator.invalid_targets
_WriteOutput(params, **result_dict)
except Exception as e:
_WriteOutput(params, error=str(e)) | [
"def",
"GenerateOutput",
"(",
"target_list",
",",
"target_dicts",
",",
"data",
",",
"params",
")",
":",
"config",
"=",
"Config",
"(",
")",
"try",
":",
"config",
".",
"Init",
"(",
"params",
")",
"if",
"not",
"config",
".",
"files",
":",
"raise",
"Exception",
"(",
"'Must specify files to analyze via config_path generator '",
"'flag'",
")",
"toplevel_dir",
"=",
"_ToGypPath",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"params",
"[",
"'options'",
"]",
".",
"toplevel_dir",
")",
")",
"if",
"debug",
":",
"print",
"'toplevel_dir'",
",",
"toplevel_dir",
"if",
"_WasGypIncludeFileModified",
"(",
"params",
",",
"config",
".",
"files",
")",
":",
"result_dict",
"=",
"{",
"'status'",
":",
"all_changed_string",
",",
"'test_targets'",
":",
"list",
"(",
"config",
".",
"test_target_names",
")",
",",
"'compile_targets'",
":",
"list",
"(",
"config",
".",
"additional_compile_target_names",
"|",
"config",
".",
"test_target_names",
")",
"}",
"_WriteOutput",
"(",
"params",
",",
"*",
"*",
"result_dict",
")",
"return",
"calculator",
"=",
"TargetCalculator",
"(",
"config",
".",
"files",
",",
"config",
".",
"additional_compile_target_names",
",",
"config",
".",
"test_target_names",
",",
"data",
",",
"target_list",
",",
"target_dicts",
",",
"toplevel_dir",
",",
"params",
"[",
"'build_files'",
"]",
")",
"if",
"not",
"calculator",
".",
"is_build_impacted",
"(",
")",
":",
"result_dict",
"=",
"{",
"'status'",
":",
"no_dependency_string",
",",
"'test_targets'",
":",
"[",
"]",
",",
"'compile_targets'",
":",
"[",
"]",
"}",
"if",
"calculator",
".",
"invalid_targets",
":",
"result_dict",
"[",
"'invalid_targets'",
"]",
"=",
"calculator",
".",
"invalid_targets",
"_WriteOutput",
"(",
"params",
",",
"*",
"*",
"result_dict",
")",
"return",
"test_target_names",
"=",
"calculator",
".",
"find_matching_test_target_names",
"(",
")",
"compile_target_names",
"=",
"calculator",
".",
"find_matching_compile_target_names",
"(",
")",
"found_at_least_one_target",
"=",
"compile_target_names",
"or",
"test_target_names",
"result_dict",
"=",
"{",
"'test_targets'",
":",
"test_target_names",
",",
"'status'",
":",
"found_dependency_string",
"if",
"found_at_least_one_target",
"else",
"no_dependency_string",
",",
"'compile_targets'",
":",
"list",
"(",
"set",
"(",
"compile_target_names",
")",
"|",
"set",
"(",
"test_target_names",
")",
")",
"}",
"if",
"calculator",
".",
"invalid_targets",
":",
"result_dict",
"[",
"'invalid_targets'",
"]",
"=",
"calculator",
".",
"invalid_targets",
"_WriteOutput",
"(",
"params",
",",
"*",
"*",
"result_dict",
")",
"except",
"Exception",
"as",
"e",
":",
"_WriteOutput",
"(",
"params",
",",
"error",
"=",
"str",
"(",
"e",
")",
")"
] | [
689,
0
] | [
740,
38
] | python | en | ['en', 'en', 'en'] | True |
Config.Init | (self, params) | Initializes Config. This is a separate method as it raises an exception
if there is a parse error. | Initializes Config. This is a separate method as it raises an exception
if there is a parse error. | def Init(self, params):
"""Initializes Config. This is a separate method as it raises an exception
if there is a parse error."""
generator_flags = params.get('generator_flags', {})
config_path = generator_flags.get('config_path', None)
if not config_path:
return
try:
f = open(config_path, 'r')
config = json.load(f)
f.close()
except IOError:
raise Exception('Unable to open file ' + config_path)
except ValueError as e:
raise Exception('Unable to parse config file ' + config_path + str(e))
if not isinstance(config, dict):
raise Exception('config_path must be a JSON file containing a dictionary')
self.files = config.get('files', [])
self.additional_compile_target_names = set(
config.get('additional_compile_targets', []))
self.test_target_names = set(config.get('test_targets', [])) | [
"def",
"Init",
"(",
"self",
",",
"params",
")",
":",
"generator_flags",
"=",
"params",
".",
"get",
"(",
"'generator_flags'",
",",
"{",
"}",
")",
"config_path",
"=",
"generator_flags",
".",
"get",
"(",
"'config_path'",
",",
"None",
")",
"if",
"not",
"config_path",
":",
"return",
"try",
":",
"f",
"=",
"open",
"(",
"config_path",
",",
"'r'",
")",
"config",
"=",
"json",
".",
"load",
"(",
"f",
")",
"f",
".",
"close",
"(",
")",
"except",
"IOError",
":",
"raise",
"Exception",
"(",
"'Unable to open file '",
"+",
"config_path",
")",
"except",
"ValueError",
"as",
"e",
":",
"raise",
"Exception",
"(",
"'Unable to parse config file '",
"+",
"config_path",
"+",
"str",
"(",
"e",
")",
")",
"if",
"not",
"isinstance",
"(",
"config",
",",
"dict",
")",
":",
"raise",
"Exception",
"(",
"'config_path must be a JSON file containing a dictionary'",
")",
"self",
".",
"files",
"=",
"config",
".",
"get",
"(",
"'files'",
",",
"[",
"]",
")",
"self",
".",
"additional_compile_target_names",
"=",
"set",
"(",
"config",
".",
"get",
"(",
"'additional_compile_targets'",
",",
"[",
"]",
")",
")",
"self",
".",
"test_target_names",
"=",
"set",
"(",
"config",
".",
"get",
"(",
"'test_targets'",
",",
"[",
"]",
")",
")"
] | [
251,
2
] | [
271,
64
] | python | en | ['en', 'en', 'en'] | True |
TargetCalculator._supplied_target_names_no_all | (self) | Returns the supplied test targets without 'all'. | Returns the supplied test targets without 'all'. | def _supplied_target_names_no_all(self):
"""Returns the supplied test targets without 'all'."""
result = self._supplied_target_names();
result.discard('all')
return result | [
"def",
"_supplied_target_names_no_all",
"(",
"self",
")",
":",
"result",
"=",
"self",
".",
"_supplied_target_names",
"(",
")",
"result",
".",
"discard",
"(",
"'all'",
")",
"return",
"result"
] | [
613,
2
] | [
617,
17
] | python | en | ['en', 'en', 'en'] | True |
TargetCalculator.is_build_impacted | (self) | Returns true if the supplied files impact the build at all. | Returns true if the supplied files impact the build at all. | def is_build_impacted(self):
"""Returns true if the supplied files impact the build at all."""
return self._changed_targets | [
"def",
"is_build_impacted",
"(",
"self",
")",
":",
"return",
"self",
".",
"_changed_targets"
] | [
619,
2
] | [
621,
32
] | python | en | ['en', 'en', 'en'] | True |
TargetCalculator.find_matching_test_target_names | (self) | Returns the set of output test targets. | Returns the set of output test targets. | def find_matching_test_target_names(self):
"""Returns the set of output test targets."""
assert self.is_build_impacted()
# Find the test targets first. 'all' is special cased to mean all the
# root targets. To deal with all the supplied |test_targets| are expanded
# to include the root targets during lookup. If any of the root targets
# match, we remove it and replace it with 'all'.
test_target_names_no_all = set(self._test_target_names)
test_target_names_no_all.discard('all')
test_targets_no_all = _LookupTargets(test_target_names_no_all,
self._unqualified_mapping)
test_target_names_contains_all = 'all' in self._test_target_names
if test_target_names_contains_all:
test_targets = [x for x in (set(test_targets_no_all) |
set(self._root_targets))]
else:
test_targets = [x for x in test_targets_no_all]
print 'supplied test_targets'
for target_name in self._test_target_names:
print '\t', target_name
print 'found test_targets'
for target in test_targets:
print '\t', target.name
print 'searching for matching test targets'
matching_test_targets = _GetTargetsDependingOnMatchingTargets(test_targets)
matching_test_targets_contains_all = (test_target_names_contains_all and
set(matching_test_targets) &
set(self._root_targets))
if matching_test_targets_contains_all:
# Remove any of the targets for all that were not explicitly supplied,
# 'all' is subsequentely added to the matching names below.
matching_test_targets = [x for x in (set(matching_test_targets) &
set(test_targets_no_all))]
print 'matched test_targets'
for target in matching_test_targets:
print '\t', target.name
matching_target_names = [gyp.common.ParseQualifiedTarget(target.name)[1]
for target in matching_test_targets]
if matching_test_targets_contains_all:
matching_target_names.append('all')
print '\tall'
return matching_target_names | [
"def",
"find_matching_test_target_names",
"(",
"self",
")",
":",
"assert",
"self",
".",
"is_build_impacted",
"(",
")",
"# Find the test targets first. 'all' is special cased to mean all the",
"# root targets. To deal with all the supplied |test_targets| are expanded",
"# to include the root targets during lookup. If any of the root targets",
"# match, we remove it and replace it with 'all'.",
"test_target_names_no_all",
"=",
"set",
"(",
"self",
".",
"_test_target_names",
")",
"test_target_names_no_all",
".",
"discard",
"(",
"'all'",
")",
"test_targets_no_all",
"=",
"_LookupTargets",
"(",
"test_target_names_no_all",
",",
"self",
".",
"_unqualified_mapping",
")",
"test_target_names_contains_all",
"=",
"'all'",
"in",
"self",
".",
"_test_target_names",
"if",
"test_target_names_contains_all",
":",
"test_targets",
"=",
"[",
"x",
"for",
"x",
"in",
"(",
"set",
"(",
"test_targets_no_all",
")",
"|",
"set",
"(",
"self",
".",
"_root_targets",
")",
")",
"]",
"else",
":",
"test_targets",
"=",
"[",
"x",
"for",
"x",
"in",
"test_targets_no_all",
"]",
"print",
"'supplied test_targets'",
"for",
"target_name",
"in",
"self",
".",
"_test_target_names",
":",
"print",
"'\\t'",
",",
"target_name",
"print",
"'found test_targets'",
"for",
"target",
"in",
"test_targets",
":",
"print",
"'\\t'",
",",
"target",
".",
"name",
"print",
"'searching for matching test targets'",
"matching_test_targets",
"=",
"_GetTargetsDependingOnMatchingTargets",
"(",
"test_targets",
")",
"matching_test_targets_contains_all",
"=",
"(",
"test_target_names_contains_all",
"and",
"set",
"(",
"matching_test_targets",
")",
"&",
"set",
"(",
"self",
".",
"_root_targets",
")",
")",
"if",
"matching_test_targets_contains_all",
":",
"# Remove any of the targets for all that were not explicitly supplied,",
"# 'all' is subsequentely added to the matching names below.",
"matching_test_targets",
"=",
"[",
"x",
"for",
"x",
"in",
"(",
"set",
"(",
"matching_test_targets",
")",
"&",
"set",
"(",
"test_targets_no_all",
")",
")",
"]",
"print",
"'matched test_targets'",
"for",
"target",
"in",
"matching_test_targets",
":",
"print",
"'\\t'",
",",
"target",
".",
"name",
"matching_target_names",
"=",
"[",
"gyp",
".",
"common",
".",
"ParseQualifiedTarget",
"(",
"target",
".",
"name",
")",
"[",
"1",
"]",
"for",
"target",
"in",
"matching_test_targets",
"]",
"if",
"matching_test_targets_contains_all",
":",
"matching_target_names",
".",
"append",
"(",
"'all'",
")",
"print",
"'\\tall'",
"return",
"matching_target_names"
] | [
623,
2
] | [
664,
32
] | python | en | ['en', 'en', 'en'] | True |
TargetCalculator.find_matching_compile_target_names | (self) | Returns the set of output compile targets. | Returns the set of output compile targets. | def find_matching_compile_target_names(self):
"""Returns the set of output compile targets."""
assert self.is_build_impacted();
# Compile targets are found by searching up from changed targets.
# Reset the visited status for _GetBuildTargets.
for target in self._name_to_target.itervalues():
target.visited = False
supplied_targets = _LookupTargets(self._supplied_target_names_no_all(),
self._unqualified_mapping)
if 'all' in self._supplied_target_names():
supplied_targets = [x for x in (set(supplied_targets) |
set(self._root_targets))]
print 'Supplied test_targets & compile_targets'
for target in supplied_targets:
print '\t', target.name
print 'Finding compile targets'
compile_targets = _GetCompileTargets(self._changed_targets,
supplied_targets)
return [gyp.common.ParseQualifiedTarget(target.name)[1]
for target in compile_targets] | [
"def",
"find_matching_compile_target_names",
"(",
"self",
")",
":",
"assert",
"self",
".",
"is_build_impacted",
"(",
")",
"# Compile targets are found by searching up from changed targets.",
"# Reset the visited status for _GetBuildTargets.",
"for",
"target",
"in",
"self",
".",
"_name_to_target",
".",
"itervalues",
"(",
")",
":",
"target",
".",
"visited",
"=",
"False",
"supplied_targets",
"=",
"_LookupTargets",
"(",
"self",
".",
"_supplied_target_names_no_all",
"(",
")",
",",
"self",
".",
"_unqualified_mapping",
")",
"if",
"'all'",
"in",
"self",
".",
"_supplied_target_names",
"(",
")",
":",
"supplied_targets",
"=",
"[",
"x",
"for",
"x",
"in",
"(",
"set",
"(",
"supplied_targets",
")",
"|",
"set",
"(",
"self",
".",
"_root_targets",
")",
")",
"]",
"print",
"'Supplied test_targets & compile_targets'",
"for",
"target",
"in",
"supplied_targets",
":",
"print",
"'\\t'",
",",
"target",
".",
"name",
"print",
"'Finding compile targets'",
"compile_targets",
"=",
"_GetCompileTargets",
"(",
"self",
".",
"_changed_targets",
",",
"supplied_targets",
")",
"return",
"[",
"gyp",
".",
"common",
".",
"ParseQualifiedTarget",
"(",
"target",
".",
"name",
")",
"[",
"1",
"]",
"for",
"target",
"in",
"compile_targets",
"]"
] | [
666,
2
] | [
686,
42
] | python | en | ['en', 'en', 'en'] | True |
cli | (file) |
\b
Read Azure IoT Hub Avro files
Returns the content of Avro file FILE as a json string.
Examples:
\b
hubavroreader c:\\temp\\05
hubavroreader c:\\temp\\25.avro
|
\b
Read Azure IoT Hub Avro files
Returns the content of Avro file FILE as a json string. | def cli(file):
"""
\b
Read Azure IoT Hub Avro files
Returns the content of Avro file FILE as a json string.
Examples:
\b
hubavroreader c:\\temp\\05
hubavroreader c:\\temp\\25.avro
"""
if (isfile(file)):
messages = load_avro_file(file)
click.echo(json.dumps(messages, indent=4, sort_keys=True))
return
click.echo('Could not find file %s' % file) | [
"def",
"cli",
"(",
"file",
")",
":",
"if",
"(",
"isfile",
"(",
"file",
")",
")",
":",
"messages",
"=",
"load_avro_file",
"(",
"file",
")",
"click",
".",
"echo",
"(",
"json",
".",
"dumps",
"(",
"messages",
",",
"indent",
"=",
"4",
",",
"sort_keys",
"=",
"True",
")",
")",
"return",
"click",
".",
"echo",
"(",
"'Could not find file %s'",
"%",
"file",
")"
] | [
19,
0
] | [
36,
47
] | python | en | ['en', 'error', 'th'] | False |
Profiler.__init__ | (
self,
*,
profiler_config: Optional[Dict[str, Dict[str, Dict[str, Any]]]] = None,
data_context: Optional[DataContext] = None,
) |
Create a new Profiler using configured rules.
For a rule or an item in a rule configuration, instantiates the following if
available: a domain builder, a parameter builder, and a configuration builder.
These will be used to define profiler computation patterns.
Args:
profiler_config: Variables and Rules configuration as a dictionary
data_context: DataContext object that defines a full runtime environment (data access, etc.)
|
Create a new Profiler using configured rules.
For a rule or an item in a rule configuration, instantiates the following if
available: a domain builder, a parameter builder, and a configuration builder.
These will be used to define profiler computation patterns. | def __init__(
self,
*,
profiler_config: Optional[Dict[str, Dict[str, Dict[str, Any]]]] = None,
data_context: Optional[DataContext] = None,
):
"""
Create a new Profiler using configured rules.
For a rule or an item in a rule configuration, instantiates the following if
available: a domain builder, a parameter builder, and a configuration builder.
These will be used to define profiler computation patterns.
Args:
profiler_config: Variables and Rules configuration as a dictionary
data_context: DataContext object that defines a full runtime environment (data access, etc.)
"""
self._profiler_config = profiler_config
self._data_context = data_context
self._rules = []
rules_configs: Dict[str, Dict[str, Any]] = self._profiler_config.get(
"rules", {}
)
rule_name: str
rule_config: Dict[str, Any]
for rule_name, rule_config in rules_configs.items():
domain_builder_config: dict = rule_config.get("domain_builder")
if domain_builder_config is None:
raise ge_exceptions.ProfilerConfigurationError(
message=f'Invalid rule "{rule_name}": no domain_builder found.'
)
domain_builder: DomainBuilder = instantiate_class_from_config(
config=domain_builder_config,
runtime_environment={"data_context": data_context},
config_defaults={
"module_name": "great_expectations.rule_based_profiler.domain_builder"
},
)
parameter_builders: List[ParameterBuilder] = []
parameter_builder_configs: dict = rule_config.get("parameter_builders")
if parameter_builder_configs:
parameter_builder_config: dict
for parameter_builder_config in parameter_builder_configs:
parameter_builders.append(
instantiate_class_from_config(
config=parameter_builder_config,
runtime_environment={"data_context": data_context},
config_defaults={
"module_name": "great_expectations.rule_based_profiler.parameter_builder"
},
)
)
expectation_configuration_builders: List[
ExpectationConfigurationBuilder
] = []
expectation_configuration_builder_configs: dict = rule_config.get(
"expectation_configuration_builders"
)
if expectation_configuration_builder_configs:
expectation_configuration_builder_config: dict
for (
expectation_configuration_builder_config
) in expectation_configuration_builder_configs:
expectation_configuration_builders.append(
instantiate_class_from_config(
config=expectation_configuration_builder_config,
runtime_environment={},
config_defaults={
"class_name": "DefaultExpectationConfigurationBuilder",
"module_name": "great_expectations.rule_based_profiler.expectation_configuration_builder",
},
)
)
variables_configs: Dict[str, Dict] = self._profiler_config.get(
"variables", {}
)
variables: Optional[ParameterContainer] = None
if variables_configs:
variables = build_parameter_container_for_variables(
variables_configs=variables_configs
)
self._rules.append(
Rule(
name=rule_name,
domain_builder=domain_builder,
parameter_builders=parameter_builders,
expectation_configuration_builders=expectation_configuration_builders,
variables=variables,
)
) | [
"def",
"__init__",
"(",
"self",
",",
"*",
",",
"profiler_config",
":",
"Optional",
"[",
"Dict",
"[",
"str",
",",
"Dict",
"[",
"str",
",",
"Dict",
"[",
"str",
",",
"Any",
"]",
"]",
"]",
"]",
"=",
"None",
",",
"data_context",
":",
"Optional",
"[",
"DataContext",
"]",
"=",
"None",
",",
")",
":",
"self",
".",
"_profiler_config",
"=",
"profiler_config",
"self",
".",
"_data_context",
"=",
"data_context",
"self",
".",
"_rules",
"=",
"[",
"]",
"rules_configs",
":",
"Dict",
"[",
"str",
",",
"Dict",
"[",
"str",
",",
"Any",
"]",
"]",
"=",
"self",
".",
"_profiler_config",
".",
"get",
"(",
"\"rules\"",
",",
"{",
"}",
")",
"rule_name",
":",
"str",
"rule_config",
":",
"Dict",
"[",
"str",
",",
"Any",
"]",
"for",
"rule_name",
",",
"rule_config",
"in",
"rules_configs",
".",
"items",
"(",
")",
":",
"domain_builder_config",
":",
"dict",
"=",
"rule_config",
".",
"get",
"(",
"\"domain_builder\"",
")",
"if",
"domain_builder_config",
"is",
"None",
":",
"raise",
"ge_exceptions",
".",
"ProfilerConfigurationError",
"(",
"message",
"=",
"f'Invalid rule \"{rule_name}\": no domain_builder found.'",
")",
"domain_builder",
":",
"DomainBuilder",
"=",
"instantiate_class_from_config",
"(",
"config",
"=",
"domain_builder_config",
",",
"runtime_environment",
"=",
"{",
"\"data_context\"",
":",
"data_context",
"}",
",",
"config_defaults",
"=",
"{",
"\"module_name\"",
":",
"\"great_expectations.rule_based_profiler.domain_builder\"",
"}",
",",
")",
"parameter_builders",
":",
"List",
"[",
"ParameterBuilder",
"]",
"=",
"[",
"]",
"parameter_builder_configs",
":",
"dict",
"=",
"rule_config",
".",
"get",
"(",
"\"parameter_builders\"",
")",
"if",
"parameter_builder_configs",
":",
"parameter_builder_config",
":",
"dict",
"for",
"parameter_builder_config",
"in",
"parameter_builder_configs",
":",
"parameter_builders",
".",
"append",
"(",
"instantiate_class_from_config",
"(",
"config",
"=",
"parameter_builder_config",
",",
"runtime_environment",
"=",
"{",
"\"data_context\"",
":",
"data_context",
"}",
",",
"config_defaults",
"=",
"{",
"\"module_name\"",
":",
"\"great_expectations.rule_based_profiler.parameter_builder\"",
"}",
",",
")",
")",
"expectation_configuration_builders",
":",
"List",
"[",
"ExpectationConfigurationBuilder",
"]",
"=",
"[",
"]",
"expectation_configuration_builder_configs",
":",
"dict",
"=",
"rule_config",
".",
"get",
"(",
"\"expectation_configuration_builders\"",
")",
"if",
"expectation_configuration_builder_configs",
":",
"expectation_configuration_builder_config",
":",
"dict",
"for",
"(",
"expectation_configuration_builder_config",
")",
"in",
"expectation_configuration_builder_configs",
":",
"expectation_configuration_builders",
".",
"append",
"(",
"instantiate_class_from_config",
"(",
"config",
"=",
"expectation_configuration_builder_config",
",",
"runtime_environment",
"=",
"{",
"}",
",",
"config_defaults",
"=",
"{",
"\"class_name\"",
":",
"\"DefaultExpectationConfigurationBuilder\"",
",",
"\"module_name\"",
":",
"\"great_expectations.rule_based_profiler.expectation_configuration_builder\"",
",",
"}",
",",
")",
")",
"variables_configs",
":",
"Dict",
"[",
"str",
",",
"Dict",
"]",
"=",
"self",
".",
"_profiler_config",
".",
"get",
"(",
"\"variables\"",
",",
"{",
"}",
")",
"variables",
":",
"Optional",
"[",
"ParameterContainer",
"]",
"=",
"None",
"if",
"variables_configs",
":",
"variables",
"=",
"build_parameter_container_for_variables",
"(",
"variables_configs",
"=",
"variables_configs",
")",
"self",
".",
"_rules",
".",
"append",
"(",
"Rule",
"(",
"name",
"=",
"rule_name",
",",
"domain_builder",
"=",
"domain_builder",
",",
"parameter_builders",
"=",
"parameter_builders",
",",
"expectation_configuration_builders",
"=",
"expectation_configuration_builders",
",",
"variables",
"=",
"variables",
",",
")",
")"
] | [
97,
4
] | [
198,
13
] | python | en | ['en', 'error', 'th'] | False |
Profiler.profile | (
self,
*,
expectation_suite_name: Optional[str] = None,
include_citation: bool = True,
) |
Args:
:param expectation_suite_name: A name for returned Expectation suite.
:param include_citation: Whether or not to include the Profiler config in the metadata for the ExpectationSuite produced by the Profiler
:return: Set of rule evaluation results in the form of an ExpectationSuite
|
Args:
:param expectation_suite_name: A name for returned Expectation suite.
:param include_citation: Whether or not to include the Profiler config in the metadata for the ExpectationSuite produced by the Profiler
:return: Set of rule evaluation results in the form of an ExpectationSuite
| def profile(
self,
*,
expectation_suite_name: Optional[str] = None,
include_citation: bool = True,
) -> ExpectationSuite:
"""
Args:
:param expectation_suite_name: A name for returned Expectation suite.
:param include_citation: Whether or not to include the Profiler config in the metadata for the ExpectationSuite produced by the Profiler
:return: Set of rule evaluation results in the form of an ExpectationSuite
"""
if expectation_suite_name is None:
expectation_suite_name = (
f"tmp.profiler_{self.__class__.__name__}_suite_{str(uuid.uuid4())[:8]}"
)
expectation_suite: ExpectationSuite = ExpectationSuite(
expectation_suite_name=expectation_suite_name
)
if include_citation:
expectation_suite.add_citation(
comment="Suite created by Rule-Based Profiler with the configuration included.",
profiler_config=self._profiler_config,
)
rule: Rule
for rule in self._rules:
expectation_configurations: List[ExpectationConfiguration] = rule.generate()
expectation_configuration: ExpectationConfiguration
for expectation_configuration in expectation_configurations:
expectation_suite.add_expectation(
expectation_configuration=expectation_configuration
)
return expectation_suite | [
"def",
"profile",
"(",
"self",
",",
"*",
",",
"expectation_suite_name",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
"include_citation",
":",
"bool",
"=",
"True",
",",
")",
"->",
"ExpectationSuite",
":",
"if",
"expectation_suite_name",
"is",
"None",
":",
"expectation_suite_name",
"=",
"(",
"f\"tmp.profiler_{self.__class__.__name__}_suite_{str(uuid.uuid4())[:8]}\"",
")",
"expectation_suite",
":",
"ExpectationSuite",
"=",
"ExpectationSuite",
"(",
"expectation_suite_name",
"=",
"expectation_suite_name",
")",
"if",
"include_citation",
":",
"expectation_suite",
".",
"add_citation",
"(",
"comment",
"=",
"\"Suite created by Rule-Based Profiler with the configuration included.\"",
",",
"profiler_config",
"=",
"self",
".",
"_profiler_config",
",",
")",
"rule",
":",
"Rule",
"for",
"rule",
"in",
"self",
".",
"_rules",
":",
"expectation_configurations",
":",
"List",
"[",
"ExpectationConfiguration",
"]",
"=",
"rule",
".",
"generate",
"(",
")",
"expectation_configuration",
":",
"ExpectationConfiguration",
"for",
"expectation_configuration",
"in",
"expectation_configurations",
":",
"expectation_suite",
".",
"add_expectation",
"(",
"expectation_configuration",
"=",
"expectation_configuration",
")",
"return",
"expectation_suite"
] | [
200,
4
] | [
236,
32
] | python | en | ['en', 'error', 'th'] | False |
compute_convolution | (I, T, stride: int = 1, padding: int = 0) |
This function takes an image <I> and a template <T> (both numpy arrays)
and returns a heatmap where each grid represents the output produced by
convolution at each location.
|
This function takes an image <I> and a template <T> (both numpy arrays)
and returns a heatmap where each grid represents the output produced by
convolution at each location.
| def compute_convolution(I, T, stride: int = 1, padding: int = 0):
"""
This function takes an image <I> and a template <T> (both numpy arrays)
and returns a heatmap where each grid represents the output produced by
convolution at each location.
"""
# Validate input
assert np.ndim(I) == np.ndim(T) == 3
(n_rows_i, n_cols_i, n_channels_i) = np.shape(I)
(n_rows_t, n_cols_t, n_channels_t) = np.shape(T)
assert n_rows_t <= n_rows_i
assert n_cols_t <= n_cols_i
assert n_channels_t == n_channels_i
# We downsize the heatmap slightly so that the template can match
# only valid pixels
# Calculate shapes along the convolution dimensions (non-channel)
shape_i = np.array(I.shape[:-1], dtype=int)
shape_t = np.array(T.shape[:-1], dtype=int)
shape_h = ((shape_i + (2 * padding) - shape_t) // stride) + 1
heatmap = np.zeros(shape_h)
# Iterate over rows and columns of heatmap
for row_h in range(shape_h[0]):
for col_h in range(shape_h[1]):
# Translate strides/padding to image-indexing
row_i, col_i = heatmap_idx_to_image_idx(
np.array([row_h, col_h]), stride=stride, padding=padding
)
# Slice input image to template size
sub_image = I[row_i : (row_i + n_rows_t), col_i : (col_i + n_cols_t)]
# Store the correlation between this image slice and the template
corr = pearsonr(sub_image.flatten(), T.flatten())[0]
heatmap[row_h, col_h] = corr
return heatmap | [
"def",
"compute_convolution",
"(",
"I",
",",
"T",
",",
"stride",
":",
"int",
"=",
"1",
",",
"padding",
":",
"int",
"=",
"0",
")",
":",
"# Validate input",
"assert",
"np",
".",
"ndim",
"(",
"I",
")",
"==",
"np",
".",
"ndim",
"(",
"T",
")",
"==",
"3",
"(",
"n_rows_i",
",",
"n_cols_i",
",",
"n_channels_i",
")",
"=",
"np",
".",
"shape",
"(",
"I",
")",
"(",
"n_rows_t",
",",
"n_cols_t",
",",
"n_channels_t",
")",
"=",
"np",
".",
"shape",
"(",
"T",
")",
"assert",
"n_rows_t",
"<=",
"n_rows_i",
"assert",
"n_cols_t",
"<=",
"n_cols_i",
"assert",
"n_channels_t",
"==",
"n_channels_i",
"# We downsize the heatmap slightly so that the template can match",
"# only valid pixels",
"# Calculate shapes along the convolution dimensions (non-channel)",
"shape_i",
"=",
"np",
".",
"array",
"(",
"I",
".",
"shape",
"[",
":",
"-",
"1",
"]",
",",
"dtype",
"=",
"int",
")",
"shape_t",
"=",
"np",
".",
"array",
"(",
"T",
".",
"shape",
"[",
":",
"-",
"1",
"]",
",",
"dtype",
"=",
"int",
")",
"shape_h",
"=",
"(",
"(",
"shape_i",
"+",
"(",
"2",
"*",
"padding",
")",
"-",
"shape_t",
")",
"//",
"stride",
")",
"+",
"1",
"heatmap",
"=",
"np",
".",
"zeros",
"(",
"shape_h",
")",
"# Iterate over rows and columns of heatmap",
"for",
"row_h",
"in",
"range",
"(",
"shape_h",
"[",
"0",
"]",
")",
":",
"for",
"col_h",
"in",
"range",
"(",
"shape_h",
"[",
"1",
"]",
")",
":",
"# Translate strides/padding to image-indexing",
"row_i",
",",
"col_i",
"=",
"heatmap_idx_to_image_idx",
"(",
"np",
".",
"array",
"(",
"[",
"row_h",
",",
"col_h",
"]",
")",
",",
"stride",
"=",
"stride",
",",
"padding",
"=",
"padding",
")",
"# Slice input image to template size",
"sub_image",
"=",
"I",
"[",
"row_i",
":",
"(",
"row_i",
"+",
"n_rows_t",
")",
",",
"col_i",
":",
"(",
"col_i",
"+",
"n_cols_t",
")",
"]",
"# Store the correlation between this image slice and the template",
"corr",
"=",
"pearsonr",
"(",
"sub_image",
".",
"flatten",
"(",
")",
",",
"T",
".",
"flatten",
"(",
")",
")",
"[",
"0",
"]",
"heatmap",
"[",
"row_h",
",",
"col_h",
"]",
"=",
"corr",
"return",
"heatmap"
] | [
11,
0
] | [
48,
18
] | python | en | ['en', 'error', 'th'] | False |
predict_boxes | (
heatmap: np.ndarray,
bbox_shapes: np.ndarray,
stride: int = 1,
padding: int = 0,
threshold: float = 0.7,
) |
This function takes heatmap and returns the bounding boxes and associated
confidence scores.
Arguments
---------
heatmap: np.array of confidence scores (correlations with template)
bbox_shapes: (heatmap_rows, heatmap_cols, 2) map that stores the size of the
bounding box that performed best at each pixel
stride, padding: same values used to construct the heatmap
|
This function takes heatmap and returns the bounding boxes and associated
confidence scores. | def predict_boxes(
heatmap: np.ndarray,
bbox_shapes: np.ndarray,
stride: int = 1,
padding: int = 0,
threshold: float = 0.7,
):
"""
This function takes heatmap and returns the bounding boxes and associated
confidence scores.
Arguments
---------
heatmap: np.array of confidence scores (correlations with template)
bbox_shapes: (heatmap_rows, heatmap_cols, 2) map that stores the size of the
bounding box that performed best at each pixel
stride, padding: same values used to construct the heatmap
"""
# Threshold heatmap to find objects
object_detected_mask = heatmap > threshold
object_locs = np.argwhere(object_detected_mask)
bbox_list = []
for row_h, col_h in object_locs:
# Convert heatmap coordinates back to original coordinates
tl_row_i, tl_col_i = heatmap_idx_to_image_idx(
np.array([row_h, col_h]), stride=stride, padding=padding
)
# Bounding box size is pre-defined
br_row_i, br_col_i = np.array([tl_row_i, tl_col_i]) + np.asarray(bbox_shapes[row_h, col_h])
score = heatmap[row_h, col_h]
# Convert to native Python integers to fix JSON parsing
bbox_list.append(
[tl_row_i.item(), tl_col_i.item(), br_row_i.item(), br_col_i.item(), score]
)
return bbox_list | [
"def",
"predict_boxes",
"(",
"heatmap",
":",
"np",
".",
"ndarray",
",",
"bbox_shapes",
":",
"np",
".",
"ndarray",
",",
"stride",
":",
"int",
"=",
"1",
",",
"padding",
":",
"int",
"=",
"0",
",",
"threshold",
":",
"float",
"=",
"0.7",
",",
")",
":",
"# Threshold heatmap to find objects",
"object_detected_mask",
"=",
"heatmap",
">",
"threshold",
"object_locs",
"=",
"np",
".",
"argwhere",
"(",
"object_detected_mask",
")",
"bbox_list",
"=",
"[",
"]",
"for",
"row_h",
",",
"col_h",
"in",
"object_locs",
":",
"# Convert heatmap coordinates back to original coordinates",
"tl_row_i",
",",
"tl_col_i",
"=",
"heatmap_idx_to_image_idx",
"(",
"np",
".",
"array",
"(",
"[",
"row_h",
",",
"col_h",
"]",
")",
",",
"stride",
"=",
"stride",
",",
"padding",
"=",
"padding",
")",
"# Bounding box size is pre-defined",
"br_row_i",
",",
"br_col_i",
"=",
"np",
".",
"array",
"(",
"[",
"tl_row_i",
",",
"tl_col_i",
"]",
")",
"+",
"np",
".",
"asarray",
"(",
"bbox_shapes",
"[",
"row_h",
",",
"col_h",
"]",
")",
"score",
"=",
"heatmap",
"[",
"row_h",
",",
"col_h",
"]",
"# Convert to native Python integers to fix JSON parsing",
"bbox_list",
".",
"append",
"(",
"[",
"tl_row_i",
".",
"item",
"(",
")",
",",
"tl_col_i",
".",
"item",
"(",
")",
",",
"br_row_i",
".",
"item",
"(",
")",
",",
"br_col_i",
".",
"item",
"(",
")",
",",
"score",
"]",
")",
"return",
"bbox_list"
] | [
51,
0
] | [
90,
20
] | python | en | ['en', 'error', 'th'] | False |
heatmap_idx_to_image_idx | (idx_h: int, stride: int, padding: int) |
Helper function to convert between heatmap coordinates to image coordinates
Arguments
---------
idx_h : int or 1-D np.array of heatmap indices
|
Helper function to convert between heatmap coordinates to image coordinates | def heatmap_idx_to_image_idx(idx_h: int, stride: int, padding: int):
"""
Helper function to convert between heatmap coordinates to image coordinates
Arguments
---------
idx_h : int or 1-D np.array of heatmap indices
"""
idx_i = (stride * idx_h) - padding
return idx_i | [
"def",
"heatmap_idx_to_image_idx",
"(",
"idx_h",
":",
"int",
",",
"stride",
":",
"int",
",",
"padding",
":",
"int",
")",
":",
"idx_i",
"=",
"(",
"stride",
"*",
"idx_h",
")",
"-",
"padding",
"return",
"idx_i"
] | [
93,
0
] | [
102,
16
] | python | en | ['en', 'error', 'th'] | False |
detect_red_light_mf | (I, template_list: List) |
This function takes a numpy array <I> and returns a list <output>.
The length of <output> is the number of bounding boxes predicted for <I>.
Each entry of <output> is a list <[row_TL,col_TL,row_BR,col_BR,score]>.
The first four entries are four integers specifying a bounding box
(the row and column index of the top left corner and the row and column
index of the bottom right corner).
<score> is a confidence score ranging from 0 to 1.
Note that PIL loads images in RGB order, so:
I[:,:,0] is the red channel
I[:,:,1] is the green channel
I[:,:,2] is the blue channel
template_list: list of numpy arrays corresponding to multiple filters
|
This function takes a numpy array <I> and returns a list <output>.
The length of <output> is the number of bounding boxes predicted for <I>.
Each entry of <output> is a list <[row_TL,col_TL,row_BR,col_BR,score]>.
The first four entries are four integers specifying a bounding box
(the row and column index of the top left corner and the row and column
index of the bottom right corner).
<score> is a confidence score ranging from 0 to 1. | def detect_red_light_mf(I, template_list: List):
"""
This function takes a numpy array <I> and returns a list <output>.
The length of <output> is the number of bounding boxes predicted for <I>.
Each entry of <output> is a list <[row_TL,col_TL,row_BR,col_BR,score]>.
The first four entries are four integers specifying a bounding box
(the row and column index of the top left corner and the row and column
index of the bottom right corner).
<score> is a confidence score ranging from 0 to 1.
Note that PIL loads images in RGB order, so:
I[:,:,0] is the red channel
I[:,:,1] is the green channel
I[:,:,2] is the blue channel
template_list: list of numpy arrays corresponding to multiple filters
"""
# Use a shallow, "wide"-CNN with multiple matched filters
# If an image matches any one of the templates, it gets added.
stride = 2 # Speed up the computations
# The less robust method
#
# def helper_func(template):
# heatmap = compute_convolution(I, template, stride=stride)
# bbox_list = predict_boxes(heatmap, template.shape[:-1], stride=stride)
# return bbox_list
# # Compute template matches in parallel to speed up
# bbox_list_list = Parallel(n_jobs=-3)(
# delayed(helper_func)(template) for template in template_list
# )
# Compute template matches in parallel to speed up
heatmap_list = Parallel(n_jobs=-3)(
delayed(compute_convolution)(I, template, stride=stride)
for template in template_list
)
# Pad heatmaps to the same size
heatmap_max_size = np.max([h.shape for h in heatmap_list], axis=0)
heatmap_list = [endpad_to_size(h, heatmap_max_size) for h in heatmap_list]
# Combine heatmaps by taking the average of the top-3 matches
heatmap_sorted = np.sort(heatmap_list, axis=0)
# heatmap is now in ascending correlation value.
# We want the 3 highest correlation values (end of sort)
heatmap_avg = heatmap_sorted[-3:].mean(axis=0)
# Create map of which bounding box size to use at each location
template_sizes = np.array([t.shape[:-1] for t in template_list])
heatmap_argmax = np.argmax(heatmap_list, axis=0) # -> might be able to convert this to an object array for use with argwhere
heatmap_template_sizes = template_sizes[heatmap_argmax]
# Use this heatmap to grab bboxes
bbox_list = predict_boxes(heatmap_avg, heatmap_template_sizes, stride=stride)
# Check on output
for idx, bbox in enumerate(bbox_list):
assert len(bbox) == 5
assert (bbox[4] >= 0.0) and (bbox[4] <= 1.0)
return bbox_list | [
"def",
"detect_red_light_mf",
"(",
"I",
",",
"template_list",
":",
"List",
")",
":",
"# Use a shallow, \"wide\"-CNN with multiple matched filters",
"# If an image matches any one of the templates, it gets added.",
"stride",
"=",
"2",
"# Speed up the computations",
"# The less robust method",
"#",
"# def helper_func(template):",
"# heatmap = compute_convolution(I, template, stride=stride)",
"# bbox_list = predict_boxes(heatmap, template.shape[:-1], stride=stride)",
"# return bbox_list",
"# # Compute template matches in parallel to speed up",
"# bbox_list_list = Parallel(n_jobs=-3)(",
"# delayed(helper_func)(template) for template in template_list",
"# )",
"# Compute template matches in parallel to speed up",
"heatmap_list",
"=",
"Parallel",
"(",
"n_jobs",
"=",
"-",
"3",
")",
"(",
"delayed",
"(",
"compute_convolution",
")",
"(",
"I",
",",
"template",
",",
"stride",
"=",
"stride",
")",
"for",
"template",
"in",
"template_list",
")",
"# Pad heatmaps to the same size",
"heatmap_max_size",
"=",
"np",
".",
"max",
"(",
"[",
"h",
".",
"shape",
"for",
"h",
"in",
"heatmap_list",
"]",
",",
"axis",
"=",
"0",
")",
"heatmap_list",
"=",
"[",
"endpad_to_size",
"(",
"h",
",",
"heatmap_max_size",
")",
"for",
"h",
"in",
"heatmap_list",
"]",
"# Combine heatmaps by taking the average of the top-3 matches",
"heatmap_sorted",
"=",
"np",
".",
"sort",
"(",
"heatmap_list",
",",
"axis",
"=",
"0",
")",
"# heatmap is now in ascending correlation value.",
"# We want the 3 highest correlation values (end of sort)",
"heatmap_avg",
"=",
"heatmap_sorted",
"[",
"-",
"3",
":",
"]",
".",
"mean",
"(",
"axis",
"=",
"0",
")",
"# Create map of which bounding box size to use at each location",
"template_sizes",
"=",
"np",
".",
"array",
"(",
"[",
"t",
".",
"shape",
"[",
":",
"-",
"1",
"]",
"for",
"t",
"in",
"template_list",
"]",
")",
"heatmap_argmax",
"=",
"np",
".",
"argmax",
"(",
"heatmap_list",
",",
"axis",
"=",
"0",
")",
"# -> might be able to convert this to an object array for use with argwhere",
"heatmap_template_sizes",
"=",
"template_sizes",
"[",
"heatmap_argmax",
"]",
"# Use this heatmap to grab bboxes",
"bbox_list",
"=",
"predict_boxes",
"(",
"heatmap_avg",
",",
"heatmap_template_sizes",
",",
"stride",
"=",
"stride",
")",
"# Check on output",
"for",
"idx",
",",
"bbox",
"in",
"enumerate",
"(",
"bbox_list",
")",
":",
"assert",
"len",
"(",
"bbox",
")",
"==",
"5",
"assert",
"(",
"bbox",
"[",
"4",
"]",
">=",
"0.0",
")",
"and",
"(",
"bbox",
"[",
"4",
"]",
"<=",
"1.0",
")",
"return",
"bbox_list"
] | [
105,
0
] | [
167,
20
] | python | en | ['en', 'error', 'th'] | False |
endpad_to_size | (array: np.ndarray, output_size: tuple, fill_value=np.nan) | Pad an array with fill_values at the end, up to output_size. | Pad an array with fill_values at the end, up to output_size. | def endpad_to_size(array: np.ndarray, output_size: tuple, fill_value=np.nan) -> np.ndarray:
"""Pad an array with fill_values at the end, up to output_size."""
pad_amounts = np.array(output_size, dtype=int) - np.array(array.shape, dtype=int)
assert (pad_amounts >= 0).all()
pad_before_after = [(0, pad) for pad in pad_amounts]
output = np.pad(array, pad_before_after, constant_values=fill_value)
return output | [
"def",
"endpad_to_size",
"(",
"array",
":",
"np",
".",
"ndarray",
",",
"output_size",
":",
"tuple",
",",
"fill_value",
"=",
"np",
".",
"nan",
")",
"->",
"np",
".",
"ndarray",
":",
"pad_amounts",
"=",
"np",
".",
"array",
"(",
"output_size",
",",
"dtype",
"=",
"int",
")",
"-",
"np",
".",
"array",
"(",
"array",
".",
"shape",
",",
"dtype",
"=",
"int",
")",
"assert",
"(",
"pad_amounts",
">=",
"0",
")",
".",
"all",
"(",
")",
"pad_before_after",
"=",
"[",
"(",
"0",
",",
"pad",
")",
"for",
"pad",
"in",
"pad_amounts",
"]",
"output",
"=",
"np",
".",
"pad",
"(",
"array",
",",
"pad_before_after",
",",
"constant_values",
"=",
"fill_value",
")",
"return",
"output"
] | [
170,
0
] | [
177,
17
] | python | en | ['en', 'en', 'en'] | True |
main | () |
Make predictions on the training set.
|
Make predictions on the training set.
| def main():
args = parse_args()
# Load splits
file_names_train = np.load(args.splits_folder.joinpath('file_names_train.npy'))
file_names_test = np.load(args.splits_folder.joinpath('file_names_test.npy'))
# Potentially sub-sample the file names
if args.num_images is not None:
file_names_train = np.random.choice(file_names_train, args.num_images)
# Create folder for saving predictions, if it doesn't exist
args.output_folder.mkdir(exist_ok=True)
# Load in templates
template_list = []
for template_path in args.template_folder.iterdir():
# Ignore non-jpg though
if template_path.suffix != '.jpg':
continue
template = Image.open(template_path)
template_list.append(np.asarray(template))
'''
Make predictions on the training set.
'''
if not args.done_tweaking:
preds_train = {}
for fname in file_names_train:
print('Processing train set:', fname)
# read image using PIL:
I = Image.open(args.data_folder.joinpath(fname))
# convert to numpy array:
I = np.asarray(I)
preds_train[fname] = detect_red_light_mf(I, template_list)
# save preds (overwrites any previous predictions!)
output_path = args.output_folder.joinpath('preds_train.json')
with output_path.open('w') as f:
print('Saving predictions to:', f.name)
json.dump(preds_train, f)
if args.done_tweaking:
"""
Make predictions on the test set.
"""
preds_test = {}
for fname_test in file_names_test:
print('Processing test set:', fname_test)
# read image using PIL:
I = Image.open(args.data_folder.joinpath(fname_test))
# convert to numpy array:
I = np.asarray(I)
preds_test[fname_test] = detect_red_light_mf(I, template_list)
# save preds (overwrites any previous predictions!)
output_path_test = args.output_folder.joinpath('preds_test.json')
with output_path_test.open('w') as f:
print('Saving predictions to:', f.name)
json.dump(preds_test, f) | [
"def",
"main",
"(",
")",
":",
"args",
"=",
"parse_args",
"(",
")",
"# Load splits",
"file_names_train",
"=",
"np",
".",
"load",
"(",
"args",
".",
"splits_folder",
".",
"joinpath",
"(",
"'file_names_train.npy'",
")",
")",
"file_names_test",
"=",
"np",
".",
"load",
"(",
"args",
".",
"splits_folder",
".",
"joinpath",
"(",
"'file_names_test.npy'",
")",
")",
"# Potentially sub-sample the file names",
"if",
"args",
".",
"num_images",
"is",
"not",
"None",
":",
"file_names_train",
"=",
"np",
".",
"random",
".",
"choice",
"(",
"file_names_train",
",",
"args",
".",
"num_images",
")",
"# Create folder for saving predictions, if it doesn't exist",
"args",
".",
"output_folder",
".",
"mkdir",
"(",
"exist_ok",
"=",
"True",
")",
"# Load in templates",
"template_list",
"=",
"[",
"]",
"for",
"template_path",
"in",
"args",
".",
"template_folder",
".",
"iterdir",
"(",
")",
":",
"# Ignore non-jpg though",
"if",
"template_path",
".",
"suffix",
"!=",
"'.jpg'",
":",
"continue",
"template",
"=",
"Image",
".",
"open",
"(",
"template_path",
")",
"template_list",
".",
"append",
"(",
"np",
".",
"asarray",
"(",
"template",
")",
")",
"if",
"not",
"args",
".",
"done_tweaking",
":",
"preds_train",
"=",
"{",
"}",
"for",
"fname",
"in",
"file_names_train",
":",
"print",
"(",
"'Processing train set:'",
",",
"fname",
")",
"# read image using PIL:",
"I",
"=",
"Image",
".",
"open",
"(",
"args",
".",
"data_folder",
".",
"joinpath",
"(",
"fname",
")",
")",
"# convert to numpy array:",
"I",
"=",
"np",
".",
"asarray",
"(",
"I",
")",
"preds_train",
"[",
"fname",
"]",
"=",
"detect_red_light_mf",
"(",
"I",
",",
"template_list",
")",
"# save preds (overwrites any previous predictions!)",
"output_path",
"=",
"args",
".",
"output_folder",
".",
"joinpath",
"(",
"'preds_train.json'",
")",
"with",
"output_path",
".",
"open",
"(",
"'w'",
")",
"as",
"f",
":",
"print",
"(",
"'Saving predictions to:'",
",",
"f",
".",
"name",
")",
"json",
".",
"dump",
"(",
"preds_train",
",",
"f",
")",
"if",
"args",
".",
"done_tweaking",
":",
"\"\"\"\n Make predictions on the test set.\n \"\"\"",
"preds_test",
"=",
"{",
"}",
"for",
"fname_test",
"in",
"file_names_test",
":",
"print",
"(",
"'Processing test set:'",
",",
"fname_test",
")",
"# read image using PIL:",
"I",
"=",
"Image",
".",
"open",
"(",
"args",
".",
"data_folder",
".",
"joinpath",
"(",
"fname_test",
")",
")",
"# convert to numpy array:",
"I",
"=",
"np",
".",
"asarray",
"(",
"I",
")",
"preds_test",
"[",
"fname_test",
"]",
"=",
"detect_red_light_mf",
"(",
"I",
",",
"template_list",
")",
"# save preds (overwrites any previous predictions!)",
"output_path_test",
"=",
"args",
".",
"output_folder",
".",
"joinpath",
"(",
"'preds_test.json'",
")",
"with",
"output_path_test",
".",
"open",
"(",
"'w'",
")",
"as",
"f",
":",
"print",
"(",
"'Saving predictions to:'",
",",
"f",
".",
"name",
")",
"json",
".",
"dump",
"(",
"preds_test",
",",
"f",
")"
] | [
228,
0
] | [
292,
36
] | python | en | ['en', 'error', 'th'] | False |
V3Route.host_constraints | (self, prune_unreachable_routes: bool) | Return a set of hostglobs that match (a superset of) all hostnames that this route can
apply to.
An emtpy set means that this route cannot possibly apply to any hostnames.
This considers SNI information and (if prune_unreachable_routes) HeaderMatchers that
`exact_match` on the `:authority` header. There are other things that could narrow the set
down more, but that we don't consider (like regex matches on `:authority`), leading to it
possibly returning a set that is too broad. That's OK for correctness, it just means that
we'll emit an Envoy config that contains extra work for Envoy.
| Return a set of hostglobs that match (a superset of) all hostnames that this route can
apply to. | def host_constraints(self, prune_unreachable_routes: bool) -> Set[str]:
"""Return a set of hostglobs that match (a superset of) all hostnames that this route can
apply to.
An emtpy set means that this route cannot possibly apply to any hostnames.
This considers SNI information and (if prune_unreachable_routes) HeaderMatchers that
`exact_match` on the `:authority` header. There are other things that could narrow the set
down more, but that we don't consider (like regex matches on `:authority`), leading to it
possibly returning a set that is too broad. That's OK for correctness, it just means that
we'll emit an Envoy config that contains extra work for Envoy.
"""
# Start by grabbing a list of all the SNI host globs for this route. If there aren't any,
# default to "*".
hostglobs = set(self.get('_sni', {}).get('hosts', ['*']))
# If we're going to do any aggressive pruning here...
if prune_unreachable_routes:
# Note: We're *pruning*; the hostglobs set will only ever get *smaller*, it will never
# grow. If it gets down to the empty set, then we can safely bail early.
# Take all the HeaderMatchers...
header_matchers = self.get("match", {}).get("headers", [])
for header in header_matchers:
# ... and look for ones that exact_match on :authority.
if header.get("name") == ":authority" and "exact_match" in header:
exact_match = header["exact_match"]
if "*" in exact_match:
# A real :authority header will never contain a "*", so if this route has an
# exact_match looking for one, then this route is unreachable.
hostglobs = set()
break # hostglobs is empty, no point in doing more work
elif any(hostglob_matches(glob, exact_match) for glob in hostglobs):
# The exact_match that this route is looking for is matched by one or more
# of the hostglobs; so this route is reachable (so far). Set hostglobs to
# just match that route. Because we already checked if the exact_match
# contains a "*", we don't need to worry about it possibly being interpreted
# incorrectly as a glob.
hostglobs = set([exact_match])
# Don't "break" here--if somehow this route has multiple disagreeing
# HeaderMatchers on :authority, then it's unreachable and we want the next
# iteration of the loop to trigger the "else" clause and prune hostglobs
# down to the empty set.
else:
# The exact_match that this route is looking for isn't matched by any of the
# hostglobs; so this route is unreachable.
hostglobs = set()
break # hostglobs is empty, no point in doing more work
return hostglobs | [
"def",
"host_constraints",
"(",
"self",
",",
"prune_unreachable_routes",
":",
"bool",
")",
"->",
"Set",
"[",
"str",
"]",
":",
"# Start by grabbing a list of all the SNI host globs for this route. If there aren't any,",
"# default to \"*\".",
"hostglobs",
"=",
"set",
"(",
"self",
".",
"get",
"(",
"'_sni'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'hosts'",
",",
"[",
"'*'",
"]",
")",
")",
"# If we're going to do any aggressive pruning here...",
"if",
"prune_unreachable_routes",
":",
"# Note: We're *pruning*; the hostglobs set will only ever get *smaller*, it will never",
"# grow. If it gets down to the empty set, then we can safely bail early.",
"# Take all the HeaderMatchers...",
"header_matchers",
"=",
"self",
".",
"get",
"(",
"\"match\"",
",",
"{",
"}",
")",
".",
"get",
"(",
"\"headers\"",
",",
"[",
"]",
")",
"for",
"header",
"in",
"header_matchers",
":",
"# ... and look for ones that exact_match on :authority.",
"if",
"header",
".",
"get",
"(",
"\"name\"",
")",
"==",
"\":authority\"",
"and",
"\"exact_match\"",
"in",
"header",
":",
"exact_match",
"=",
"header",
"[",
"\"exact_match\"",
"]",
"if",
"\"*\"",
"in",
"exact_match",
":",
"# A real :authority header will never contain a \"*\", so if this route has an",
"# exact_match looking for one, then this route is unreachable.",
"hostglobs",
"=",
"set",
"(",
")",
"break",
"# hostglobs is empty, no point in doing more work",
"elif",
"any",
"(",
"hostglob_matches",
"(",
"glob",
",",
"exact_match",
")",
"for",
"glob",
"in",
"hostglobs",
")",
":",
"# The exact_match that this route is looking for is matched by one or more",
"# of the hostglobs; so this route is reachable (so far). Set hostglobs to",
"# just match that route. Because we already checked if the exact_match",
"# contains a \"*\", we don't need to worry about it possibly being interpreted",
"# incorrectly as a glob.",
"hostglobs",
"=",
"set",
"(",
"[",
"exact_match",
"]",
")",
"# Don't \"break\" here--if somehow this route has multiple disagreeing",
"# HeaderMatchers on :authority, then it's unreachable and we want the next",
"# iteration of the loop to trigger the \"else\" clause and prune hostglobs",
"# down to the empty set.",
"else",
":",
"# The exact_match that this route is looking for isn't matched by any of the",
"# hostglobs; so this route is unreachable.",
"hostglobs",
"=",
"set",
"(",
")",
"break",
"# hostglobs is empty, no point in doing more work",
"return",
"hostglobs"
] | [
411,
4
] | [
464,
24
] | python | en | ['en', 'en', 'en'] | True |
test_expectation_suite_equality | (baseline_suite, identical_suite, equivalent_suite) | Equality should depend on all defined properties of a configuration object, but not on whether the *instances*
are the same. | Equality should depend on all defined properties of a configuration object, but not on whether the *instances*
are the same. | def test_expectation_suite_equality(baseline_suite, identical_suite, equivalent_suite):
"""Equality should depend on all defined properties of a configuration object, but not on whether the *instances*
are the same."""
assert baseline_suite is baseline_suite # no difference
assert (
baseline_suite is not identical_suite
) # different instances, but same content
assert baseline_suite == identical_suite # different instances, but same content
assert not (baseline_suite != identical_suite) # ne works properly
assert not (baseline_suite == equivalent_suite) # different meta
assert baseline_suite != equivalent_suite | [
"def",
"test_expectation_suite_equality",
"(",
"baseline_suite",
",",
"identical_suite",
",",
"equivalent_suite",
")",
":",
"assert",
"baseline_suite",
"is",
"baseline_suite",
"# no difference",
"assert",
"(",
"baseline_suite",
"is",
"not",
"identical_suite",
")",
"# different instances, but same content",
"assert",
"baseline_suite",
"==",
"identical_suite",
"# different instances, but same content",
"assert",
"not",
"(",
"baseline_suite",
"!=",
"identical_suite",
")",
"# ne works properly",
"assert",
"not",
"(",
"baseline_suite",
"==",
"equivalent_suite",
")",
"# different meta",
"assert",
"baseline_suite",
"!=",
"equivalent_suite"
] | [
215,
0
] | [
225,
45
] | python | en | ['en', 'en', 'en'] | True |
test_expectation_suite_equivalence | (
baseline_suite,
identical_suite,
equivalent_suite,
different_suite,
single_expectation_suite,
) | Equivalence should depend only on properties that affect the result of the expectation. | Equivalence should depend only on properties that affect the result of the expectation. | def test_expectation_suite_equivalence(
baseline_suite,
identical_suite,
equivalent_suite,
different_suite,
single_expectation_suite,
):
"""Equivalence should depend only on properties that affect the result of the expectation."""
assert baseline_suite.isEquivalentTo(baseline_suite) # no difference
assert baseline_suite.isEquivalentTo(identical_suite)
assert baseline_suite.isEquivalentTo(equivalent_suite) # different meta
assert not baseline_suite.isEquivalentTo(
different_suite
) # different value_set in one expectation
assert not single_expectation_suite.isEquivalentTo(baseline_suite) | [
"def",
"test_expectation_suite_equivalence",
"(",
"baseline_suite",
",",
"identical_suite",
",",
"equivalent_suite",
",",
"different_suite",
",",
"single_expectation_suite",
",",
")",
":",
"assert",
"baseline_suite",
".",
"isEquivalentTo",
"(",
"baseline_suite",
")",
"# no difference",
"assert",
"baseline_suite",
".",
"isEquivalentTo",
"(",
"identical_suite",
")",
"assert",
"baseline_suite",
".",
"isEquivalentTo",
"(",
"equivalent_suite",
")",
"# different meta",
"assert",
"not",
"baseline_suite",
".",
"isEquivalentTo",
"(",
"different_suite",
")",
"# different value_set in one expectation",
"assert",
"not",
"single_expectation_suite",
".",
"isEquivalentTo",
"(",
"baseline_suite",
")"
] | [
228,
0
] | [
242,
70
] | python | en | ['en', 'en', 'en'] | True |
DefaultJinjaView.render_content_block | (
self,
jinja_context,
content_block,
index=None,
content_block_id=None,
render_to_markdown: bool = False,
) |
:param jinja_context:
:param content_block:
:param index:
:param content_block_id:
:param render_to_markdown: Whether this method should render the markdown version instead of HTML
:return:
| def render_content_block(
self,
jinja_context,
content_block,
index=None,
content_block_id=None,
render_to_markdown: bool = False,
):
"""
:param jinja_context:
:param content_block:
:param index:
:param content_block_id:
:param render_to_markdown: Whether this method should render the markdown version instead of HTML
:return:
"""
if isinstance(content_block, str):
return content_block
elif content_block is None:
return ""
elif isinstance(content_block, list):
# If the content_block item here is actually a list of content blocks then we want to recursively render
rendered_block = ""
for idx, content_block_el in enumerate(content_block):
if (
isinstance(content_block_el, RenderedComponentContent)
or isinstance(content_block_el, dict)
and "content_block_type" in content_block_el
):
new_content_block_id = None
if content_block_id:
new_content_block_id = content_block_id + "-" + str(idx)
rendered_block += self.render_content_block(
jinja_context,
content_block_el,
idx,
content_block_id=new_content_block_id,
)
else:
if render_to_markdown:
rendered_block += str(content_block_el)
else:
rendered_block += "<span>" + str(content_block_el) + "</span>"
return rendered_block
elif not isinstance(content_block, dict):
return content_block
content_block_type = content_block.get("content_block_type")
if content_block_type is None:
return content_block
if render_to_markdown:
template_filename = f"markdown_{content_block_type}.j2"
else:
template_filename = f"{content_block_type}.j2"
template = self._get_template(template=template_filename)
if content_block_id:
return template.render(
jinja_context,
content_block=content_block,
index=index,
content_block_id=content_block_id,
)
else:
return template.render(
jinja_context, content_block=content_block, index=index
) | [
"def",
"render_content_block",
"(",
"self",
",",
"jinja_context",
",",
"content_block",
",",
"index",
"=",
"None",
",",
"content_block_id",
"=",
"None",
",",
"render_to_markdown",
":",
"bool",
"=",
"False",
",",
")",
":",
"if",
"isinstance",
"(",
"content_block",
",",
"str",
")",
":",
"return",
"content_block",
"elif",
"content_block",
"is",
"None",
":",
"return",
"\"\"",
"elif",
"isinstance",
"(",
"content_block",
",",
"list",
")",
":",
"# If the content_block item here is actually a list of content blocks then we want to recursively render",
"rendered_block",
"=",
"\"\"",
"for",
"idx",
",",
"content_block_el",
"in",
"enumerate",
"(",
"content_block",
")",
":",
"if",
"(",
"isinstance",
"(",
"content_block_el",
",",
"RenderedComponentContent",
")",
"or",
"isinstance",
"(",
"content_block_el",
",",
"dict",
")",
"and",
"\"content_block_type\"",
"in",
"content_block_el",
")",
":",
"new_content_block_id",
"=",
"None",
"if",
"content_block_id",
":",
"new_content_block_id",
"=",
"content_block_id",
"+",
"\"-\"",
"+",
"str",
"(",
"idx",
")",
"rendered_block",
"+=",
"self",
".",
"render_content_block",
"(",
"jinja_context",
",",
"content_block_el",
",",
"idx",
",",
"content_block_id",
"=",
"new_content_block_id",
",",
")",
"else",
":",
"if",
"render_to_markdown",
":",
"rendered_block",
"+=",
"str",
"(",
"content_block_el",
")",
"else",
":",
"rendered_block",
"+=",
"\"<span>\"",
"+",
"str",
"(",
"content_block_el",
")",
"+",
"\"</span>\"",
"return",
"rendered_block",
"elif",
"not",
"isinstance",
"(",
"content_block",
",",
"dict",
")",
":",
"return",
"content_block",
"content_block_type",
"=",
"content_block",
".",
"get",
"(",
"\"content_block_type\"",
")",
"if",
"content_block_type",
"is",
"None",
":",
"return",
"content_block",
"if",
"render_to_markdown",
":",
"template_filename",
"=",
"f\"markdown_{content_block_type}.j2\"",
"else",
":",
"template_filename",
"=",
"f\"{content_block_type}.j2\"",
"template",
"=",
"self",
".",
"_get_template",
"(",
"template",
"=",
"template_filename",
")",
"if",
"content_block_id",
":",
"return",
"template",
".",
"render",
"(",
"jinja_context",
",",
"content_block",
"=",
"content_block",
",",
"index",
"=",
"index",
",",
"content_block_id",
"=",
"content_block_id",
",",
")",
"else",
":",
"return",
"template",
".",
"render",
"(",
"jinja_context",
",",
"content_block",
"=",
"content_block",
",",
"index",
"=",
"index",
")"
] | [
128,
4
] | [
194,
13
] | python | en | ['en', 'error', 'th'] | False |
|
DefaultJinjaView.render_styling | (self, styling) | Adds styling information suitable for an html tag.
Example styling block::
styling = {
"classes": ["alert", "alert-warning"],
"attributes": {
"role": "alert",
"data-toggle": "popover",
},
"styles" : {
"padding" : "10px",
"border-radius" : "2px",
}
}
The above block returns a string similar to::
'class="alert alert-warning" role="alert" data-toggle="popover" style="padding: 10px; border-radius: 2px"'
"classes", "attributes" and "styles" are all optional parameters.
If they aren't present, they simply won't be rendered.
Other dictionary keys are also allowed and ignored.
| Adds styling information suitable for an html tag. | def render_styling(self, styling):
"""Adds styling information suitable for an html tag.
Example styling block::
styling = {
"classes": ["alert", "alert-warning"],
"attributes": {
"role": "alert",
"data-toggle": "popover",
},
"styles" : {
"padding" : "10px",
"border-radius" : "2px",
}
}
The above block returns a string similar to::
'class="alert alert-warning" role="alert" data-toggle="popover" style="padding: 10px; border-radius: 2px"'
"classes", "attributes" and "styles" are all optional parameters.
If they aren't present, they simply won't be rendered.
Other dictionary keys are also allowed and ignored.
"""
class_list = styling.get("classes", None)
if class_list is None:
class_str = ""
else:
if type(class_list) == str:
raise TypeError("classes must be a list, not a string.")
class_str = 'class="' + " ".join(class_list) + '" '
attribute_dict = styling.get("attributes", None)
if attribute_dict is None:
attribute_str = ""
else:
attribute_str = ""
for k, v in attribute_dict.items():
attribute_str += k + '="' + v + '" '
style_dict = styling.get("styles", None)
if style_dict is None:
style_str = ""
else:
style_str = 'style="'
style_str += " ".join([k + ":" + v + ";" for k, v in style_dict.items()])
style_str += '" '
styling_string = pTemplate("$classes$attributes$style").substitute(
{
"classes": class_str,
"attributes": attribute_str,
"style": style_str,
}
)
return styling_string | [
"def",
"render_styling",
"(",
"self",
",",
"styling",
")",
":",
"class_list",
"=",
"styling",
".",
"get",
"(",
"\"classes\"",
",",
"None",
")",
"if",
"class_list",
"is",
"None",
":",
"class_str",
"=",
"\"\"",
"else",
":",
"if",
"type",
"(",
"class_list",
")",
"==",
"str",
":",
"raise",
"TypeError",
"(",
"\"classes must be a list, not a string.\"",
")",
"class_str",
"=",
"'class=\"'",
"+",
"\" \"",
".",
"join",
"(",
"class_list",
")",
"+",
"'\" '",
"attribute_dict",
"=",
"styling",
".",
"get",
"(",
"\"attributes\"",
",",
"None",
")",
"if",
"attribute_dict",
"is",
"None",
":",
"attribute_str",
"=",
"\"\"",
"else",
":",
"attribute_str",
"=",
"\"\"",
"for",
"k",
",",
"v",
"in",
"attribute_dict",
".",
"items",
"(",
")",
":",
"attribute_str",
"+=",
"k",
"+",
"'=\"'",
"+",
"v",
"+",
"'\" '",
"style_dict",
"=",
"styling",
".",
"get",
"(",
"\"styles\"",
",",
"None",
")",
"if",
"style_dict",
"is",
"None",
":",
"style_str",
"=",
"\"\"",
"else",
":",
"style_str",
"=",
"'style=\"'",
"style_str",
"+=",
"\" \"",
".",
"join",
"(",
"[",
"k",
"+",
"\":\"",
"+",
"v",
"+",
"\";\"",
"for",
"k",
",",
"v",
"in",
"style_dict",
".",
"items",
"(",
")",
"]",
")",
"style_str",
"+=",
"'\" '",
"styling_string",
"=",
"pTemplate",
"(",
"\"$classes$attributes$style\"",
")",
".",
"substitute",
"(",
"{",
"\"classes\"",
":",
"class_str",
",",
"\"attributes\"",
":",
"attribute_str",
",",
"\"style\"",
":",
"style_str",
",",
"}",
")",
"return",
"styling_string"
] | [
223,
4
] | [
283,
29
] | python | en | ['en', 'en', 'en'] | True |
DefaultJinjaView.render_styling_from_string_template | (self, template) | This method is a thin wrapper use to call `render_styling` from within jinja templates. | This method is a thin wrapper use to call `render_styling` from within jinja templates. | def render_styling_from_string_template(self, template):
# NOTE: We should add some kind of type-checking to template
"""This method is a thin wrapper use to call `render_styling` from within jinja templates."""
if not isinstance(template, (dict, OrderedDict)):
return template
if "styling" in template:
return self.render_styling(template["styling"])
else:
return "" | [
"def",
"render_styling_from_string_template",
"(",
"self",
",",
"template",
")",
":",
"# NOTE: We should add some kind of type-checking to template",
"if",
"not",
"isinstance",
"(",
"template",
",",
"(",
"dict",
",",
"OrderedDict",
")",
")",
":",
"return",
"template",
"if",
"\"styling\"",
"in",
"template",
":",
"return",
"self",
".",
"render_styling",
"(",
"template",
"[",
"\"styling\"",
"]",
")",
"else",
":",
"return",
"\"\""
] | [
285,
4
] | [
295,
21
] | python | en | ['en', 'en', 'en'] | True |
DefaultMarkdownPageView._validate_document | (self, document: RenderedDocumentContent) |
Validate that the document is of the appropriate type at runtime.
|
Validate that the document is of the appropriate type at runtime.
| def _validate_document(self, document: RenderedDocumentContent) -> bool:
"""
Validate that the document is of the appropriate type at runtime.
"""
assert isinstance(document, RenderedDocumentContent) | [
"def",
"_validate_document",
"(",
"self",
",",
"document",
":",
"RenderedDocumentContent",
")",
"->",
"bool",
":",
"assert",
"isinstance",
"(",
"document",
",",
"RenderedDocumentContent",
")"
] | [
470,
4
] | [
474,
60
] | python | en | ['en', 'error', 'th'] | False |
DefaultMarkdownPageView.render | (self, document, template=None, **kwargs) |
Handle list as well as single document
|
Handle list as well as single document
| def render(self, document, template=None, **kwargs):
"""
Handle list as well as single document
"""
if isinstance(document, list):
# We need to keep this as super(DefaultMarkdownPageView, self); otherwise a wrong render will be called.
return [
super(DefaultMarkdownPageView, self).render(
document=d, template=template, **kwargs
)
for d in document
]
else:
return super().render(document=document, template=template, **kwargs) | [
"def",
"render",
"(",
"self",
",",
"document",
",",
"template",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"isinstance",
"(",
"document",
",",
"list",
")",
":",
"# We need to keep this as super(DefaultMarkdownPageView, self); otherwise a wrong render will be called.",
"return",
"[",
"super",
"(",
"DefaultMarkdownPageView",
",",
"self",
")",
".",
"render",
"(",
"document",
"=",
"d",
",",
"template",
"=",
"template",
",",
"*",
"*",
"kwargs",
")",
"for",
"d",
"in",
"document",
"]",
"else",
":",
"return",
"super",
"(",
")",
".",
"render",
"(",
"document",
"=",
"document",
",",
"template",
"=",
"template",
",",
"*",
"*",
"kwargs",
")"
] | [
478,
4
] | [
492,
81
] | python | en | ['en', 'error', 'th'] | False |
DefaultMarkdownPageView.render_string_template | (self, template: pTemplate) |
Render string for markdown rendering. Bold all parameters and perform substitution.
Args:
template: python Template object
Returns:
Template with substituted values and all parameters bolded
|
Render string for markdown rendering. Bold all parameters and perform substitution.
Args:
template: python Template object | def render_string_template(self, template: pTemplate) -> pTemplate:
"""
Render string for markdown rendering. Bold all parameters and perform substitution.
Args:
template: python Template object
Returns:
Template with substituted values and all parameters bolded
"""
if not isinstance(template, (dict, OrderedDict)):
return template
# replace and render any horizontal lines using ***
tag = template.get("tag", None)
if tag and tag == "hr":
template["template"] = "***"
# if there are any groupings of two or more $, we need to double the groupings to account
# for template string substitution escaping
template["template"] = re.sub(
r"\${2,}", lambda m: m.group(0) * 2, template.get("template", "")
)
# Bold all parameters:
base_param_template_string = "**$content**"
# Make sure template["params"] is a dict
template["params"] = template.get("params", {})
# TODO: Revisit handling of icons in markdown. E.g. inline rendered icons.
if "markdown_status_icon" in template["params"]:
return template["params"]["markdown_status_icon"]
for parameter in template["params"].keys():
if parameter == "html_success_icon":
template["params"][parameter] = ""
continue
# to escape any values that are '*' which, when combined with bold ('**') in markdown,
# does not give the output we want.
elif template["params"][parameter] == "*":
template["params"][parameter] = "\\*"
continue
template["params"][parameter] = pTemplate(
base_param_template_string
).safe_substitute(
{
"content": template["params"][parameter],
}
)
template["template"] = template.get("template", "").replace(
"$PARAMETER", "$$PARAMETER"
)
return pTemplate(template.get("template")).safe_substitute(
template.get("params", {})
) | [
"def",
"render_string_template",
"(",
"self",
",",
"template",
":",
"pTemplate",
")",
"->",
"pTemplate",
":",
"if",
"not",
"isinstance",
"(",
"template",
",",
"(",
"dict",
",",
"OrderedDict",
")",
")",
":",
"return",
"template",
"# replace and render any horizontal lines using ***",
"tag",
"=",
"template",
".",
"get",
"(",
"\"tag\"",
",",
"None",
")",
"if",
"tag",
"and",
"tag",
"==",
"\"hr\"",
":",
"template",
"[",
"\"template\"",
"]",
"=",
"\"***\"",
"# if there are any groupings of two or more $, we need to double the groupings to account",
"# for template string substitution escaping",
"template",
"[",
"\"template\"",
"]",
"=",
"re",
".",
"sub",
"(",
"r\"\\${2,}\"",
",",
"lambda",
"m",
":",
"m",
".",
"group",
"(",
"0",
")",
"*",
"2",
",",
"template",
".",
"get",
"(",
"\"template\"",
",",
"\"\"",
")",
")",
"# Bold all parameters:",
"base_param_template_string",
"=",
"\"**$content**\"",
"# Make sure template[\"params\"] is a dict",
"template",
"[",
"\"params\"",
"]",
"=",
"template",
".",
"get",
"(",
"\"params\"",
",",
"{",
"}",
")",
"# TODO: Revisit handling of icons in markdown. E.g. inline rendered icons.",
"if",
"\"markdown_status_icon\"",
"in",
"template",
"[",
"\"params\"",
"]",
":",
"return",
"template",
"[",
"\"params\"",
"]",
"[",
"\"markdown_status_icon\"",
"]",
"for",
"parameter",
"in",
"template",
"[",
"\"params\"",
"]",
".",
"keys",
"(",
")",
":",
"if",
"parameter",
"==",
"\"html_success_icon\"",
":",
"template",
"[",
"\"params\"",
"]",
"[",
"parameter",
"]",
"=",
"\"\"",
"continue",
"# to escape any values that are '*' which, when combined with bold ('**') in markdown,",
"# does not give the output we want.",
"elif",
"template",
"[",
"\"params\"",
"]",
"[",
"parameter",
"]",
"==",
"\"*\"",
":",
"template",
"[",
"\"params\"",
"]",
"[",
"parameter",
"]",
"=",
"\"\\\\*\"",
"continue",
"template",
"[",
"\"params\"",
"]",
"[",
"parameter",
"]",
"=",
"pTemplate",
"(",
"base_param_template_string",
")",
".",
"safe_substitute",
"(",
"{",
"\"content\"",
":",
"template",
"[",
"\"params\"",
"]",
"[",
"parameter",
"]",
",",
"}",
")",
"template",
"[",
"\"template\"",
"]",
"=",
"template",
".",
"get",
"(",
"\"template\"",
",",
"\"\"",
")",
".",
"replace",
"(",
"\"$PARAMETER\"",
",",
"\"$$PARAMETER\"",
")",
"return",
"pTemplate",
"(",
"template",
".",
"get",
"(",
"\"template\"",
")",
")",
".",
"safe_substitute",
"(",
"template",
".",
"get",
"(",
"\"params\"",
",",
"{",
"}",
")",
")"
] | [
494,
4
] | [
553,
9
] | python | en | ['en', 'error', 'th'] | False |
DefaultMarkdownPageView.render_content_block | (
self,
jinja_context,
content_block,
index=None,
content_block_id=None,
render_to_markdown: bool = True,
) |
Render a content block to markdown using jinja templates.
Args:
jinja_context:
content_block:
index:
content_block_id:
render_to_markdown: Default of True here instead of parent class default of False
Returns:
|
Render a content block to markdown using jinja templates.
Args:
jinja_context:
content_block:
index:
content_block_id:
render_to_markdown: Default of True here instead of parent class default of False | def render_content_block(
self,
jinja_context,
content_block,
index=None,
content_block_id=None,
render_to_markdown: bool = True,
):
"""
Render a content block to markdown using jinja templates.
Args:
jinja_context:
content_block:
index:
content_block_id:
render_to_markdown: Default of True here instead of parent class default of False
Returns:
"""
return super().render_content_block(
jinja_context=jinja_context,
content_block=content_block,
index=index,
content_block_id=content_block_id,
render_to_markdown=render_to_markdown,
) | [
"def",
"render_content_block",
"(",
"self",
",",
"jinja_context",
",",
"content_block",
",",
"index",
"=",
"None",
",",
"content_block_id",
"=",
"None",
",",
"render_to_markdown",
":",
"bool",
"=",
"True",
",",
")",
":",
"return",
"super",
"(",
")",
".",
"render_content_block",
"(",
"jinja_context",
"=",
"jinja_context",
",",
"content_block",
"=",
"content_block",
",",
"index",
"=",
"index",
",",
"content_block_id",
"=",
"content_block_id",
",",
"render_to_markdown",
"=",
"render_to_markdown",
",",
")"
] | [
556,
4
] | [
583,
9
] | python | en | ['en', 'error', 'th'] | False |
test_checkpoint_script_happy_path_executable_successful_validation_with_ge_config_v2 | (
caplog, titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled
) |
We call the "checkpoint script" command on a project with a Checkpoint.
The command should:
- create the script (note output is tested in other tests)
When run the script should:
- execute
- return a 0 status code
- print a success message
|
We call the "checkpoint script" command on a project with a Checkpoint. | def test_checkpoint_script_happy_path_executable_successful_validation_with_ge_config_v2(
caplog, titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled
):
"""
We call the "checkpoint script" command on a project with a Checkpoint.
The command should:
- create the script (note output is tested in other tests)
When run the script should:
- execute
- return a 0 status code
- print a success message
"""
context = titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled
root_dir = context.root_directory
runner = CliRunner(mix_stderr=False)
result = runner.invoke(
cli,
f"checkpoint script my_checkpoint -d {root_dir}",
catch_exceptions=False,
)
stdout = result.stdout
assert result.exit_code == 0
assert_no_logging_messages_or_tracebacks(
my_caplog=caplog,
click_result=result,
allowed_deprecation_message=LEGACY_CONFIG_DEFAULT_CHECKPOINT_STORE_MESSAGE,
)
script_path = os.path.abspath(
os.path.join(root_dir, context.GE_UNCOMMITTED_DIR, "run_my_checkpoint.py")
)
assert os.path.isfile(script_path)
# In travis on osx, python may not execute from the build dir
cmdstring = f"python {script_path}"
if os.environ.get("TRAVIS_OS_NAME") == "osx":
build_dir = os.environ.get("TRAVIS_BUILD_DIR")
print(os.listdir(build_dir))
cmdstring = f"python3 {script_path}"
print("about to run: " + cmdstring)
print(os.curdir)
print(os.listdir(os.curdir))
print(os.listdir(os.path.abspath(os.path.join(root_dir, ".."))))
status, output = subprocess.getstatusoutput(cmdstring)
print(f"\n\nScript exited with code: {status} and output:\n{output}")
assert status == 0
assert "Validation succeeded!" in output | [
"def",
"test_checkpoint_script_happy_path_executable_successful_validation_with_ge_config_v2",
"(",
"caplog",
",",
"titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled",
")",
":",
"context",
"=",
"titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled",
"root_dir",
"=",
"context",
".",
"root_directory",
"runner",
"=",
"CliRunner",
"(",
"mix_stderr",
"=",
"False",
")",
"result",
"=",
"runner",
".",
"invoke",
"(",
"cli",
",",
"f\"checkpoint script my_checkpoint -d {root_dir}\"",
",",
"catch_exceptions",
"=",
"False",
",",
")",
"stdout",
"=",
"result",
".",
"stdout",
"assert",
"result",
".",
"exit_code",
"==",
"0",
"assert_no_logging_messages_or_tracebacks",
"(",
"my_caplog",
"=",
"caplog",
",",
"click_result",
"=",
"result",
",",
"allowed_deprecation_message",
"=",
"LEGACY_CONFIG_DEFAULT_CHECKPOINT_STORE_MESSAGE",
",",
")",
"script_path",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"join",
"(",
"root_dir",
",",
"context",
".",
"GE_UNCOMMITTED_DIR",
",",
"\"run_my_checkpoint.py\"",
")",
")",
"assert",
"os",
".",
"path",
".",
"isfile",
"(",
"script_path",
")",
"# In travis on osx, python may not execute from the build dir",
"cmdstring",
"=",
"f\"python {script_path}\"",
"if",
"os",
".",
"environ",
".",
"get",
"(",
"\"TRAVIS_OS_NAME\"",
")",
"==",
"\"osx\"",
":",
"build_dir",
"=",
"os",
".",
"environ",
".",
"get",
"(",
"\"TRAVIS_BUILD_DIR\"",
")",
"print",
"(",
"os",
".",
"listdir",
"(",
"build_dir",
")",
")",
"cmdstring",
"=",
"f\"python3 {script_path}\"",
"print",
"(",
"\"about to run: \"",
"+",
"cmdstring",
")",
"print",
"(",
"os",
".",
"curdir",
")",
"print",
"(",
"os",
".",
"listdir",
"(",
"os",
".",
"curdir",
")",
")",
"print",
"(",
"os",
".",
"listdir",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"join",
"(",
"root_dir",
",",
"\"..\"",
")",
")",
")",
")",
"status",
",",
"output",
"=",
"subprocess",
".",
"getstatusoutput",
"(",
"cmdstring",
")",
"print",
"(",
"f\"\\n\\nScript exited with code: {status} and output:\\n{output}\"",
")",
"assert",
"status",
"==",
"0",
"assert",
"\"Validation succeeded!\"",
"in",
"output"
] | [
989,
0
] | [
1039,
44
] | python | en | ['en', 'error', 'th'] | False |
test_checkpoint_script_happy_path_executable_failed_validation_with_ge_config_v2 | (
caplog, titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled
) |
We call the "checkpoint script" command on a project with a Checkpoint.
The command should:
- create the script (note output is tested in other tests)
When run the script should:
- execute
- return a 1 status code
- print a failure message
|
We call the "checkpoint script" command on a project with a Checkpoint. | def test_checkpoint_script_happy_path_executable_failed_validation_with_ge_config_v2(
caplog, titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled
):
"""
We call the "checkpoint script" command on a project with a Checkpoint.
The command should:
- create the script (note output is tested in other tests)
When run the script should:
- execute
- return a 1 status code
- print a failure message
"""
context = titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled
root_dir = context.root_directory
# mangle the csv
csv_path = os.path.join(context.root_directory, "..", "data", "Titanic.csv")
with open(csv_path, "w") as f:
f.write("foo,bar\n1,2\n")
runner = CliRunner(mix_stderr=False)
result = runner.invoke(
cli,
f"checkpoint script my_checkpoint -d {root_dir}",
catch_exceptions=False,
)
assert result.exit_code == 0
assert_no_logging_messages_or_tracebacks(
my_caplog=caplog,
click_result=result,
allowed_deprecation_message=LEGACY_CONFIG_DEFAULT_CHECKPOINT_STORE_MESSAGE,
)
script_path = os.path.abspath(
os.path.join(root_dir, context.GE_UNCOMMITTED_DIR, "run_my_checkpoint.py")
)
assert os.path.isfile(script_path)
# In travis on osx, python may not execute from the build dir
cmdstring = f"python {script_path}"
if os.environ.get("TRAVIS_OS_NAME") == "osx":
build_dir = os.environ.get("TRAVIS_BUILD_DIR")
print(os.listdir(build_dir))
cmdstring = f"python3 {script_path}"
print("about to run: " + cmdstring)
print(os.curdir)
print(os.listdir(os.curdir))
print(os.listdir(os.path.abspath(os.path.join(root_dir, ".."))))
status, output = subprocess.getstatusoutput(cmdstring)
print(f"\n\nScript exited with code: {status} and output:\n{output}")
assert status == 1
assert "Validation failed!" in output | [
"def",
"test_checkpoint_script_happy_path_executable_failed_validation_with_ge_config_v2",
"(",
"caplog",
",",
"titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled",
")",
":",
"context",
"=",
"titanic_data_context_v2_with_checkpoint_suite_and_stats_enabled",
"root_dir",
"=",
"context",
".",
"root_directory",
"# mangle the csv",
"csv_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"context",
".",
"root_directory",
",",
"\"..\"",
",",
"\"data\"",
",",
"\"Titanic.csv\"",
")",
"with",
"open",
"(",
"csv_path",
",",
"\"w\"",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"\"foo,bar\\n1,2\\n\"",
")",
"runner",
"=",
"CliRunner",
"(",
"mix_stderr",
"=",
"False",
")",
"result",
"=",
"runner",
".",
"invoke",
"(",
"cli",
",",
"f\"checkpoint script my_checkpoint -d {root_dir}\"",
",",
"catch_exceptions",
"=",
"False",
",",
")",
"assert",
"result",
".",
"exit_code",
"==",
"0",
"assert_no_logging_messages_or_tracebacks",
"(",
"my_caplog",
"=",
"caplog",
",",
"click_result",
"=",
"result",
",",
"allowed_deprecation_message",
"=",
"LEGACY_CONFIG_DEFAULT_CHECKPOINT_STORE_MESSAGE",
",",
")",
"script_path",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"join",
"(",
"root_dir",
",",
"context",
".",
"GE_UNCOMMITTED_DIR",
",",
"\"run_my_checkpoint.py\"",
")",
")",
"assert",
"os",
".",
"path",
".",
"isfile",
"(",
"script_path",
")",
"# In travis on osx, python may not execute from the build dir",
"cmdstring",
"=",
"f\"python {script_path}\"",
"if",
"os",
".",
"environ",
".",
"get",
"(",
"\"TRAVIS_OS_NAME\"",
")",
"==",
"\"osx\"",
":",
"build_dir",
"=",
"os",
".",
"environ",
".",
"get",
"(",
"\"TRAVIS_BUILD_DIR\"",
")",
"print",
"(",
"os",
".",
"listdir",
"(",
"build_dir",
")",
")",
"cmdstring",
"=",
"f\"python3 {script_path}\"",
"print",
"(",
"\"about to run: \"",
"+",
"cmdstring",
")",
"print",
"(",
"os",
".",
"curdir",
")",
"print",
"(",
"os",
".",
"listdir",
"(",
"os",
".",
"curdir",
")",
")",
"print",
"(",
"os",
".",
"listdir",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"join",
"(",
"root_dir",
",",
"\"..\"",
")",
")",
")",
")",
"status",
",",
"output",
"=",
"subprocess",
".",
"getstatusoutput",
"(",
"cmdstring",
")",
"print",
"(",
"f\"\\n\\nScript exited with code: {status} and output:\\n{output}\"",
")",
"assert",
"status",
"==",
"1",
"assert",
"\"Validation failed!\"",
"in",
"output"
] | [
1042,
0
] | [
1095,
41
] | python | en | ['en', 'error', 'th'] | False |
series_to_supervised | (data, n_in=1, n_out=1, dropnan=True) |
Frame a time series as a supervised learning dataset.
Arguments:
:param data: Sequence of observations as a list or NumPy array.
:param n_in: Number of lag observations as input (X).
:param n_out: Number of observations as output (y).
:param dropnan: Boolean whether or not to drop rows with NaN values.
:return: Pandas DataFrame of series framed for supervised learning.
|
Frame a time series as a supervised learning dataset.
Arguments:
:param data: Sequence of observations as a list or NumPy array.
:param n_in: Number of lag observations as input (X).
:param n_out: Number of observations as output (y).
:param dropnan: Boolean whether or not to drop rows with NaN values.
:return: Pandas DataFrame of series framed for supervised learning.
| def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
"""
Frame a time series as a supervised learning dataset.
Arguments:
:param data: Sequence of observations as a list or NumPy array.
:param n_in: Number of lag observations as input (X).
:param n_out: Number of observations as output (y).
:param dropnan: Boolean whether or not to drop rows with NaN values.
:return: Pandas DataFrame of series framed for supervised learning.
"""
n_vars = 1 if type(data) is list else data.shape[1]
dataframe = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(dataframe.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(dataframe.shift(-i))
if i == 0:
names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:
names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:
agg.dropna(inplace=True)
return agg | [
"def",
"series_to_supervised",
"(",
"data",
",",
"n_in",
"=",
"1",
",",
"n_out",
"=",
"1",
",",
"dropnan",
"=",
"True",
")",
":",
"n_vars",
"=",
"1",
"if",
"type",
"(",
"data",
")",
"is",
"list",
"else",
"data",
".",
"shape",
"[",
"1",
"]",
"dataframe",
"=",
"pd",
".",
"DataFrame",
"(",
"data",
")",
"cols",
",",
"names",
"=",
"list",
"(",
")",
",",
"list",
"(",
")",
"# input sequence (t-n, ... t-1)\r",
"for",
"i",
"in",
"range",
"(",
"n_in",
",",
"0",
",",
"-",
"1",
")",
":",
"cols",
".",
"append",
"(",
"dataframe",
".",
"shift",
"(",
"i",
")",
")",
"names",
"+=",
"[",
"(",
"'var%d(t-%d)'",
"%",
"(",
"j",
"+",
"1",
",",
"i",
")",
")",
"for",
"j",
"in",
"range",
"(",
"n_vars",
")",
"]",
"# forecast sequence (t, t+1, ... t+n)\r",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"n_out",
")",
":",
"cols",
".",
"append",
"(",
"dataframe",
".",
"shift",
"(",
"-",
"i",
")",
")",
"if",
"i",
"==",
"0",
":",
"names",
"+=",
"[",
"(",
"'var%d(t)'",
"%",
"(",
"j",
"+",
"1",
")",
")",
"for",
"j",
"in",
"range",
"(",
"n_vars",
")",
"]",
"else",
":",
"names",
"+=",
"[",
"(",
"'var%d(t+%d)'",
"%",
"(",
"j",
"+",
"1",
",",
"i",
")",
")",
"for",
"j",
"in",
"range",
"(",
"n_vars",
")",
"]",
"# put it all together\r",
"agg",
"=",
"pd",
".",
"concat",
"(",
"cols",
",",
"axis",
"=",
"1",
")",
"agg",
".",
"columns",
"=",
"names",
"# drop rows with NaN values\r",
"if",
"dropnan",
":",
"agg",
".",
"dropna",
"(",
"inplace",
"=",
"True",
")",
"return",
"agg"
] | [
31,
0
] | [
62,
14
] | python | en | ['en', 'ja', 'th'] | False |
UserProfileSerializer.create | (self, validated_data) | Create and return a new user. | Create and return a new user. | def create(self, validated_data):
"""Create and return a new user."""
user = models.UserProfile.objects.create_user(
email=validated_data['email'],
name=validated_data['name'],
password=validated_data['password']
)
return user | [
"def",
"create",
"(",
"self",
",",
"validated_data",
")",
":",
"user",
"=",
"models",
".",
"UserProfile",
".",
"objects",
".",
"create_user",
"(",
"email",
"=",
"validated_data",
"[",
"'email'",
"]",
",",
"name",
"=",
"validated_data",
"[",
"'name'",
"]",
",",
"password",
"=",
"validated_data",
"[",
"'password'",
"]",
")",
"return",
"user"
] | [
23,
4
] | [
34,
19
] | python | en | ['en', 'en', 'en'] | True |
create_session | () |
create a db session
@return: db session
|
create a db session
| def create_session():
"""
create a db session
@return: db session
"""
engine = create_engine(Config.SQLALCHEMY_DATABASE_URI)
return sessionmaker(bind=engine)() | [
"def",
"create_session",
"(",
")",
":",
"engine",
"=",
"create_engine",
"(",
"Config",
".",
"SQLALCHEMY_DATABASE_URI",
")",
"return",
"sessionmaker",
"(",
"bind",
"=",
"engine",
")",
"(",
")"
] | [
24,
0
] | [
30,
38
] | python | en | ['en', 'error', 'th'] | False |
start_timer | () |
start time count
@return:
|
start time count
| def start_timer():
"""
start time count
@return:
"""
request.start_time = time.time() | [
"def",
"start_timer",
"(",
")",
":",
"request",
".",
"start_time",
"=",
"time",
".",
"time",
"(",
")"
] | [
33,
0
] | [
38,
36
] | python | en | ['en', 'error', 'th'] | False |
stop_timer | (response) |
record request detail
@param response: http response
@return: response
|
record request detail
| def stop_timer(response):
"""
record request detail
@param response: http response
@return: response
"""
content_type = response.content_type.replace(" ", "")
if "static" in request.path or content_type != "application/json":
return response
endpoint = request.path
if endpoint not in Config.LOG_ENTRYPOINTS:
return response
method = request.method
username = request.remote_addr
endpoint = request.path
http_status = response.status_code
start = request.start_time
end = time.time()
duration_ms = round((end - start) * 1000, 2)
start_time = datetime.fromtimestamp(start).strftime(DATETIME_FORMAT)
end_time = datetime.fromtimestamp(start).strftime(DATETIME_FORMAT)
remote_addr = request.remote_addr
url = request.url
d = request.form.to_dict() or {}
# request parameters can overwrite post body
request_params = request.args.to_dict()
json_data = {} if request.json is None else dict(request.json)
d.update(request_params)
d.update(json_data)
params = ''
try:
params = json.dumps(d, ensure_ascii=False)
except Exception:
pass
user_agent = parse(request.user_agent.string)
browser = user_agent.browser.family
system = user_agent.os.family
brand = user_agent.device.brand
is_mobile = user_agent.is_mobile
content_type = response.content_type.replace(" ", "")
device_uuid = "" if "uuid" not in d else d['uuid']
# extra = utils.parse_location(remote_addr)
request_log = RequestLog(method=method,
url=url,
params=params,
endpoint=endpoint,
content_type=content_type,
duration_ms=duration_ms,
http_status=http_status,
username=username,
remote_addr=remote_addr,
browser=browser,
system=system,
brand=brand,
device_uuid=device_uuid,
is_mobile=is_mobile,
start_time=start_time,
end_time=end_time,
# **extra
)
try:
ses = create_session()
ses.add(request_log)
ses.commit()
except Exception as e:
logging.error("fail to save request log to db %s" % str(e))
return response | [
"def",
"stop_timer",
"(",
"response",
")",
":",
"content_type",
"=",
"response",
".",
"content_type",
".",
"replace",
"(",
"\" \"",
",",
"\"\"",
")",
"if",
"\"static\"",
"in",
"request",
".",
"path",
"or",
"content_type",
"!=",
"\"application/json\"",
":",
"return",
"response",
"endpoint",
"=",
"request",
".",
"path",
"if",
"endpoint",
"not",
"in",
"Config",
".",
"LOG_ENTRYPOINTS",
":",
"return",
"response",
"method",
"=",
"request",
".",
"method",
"username",
"=",
"request",
".",
"remote_addr",
"endpoint",
"=",
"request",
".",
"path",
"http_status",
"=",
"response",
".",
"status_code",
"start",
"=",
"request",
".",
"start_time",
"end",
"=",
"time",
".",
"time",
"(",
")",
"duration_ms",
"=",
"round",
"(",
"(",
"end",
"-",
"start",
")",
"*",
"1000",
",",
"2",
")",
"start_time",
"=",
"datetime",
".",
"fromtimestamp",
"(",
"start",
")",
".",
"strftime",
"(",
"DATETIME_FORMAT",
")",
"end_time",
"=",
"datetime",
".",
"fromtimestamp",
"(",
"start",
")",
".",
"strftime",
"(",
"DATETIME_FORMAT",
")",
"remote_addr",
"=",
"request",
".",
"remote_addr",
"url",
"=",
"request",
".",
"url",
"d",
"=",
"request",
".",
"form",
".",
"to_dict",
"(",
")",
"or",
"{",
"}",
"# request parameters can overwrite post body",
"request_params",
"=",
"request",
".",
"args",
".",
"to_dict",
"(",
")",
"json_data",
"=",
"{",
"}",
"if",
"request",
".",
"json",
"is",
"None",
"else",
"dict",
"(",
"request",
".",
"json",
")",
"d",
".",
"update",
"(",
"request_params",
")",
"d",
".",
"update",
"(",
"json_data",
")",
"params",
"=",
"''",
"try",
":",
"params",
"=",
"json",
".",
"dumps",
"(",
"d",
",",
"ensure_ascii",
"=",
"False",
")",
"except",
"Exception",
":",
"pass",
"user_agent",
"=",
"parse",
"(",
"request",
".",
"user_agent",
".",
"string",
")",
"browser",
"=",
"user_agent",
".",
"browser",
".",
"family",
"system",
"=",
"user_agent",
".",
"os",
".",
"family",
"brand",
"=",
"user_agent",
".",
"device",
".",
"brand",
"is_mobile",
"=",
"user_agent",
".",
"is_mobile",
"content_type",
"=",
"response",
".",
"content_type",
".",
"replace",
"(",
"\" \"",
",",
"\"\"",
")",
"device_uuid",
"=",
"\"\"",
"if",
"\"uuid\"",
"not",
"in",
"d",
"else",
"d",
"[",
"'uuid'",
"]",
"# extra = utils.parse_location(remote_addr)",
"request_log",
"=",
"RequestLog",
"(",
"method",
"=",
"method",
",",
"url",
"=",
"url",
",",
"params",
"=",
"params",
",",
"endpoint",
"=",
"endpoint",
",",
"content_type",
"=",
"content_type",
",",
"duration_ms",
"=",
"duration_ms",
",",
"http_status",
"=",
"http_status",
",",
"username",
"=",
"username",
",",
"remote_addr",
"=",
"remote_addr",
",",
"browser",
"=",
"browser",
",",
"system",
"=",
"system",
",",
"brand",
"=",
"brand",
",",
"device_uuid",
"=",
"device_uuid",
",",
"is_mobile",
"=",
"is_mobile",
",",
"start_time",
"=",
"start_time",
",",
"end_time",
"=",
"end_time",
",",
"# **extra",
")",
"try",
":",
"ses",
"=",
"create_session",
"(",
")",
"ses",
".",
"add",
"(",
"request_log",
")",
"ses",
".",
"commit",
"(",
")",
"except",
"Exception",
"as",
"e",
":",
"logging",
".",
"error",
"(",
"\"fail to save request log to db %s\"",
"%",
"str",
"(",
"e",
")",
")",
"return",
"response"
] | [
41,
0
] | [
108,
19
] | python | en | ['en', 'error', 'th'] | False |
setup_access_log | (app) |
set up access log recording
@param app: flask app
@return:
|
set up access log recording
| def setup_access_log(app):
"""
set up access log recording
@param app: flask app
@return:
"""
# record start time of each request
app.before_request(start_timer)
# record request detail
app.after_request(stop_timer) | [
"def",
"setup_access_log",
"(",
"app",
")",
":",
"# record start time of each request",
"app",
".",
"before_request",
"(",
"start_timer",
")",
"# record request detail",
"app",
".",
"after_request",
"(",
"stop_timer",
")"
] | [
111,
0
] | [
120,
33
] | python | en | ['en', 'error', 'th'] | False |
GCP.download_metrics | (
self, function_name: str, start_time: int, end_time: int, requests: dict, metrics: dict
) |
Use GCP's logging system to find execution time of each function invocation.
There shouldn't be problem of waiting for complete results,
since logs appear very quickly here.
|
Use GCP's logging system to find execution time of each function invocation. | def download_metrics(
self, function_name: str, start_time: int, end_time: int, requests: dict, metrics: dict
):
from google.api_core import exceptions
from time import sleep
def wrapper(gen):
while True:
try:
yield next(gen)
except StopIteration:
break
except exceptions.ResourceExhausted as e:
print("Exhausted")
sleep(30)
"""
Use GCP's logging system to find execution time of each function invocation.
There shouldn't be problem of waiting for complete results,
since logs appear very quickly here.
"""
from google.cloud import logging as gcp_logging
logging_client = gcp_logging.Client()
logger = logging_client.logger("cloudfunctions.googleapis.com%2Fcloud-functions")
"""
GCP accepts only single date format: 'YYYY-MM-DDTHH:MM:SSZ'.
Thus, we first convert timestamp to UTC timezone.
Then, we generate correct format.
Add 1 second to end time to ensure that removing
milliseconds doesn't affect query.
"""
timestamps = []
for timestamp in [start_time, end_time + 1]:
utc_date = datetime.fromtimestamp(timestamp, tz=timezone.utc)
timestamps.append(utc_date.strftime("%Y-%m-%dT%H:%M:%SZ"))
invocations = logger.list_entries(
filter_=(
f'resource.labels.function_name = "{function_name}" '
f'timestamp >= "{timestamps[0]}" '
f'timestamp <= "{timestamps[1]}"'
),
page_size=1000,
)
invocations_processed = 0
pages = list(wrapper(invocations.pages))
entries = 0
for page in pages: # invocations.pages:
for invoc in page:
entries += 1
if "execution took" in invoc.payload:
execution_id = invoc.labels["execution_id"]
# might happen that we get invocation from another experiment
if execution_id not in requests:
continue
# find number of miliseconds
exec_time = re.search(r"\d+ ms", invoc.payload).group().split()[0]
# convert into microseconds
requests[execution_id].provider_times.execution = int(exec_time) * 1000
invocations_processed += 1
self.logging.info(
f"GCP: Received {entries} entries, found time metrics for {invocations_processed} "
f"out of {len(requests.keys())} invocations."
)
"""
Use metrics to find estimated values for maximum memory used, active instances
and network traffic.
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions
"""
# Set expected metrics here
available_metrics = ["execution_times", "user_memory_bytes", "network_egress"]
client = monitoring_v3.MetricServiceClient()
project_name = client.common_project_path(self.config.project_name)
end_time_nanos, end_time_seconds = math.modf(end_time)
start_time_nanos, start_time_seconds = math.modf(start_time)
interval = monitoring_v3.TimeInterval(
{
"end_time": {"seconds": int(end_time_seconds) + 60},
"start_time": {"seconds": int(start_time_seconds)},
}
)
for metric in available_metrics:
metrics[metric] = []
list_request = monitoring_v3.ListTimeSeriesRequest(
name=project_name,
filter='metric.type = "cloudfunctions.googleapis.com/function/{}"'.format(metric),
interval=interval,
)
results = client.list_time_series(list_request)
for result in results:
if result.resource.labels.get("function_name") == function_name:
for point in result.points:
metrics[metric] += [
{
"mean_value": point.value.distribution_value.mean,
"executions_count": point.value.distribution_value.count,
}
] | [
"def",
"download_metrics",
"(",
"self",
",",
"function_name",
":",
"str",
",",
"start_time",
":",
"int",
",",
"end_time",
":",
"int",
",",
"requests",
":",
"dict",
",",
"metrics",
":",
"dict",
")",
":",
"from",
"google",
".",
"api_core",
"import",
"exceptions",
"from",
"time",
"import",
"sleep",
"def",
"wrapper",
"(",
"gen",
")",
":",
"while",
"True",
":",
"try",
":",
"yield",
"next",
"(",
"gen",
")",
"except",
"StopIteration",
":",
"break",
"except",
"exceptions",
".",
"ResourceExhausted",
"as",
"e",
":",
"print",
"(",
"\"Exhausted\"",
")",
"sleep",
"(",
"30",
")",
"from",
"google",
".",
"cloud",
"import",
"logging",
"as",
"gcp_logging",
"logging_client",
"=",
"gcp_logging",
".",
"Client",
"(",
")",
"logger",
"=",
"logging_client",
".",
"logger",
"(",
"\"cloudfunctions.googleapis.com%2Fcloud-functions\"",
")",
"\"\"\"\n GCP accepts only single date format: 'YYYY-MM-DDTHH:MM:SSZ'.\n Thus, we first convert timestamp to UTC timezone.\n Then, we generate correct format.\n\n Add 1 second to end time to ensure that removing\n milliseconds doesn't affect query.\n \"\"\"",
"timestamps",
"=",
"[",
"]",
"for",
"timestamp",
"in",
"[",
"start_time",
",",
"end_time",
"+",
"1",
"]",
":",
"utc_date",
"=",
"datetime",
".",
"fromtimestamp",
"(",
"timestamp",
",",
"tz",
"=",
"timezone",
".",
"utc",
")",
"timestamps",
".",
"append",
"(",
"utc_date",
".",
"strftime",
"(",
"\"%Y-%m-%dT%H:%M:%SZ\"",
")",
")",
"invocations",
"=",
"logger",
".",
"list_entries",
"(",
"filter_",
"=",
"(",
"f'resource.labels.function_name = \"{function_name}\" '",
"f'timestamp >= \"{timestamps[0]}\" '",
"f'timestamp <= \"{timestamps[1]}\"'",
")",
",",
"page_size",
"=",
"1000",
",",
")",
"invocations_processed",
"=",
"0",
"pages",
"=",
"list",
"(",
"wrapper",
"(",
"invocations",
".",
"pages",
")",
")",
"entries",
"=",
"0",
"for",
"page",
"in",
"pages",
":",
"# invocations.pages:",
"for",
"invoc",
"in",
"page",
":",
"entries",
"+=",
"1",
"if",
"\"execution took\"",
"in",
"invoc",
".",
"payload",
":",
"execution_id",
"=",
"invoc",
".",
"labels",
"[",
"\"execution_id\"",
"]",
"# might happen that we get invocation from another experiment",
"if",
"execution_id",
"not",
"in",
"requests",
":",
"continue",
"# find number of miliseconds",
"exec_time",
"=",
"re",
".",
"search",
"(",
"r\"\\d+ ms\"",
",",
"invoc",
".",
"payload",
")",
".",
"group",
"(",
")",
".",
"split",
"(",
")",
"[",
"0",
"]",
"# convert into microseconds",
"requests",
"[",
"execution_id",
"]",
".",
"provider_times",
".",
"execution",
"=",
"int",
"(",
"exec_time",
")",
"*",
"1000",
"invocations_processed",
"+=",
"1",
"self",
".",
"logging",
".",
"info",
"(",
"f\"GCP: Received {entries} entries, found time metrics for {invocations_processed} \"",
"f\"out of {len(requests.keys())} invocations.\"",
")",
"\"\"\"\n Use metrics to find estimated values for maximum memory used, active instances\n and network traffic.\n https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions\n \"\"\"",
"# Set expected metrics here",
"available_metrics",
"=",
"[",
"\"execution_times\"",
",",
"\"user_memory_bytes\"",
",",
"\"network_egress\"",
"]",
"client",
"=",
"monitoring_v3",
".",
"MetricServiceClient",
"(",
")",
"project_name",
"=",
"client",
".",
"common_project_path",
"(",
"self",
".",
"config",
".",
"project_name",
")",
"end_time_nanos",
",",
"end_time_seconds",
"=",
"math",
".",
"modf",
"(",
"end_time",
")",
"start_time_nanos",
",",
"start_time_seconds",
"=",
"math",
".",
"modf",
"(",
"start_time",
")",
"interval",
"=",
"monitoring_v3",
".",
"TimeInterval",
"(",
"{",
"\"end_time\"",
":",
"{",
"\"seconds\"",
":",
"int",
"(",
"end_time_seconds",
")",
"+",
"60",
"}",
",",
"\"start_time\"",
":",
"{",
"\"seconds\"",
":",
"int",
"(",
"start_time_seconds",
")",
"}",
",",
"}",
")",
"for",
"metric",
"in",
"available_metrics",
":",
"metrics",
"[",
"metric",
"]",
"=",
"[",
"]",
"list_request",
"=",
"monitoring_v3",
".",
"ListTimeSeriesRequest",
"(",
"name",
"=",
"project_name",
",",
"filter",
"=",
"'metric.type = \"cloudfunctions.googleapis.com/function/{}\"'",
".",
"format",
"(",
"metric",
")",
",",
"interval",
"=",
"interval",
",",
")",
"results",
"=",
"client",
".",
"list_time_series",
"(",
"list_request",
")",
"for",
"result",
"in",
"results",
":",
"if",
"result",
".",
"resource",
".",
"labels",
".",
"get",
"(",
"\"function_name\"",
")",
"==",
"function_name",
":",
"for",
"point",
"in",
"result",
".",
"points",
":",
"metrics",
"[",
"metric",
"]",
"+=",
"[",
"{",
"\"mean_value\"",
":",
"point",
".",
"value",
".",
"distribution_value",
".",
"mean",
",",
"\"executions_count\"",
":",
"point",
".",
"value",
".",
"distribution_value",
".",
"count",
",",
"}",
"]"
] | [
369,
4
] | [
480,
25
] | python | en | ['en', 'error', 'th'] | False |
location_t.file_name | (self) |
Absolute source file name, type string.
|
Absolute source file name, type string. | def file_name(self):
"""
Absolute source file name, type string.
"""
return self._file_name | [
"def",
"file_name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_file_name"
] | [
35,
4
] | [
41,
30
] | python | en | ['en', 'error', 'th'] | False |
location_t.line | (self) |
Line number, type int.
|
Line number, type int. | def line(self):
"""
Line number, type int.
"""
return self._line | [
"def",
"line",
"(",
"self",
")",
":",
"return",
"self",
".",
"_line"
] | [
48,
4
] | [
54,
25
] | python | en | ['en', 'error', 'th'] | False |
location_t.as_tuple | (self) |
Return tuple(self.file_name, self.line)
|
Return tuple(self.file_name, self.line) | def as_tuple(self):
"""
Return tuple(self.file_name, self.line)
"""
return self.file_name, self.line | [
"def",
"as_tuple",
"(",
"self",
")",
":",
"return",
"self",
".",
"file_name",
",",
"self",
".",
"line"
] | [
60,
4
] | [
66,
40
] | python | en | ['en', 'error', 'th'] | False |
cancel_shielded_checkpoint | () | Introduce a schedule point, but not a cancel point.
This is *not* a :ref:`checkpoint <checkpoints>`, but it is half of a
checkpoint, and when combined with :func:`checkpoint_if_cancelled` it can
make a full checkpoint.
Equivalent to (but potentially more efficient than)::
with trio.CancelScope(shield=True):
await trio.lowlevel.checkpoint()
| Introduce a schedule point, but not a cancel point. | async def cancel_shielded_checkpoint():
"""Introduce a schedule point, but not a cancel point.
This is *not* a :ref:`checkpoint <checkpoints>`, but it is half of a
checkpoint, and when combined with :func:`checkpoint_if_cancelled` it can
make a full checkpoint.
Equivalent to (but potentially more efficient than)::
with trio.CancelScope(shield=True):
await trio.lowlevel.checkpoint()
"""
return (await _async_yield(CancelShieldedCheckpoint)).unwrap() | [
"async",
"def",
"cancel_shielded_checkpoint",
"(",
")",
":",
"return",
"(",
"await",
"_async_yield",
"(",
"CancelShieldedCheckpoint",
")",
")",
".",
"unwrap",
"(",
")"
] | [
29,
0
] | [
42,
66
] | python | en | ['en', 'en', 'en'] | True |
wait_task_rescheduled | (abort_func) | Put the current task to sleep, with cancellation support.
This is the lowest-level API for blocking in Trio. Every time a
:class:`~trio.lowlevel.Task` blocks, it does so by calling this function
(usually indirectly via some higher-level API).
This is a tricky interface with no guard rails. If you can use
:class:`ParkingLot` or the built-in I/O wait functions instead, then you
should.
Generally the way it works is that before calling this function, you make
arrangements for "someone" to call :func:`reschedule` on the current task
at some later point.
Then you call :func:`wait_task_rescheduled`, passing in ``abort_func``, an
"abort callback".
(Terminology: in Trio, "aborting" is the process of attempting to
interrupt a blocked task to deliver a cancellation.)
There are two possibilities for what happens next:
1. "Someone" calls :func:`reschedule` on the current task, and
:func:`wait_task_rescheduled` returns or raises whatever value or error
was passed to :func:`reschedule`.
2. The call's context transitions to a cancelled state (e.g. due to a
timeout expiring). When this happens, the ``abort_func`` is called. Its
interface looks like::
def abort_func(raise_cancel):
...
return trio.lowlevel.Abort.SUCCEEDED # or FAILED
It should attempt to clean up any state associated with this call, and
in particular, arrange that :func:`reschedule` will *not* be called
later. If (and only if!) it is successful, then it should return
:data:`Abort.SUCCEEDED`, in which case the task will automatically be
rescheduled with an appropriate :exc:`~trio.Cancelled` error.
Otherwise, it should return :data:`Abort.FAILED`. This means that the
task can't be cancelled at this time, and still has to make sure that
"someone" eventually calls :func:`reschedule`.
At that point there are again two possibilities. You can simply ignore
the cancellation altogether: wait for the operation to complete and
then reschedule and continue as normal. (For example, this is what
:func:`trio.to_thread.run_sync` does if cancellation is disabled.)
The other possibility is that the ``abort_func`` does succeed in
cancelling the operation, but for some reason isn't able to report that
right away. (Example: on Windows, it's possible to request that an
async ("overlapped") I/O operation be cancelled, but this request is
*also* asynchronous – you don't find out until later whether the
operation was actually cancelled or not.) To report a delayed
cancellation, then you should reschedule the task yourself, and call
the ``raise_cancel`` callback passed to ``abort_func`` to raise a
:exc:`~trio.Cancelled` (or possibly :exc:`KeyboardInterrupt`) exception
into this task. Either of the approaches sketched below can work::
# Option 1:
# Catch the exception from raise_cancel and inject it into the task.
# (This is what Trio does automatically for you if you return
# Abort.SUCCEEDED.)
trio.lowlevel.reschedule(task, outcome.capture(raise_cancel))
# Option 2:
# wait to be woken by "someone", and then decide whether to raise
# the error from inside the task.
outer_raise_cancel = None
def abort(inner_raise_cancel):
nonlocal outer_raise_cancel
outer_raise_cancel = inner_raise_cancel
TRY_TO_CANCEL_OPERATION()
return trio.lowlevel.Abort.FAILED
await wait_task_rescheduled(abort)
if OPERATION_WAS_SUCCESSFULLY_CANCELLED:
# raises the error
outer_raise_cancel()
In any case it's guaranteed that we only call the ``abort_func`` at most
once per call to :func:`wait_task_rescheduled`.
Sometimes, it's useful to be able to share some mutable sleep-related data
between the sleeping task, the abort function, and the waking task. You
can use the sleeping task's :data:`~Task.custom_sleep_data` attribute to
store this data, and Trio won't touch it, except to make sure that it gets
cleared when the task is rescheduled.
.. warning::
If your ``abort_func`` raises an error, or returns any value other than
:data:`Abort.SUCCEEDED` or :data:`Abort.FAILED`, then Trio will crash
violently. Be careful! Similarly, it is entirely possible to deadlock a
Trio program by failing to reschedule a blocked task, or cause havoc by
calling :func:`reschedule` too many times. Remember what we said up
above about how you should use a higher-level API if at all possible?
| Put the current task to sleep, with cancellation support. | async def wait_task_rescheduled(abort_func):
"""Put the current task to sleep, with cancellation support.
This is the lowest-level API for blocking in Trio. Every time a
:class:`~trio.lowlevel.Task` blocks, it does so by calling this function
(usually indirectly via some higher-level API).
This is a tricky interface with no guard rails. If you can use
:class:`ParkingLot` or the built-in I/O wait functions instead, then you
should.
Generally the way it works is that before calling this function, you make
arrangements for "someone" to call :func:`reschedule` on the current task
at some later point.
Then you call :func:`wait_task_rescheduled`, passing in ``abort_func``, an
"abort callback".
(Terminology: in Trio, "aborting" is the process of attempting to
interrupt a blocked task to deliver a cancellation.)
There are two possibilities for what happens next:
1. "Someone" calls :func:`reschedule` on the current task, and
:func:`wait_task_rescheduled` returns or raises whatever value or error
was passed to :func:`reschedule`.
2. The call's context transitions to a cancelled state (e.g. due to a
timeout expiring). When this happens, the ``abort_func`` is called. Its
interface looks like::
def abort_func(raise_cancel):
...
return trio.lowlevel.Abort.SUCCEEDED # or FAILED
It should attempt to clean up any state associated with this call, and
in particular, arrange that :func:`reschedule` will *not* be called
later. If (and only if!) it is successful, then it should return
:data:`Abort.SUCCEEDED`, in which case the task will automatically be
rescheduled with an appropriate :exc:`~trio.Cancelled` error.
Otherwise, it should return :data:`Abort.FAILED`. This means that the
task can't be cancelled at this time, and still has to make sure that
"someone" eventually calls :func:`reschedule`.
At that point there are again two possibilities. You can simply ignore
the cancellation altogether: wait for the operation to complete and
then reschedule and continue as normal. (For example, this is what
:func:`trio.to_thread.run_sync` does if cancellation is disabled.)
The other possibility is that the ``abort_func`` does succeed in
cancelling the operation, but for some reason isn't able to report that
right away. (Example: on Windows, it's possible to request that an
async ("overlapped") I/O operation be cancelled, but this request is
*also* asynchronous – you don't find out until later whether the
operation was actually cancelled or not.) To report a delayed
cancellation, then you should reschedule the task yourself, and call
the ``raise_cancel`` callback passed to ``abort_func`` to raise a
:exc:`~trio.Cancelled` (or possibly :exc:`KeyboardInterrupt`) exception
into this task. Either of the approaches sketched below can work::
# Option 1:
# Catch the exception from raise_cancel and inject it into the task.
# (This is what Trio does automatically for you if you return
# Abort.SUCCEEDED.)
trio.lowlevel.reschedule(task, outcome.capture(raise_cancel))
# Option 2:
# wait to be woken by "someone", and then decide whether to raise
# the error from inside the task.
outer_raise_cancel = None
def abort(inner_raise_cancel):
nonlocal outer_raise_cancel
outer_raise_cancel = inner_raise_cancel
TRY_TO_CANCEL_OPERATION()
return trio.lowlevel.Abort.FAILED
await wait_task_rescheduled(abort)
if OPERATION_WAS_SUCCESSFULLY_CANCELLED:
# raises the error
outer_raise_cancel()
In any case it's guaranteed that we only call the ``abort_func`` at most
once per call to :func:`wait_task_rescheduled`.
Sometimes, it's useful to be able to share some mutable sleep-related data
between the sleeping task, the abort function, and the waking task. You
can use the sleeping task's :data:`~Task.custom_sleep_data` attribute to
store this data, and Trio won't touch it, except to make sure that it gets
cleared when the task is rescheduled.
.. warning::
If your ``abort_func`` raises an error, or returns any value other than
:data:`Abort.SUCCEEDED` or :data:`Abort.FAILED`, then Trio will crash
violently. Be careful! Similarly, it is entirely possible to deadlock a
Trio program by failing to reschedule a blocked task, or cause havoc by
calling :func:`reschedule` too many times. Remember what we said up
above about how you should use a higher-level API if at all possible?
"""
return (await _async_yield(WaitTaskRescheduled(abort_func))).unwrap() | [
"async",
"def",
"wait_task_rescheduled",
"(",
"abort_func",
")",
":",
"return",
"(",
"await",
"_async_yield",
"(",
"WaitTaskRescheduled",
"(",
"abort_func",
")",
")",
")",
".",
"unwrap",
"(",
")"
] | [
66,
0
] | [
165,
73
] | python | en | ['en', 'en', 'en'] | True |
permanently_detach_coroutine_object | (final_outcome) | Permanently detach the current task from the Trio scheduler.
Normally, a Trio task doesn't exit until its coroutine object exits. When
you call this function, Trio acts like the coroutine object just exited
and the task terminates with the given outcome. This is useful if you want
to permanently switch the coroutine object over to a different coroutine
runner.
When the calling coroutine enters this function it's running under Trio,
and when the function returns it's running under the foreign coroutine
runner.
You should make sure that the coroutine object has released any
Trio-specific resources it has acquired (e.g. nurseries).
Args:
final_outcome (outcome.Outcome): Trio acts as if the current task exited
with the given return value or exception.
Returns or raises whatever value or exception the new coroutine runner
uses to resume the coroutine.
| Permanently detach the current task from the Trio scheduler. | async def permanently_detach_coroutine_object(final_outcome):
"""Permanently detach the current task from the Trio scheduler.
Normally, a Trio task doesn't exit until its coroutine object exits. When
you call this function, Trio acts like the coroutine object just exited
and the task terminates with the given outcome. This is useful if you want
to permanently switch the coroutine object over to a different coroutine
runner.
When the calling coroutine enters this function it's running under Trio,
and when the function returns it's running under the foreign coroutine
runner.
You should make sure that the coroutine object has released any
Trio-specific resources it has acquired (e.g. nurseries).
Args:
final_outcome (outcome.Outcome): Trio acts as if the current task exited
with the given return value or exception.
Returns or raises whatever value or exception the new coroutine runner
uses to resume the coroutine.
"""
if _run.current_task().child_nurseries:
raise RuntimeError(
"can't permanently detach a coroutine object with open nurseries"
)
return await _async_yield(PermanentlyDetachCoroutineObject(final_outcome)) | [
"async",
"def",
"permanently_detach_coroutine_object",
"(",
"final_outcome",
")",
":",
"if",
"_run",
".",
"current_task",
"(",
")",
".",
"child_nurseries",
":",
"raise",
"RuntimeError",
"(",
"\"can't permanently detach a coroutine object with open nurseries\"",
")",
"return",
"await",
"_async_yield",
"(",
"PermanentlyDetachCoroutineObject",
"(",
"final_outcome",
")",
")"
] | [
174,
0
] | [
202,
78
] | python | en | ['en', 'en', 'en'] | True |
temporarily_detach_coroutine_object | (abort_func) | Temporarily detach the current coroutine object from the Trio
scheduler.
When the calling coroutine enters this function it's running under Trio,
and when the function returns it's running under the foreign coroutine
runner.
The Trio :class:`Task` will continue to exist, but will be suspended until
you use :func:`reattach_detached_coroutine_object` to resume it. In the
mean time, you can use another coroutine runner to schedule the coroutine
object. In fact, you have to – the function doesn't return until the
coroutine is advanced from outside.
Note that you'll need to save the current :class:`Task` object to later
resume; you can retrieve it with :func:`current_task`. You can also use
this :class:`Task` object to retrieve the coroutine object – see
:data:`Task.coro`.
Args:
abort_func: Same as for :func:`wait_task_rescheduled`, except that it
must return :data:`Abort.FAILED`. (If it returned
:data:`Abort.SUCCEEDED`, then Trio would attempt to reschedule the
detached task directly without going through
:func:`reattach_detached_coroutine_object`, which would be bad.)
Your ``abort_func`` should still arrange for whatever the coroutine
object is doing to be cancelled, and then reattach to Trio and call
the ``raise_cancel`` callback, if possible.
Returns or raises whatever value or exception the new coroutine runner
uses to resume the coroutine.
| Temporarily detach the current coroutine object from the Trio
scheduler. | async def temporarily_detach_coroutine_object(abort_func):
"""Temporarily detach the current coroutine object from the Trio
scheduler.
When the calling coroutine enters this function it's running under Trio,
and when the function returns it's running under the foreign coroutine
runner.
The Trio :class:`Task` will continue to exist, but will be suspended until
you use :func:`reattach_detached_coroutine_object` to resume it. In the
mean time, you can use another coroutine runner to schedule the coroutine
object. In fact, you have to – the function doesn't return until the
coroutine is advanced from outside.
Note that you'll need to save the current :class:`Task` object to later
resume; you can retrieve it with :func:`current_task`. You can also use
this :class:`Task` object to retrieve the coroutine object – see
:data:`Task.coro`.
Args:
abort_func: Same as for :func:`wait_task_rescheduled`, except that it
must return :data:`Abort.FAILED`. (If it returned
:data:`Abort.SUCCEEDED`, then Trio would attempt to reschedule the
detached task directly without going through
:func:`reattach_detached_coroutine_object`, which would be bad.)
Your ``abort_func`` should still arrange for whatever the coroutine
object is doing to be cancelled, and then reattach to Trio and call
the ``raise_cancel`` callback, if possible.
Returns or raises whatever value or exception the new coroutine runner
uses to resume the coroutine.
"""
return await _async_yield(WaitTaskRescheduled(abort_func)) | [
"async",
"def",
"temporarily_detach_coroutine_object",
"(",
"abort_func",
")",
":",
"return",
"await",
"_async_yield",
"(",
"WaitTaskRescheduled",
"(",
"abort_func",
")",
")"
] | [
205,
0
] | [
238,
62
] | python | en | ['en', 'en', 'en'] | True |
reattach_detached_coroutine_object | (task, yield_value) | Reattach a coroutine object that was detached using
:func:`temporarily_detach_coroutine_object`.
When the calling coroutine enters this function it's running under the
foreign coroutine runner, and when the function returns it's running under
Trio.
This must be called from inside the coroutine being resumed, and yields
whatever value you pass in. (Presumably you'll pass a value that will
cause the current coroutine runner to stop scheduling this task.) Then the
coroutine is resumed by the Trio scheduler at the next opportunity.
Args:
task (Task): The Trio task object that the current coroutine was
detached from.
yield_value (object): The object to yield to the current coroutine
runner.
| Reattach a coroutine object that was detached using
:func:`temporarily_detach_coroutine_object`. | async def reattach_detached_coroutine_object(task, yield_value):
"""Reattach a coroutine object that was detached using
:func:`temporarily_detach_coroutine_object`.
When the calling coroutine enters this function it's running under the
foreign coroutine runner, and when the function returns it's running under
Trio.
This must be called from inside the coroutine being resumed, and yields
whatever value you pass in. (Presumably you'll pass a value that will
cause the current coroutine runner to stop scheduling this task.) Then the
coroutine is resumed by the Trio scheduler at the next opportunity.
Args:
task (Task): The Trio task object that the current coroutine was
detached from.
yield_value (object): The object to yield to the current coroutine
runner.
"""
# This is a kind of crude check – in particular, it can fail if the
# passed-in task is where the coroutine *runner* is running. But this is
# an experts-only interface, and there's no easy way to do a more accurate
# check, so I guess that's OK.
if not task.coro.cr_running:
raise RuntimeError("given task does not match calling coroutine")
_run.reschedule(task, outcome.Value("reattaching"))
value = await _async_yield(yield_value)
assert value == outcome.Value("reattaching") | [
"async",
"def",
"reattach_detached_coroutine_object",
"(",
"task",
",",
"yield_value",
")",
":",
"# This is a kind of crude check – in particular, it can fail if the",
"# passed-in task is where the coroutine *runner* is running. But this is",
"# an experts-only interface, and there's no easy way to do a more accurate",
"# check, so I guess that's OK.",
"if",
"not",
"task",
".",
"coro",
".",
"cr_running",
":",
"raise",
"RuntimeError",
"(",
"\"given task does not match calling coroutine\"",
")",
"_run",
".",
"reschedule",
"(",
"task",
",",
"outcome",
".",
"Value",
"(",
"\"reattaching\"",
")",
")",
"value",
"=",
"await",
"_async_yield",
"(",
"yield_value",
")",
"assert",
"value",
"==",
"outcome",
".",
"Value",
"(",
"\"reattaching\"",
")"
] | [
241,
0
] | [
269,
48
] | python | en | ['en', 'en', 'en'] | True |
test_expectations_store_report_store_backend_id_in_memory_store_backend | () |
What does this test and why?
A Store should be able to report it's store_backend_id
which is set when the StoreBackend is instantiated.
|
What does this test and why?
A Store should be able to report it's store_backend_id
which is set when the StoreBackend is instantiated.
| def test_expectations_store_report_store_backend_id_in_memory_store_backend():
"""
What does this test and why?
A Store should be able to report it's store_backend_id
which is set when the StoreBackend is instantiated.
"""
in_memory_expectations_store = ExpectationsStore()
# Check that store_backend_id exists can be read
assert in_memory_expectations_store.store_backend_id is not None
# Check that store_backend_id is a valid UUID
assert test_utils.validate_uuid4(in_memory_expectations_store.store_backend_id) | [
"def",
"test_expectations_store_report_store_backend_id_in_memory_store_backend",
"(",
")",
":",
"in_memory_expectations_store",
"=",
"ExpectationsStore",
"(",
")",
"# Check that store_backend_id exists can be read",
"assert",
"in_memory_expectations_store",
".",
"store_backend_id",
"is",
"not",
"None",
"# Check that store_backend_id is a valid UUID",
"assert",
"test_utils",
".",
"validate_uuid4",
"(",
"in_memory_expectations_store",
".",
"store_backend_id",
")"
] | [
94,
0
] | [
104,
83
] | python | en | ['en', 'error', 'th'] | False |
test_expectations_store_report_same_id_with_same_configuration_TupleFilesystemStoreBackend | (
tmp_path_factory,
) |
What does this test and why?
A store with the same config (must be persistent store) should report the same store_backend_id
|
What does this test and why?
A store with the same config (must be persistent store) should report the same store_backend_id
| def test_expectations_store_report_same_id_with_same_configuration_TupleFilesystemStoreBackend(
tmp_path_factory,
):
"""
What does this test and why?
A store with the same config (must be persistent store) should report the same store_backend_id
"""
path = "dummy_str"
project_path = str(
tmp_path_factory.mktemp(
"test_expectations_store_report_same_id_with_same_configuration__dir"
)
)
assert (
gen_directory_tree_str(project_path)
== """\
test_expectations_store_report_same_id_with_same_configuration__dir0/
"""
)
# Check two stores with the same config
persistent_expectations_store = ExpectationsStore(
store_backend={
"class_name": "TupleFilesystemStoreBackend",
"base_directory": project_path,
}
)
# Check successful initialization with a store_backend_id
initialized_directory_tree_with_store_backend_id = """\
test_expectations_store_report_same_id_with_same_configuration__dir0/
.ge_store_backend_id
"""
assert (
gen_directory_tree_str(project_path)
== initialized_directory_tree_with_store_backend_id
)
assert persistent_expectations_store.store_backend_id is not None
# Check that a duplicate store reports the same store_backend_id
persistent_expectations_store_duplicate = ExpectationsStore(
store_backend={
"class_name": "TupleFilesystemStoreBackend",
"base_directory": project_path,
}
)
assert persistent_expectations_store_duplicate.store_backend_id is not None
assert (
persistent_expectations_store.store_backend_id
== persistent_expectations_store_duplicate.store_backend_id
)
# Check no change to filesystem
assert (
gen_directory_tree_str(project_path)
== initialized_directory_tree_with_store_backend_id
) | [
"def",
"test_expectations_store_report_same_id_with_same_configuration_TupleFilesystemStoreBackend",
"(",
"tmp_path_factory",
",",
")",
":",
"path",
"=",
"\"dummy_str\"",
"project_path",
"=",
"str",
"(",
"tmp_path_factory",
".",
"mktemp",
"(",
"\"test_expectations_store_report_same_id_with_same_configuration__dir\"",
")",
")",
"assert",
"(",
"gen_directory_tree_str",
"(",
"project_path",
")",
"==",
"\"\"\"\\\ntest_expectations_store_report_same_id_with_same_configuration__dir0/\n\"\"\"",
")",
"# Check two stores with the same config",
"persistent_expectations_store",
"=",
"ExpectationsStore",
"(",
"store_backend",
"=",
"{",
"\"class_name\"",
":",
"\"TupleFilesystemStoreBackend\"",
",",
"\"base_directory\"",
":",
"project_path",
",",
"}",
")",
"# Check successful initialization with a store_backend_id",
"initialized_directory_tree_with_store_backend_id",
"=",
"\"\"\"\\\ntest_expectations_store_report_same_id_with_same_configuration__dir0/\n .ge_store_backend_id\n\"\"\"",
"assert",
"(",
"gen_directory_tree_str",
"(",
"project_path",
")",
"==",
"initialized_directory_tree_with_store_backend_id",
")",
"assert",
"persistent_expectations_store",
".",
"store_backend_id",
"is",
"not",
"None",
"# Check that a duplicate store reports the same store_backend_id",
"persistent_expectations_store_duplicate",
"=",
"ExpectationsStore",
"(",
"store_backend",
"=",
"{",
"\"class_name\"",
":",
"\"TupleFilesystemStoreBackend\"",
",",
"\"base_directory\"",
":",
"project_path",
",",
"}",
")",
"assert",
"persistent_expectations_store_duplicate",
".",
"store_backend_id",
"is",
"not",
"None",
"assert",
"(",
"persistent_expectations_store",
".",
"store_backend_id",
"==",
"persistent_expectations_store_duplicate",
".",
"store_backend_id",
")",
"# Check no change to filesystem",
"assert",
"(",
"gen_directory_tree_str",
"(",
"project_path",
")",
"==",
"initialized_directory_tree_with_store_backend_id",
")"
] | [
107,
0
] | [
162,
5
] | python | en | ['en', 'error', 'th'] | False |
PandasExecutionEngine.dataframe | (self) | Tests whether or not a Batch has been loaded. If the loaded batch does not exist, raises a
ValueError Exception
| Tests whether or not a Batch has been loaded. If the loaded batch does not exist, raises a
ValueError Exception
| def dataframe(self):
"""Tests whether or not a Batch has been loaded. If the loaded batch does not exist, raises a
ValueError Exception
"""
# Changed to is None because was breaking prior
if self.active_batch_data is None:
raise ValueError(
"Batch has not been loaded - please run load_batch_data() to load a batch."
)
return self.active_batch_data.dataframe | [
"def",
"dataframe",
"(",
"self",
")",
":",
"# Changed to is None because was breaking prior",
"if",
"self",
".",
"active_batch_data",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"\"Batch has not been loaded - please run load_batch_data() to load a batch.\"",
")",
"return",
"self",
".",
"active_batch_data",
".",
"dataframe"
] | [
197,
4
] | [
207,
47
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._get_reader_fn | (self, reader_method=None, path=None) | Static helper for parsing reader types. If reader_method is not provided, path will be used to guess the
correct reader_method.
Args:
reader_method (str): the name of the reader method to use, if available.
path (str): the path used to guess
Returns:
ReaderMethod to use for the filepath
| Static helper for parsing reader types. If reader_method is not provided, path will be used to guess the
correct reader_method. | def _get_reader_fn(self, reader_method=None, path=None):
"""Static helper for parsing reader types. If reader_method is not provided, path will be used to guess the
correct reader_method.
Args:
reader_method (str): the name of the reader method to use, if available.
path (str): the path used to guess
Returns:
ReaderMethod to use for the filepath
"""
if reader_method is None and path is None:
raise ge_exceptions.BatchSpecError(
"Unable to determine pandas reader function without reader_method or path."
)
reader_options = dict()
if reader_method is None:
path_guess = self.guess_reader_method_from_path(path)
reader_method = path_guess["reader_method"]
reader_options = path_guess.get(
"reader_options"
) # This may not be there; use None in that case
try:
reader_fn = getattr(pd, reader_method)
if reader_options:
reader_fn = partial(reader_fn, **reader_options)
return reader_fn
except AttributeError:
raise ge_exceptions.BatchSpecError(
f'Unable to find reader_method "{reader_method}" in pandas.'
) | [
"def",
"_get_reader_fn",
"(",
"self",
",",
"reader_method",
"=",
"None",
",",
"path",
"=",
"None",
")",
":",
"if",
"reader_method",
"is",
"None",
"and",
"path",
"is",
"None",
":",
"raise",
"ge_exceptions",
".",
"BatchSpecError",
"(",
"\"Unable to determine pandas reader function without reader_method or path.\"",
")",
"reader_options",
"=",
"dict",
"(",
")",
"if",
"reader_method",
"is",
"None",
":",
"path_guess",
"=",
"self",
".",
"guess_reader_method_from_path",
"(",
"path",
")",
"reader_method",
"=",
"path_guess",
"[",
"\"reader_method\"",
"]",
"reader_options",
"=",
"path_guess",
".",
"get",
"(",
"\"reader_options\"",
")",
"# This may not be there; use None in that case",
"try",
":",
"reader_fn",
"=",
"getattr",
"(",
"pd",
",",
"reader_method",
")",
"if",
"reader_options",
":",
"reader_fn",
"=",
"partial",
"(",
"reader_fn",
",",
"*",
"*",
"reader_options",
")",
"return",
"reader_fn",
"except",
"AttributeError",
":",
"raise",
"ge_exceptions",
".",
"BatchSpecError",
"(",
"f'Unable to find reader_method \"{reader_method}\" in pandas.'",
")"
] | [
209,
4
] | [
242,
13
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine.guess_reader_method_from_path | (path) | Helper method for deciding which reader to use to read in a certain path.
Args:
path (str): the to use to guess
Returns:
ReaderMethod to use for the filepath
| Helper method for deciding which reader to use to read in a certain path. | def guess_reader_method_from_path(path):
"""Helper method for deciding which reader to use to read in a certain path.
Args:
path (str): the to use to guess
Returns:
ReaderMethod to use for the filepath
"""
if path.endswith(".csv") or path.endswith(".tsv"):
return {"reader_method": "read_csv"}
elif path.endswith(".parquet"):
return {"reader_method": "read_parquet"}
elif path.endswith(".xlsx") or path.endswith(".xls"):
return {"reader_method": "read_excel"}
elif path.endswith(".json"):
return {"reader_method": "read_json"}
elif path.endswith(".pkl"):
return {"reader_method": "read_pickle"}
elif path.endswith(".feather"):
return {"reader_method": "read_feather"}
elif path.endswith(".csv.gz") or path.endswith(".tsv.gz"):
return {
"reader_method": "read_csv",
"reader_options": {"compression": "gzip"},
}
raise ge_exceptions.BatchSpecError(
f'Unable to determine reader method from path: "{path}".'
) | [
"def",
"guess_reader_method_from_path",
"(",
"path",
")",
":",
"if",
"path",
".",
"endswith",
"(",
"\".csv\"",
")",
"or",
"path",
".",
"endswith",
"(",
"\".tsv\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_csv\"",
"}",
"elif",
"path",
".",
"endswith",
"(",
"\".parquet\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_parquet\"",
"}",
"elif",
"path",
".",
"endswith",
"(",
"\".xlsx\"",
")",
"or",
"path",
".",
"endswith",
"(",
"\".xls\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_excel\"",
"}",
"elif",
"path",
".",
"endswith",
"(",
"\".json\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_json\"",
"}",
"elif",
"path",
".",
"endswith",
"(",
"\".pkl\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_pickle\"",
"}",
"elif",
"path",
".",
"endswith",
"(",
"\".feather\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_feather\"",
"}",
"elif",
"path",
".",
"endswith",
"(",
"\".csv.gz\"",
")",
"or",
"path",
".",
"endswith",
"(",
"\".tsv.gz\"",
")",
":",
"return",
"{",
"\"reader_method\"",
":",
"\"read_csv\"",
",",
"\"reader_options\"",
":",
"{",
"\"compression\"",
":",
"\"gzip\"",
"}",
",",
"}",
"raise",
"ge_exceptions",
".",
"BatchSpecError",
"(",
"f'Unable to determine reader method from path: \"{path}\".'",
")"
] | [
246,
4
] | [
276,
9
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine.get_compute_domain | (
self,
domain_kwargs: dict,
domain_type: Union[str, MetricDomainTypes],
accessor_keys: Optional[Iterable[str]] = None,
) | Uses a given batch dictionary and domain kwargs (which include a row condition and a condition parser)
to obtain and/or query a batch. Returns in the format of a Pandas DataFrame. If the domain is a single column,
this is added to 'accessor domain kwargs' and used for later access
Args:
domain_kwargs (dict) - A dictionary consisting of the domain kwargs specifying which data to obtain
domain_type (str or MetricDomainTypes) - an Enum value indicating which metric domain the user would
like to be using, or a corresponding string value representing it. String types include "identity",
"column", "column_pair", "table" and "other". Enum types include capitalized versions of these from the
class MetricDomainTypes.
accessor_keys (str iterable) - keys that are part of the compute domain but should be ignored when
describing the domain and simply transferred with their associated values into accessor_domain_kwargs.
Returns:
A tuple including:
- a DataFrame (the data on which to compute)
- a dictionary of compute_domain_kwargs, describing the DataFrame
- a dictionary of accessor_domain_kwargs, describing any accessors needed to
identify the domain within the compute domain
| Uses a given batch dictionary and domain kwargs (which include a row condition and a condition parser)
to obtain and/or query a batch. Returns in the format of a Pandas DataFrame. If the domain is a single column,
this is added to 'accessor domain kwargs' and used for later access | def get_compute_domain(
self,
domain_kwargs: dict,
domain_type: Union[str, MetricDomainTypes],
accessor_keys: Optional[Iterable[str]] = None,
) -> Tuple[pd.DataFrame, dict, dict]:
"""Uses a given batch dictionary and domain kwargs (which include a row condition and a condition parser)
to obtain and/or query a batch. Returns in the format of a Pandas DataFrame. If the domain is a single column,
this is added to 'accessor domain kwargs' and used for later access
Args:
domain_kwargs (dict) - A dictionary consisting of the domain kwargs specifying which data to obtain
domain_type (str or MetricDomainTypes) - an Enum value indicating which metric domain the user would
like to be using, or a corresponding string value representing it. String types include "identity",
"column", "column_pair", "table" and "other". Enum types include capitalized versions of these from the
class MetricDomainTypes.
accessor_keys (str iterable) - keys that are part of the compute domain but should be ignored when
describing the domain and simply transferred with their associated values into accessor_domain_kwargs.
Returns:
A tuple including:
- a DataFrame (the data on which to compute)
- a dictionary of compute_domain_kwargs, describing the DataFrame
- a dictionary of accessor_domain_kwargs, describing any accessors needed to
identify the domain within the compute domain
"""
# Extracting value from enum if it is given for future computation
domain_type = MetricDomainTypes(domain_type)
batch_id = domain_kwargs.get("batch_id")
if batch_id is None:
# We allow no batch id specified if there is only one batch
if self.active_batch_data_id is not None:
data = self.active_batch_data.dataframe
else:
raise ge_exceptions.ValidationError(
"No batch is specified, but could not identify a loaded batch."
)
else:
if batch_id in self.loaded_batch_data_dict:
data = self.loaded_batch_data_dict[batch_id].dataframe
else:
raise ge_exceptions.ValidationError(
f"Unable to find batch with batch_id {batch_id}"
)
compute_domain_kwargs = copy.deepcopy(domain_kwargs)
accessor_domain_kwargs = dict()
table = domain_kwargs.get("table", None)
if table:
raise ValueError(
"PandasExecutionEngine does not currently support multiple named tables."
)
# Filtering by row condition
row_condition = domain_kwargs.get("row_condition", None)
if row_condition:
condition_parser = domain_kwargs.get("condition_parser", None)
# Ensuring proper condition parser has been provided
if condition_parser not in ["python", "pandas"]:
raise ValueError(
"condition_parser is required when setting a row_condition,"
" and must be 'python' or 'pandas'"
)
else:
# Querying row condition
data = data.query(row_condition, parser=condition_parser).reset_index(
drop=True
)
# Warning user if accessor keys are in any domain that is not of type table, will be ignored
if (
domain_type != MetricDomainTypes.TABLE
and accessor_keys is not None
and len(list(accessor_keys)) > 0
):
logger.warning(
"Accessor keys ignored since Metric Domain Type is not 'table"
)
# If given table (this is default), get all unexpected accessor_keys (an optional parameters allowing us to
# modify domain access)
if domain_type == MetricDomainTypes.TABLE:
if accessor_keys is not None and len(list(accessor_keys)) > 0:
for key in accessor_keys:
accessor_domain_kwargs[key] = compute_domain_kwargs.pop(key)
if len(compute_domain_kwargs.keys()) > 0:
# Warn user if kwarg not "normal".
unexpected_keys: set = set(compute_domain_kwargs.keys()).difference(
{
"batch_id",
"table",
"row_condition",
"condition_parser",
}
)
if len(unexpected_keys) > 0:
unexpected_keys_str: str = ", ".join(
map(lambda element: f'"{element}"', unexpected_keys)
)
logger.warning(
f'Unexpected key(s) {unexpected_keys_str} found in domain_kwargs for domain type "{domain_type.value}".'
)
return data, compute_domain_kwargs, accessor_domain_kwargs
# If user has stated they want a column, checking if one is provided, and
elif domain_type == MetricDomainTypes.COLUMN:
if "column" in compute_domain_kwargs:
accessor_domain_kwargs["column"] = compute_domain_kwargs.pop("column")
else:
# If column not given
raise ge_exceptions.GreatExpectationsError(
"Column not provided in compute_domain_kwargs"
)
# Else, if column pair values requested
elif domain_type == MetricDomainTypes.COLUMN_PAIR:
# Ensuring column_A and column_B parameters provided
if (
"column_A" in compute_domain_kwargs
and "column_B" in compute_domain_kwargs
):
accessor_domain_kwargs["column_A"] = compute_domain_kwargs.pop(
"column_A"
)
accessor_domain_kwargs["column_B"] = compute_domain_kwargs.pop(
"column_B"
)
else:
raise ge_exceptions.GreatExpectationsError(
"column_A or column_B not found within compute_domain_kwargs"
)
# Checking if table or identity or other provided, column is not specified. If it is, warning the user
elif domain_type == MetricDomainTypes.MULTICOLUMN:
if "column_list" in compute_domain_kwargs:
# If column_list exists
accessor_domain_kwargs["column_list"] = compute_domain_kwargs.pop(
"column_list"
)
# Filtering if identity
elif domain_type == MetricDomainTypes.IDENTITY:
# If we would like our data to become a single column
if "column" in compute_domain_kwargs:
data = pd.DataFrame(data[compute_domain_kwargs["column"]])
# If we would like our data to now become a column pair
elif ("column_A" in compute_domain_kwargs) and (
"column_B" in compute_domain_kwargs
):
# Dropping all not needed columns
column_a, column_b = (
compute_domain_kwargs["column_A"],
compute_domain_kwargs["column_B"],
)
data = pd.DataFrame(
{column_a: data[column_a], column_b: data[column_b]}
)
else:
# If we would like our data to become a multicolumn
if "column_list" in compute_domain_kwargs:
data = data[compute_domain_kwargs["column_list"]]
return data, compute_domain_kwargs, accessor_domain_kwargs | [
"def",
"get_compute_domain",
"(",
"self",
",",
"domain_kwargs",
":",
"dict",
",",
"domain_type",
":",
"Union",
"[",
"str",
",",
"MetricDomainTypes",
"]",
",",
"accessor_keys",
":",
"Optional",
"[",
"Iterable",
"[",
"str",
"]",
"]",
"=",
"None",
",",
")",
"->",
"Tuple",
"[",
"pd",
".",
"DataFrame",
",",
"dict",
",",
"dict",
"]",
":",
"# Extracting value from enum if it is given for future computation",
"domain_type",
"=",
"MetricDomainTypes",
"(",
"domain_type",
")",
"batch_id",
"=",
"domain_kwargs",
".",
"get",
"(",
"\"batch_id\"",
")",
"if",
"batch_id",
"is",
"None",
":",
"# We allow no batch id specified if there is only one batch",
"if",
"self",
".",
"active_batch_data_id",
"is",
"not",
"None",
":",
"data",
"=",
"self",
".",
"active_batch_data",
".",
"dataframe",
"else",
":",
"raise",
"ge_exceptions",
".",
"ValidationError",
"(",
"\"No batch is specified, but could not identify a loaded batch.\"",
")",
"else",
":",
"if",
"batch_id",
"in",
"self",
".",
"loaded_batch_data_dict",
":",
"data",
"=",
"self",
".",
"loaded_batch_data_dict",
"[",
"batch_id",
"]",
".",
"dataframe",
"else",
":",
"raise",
"ge_exceptions",
".",
"ValidationError",
"(",
"f\"Unable to find batch with batch_id {batch_id}\"",
")",
"compute_domain_kwargs",
"=",
"copy",
".",
"deepcopy",
"(",
"domain_kwargs",
")",
"accessor_domain_kwargs",
"=",
"dict",
"(",
")",
"table",
"=",
"domain_kwargs",
".",
"get",
"(",
"\"table\"",
",",
"None",
")",
"if",
"table",
":",
"raise",
"ValueError",
"(",
"\"PandasExecutionEngine does not currently support multiple named tables.\"",
")",
"# Filtering by row condition",
"row_condition",
"=",
"domain_kwargs",
".",
"get",
"(",
"\"row_condition\"",
",",
"None",
")",
"if",
"row_condition",
":",
"condition_parser",
"=",
"domain_kwargs",
".",
"get",
"(",
"\"condition_parser\"",
",",
"None",
")",
"# Ensuring proper condition parser has been provided",
"if",
"condition_parser",
"not",
"in",
"[",
"\"python\"",
",",
"\"pandas\"",
"]",
":",
"raise",
"ValueError",
"(",
"\"condition_parser is required when setting a row_condition,\"",
"\" and must be 'python' or 'pandas'\"",
")",
"else",
":",
"# Querying row condition",
"data",
"=",
"data",
".",
"query",
"(",
"row_condition",
",",
"parser",
"=",
"condition_parser",
")",
".",
"reset_index",
"(",
"drop",
"=",
"True",
")",
"# Warning user if accessor keys are in any domain that is not of type table, will be ignored",
"if",
"(",
"domain_type",
"!=",
"MetricDomainTypes",
".",
"TABLE",
"and",
"accessor_keys",
"is",
"not",
"None",
"and",
"len",
"(",
"list",
"(",
"accessor_keys",
")",
")",
">",
"0",
")",
":",
"logger",
".",
"warning",
"(",
"\"Accessor keys ignored since Metric Domain Type is not 'table\"",
")",
"# If given table (this is default), get all unexpected accessor_keys (an optional parameters allowing us to",
"# modify domain access)",
"if",
"domain_type",
"==",
"MetricDomainTypes",
".",
"TABLE",
":",
"if",
"accessor_keys",
"is",
"not",
"None",
"and",
"len",
"(",
"list",
"(",
"accessor_keys",
")",
")",
">",
"0",
":",
"for",
"key",
"in",
"accessor_keys",
":",
"accessor_domain_kwargs",
"[",
"key",
"]",
"=",
"compute_domain_kwargs",
".",
"pop",
"(",
"key",
")",
"if",
"len",
"(",
"compute_domain_kwargs",
".",
"keys",
"(",
")",
")",
">",
"0",
":",
"# Warn user if kwarg not \"normal\".",
"unexpected_keys",
":",
"set",
"=",
"set",
"(",
"compute_domain_kwargs",
".",
"keys",
"(",
")",
")",
".",
"difference",
"(",
"{",
"\"batch_id\"",
",",
"\"table\"",
",",
"\"row_condition\"",
",",
"\"condition_parser\"",
",",
"}",
")",
"if",
"len",
"(",
"unexpected_keys",
")",
">",
"0",
":",
"unexpected_keys_str",
":",
"str",
"=",
"\", \"",
".",
"join",
"(",
"map",
"(",
"lambda",
"element",
":",
"f'\"{element}\"'",
",",
"unexpected_keys",
")",
")",
"logger",
".",
"warning",
"(",
"f'Unexpected key(s) {unexpected_keys_str} found in domain_kwargs for domain type \"{domain_type.value}\".'",
")",
"return",
"data",
",",
"compute_domain_kwargs",
",",
"accessor_domain_kwargs",
"# If user has stated they want a column, checking if one is provided, and",
"elif",
"domain_type",
"==",
"MetricDomainTypes",
".",
"COLUMN",
":",
"if",
"\"column\"",
"in",
"compute_domain_kwargs",
":",
"accessor_domain_kwargs",
"[",
"\"column\"",
"]",
"=",
"compute_domain_kwargs",
".",
"pop",
"(",
"\"column\"",
")",
"else",
":",
"# If column not given",
"raise",
"ge_exceptions",
".",
"GreatExpectationsError",
"(",
"\"Column not provided in compute_domain_kwargs\"",
")",
"# Else, if column pair values requested",
"elif",
"domain_type",
"==",
"MetricDomainTypes",
".",
"COLUMN_PAIR",
":",
"# Ensuring column_A and column_B parameters provided",
"if",
"(",
"\"column_A\"",
"in",
"compute_domain_kwargs",
"and",
"\"column_B\"",
"in",
"compute_domain_kwargs",
")",
":",
"accessor_domain_kwargs",
"[",
"\"column_A\"",
"]",
"=",
"compute_domain_kwargs",
".",
"pop",
"(",
"\"column_A\"",
")",
"accessor_domain_kwargs",
"[",
"\"column_B\"",
"]",
"=",
"compute_domain_kwargs",
".",
"pop",
"(",
"\"column_B\"",
")",
"else",
":",
"raise",
"ge_exceptions",
".",
"GreatExpectationsError",
"(",
"\"column_A or column_B not found within compute_domain_kwargs\"",
")",
"# Checking if table or identity or other provided, column is not specified. If it is, warning the user",
"elif",
"domain_type",
"==",
"MetricDomainTypes",
".",
"MULTICOLUMN",
":",
"if",
"\"column_list\"",
"in",
"compute_domain_kwargs",
":",
"# If column_list exists",
"accessor_domain_kwargs",
"[",
"\"column_list\"",
"]",
"=",
"compute_domain_kwargs",
".",
"pop",
"(",
"\"column_list\"",
")",
"# Filtering if identity",
"elif",
"domain_type",
"==",
"MetricDomainTypes",
".",
"IDENTITY",
":",
"# If we would like our data to become a single column",
"if",
"\"column\"",
"in",
"compute_domain_kwargs",
":",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"data",
"[",
"compute_domain_kwargs",
"[",
"\"column\"",
"]",
"]",
")",
"# If we would like our data to now become a column pair",
"elif",
"(",
"\"column_A\"",
"in",
"compute_domain_kwargs",
")",
"and",
"(",
"\"column_B\"",
"in",
"compute_domain_kwargs",
")",
":",
"# Dropping all not needed columns",
"column_a",
",",
"column_b",
"=",
"(",
"compute_domain_kwargs",
"[",
"\"column_A\"",
"]",
",",
"compute_domain_kwargs",
"[",
"\"column_B\"",
"]",
",",
")",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"{",
"column_a",
":",
"data",
"[",
"column_a",
"]",
",",
"column_b",
":",
"data",
"[",
"column_b",
"]",
"}",
")",
"else",
":",
"# If we would like our data to become a multicolumn",
"if",
"\"column_list\"",
"in",
"compute_domain_kwargs",
":",
"data",
"=",
"data",
"[",
"compute_domain_kwargs",
"[",
"\"column_list\"",
"]",
"]",
"return",
"data",
",",
"compute_domain_kwargs",
",",
"accessor_domain_kwargs"
] | [
278,
4
] | [
446,
66
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._split_on_converted_datetime | (
df,
column_name: str,
batch_identifiers: dict,
date_format_string: str = "%Y-%m-%d",
) | Convert the values in the named column to the given date_format, and split on that | Convert the values in the named column to the given date_format, and split on that | def _split_on_converted_datetime(
df,
column_name: str,
batch_identifiers: dict,
date_format_string: str = "%Y-%m-%d",
):
"""Convert the values in the named column to the given date_format, and split on that"""
stringified_datetime_series = df[column_name].map(
lambda x: x.strftime(date_format_string)
)
matching_string = batch_identifiers[column_name]
return df[stringified_datetime_series == matching_string] | [
"def",
"_split_on_converted_datetime",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"batch_identifiers",
":",
"dict",
",",
"date_format_string",
":",
"str",
"=",
"\"%Y-%m-%d\"",
",",
")",
":",
"stringified_datetime_series",
"=",
"df",
"[",
"column_name",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"x",
".",
"strftime",
"(",
"date_format_string",
")",
")",
"matching_string",
"=",
"batch_identifiers",
"[",
"column_name",
"]",
"return",
"df",
"[",
"stringified_datetime_series",
"==",
"matching_string",
"]"
] | [
463,
4
] | [
474,
65
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._split_on_divided_integer | (
df, column_name: str, divisor: int, batch_identifiers: dict
) | Divide the values in the named column by `divisor`, and split on that | Divide the values in the named column by `divisor`, and split on that | def _split_on_divided_integer(
df, column_name: str, divisor: int, batch_identifiers: dict
):
"""Divide the values in the named column by `divisor`, and split on that"""
matching_divisor = batch_identifiers[column_name]
matching_rows = df[column_name].map(
lambda x: int(x / divisor) == matching_divisor
)
return df[matching_rows] | [
"def",
"_split_on_divided_integer",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"divisor",
":",
"int",
",",
"batch_identifiers",
":",
"dict",
")",
":",
"matching_divisor",
"=",
"batch_identifiers",
"[",
"column_name",
"]",
"matching_rows",
"=",
"df",
"[",
"column_name",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"int",
"(",
"x",
"/",
"divisor",
")",
"==",
"matching_divisor",
")",
"return",
"df",
"[",
"matching_rows",
"]"
] | [
477,
4
] | [
487,
32
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._split_on_mod_integer | (df, column_name: str, mod: int, batch_identifiers: dict) | Divide the values in the named column by `divisor`, and split on that | Divide the values in the named column by `divisor`, and split on that | def _split_on_mod_integer(df, column_name: str, mod: int, batch_identifiers: dict):
"""Divide the values in the named column by `divisor`, and split on that"""
matching_mod_value = batch_identifiers[column_name]
matching_rows = df[column_name].map(lambda x: x % mod == matching_mod_value)
return df[matching_rows] | [
"def",
"_split_on_mod_integer",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"mod",
":",
"int",
",",
"batch_identifiers",
":",
"dict",
")",
":",
"matching_mod_value",
"=",
"batch_identifiers",
"[",
"column_name",
"]",
"matching_rows",
"=",
"df",
"[",
"column_name",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"x",
"%",
"mod",
"==",
"matching_mod_value",
")",
"return",
"df",
"[",
"matching_rows",
"]"
] | [
490,
4
] | [
496,
32
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._split_on_multi_column_values | (
df, column_names: List[str], batch_identifiers: dict
) | Split on the joint values in the named columns | Split on the joint values in the named columns | def _split_on_multi_column_values(
df, column_names: List[str], batch_identifiers: dict
):
"""Split on the joint values in the named columns"""
subset_df = df.copy()
for column_name in column_names:
value = batch_identifiers.get(column_name)
if not value:
raise ValueError(
f"In order for PandasExecution to `_split_on_multi_column_values`, "
f"all values in column_names must also exist in batch_identifiers. "
f"{column_name} was not found in batch_identifiers."
)
subset_df = subset_df[subset_df[column_name] == value]
return subset_df | [
"def",
"_split_on_multi_column_values",
"(",
"df",
",",
"column_names",
":",
"List",
"[",
"str",
"]",
",",
"batch_identifiers",
":",
"dict",
")",
":",
"subset_df",
"=",
"df",
".",
"copy",
"(",
")",
"for",
"column_name",
"in",
"column_names",
":",
"value",
"=",
"batch_identifiers",
".",
"get",
"(",
"column_name",
")",
"if",
"not",
"value",
":",
"raise",
"ValueError",
"(",
"f\"In order for PandasExecution to `_split_on_multi_column_values`, \"",
"f\"all values in column_names must also exist in batch_identifiers. \"",
"f\"{column_name} was not found in batch_identifiers.\"",
")",
"subset_df",
"=",
"subset_df",
"[",
"subset_df",
"[",
"column_name",
"]",
"==",
"value",
"]",
"return",
"subset_df"
] | [
499,
4
] | [
514,
24
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._split_on_hashed_column | (
df,
column_name: str,
hash_digits: int,
batch_identifiers: dict,
hash_function_name: str = "md5",
) | Split on the hashed value of the named column | Split on the hashed value of the named column | def _split_on_hashed_column(
df,
column_name: str,
hash_digits: int,
batch_identifiers: dict,
hash_function_name: str = "md5",
):
"""Split on the hashed value of the named column"""
try:
hash_method = getattr(hashlib, hash_function_name)
except (TypeError, AttributeError) as e:
raise (
ge_exceptions.ExecutionEngineError(
f"""The splitting method used with SparkDFExecutionEngine has a reference to an invalid hash_function_name.
Reference to {hash_function_name} cannot be found."""
)
)
matching_rows = df[column_name].map(
lambda x: hash_method(str(x).encode()).hexdigest()[-1 * hash_digits :]
== batch_identifiers["hash_value"]
)
return df[matching_rows] | [
"def",
"_split_on_hashed_column",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"hash_digits",
":",
"int",
",",
"batch_identifiers",
":",
"dict",
",",
"hash_function_name",
":",
"str",
"=",
"\"md5\"",
",",
")",
":",
"try",
":",
"hash_method",
"=",
"getattr",
"(",
"hashlib",
",",
"hash_function_name",
")",
"except",
"(",
"TypeError",
",",
"AttributeError",
")",
"as",
"e",
":",
"raise",
"(",
"ge_exceptions",
".",
"ExecutionEngineError",
"(",
"f\"\"\"The splitting method used with SparkDFExecutionEngine has a reference to an invalid hash_function_name.\n Reference to {hash_function_name} cannot be found.\"\"\"",
")",
")",
"matching_rows",
"=",
"df",
"[",
"column_name",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"hash_method",
"(",
"str",
"(",
"x",
")",
".",
"encode",
"(",
")",
")",
".",
"hexdigest",
"(",
")",
"[",
"-",
"1",
"*",
"hash_digits",
":",
"]",
"==",
"batch_identifiers",
"[",
"\"hash_value\"",
"]",
")",
"return",
"df",
"[",
"matching_rows",
"]"
] | [
517,
4
] | [
538,
32
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._sample_using_random | (
df,
p: float = 0.1,
) | Take a random sample of rows, retaining proportion p
Note: the Random function behaves differently on different dialects of SQL
| Take a random sample of rows, retaining proportion p | def _sample_using_random(
df,
p: float = 0.1,
):
"""Take a random sample of rows, retaining proportion p
Note: the Random function behaves differently on different dialects of SQL
"""
return df[df.index.map(lambda x: random.random() < p)] | [
"def",
"_sample_using_random",
"(",
"df",
",",
"p",
":",
"float",
"=",
"0.1",
",",
")",
":",
"return",
"df",
"[",
"df",
".",
"index",
".",
"map",
"(",
"lambda",
"x",
":",
"random",
".",
"random",
"(",
")",
"<",
"p",
")",
"]"
] | [
543,
4
] | [
551,
62
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._sample_using_mod | (
df,
column_name: str,
mod: int,
value: int,
) | Take the mod of named column, and only keep rows that match the given value | Take the mod of named column, and only keep rows that match the given value | def _sample_using_mod(
df,
column_name: str,
mod: int,
value: int,
):
"""Take the mod of named column, and only keep rows that match the given value"""
return df[df[column_name].map(lambda x: x % mod == value)] | [
"def",
"_sample_using_mod",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"mod",
":",
"int",
",",
"value",
":",
"int",
",",
")",
":",
"return",
"df",
"[",
"df",
"[",
"column_name",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"x",
"%",
"mod",
"==",
"value",
")",
"]"
] | [
554,
4
] | [
561,
66
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._sample_using_a_list | (
df,
column_name: str,
value_list: list,
) | Match the values in the named column against value_list, and only keep the matches | Match the values in the named column against value_list, and only keep the matches | def _sample_using_a_list(
df,
column_name: str,
value_list: list,
):
"""Match the values in the named column against value_list, and only keep the matches"""
return df[df[column_name].isin(value_list)] | [
"def",
"_sample_using_a_list",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"value_list",
":",
"list",
",",
")",
":",
"return",
"df",
"[",
"df",
"[",
"column_name",
"]",
".",
"isin",
"(",
"value_list",
")",
"]"
] | [
564,
4
] | [
570,
51
] | python | en | ['en', 'en', 'en'] | True |
PandasExecutionEngine._sample_using_hash | (
df,
column_name: str,
hash_digits: int = 1,
hash_value: str = "f",
hash_function_name: str = "md5",
) | Hash the values in the named column, and split on that | Hash the values in the named column, and split on that | def _sample_using_hash(
df,
column_name: str,
hash_digits: int = 1,
hash_value: str = "f",
hash_function_name: str = "md5",
):
"""Hash the values in the named column, and split on that"""
try:
hash_func = getattr(hashlib, hash_function_name)
except (TypeError, AttributeError) as e:
raise (
ge_exceptions.ExecutionEngineError(
f"""The sampling method used with PandasExecutionEngine has a reference to an invalid hash_function_name.
Reference to {hash_function_name} cannot be found."""
)
)
matches = df[column_name].map(
lambda x: hash_func(str(x).encode()).hexdigest()[-1 * hash_digits :]
== hash_value
)
return df[matches] | [
"def",
"_sample_using_hash",
"(",
"df",
",",
"column_name",
":",
"str",
",",
"hash_digits",
":",
"int",
"=",
"1",
",",
"hash_value",
":",
"str",
"=",
"\"f\"",
",",
"hash_function_name",
":",
"str",
"=",
"\"md5\"",
",",
")",
":",
"try",
":",
"hash_func",
"=",
"getattr",
"(",
"hashlib",
",",
"hash_function_name",
")",
"except",
"(",
"TypeError",
",",
"AttributeError",
")",
"as",
"e",
":",
"raise",
"(",
"ge_exceptions",
".",
"ExecutionEngineError",
"(",
"f\"\"\"The sampling method used with PandasExecutionEngine has a reference to an invalid hash_function_name.\n Reference to {hash_function_name} cannot be found.\"\"\"",
")",
")",
"matches",
"=",
"df",
"[",
"column_name",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"hash_func",
"(",
"str",
"(",
"x",
")",
".",
"encode",
"(",
")",
")",
".",
"hexdigest",
"(",
")",
"[",
"-",
"1",
"*",
"hash_digits",
":",
"]",
"==",
"hash_value",
")",
"return",
"df",
"[",
"matches",
"]"
] | [
573,
4
] | [
595,
26
] | python | en | ['en', 'en', 'en'] | True |
print_declarations | (
decls,
detailed=True,
recursive=True,
writer=lambda x: sys.stdout.write(x + os.linesep),
verbose=True) |
print declarations tree rooted at each of the included nodes.
:param decls: either a single :class:declaration_t object or list
of :class:declaration_t objects
|
print declarations tree rooted at each of the included nodes. | def print_declarations(
decls,
detailed=True,
recursive=True,
writer=lambda x: sys.stdout.write(x + os.linesep),
verbose=True):
"""
print declarations tree rooted at each of the included nodes.
:param decls: either a single :class:declaration_t object or list
of :class:declaration_t objects
"""
prn = decl_printer_t(0, detailed, recursive, writer, verbose=verbose)
if not isinstance(decls, list):
decls = [decls]
for d in decls:
prn.level = 0
prn.instance = d
algorithm.apply_visitor(prn, d) | [
"def",
"print_declarations",
"(",
"decls",
",",
"detailed",
"=",
"True",
",",
"recursive",
"=",
"True",
",",
"writer",
"=",
"lambda",
"x",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"x",
"+",
"os",
".",
"linesep",
")",
",",
"verbose",
"=",
"True",
")",
":",
"prn",
"=",
"decl_printer_t",
"(",
"0",
",",
"detailed",
",",
"recursive",
",",
"writer",
",",
"verbose",
"=",
"verbose",
")",
"if",
"not",
"isinstance",
"(",
"decls",
",",
"list",
")",
":",
"decls",
"=",
"[",
"decls",
"]",
"for",
"d",
"in",
"decls",
":",
"prn",
".",
"level",
"=",
"0",
"prn",
".",
"instance",
"=",
"d",
"algorithm",
".",
"apply_visitor",
"(",
"prn",
",",
"d",
")"
] | [
465,
0
] | [
483,
39
] | python | en | ['en', 'error', 'th'] | False |
dump_declarations | (declarations, file_path) |
Dump declarations tree rooted at each of the included nodes to the file
:param declarations: either a single :class:declaration_t object or a list
of :class:declaration_t objects
:param file_path: path to a file
|
Dump declarations tree rooted at each of the included nodes to the file | def dump_declarations(declarations, file_path):
"""
Dump declarations tree rooted at each of the included nodes to the file
:param declarations: either a single :class:declaration_t object or a list
of :class:declaration_t objects
:param file_path: path to a file
"""
with open(file_path, "w+") as f:
print_declarations(declarations, writer=f.write) | [
"def",
"dump_declarations",
"(",
"declarations",
",",
"file_path",
")",
":",
"with",
"open",
"(",
"file_path",
",",
"\"w+\"",
")",
"as",
"f",
":",
"print_declarations",
"(",
"declarations",
",",
"writer",
"=",
"f",
".",
"write",
")"
] | [
486,
0
] | [
497,
56
] | python | en | ['en', 'error', 'th'] | False |
FlaskRageFormatter.__prepare_error_info | (self, output: Dict[str, Any], record: logging.LogRecord) |
Adds some information about potential exception to the output message.
|
Adds some information about potential exception to the output message.
| def __prepare_error_info(self, output: Dict[str, Any], record: logging.LogRecord):
"""
Adds some information about potential exception to the output message.
"""
if record.exc_info:
backtrace = self.formatException(record.exc_info)
if backtrace:
output['exception_object'] = backtrace
output['exception'] = [
str(record.exc_info[0]),
self.__extract_msg(record.exc_info[1])
] | [
"def",
"__prepare_error_info",
"(",
"self",
",",
"output",
":",
"Dict",
"[",
"str",
",",
"Any",
"]",
",",
"record",
":",
"logging",
".",
"LogRecord",
")",
":",
"if",
"record",
".",
"exc_info",
":",
"backtrace",
"=",
"self",
".",
"formatException",
"(",
"record",
".",
"exc_info",
")",
"if",
"backtrace",
":",
"output",
"[",
"'exception_object'",
"]",
"=",
"backtrace",
"output",
"[",
"'exception'",
"]",
"=",
"[",
"str",
"(",
"record",
".",
"exc_info",
"[",
"0",
"]",
")",
",",
"self",
".",
"__extract_msg",
"(",
"record",
".",
"exc_info",
"[",
"1",
"]",
")",
"]"
] | [
45,
4
] | [
56,
13
] | python | en | ['en', 'error', 'th'] | False |
FlaskRage.init_app | (self, flask_app: flask.Flask) |
Initialize logging for Flask application
:param flask_app: Flask application
|
Initialize logging for Flask application | def init_app(self, flask_app: flask.Flask) -> None:
"""
Initialize logging for Flask application
:param flask_app: Flask application
"""
self.logger = logging.getLogger(getattr(flask_app, "logger_name", "name"))
self._setup_db_timer()
self._register_handlers(flask_app) | [
"def",
"init_app",
"(",
"self",
",",
"flask_app",
":",
"flask",
".",
"Flask",
")",
"->",
"None",
":",
"self",
".",
"logger",
"=",
"logging",
".",
"getLogger",
"(",
"getattr",
"(",
"flask_app",
",",
"\"logger_name\"",
",",
"\"name\"",
")",
")",
"self",
".",
"_setup_db_timer",
"(",
")",
"self",
".",
"_register_handlers",
"(",
"flask_app",
")"
] | [
82,
4
] | [
90,
42
] | python | en | ['en', 'error', 'th'] | False |
FlaskRage.log_request | (self, response: flask.Response) |
Log a regular HTTP request in lograge-ish format
:param response: flask.Response
:return: response
|
Log a regular HTTP request in lograge-ish format | def log_request(self, response: flask.Response) -> flask.Response:
"""
Log a regular HTTP request in lograge-ish format
:param response: flask.Response
:return: response
"""
if response.status_code >= 500:
return response
if response.status_code >= 400 and response.status_code != 404:
log_fn = self.logger.error
else:
log_fn = self.logger.info
message, extra = self._parse(request, response)
log_fn(message, extra=extra)
return response | [
"def",
"log_request",
"(",
"self",
",",
"response",
":",
"flask",
".",
"Response",
")",
"->",
"flask",
".",
"Response",
":",
"if",
"response",
".",
"status_code",
">=",
"500",
":",
"return",
"response",
"if",
"response",
".",
"status_code",
">=",
"400",
"and",
"response",
".",
"status_code",
"!=",
"404",
":",
"log_fn",
"=",
"self",
".",
"logger",
".",
"error",
"else",
":",
"log_fn",
"=",
"self",
".",
"logger",
".",
"info",
"message",
",",
"extra",
"=",
"self",
".",
"_parse",
"(",
"request",
",",
"response",
")",
"log_fn",
"(",
"message",
",",
"extra",
"=",
"extra",
")",
"return",
"response"
] | [
92,
4
] | [
108,
23
] | python | en | ['en', 'error', 'th'] | False |
FlaskRage.log_exception | (self, exception: Exception) |
Log an exception in lograge-ish format
This can be called e.g. from flask's errorhandlers
:param exception: Exception
|
Log an exception in lograge-ish format | def log_exception(self, exception: Exception) -> None:
"""
Log an exception in lograge-ish format
This can be called e.g. from flask's errorhandlers
:param exception: Exception
"""
message, extra = self._parse(request, exception)
self.logger.error(message, extra=extra) | [
"def",
"log_exception",
"(",
"self",
",",
"exception",
":",
"Exception",
")",
"->",
"None",
":",
"message",
",",
"extra",
"=",
"self",
".",
"_parse",
"(",
"request",
",",
"exception",
")",
"self",
".",
"logger",
".",
"error",
"(",
"message",
",",
"extra",
"=",
"extra",
")"
] | [
110,
4
] | [
119,
47
] | python | en | ['en', 'error', 'th'] | False |
add_instrument | (instrument: Instrument) | Start instrumenting the current run loop with the given instrument.
Args:
instrument (trio.abc.Instrument): The instrument to activate.
If ``instrument`` is already active, does nothing.
| Start instrumenting the current run loop with the given instrument. | def add_instrument(instrument: Instrument) ->None:
"""Start instrumenting the current run loop with the given instrument.
Args:
instrument (trio.abc.Instrument): The instrument to activate.
If ``instrument`` is already active, does nothing.
"""
locals()[LOCALS_KEY_KI_PROTECTION_ENABLED] = True
try:
return GLOBAL_RUN_CONTEXT.runner.instruments.add_instrument(instrument)
except AttributeError:
raise RuntimeError("must be called from async context") | [
"def",
"add_instrument",
"(",
"instrument",
":",
"Instrument",
")",
"->",
"None",
":",
"locals",
"(",
")",
"[",
"LOCALS_KEY_KI_PROTECTION_ENABLED",
"]",
"=",
"True",
"try",
":",
"return",
"GLOBAL_RUN_CONTEXT",
".",
"runner",
".",
"instruments",
".",
"add_instrument",
"(",
"instrument",
")",
"except",
"AttributeError",
":",
"raise",
"RuntimeError",
"(",
"\"must be called from async context\"",
")"
] | [
10,
0
] | [
23,
63
] | python | en | ['en', 'en', 'en'] | True |
remove_instrument | (instrument: Instrument) | Stop instrumenting the current run loop with the given instrument.
Args:
instrument (trio.abc.Instrument): The instrument to de-activate.
Raises:
KeyError: if the instrument is not currently active. This could
occur either because you never added it, or because you added it
and then it raised an unhandled exception and was automatically
deactivated.
| Stop instrumenting the current run loop with the given instrument. | def remove_instrument(instrument: Instrument) ->None:
"""Stop instrumenting the current run loop with the given instrument.
Args:
instrument (trio.abc.Instrument): The instrument to de-activate.
Raises:
KeyError: if the instrument is not currently active. This could
occur either because you never added it, or because you added it
and then it raised an unhandled exception and was automatically
deactivated.
"""
locals()[LOCALS_KEY_KI_PROTECTION_ENABLED] = True
try:
return GLOBAL_RUN_CONTEXT.runner.instruments.remove_instrument(instrument)
except AttributeError:
raise RuntimeError("must be called from async context") | [
"def",
"remove_instrument",
"(",
"instrument",
":",
"Instrument",
")",
"->",
"None",
":",
"locals",
"(",
")",
"[",
"LOCALS_KEY_KI_PROTECTION_ENABLED",
"]",
"=",
"True",
"try",
":",
"return",
"GLOBAL_RUN_CONTEXT",
".",
"runner",
".",
"instruments",
".",
"remove_instrument",
"(",
"instrument",
")",
"except",
"AttributeError",
":",
"raise",
"RuntimeError",
"(",
"\"must be called from async context\"",
")"
] | [
26,
0
] | [
43,
63
] | python | en | ['en', 'en', 'en'] | True |
Orion.fit | (self, data: pd.DataFrame) | Fit the pipeline to the given data.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
| Fit the pipeline to the given data. | def fit(self, data: pd.DataFrame):
"""Fit the pipeline to the given data.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
"""
self._mlpipeline = self._get_mlpipeline()
self._mlpipeline.fit(data)
self._fitted = True | [
"def",
"fit",
"(",
"self",
",",
"data",
":",
"pd",
".",
"DataFrame",
")",
":",
"self",
".",
"_mlpipeline",
"=",
"self",
".",
"_get_mlpipeline",
"(",
")",
"self",
".",
"_mlpipeline",
".",
"fit",
"(",
"data",
")",
"self",
".",
"_fitted",
"=",
"True"
] | [
74,
4
] | [
84,
27
] | python | en | ['en', 'en', 'en'] | True |
Orion.detect | (self, data: pd.DataFrame, visualization: bool = False) | Detect anomalies in the given data..
If ``visualization=True``, also return the visualization
outputs from the MLPipeline object.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
visualization (bool):
If ``True``, also capture the ``visualization`` named
output from the ``MLPipeline`` and return it as a second
output.
Returns:
DataFrame or tuple:
If visualization is ``False``, it returns the events
DataFrame. If visualization is ``True``, it returns a
tuple containing the events DataFrame followed by the
visualization outputs dict.
| Detect anomalies in the given data.. | def detect(self, data: pd.DataFrame, visualization: bool = False) -> pd.DataFrame:
"""Detect anomalies in the given data..
If ``visualization=True``, also return the visualization
outputs from the MLPipeline object.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
visualization (bool):
If ``True``, also capture the ``visualization`` named
output from the ``MLPipeline`` and return it as a second
output.
Returns:
DataFrame or tuple:
If visualization is ``False``, it returns the events
DataFrame. If visualization is ``True``, it returns a
tuple containing the events DataFrame followed by the
visualization outputs dict.
"""
return self._detect(self._mlpipeline.predict, data, visualization) | [
"def",
"detect",
"(",
"self",
",",
"data",
":",
"pd",
".",
"DataFrame",
",",
"visualization",
":",
"bool",
"=",
"False",
")",
"->",
"pd",
".",
"DataFrame",
":",
"return",
"self",
".",
"_detect",
"(",
"self",
".",
"_mlpipeline",
".",
"predict",
",",
"data",
",",
"visualization",
")"
] | [
125,
4
] | [
147,
74
] | python | en | ['en', 'en', 'en'] | True |
Orion.fit_detect | (self, data: pd.DataFrame, visualization: bool = False) | Fit the pipeline to the data and then detect anomalies.
This method is functionally equivalent to calling ``fit(data)``
and later on ``detect(data)`` but with the difference that
here the ``MLPipeline`` is called only once, using its ``fit``
method, and the output is directly captured without having
to execute the whole pipeline again during the ``predict`` phase.
If ``visualization=True``, also return the visualization
outputs from the MLPipeline object.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
visualization (bool):
If ``True``, also capture the ``visualization`` named
output from the ``MLPipeline`` and return it as a second
output.
Returns:
DataFrame or tuple:
If visualization is ``False``, it returns the events
DataFrame. If visualization is ``True``, it returns a
tuple containing the events DataFrame followed by the
visualization outputs dict.
| Fit the pipeline to the data and then detect anomalies. | def fit_detect(self, data: pd.DataFrame, visualization: bool = False) -> pd.DataFrame:
"""Fit the pipeline to the data and then detect anomalies.
This method is functionally equivalent to calling ``fit(data)``
and later on ``detect(data)`` but with the difference that
here the ``MLPipeline`` is called only once, using its ``fit``
method, and the output is directly captured without having
to execute the whole pipeline again during the ``predict`` phase.
If ``visualization=True``, also return the visualization
outputs from the MLPipeline object.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
visualization (bool):
If ``True``, also capture the ``visualization`` named
output from the ``MLPipeline`` and return it as a second
output.
Returns:
DataFrame or tuple:
If visualization is ``False``, it returns the events
DataFrame. If visualization is ``True``, it returns a
tuple containing the events DataFrame followed by the
visualization outputs dict.
"""
self._mlpipeline = self._get_mlpipeline()
result = self._detect(self._mlpipeline.fit, data, visualization)
self._fitted = True
return result | [
"def",
"fit_detect",
"(",
"self",
",",
"data",
":",
"pd",
".",
"DataFrame",
",",
"visualization",
":",
"bool",
"=",
"False",
")",
"->",
"pd",
".",
"DataFrame",
":",
"self",
".",
"_mlpipeline",
"=",
"self",
".",
"_get_mlpipeline",
"(",
")",
"result",
"=",
"self",
".",
"_detect",
"(",
"self",
".",
"_mlpipeline",
".",
"fit",
",",
"data",
",",
"visualization",
")",
"self",
".",
"_fitted",
"=",
"True",
"return",
"result"
] | [
149,
4
] | [
181,
21
] | python | en | ['en', 'en', 'en'] | True |
Orion.save | (self, path: str) | Save this object using pickle.
Args:
path (str):
Path to the file where the serialization of
this object will be stored.
| Save this object using pickle. | def save(self, path: str):
"""Save this object using pickle.
Args:
path (str):
Path to the file where the serialization of
this object will be stored.
"""
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'wb') as pickle_file:
pickle.dump(self, pickle_file) | [
"def",
"save",
"(",
"self",
",",
"path",
":",
"str",
")",
":",
"os",
".",
"makedirs",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"path",
")",
",",
"exist_ok",
"=",
"True",
")",
"with",
"open",
"(",
"path",
",",
"'wb'",
")",
"as",
"pickle_file",
":",
"pickle",
".",
"dump",
"(",
"self",
",",
"pickle_file",
")"
] | [
183,
4
] | [
193,
42
] | python | en | ['en', 'en', 'en'] | True |
Orion.load | (cls, path: str) | Load an Orion instance from a pickle file.
Args:
path (str):
Path to the file where the instance has been
previously serialized.
Returns:
Orion
Raises:
ValueError:
If the serialized object is not an Orion instance.
| Load an Orion instance from a pickle file. | def load(cls, path: str):
"""Load an Orion instance from a pickle file.
Args:
path (str):
Path to the file where the instance has been
previously serialized.
Returns:
Orion
Raises:
ValueError:
If the serialized object is not an Orion instance.
"""
with open(path, 'rb') as pickle_file:
orion = pickle.load(pickle_file)
if not isinstance(orion, cls):
raise ValueError('Serialized object is not an Orion instance')
return orion | [
"def",
"load",
"(",
"cls",
",",
"path",
":",
"str",
")",
":",
"with",
"open",
"(",
"path",
",",
"'rb'",
")",
"as",
"pickle_file",
":",
"orion",
"=",
"pickle",
".",
"load",
"(",
"pickle_file",
")",
"if",
"not",
"isinstance",
"(",
"orion",
",",
"cls",
")",
":",
"raise",
"ValueError",
"(",
"'Serialized object is not an Orion instance'",
")",
"return",
"orion"
] | [
196,
4
] | [
216,
24
] | python | en | ['en', 'en', 'en'] | True |
Orion.evaluate | (self, data: pd.DataFrame, ground_truth: pd.DataFrame, fit: bool = False,
train_data: pd.DataFrame = None, metrics: List[str] = METRICS) | Evaluate the performance against ground truth anomalies.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
ground_truth (DataFrame):
Ground truth anomalies passed as a ``pandas.DataFrame``
containing two columns: start and stop.
fit (bool):
Whether to fit the pipeline before evaluating it.
Defaults to ``False``.
train_data (DataFrame):
Training data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
If not given, the pipeline is fitted on ``data``.
metrics (list):
List of metrics to used passed as a list of strings.
If not given, it defaults to all the Orion metrics.
Returns:
Series:
``pandas.Series`` containing one element for each
metric applied, with the metric name as index.
| Evaluate the performance against ground truth anomalies. | def evaluate(self, data: pd.DataFrame, ground_truth: pd.DataFrame, fit: bool = False,
train_data: pd.DataFrame = None, metrics: List[str] = METRICS) -> pd.Series:
"""Evaluate the performance against ground truth anomalies.
Args:
data (DataFrame):
Input data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
ground_truth (DataFrame):
Ground truth anomalies passed as a ``pandas.DataFrame``
containing two columns: start and stop.
fit (bool):
Whether to fit the pipeline before evaluating it.
Defaults to ``False``.
train_data (DataFrame):
Training data, passed as a ``pandas.DataFrame`` containing
exactly two columns: timestamp and value.
If not given, the pipeline is fitted on ``data``.
metrics (list):
List of metrics to used passed as a list of strings.
If not given, it defaults to all the Orion metrics.
Returns:
Series:
``pandas.Series`` containing one element for each
metric applied, with the metric name as index.
"""
if not fit:
method = self._mlpipeline.predict
else:
mlpipeline = self._get_mlpipeline()
if train_data is not None:
# Fit first and then predict
mlpipeline.fit(train_data)
method = mlpipeline.predict
else:
# Fit and predict at once
method = mlpipeline.fit
events = self._detect(method, data)
scores = {
metric: METRICS[metric](ground_truth, events, data=data)
for metric in metrics
}
return pd.Series(scores) | [
"def",
"evaluate",
"(",
"self",
",",
"data",
":",
"pd",
".",
"DataFrame",
",",
"ground_truth",
":",
"pd",
".",
"DataFrame",
",",
"fit",
":",
"bool",
"=",
"False",
",",
"train_data",
":",
"pd",
".",
"DataFrame",
"=",
"None",
",",
"metrics",
":",
"List",
"[",
"str",
"]",
"=",
"METRICS",
")",
"->",
"pd",
".",
"Series",
":",
"if",
"not",
"fit",
":",
"method",
"=",
"self",
".",
"_mlpipeline",
".",
"predict",
"else",
":",
"mlpipeline",
"=",
"self",
".",
"_get_mlpipeline",
"(",
")",
"if",
"train_data",
"is",
"not",
"None",
":",
"# Fit first and then predict",
"mlpipeline",
".",
"fit",
"(",
"train_data",
")",
"method",
"=",
"mlpipeline",
".",
"predict",
"else",
":",
"# Fit and predict at once",
"method",
"=",
"mlpipeline",
".",
"fit",
"events",
"=",
"self",
".",
"_detect",
"(",
"method",
",",
"data",
")",
"scores",
"=",
"{",
"metric",
":",
"METRICS",
"[",
"metric",
"]",
"(",
"ground_truth",
",",
"events",
",",
"data",
"=",
"data",
")",
"for",
"metric",
"in",
"metrics",
"}",
"return",
"pd",
".",
"Series",
"(",
"scores",
")"
] | [
218,
4
] | [
264,
32
] | python | en | ['en', 'en', 'en'] | True |
from_pandas_contextual | (df) | Convert contextual ``pandas.DataFrame`` to list of tuples.
Args:
df (DataFrame):
anomalies, passed as ``pandas.DataFrame``
containing two columns: start and stop.
Returns:
list:
tuple (start, end) timestamp.
Raises:
KeyError:
If the received ``pandas.DataFrame`` does not contain the required columns.
| Convert contextual ``pandas.DataFrame`` to list of tuples. | def from_pandas_contextual(df):
""" Convert contextual ``pandas.DataFrame`` to list of tuples.
Args:
df (DataFrame):
anomalies, passed as ``pandas.DataFrame``
containing two columns: start and stop.
Returns:
list:
tuple (start, end) timestamp.
Raises:
KeyError:
If the received ``pandas.DataFrame`` does not contain the required columns.
"""
require = ['start', 'end']
columns = df.columns.tolist()
if all(x in columns for x in require):
if 'severity' in columns:
return list(df[require + ['severity']].itertuples(index=False))
return list(df[require].itertuples(index=False))
raise KeyError('{} not found in columns: {}.'.format(require, columns)) | [
"def",
"from_pandas_contextual",
"(",
"df",
")",
":",
"require",
"=",
"[",
"'start'",
",",
"'end'",
"]",
"columns",
"=",
"df",
".",
"columns",
".",
"tolist",
"(",
")",
"if",
"all",
"(",
"x",
"in",
"columns",
"for",
"x",
"in",
"require",
")",
":",
"if",
"'severity'",
"in",
"columns",
":",
"return",
"list",
"(",
"df",
"[",
"require",
"+",
"[",
"'severity'",
"]",
"]",
".",
"itertuples",
"(",
"index",
"=",
"False",
")",
")",
"return",
"list",
"(",
"df",
"[",
"require",
"]",
".",
"itertuples",
"(",
"index",
"=",
"False",
")",
")",
"raise",
"KeyError",
"(",
"'{} not found in columns: {}.'",
".",
"format",
"(",
"require",
",",
"columns",
")",
")"
] | [
6,
0
] | [
30,
75
] | python | en | ['en', 'lb', 'en'] | True |
from_list_points_timestamps | (timestamps, gap=1) | Convert list of timestamps to list of tuples.
Convert a list of anomalies identified by timestamps,
to a list of tuples marking the start and end interval
of anomalies; make it contextually defined.
Args:
timestamps (list): contains timestamp of anomalies.
gap (int): allowed gap between anomalies.
Returns:
list:
tuple (start, end) timestamp.
| Convert list of timestamps to list of tuples. | def from_list_points_timestamps(timestamps, gap=1):
""" Convert list of timestamps to list of tuples.
Convert a list of anomalies identified by timestamps,
to a list of tuples marking the start and end interval
of anomalies; make it contextually defined.
Args:
timestamps (list): contains timestamp of anomalies.
gap (int): allowed gap between anomalies.
Returns:
list:
tuple (start, end) timestamp.
"""
timestamps = sorted(timestamps)
start_ts = 0
max_ts = len(timestamps) - 1
anomalies = list()
break_point = start_ts
while break_point < max_ts:
if timestamps[break_point + 1] - timestamps[break_point] <= gap:
break_point += 1
continue
anomalies.append((timestamps[start_ts], timestamps[break_point]))
break_point += 1
start_ts = break_point
anomalies.append((timestamps[start_ts], timestamps[break_point]))
return anomalies | [
"def",
"from_list_points_timestamps",
"(",
"timestamps",
",",
"gap",
"=",
"1",
")",
":",
"timestamps",
"=",
"sorted",
"(",
"timestamps",
")",
"start_ts",
"=",
"0",
"max_ts",
"=",
"len",
"(",
"timestamps",
")",
"-",
"1",
"anomalies",
"=",
"list",
"(",
")",
"break_point",
"=",
"start_ts",
"while",
"break_point",
"<",
"max_ts",
":",
"if",
"timestamps",
"[",
"break_point",
"+",
"1",
"]",
"-",
"timestamps",
"[",
"break_point",
"]",
"<=",
"gap",
":",
"break_point",
"+=",
"1",
"continue",
"anomalies",
".",
"append",
"(",
"(",
"timestamps",
"[",
"start_ts",
"]",
",",
"timestamps",
"[",
"break_point",
"]",
")",
")",
"break_point",
"+=",
"1",
"start_ts",
"=",
"break_point",
"anomalies",
".",
"append",
"(",
"(",
"timestamps",
"[",
"start_ts",
"]",
",",
"timestamps",
"[",
"break_point",
"]",
")",
")",
"return",
"anomalies"
] | [
33,
0
] | [
65,
20
] | python | en | ['en', 'en', 'en'] | True |
from_pandas_points | (df) | Convert point ``pandas.DataFrame`` to list of tuples.
Convert a ``pandas.DataFrame`` of anomalies identified by
one column (timestamp) to a list of tuples marking the
start and end interval of anomalies; make it contextually
defined.
Args:
df (DataFrame):
anomalies, passed as ``pandas.DataFrame``
containing one column: timestamp.
Returns:
list:
tuple (start, end) timestamp.
Raises:
KeyError:
If the received ``pandas.DataFrame`` does not contain column `timestamp`.
| Convert point ``pandas.DataFrame`` to list of tuples. | def from_pandas_points(df):
""" Convert point ``pandas.DataFrame`` to list of tuples.
Convert a ``pandas.DataFrame`` of anomalies identified by
one column (timestamp) to a list of tuples marking the
start and end interval of anomalies; make it contextually
defined.
Args:
df (DataFrame):
anomalies, passed as ``pandas.DataFrame``
containing one column: timestamp.
Returns:
list:
tuple (start, end) timestamp.
Raises:
KeyError:
If the received ``pandas.DataFrame`` does not contain column `timestamp`.
"""
time_column = 'timestamp'
columns = df.columns.tolist()
if time_column not in columns:
raise KeyError('{} not found in columns: {}.'.format(time_column, columns))
timestamps = list(df['timestamp'])
return from_list_points_timestamps(timestamps) | [
"def",
"from_pandas_points",
"(",
"df",
")",
":",
"time_column",
"=",
"'timestamp'",
"columns",
"=",
"df",
".",
"columns",
".",
"tolist",
"(",
")",
"if",
"time_column",
"not",
"in",
"columns",
":",
"raise",
"KeyError",
"(",
"'{} not found in columns: {}.'",
".",
"format",
"(",
"time_column",
",",
"columns",
")",
")",
"timestamps",
"=",
"list",
"(",
"df",
"[",
"'timestamp'",
"]",
")",
"return",
"from_list_points_timestamps",
"(",
"timestamps",
")"
] | [
68,
0
] | [
96,
50
] | python | en | ['en', 'lb', 'en'] | True |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.