Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
sequence | start_point
sequence | end_point
sequence | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
WeekMixin.get_previous_week | (self, date) | Get the previous valid week. | Get the previous valid week. | def get_previous_week(self, date):
"""Get the previous valid week."""
return _get_next_prev(self, date, is_previous=True, period='week') | [
"def",
"get_previous_week",
"(",
"self",
",",
"date",
")",
":",
"return",
"_get_next_prev",
"(",
"self",
",",
"date",
",",
"is_previous",
"=",
"True",
",",
"period",
"=",
"'week'",
")"
] | [
194,
4
] | [
196,
74
] | python | en | ['en', 'af', 'en'] | True |
WeekMixin._get_next_week | (self, date) |
Return the start date of the next interval.
The interval is defined by start date <= item date < next start date.
|
Return the start date of the next interval. | def _get_next_week(self, date):
"""
Return the start date of the next interval.
The interval is defined by start date <= item date < next start date.
"""
try:
return date + datetime.timedelta(days=7 - self._get_weekday(date))
except OverflowError:
raise Http404(_("Date out of range")) | [
"def",
"_get_next_week",
"(",
"self",
",",
"date",
")",
":",
"try",
":",
"return",
"date",
"+",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"7",
"-",
"self",
".",
"_get_weekday",
"(",
"date",
")",
")",
"except",
"OverflowError",
":",
"raise",
"Http404",
"(",
"_",
"(",
"\"Date out of range\"",
")",
")"
] | [
198,
4
] | [
207,
49
] | python | en | ['en', 'error', 'th'] | False |
WeekMixin._get_current_week | (self, date) | Return the start date of the current interval. | Return the start date of the current interval. | def _get_current_week(self, date):
"""Return the start date of the current interval."""
return date - datetime.timedelta(self._get_weekday(date)) | [
"def",
"_get_current_week",
"(",
"self",
",",
"date",
")",
":",
"return",
"date",
"-",
"datetime",
".",
"timedelta",
"(",
"self",
".",
"_get_weekday",
"(",
"date",
")",
")"
] | [
209,
4
] | [
211,
65
] | python | en | ['en', 'en', 'en'] | True |
WeekMixin._get_weekday | (self, date) |
Return the weekday for a given date.
The first day according to the week format is 0 and the last day is 6.
|
Return the weekday for a given date. | def _get_weekday(self, date):
"""
Return the weekday for a given date.
The first day according to the week format is 0 and the last day is 6.
"""
week_format = self.get_week_format()
if week_format in {'%W', '%V'}: # week starts on Monday
return date.weekday()
elif week_format == '%U': # week starts on Sunday
return (date.weekday() + 1) % 7
else:
raise ValueError("unknown week format: %s" % week_format) | [
"def",
"_get_weekday",
"(",
"self",
",",
"date",
")",
":",
"week_format",
"=",
"self",
".",
"get_week_format",
"(",
")",
"if",
"week_format",
"in",
"{",
"'%W'",
",",
"'%V'",
"}",
":",
"# week starts on Monday",
"return",
"date",
".",
"weekday",
"(",
")",
"elif",
"week_format",
"==",
"'%U'",
":",
"# week starts on Sunday",
"return",
"(",
"date",
".",
"weekday",
"(",
")",
"+",
"1",
")",
"%",
"7",
"else",
":",
"raise",
"ValueError",
"(",
"\"unknown week format: %s\"",
"%",
"week_format",
")"
] | [
213,
4
] | [
225,
69
] | python | en | ['en', 'error', 'th'] | False |
DateMixin.get_date_field | (self) | Get the name of the date field to be used to filter by. | Get the name of the date field to be used to filter by. | def get_date_field(self):
"""Get the name of the date field to be used to filter by."""
if self.date_field is None:
raise ImproperlyConfigured("%s.date_field is required." % self.__class__.__name__)
return self.date_field | [
"def",
"get_date_field",
"(",
"self",
")",
":",
"if",
"self",
".",
"date_field",
"is",
"None",
":",
"raise",
"ImproperlyConfigured",
"(",
"\"%s.date_field is required.\"",
"%",
"self",
".",
"__class__",
".",
"__name__",
")",
"return",
"self",
".",
"date_field"
] | [
233,
4
] | [
237,
30
] | python | en | ['en', 'en', 'en'] | True |
DateMixin.get_allow_future | (self) |
Return `True` if the view should be allowed to display objects from
the future.
|
Return `True` if the view should be allowed to display objects from
the future.
| def get_allow_future(self):
"""
Return `True` if the view should be allowed to display objects from
the future.
"""
return self.allow_future | [
"def",
"get_allow_future",
"(",
"self",
")",
":",
"return",
"self",
".",
"allow_future"
] | [
239,
4
] | [
244,
32
] | python | en | ['en', 'error', 'th'] | False |
DateMixin.uses_datetime_field | (self) |
Return `True` if the date field is a `DateTimeField` and `False`
if it's a `DateField`.
|
Return `True` if the date field is a `DateTimeField` and `False`
if it's a `DateField`.
| def uses_datetime_field(self):
"""
Return `True` if the date field is a `DateTimeField` and `False`
if it's a `DateField`.
"""
model = self.get_queryset().model if self.model is None else self.model
field = model._meta.get_field(self.get_date_field())
return isinstance(field, models.DateTimeField) | [
"def",
"uses_datetime_field",
"(",
"self",
")",
":",
"model",
"=",
"self",
".",
"get_queryset",
"(",
")",
".",
"model",
"if",
"self",
".",
"model",
"is",
"None",
"else",
"self",
".",
"model",
"field",
"=",
"model",
".",
"_meta",
".",
"get_field",
"(",
"self",
".",
"get_date_field",
"(",
")",
")",
"return",
"isinstance",
"(",
"field",
",",
"models",
".",
"DateTimeField",
")"
] | [
250,
4
] | [
257,
54
] | python | en | ['en', 'error', 'th'] | False |
DateMixin._make_date_lookup_arg | (self, value) |
Convert a date into a datetime when the date field is a DateTimeField.
When time zone support is enabled, `date` is assumed to be in the
current time zone, so that displayed items are consistent with the URL.
|
Convert a date into a datetime when the date field is a DateTimeField. | def _make_date_lookup_arg(self, value):
"""
Convert a date into a datetime when the date field is a DateTimeField.
When time zone support is enabled, `date` is assumed to be in the
current time zone, so that displayed items are consistent with the URL.
"""
if self.uses_datetime_field:
value = datetime.datetime.combine(value, datetime.time.min)
if settings.USE_TZ:
value = timezone.make_aware(value)
return value | [
"def",
"_make_date_lookup_arg",
"(",
"self",
",",
"value",
")",
":",
"if",
"self",
".",
"uses_datetime_field",
":",
"value",
"=",
"datetime",
".",
"datetime",
".",
"combine",
"(",
"value",
",",
"datetime",
".",
"time",
".",
"min",
")",
"if",
"settings",
".",
"USE_TZ",
":",
"value",
"=",
"timezone",
".",
"make_aware",
"(",
"value",
")",
"return",
"value"
] | [
259,
4
] | [
270,
20
] | python | en | ['en', 'error', 'th'] | False |
DateMixin._make_single_date_lookup | (self, date) |
Get the lookup kwargs for filtering on a single date.
If the date field is a DateTimeField, we can't just filter on
date_field=date because that doesn't take the time into account.
|
Get the lookup kwargs for filtering on a single date. | def _make_single_date_lookup(self, date):
"""
Get the lookup kwargs for filtering on a single date.
If the date field is a DateTimeField, we can't just filter on
date_field=date because that doesn't take the time into account.
"""
date_field = self.get_date_field()
if self.uses_datetime_field:
since = self._make_date_lookup_arg(date)
until = self._make_date_lookup_arg(date + datetime.timedelta(days=1))
return {
'%s__gte' % date_field: since,
'%s__lt' % date_field: until,
}
else:
# Skip self._make_date_lookup_arg, it's a no-op in this branch.
return {date_field: date} | [
"def",
"_make_single_date_lookup",
"(",
"self",
",",
"date",
")",
":",
"date_field",
"=",
"self",
".",
"get_date_field",
"(",
")",
"if",
"self",
".",
"uses_datetime_field",
":",
"since",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"date",
")",
"until",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"date",
"+",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"1",
")",
")",
"return",
"{",
"'%s__gte'",
"%",
"date_field",
":",
"since",
",",
"'%s__lt'",
"%",
"date_field",
":",
"until",
",",
"}",
"else",
":",
"# Skip self._make_date_lookup_arg, it's a no-op in this branch.",
"return",
"{",
"date_field",
":",
"date",
"}"
] | [
272,
4
] | [
289,
37
] | python | en | ['en', 'error', 'th'] | False |
BaseDateListView.get_dated_items | (self) | Obtain the list of dates and items. | Obtain the list of dates and items. | def get_dated_items(self):
"""Obtain the list of dates and items."""
raise NotImplementedError('A DateView must provide an implementation of get_dated_items()') | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"raise",
"NotImplementedError",
"(",
"'A DateView must provide an implementation of get_dated_items()'",
")"
] | [
306,
4
] | [
308,
99
] | python | en | ['en', 'en', 'en'] | True |
BaseDateListView.get_ordering | (self) |
Return the field or fields to use for ordering the queryset; use the
date field by default.
|
Return the field or fields to use for ordering the queryset; use the
date field by default.
| def get_ordering(self):
"""
Return the field or fields to use for ordering the queryset; use the
date field by default.
"""
return '-%s' % self.get_date_field() if self.ordering is None else self.ordering | [
"def",
"get_ordering",
"(",
"self",
")",
":",
"return",
"'-%s'",
"%",
"self",
".",
"get_date_field",
"(",
")",
"if",
"self",
".",
"ordering",
"is",
"None",
"else",
"self",
".",
"ordering"
] | [
310,
4
] | [
315,
88
] | python | en | ['en', 'error', 'th'] | False |
BaseDateListView.get_dated_queryset | (self, **lookup) |
Get a queryset properly filtered according to `allow_future` and any
extra lookup kwargs.
|
Get a queryset properly filtered according to `allow_future` and any
extra lookup kwargs.
| def get_dated_queryset(self, **lookup):
"""
Get a queryset properly filtered according to `allow_future` and any
extra lookup kwargs.
"""
qs = self.get_queryset().filter(**lookup)
date_field = self.get_date_field()
allow_future = self.get_allow_future()
allow_empty = self.get_allow_empty()
paginate_by = self.get_paginate_by(qs)
if not allow_future:
now = timezone.now() if self.uses_datetime_field else timezone_today()
qs = qs.filter(**{'%s__lte' % date_field: now})
if not allow_empty:
# When pagination is enabled, it's better to do a cheap query
# than to load the unpaginated queryset in memory.
is_empty = not qs if paginate_by is None else not qs.exists()
if is_empty:
raise Http404(_("No %(verbose_name_plural)s available") % {
'verbose_name_plural': qs.model._meta.verbose_name_plural,
})
return qs | [
"def",
"get_dated_queryset",
"(",
"self",
",",
"*",
"*",
"lookup",
")",
":",
"qs",
"=",
"self",
".",
"get_queryset",
"(",
")",
".",
"filter",
"(",
"*",
"*",
"lookup",
")",
"date_field",
"=",
"self",
".",
"get_date_field",
"(",
")",
"allow_future",
"=",
"self",
".",
"get_allow_future",
"(",
")",
"allow_empty",
"=",
"self",
".",
"get_allow_empty",
"(",
")",
"paginate_by",
"=",
"self",
".",
"get_paginate_by",
"(",
"qs",
")",
"if",
"not",
"allow_future",
":",
"now",
"=",
"timezone",
".",
"now",
"(",
")",
"if",
"self",
".",
"uses_datetime_field",
"else",
"timezone_today",
"(",
")",
"qs",
"=",
"qs",
".",
"filter",
"(",
"*",
"*",
"{",
"'%s__lte'",
"%",
"date_field",
":",
"now",
"}",
")",
"if",
"not",
"allow_empty",
":",
"# When pagination is enabled, it's better to do a cheap query",
"# than to load the unpaginated queryset in memory.",
"is_empty",
"=",
"not",
"qs",
"if",
"paginate_by",
"is",
"None",
"else",
"not",
"qs",
".",
"exists",
"(",
")",
"if",
"is_empty",
":",
"raise",
"Http404",
"(",
"_",
"(",
"\"No %(verbose_name_plural)s available\"",
")",
"%",
"{",
"'verbose_name_plural'",
":",
"qs",
".",
"model",
".",
"_meta",
".",
"verbose_name_plural",
",",
"}",
")",
"return",
"qs"
] | [
317,
4
] | [
341,
17
] | python | en | ['en', 'error', 'th'] | False |
BaseDateListView.get_date_list_period | (self) |
Get the aggregation period for the list of dates: 'year', 'month', or
'day'.
|
Get the aggregation period for the list of dates: 'year', 'month', or
'day'.
| def get_date_list_period(self):
"""
Get the aggregation period for the list of dates: 'year', 'month', or
'day'.
"""
return self.date_list_period | [
"def",
"get_date_list_period",
"(",
"self",
")",
":",
"return",
"self",
".",
"date_list_period"
] | [
343,
4
] | [
348,
36
] | python | en | ['en', 'error', 'th'] | False |
BaseDateListView.get_date_list | (self, queryset, date_type=None, ordering='ASC') |
Get a date list by calling `queryset.dates/datetimes()`, checking
along the way for empty lists that aren't allowed.
|
Get a date list by calling `queryset.dates/datetimes()`, checking
along the way for empty lists that aren't allowed.
| def get_date_list(self, queryset, date_type=None, ordering='ASC'):
"""
Get a date list by calling `queryset.dates/datetimes()`, checking
along the way for empty lists that aren't allowed.
"""
date_field = self.get_date_field()
allow_empty = self.get_allow_empty()
if date_type is None:
date_type = self.get_date_list_period()
if self.uses_datetime_field:
date_list = queryset.datetimes(date_field, date_type, ordering)
else:
date_list = queryset.dates(date_field, date_type, ordering)
if date_list is not None and not date_list and not allow_empty:
raise Http404(
_("No %(verbose_name_plural)s available") % {
'verbose_name_plural': queryset.model._meta.verbose_name_plural,
}
)
return date_list | [
"def",
"get_date_list",
"(",
"self",
",",
"queryset",
",",
"date_type",
"=",
"None",
",",
"ordering",
"=",
"'ASC'",
")",
":",
"date_field",
"=",
"self",
".",
"get_date_field",
"(",
")",
"allow_empty",
"=",
"self",
".",
"get_allow_empty",
"(",
")",
"if",
"date_type",
"is",
"None",
":",
"date_type",
"=",
"self",
".",
"get_date_list_period",
"(",
")",
"if",
"self",
".",
"uses_datetime_field",
":",
"date_list",
"=",
"queryset",
".",
"datetimes",
"(",
"date_field",
",",
"date_type",
",",
"ordering",
")",
"else",
":",
"date_list",
"=",
"queryset",
".",
"dates",
"(",
"date_field",
",",
"date_type",
",",
"ordering",
")",
"if",
"date_list",
"is",
"not",
"None",
"and",
"not",
"date_list",
"and",
"not",
"allow_empty",
":",
"raise",
"Http404",
"(",
"_",
"(",
"\"No %(verbose_name_plural)s available\"",
")",
"%",
"{",
"'verbose_name_plural'",
":",
"queryset",
".",
"model",
".",
"_meta",
".",
"verbose_name_plural",
",",
"}",
")",
"return",
"date_list"
] | [
350,
4
] | [
371,
24
] | python | en | ['en', 'error', 'th'] | False |
BaseArchiveIndexView.get_dated_items | (self) | Return (date_list, items, extra_context) for this request. | Return (date_list, items, extra_context) for this request. | def get_dated_items(self):
"""Return (date_list, items, extra_context) for this request."""
qs = self.get_dated_queryset()
date_list = self.get_date_list(qs, ordering='DESC')
if not date_list:
qs = qs.none()
return (date_list, qs, {}) | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"qs",
"=",
"self",
".",
"get_dated_queryset",
"(",
")",
"date_list",
"=",
"self",
".",
"get_date_list",
"(",
"qs",
",",
"ordering",
"=",
"'DESC'",
")",
"if",
"not",
"date_list",
":",
"qs",
"=",
"qs",
".",
"none",
"(",
")",
"return",
"(",
"date_list",
",",
"qs",
",",
"{",
"}",
")"
] | [
380,
4
] | [
388,
34
] | python | en | ['en', 'en', 'en'] | True |
BaseYearArchiveView.get_dated_items | (self) | Return (date_list, items, extra_context) for this request. | Return (date_list, items, extra_context) for this request. | def get_dated_items(self):
"""Return (date_list, items, extra_context) for this request."""
year = self.get_year()
date_field = self.get_date_field()
date = _date_from_string(year, self.get_year_format())
since = self._make_date_lookup_arg(date)
until = self._make_date_lookup_arg(self._get_next_year(date))
lookup_kwargs = {
'%s__gte' % date_field: since,
'%s__lt' % date_field: until,
}
qs = self.get_dated_queryset(**lookup_kwargs)
date_list = self.get_date_list(qs)
if not self.get_make_object_list():
# We need this to be a queryset since parent classes introspect it
# to find information about the model.
qs = qs.none()
return (date_list, qs, {
'year': date,
'next_year': self.get_next_year(date),
'previous_year': self.get_previous_year(date),
}) | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"year",
"=",
"self",
".",
"get_year",
"(",
")",
"date_field",
"=",
"self",
".",
"get_date_field",
"(",
")",
"date",
"=",
"_date_from_string",
"(",
"year",
",",
"self",
".",
"get_year_format",
"(",
")",
")",
"since",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"date",
")",
"until",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"self",
".",
"_get_next_year",
"(",
"date",
")",
")",
"lookup_kwargs",
"=",
"{",
"'%s__gte'",
"%",
"date_field",
":",
"since",
",",
"'%s__lt'",
"%",
"date_field",
":",
"until",
",",
"}",
"qs",
"=",
"self",
".",
"get_dated_queryset",
"(",
"*",
"*",
"lookup_kwargs",
")",
"date_list",
"=",
"self",
".",
"get_date_list",
"(",
"qs",
")",
"if",
"not",
"self",
".",
"get_make_object_list",
"(",
")",
":",
"# We need this to be a queryset since parent classes introspect it",
"# to find information about the model.",
"qs",
"=",
"qs",
".",
"none",
"(",
")",
"return",
"(",
"date_list",
",",
"qs",
",",
"{",
"'year'",
":",
"date",
",",
"'next_year'",
":",
"self",
".",
"get_next_year",
"(",
"date",
")",
",",
"'previous_year'",
":",
"self",
".",
"get_previous_year",
"(",
"date",
")",
",",
"}",
")"
] | [
401,
4
] | [
427,
10
] | python | en | ['en', 'en', 'en'] | True |
BaseYearArchiveView.get_make_object_list | (self) |
Return `True` if this view should contain the full list of objects in
the given year.
|
Return `True` if this view should contain the full list of objects in
the given year.
| def get_make_object_list(self):
"""
Return `True` if this view should contain the full list of objects in
the given year.
"""
return self.make_object_list | [
"def",
"get_make_object_list",
"(",
"self",
")",
":",
"return",
"self",
".",
"make_object_list"
] | [
429,
4
] | [
434,
36
] | python | en | ['en', 'error', 'th'] | False |
BaseMonthArchiveView.get_dated_items | (self) | Return (date_list, items, extra_context) for this request. | Return (date_list, items, extra_context) for this request. | def get_dated_items(self):
"""Return (date_list, items, extra_context) for this request."""
year = self.get_year()
month = self.get_month()
date_field = self.get_date_field()
date = _date_from_string(year, self.get_year_format(),
month, self.get_month_format())
since = self._make_date_lookup_arg(date)
until = self._make_date_lookup_arg(self._get_next_month(date))
lookup_kwargs = {
'%s__gte' % date_field: since,
'%s__lt' % date_field: until,
}
qs = self.get_dated_queryset(**lookup_kwargs)
date_list = self.get_date_list(qs)
return (date_list, qs, {
'month': date,
'next_month': self.get_next_month(date),
'previous_month': self.get_previous_month(date),
}) | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"year",
"=",
"self",
".",
"get_year",
"(",
")",
"month",
"=",
"self",
".",
"get_month",
"(",
")",
"date_field",
"=",
"self",
".",
"get_date_field",
"(",
")",
"date",
"=",
"_date_from_string",
"(",
"year",
",",
"self",
".",
"get_year_format",
"(",
")",
",",
"month",
",",
"self",
".",
"get_month_format",
"(",
")",
")",
"since",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"date",
")",
"until",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"self",
".",
"_get_next_month",
"(",
"date",
")",
")",
"lookup_kwargs",
"=",
"{",
"'%s__gte'",
"%",
"date_field",
":",
"since",
",",
"'%s__lt'",
"%",
"date_field",
":",
"until",
",",
"}",
"qs",
"=",
"self",
".",
"get_dated_queryset",
"(",
"*",
"*",
"lookup_kwargs",
")",
"date_list",
"=",
"self",
".",
"get_date_list",
"(",
"qs",
")",
"return",
"(",
"date_list",
",",
"qs",
",",
"{",
"'month'",
":",
"date",
",",
"'next_month'",
":",
"self",
".",
"get_next_month",
"(",
"date",
")",
",",
"'previous_month'",
":",
"self",
".",
"get_previous_month",
"(",
"date",
")",
",",
"}",
")"
] | [
446,
4
] | [
469,
10
] | python | en | ['en', 'en', 'en'] | True |
BaseWeekArchiveView.get_dated_items | (self) | Return (date_list, items, extra_context) for this request. | Return (date_list, items, extra_context) for this request. | def get_dated_items(self):
"""Return (date_list, items, extra_context) for this request."""
year = self.get_year()
week = self.get_week()
date_field = self.get_date_field()
week_format = self.get_week_format()
week_choices = {'%W': '1', '%U': '0', '%V': '1'}
try:
week_start = week_choices[week_format]
except KeyError:
raise ValueError('Unknown week format %r. Choices are: %s' % (
week_format,
', '.join(sorted(week_choices)),
))
year_format = self.get_year_format()
if week_format == '%V' and year_format != '%G':
raise ValueError(
"ISO week directive '%s' is incompatible with the year "
"directive '%s'. Use the ISO year '%%G' instead." % (
week_format, year_format,
)
)
date = _date_from_string(year, year_format, week_start, '%w', week, week_format)
since = self._make_date_lookup_arg(date)
until = self._make_date_lookup_arg(self._get_next_week(date))
lookup_kwargs = {
'%s__gte' % date_field: since,
'%s__lt' % date_field: until,
}
qs = self.get_dated_queryset(**lookup_kwargs)
return (None, qs, {
'week': date,
'next_week': self.get_next_week(date),
'previous_week': self.get_previous_week(date),
}) | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"year",
"=",
"self",
".",
"get_year",
"(",
")",
"week",
"=",
"self",
".",
"get_week",
"(",
")",
"date_field",
"=",
"self",
".",
"get_date_field",
"(",
")",
"week_format",
"=",
"self",
".",
"get_week_format",
"(",
")",
"week_choices",
"=",
"{",
"'%W'",
":",
"'1'",
",",
"'%U'",
":",
"'0'",
",",
"'%V'",
":",
"'1'",
"}",
"try",
":",
"week_start",
"=",
"week_choices",
"[",
"week_format",
"]",
"except",
"KeyError",
":",
"raise",
"ValueError",
"(",
"'Unknown week format %r. Choices are: %s'",
"%",
"(",
"week_format",
",",
"', '",
".",
"join",
"(",
"sorted",
"(",
"week_choices",
")",
")",
",",
")",
")",
"year_format",
"=",
"self",
".",
"get_year_format",
"(",
")",
"if",
"week_format",
"==",
"'%V'",
"and",
"year_format",
"!=",
"'%G'",
":",
"raise",
"ValueError",
"(",
"\"ISO week directive '%s' is incompatible with the year \"",
"\"directive '%s'. Use the ISO year '%%G' instead.\"",
"%",
"(",
"week_format",
",",
"year_format",
",",
")",
")",
"date",
"=",
"_date_from_string",
"(",
"year",
",",
"year_format",
",",
"week_start",
",",
"'%w'",
",",
"week",
",",
"week_format",
")",
"since",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"date",
")",
"until",
"=",
"self",
".",
"_make_date_lookup_arg",
"(",
"self",
".",
"_get_next_week",
"(",
"date",
")",
")",
"lookup_kwargs",
"=",
"{",
"'%s__gte'",
"%",
"date_field",
":",
"since",
",",
"'%s__lt'",
"%",
"date_field",
":",
"until",
",",
"}",
"qs",
"=",
"self",
".",
"get_dated_queryset",
"(",
"*",
"*",
"lookup_kwargs",
")",
"return",
"(",
"None",
",",
"qs",
",",
"{",
"'week'",
":",
"date",
",",
"'next_week'",
":",
"self",
".",
"get_next_week",
"(",
"date",
")",
",",
"'previous_week'",
":",
"self",
".",
"get_previous_week",
"(",
"date",
")",
",",
"}",
")"
] | [
480,
4
] | [
517,
10
] | python | en | ['en', 'en', 'en'] | True |
BaseDayArchiveView.get_dated_items | (self) | Return (date_list, items, extra_context) for this request. | Return (date_list, items, extra_context) for this request. | def get_dated_items(self):
"""Return (date_list, items, extra_context) for this request."""
year = self.get_year()
month = self.get_month()
day = self.get_day()
date = _date_from_string(year, self.get_year_format(),
month, self.get_month_format(),
day, self.get_day_format())
return self._get_dated_items(date) | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"year",
"=",
"self",
".",
"get_year",
"(",
")",
"month",
"=",
"self",
".",
"get_month",
"(",
")",
"day",
"=",
"self",
".",
"get_day",
"(",
")",
"date",
"=",
"_date_from_string",
"(",
"year",
",",
"self",
".",
"get_year_format",
"(",
")",
",",
"month",
",",
"self",
".",
"get_month_format",
"(",
")",
",",
"day",
",",
"self",
".",
"get_day_format",
"(",
")",
")",
"return",
"self",
".",
"_get_dated_items",
"(",
"date",
")"
] | [
527,
4
] | [
537,
42
] | python | en | ['en', 'en', 'en'] | True |
BaseDayArchiveView._get_dated_items | (self, date) |
Do the actual heavy lifting of getting the dated items; this accepts a
date object so that TodayArchiveView can be trivial.
|
Do the actual heavy lifting of getting the dated items; this accepts a
date object so that TodayArchiveView can be trivial.
| def _get_dated_items(self, date):
"""
Do the actual heavy lifting of getting the dated items; this accepts a
date object so that TodayArchiveView can be trivial.
"""
lookup_kwargs = self._make_single_date_lookup(date)
qs = self.get_dated_queryset(**lookup_kwargs)
return (None, qs, {
'day': date,
'previous_day': self.get_previous_day(date),
'next_day': self.get_next_day(date),
'previous_month': self.get_previous_month(date),
'next_month': self.get_next_month(date)
}) | [
"def",
"_get_dated_items",
"(",
"self",
",",
"date",
")",
":",
"lookup_kwargs",
"=",
"self",
".",
"_make_single_date_lookup",
"(",
"date",
")",
"qs",
"=",
"self",
".",
"get_dated_queryset",
"(",
"*",
"*",
"lookup_kwargs",
")",
"return",
"(",
"None",
",",
"qs",
",",
"{",
"'day'",
":",
"date",
",",
"'previous_day'",
":",
"self",
".",
"get_previous_day",
"(",
"date",
")",
",",
"'next_day'",
":",
"self",
".",
"get_next_day",
"(",
"date",
")",
",",
"'previous_month'",
":",
"self",
".",
"get_previous_month",
"(",
"date",
")",
",",
"'next_month'",
":",
"self",
".",
"get_next_month",
"(",
"date",
")",
"}",
")"
] | [
539,
4
] | [
553,
10
] | python | en | ['en', 'error', 'th'] | False |
BaseTodayArchiveView.get_dated_items | (self) | Return (date_list, items, extra_context) for this request. | Return (date_list, items, extra_context) for this request. | def get_dated_items(self):
"""Return (date_list, items, extra_context) for this request."""
return self._get_dated_items(datetime.date.today()) | [
"def",
"get_dated_items",
"(",
"self",
")",
":",
"return",
"self",
".",
"_get_dated_items",
"(",
"datetime",
".",
"date",
".",
"today",
"(",
")",
")"
] | [
564,
4
] | [
566,
59
] | python | en | ['en', 'en', 'en'] | True |
BaseDateDetailView.get_object | (self, queryset=None) | Get the object this request displays. | Get the object this request displays. | def get_object(self, queryset=None):
"""Get the object this request displays."""
year = self.get_year()
month = self.get_month()
day = self.get_day()
date = _date_from_string(year, self.get_year_format(),
month, self.get_month_format(),
day, self.get_day_format())
# Use a custom queryset if provided
qs = self.get_queryset() if queryset is None else queryset
if not self.get_allow_future() and date > datetime.date.today():
raise Http404(_(
"Future %(verbose_name_plural)s not available because "
"%(class_name)s.allow_future is False."
) % {
'verbose_name_plural': qs.model._meta.verbose_name_plural,
'class_name': self.__class__.__name__,
})
# Filter down a queryset from self.queryset using the date from the
# URL. This'll get passed as the queryset to DetailView.get_object,
# which'll handle the 404
lookup_kwargs = self._make_single_date_lookup(date)
qs = qs.filter(**lookup_kwargs)
return super().get_object(queryset=qs) | [
"def",
"get_object",
"(",
"self",
",",
"queryset",
"=",
"None",
")",
":",
"year",
"=",
"self",
".",
"get_year",
"(",
")",
"month",
"=",
"self",
".",
"get_month",
"(",
")",
"day",
"=",
"self",
".",
"get_day",
"(",
")",
"date",
"=",
"_date_from_string",
"(",
"year",
",",
"self",
".",
"get_year_format",
"(",
")",
",",
"month",
",",
"self",
".",
"get_month_format",
"(",
")",
",",
"day",
",",
"self",
".",
"get_day_format",
"(",
")",
")",
"# Use a custom queryset if provided",
"qs",
"=",
"self",
".",
"get_queryset",
"(",
")",
"if",
"queryset",
"is",
"None",
"else",
"queryset",
"if",
"not",
"self",
".",
"get_allow_future",
"(",
")",
"and",
"date",
">",
"datetime",
".",
"date",
".",
"today",
"(",
")",
":",
"raise",
"Http404",
"(",
"_",
"(",
"\"Future %(verbose_name_plural)s not available because \"",
"\"%(class_name)s.allow_future is False.\"",
")",
"%",
"{",
"'verbose_name_plural'",
":",
"qs",
".",
"model",
".",
"_meta",
".",
"verbose_name_plural",
",",
"'class_name'",
":",
"self",
".",
"__class__",
".",
"__name__",
",",
"}",
")",
"# Filter down a queryset from self.queryset using the date from the",
"# URL. This'll get passed as the queryset to DetailView.get_object,",
"# which'll handle the 404",
"lookup_kwargs",
"=",
"self",
".",
"_make_single_date_lookup",
"(",
"date",
")",
"qs",
"=",
"qs",
".",
"filter",
"(",
"*",
"*",
"lookup_kwargs",
")",
"return",
"super",
"(",
")",
".",
"get_object",
"(",
"queryset",
"=",
"qs",
")"
] | [
579,
4
] | [
606,
46
] | python | en | ['en', 'en', 'en'] | True |
PipProvider.get_preference | (
self,
identifier: str,
resolutions: Mapping[str, Candidate],
candidates: Mapping[str, Iterator[Candidate]],
information: Mapping[str, Iterator["PreferenceInformation"]],
) | Produce a sort key for given requirement based on preference.
The lower the return value is, the more preferred this group of
arguments is.
Currently pip considers the followings in order:
* Prefer if any of the known requirements is "direct", e.g. points to an
explicit URL.
* If equal, prefer if any requirement is "pinned", i.e. contains
operator ``===`` or ``==``.
* If equal, calculate an approximate "depth" and resolve requirements
closer to the user-specified requirements first.
* Order user-specified requirements by the order they are specified.
* If equal, prefers "non-free" requirements, i.e. contains at least one
operator, such as ``>=`` or ``<``.
* If equal, order alphabetically for consistency (helps debuggability).
| Produce a sort key for given requirement based on preference. | def get_preference(
self,
identifier: str,
resolutions: Mapping[str, Candidate],
candidates: Mapping[str, Iterator[Candidate]],
information: Mapping[str, Iterator["PreferenceInformation"]],
) -> "Preference":
"""Produce a sort key for given requirement based on preference.
The lower the return value is, the more preferred this group of
arguments is.
Currently pip considers the followings in order:
* Prefer if any of the known requirements is "direct", e.g. points to an
explicit URL.
* If equal, prefer if any requirement is "pinned", i.e. contains
operator ``===`` or ``==``.
* If equal, calculate an approximate "depth" and resolve requirements
closer to the user-specified requirements first.
* Order user-specified requirements by the order they are specified.
* If equal, prefers "non-free" requirements, i.e. contains at least one
operator, such as ``>=`` or ``<``.
* If equal, order alphabetically for consistency (helps debuggability).
"""
lookups = (r.get_candidate_lookup() for r, _ in information[identifier])
candidate, ireqs = zip(*lookups)
operators = [
specifier.operator
for specifier_set in (ireq.specifier for ireq in ireqs if ireq)
for specifier in specifier_set
]
direct = candidate is not None
pinned = any(op[:2] == "==" for op in operators)
unfree = bool(operators)
try:
requested_order: Union[int, float] = self._user_requested[identifier]
except KeyError:
requested_order = math.inf
parent_depths = (
self._known_depths[parent.name] if parent is not None else 0.0
for _, parent in information[identifier]
)
inferred_depth = min(d for d in parent_depths) + 1.0
self._known_depths[identifier] = inferred_depth
else:
inferred_depth = 1.0
requested_order = self._user_requested.get(identifier, math.inf)
# Requires-Python has only one candidate and the check is basically
# free, so we always do it first to avoid needless work if it fails.
requires_python = identifier == REQUIRES_PYTHON_IDENTIFIER
# HACK: Setuptools have a very long and solid backward compatibility
# track record, and extremely few projects would request a narrow,
# non-recent version range of it since that would break a lot things.
# (Most projects specify it only to request for an installer feature,
# which does not work, but that's another topic.) Intentionally
# delaying Setuptools helps reduce branches the resolver has to check.
# This serves as a temporary fix for issues like "apache-airlfow[all]"
# while we work on "proper" branch pruning techniques.
delay_this = identifier == "setuptools"
return (
not requires_python,
delay_this,
not direct,
not pinned,
inferred_depth,
requested_order,
not unfree,
identifier,
) | [
"def",
"get_preference",
"(",
"self",
",",
"identifier",
":",
"str",
",",
"resolutions",
":",
"Mapping",
"[",
"str",
",",
"Candidate",
"]",
",",
"candidates",
":",
"Mapping",
"[",
"str",
",",
"Iterator",
"[",
"Candidate",
"]",
"]",
",",
"information",
":",
"Mapping",
"[",
"str",
",",
"Iterator",
"[",
"\"PreferenceInformation\"",
"]",
"]",
",",
")",
"->",
"\"Preference\"",
":",
"lookups",
"=",
"(",
"r",
".",
"get_candidate_lookup",
"(",
")",
"for",
"r",
",",
"_",
"in",
"information",
"[",
"identifier",
"]",
")",
"candidate",
",",
"ireqs",
"=",
"zip",
"(",
"*",
"lookups",
")",
"operators",
"=",
"[",
"specifier",
".",
"operator",
"for",
"specifier_set",
"in",
"(",
"ireq",
".",
"specifier",
"for",
"ireq",
"in",
"ireqs",
"if",
"ireq",
")",
"for",
"specifier",
"in",
"specifier_set",
"]",
"direct",
"=",
"candidate",
"is",
"not",
"None",
"pinned",
"=",
"any",
"(",
"op",
"[",
":",
"2",
"]",
"==",
"\"==\"",
"for",
"op",
"in",
"operators",
")",
"unfree",
"=",
"bool",
"(",
"operators",
")",
"try",
":",
"requested_order",
":",
"Union",
"[",
"int",
",",
"float",
"]",
"=",
"self",
".",
"_user_requested",
"[",
"identifier",
"]",
"except",
"KeyError",
":",
"requested_order",
"=",
"math",
".",
"inf",
"parent_depths",
"=",
"(",
"self",
".",
"_known_depths",
"[",
"parent",
".",
"name",
"]",
"if",
"parent",
"is",
"not",
"None",
"else",
"0.0",
"for",
"_",
",",
"parent",
"in",
"information",
"[",
"identifier",
"]",
")",
"inferred_depth",
"=",
"min",
"(",
"d",
"for",
"d",
"in",
"parent_depths",
")",
"+",
"1.0",
"self",
".",
"_known_depths",
"[",
"identifier",
"]",
"=",
"inferred_depth",
"else",
":",
"inferred_depth",
"=",
"1.0",
"requested_order",
"=",
"self",
".",
"_user_requested",
".",
"get",
"(",
"identifier",
",",
"math",
".",
"inf",
")",
"# Requires-Python has only one candidate and the check is basically",
"# free, so we always do it first to avoid needless work if it fails.",
"requires_python",
"=",
"identifier",
"==",
"REQUIRES_PYTHON_IDENTIFIER",
"# HACK: Setuptools have a very long and solid backward compatibility",
"# track record, and extremely few projects would request a narrow,",
"# non-recent version range of it since that would break a lot things.",
"# (Most projects specify it only to request for an installer feature,",
"# which does not work, but that's another topic.) Intentionally",
"# delaying Setuptools helps reduce branches the resolver has to check.",
"# This serves as a temporary fix for issues like \"apache-airlfow[all]\"",
"# while we work on \"proper\" branch pruning techniques.",
"delay_this",
"=",
"identifier",
"==",
"\"setuptools\"",
"return",
"(",
"not",
"requires_python",
",",
"delay_this",
",",
"not",
"direct",
",",
"not",
"pinned",
",",
"inferred_depth",
",",
"requested_order",
",",
"not",
"unfree",
",",
"identifier",
",",
")"
] | [
68,
4
] | [
143,
9
] | python | en | ['en', 'en', 'en'] | True |
opener_for | (ca_bundle=None) | Get a urlopen() replacement that uses ca_bundle for verification | Get a urlopen() replacement that uses ca_bundle for verification | def opener_for(ca_bundle=None):
"""Get a urlopen() replacement that uses ca_bundle for verification"""
return urllib.request.build_opener(
VerifyingHTTPSHandler(ca_bundle or find_ca_bundle())
).open | [
"def",
"opener_for",
"(",
"ca_bundle",
"=",
"None",
")",
":",
"return",
"urllib",
".",
"request",
".",
"build_opener",
"(",
"VerifyingHTTPSHandler",
"(",
"ca_bundle",
"or",
"find_ca_bundle",
"(",
")",
")",
")",
".",
"open"
] | [
204,
0
] | [
208,
10
] | python | en | ['en', 'en', 'en'] | True |
find_ca_bundle | () | Return an existing CA bundle path, or None | Return an existing CA bundle path, or None | def find_ca_bundle():
"""Return an existing CA bundle path, or None"""
extant_cert_paths = filter(os.path.isfile, cert_paths)
return (
get_win_certfile()
or next(extant_cert_paths, None)
or _certifi_where()
) | [
"def",
"find_ca_bundle",
"(",
")",
":",
"extant_cert_paths",
"=",
"filter",
"(",
"os",
".",
"path",
".",
"isfile",
",",
"cert_paths",
")",
"return",
"(",
"get_win_certfile",
"(",
")",
"or",
"next",
"(",
"extant_cert_paths",
",",
"None",
")",
"or",
"_certifi_where",
"(",
")",
")"
] | [
245,
0
] | [
252,
5
] | python | en | ['en', 'en', 'en'] | True |
client_with_credentials | (app) | This fixture provides a Flask app test client that has a session
pre-configured with use credentials. | This fixture provides a Flask app test client that has a session
pre-configured with use credentials. | def client_with_credentials(app):
"""This fixture provides a Flask app test client that has a session
pre-configured with use credentials."""
credentials = OAuth2Credentials(
'access_token',
'client_id',
'client_secret',
'refresh_token',
'3600',
None,
'Test',
id_token={'sub': '123', 'email': '[email protected]'},
scopes=('email', 'profile'))
@contextlib.contextmanager
def inner():
with app.test_client() as client:
with client.session_transaction() as session:
session['profile'] = {
'email': '[email protected]',
'name': 'Test User'
}
session['google_oauth2_credentials'] = credentials.to_json()
yield client
return inner | [
"def",
"client_with_credentials",
"(",
"app",
")",
":",
"credentials",
"=",
"OAuth2Credentials",
"(",
"'access_token'",
",",
"'client_id'",
",",
"'client_secret'",
",",
"'refresh_token'",
",",
"'3600'",
",",
"None",
",",
"'Test'",
",",
"id_token",
"=",
"{",
"'sub'",
":",
"'123'",
",",
"'email'",
":",
"'[email protected]'",
"}",
",",
"scopes",
"=",
"(",
"'email'",
",",
"'profile'",
")",
")",
"@",
"contextlib",
".",
"contextmanager",
"def",
"inner",
"(",
")",
":",
"with",
"app",
".",
"test_client",
"(",
")",
"as",
"client",
":",
"with",
"client",
".",
"session_transaction",
"(",
")",
"as",
"session",
":",
"session",
"[",
"'profile'",
"]",
"=",
"{",
"'email'",
":",
"'[email protected]'",
",",
"'name'",
":",
"'Test User'",
"}",
"session",
"[",
"'google_oauth2_credentials'",
"]",
"=",
"credentials",
".",
"to_json",
"(",
")",
"yield",
"client",
"return",
"inner"
] | [
25,
0
] | [
50,
16
] | python | en | ['en', 'en', 'en'] | True |
Menu.run | (self) | Display the menu and respond to choices | Display the menu and respond to choices | def run(self):
"Display the menu and respond to choices"
while True:
self.display_menu()
choice = raw_input("> ")
action = self.choices.get(choice)
if action:
action()
else:
print "{0} is not a valid choice".format(choice) | [
"def",
"run",
"(",
"self",
")",
":",
"while",
"True",
":",
"self",
".",
"display_menu",
"(",
")",
"choice",
"=",
"raw_input",
"(",
"\"> \"",
")",
"action",
"=",
"self",
".",
"choices",
".",
"get",
"(",
"choice",
")",
"if",
"action",
":",
"action",
"(",
")",
"else",
":",
"print",
"\"{0} is not a valid choice\"",
".",
"format",
"(",
"choice",
")"
] | [
24,
4
] | [
33,
64
] | python | en | ['en', 'en', 'en'] | True |
_load_client_secrets | (filename) | Loads client secrets from the given filename.
Args:
filename: The name of the file containing the JSON secret key.
Returns:
A 2-tuple, the first item containing the client id, and the second
item containing a client secret.
| Loads client secrets from the given filename. | def _load_client_secrets(filename):
"""Loads client secrets from the given filename.
Args:
filename: The name of the file containing the JSON secret key.
Returns:
A 2-tuple, the first item containing the client id, and the second
item containing a client secret.
"""
client_type, client_info = clientsecrets.loadfile(filename)
if client_type != clientsecrets.TYPE_WEB:
raise ValueError(
'The flow specified in {} is not supported, only the WEB flow '
'type is supported.'.format(client_type))
return client_info['client_id'], client_info['client_secret'] | [
"def",
"_load_client_secrets",
"(",
"filename",
")",
":",
"client_type",
",",
"client_info",
"=",
"clientsecrets",
".",
"loadfile",
"(",
"filename",
")",
"if",
"client_type",
"!=",
"clientsecrets",
".",
"TYPE_WEB",
":",
"raise",
"ValueError",
"(",
"'The flow specified in {} is not supported, only the WEB flow '",
"'type is supported.'",
".",
"format",
"(",
"client_type",
")",
")",
"return",
"client_info",
"[",
"'client_id'",
"]",
",",
"client_info",
"[",
"'client_secret'",
"]"
] | [
244,
0
] | [
260,
65
] | python | en | ['en', 'en', 'en'] | True |
_get_oauth2_client_id_and_secret | (settings_instance) | Initializes client id and client secret based on the settings.
Args:
settings_instance: An instance of ``django.conf.settings``.
Returns:
A 2-tuple, the first item is the client id and the second
item is the client secret.
| Initializes client id and client secret based on the settings. | def _get_oauth2_client_id_and_secret(settings_instance):
"""Initializes client id and client secret based on the settings.
Args:
settings_instance: An instance of ``django.conf.settings``.
Returns:
A 2-tuple, the first item is the client id and the second
item is the client secret.
"""
secret_json = getattr(settings_instance,
'GOOGLE_OAUTH2_CLIENT_SECRETS_JSON', None)
if secret_json is not None:
return _load_client_secrets(secret_json)
else:
client_id = getattr(settings_instance, "GOOGLE_OAUTH2_CLIENT_ID",
None)
client_secret = getattr(settings_instance,
"GOOGLE_OAUTH2_CLIENT_SECRET", None)
if client_id is not None and client_secret is not None:
return client_id, client_secret
else:
raise exceptions.ImproperlyConfigured(
"Must specify either GOOGLE_OAUTH2_CLIENT_SECRETS_JSON, or "
"both GOOGLE_OAUTH2_CLIENT_ID and "
"GOOGLE_OAUTH2_CLIENT_SECRET in settings.py") | [
"def",
"_get_oauth2_client_id_and_secret",
"(",
"settings_instance",
")",
":",
"secret_json",
"=",
"getattr",
"(",
"settings_instance",
",",
"'GOOGLE_OAUTH2_CLIENT_SECRETS_JSON'",
",",
"None",
")",
"if",
"secret_json",
"is",
"not",
"None",
":",
"return",
"_load_client_secrets",
"(",
"secret_json",
")",
"else",
":",
"client_id",
"=",
"getattr",
"(",
"settings_instance",
",",
"\"GOOGLE_OAUTH2_CLIENT_ID\"",
",",
"None",
")",
"client_secret",
"=",
"getattr",
"(",
"settings_instance",
",",
"\"GOOGLE_OAUTH2_CLIENT_SECRET\"",
",",
"None",
")",
"if",
"client_id",
"is",
"not",
"None",
"and",
"client_secret",
"is",
"not",
"None",
":",
"return",
"client_id",
",",
"client_secret",
"else",
":",
"raise",
"exceptions",
".",
"ImproperlyConfigured",
"(",
"\"Must specify either GOOGLE_OAUTH2_CLIENT_SECRETS_JSON, or \"",
"\"both GOOGLE_OAUTH2_CLIENT_ID and \"",
"\"GOOGLE_OAUTH2_CLIENT_SECRET in settings.py\"",
")"
] | [
263,
0
] | [
288,
61
] | python | en | ['en', 'en', 'en'] | True |
_get_storage_model | () | This configures whether the credentials will be stored in the session
or the Django ORM based on the settings. By default, the credentials
will be stored in the session, unless `GOOGLE_OAUTH2_STORAGE_MODEL`
is found in the settings. Usually, the ORM storage is used to integrate
credentials into an existing Django user system.
Returns:
A tuple containing three strings, or None. If
``GOOGLE_OAUTH2_STORAGE_MODEL`` is configured, the tuple
will contain the fully qualifed path of the `django.db.model`,
the name of the ``django.contrib.auth.models.User`` field on the
model, and the name of the
:class:`oauth2client.contrib.django_util.models.CredentialsField`
field on the model. If Django ORM storage is not configured,
this function returns None.
| This configures whether the credentials will be stored in the session
or the Django ORM based on the settings. By default, the credentials
will be stored in the session, unless `GOOGLE_OAUTH2_STORAGE_MODEL`
is found in the settings. Usually, the ORM storage is used to integrate
credentials into an existing Django user system. | def _get_storage_model():
"""This configures whether the credentials will be stored in the session
or the Django ORM based on the settings. By default, the credentials
will be stored in the session, unless `GOOGLE_OAUTH2_STORAGE_MODEL`
is found in the settings. Usually, the ORM storage is used to integrate
credentials into an existing Django user system.
Returns:
A tuple containing three strings, or None. If
``GOOGLE_OAUTH2_STORAGE_MODEL`` is configured, the tuple
will contain the fully qualifed path of the `django.db.model`,
the name of the ``django.contrib.auth.models.User`` field on the
model, and the name of the
:class:`oauth2client.contrib.django_util.models.CredentialsField`
field on the model. If Django ORM storage is not configured,
this function returns None.
"""
storage_model_settings = getattr(django.conf.settings,
'GOOGLE_OAUTH2_STORAGE_MODEL', None)
if storage_model_settings is not None:
return (storage_model_settings['model'],
storage_model_settings['user_property'],
storage_model_settings['credentials_property'])
else:
return None, None, None | [
"def",
"_get_storage_model",
"(",
")",
":",
"storage_model_settings",
"=",
"getattr",
"(",
"django",
".",
"conf",
".",
"settings",
",",
"'GOOGLE_OAUTH2_STORAGE_MODEL'",
",",
"None",
")",
"if",
"storage_model_settings",
"is",
"not",
"None",
":",
"return",
"(",
"storage_model_settings",
"[",
"'model'",
"]",
",",
"storage_model_settings",
"[",
"'user_property'",
"]",
",",
"storage_model_settings",
"[",
"'credentials_property'",
"]",
")",
"else",
":",
"return",
"None",
",",
"None",
",",
"None"
] | [
291,
0
] | [
315,
31
] | python | en | ['en', 'en', 'en'] | True |
get_storage | (request) | Gets a Credentials storage object provided by the Django OAuth2 Helper
object.
Args:
request: Reference to the current request object.
Returns:
An :class:`oauth2.client.Storage` object.
| Gets a Credentials storage object provided by the Django OAuth2 Helper
object. | def get_storage(request):
""" Gets a Credentials storage object provided by the Django OAuth2 Helper
object.
Args:
request: Reference to the current request object.
Returns:
An :class:`oauth2.client.Storage` object.
"""
storage_model = oauth2_settings.storage_model
user_property = oauth2_settings.storage_model_user_property
credentials_property = oauth2_settings.storage_model_credentials_property
if storage_model:
module_name, class_name = storage_model.rsplit('.', 1)
module = importlib.import_module(module_name)
storage_model_class = getattr(module, class_name)
return storage.DjangoORMStorage(storage_model_class,
user_property,
request.user,
credentials_property)
else:
# use session
return dictionary_storage.DictionaryStorage(
request.session, key=_CREDENTIALS_KEY) | [
"def",
"get_storage",
"(",
"request",
")",
":",
"storage_model",
"=",
"oauth2_settings",
".",
"storage_model",
"user_property",
"=",
"oauth2_settings",
".",
"storage_model_user_property",
"credentials_property",
"=",
"oauth2_settings",
".",
"storage_model_credentials_property",
"if",
"storage_model",
":",
"module_name",
",",
"class_name",
"=",
"storage_model",
".",
"rsplit",
"(",
"'.'",
",",
"1",
")",
"module",
"=",
"importlib",
".",
"import_module",
"(",
"module_name",
")",
"storage_model_class",
"=",
"getattr",
"(",
"module",
",",
"class_name",
")",
"return",
"storage",
".",
"DjangoORMStorage",
"(",
"storage_model_class",
",",
"user_property",
",",
"request",
".",
"user",
",",
"credentials_property",
")",
"else",
":",
"# use session",
"return",
"dictionary_storage",
".",
"DictionaryStorage",
"(",
"request",
".",
"session",
",",
"key",
"=",
"_CREDENTIALS_KEY",
")"
] | [
369,
0
] | [
394,
50
] | python | en | ['en', 'en', 'en'] | True |
_redirect_with_params | (url_name, *args, **kwargs) | Helper method to create a redirect response with URL params.
This builds a redirect string that converts kwargs into a
query string.
Args:
url_name: The name of the url to redirect to.
kwargs: the query string param and their values to build.
Returns:
A properly formatted redirect string.
| Helper method to create a redirect response with URL params. | def _redirect_with_params(url_name, *args, **kwargs):
"""Helper method to create a redirect response with URL params.
This builds a redirect string that converts kwargs into a
query string.
Args:
url_name: The name of the url to redirect to.
kwargs: the query string param and their values to build.
Returns:
A properly formatted redirect string.
"""
url = urlresolvers.reverse(url_name, args=args)
params = parse.urlencode(kwargs, True)
return "{0}?{1}".format(url, params) | [
"def",
"_redirect_with_params",
"(",
"url_name",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"url",
"=",
"urlresolvers",
".",
"reverse",
"(",
"url_name",
",",
"args",
"=",
"args",
")",
"params",
"=",
"parse",
".",
"urlencode",
"(",
"kwargs",
",",
"True",
")",
"return",
"\"{0}?{1}\"",
".",
"format",
"(",
"url",
",",
"params",
")"
] | [
397,
0
] | [
412,
40
] | python | en | ['en', 'en', 'en'] | True |
_credentials_from_request | (request) | Gets the authorized credentials for this flow, if they exist. | Gets the authorized credentials for this flow, if they exist. | def _credentials_from_request(request):
"""Gets the authorized credentials for this flow, if they exist."""
# ORM storage requires a logged in user
if (oauth2_settings.storage_model is None or
request.user.is_authenticated()):
return get_storage(request).get()
else:
return None | [
"def",
"_credentials_from_request",
"(",
"request",
")",
":",
"# ORM storage requires a logged in user",
"if",
"(",
"oauth2_settings",
".",
"storage_model",
"is",
"None",
"or",
"request",
".",
"user",
".",
"is_authenticated",
"(",
")",
")",
":",
"return",
"get_storage",
"(",
"request",
")",
".",
"get",
"(",
")",
"else",
":",
"return",
"None"
] | [
415,
0
] | [
422,
19
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2.__init__ | (self, request, scopes=None, return_url=None) | Initialize the Oauth2 Object.
Args:
request: Django request object.
scopes: Scopes desired for this OAuth2 flow.
return_url: The url to return to after the OAuth flow is complete,
defaults to the request's current URL path.
| Initialize the Oauth2 Object. | def __init__(self, request, scopes=None, return_url=None):
"""Initialize the Oauth2 Object.
Args:
request: Django request object.
scopes: Scopes desired for this OAuth2 flow.
return_url: The url to return to after the OAuth flow is complete,
defaults to the request's current URL path.
"""
self.request = request
self.return_url = return_url or request.get_full_path()
if scopes:
self._scopes = set(oauth2_settings.scopes) | set(scopes)
else:
self._scopes = set(oauth2_settings.scopes) | [
"def",
"__init__",
"(",
"self",
",",
"request",
",",
"scopes",
"=",
"None",
",",
"return_url",
"=",
"None",
")",
":",
"self",
".",
"request",
"=",
"request",
"self",
".",
"return_url",
"=",
"return_url",
"or",
"request",
".",
"get_full_path",
"(",
")",
"if",
"scopes",
":",
"self",
".",
"_scopes",
"=",
"set",
"(",
"oauth2_settings",
".",
"scopes",
")",
"|",
"set",
"(",
"scopes",
")",
"else",
":",
"self",
".",
"_scopes",
"=",
"set",
"(",
"oauth2_settings",
".",
"scopes",
")"
] | [
430,
4
] | [
444,
54
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2.get_authorize_redirect | (self) | Creates a URl to start the OAuth2 authorization flow. | Creates a URl to start the OAuth2 authorization flow. | def get_authorize_redirect(self):
"""Creates a URl to start the OAuth2 authorization flow."""
get_params = {
'return_url': self.return_url,
'scopes': self._get_scopes()
}
return _redirect_with_params('google_oauth:authorize', **get_params) | [
"def",
"get_authorize_redirect",
"(",
"self",
")",
":",
"get_params",
"=",
"{",
"'return_url'",
":",
"self",
".",
"return_url",
",",
"'scopes'",
":",
"self",
".",
"_get_scopes",
"(",
")",
"}",
"return",
"_redirect_with_params",
"(",
"'google_oauth:authorize'",
",",
"*",
"*",
"get_params",
")"
] | [
446,
4
] | [
453,
76
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2.has_credentials | (self) | Returns True if there are valid credentials for the current user
and required scopes. | Returns True if there are valid credentials for the current user
and required scopes. | def has_credentials(self):
"""Returns True if there are valid credentials for the current user
and required scopes."""
credentials = _credentials_from_request(self.request)
return (credentials and not credentials.invalid and
credentials.has_scopes(self._get_scopes())) | [
"def",
"has_credentials",
"(",
"self",
")",
":",
"credentials",
"=",
"_credentials_from_request",
"(",
"self",
".",
"request",
")",
"return",
"(",
"credentials",
"and",
"not",
"credentials",
".",
"invalid",
"and",
"credentials",
".",
"has_scopes",
"(",
"self",
".",
"_get_scopes",
"(",
")",
")",
")"
] | [
455,
4
] | [
460,
59
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2._get_scopes | (self) | Returns the scopes associated with this object, kept up to
date for incremental auth. | Returns the scopes associated with this object, kept up to
date for incremental auth. | def _get_scopes(self):
"""Returns the scopes associated with this object, kept up to
date for incremental auth."""
if _credentials_from_request(self.request):
return (self._scopes |
_credentials_from_request(self.request).scopes)
else:
return self._scopes | [
"def",
"_get_scopes",
"(",
"self",
")",
":",
"if",
"_credentials_from_request",
"(",
"self",
".",
"request",
")",
":",
"return",
"(",
"self",
".",
"_scopes",
"|",
"_credentials_from_request",
"(",
"self",
".",
"request",
")",
".",
"scopes",
")",
"else",
":",
"return",
"self",
".",
"_scopes"
] | [
462,
4
] | [
469,
31
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2.scopes | (self) | Returns the scopes associated with this OAuth2 object. | Returns the scopes associated with this OAuth2 object. | def scopes(self):
"""Returns the scopes associated with this OAuth2 object."""
# make sure previously requested custom scopes are maintained
# in future authorizations
return self._get_scopes() | [
"def",
"scopes",
"(",
"self",
")",
":",
"# make sure previously requested custom scopes are maintained",
"# in future authorizations",
"return",
"self",
".",
"_get_scopes",
"(",
")"
] | [
472,
4
] | [
476,
33
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2.credentials | (self) | Gets the authorized credentials for this flow, if they exist. | Gets the authorized credentials for this flow, if they exist. | def credentials(self):
"""Gets the authorized credentials for this flow, if they exist."""
return _credentials_from_request(self.request) | [
"def",
"credentials",
"(",
"self",
")",
":",
"return",
"_credentials_from_request",
"(",
"self",
".",
"request",
")"
] | [
479,
4
] | [
481,
54
] | python | en | ['en', 'en', 'en'] | True |
UserOAuth2.http | (self) | Helper: create HTTP client authorized with OAuth2 credentials. | Helper: create HTTP client authorized with OAuth2 credentials. | def http(self):
"""Helper: create HTTP client authorized with OAuth2 credentials."""
if self.has_credentials():
return self.credentials.authorize(transport.get_http_object())
return None | [
"def",
"http",
"(",
"self",
")",
":",
"if",
"self",
".",
"has_credentials",
"(",
")",
":",
"return",
"self",
".",
"credentials",
".",
"authorize",
"(",
"transport",
".",
"get_http_object",
"(",
")",
")",
"return",
"None"
] | [
484,
4
] | [
488,
19
] | python | en | ['en', 'en', 'en'] | True |
keygen | () | Key generator. | Key generator. | def keygen():
"""Key generator."""
# Parse the CLI options
parser = OptionParser(usage='usage: %prog [options] keysize',
description='Generates a new RSA keypair of "keysize" bits.')
parser.add_option('--pubout', type='string',
help='Output filename for the public key. The public key is '
'not saved if this option is not present. You can use '
'pyrsa-priv2pub to create the public key file later.')
parser.add_option('-o', '--out', type='string',
help='Output filename for the private key. The key is '
'written to stdout if this option is not present.')
parser.add_option('--form',
help='key format of the private and public keys - default PEM',
choices=('PEM', 'DER'), default='PEM')
(cli, cli_args) = parser.parse_args(sys.argv[1:])
if len(cli_args) != 1:
parser.print_help()
raise SystemExit(1)
try:
keysize = int(cli_args[0])
except ValueError:
parser.print_help()
print('Not a valid number: %s' % cli_args[0], file=sys.stderr)
raise SystemExit(1)
print('Generating %i-bit key' % keysize, file=sys.stderr)
(pub_key, priv_key) = rsa.newkeys(keysize)
# Save public key
if cli.pubout:
print('Writing public key to %s' % cli.pubout, file=sys.stderr)
data = pub_key.save_pkcs1(format=cli.form)
with open(cli.pubout, 'wb') as outfile:
outfile.write(data)
# Save private key
data = priv_key.save_pkcs1(format=cli.form)
if cli.out:
print('Writing private key to %s' % cli.out, file=sys.stderr)
with open(cli.out, 'wb') as outfile:
outfile.write(data)
else:
print('Writing private key to stdout', file=sys.stderr)
rsa._compat.write_to_stdout(data) | [
"def",
"keygen",
"(",
")",
":",
"# Parse the CLI options",
"parser",
"=",
"OptionParser",
"(",
"usage",
"=",
"'usage: %prog [options] keysize'",
",",
"description",
"=",
"'Generates a new RSA keypair of \"keysize\" bits.'",
")",
"parser",
".",
"add_option",
"(",
"'--pubout'",
",",
"type",
"=",
"'string'",
",",
"help",
"=",
"'Output filename for the public key. The public key is '",
"'not saved if this option is not present. You can use '",
"'pyrsa-priv2pub to create the public key file later.'",
")",
"parser",
".",
"add_option",
"(",
"'-o'",
",",
"'--out'",
",",
"type",
"=",
"'string'",
",",
"help",
"=",
"'Output filename for the private key. The key is '",
"'written to stdout if this option is not present.'",
")",
"parser",
".",
"add_option",
"(",
"'--form'",
",",
"help",
"=",
"'key format of the private and public keys - default PEM'",
",",
"choices",
"=",
"(",
"'PEM'",
",",
"'DER'",
")",
",",
"default",
"=",
"'PEM'",
")",
"(",
"cli",
",",
"cli_args",
")",
"=",
"parser",
".",
"parse_args",
"(",
"sys",
".",
"argv",
"[",
"1",
":",
"]",
")",
"if",
"len",
"(",
"cli_args",
")",
"!=",
"1",
":",
"parser",
".",
"print_help",
"(",
")",
"raise",
"SystemExit",
"(",
"1",
")",
"try",
":",
"keysize",
"=",
"int",
"(",
"cli_args",
"[",
"0",
"]",
")",
"except",
"ValueError",
":",
"parser",
".",
"print_help",
"(",
")",
"print",
"(",
"'Not a valid number: %s'",
"%",
"cli_args",
"[",
"0",
"]",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"raise",
"SystemExit",
"(",
"1",
")",
"print",
"(",
"'Generating %i-bit key'",
"%",
"keysize",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"(",
"pub_key",
",",
"priv_key",
")",
"=",
"rsa",
".",
"newkeys",
"(",
"keysize",
")",
"# Save public key",
"if",
"cli",
".",
"pubout",
":",
"print",
"(",
"'Writing public key to %s'",
"%",
"cli",
".",
"pubout",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"data",
"=",
"pub_key",
".",
"save_pkcs1",
"(",
"format",
"=",
"cli",
".",
"form",
")",
"with",
"open",
"(",
"cli",
".",
"pubout",
",",
"'wb'",
")",
"as",
"outfile",
":",
"outfile",
".",
"write",
"(",
"data",
")",
"# Save private key",
"data",
"=",
"priv_key",
".",
"save_pkcs1",
"(",
"format",
"=",
"cli",
".",
"form",
")",
"if",
"cli",
".",
"out",
":",
"print",
"(",
"'Writing private key to %s'",
"%",
"cli",
".",
"out",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"with",
"open",
"(",
"cli",
".",
"out",
",",
"'wb'",
")",
"as",
"outfile",
":",
"outfile",
".",
"write",
"(",
"data",
")",
"else",
":",
"print",
"(",
"'Writing private key to stdout'",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"rsa",
".",
"_compat",
".",
"write_to_stdout",
"(",
"data",
")"
] | [
33,
0
] | [
85,
41
] | python | de | ['de', 'uk', 'en'] | False |
CryptoOperation.perform_operation | (self, indata, key, cli_args) | Performs the program's operation.
Implement in a subclass.
:returns: the data to write to the output.
| Performs the program's operation. | def perform_operation(self, indata, key, cli_args):
"""Performs the program's operation.
Implement in a subclass.
:returns: the data to write to the output.
""" | [
"def",
"perform_operation",
"(",
"self",
",",
"indata",
",",
"key",
",",
"cli_args",
")",
":"
] | [
114,
4
] | [
120,
11
] | python | en | ['en', 'en', 'en'] | True |
CryptoOperation.__call__ | (self) | Runs the program. | Runs the program. | def __call__(self):
"""Runs the program."""
(cli, cli_args) = self.parse_cli()
key = self.read_key(cli_args[0], cli.keyform)
indata = self.read_infile(cli.input)
print(self.operation_progressive.title(), file=sys.stderr)
outdata = self.perform_operation(indata, key, cli_args)
if self.has_output:
self.write_outfile(outdata, cli.output) | [
"def",
"__call__",
"(",
"self",
")",
":",
"(",
"cli",
",",
"cli_args",
")",
"=",
"self",
".",
"parse_cli",
"(",
")",
"key",
"=",
"self",
".",
"read_key",
"(",
"cli_args",
"[",
"0",
"]",
",",
"cli",
".",
"keyform",
")",
"indata",
"=",
"self",
".",
"read_infile",
"(",
"cli",
".",
"input",
")",
"print",
"(",
"self",
".",
"operation_progressive",
".",
"title",
"(",
")",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"outdata",
"=",
"self",
".",
"perform_operation",
"(",
"indata",
",",
"key",
",",
"cli_args",
")",
"if",
"self",
".",
"has_output",
":",
"self",
".",
"write_outfile",
"(",
"outdata",
",",
"cli",
".",
"output",
")"
] | [
122,
4
] | [
135,
51
] | python | en | ['en', 'sv', 'en'] | True |
CryptoOperation.parse_cli | (self) | Parse the CLI options
:returns: (cli_opts, cli_args)
| Parse the CLI options | def parse_cli(self):
"""Parse the CLI options
:returns: (cli_opts, cli_args)
"""
parser = OptionParser(usage=self.usage, description=self.description)
parser.add_option('-i', '--input', type='string', help=self.input_help)
if self.has_output:
parser.add_option('-o', '--output', type='string', help=self.output_help)
parser.add_option('--keyform',
help='Key format of the %s key - default PEM' % self.keyname,
choices=('PEM', 'DER'), default='PEM')
(cli, cli_args) = parser.parse_args(sys.argv[1:])
if len(cli_args) != self.expected_cli_args:
parser.print_help()
raise SystemExit(1)
return cli, cli_args | [
"def",
"parse_cli",
"(",
"self",
")",
":",
"parser",
"=",
"OptionParser",
"(",
"usage",
"=",
"self",
".",
"usage",
",",
"description",
"=",
"self",
".",
"description",
")",
"parser",
".",
"add_option",
"(",
"'-i'",
",",
"'--input'",
",",
"type",
"=",
"'string'",
",",
"help",
"=",
"self",
".",
"input_help",
")",
"if",
"self",
".",
"has_output",
":",
"parser",
".",
"add_option",
"(",
"'-o'",
",",
"'--output'",
",",
"type",
"=",
"'string'",
",",
"help",
"=",
"self",
".",
"output_help",
")",
"parser",
".",
"add_option",
"(",
"'--keyform'",
",",
"help",
"=",
"'Key format of the %s key - default PEM'",
"%",
"self",
".",
"keyname",
",",
"choices",
"=",
"(",
"'PEM'",
",",
"'DER'",
")",
",",
"default",
"=",
"'PEM'",
")",
"(",
"cli",
",",
"cli_args",
")",
"=",
"parser",
".",
"parse_args",
"(",
"sys",
".",
"argv",
"[",
"1",
":",
"]",
")",
"if",
"len",
"(",
"cli_args",
")",
"!=",
"self",
".",
"expected_cli_args",
":",
"parser",
".",
"print_help",
"(",
")",
"raise",
"SystemExit",
"(",
"1",
")",
"return",
"cli",
",",
"cli_args"
] | [
137,
4
] | [
160,
28
] | python | en | ['en', 'en', 'en'] | True |
CryptoOperation.read_key | (self, filename, keyform) | Reads a public or private key. | Reads a public or private key. | def read_key(self, filename, keyform):
"""Reads a public or private key."""
print('Reading %s key from %s' % (self.keyname, filename), file=sys.stderr)
with open(filename, 'rb') as keyfile:
keydata = keyfile.read()
return self.key_class.load_pkcs1(keydata, keyform) | [
"def",
"read_key",
"(",
"self",
",",
"filename",
",",
"keyform",
")",
":",
"print",
"(",
"'Reading %s key from %s'",
"%",
"(",
"self",
".",
"keyname",
",",
"filename",
")",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"keyfile",
":",
"keydata",
"=",
"keyfile",
".",
"read",
"(",
")",
"return",
"self",
".",
"key_class",
".",
"load_pkcs1",
"(",
"keydata",
",",
"keyform",
")"
] | [
162,
4
] | [
169,
58
] | python | en | ['en', 'en', 'en'] | True |
CryptoOperation.read_infile | (self, inname) | Read the input file | Read the input file | def read_infile(self, inname):
"""Read the input file"""
if inname:
print('Reading input from %s' % inname, file=sys.stderr)
with open(inname, 'rb') as infile:
return infile.read()
print('Reading input from stdin', file=sys.stderr)
return sys.stdin.read() | [
"def",
"read_infile",
"(",
"self",
",",
"inname",
")",
":",
"if",
"inname",
":",
"print",
"(",
"'Reading input from %s'",
"%",
"inname",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"with",
"open",
"(",
"inname",
",",
"'rb'",
")",
"as",
"infile",
":",
"return",
"infile",
".",
"read",
"(",
")",
"print",
"(",
"'Reading input from stdin'",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"return",
"sys",
".",
"stdin",
".",
"read",
"(",
")"
] | [
171,
4
] | [
180,
31
] | python | en | ['en', 'en', 'en'] | True |
CryptoOperation.write_outfile | (self, outdata, outname) | Write the output file | Write the output file | def write_outfile(self, outdata, outname):
"""Write the output file"""
if outname:
print('Writing output to %s' % outname, file=sys.stderr)
with open(outname, 'wb') as outfile:
outfile.write(outdata)
else:
print('Writing output to stdout', file=sys.stderr)
rsa._compat.write_to_stdout(outdata) | [
"def",
"write_outfile",
"(",
"self",
",",
"outdata",
",",
"outname",
")",
":",
"if",
"outname",
":",
"print",
"(",
"'Writing output to %s'",
"%",
"outname",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"with",
"open",
"(",
"outname",
",",
"'wb'",
")",
"as",
"outfile",
":",
"outfile",
".",
"write",
"(",
"outdata",
")",
"else",
":",
"print",
"(",
"'Writing output to stdout'",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"rsa",
".",
"_compat",
".",
"write_to_stdout",
"(",
"outdata",
")"
] | [
182,
4
] | [
191,
48
] | python | en | ['en', 'sm', 'en'] | True |
EncryptOperation.perform_operation | (self, indata, pub_key, cli_args=None) | Encrypts files. | Encrypts files. | def perform_operation(self, indata, pub_key, cli_args=None):
"""Encrypts files."""
return rsa.encrypt(indata, pub_key) | [
"def",
"perform_operation",
"(",
"self",
",",
"indata",
",",
"pub_key",
",",
"cli_args",
"=",
"None",
")",
":",
"return",
"rsa",
".",
"encrypt",
"(",
"indata",
",",
"pub_key",
")"
] | [
204,
4
] | [
207,
43
] | python | en | ['en', 'ht', 'en'] | False |
DecryptOperation.perform_operation | (self, indata, priv_key, cli_args=None) | Decrypts files. | Decrypts files. | def perform_operation(self, indata, priv_key, cli_args=None):
"""Decrypts files."""
return rsa.decrypt(indata, priv_key) | [
"def",
"perform_operation",
"(",
"self",
",",
"indata",
",",
"priv_key",
",",
"cli_args",
"=",
"None",
")",
":",
"return",
"rsa",
".",
"decrypt",
"(",
"indata",
",",
"priv_key",
")"
] | [
221,
4
] | [
224,
44
] | python | en | ['en', 'lv', 'en'] | False |
SignOperation.perform_operation | (self, indata, priv_key, cli_args) | Signs files. | Signs files. | def perform_operation(self, indata, priv_key, cli_args):
"""Signs files."""
hash_method = cli_args[1]
if hash_method not in HASH_METHODS:
raise SystemExit('Invalid hash method, choose one of %s' %
', '.join(HASH_METHODS))
return rsa.sign(indata, priv_key, hash_method) | [
"def",
"perform_operation",
"(",
"self",
",",
"indata",
",",
"priv_key",
",",
"cli_args",
")",
":",
"hash_method",
"=",
"cli_args",
"[",
"1",
"]",
"if",
"hash_method",
"not",
"in",
"HASH_METHODS",
":",
"raise",
"SystemExit",
"(",
"'Invalid hash method, choose one of %s'",
"%",
"', '",
".",
"join",
"(",
"HASH_METHODS",
")",
")",
"return",
"rsa",
".",
"sign",
"(",
"indata",
",",
"priv_key",
",",
"hash_method",
")"
] | [
243,
4
] | [
251,
54
] | python | en | ['en', 'en', 'en'] | False |
VerifyOperation.perform_operation | (self, indata, pub_key, cli_args) | Verifies files. | Verifies files. | def perform_operation(self, indata, pub_key, cli_args):
"""Verifies files."""
signature_file = cli_args[1]
with open(signature_file, 'rb') as sigfile:
signature = sigfile.read()
try:
rsa.verify(indata, signature, pub_key)
except rsa.VerificationError:
raise SystemExit('Verification failed.')
print('Verification OK', file=sys.stderr) | [
"def",
"perform_operation",
"(",
"self",
",",
"indata",
",",
"pub_key",
",",
"cli_args",
")",
":",
"signature_file",
"=",
"cli_args",
"[",
"1",
"]",
"with",
"open",
"(",
"signature_file",
",",
"'rb'",
")",
"as",
"sigfile",
":",
"signature",
"=",
"sigfile",
".",
"read",
"(",
")",
"try",
":",
"rsa",
".",
"verify",
"(",
"indata",
",",
"signature",
",",
"pub_key",
")",
"except",
"rsa",
".",
"VerificationError",
":",
"raise",
"SystemExit",
"(",
"'Verification failed.'",
")",
"print",
"(",
"'Verification OK'",
",",
"file",
"=",
"sys",
".",
"stderr",
")"
] | [
268,
4
] | [
281,
49
] | python | en | ['en', 'lv', 'en'] | False |
average_losses | (all_losses) | Average the losses into one dict of losses.
Args:
all_losses: List of dictionary of losses.
Returns:
combined: A dictionary with same keys as individual dicts, with
all losses combined.
| Average the losses into one dict of losses.
Args:
all_losses: List of dictionary of losses.
Returns:
combined: A dictionary with same keys as individual dicts, with
all losses combined.
| def average_losses(all_losses):
"""Average the losses into one dict of losses.
Args:
all_losses: List of dictionary of losses.
Returns:
combined: A dictionary with same keys as individual dicts, with
all losses combined.
"""
if len(all_losses) == 0:
return {}
combined = {}
for key, val in all_losses[0].items():
if not isinstance(val, torch.Tensor):
# If it's none or sth.. eg some loss was not active
combined[key] = val
else:
# Average all the values
stkd = torch.stack([el[key] for el in all_losses])
# Average the losses that are positive, since I set undefined
# losses to -1 (where not enough GT is available, etc)
combined[key] = torch.mean(stkd * (stkd >= 0), dim=0)
return combined | [
"def",
"average_losses",
"(",
"all_losses",
")",
":",
"if",
"len",
"(",
"all_losses",
")",
"==",
"0",
":",
"return",
"{",
"}",
"combined",
"=",
"{",
"}",
"for",
"key",
",",
"val",
"in",
"all_losses",
"[",
"0",
"]",
".",
"items",
"(",
")",
":",
"if",
"not",
"isinstance",
"(",
"val",
",",
"torch",
".",
"Tensor",
")",
":",
"# If it's none or sth.. eg some loss was not active",
"combined",
"[",
"key",
"]",
"=",
"val",
"else",
":",
"# Average all the values",
"stkd",
"=",
"torch",
".",
"stack",
"(",
"[",
"el",
"[",
"key",
"]",
"for",
"el",
"in",
"all_losses",
"]",
")",
"# Average the losses that are positive, since I set undefined",
"# losses to -1 (where not enough GT is available, etc)",
"combined",
"[",
"key",
"]",
"=",
"torch",
".",
"mean",
"(",
"stkd",
"*",
"(",
"stkd",
">=",
"0",
")",
",",
"dim",
"=",
"0",
")",
"return",
"combined"
] | [
796,
0
] | [
817,
19
] | python | en | ['en', 'en', 'en'] | True |
combine_obj_pixels | (obj_pix, obj_dim) | Combine obj-split pixels into a single image.
Args:
obj_pix: B, ..., Nobj, ..., C, H, W
obj_dim: The dimension to reduce over -- which corresponds to objs
Returns
B, ..., ..., C, H, W
| Combine obj-split pixels into a single image.
Args:
obj_pix: B, ..., Nobj, ..., C, H, W
obj_dim: The dimension to reduce over -- which corresponds to objs
Returns
B, ..., ..., C, H, W
| def combine_obj_pixels(obj_pix, obj_dim):
"""Combine obj-split pixels into a single image.
Args:
obj_pix: B, ..., Nobj, ..., C, H, W
obj_dim: The dimension to reduce over -- which corresponds to objs
Returns
B, ..., ..., C, H, W
"""
if obj_pix is None:
return None
return torch.max(obj_pix, dim=obj_dim)[0] | [
"def",
"combine_obj_pixels",
"(",
"obj_pix",
",",
"obj_dim",
")",
":",
"if",
"obj_pix",
"is",
"None",
":",
"return",
"None",
"return",
"torch",
".",
"max",
"(",
"obj_pix",
",",
"dim",
"=",
"obj_dim",
")",
"[",
"0",
"]"
] | [
1146,
0
] | [
1156,
45
] | python | en | ['en', 'fr', 'en'] | True |
DynConcat.forward | (self, features, pixels) |
This dyn model does not use pixels, so will just return the last history
frame
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pixels: (B, Nobj, C, H, W)
addl_losses: {}
|
This dyn model does not use pixels, so will just return the last history
frame
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pixels: (B, Nobj, C, H, W)
addl_losses: {}
| def forward(self, features, pixels):
"""
This dyn model does not use pixels, so will just return the last history
frame
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pixels: (B, Nobj, C, H, W)
addl_losses: {}
"""
cat_feats = torch.reshape(features, (features.shape[0], -1) +
features.shape[-2:])
future_feat = torch.reshape(self.dyn(cat_feats),
features.shape[:1] + features.shape[2:])
# Skip connection, add the last frames features, so it stops
# deleting things
pred = features[:, -1, ...] + future_feat
return pred, pixels[:, -1, ...], {} | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"cat_feats",
"=",
"torch",
".",
"reshape",
"(",
"features",
",",
"(",
"features",
".",
"shape",
"[",
"0",
"]",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"future_feat",
"=",
"torch",
".",
"reshape",
"(",
"self",
".",
"dyn",
"(",
"cat_feats",
")",
",",
"features",
".",
"shape",
"[",
":",
"1",
"]",
"+",
"features",
".",
"shape",
"[",
"2",
":",
"]",
")",
"# Skip connection, add the last frames features, so it stops",
"# deleting things",
"pred",
"=",
"features",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
"+",
"future_feat",
"return",
"pred",
",",
"pixels",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
",",
"{",
"}"
] | [
266,
4
] | [
285,
43
] | python | en | ['en', 'error', 'th'] | False |
MultiSTN.__init__ | (self,
input_dim,
num_tx,
dof='affine',
inp_type='pix',
affine_tx_mode='bilinear',
kernel_size=3,
stochastic=False) |
Args:
input_dim (int): Dimension of the features used to predict the STN
parameters
num_tx (int): Number of transformations to predict, will apply to
the tensor, split along some dimension
dof (str): Controls how generic of a affine matrix to predict.
If 'affine', will predict a generic 3x2 matrix
If 'rot-trans-only', it will only predict theta, x, y,
and use those to construct the affine matrix. So it will force
the matrix to not do any shear, scale etc.
Similarly for 'rot-only' and 'trans-only'
inp_type (str): Defines the type of the input. 'pix' is the default,
to directly transform the grid and move the pixels. 'pt' is the
PointNet style format, where the first 2 dimensions of each
split of the channels must correspond to the X, Y location, and
the transforms will just modify those dimensions, and not
touch the pixel values at all.
affine_tx_mode (str): The mode to use for grid_sample
kernel_size (int)
stochastic (bool): If true, predict a distribution over the affine
matrix, instead of deterministically.
|
Args:
input_dim (int): Dimension of the features used to predict the STN
parameters
num_tx (int): Number of transformations to predict, will apply to
the tensor, split along some dimension
dof (str): Controls how generic of a affine matrix to predict.
If 'affine', will predict a generic 3x2 matrix
If 'rot-trans-only', it will only predict theta, x, y,
and use those to construct the affine matrix. So it will force
the matrix to not do any shear, scale etc.
Similarly for 'rot-only' and 'trans-only'
inp_type (str): Defines the type of the input. 'pix' is the default,
to directly transform the grid and move the pixels. 'pt' is the
PointNet style format, where the first 2 dimensions of each
split of the channels must correspond to the X, Y location, and
the transforms will just modify those dimensions, and not
touch the pixel values at all.
affine_tx_mode (str): The mode to use for grid_sample
kernel_size (int)
stochastic (bool): If true, predict a distribution over the affine
matrix, instead of deterministically.
| def __init__(self,
input_dim,
num_tx,
dof='affine',
inp_type='pix',
affine_tx_mode='bilinear',
kernel_size=3,
stochastic=False):
"""
Args:
input_dim (int): Dimension of the features used to predict the STN
parameters
num_tx (int): Number of transformations to predict, will apply to
the tensor, split along some dimension
dof (str): Controls how generic of a affine matrix to predict.
If 'affine', will predict a generic 3x2 matrix
If 'rot-trans-only', it will only predict theta, x, y,
and use those to construct the affine matrix. So it will force
the matrix to not do any shear, scale etc.
Similarly for 'rot-only' and 'trans-only'
inp_type (str): Defines the type of the input. 'pix' is the default,
to directly transform the grid and move the pixels. 'pt' is the
PointNet style format, where the first 2 dimensions of each
split of the channels must correspond to the X, Y location, and
the transforms will just modify those dimensions, and not
touch the pixel values at all.
affine_tx_mode (str): The mode to use for grid_sample
kernel_size (int)
stochastic (bool): If true, predict a distribution over the affine
matrix, instead of deterministically.
"""
super().__init__()
self.num_tx = num_tx
self.dof = dof
self.inp_type = inp_type
self.affine_tx_mode = affine_tx_mode
# Spatial transformer localization-network
self.localization = nn.Sequential(
nn.Conv2d(input_dim,
8 * num_tx,
kernel_size=kernel_size,
padding=kernel_size // 2), nn.ReLU(True),
nn.Conv2d(8 * num_tx,
10 * num_tx,
kernel_size=kernel_size,
padding=kernel_size // 2), nn.ReLU(True))
# Regressor for the affine matrices
# Predicting 3x2 parameters that should be enough for any generic
# affine transformation, though will subselect in case only few
# parameters are needed
self.stochastic = stochastic
if self.stochastic:
self.fc_loc_mean = nn.Linear(10 * num_tx, 10 * num_tx)
self.fc_loc_logvar = nn.Linear(10 * num_tx, 10 * num_tx)
self.fc_loc = nn.Sequential(nn.Linear(10 * num_tx, 32 * num_tx),
nn.ReLU(True),
nn.Linear(32 * num_tx, num_tx * 3 * 2))
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
if self.dof != 'affine': # The paramters would be used for rot/trans
self.fc_loc[2].bias.data.zero_() # 0 rot/translation by default
else:
self.fc_loc[2].bias.data.copy_(
torch.from_numpy(
np.array([1, 0, 0, 0, 1, 0] * num_tx, dtype=np.float))) | [
"def",
"__init__",
"(",
"self",
",",
"input_dim",
",",
"num_tx",
",",
"dof",
"=",
"'affine'",
",",
"inp_type",
"=",
"'pix'",
",",
"affine_tx_mode",
"=",
"'bilinear'",
",",
"kernel_size",
"=",
"3",
",",
"stochastic",
"=",
"False",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"self",
".",
"num_tx",
"=",
"num_tx",
"self",
".",
"dof",
"=",
"dof",
"self",
".",
"inp_type",
"=",
"inp_type",
"self",
".",
"affine_tx_mode",
"=",
"affine_tx_mode",
"# Spatial transformer localization-network",
"self",
".",
"localization",
"=",
"nn",
".",
"Sequential",
"(",
"nn",
".",
"Conv2d",
"(",
"input_dim",
",",
"8",
"*",
"num_tx",
",",
"kernel_size",
"=",
"kernel_size",
",",
"padding",
"=",
"kernel_size",
"//",
"2",
")",
",",
"nn",
".",
"ReLU",
"(",
"True",
")",
",",
"nn",
".",
"Conv2d",
"(",
"8",
"*",
"num_tx",
",",
"10",
"*",
"num_tx",
",",
"kernel_size",
"=",
"kernel_size",
",",
"padding",
"=",
"kernel_size",
"//",
"2",
")",
",",
"nn",
".",
"ReLU",
"(",
"True",
")",
")",
"# Regressor for the affine matrices",
"# Predicting 3x2 parameters that should be enough for any generic",
"# affine transformation, though will subselect in case only few",
"# parameters are needed",
"self",
".",
"stochastic",
"=",
"stochastic",
"if",
"self",
".",
"stochastic",
":",
"self",
".",
"fc_loc_mean",
"=",
"nn",
".",
"Linear",
"(",
"10",
"*",
"num_tx",
",",
"10",
"*",
"num_tx",
")",
"self",
".",
"fc_loc_logvar",
"=",
"nn",
".",
"Linear",
"(",
"10",
"*",
"num_tx",
",",
"10",
"*",
"num_tx",
")",
"self",
".",
"fc_loc",
"=",
"nn",
".",
"Sequential",
"(",
"nn",
".",
"Linear",
"(",
"10",
"*",
"num_tx",
",",
"32",
"*",
"num_tx",
")",
",",
"nn",
".",
"ReLU",
"(",
"True",
")",
",",
"nn",
".",
"Linear",
"(",
"32",
"*",
"num_tx",
",",
"num_tx",
"*",
"3",
"*",
"2",
")",
")",
"# Initialize the weights/bias with identity transformation",
"self",
".",
"fc_loc",
"[",
"2",
"]",
".",
"weight",
".",
"data",
".",
"zero_",
"(",
")",
"if",
"self",
".",
"dof",
"!=",
"'affine'",
":",
"# The paramters would be used for rot/trans",
"self",
".",
"fc_loc",
"[",
"2",
"]",
".",
"bias",
".",
"data",
".",
"zero_",
"(",
")",
"# 0 rot/translation by default",
"else",
":",
"self",
".",
"fc_loc",
"[",
"2",
"]",
".",
"bias",
".",
"data",
".",
"copy_",
"(",
"torch",
".",
"from_numpy",
"(",
"np",
".",
"array",
"(",
"[",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"0",
"]",
"*",
"num_tx",
",",
"dtype",
"=",
"np",
".",
"float",
")",
")",
")"
] | [
291,
4
] | [
357,
75
] | python | en | ['en', 'error', 'th'] | False |
MultiSTN.transform_pix | (self, feat, theta, mode='bilinear') | Transform the features using theta. | Transform the features using theta. | def transform_pix(self, feat, theta, mode='bilinear'):
"""Transform the features using theta."""
grid = nn.functional.affine_grid(theta,
feat.size(),
align_corners=True)
return nn.functional.grid_sample(feat,
grid,
mode=mode,
align_corners=True) | [
"def",
"transform_pix",
"(",
"self",
",",
"feat",
",",
"theta",
",",
"mode",
"=",
"'bilinear'",
")",
":",
"grid",
"=",
"nn",
".",
"functional",
".",
"affine_grid",
"(",
"theta",
",",
"feat",
".",
"size",
"(",
")",
",",
"align_corners",
"=",
"True",
")",
"return",
"nn",
".",
"functional",
".",
"grid_sample",
"(",
"feat",
",",
"grid",
",",
"mode",
"=",
"mode",
",",
"align_corners",
"=",
"True",
")"
] | [
359,
4
] | [
367,
60
] | python | en | ['en', 'en', 'en'] | True |
MultiSTN.transform_pt | (self, feat, theta) | Transform pt-net style feature using theta.
Here, it assumes the first 2 dimensions of the feature are loc.
Args:
feat (B, C, H, W), C >= 2
Returns:
tx feat (B, C, H, W)
| Transform pt-net style feature using theta.
Here, it assumes the first 2 dimensions of the feature are loc.
Args:
feat (B, C, H, W), C >= 2
Returns:
tx feat (B, C, H, W)
| def transform_pt(self, feat, theta):
"""Transform pt-net style feature using theta.
Here, it assumes the first 2 dimensions of the feature are loc.
Args:
feat (B, C, H, W), C >= 2
Returns:
tx feat (B, C, H, W)
"""
assert feat.shape[1] >= 2
feat_pos = feat[:, :2, ...]
feat_pos_ones = torch.ones_like(feat[:, :1, ...])
feat_pos_aug = torch.cat([feat_pos, feat_pos_ones], dim=1)
feat_pos_aug = feat_pos_aug.view(feat.shape[:1] + (3, -1))
feat_pos_aug_end = feat_pos_aug.transpose(1, 2).unsqueeze(-1)
txed = torch.matmul(theta.unsqueeze(1), feat_pos_aug_end)
tx_feat_pos = txed.squeeze(-1).transpose(1, 2).view(feat_pos.shape)
# Attach the features to it
tx_feat = torch.cat([tx_feat_pos, feat[:, 2:, ...]], dim=1)
return tx_feat | [
"def",
"transform_pt",
"(",
"self",
",",
"feat",
",",
"theta",
")",
":",
"assert",
"feat",
".",
"shape",
"[",
"1",
"]",
">=",
"2",
"feat_pos",
"=",
"feat",
"[",
":",
",",
":",
"2",
",",
"...",
"]",
"feat_pos_ones",
"=",
"torch",
".",
"ones_like",
"(",
"feat",
"[",
":",
",",
":",
"1",
",",
"...",
"]",
")",
"feat_pos_aug",
"=",
"torch",
".",
"cat",
"(",
"[",
"feat_pos",
",",
"feat_pos_ones",
"]",
",",
"dim",
"=",
"1",
")",
"feat_pos_aug",
"=",
"feat_pos_aug",
".",
"view",
"(",
"feat",
".",
"shape",
"[",
":",
"1",
"]",
"+",
"(",
"3",
",",
"-",
"1",
")",
")",
"feat_pos_aug_end",
"=",
"feat_pos_aug",
".",
"transpose",
"(",
"1",
",",
"2",
")",
".",
"unsqueeze",
"(",
"-",
"1",
")",
"txed",
"=",
"torch",
".",
"matmul",
"(",
"theta",
".",
"unsqueeze",
"(",
"1",
")",
",",
"feat_pos_aug_end",
")",
"tx_feat_pos",
"=",
"txed",
".",
"squeeze",
"(",
"-",
"1",
")",
".",
"transpose",
"(",
"1",
",",
"2",
")",
".",
"view",
"(",
"feat_pos",
".",
"shape",
")",
"# Attach the features to it",
"tx_feat",
"=",
"torch",
".",
"cat",
"(",
"[",
"tx_feat_pos",
",",
"feat",
"[",
":",
",",
"2",
":",
",",
"...",
"]",
"]",
",",
"dim",
"=",
"1",
")",
"return",
"tx_feat"
] | [
369,
4
] | [
387,
22
] | python | en | ['en', 'en', 'en'] | True |
MultiSTN.forward | (self, feat_for_tx, feat_to_tx, split_dim=1) |
Args:
feat_for_tx (B, D, H, W): The features to use to compute the
transformation
feat_to_tx (B, D', H, W): Features to apply the tx onto
split_dim (int): Dimension to split on
|
Args:
feat_for_tx (B, D, H, W): The features to use to compute the
transformation
feat_to_tx (B, D', H, W): Features to apply the tx onto
split_dim (int): Dimension to split on
| def forward(self, feat_for_tx, feat_to_tx, split_dim=1):
"""
Args:
feat_for_tx (B, D, H, W): The features to use to compute the
transformation
feat_to_tx (B, D', H, W): Features to apply the tx onto
split_dim (int): Dimension to split on
"""
feat_hist_embed = self.localization(feat_for_tx)
# Average out the spatial dimension
feat_hist_embed = torch.mean(feat_hist_embed, dim=[-2, -1])
addl_losses = {}
if self.stochastic:
pred, kl_loss = self._compute_loc_stochastic(feat_hist_embed)
addl_losses['kl'] = kl_loss
else:
pred = self.fc_loc(feat_hist_embed)
if self.dof != 'affine':
pred = pred.view(-1, self.num_tx, 3 * 2)
# Say the first number is actual angle, and next 2 are x, y
angle = pred[..., :1]
pos_x = pred[..., 1:2]
pos_y = pred[..., 2:3]
if self.dof == 'rot-only':
pos_x = torch.zeros_like(pos_x)
pos_y = torch.zeros_like(pos_y)
elif self.dof == 'trans-only':
angle = torch.zeros_like(angle)
else:
assert self.dof == 'rot-trans-only', 'The only other option'
cos_angle = torch.cos(angle)
sin_angle = torch.sin(angle)
# create the 2x3 matrix out of this
theta = torch.cat(
[cos_angle, sin_angle, pos_x, -sin_angle, cos_angle, pos_y],
dim=-1)
theta = theta.view(theta.shape[:-1] + (2, 3))
elif self.dof == 'affine':
theta = pred.view(-1, self.num_tx, 2, 3)
else:
raise NotImplementedError('Unknown {}'.format(self.dof))
# Split the channels of feat_to_tx into num_tx groups, and apply the
# transformations to each of those groups
assert feat_to_tx.shape[split_dim] % self.num_tx == 0, (
'Must be divisible to ensure equal sized chunks')
# Chunk it
feat_to_tx_parts = torch.chunk(feat_to_tx, self.num_tx, split_dim)
# Apply the corresponding transformation to each part
if self.inp_type == 'pix':
tx_fn = partial(self.transform_pix, mode=self.affine_tx_mode)
elif self.inp_type == 'pt':
tx_fn = self.transform_pt
else:
raise NotImplementedError('Unknown type {}'.format(self.inp_type))
feat_to_tx_parts_txed = [
tx_fn(el, theta[:, i, ...])
for i, el in enumerate(feat_to_tx_parts)
]
return torch.cat(feat_to_tx_parts_txed, dim=split_dim), addl_losses | [
"def",
"forward",
"(",
"self",
",",
"feat_for_tx",
",",
"feat_to_tx",
",",
"split_dim",
"=",
"1",
")",
":",
"feat_hist_embed",
"=",
"self",
".",
"localization",
"(",
"feat_for_tx",
")",
"# Average out the spatial dimension",
"feat_hist_embed",
"=",
"torch",
".",
"mean",
"(",
"feat_hist_embed",
",",
"dim",
"=",
"[",
"-",
"2",
",",
"-",
"1",
"]",
")",
"addl_losses",
"=",
"{",
"}",
"if",
"self",
".",
"stochastic",
":",
"pred",
",",
"kl_loss",
"=",
"self",
".",
"_compute_loc_stochastic",
"(",
"feat_hist_embed",
")",
"addl_losses",
"[",
"'kl'",
"]",
"=",
"kl_loss",
"else",
":",
"pred",
"=",
"self",
".",
"fc_loc",
"(",
"feat_hist_embed",
")",
"if",
"self",
".",
"dof",
"!=",
"'affine'",
":",
"pred",
"=",
"pred",
".",
"view",
"(",
"-",
"1",
",",
"self",
".",
"num_tx",
",",
"3",
"*",
"2",
")",
"# Say the first number is actual angle, and next 2 are x, y",
"angle",
"=",
"pred",
"[",
"...",
",",
":",
"1",
"]",
"pos_x",
"=",
"pred",
"[",
"...",
",",
"1",
":",
"2",
"]",
"pos_y",
"=",
"pred",
"[",
"...",
",",
"2",
":",
"3",
"]",
"if",
"self",
".",
"dof",
"==",
"'rot-only'",
":",
"pos_x",
"=",
"torch",
".",
"zeros_like",
"(",
"pos_x",
")",
"pos_y",
"=",
"torch",
".",
"zeros_like",
"(",
"pos_y",
")",
"elif",
"self",
".",
"dof",
"==",
"'trans-only'",
":",
"angle",
"=",
"torch",
".",
"zeros_like",
"(",
"angle",
")",
"else",
":",
"assert",
"self",
".",
"dof",
"==",
"'rot-trans-only'",
",",
"'The only other option'",
"cos_angle",
"=",
"torch",
".",
"cos",
"(",
"angle",
")",
"sin_angle",
"=",
"torch",
".",
"sin",
"(",
"angle",
")",
"# create the 2x3 matrix out of this",
"theta",
"=",
"torch",
".",
"cat",
"(",
"[",
"cos_angle",
",",
"sin_angle",
",",
"pos_x",
",",
"-",
"sin_angle",
",",
"cos_angle",
",",
"pos_y",
"]",
",",
"dim",
"=",
"-",
"1",
")",
"theta",
"=",
"theta",
".",
"view",
"(",
"theta",
".",
"shape",
"[",
":",
"-",
"1",
"]",
"+",
"(",
"2",
",",
"3",
")",
")",
"elif",
"self",
".",
"dof",
"==",
"'affine'",
":",
"theta",
"=",
"pred",
".",
"view",
"(",
"-",
"1",
",",
"self",
".",
"num_tx",
",",
"2",
",",
"3",
")",
"else",
":",
"raise",
"NotImplementedError",
"(",
"'Unknown {}'",
".",
"format",
"(",
"self",
".",
"dof",
")",
")",
"# Split the channels of feat_to_tx into num_tx groups, and apply the",
"# transformations to each of those groups",
"assert",
"feat_to_tx",
".",
"shape",
"[",
"split_dim",
"]",
"%",
"self",
".",
"num_tx",
"==",
"0",
",",
"(",
"'Must be divisible to ensure equal sized chunks'",
")",
"# Chunk it",
"feat_to_tx_parts",
"=",
"torch",
".",
"chunk",
"(",
"feat_to_tx",
",",
"self",
".",
"num_tx",
",",
"split_dim",
")",
"# Apply the corresponding transformation to each part",
"if",
"self",
".",
"inp_type",
"==",
"'pix'",
":",
"tx_fn",
"=",
"partial",
"(",
"self",
".",
"transform_pix",
",",
"mode",
"=",
"self",
".",
"affine_tx_mode",
")",
"elif",
"self",
".",
"inp_type",
"==",
"'pt'",
":",
"tx_fn",
"=",
"self",
".",
"transform_pt",
"else",
":",
"raise",
"NotImplementedError",
"(",
"'Unknown type {}'",
".",
"format",
"(",
"self",
".",
"inp_type",
")",
")",
"feat_to_tx_parts_txed",
"=",
"[",
"tx_fn",
"(",
"el",
",",
"theta",
"[",
":",
",",
"i",
",",
"...",
"]",
")",
"for",
"i",
",",
"el",
"in",
"enumerate",
"(",
"feat_to_tx_parts",
")",
"]",
"return",
"torch",
".",
"cat",
"(",
"feat_to_tx_parts_txed",
",",
"dim",
"=",
"split_dim",
")",
",",
"addl_losses"
] | [
399,
4
] | [
460,
75
] | python | en | ['en', 'error', 'th'] | False |
DynSTN.forward | (self, features, pixels) |
This dyn model does not use pixels, so will just return the last history
frame
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pix
addl_losses
|
This dyn model does not use pixels, so will just return the last history
frame
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pix
addl_losses
| def forward(self, features, pixels):
"""
This dyn model does not use pixels, so will just return the last history
frame
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pix
addl_losses
"""
cat_feats = torch.reshape(features, (features.shape[0], -1) +
features.shape[-2:])
# For > 1 objs, just flatten Nobj and D channels, and the STN class
# will split it back to do the transformations
feat_obj_flat = torch.flatten(features, 2, 3)
new_feat, addl_loses = self.dyn(cat_feats, feat_obj_flat[:, -1, ...])
future_feat = torch.reshape(new_feat,
features.shape[:1] + features.shape[2:])
return future_feat, pixels[:, -1, ...], addl_loses | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"cat_feats",
"=",
"torch",
".",
"reshape",
"(",
"features",
",",
"(",
"features",
".",
"shape",
"[",
"0",
"]",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"# For > 1 objs, just flatten Nobj and D channels, and the STN class",
"# will split it back to do the transformations",
"feat_obj_flat",
"=",
"torch",
".",
"flatten",
"(",
"features",
",",
"2",
",",
"3",
")",
"new_feat",
",",
"addl_loses",
"=",
"self",
".",
"dyn",
"(",
"cat_feats",
",",
"feat_obj_flat",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
")",
"future_feat",
"=",
"torch",
".",
"reshape",
"(",
"new_feat",
",",
"features",
".",
"shape",
"[",
":",
"1",
"]",
"+",
"features",
".",
"shape",
"[",
"2",
":",
"]",
")",
"return",
"future_feat",
",",
"pixels",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
",",
"addl_loses"
] | [
472,
4
] | [
492,
58
] | python | en | ['en', 'error', 'th'] | False |
DynSTNPixels_DEPRECATED.forward | (self, features, pixels) |
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
|
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
| def forward(self, features, pixels):
"""
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
"""
raise NotImplementedError('Deal with objectified pixel input. '
'Also deal with addl losses. ')
cat_feats = torch.reshape(features, (features.shape[0], -1) +
features.shape[-2:])
assert features.shape[2] == 1, 'Not implemented yet for >1 objs'
# Repmat the image channels num_tx times, so STN can predict those many
# transformations
pixels_tiled = pixels.repeat(1, 1, self.num_tx, 1, 1)
future_pixels_tiled = self.dyn(cat_feats, pixels_tiled[:, -1, ...])
# Compute attention maps for compositing
attention_maps = self.attention(cat_feats)
# Do a weighted sum of the channels using the attention maps
attention_maps_split = torch.chunk(attention_maps, self.num_tx, 1)
future_pixels_split = torch.chunk(future_pixels_tiled, self.num_tx, 1)
weighted = [
att * pix
for att, pix in zip(attention_maps_split, future_pixels_split)
]
future_pixels = torch.mean(torch.stack(weighted), dim=0)
# Since this is a new image being generated, need to pass through the
# encoder to get the features for this image
future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...]
return future_feat, future_pixels | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Deal with objectified pixel input. '",
"'Also deal with addl losses. '",
")",
"cat_feats",
"=",
"torch",
".",
"reshape",
"(",
"features",
",",
"(",
"features",
".",
"shape",
"[",
"0",
"]",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"assert",
"features",
".",
"shape",
"[",
"2",
"]",
"==",
"1",
",",
"'Not implemented yet for >1 objs'",
"# Repmat the image channels num_tx times, so STN can predict those many",
"# transformations",
"pixels_tiled",
"=",
"pixels",
".",
"repeat",
"(",
"1",
",",
"1",
",",
"self",
".",
"num_tx",
",",
"1",
",",
"1",
")",
"future_pixels_tiled",
"=",
"self",
".",
"dyn",
"(",
"cat_feats",
",",
"pixels_tiled",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
")",
"# Compute attention maps for compositing",
"attention_maps",
"=",
"self",
".",
"attention",
"(",
"cat_feats",
")",
"# Do a weighted sum of the channels using the attention maps",
"attention_maps_split",
"=",
"torch",
".",
"chunk",
"(",
"attention_maps",
",",
"self",
".",
"num_tx",
",",
"1",
")",
"future_pixels_split",
"=",
"torch",
".",
"chunk",
"(",
"future_pixels_tiled",
",",
"self",
".",
"num_tx",
",",
"1",
")",
"weighted",
"=",
"[",
"att",
"*",
"pix",
"for",
"att",
",",
"pix",
"in",
"zip",
"(",
"attention_maps_split",
",",
"future_pixels_split",
")",
"]",
"future_pixels",
"=",
"torch",
".",
"mean",
"(",
"torch",
".",
"stack",
"(",
"weighted",
")",
",",
"dim",
"=",
"0",
")",
"# Since this is a new image being generated, need to pass through the",
"# encoder to get the features for this image",
"future_feat",
"=",
"self",
".",
"enc",
"(",
"future_pixels",
".",
"unsqueeze",
"(",
"1",
")",
")",
"[",
":",
",",
"0",
",",
"...",
"]",
"return",
"future_feat",
",",
"future_pixels"
] | [
510,
4
] | [
540,
41
] | python | en | ['en', 'error', 'th'] | False |
DynSTNPixelChannels_DEPRECATED.forward | (self, features, pixels) |
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
|
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
| def forward(self, features, pixels):
"""
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
"""
raise NotImplementedError('Deal with objectified pixel input. '
'Also deal with addl losses. ')
assert (pixels.shape[2] == self.num_tx or
pixels.shape[2] == self.num_tx * 3), 'In pix or pt mode so far'
cat_feats = torch.reshape(features, (features.shape[0], -1) +
features.shape[-2:])
assert features.shape[2] == 1, 'Not implemented yet for >1 objs'
future_pixels = self.dyn(cat_feats, pixels[:, -1, ...])
# Since this is a new image being generated, need to pass through the
# encoder to get the features for this image
future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...]
return future_feat, future_pixels | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Deal with objectified pixel input. '",
"'Also deal with addl losses. '",
")",
"assert",
"(",
"pixels",
".",
"shape",
"[",
"2",
"]",
"==",
"self",
".",
"num_tx",
"or",
"pixels",
".",
"shape",
"[",
"2",
"]",
"==",
"self",
".",
"num_tx",
"*",
"3",
")",
",",
"'In pix or pt mode so far'",
"cat_feats",
"=",
"torch",
".",
"reshape",
"(",
"features",
",",
"(",
"features",
".",
"shape",
"[",
"0",
"]",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"assert",
"features",
".",
"shape",
"[",
"2",
"]",
"==",
"1",
",",
"'Not implemented yet for >1 objs'",
"future_pixels",
"=",
"self",
".",
"dyn",
"(",
"cat_feats",
",",
"pixels",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
")",
"# Since this is a new image being generated, need to pass through the",
"# encoder to get the features for this image",
"future_feat",
"=",
"self",
".",
"enc",
"(",
"future_pixels",
".",
"unsqueeze",
"(",
"1",
")",
")",
"[",
":",
",",
"0",
",",
"...",
"]",
"return",
"future_feat",
",",
"future_pixels"
] | [
553,
4
] | [
572,
41
] | python | en | ['en', 'error', 'th'] | False |
DynSTNPixelChannelsGenBg_DEPRECATED.forward | (self, features, pixels) |
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
|
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
| def forward(self, features, pixels):
"""
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
"""
raise NotImplementedError('Deal with objectified pixel input. '
'Also deal with addl losses. ')
assert (pixels.shape[2] - 1) == self.num_tx
cat_feats = torch.reshape(features, (features.shape[0], -1) +
features.shape[-2:])
assert features.shape[2] == 1, 'Not implemented yet for >1 objs'
future_pixels_obj = self.dyn(cat_feats, pixels[:, -1, 1:, ...])
future_pixels_bg = self.bg_dec(
torch.cat([pixels[:, -1, ...], future_pixels_obj], dim=1))
future_pixels = torch.cat([future_pixels_bg, future_pixels_obj], dim=1)
# Since this is a new image being generated, need to pass through the
# encoder to get the features for this image
future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...]
return future_feat, future_pixels | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Deal with objectified pixel input. '",
"'Also deal with addl losses. '",
")",
"assert",
"(",
"pixels",
".",
"shape",
"[",
"2",
"]",
"-",
"1",
")",
"==",
"self",
".",
"num_tx",
"cat_feats",
"=",
"torch",
".",
"reshape",
"(",
"features",
",",
"(",
"features",
".",
"shape",
"[",
"0",
"]",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"assert",
"features",
".",
"shape",
"[",
"2",
"]",
"==",
"1",
",",
"'Not implemented yet for >1 objs'",
"future_pixels_obj",
"=",
"self",
".",
"dyn",
"(",
"cat_feats",
",",
"pixels",
"[",
":",
",",
"-",
"1",
",",
"1",
":",
",",
"...",
"]",
")",
"future_pixels_bg",
"=",
"self",
".",
"bg_dec",
"(",
"torch",
".",
"cat",
"(",
"[",
"pixels",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
",",
"future_pixels_obj",
"]",
",",
"dim",
"=",
"1",
")",
")",
"future_pixels",
"=",
"torch",
".",
"cat",
"(",
"[",
"future_pixels_bg",
",",
"future_pixels_obj",
"]",
",",
"dim",
"=",
"1",
")",
"# Since this is a new image being generated, need to pass through the",
"# encoder to get the features for this image",
"future_feat",
"=",
"self",
".",
"enc",
"(",
"future_pixels",
".",
"unsqueeze",
"(",
"1",
")",
")",
"[",
":",
",",
"0",
",",
"...",
"]",
"return",
"future_feat",
",",
"future_pixels"
] | [
600,
4
] | [
621,
41
] | python | en | ['en', 'error', 'th'] | False |
DynSTNPixelChannelsDetBg.forward | (self, features, pixels) |
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pix
addl_losses
|
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pix
addl_losses
| def forward(self, features, pixels):
"""
Args:
features: (B, T, Nobj, D, H', W')
pixels: (B, T, Nobj, C, H, W)
Returns:
pred: (B, Nobj, D, H', W')
pix
addl_losses
"""
assert pixels.shape[3] >= self.num_tx
cat_feats = torch.reshape(features, (features.shape[0], -1) +
features.shape[-2:])
pixels_movable = pixels[:, -1, :, self.movable_channels, ...]
# combine all channels of objects and transform
pixels_movable_flat = torch.flatten(pixels_movable, 1, 2)
future_pixels_flat_movable, addl_losses = self.dyn(
cat_feats, pixels_movable_flat)
future_pixels_movable = future_pixels_flat_movable.view(
pixels_movable.shape)
future_pixels = pixels[:, -1, ...] # Copy most of the channels
future_pixels[:, :, self.movable_channels, ...] = future_pixels_movable
# Compute the background deterministically, where all other channels
# are 0s, it has to be 1. So make channels sum to 1.
future_pixels_bg = 1.0 - torch.sum(
future_pixels[:, :, 1:, ...], dim=2, keepdims=True)
future_pixels[:, :, :1, ...] = future_pixels_bg
# Since this is a new image being generated, need to pass through the
# encoder to get the features for this image
future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...]
return future_feat, future_pixels, addl_losses | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"assert",
"pixels",
".",
"shape",
"[",
"3",
"]",
">=",
"self",
".",
"num_tx",
"cat_feats",
"=",
"torch",
".",
"reshape",
"(",
"features",
",",
"(",
"features",
".",
"shape",
"[",
"0",
"]",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"pixels_movable",
"=",
"pixels",
"[",
":",
",",
"-",
"1",
",",
":",
",",
"self",
".",
"movable_channels",
",",
"...",
"]",
"# combine all channels of objects and transform",
"pixels_movable_flat",
"=",
"torch",
".",
"flatten",
"(",
"pixels_movable",
",",
"1",
",",
"2",
")",
"future_pixels_flat_movable",
",",
"addl_losses",
"=",
"self",
".",
"dyn",
"(",
"cat_feats",
",",
"pixels_movable_flat",
")",
"future_pixels_movable",
"=",
"future_pixels_flat_movable",
".",
"view",
"(",
"pixels_movable",
".",
"shape",
")",
"future_pixels",
"=",
"pixels",
"[",
":",
",",
"-",
"1",
",",
"...",
"]",
"# Copy most of the channels",
"future_pixels",
"[",
":",
",",
":",
",",
"self",
".",
"movable_channels",
",",
"...",
"]",
"=",
"future_pixels_movable",
"# Compute the background deterministically, where all other channels",
"# are 0s, it has to be 1. So make channels sum to 1.",
"future_pixels_bg",
"=",
"1.0",
"-",
"torch",
".",
"sum",
"(",
"future_pixels",
"[",
":",
",",
":",
",",
"1",
":",
",",
"...",
"]",
",",
"dim",
"=",
"2",
",",
"keepdims",
"=",
"True",
")",
"future_pixels",
"[",
":",
",",
":",
",",
":",
"1",
",",
"...",
"]",
"=",
"future_pixels_bg",
"# Since this is a new image being generated, need to pass through the",
"# encoder to get the features for this image",
"future_feat",
"=",
"self",
".",
"enc",
"(",
"future_pixels",
".",
"unsqueeze",
"(",
"1",
")",
")",
"[",
":",
",",
"0",
",",
"...",
"]",
"return",
"future_feat",
",",
"future_pixels",
",",
"addl_losses"
] | [
651,
4
] | [
681,
54
] | python | en | ['en', 'error', 'th'] | False |
BasicDecoder.forward | (self, features, pixels) |
Args:
features (BxNobjxDxH'xW'): Features to be decoded
pixels (BxNobjxCxHxW): Pixels generated by the dynamics model
Returns:
imgs (BxNobjxD_outxHxW): Output frames (per obj, aggregation is
done later in the Fwd class)
|
Args:
features (BxNobjxDxH'xW'): Features to be decoded
pixels (BxNobjxCxHxW): Pixels generated by the dynamics model
Returns:
imgs (BxNobjxD_outxHxW): Output frames (per obj, aggregation is
done later in the Fwd class)
| def forward(self, features, pixels):
"""
Args:
features (BxNobjxDxH'xW'): Features to be decoded
pixels (BxNobjxCxHxW): Pixels generated by the dynamics model
Returns:
imgs (BxNobjxD_outxHxW): Output frames (per obj, aggregation is
done later in the Fwd class)
"""
if self.decode_from == 'pixels':
decode_feature = pixels
else:
decode_feature = features
if not self.backprop_feat_ext:
# Means train the decoder separately from the rest of the network,
# don't backprop gradients to the feature extractor
decode_feature = decode_feature.detach()
# Summing the features over all the objects, and doing one decode.
# Separate decodes takes just way too much time, so need to do it once
decode_feature = torch.sum(decode_feature, dim=1, keepdims=True)
features_flatten_obj = torch.flatten(decode_feature, 0, 1)
images = self.deconv_net(features_flatten_obj)
# Reshape back into object level
out = torch.reshape(images,
decode_feature.shape[:2] + images.shape[1:])
return out | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"if",
"self",
".",
"decode_from",
"==",
"'pixels'",
":",
"decode_feature",
"=",
"pixels",
"else",
":",
"decode_feature",
"=",
"features",
"if",
"not",
"self",
".",
"backprop_feat_ext",
":",
"# Means train the decoder separately from the rest of the network,",
"# don't backprop gradients to the feature extractor",
"decode_feature",
"=",
"decode_feature",
".",
"detach",
"(",
")",
"# Summing the features over all the objects, and doing one decode.",
"# Separate decodes takes just way too much time, so need to do it once",
"decode_feature",
"=",
"torch",
".",
"sum",
"(",
"decode_feature",
",",
"dim",
"=",
"1",
",",
"keepdims",
"=",
"True",
")",
"features_flatten_obj",
"=",
"torch",
".",
"flatten",
"(",
"decode_feature",
",",
"0",
",",
"1",
")",
"images",
"=",
"self",
".",
"deconv_net",
"(",
"features_flatten_obj",
")",
"# Reshape back into object level",
"out",
"=",
"torch",
".",
"reshape",
"(",
"images",
",",
"decode_feature",
".",
"shape",
"[",
":",
"2",
"]",
"+",
"images",
".",
"shape",
"[",
"1",
":",
"]",
")",
"return",
"out"
] | [
750,
4
] | [
775,
18
] | python | en | ['en', 'error', 'th'] | False |
TrivialDecoder.forward | (self, features, pixels) |
Args:
features (BxNobjxDxH'xW'): Features to be decoded
pixels (BxNobjxCxHxW): Pixels generated by the dynamics model
Returns:
imgs (BxNobjxCxHxW): Output frames
|
Args:
features (BxNobjxDxH'xW'): Features to be decoded
pixels (BxNobjxCxHxW): Pixels generated by the dynamics model
Returns:
imgs (BxNobjxCxHxW): Output frames
| def forward(self, features, pixels):
"""
Args:
features (BxNobjxDxH'xW'): Features to be decoded
pixels (BxNobjxCxHxW): Pixels generated by the dynamics model
Returns:
imgs (BxNobjxCxHxW): Output frames
"""
del features # assumes the dynamics model will do all decoding
return pixels | [
"def",
"forward",
"(",
"self",
",",
"features",
",",
"pixels",
")",
":",
"del",
"features",
"# assumes the dynamics model will do all decoding",
"return",
"pixels"
] | [
784,
4
] | [
793,
21
] | python | en | ['en', 'error', 'th'] | False |
BasicObjEncoder.forward | (self, feat) |
Args:
feat: (B, T, Nobj, D, H', W')
|
Args:
feat: (B, T, Nobj, D, H', W')
| def forward(self, feat):
"""
Args:
feat: (B, T, Nobj, D, H', W')
"""
if self.encoder:
feat_flat = torch.flatten(feat, 0, 2)
obj_embed_flat = self.encoder(feat_flat)
obj_embed = torch.reshape(
obj_embed_flat, feat.shape[:3] + obj_embed_flat.shape[1:])
else:
obj_embed = feat
if self.spatial_mean:
obj_embed = torch.mean(obj_embed, dim=[-1, -2], keepdims=True)
return obj_embed | [
"def",
"forward",
"(",
"self",
",",
"feat",
")",
":",
"if",
"self",
".",
"encoder",
":",
"feat_flat",
"=",
"torch",
".",
"flatten",
"(",
"feat",
",",
"0",
",",
"2",
")",
"obj_embed_flat",
"=",
"self",
".",
"encoder",
"(",
"feat_flat",
")",
"obj_embed",
"=",
"torch",
".",
"reshape",
"(",
"obj_embed_flat",
",",
"feat",
".",
"shape",
"[",
":",
"3",
"]",
"+",
"obj_embed_flat",
".",
"shape",
"[",
"1",
":",
"]",
")",
"else",
":",
"obj_embed",
"=",
"feat",
"if",
"self",
".",
"spatial_mean",
":",
"obj_embed",
"=",
"torch",
".",
"mean",
"(",
"obj_embed",
",",
"dim",
"=",
"[",
"-",
"1",
",",
"-",
"2",
"]",
",",
"keepdims",
"=",
"True",
")",
"return",
"obj_embed"
] | [
854,
4
] | [
868,
24
] | python | en | ['en', 'error', 'th'] | False |
ContextGatingObjectifier.forward | (self, vid_feat) |
Decompose the video features into object level representation.
Args:
vid_feat: (BxTxDxH'xW')
nobj (int): Max number of objects in the scene. The hope is that the
extra channels will just have some degenerate information
Returns:
BxTxNobjxDxH''xW''
|
Decompose the video features into object level representation.
Args:
vid_feat: (BxTxDxH'xW')
nobj (int): Max number of objects in the scene. The hope is that the
extra channels will just have some degenerate information
Returns:
BxTxNobjxDxH''xW''
| def forward(self, vid_feat):
"""
Decompose the video features into object level representation.
Args:
vid_feat: (BxTxDxH'xW')
nobj (int): Max number of objects in the scene. The hope is that the
extra channels will just have some degenerate information
Returns:
BxTxNobjxDxH''xW''
"""
raise NotImplementedError('The inp is now objfied, TODO deal with it')
batch_size = vid_feat.shape[0]
# Use context gating: generate a heatmap for each object at each time
# step, and weight using that heatmap to get an object representation
flatten_feat = torch.flatten(vid_feat, 0, 1)
# Unsqueeze to add a channel dimension to the attention maps
obj_map = self.obj_mapper(flatten_feat).unsqueeze(2)
# Add a 1-D object dimension
flatten_feat = flatten_feat.unsqueeze(1)
# Weight the feats with the attention maps to get the object-features
mapped_feat = flatten_feat * obj_map
# Reshape to add the time dimension back
mapped_feat = torch.reshape(mapped_feat,
(batch_size, -1) + mapped_feat.shape[1:])
final_feat = self.obj_encoder(mapped_feat)
return final_feat | [
"def",
"forward",
"(",
"self",
",",
"vid_feat",
")",
":",
"raise",
"NotImplementedError",
"(",
"'The inp is now objfied, TODO deal with it'",
")",
"batch_size",
"=",
"vid_feat",
".",
"shape",
"[",
"0",
"]",
"# Use context gating: generate a heatmap for each object at each time",
"# step, and weight using that heatmap to get an object representation",
"flatten_feat",
"=",
"torch",
".",
"flatten",
"(",
"vid_feat",
",",
"0",
",",
"1",
")",
"# Unsqueeze to add a channel dimension to the attention maps",
"obj_map",
"=",
"self",
".",
"obj_mapper",
"(",
"flatten_feat",
")",
".",
"unsqueeze",
"(",
"2",
")",
"# Add a 1-D object dimension",
"flatten_feat",
"=",
"flatten_feat",
".",
"unsqueeze",
"(",
"1",
")",
"# Weight the feats with the attention maps to get the object-features",
"mapped_feat",
"=",
"flatten_feat",
"*",
"obj_map",
"# Reshape to add the time dimension back",
"mapped_feat",
"=",
"torch",
".",
"reshape",
"(",
"mapped_feat",
",",
"(",
"batch_size",
",",
"-",
"1",
")",
"+",
"mapped_feat",
".",
"shape",
"[",
"1",
":",
"]",
")",
"final_feat",
"=",
"self",
".",
"obj_encoder",
"(",
"mapped_feat",
")",
"return",
"final_feat"
] | [
887,
4
] | [
912,
25
] | python | en | ['en', 'error', 'th'] | False |
ChannelSplitObjectifier.forward | (self, vid_feat) |
Decompose the video features into object level representation.
Args:
vid_feat: (BxTxNobjxDxH'xW')
Returns:
BxTxNobjx(D/Nobj)xH'xW'
|
Decompose the video features into object level representation.
Args:
vid_feat: (BxTxNobjxDxH'xW')
Returns:
BxTxNobjx(D/Nobj)xH'xW'
| def forward(self, vid_feat):
"""
Decompose the video features into object level representation.
Args:
vid_feat: (BxTxNobjxDxH'xW')
Returns:
BxTxNobjx(D/Nobj)xH'xW'
"""
assert vid_feat.shape[2] == 1, (
'Channel split can not deal with pre objectified {} input'.format(
vid_feat.shape[2]))
assert vid_feat.shape[3] % self.nobj == 0, 'Must be divisible'
# Reshape the channel dimension to split into an object dimension
objed = vid_feat.view(vid_feat.shape[:2] + (self.nobj, -1) +
vid_feat.shape[-2:])
assert objed.shape[2] == self.nobj
assert objed.shape[3] == vid_feat.shape[3] / self.nobj
# Apply a little network to get a flat feature
obj_encoded = self.obj_encoder(objed)
return obj_encoded | [
"def",
"forward",
"(",
"self",
",",
"vid_feat",
")",
":",
"assert",
"vid_feat",
".",
"shape",
"[",
"2",
"]",
"==",
"1",
",",
"(",
"'Channel split can not deal with pre objectified {} input'",
".",
"format",
"(",
"vid_feat",
".",
"shape",
"[",
"2",
"]",
")",
")",
"assert",
"vid_feat",
".",
"shape",
"[",
"3",
"]",
"%",
"self",
".",
"nobj",
"==",
"0",
",",
"'Must be divisible'",
"# Reshape the channel dimension to split into an object dimension",
"objed",
"=",
"vid_feat",
".",
"view",
"(",
"vid_feat",
".",
"shape",
"[",
":",
"2",
"]",
"+",
"(",
"self",
".",
"nobj",
",",
"-",
"1",
")",
"+",
"vid_feat",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"assert",
"objed",
".",
"shape",
"[",
"2",
"]",
"==",
"self",
".",
"nobj",
"assert",
"objed",
".",
"shape",
"[",
"3",
"]",
"==",
"vid_feat",
".",
"shape",
"[",
"3",
"]",
"/",
"self",
".",
"nobj",
"# Apply a little network to get a flat feature",
"obj_encoded",
"=",
"self",
".",
"obj_encoder",
"(",
"objed",
")",
"return",
"obj_encoded"
] | [
923,
4
] | [
942,
26
] | python | en | ['en', 'error', 'th'] | False |
SimpleBaseEncoder.__init__ | (self, in_dim, width_scale_factor) | Simple encoder weights.
For a 256x256 input, it'll give a 4x4 output. | Simple encoder weights.
For a 256x256 input, it'll give a 4x4 output. | def __init__(self, in_dim, width_scale_factor):
"""Simple encoder weights.
For a 256x256 input, it'll give a 4x4 output."""
super().__init__()
self.width_scale_factor = width_scale_factor
_s = self._scale_int
self.stem = nn.Sequential(
nn.Conv2d(in_dim, 3, kernel_size=1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=True),
nn.Conv2d(3,
_s(64),
kernel_size=7,
stride=2,
padding=3,
bias=False),
nn.BatchNorm2d(_s(64)),
nn.ReLU(inplace=True),
nn.Conv2d(_s(64),
_s(64),
kernel_size=5,
stride=2,
padding=2,
bias=False),
nn.BatchNorm2d(_s(64)),
nn.ReLU(inplace=True),
nn.Conv2d(_s(64),
_s(64),
kernel_size=5,
stride=2,
padding=2,
bias=False),
nn.BatchNorm2d(_s(64)),
nn.ReLU(inplace=True),
nn.Conv2d(_s(64),
_s(64),
kernel_size=5,
stride=2,
padding=2,
bias=False),
nn.BatchNorm2d(_s(64)),
nn.ReLU(inplace=True),
nn.Conv2d(_s(64),
_s(128),
kernel_size=5,
stride=2,
padding=2,
bias=False),
nn.BatchNorm2d(_s(128)),
nn.ReLU(inplace=True),
)
self.out_dim = _s(128) | [
"def",
"__init__",
"(",
"self",
",",
"in_dim",
",",
"width_scale_factor",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"self",
".",
"width_scale_factor",
"=",
"width_scale_factor",
"_s",
"=",
"self",
".",
"_scale_int",
"self",
".",
"stem",
"=",
"nn",
".",
"Sequential",
"(",
"nn",
".",
"Conv2d",
"(",
"in_dim",
",",
"3",
",",
"kernel_size",
"=",
"1",
",",
"bias",
"=",
"False",
")",
",",
"nn",
".",
"BatchNorm2d",
"(",
"3",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
"nn",
".",
"Conv2d",
"(",
"3",
",",
"_s",
"(",
"64",
")",
",",
"kernel_size",
"=",
"7",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"3",
",",
"bias",
"=",
"False",
")",
",",
"nn",
".",
"BatchNorm2d",
"(",
"_s",
"(",
"64",
")",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
"nn",
".",
"Conv2d",
"(",
"_s",
"(",
"64",
")",
",",
"_s",
"(",
"64",
")",
",",
"kernel_size",
"=",
"5",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"2",
",",
"bias",
"=",
"False",
")",
",",
"nn",
".",
"BatchNorm2d",
"(",
"_s",
"(",
"64",
")",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
"nn",
".",
"Conv2d",
"(",
"_s",
"(",
"64",
")",
",",
"_s",
"(",
"64",
")",
",",
"kernel_size",
"=",
"5",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"2",
",",
"bias",
"=",
"False",
")",
",",
"nn",
".",
"BatchNorm2d",
"(",
"_s",
"(",
"64",
")",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
"nn",
".",
"Conv2d",
"(",
"_s",
"(",
"64",
")",
",",
"_s",
"(",
"64",
")",
",",
"kernel_size",
"=",
"5",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"2",
",",
"bias",
"=",
"False",
")",
",",
"nn",
".",
"BatchNorm2d",
"(",
"_s",
"(",
"64",
")",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
"nn",
".",
"Conv2d",
"(",
"_s",
"(",
"64",
")",
",",
"_s",
"(",
"128",
")",
",",
"kernel_size",
"=",
"5",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"2",
",",
"bias",
"=",
"False",
")",
",",
"nn",
".",
"BatchNorm2d",
"(",
"_s",
"(",
"128",
")",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
")",
"self",
".",
"out_dim",
"=",
"_s",
"(",
"128",
")"
] | [
965,
4
] | [
1016,
30
] | python | af | ['es', 'af', 'en'] | False |
SimpleBaseEncoder._scale_int | (self, n) | Scale the number by a factor. To control width of this network. | Scale the number by a factor. To control width of this network. | def _scale_int(self, n):
"""Scale the number by a factor. To control width of this network."""
return int(self.width_scale_factor * n) | [
"def",
"_scale_int",
"(",
"self",
",",
"n",
")",
":",
"return",
"int",
"(",
"self",
".",
"width_scale_factor",
"*",
"n",
")"
] | [
1018,
4
] | [
1020,
47
] | python | en | ['en', 'en', 'en'] | True |
BasicEncoder.__init__ | (self, in_dim, nobj, feat_ext, objectifier, obj_encoder,
spatial_mean, feat_ext_eval_mode, process_objs_together) |
Args:
obj_before_enc: If true, do the objectify in the input (pixel) space
before running the encode (so each object is encoded separately)
spatial_mean: Avg pool the features to 1x1
feat_ext_eval_mode: Set the feature extractor to eval mode for BN,
dropout etc
process_objs_together: If true, it will concatenate all objs on the
channel dimension, extract features, and split the features
in channel dimensions to get features for each obj
|
Args:
obj_before_enc: If true, do the objectify in the input (pixel) space
before running the encode (so each object is encoded separately)
spatial_mean: Avg pool the features to 1x1
feat_ext_eval_mode: Set the feature extractor to eval mode for BN,
dropout etc
process_objs_together: If true, it will concatenate all objs on the
channel dimension, extract features, and split the features
in channel dimensions to get features for each obj
| def __init__(self, in_dim, nobj, feat_ext, objectifier, obj_encoder,
spatial_mean, feat_ext_eval_mode, process_objs_together):
"""
Args:
obj_before_enc: If true, do the objectify in the input (pixel) space
before running the encode (so each object is encoded separately)
spatial_mean: Avg pool the features to 1x1
feat_ext_eval_mode: Set the feature extractor to eval mode for BN,
dropout etc
process_objs_together: If true, it will concatenate all objs on the
channel dimension, extract features, and split the features
in channel dimensions to get features for each obj
"""
super().__init__()
self.nobj = nobj
self.process_objs_together = process_objs_together
# The image embedding model
self.feat_ext = hydra.utils.instantiate(
feat_ext, in_dim * nobj if self.process_objs_together else in_dim)
initial_dim = self.feat_ext.out_dim
# The objects model
self.objectifier = hydra.utils.instantiate(objectifier, initial_dim,
obj_encoder)
self.out_dim = self.objectifier.out_dim
if self.process_objs_together:
assert self.out_dim % nobj == 0
self.out_dim //= nobj
self.spatial_mean = spatial_mean
self.feat_ext_eval_mode = feat_ext_eval_mode | [
"def",
"__init__",
"(",
"self",
",",
"in_dim",
",",
"nobj",
",",
"feat_ext",
",",
"objectifier",
",",
"obj_encoder",
",",
"spatial_mean",
",",
"feat_ext_eval_mode",
",",
"process_objs_together",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"self",
".",
"nobj",
"=",
"nobj",
"self",
".",
"process_objs_together",
"=",
"process_objs_together",
"# The image embedding model",
"self",
".",
"feat_ext",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"feat_ext",
",",
"in_dim",
"*",
"nobj",
"if",
"self",
".",
"process_objs_together",
"else",
"in_dim",
")",
"initial_dim",
"=",
"self",
".",
"feat_ext",
".",
"out_dim",
"# The objects model",
"self",
".",
"objectifier",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"objectifier",
",",
"initial_dim",
",",
"obj_encoder",
")",
"self",
".",
"out_dim",
"=",
"self",
".",
"objectifier",
".",
"out_dim",
"if",
"self",
".",
"process_objs_together",
":",
"assert",
"self",
".",
"out_dim",
"%",
"nobj",
"==",
"0",
"self",
".",
"out_dim",
"//=",
"nobj",
"self",
".",
"spatial_mean",
"=",
"spatial_mean",
"self",
".",
"feat_ext_eval_mode",
"=",
"feat_ext_eval_mode"
] | [
1057,
4
] | [
1085,
52
] | python | en | ['en', 'error', 'th'] | False |
BasicEncoder._forward_vid | (self, batch_vid_obs, l2_norm_feats=False) |
Convert a video into images to run the forward model.
Args:
batch_vid_obs: BxTxCxHxW or BxTxNobjxCxHxW
Returns:
features: BxTxDxH'xW' or BxTxNobjxDxH'xW'
|
Convert a video into images to run the forward model.
Args:
batch_vid_obs: BxTxCxHxW or BxTxNobjxCxHxW
Returns:
features: BxTxDxH'xW' or BxTxNobjxDxH'xW'
| def _forward_vid(self, batch_vid_obs, l2_norm_feats=False):
"""
Convert a video into images to run the forward model.
Args:
batch_vid_obs: BxTxCxHxW or BxTxNobjxCxHxW
Returns:
features: BxTxDxH'xW' or BxTxNobjxDxH'xW'
"""
# Add an object dimension, so the rest of the code doesn't have to
# deal with edge cases
added_obj_dim = False
if len(batch_vid_obs.shape) == 4:
added_obj_dim = True
batch_vid_obs = batch_vid_obs.unsqueeze(2) # BxTxNobjxCxHxW
# Flatten videos into frames to extract out the features
# resulting shape B'xC'xHxW
if self.process_objs_together:
# resulting shape B' = B * T, C' = Nobj * C
flat_obs = batch_vid_obs.reshape((-1, ) + batch_vid_obs.shape[-4:])
flat_obs = torch.flatten(flat_obs, 1, 2)
else:
# resulting shape B' = B * T * Nobj, C' = C
flat_obs = batch_vid_obs.reshape((-1, ) + batch_vid_obs.shape[-3:])
# Extract features
if self.feat_ext_eval_mode:
self.feat_ext.eval()
features = self.feat_ext(flat_obs)
if self.spatial_mean:
# Mean over spatial dimensions
features = torch.mean(features, dim=[-2, -1], keepdims=True)
if l2_norm_feats:
# L2 normalize the features -- MemoryBank, MoCo and PIRL do that
features = nn.functional.normalize(features, p=2, dim=-1)
# Reshape back to original batch dimension
if self.process_objs_together:
features_batched = features.reshape(batch_vid_obs.shape[:2] +
(self.nobj, -1) +
features.shape[-2:])
else:
features_batched = features.reshape(batch_vid_obs.shape[:-3] +
features.shape[1:])
if added_obj_dim:
features_batched = features_batched.squeeze(2)
assert features_batched.shape[-3] == self.out_dim
return features_batched | [
"def",
"_forward_vid",
"(",
"self",
",",
"batch_vid_obs",
",",
"l2_norm_feats",
"=",
"False",
")",
":",
"# Add an object dimension, so the rest of the code doesn't have to",
"# deal with edge cases",
"added_obj_dim",
"=",
"False",
"if",
"len",
"(",
"batch_vid_obs",
".",
"shape",
")",
"==",
"4",
":",
"added_obj_dim",
"=",
"True",
"batch_vid_obs",
"=",
"batch_vid_obs",
".",
"unsqueeze",
"(",
"2",
")",
"# BxTxNobjxCxHxW",
"# Flatten videos into frames to extract out the features",
"# resulting shape B'xC'xHxW",
"if",
"self",
".",
"process_objs_together",
":",
"# resulting shape B' = B * T, C' = Nobj * C",
"flat_obs",
"=",
"batch_vid_obs",
".",
"reshape",
"(",
"(",
"-",
"1",
",",
")",
"+",
"batch_vid_obs",
".",
"shape",
"[",
"-",
"4",
":",
"]",
")",
"flat_obs",
"=",
"torch",
".",
"flatten",
"(",
"flat_obs",
",",
"1",
",",
"2",
")",
"else",
":",
"# resulting shape B' = B * T * Nobj, C' = C",
"flat_obs",
"=",
"batch_vid_obs",
".",
"reshape",
"(",
"(",
"-",
"1",
",",
")",
"+",
"batch_vid_obs",
".",
"shape",
"[",
"-",
"3",
":",
"]",
")",
"# Extract features",
"if",
"self",
".",
"feat_ext_eval_mode",
":",
"self",
".",
"feat_ext",
".",
"eval",
"(",
")",
"features",
"=",
"self",
".",
"feat_ext",
"(",
"flat_obs",
")",
"if",
"self",
".",
"spatial_mean",
":",
"# Mean over spatial dimensions",
"features",
"=",
"torch",
".",
"mean",
"(",
"features",
",",
"dim",
"=",
"[",
"-",
"2",
",",
"-",
"1",
"]",
",",
"keepdims",
"=",
"True",
")",
"if",
"l2_norm_feats",
":",
"# L2 normalize the features -- MemoryBank, MoCo and PIRL do that",
"features",
"=",
"nn",
".",
"functional",
".",
"normalize",
"(",
"features",
",",
"p",
"=",
"2",
",",
"dim",
"=",
"-",
"1",
")",
"# Reshape back to original batch dimension",
"if",
"self",
".",
"process_objs_together",
":",
"features_batched",
"=",
"features",
".",
"reshape",
"(",
"batch_vid_obs",
".",
"shape",
"[",
":",
"2",
"]",
"+",
"(",
"self",
".",
"nobj",
",",
"-",
"1",
")",
"+",
"features",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
"else",
":",
"features_batched",
"=",
"features",
".",
"reshape",
"(",
"batch_vid_obs",
".",
"shape",
"[",
":",
"-",
"3",
"]",
"+",
"features",
".",
"shape",
"[",
"1",
":",
"]",
")",
"if",
"added_obj_dim",
":",
"features_batched",
"=",
"features_batched",
".",
"squeeze",
"(",
"2",
")",
"assert",
"features_batched",
".",
"shape",
"[",
"-",
"3",
"]",
"==",
"self",
".",
"out_dim",
"return",
"features_batched"
] | [
1087,
4
] | [
1131,
31
] | python | en | ['en', 'error', 'th'] | False |
BasicEncoder.forward | (self, vid) |
Args:
vid (B, T, Nobj, C, H, W): Input video, in preprocessed form; i.e.
one-hot
Returns:
obj_feat (B, T, Nobj', D, H', W'): Features with objects, if needed
|
Args:
vid (B, T, Nobj, C, H, W): Input video, in preprocessed form; i.e.
one-hot
Returns:
obj_feat (B, T, Nobj', D, H', W'): Features with objects, if needed
| def forward(self, vid):
"""
Args:
vid (B, T, Nobj, C, H, W): Input video, in preprocessed form; i.e.
one-hot
Returns:
obj_feat (B, T, Nobj', D, H', W'): Features with objects, if needed
"""
vid_feat = self._forward_vid(vid)
vid_feat = self.objectifier(vid_feat)
return vid_feat | [
"def",
"forward",
"(",
"self",
",",
"vid",
")",
":",
"vid_feat",
"=",
"self",
".",
"_forward_vid",
"(",
"vid",
")",
"vid_feat",
"=",
"self",
".",
"objectifier",
"(",
"vid_feat",
")",
"return",
"vid_feat"
] | [
1133,
4
] | [
1143,
23
] | python | en | ['en', 'error', 'th'] | False |
MLPClassifier.forward | (self, preds, pixs, process_all_frames=False) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (BxT)
process_all_frames: Set true when used by other classifiers for
intermediate feature extraction, so to get features for each
frame.
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (BxT)
process_all_frames: Set true when used by other classifiers for
intermediate feature extraction, so to get features for each
frame.
| def forward(self, preds, pixs, process_all_frames=False):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (BxT)
process_all_frames: Set true when used by other classifiers for
intermediate feature extraction, so to get features for each
frame.
"""
del pixs # This does not use it
if self.nlayers == 0:
return preds
# Since this classifier doesn't take into account context and the final
# _cls is going to look at the last frame, so might as well only process
# that last frame
if not process_all_frames:
preds = preds[:, -1:, ...]
mean_feat = torch.mean(preds, axis=[2, -1, -2])
if self.match_inp_sz_layer:
if self.init_linear_wt is None:
logging.warning(
'Creating a linear layer to map the input '
'dims (%d) to MLP input dim (%d)', mean_feat.shape[-1],
self.in_dim)
self.reset_parameters(preds, self.in_dim,
preds.shape[1] * preds.shape[3])
mean_feat = nn.functional.linear(mean_feat, self.init_linear_wt)
mean_feat = nn.ReLU(inplace=True)(mean_feat)
return self.cls(mean_feat).squeeze(-1) | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
",",
"process_all_frames",
"=",
"False",
")",
":",
"del",
"pixs",
"# This does not use it",
"if",
"self",
".",
"nlayers",
"==",
"0",
":",
"return",
"preds",
"# Since this classifier doesn't take into account context and the final",
"# _cls is going to look at the last frame, so might as well only process",
"# that last frame",
"if",
"not",
"process_all_frames",
":",
"preds",
"=",
"preds",
"[",
":",
",",
"-",
"1",
":",
",",
"...",
"]",
"mean_feat",
"=",
"torch",
".",
"mean",
"(",
"preds",
",",
"axis",
"=",
"[",
"2",
",",
"-",
"1",
",",
"-",
"2",
"]",
")",
"if",
"self",
".",
"match_inp_sz_layer",
":",
"if",
"self",
".",
"init_linear_wt",
"is",
"None",
":",
"logging",
".",
"warning",
"(",
"'Creating a linear layer to map the input '",
"'dims (%d) to MLP input dim (%d)'",
",",
"mean_feat",
".",
"shape",
"[",
"-",
"1",
"]",
",",
"self",
".",
"in_dim",
")",
"self",
".",
"reset_parameters",
"(",
"preds",
",",
"self",
".",
"in_dim",
",",
"preds",
".",
"shape",
"[",
"1",
"]",
"*",
"preds",
".",
"shape",
"[",
"3",
"]",
")",
"mean_feat",
"=",
"nn",
".",
"functional",
".",
"linear",
"(",
"mean_feat",
",",
"self",
".",
"init_linear_wt",
")",
"mean_feat",
"=",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
"(",
"mean_feat",
")",
"return",
"self",
".",
"cls",
"(",
"mean_feat",
")",
".",
"squeeze",
"(",
"-",
"1",
")"
] | [
1181,
4
] | [
1212,
46
] | python | en | ['en', 'error', 'th'] | False |
ConvNetClassifier.forward | (self, preds, pixs, process_all_frames=False) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
process_all_frames: Set true when used by other classifiers for
intermediate feature extraction, so to get features for each
frame.
Retuns:
solved: (BxT)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
process_all_frames: Set true when used by other classifiers for
intermediate feature extraction, so to get features for each
frame.
Retuns:
solved: (BxT)
| def forward(self, preds, pixs, process_all_frames=False):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
process_all_frames: Set true when used by other classifiers for
intermediate feature extraction, so to get features for each
frame.
Retuns:
solved: (BxT)
"""
# Not enforcing the assert here if pred is None, since this module
# is usually used by other modules as a way to extract features,
# and it might pass in None for preds. But rest assured, this check
# would have been done on the caller side.
assert preds is None or preds.shape[1] == pixs.shape[1], (
'Must pass in run_decode=True if using a pixel-based classifier!!')
del preds # This does not use it
# Since this classifier doesn't take into account context and the final
# _cls is going to look at the last frame, so might as well only process
# that last frame
if not process_all_frames:
pixs = pixs[:, -1:, ...]
obj_feats = self.enc(pixs)
return self.cls(obj_feats, None, process_all_frames=process_all_frames) | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
",",
"process_all_frames",
"=",
"False",
")",
":",
"# Not enforcing the assert here if pred is None, since this module",
"# is usually used by other modules as a way to extract features,",
"# and it might pass in None for preds. But rest assured, this check",
"# would have been done on the caller side.",
"assert",
"preds",
"is",
"None",
"or",
"preds",
".",
"shape",
"[",
"1",
"]",
"==",
"pixs",
".",
"shape",
"[",
"1",
"]",
",",
"(",
"'Must pass in run_decode=True if using a pixel-based classifier!!'",
")",
"del",
"preds",
"# This does not use it",
"# Since this classifier doesn't take into account context and the final",
"# _cls is going to look at the last frame, so might as well only process",
"# that last frame",
"if",
"not",
"process_all_frames",
":",
"pixs",
"=",
"pixs",
"[",
":",
",",
"-",
"1",
":",
",",
"...",
"]",
"obj_feats",
"=",
"self",
".",
"enc",
"(",
"pixs",
")",
"return",
"self",
".",
"cls",
"(",
"obj_feats",
",",
"None",
",",
"process_all_frames",
"=",
"process_all_frames",
")"
] | [
1256,
4
] | [
1281,
79
] | python | en | ['en', 'error', 'th'] | False |
TxClassifier.forward | (self, preds, pixs) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
| def forward(self, preds, pixs):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
"""
del pixs # This does not use it
# Spatial mean the features
stacked_mean_feat = torch.flatten(torch.mean(preds, axis=[-1, -2]), 1,
2)
feat_enc_time = self.cls(self.tx_enc(stacked_mean_feat))
# Max pool over time to get the final prediction
# Keepdims since the output format expects a time dimension and does
# a max pool over it at the end
cls_pred = torch.max(feat_enc_time, dim=1,
keepdims=True)[0].squeeze(-1)
return cls_pred | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
")",
":",
"del",
"pixs",
"# This does not use it",
"# Spatial mean the features",
"stacked_mean_feat",
"=",
"torch",
".",
"flatten",
"(",
"torch",
".",
"mean",
"(",
"preds",
",",
"axis",
"=",
"[",
"-",
"1",
",",
"-",
"2",
"]",
")",
",",
"1",
",",
"2",
")",
"feat_enc_time",
"=",
"self",
".",
"cls",
"(",
"self",
".",
"tx_enc",
"(",
"stacked_mean_feat",
")",
")",
"# Max pool over time to get the final prediction",
"# Keepdims since the output format expects a time dimension and does",
"# a max pool over it at the end",
"cls_pred",
"=",
"torch",
".",
"max",
"(",
"feat_enc_time",
",",
"dim",
"=",
"1",
",",
"keepdims",
"=",
"True",
")",
"[",
"0",
"]",
".",
"squeeze",
"(",
"-",
"1",
")",
"return",
"cls_pred"
] | [
1291,
4
] | [
1310,
23
] | python | en | ['en', 'error', 'th'] | False |
ConvTxClassifier.forward | (self, preds, pixs) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
| def forward(self, preds, pixs):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
"""
assert preds.shape[1] == pixs.shape[1], (
'Must pass in run_decode=True if using a pixel-based classifier!!')
del preds
feats = self.conv_feat(None, pixs, process_all_frames=True)
preds = self.tx_cls(feats, None)
return preds | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
")",
":",
"assert",
"preds",
".",
"shape",
"[",
"1",
"]",
"==",
"pixs",
".",
"shape",
"[",
"1",
"]",
",",
"(",
"'Must pass in run_decode=True if using a pixel-based classifier!!'",
")",
"del",
"preds",
"feats",
"=",
"self",
".",
"conv_feat",
"(",
"None",
",",
"pixs",
",",
"process_all_frames",
"=",
"True",
")",
"preds",
"=",
"self",
".",
"tx_cls",
"(",
"feats",
",",
"None",
")",
"return",
"preds"
] | [
1320,
4
] | [
1334,
20
] | python | en | ['en', 'error', 'th'] | False |
Conv3dClassifier.forward | (self, preds, pixs) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
| def forward(self, preds, pixs):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
"""
del pixs
enc_preds = self.enc(preds.squeeze(2).transpose(1, 2))
cls_preds = self.cls(torch.mean(enc_preds, [-1, -2, -3]))
# It has 1 extra dim in the end from the fc layer which should be
# removed, but since I need to add a time dimension anyway, just leave
# this there (will end up the same)
return cls_preds | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
")",
":",
"del",
"pixs",
"enc_preds",
"=",
"self",
".",
"enc",
"(",
"preds",
".",
"squeeze",
"(",
"2",
")",
".",
"transpose",
"(",
"1",
",",
"2",
")",
")",
"cls_preds",
"=",
"self",
".",
"cls",
"(",
"torch",
".",
"mean",
"(",
"enc_preds",
",",
"[",
"-",
"1",
",",
"-",
"2",
",",
"-",
"3",
"]",
")",
")",
"# It has 1 extra dim in the end from the fc layer which should be",
"# removed, but since I need to add a time dimension anyway, just leave",
"# this there (will end up the same)",
"return",
"cls_preds"
] | [
1349,
4
] | [
1364,
24
] | python | en | ['en', 'error', 'th'] | False |
ConvConv3dClassifier.forward | (self, preds, pixs) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
| def forward(self, preds, pixs):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
"""
assert preds.shape[1] == pixs.shape[1], (
'Must pass in run_decode=True if using a pixel-based classifier!!')
del preds
feats = self.conv_feat(None, pixs, process_all_frames=True)
preds = self.td_cls(feats, None)
return preds | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
")",
":",
"assert",
"preds",
".",
"shape",
"[",
"1",
"]",
"==",
"pixs",
".",
"shape",
"[",
"1",
"]",
",",
"(",
"'Must pass in run_decode=True if using a pixel-based classifier!!'",
")",
"del",
"preds",
"feats",
"=",
"self",
".",
"conv_feat",
"(",
"None",
",",
"pixs",
",",
"process_all_frames",
"=",
"True",
")",
"preds",
"=",
"self",
".",
"td_cls",
"(",
"feats",
",",
"None",
")",
"return",
"preds"
] | [
1374,
4
] | [
1388,
20
] | python | en | ['en', 'error', 'th'] | False |
ConcatClassifier.forward | (self, preds, pixs) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
| def forward(self, preds, pixs):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
"""
del pixs
# Concatenate over the time dimension
preds_flat = preds.view(preds.shape[0], 1, 1, -1, preds.shape[-2],
preds.shape[-1])
return self.cls(preds_flat, None, process_all_frames=True) | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
")",
":",
"del",
"pixs",
"# Concatenate over the time dimension",
"preds_flat",
"=",
"preds",
".",
"view",
"(",
"preds",
".",
"shape",
"[",
"0",
"]",
",",
"1",
",",
"1",
",",
"-",
"1",
",",
"preds",
".",
"shape",
"[",
"-",
"2",
"]",
",",
"preds",
".",
"shape",
"[",
"-",
"1",
"]",
")",
"return",
"self",
".",
"cls",
"(",
"preds_flat",
",",
"None",
",",
"process_all_frames",
"=",
"True",
")"
] | [
1397,
4
] | [
1410,
66
] | python | en | ['en', 'error', 'th'] | False |
ConvConcatClassifier.forward | (self, preds, pixs) |
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
|
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
| def forward(self, preds, pixs):
"""
Run the classifier on the predictions.
Args:
preds: (BxTx1xDxH'xW')
pixs: (BxTx1xDxHxW)
Retuns:
solved: (Bx1)
"""
assert preds.shape[1] == pixs.shape[1], (
'Must pass in run_decode=True if using a pixel-based classifier!!')
del preds
feats = self.conv_feat(None, pixs, process_all_frames=True)
preds = self.concat_cls(feats, None)
return preds | [
"def",
"forward",
"(",
"self",
",",
"preds",
",",
"pixs",
")",
":",
"assert",
"preds",
".",
"shape",
"[",
"1",
"]",
"==",
"pixs",
".",
"shape",
"[",
"1",
"]",
",",
"(",
"'Must pass in run_decode=True if using a pixel-based classifier!!'",
")",
"del",
"preds",
"feats",
"=",
"self",
".",
"conv_feat",
"(",
"None",
",",
"pixs",
",",
"process_all_frames",
"=",
"True",
")",
"preds",
"=",
"self",
".",
"concat_cls",
"(",
"feats",
",",
"None",
")",
"return",
"preds"
] | [
1421,
4
] | [
1435,
20
] | python | en | ['en', 'error', 'th'] | False |
TrivialInteractor.forward | (cls, feat) |
Args:
feat: (B, T, Nobj, C, H', W')
Returns:
feat as is
|
Args:
feat: (B, T, Nobj, C, H', W')
Returns:
feat as is
| def forward(cls, feat):
"""
Args:
feat: (B, T, Nobj, C, H', W')
Returns:
feat as is
"""
return feat | [
"def",
"forward",
"(",
"cls",
",",
"feat",
")",
":",
"return",
"feat"
] | [
1445,
4
] | [
1452,
19
] | python | en | ['en', 'error', 'th'] | False |
TxEncoder.__init__ | (self, in_dim, nheads, nlayers, maintain_dim=False) |
Args:
maintain_dim (bool): If true, it maps the final output to the same
dimensionality as the input
|
Args:
maintain_dim (bool): If true, it maps the final output to the same
dimensionality as the input
| def __init__(self, in_dim, nheads, nlayers, maintain_dim=False):
"""
Args:
maintain_dim (bool): If true, it maps the final output to the same
dimensionality as the input
"""
super().__init__()
# Very basic position encoding
self.loc_embed = nn.Sequential(nn.Linear(1, 4), nn.ReLU(inplace=True),
nn.Linear(4, 8))
self.nheads = nheads
self.nlayers = nlayers
in_dim_loc = in_dim + 8 * nheads
self.loc_mixer = nn.Linear(in_dim_loc, in_dim_loc)
layer = nn.TransformerEncoderLayer(in_dim_loc, nheads)
self.encoder = nn.TransformerEncoder(layer, nlayers)
if maintain_dim:
self.back_to_orig_dim = nn.Linear(in_dim_loc, in_dim)
self.out_dim = in_dim
else:
self.back_to_orig_dim = lambda x: x # Identity
self.out_dim = in_dim_loc | [
"def",
"__init__",
"(",
"self",
",",
"in_dim",
",",
"nheads",
",",
"nlayers",
",",
"maintain_dim",
"=",
"False",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"# Very basic position encoding",
"self",
".",
"loc_embed",
"=",
"nn",
".",
"Sequential",
"(",
"nn",
".",
"Linear",
"(",
"1",
",",
"4",
")",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
",",
"nn",
".",
"Linear",
"(",
"4",
",",
"8",
")",
")",
"self",
".",
"nheads",
"=",
"nheads",
"self",
".",
"nlayers",
"=",
"nlayers",
"in_dim_loc",
"=",
"in_dim",
"+",
"8",
"*",
"nheads",
"self",
".",
"loc_mixer",
"=",
"nn",
".",
"Linear",
"(",
"in_dim_loc",
",",
"in_dim_loc",
")",
"layer",
"=",
"nn",
".",
"TransformerEncoderLayer",
"(",
"in_dim_loc",
",",
"nheads",
")",
"self",
".",
"encoder",
"=",
"nn",
".",
"TransformerEncoder",
"(",
"layer",
",",
"nlayers",
")",
"if",
"maintain_dim",
":",
"self",
".",
"back_to_orig_dim",
"=",
"nn",
".",
"Linear",
"(",
"in_dim_loc",
",",
"in_dim",
")",
"self",
".",
"out_dim",
"=",
"in_dim",
"else",
":",
"self",
".",
"back_to_orig_dim",
"=",
"lambda",
"x",
":",
"x",
"# Identity",
"self",
".",
"out_dim",
"=",
"in_dim_loc"
] | [
1457,
4
] | [
1478,
37
] | python | en | ['en', 'error', 'th'] | False |
TxEncoder.forward | (self, feat) |
Args:
feat: (B, T, C)
Returns:
Same shape as input
|
Args:
feat: (B, T, C)
Returns:
Same shape as input
| def forward(self, feat):
"""
Args:
feat: (B, T, C)
Returns:
Same shape as input
"""
# Add a location embedding (over time), since time axis will flatten
loc_embedding = self.loc_embed(
torch.arange(feat.shape[1],
device=feat.device).unsqueeze(-1).float())
# Make into the shape of the feature
loc_embedding = loc_embedding.unsqueeze(0).repeat(
feat.shape[0], 1, self.nheads)
feat = torch.cat([feat, loc_embedding], dim=-1)
# Mix up the location information throughout the features so each head
# would have it
mixed_feat = self.loc_mixer(feat)
# Transformer encoder expects the time dimension as the 0th! So gotta
# permute things around
return self.back_to_orig_dim(
self.encoder(mixed_feat.permute(1, 0, 2)).permute(1, 0, 2)) | [
"def",
"forward",
"(",
"self",
",",
"feat",
")",
":",
"# Add a location embedding (over time), since time axis will flatten",
"loc_embedding",
"=",
"self",
".",
"loc_embed",
"(",
"torch",
".",
"arange",
"(",
"feat",
".",
"shape",
"[",
"1",
"]",
",",
"device",
"=",
"feat",
".",
"device",
")",
".",
"unsqueeze",
"(",
"-",
"1",
")",
".",
"float",
"(",
")",
")",
"# Make into the shape of the feature",
"loc_embedding",
"=",
"loc_embedding",
".",
"unsqueeze",
"(",
"0",
")",
".",
"repeat",
"(",
"feat",
".",
"shape",
"[",
"0",
"]",
",",
"1",
",",
"self",
".",
"nheads",
")",
"feat",
"=",
"torch",
".",
"cat",
"(",
"[",
"feat",
",",
"loc_embedding",
"]",
",",
"dim",
"=",
"-",
"1",
")",
"# Mix up the location information throughout the features so each head",
"# would have it",
"mixed_feat",
"=",
"self",
".",
"loc_mixer",
"(",
"feat",
")",
"# Transformer encoder expects the time dimension as the 0th! So gotta",
"# permute things around",
"return",
"self",
".",
"back_to_orig_dim",
"(",
"self",
".",
"encoder",
"(",
"mixed_feat",
".",
"permute",
"(",
"1",
",",
"0",
",",
"2",
")",
")",
".",
"permute",
"(",
"1",
",",
"0",
",",
"2",
")",
")"
] | [
1480,
4
] | [
1501,
71
] | python | en | ['en', 'error', 'th'] | False |
TxInteractor.forward | (self, feat) |
Args:
feat: (B, T, Nobj, C, H', W')
Returns:
Same shape as input
|
Args:
feat: (B, T, Nobj, C, H', W')
Returns:
Same shape as input
| def forward(self, feat):
"""
Args:
feat: (B, T, Nobj, C, H', W')
Returns:
Same shape as input
"""
# Mean reduce the spatial dimensions for tx, then add it back to the
# original feature as a residual connection
feat_spat_mean = torch.mean(feat, dim=[-1, -2])
feat_flat = feat_spat_mean.flatten(1, 2)
tx_feat = self.tx_enc(feat_flat)
tx_feat = tx_feat.view(
feat_spat_mean.shape).unsqueeze(-1).unsqueeze(-1)
return feat + tx_feat | [
"def",
"forward",
"(",
"self",
",",
"feat",
")",
":",
"# Mean reduce the spatial dimensions for tx, then add it back to the",
"# original feature as a residual connection",
"feat_spat_mean",
"=",
"torch",
".",
"mean",
"(",
"feat",
",",
"dim",
"=",
"[",
"-",
"1",
",",
"-",
"2",
"]",
")",
"feat_flat",
"=",
"feat_spat_mean",
".",
"flatten",
"(",
"1",
",",
"2",
")",
"tx_feat",
"=",
"self",
".",
"tx_enc",
"(",
"feat_flat",
")",
"tx_feat",
"=",
"tx_feat",
".",
"view",
"(",
"feat_spat_mean",
".",
"shape",
")",
".",
"unsqueeze",
"(",
"-",
"1",
")",
".",
"unsqueeze",
"(",
"-",
"1",
")",
"return",
"feat",
"+",
"tx_feat"
] | [
1511,
4
] | [
1525,
29
] | python | en | ['en', 'error', 'th'] | False |
TxSpatialAttention.forward | (self, feat) |
Args:
feats (B, T, Nobj, D, H', W')
|
Args:
feats (B, T, Nobj, D, H', W')
| def forward(self, feat):
"""
Args:
feats (B, T, Nobj, D, H', W')
"""
feat_flat = torch.flatten(torch.flatten(feat, 0, 2), -2, -1)
feat_att = self.tx_enc(feat_flat.transpose(1, 2)).transpose(1, 2)
return feat_att.view(feat.shape) | [
"def",
"forward",
"(",
"self",
",",
"feat",
")",
":",
"feat_flat",
"=",
"torch",
".",
"flatten",
"(",
"torch",
".",
"flatten",
"(",
"feat",
",",
"0",
",",
"2",
")",
",",
"-",
"2",
",",
"-",
"1",
")",
"feat_att",
"=",
"self",
".",
"tx_enc",
"(",
"feat_flat",
".",
"transpose",
"(",
"1",
",",
"2",
")",
")",
".",
"transpose",
"(",
"1",
",",
"2",
")",
"return",
"feat_att",
".",
"view",
"(",
"feat",
".",
"shape",
")"
] | [
1542,
4
] | [
1549,
40
] | python | en | ['en', 'error', 'th'] | False |
Fwd.__init__ | (self, agent_cfg) |
Args:
dyn_type: The type of dynamics model to use.
dyn_n: Number of previous features used for prediction.
|
Args:
dyn_type: The type of dynamics model to use.
dyn_n: Number of previous features used for prediction.
| def __init__(self, agent_cfg):
"""
Args:
dyn_type: The type of dynamics model to use.
dyn_n: Number of previous features used for prediction.
"""
super().__init__()
# The image embedding model
self.preproc = VideoPreprocessor(agent_cfg)
self.enc = hydra.utils.instantiate(agent_cfg.encoder,
self.preproc.out_dim,
agent_cfg.nobj)
dim = self.enc.out_dim
self.interactor = hydra.utils.instantiate(agent_cfg.interactor, dim)
# The dynamics model
self.dyn = hydra.utils.instantiate(agent_cfg.dyn, self.enc, dim)
# Classifier model
self.nframes_to_cls = agent_cfg.nframes_to_cls
# A attention of the latent features before passing them through the
# classifier.
self.spat_att = hydra.utils.instantiate(agent_cfg.spat_att, dim)
self.cls = hydra.utils.instantiate(agent_cfg.cls, dim)
# Decoder model
self.dec = hydra.utils.instantiate(agent_cfg.decoder, dim,
phyre.NUM_COLORS)
# Other loss functions
self.pix_loss = hydra.utils.instantiate(agent_cfg.loss_fn.pix)
self.nce_loss = hydra.utils.instantiate(agent_cfg.loss_fn.nce, dim) | [
"def",
"__init__",
"(",
"self",
",",
"agent_cfg",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"# The image embedding model",
"self",
".",
"preproc",
"=",
"VideoPreprocessor",
"(",
"agent_cfg",
")",
"self",
".",
"enc",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"encoder",
",",
"self",
".",
"preproc",
".",
"out_dim",
",",
"agent_cfg",
".",
"nobj",
")",
"dim",
"=",
"self",
".",
"enc",
".",
"out_dim",
"self",
".",
"interactor",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"interactor",
",",
"dim",
")",
"# The dynamics model",
"self",
".",
"dyn",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"dyn",
",",
"self",
".",
"enc",
",",
"dim",
")",
"# Classifier model",
"self",
".",
"nframes_to_cls",
"=",
"agent_cfg",
".",
"nframes_to_cls",
"# A attention of the latent features before passing them through the",
"# classifier.",
"self",
".",
"spat_att",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"spat_att",
",",
"dim",
")",
"self",
".",
"cls",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"cls",
",",
"dim",
")",
"# Decoder model",
"self",
".",
"dec",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"decoder",
",",
"dim",
",",
"phyre",
".",
"NUM_COLORS",
")",
"# Other loss functions",
"self",
".",
"pix_loss",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"loss_fn",
".",
"pix",
")",
"self",
".",
"nce_loss",
"=",
"hydra",
".",
"utils",
".",
"instantiate",
"(",
"agent_cfg",
".",
"loss_fn",
".",
"nce",
",",
"dim",
")"
] | [
1554,
4
] | [
1581,
75
] | python | en | ['en', 'error', 'th'] | False |
Fwd._forward_dyn | (self, feats, vids, n_fwd_times, need_intermediate=False) |
Args:
feats: (BxT_histxNobjxDxH'xW')
vids: (BxT_histxCxHxW) The video corresponding to the feats, some
dyn models might use them.
n_fwd_times: Number of times to run the fwd model on the last frames
need_intermediate: If true, give all the intermediate features
Returns:
all_preds: The predictions at each time step, in n_fwd_times
all_pixs: The predictions in pixels. Note all dynamics models don't
use pixels, so it might just give the last frame as output
all_solved: The classification at each time step, for n_fwd_times
|
Args:
feats: (BxT_histxNobjxDxH'xW')
vids: (BxT_histxCxHxW) The video corresponding to the feats, some
dyn models might use them.
n_fwd_times: Number of times to run the fwd model on the last frames
need_intermediate: If true, give all the intermediate features
Returns:
all_preds: The predictions at each time step, in n_fwd_times
all_pixs: The predictions in pixels. Note all dynamics models don't
use pixels, so it might just give the last frame as output
all_solved: The classification at each time step, for n_fwd_times
| def _forward_dyn(self, feats, vids, n_fwd_times, need_intermediate=False):
"""
Args:
feats: (BxT_histxNobjxDxH'xW')
vids: (BxT_histxCxHxW) The video corresponding to the feats, some
dyn models might use them.
n_fwd_times: Number of times to run the fwd model on the last frames
need_intermediate: If true, give all the intermediate features
Returns:
all_preds: The predictions at each time step, in n_fwd_times
all_pixs: The predictions in pixels. Note all dynamics models don't
use pixels, so it might just give the last frame as output
all_solved: The classification at each time step, for n_fwd_times
"""
all_preds = []
all_pixs = []
all_addl_losses = []
if n_fwd_times == 0:
return [all_preds, all_pixs, all_addl_losses]
def run_fwd_append(feats, pixs):
pred, pred_pix, addl_losses = self.dyn(feats, pixs)
all_preds.append(pred)
all_pixs.append(pred_pix)
all_addl_losses.append(addl_losses)
run_fwd_append(feats, vids)
n_fwd_times_copy = n_fwd_times
while n_fwd_times - 1 > 0:
feats = torch.cat(
[feats[:, 1:, ...],
torch.unsqueeze(all_preds[-1], axis=1)],
dim=1)
vids = torch.cat(
[vids[:, 1:, ...],
torch.unsqueeze(all_pixs[-1], axis=1)],
dim=1)
run_fwd_append(feats, vids)
n_fwd_times -= 1
assert len(all_preds) == n_fwd_times_copy, (
'%d %d' % (len(all_preds), n_fwd_times_copy))
if not need_intermediate:
all_preds = [all_preds[-1]]
all_pixs = [all_pixs[-1]]
all_addl_losses = [all_addl_losses[-1]]
# Will compute solved or not later, after decode, in case the classifier
# needs that information
return all_preds, all_pixs, all_addl_losses | [
"def",
"_forward_dyn",
"(",
"self",
",",
"feats",
",",
"vids",
",",
"n_fwd_times",
",",
"need_intermediate",
"=",
"False",
")",
":",
"all_preds",
"=",
"[",
"]",
"all_pixs",
"=",
"[",
"]",
"all_addl_losses",
"=",
"[",
"]",
"if",
"n_fwd_times",
"==",
"0",
":",
"return",
"[",
"all_preds",
",",
"all_pixs",
",",
"all_addl_losses",
"]",
"def",
"run_fwd_append",
"(",
"feats",
",",
"pixs",
")",
":",
"pred",
",",
"pred_pix",
",",
"addl_losses",
"=",
"self",
".",
"dyn",
"(",
"feats",
",",
"pixs",
")",
"all_preds",
".",
"append",
"(",
"pred",
")",
"all_pixs",
".",
"append",
"(",
"pred_pix",
")",
"all_addl_losses",
".",
"append",
"(",
"addl_losses",
")",
"run_fwd_append",
"(",
"feats",
",",
"vids",
")",
"n_fwd_times_copy",
"=",
"n_fwd_times",
"while",
"n_fwd_times",
"-",
"1",
">",
"0",
":",
"feats",
"=",
"torch",
".",
"cat",
"(",
"[",
"feats",
"[",
":",
",",
"1",
":",
",",
"...",
"]",
",",
"torch",
".",
"unsqueeze",
"(",
"all_preds",
"[",
"-",
"1",
"]",
",",
"axis",
"=",
"1",
")",
"]",
",",
"dim",
"=",
"1",
")",
"vids",
"=",
"torch",
".",
"cat",
"(",
"[",
"vids",
"[",
":",
",",
"1",
":",
",",
"...",
"]",
",",
"torch",
".",
"unsqueeze",
"(",
"all_pixs",
"[",
"-",
"1",
"]",
",",
"axis",
"=",
"1",
")",
"]",
",",
"dim",
"=",
"1",
")",
"run_fwd_append",
"(",
"feats",
",",
"vids",
")",
"n_fwd_times",
"-=",
"1",
"assert",
"len",
"(",
"all_preds",
")",
"==",
"n_fwd_times_copy",
",",
"(",
"'%d %d'",
"%",
"(",
"len",
"(",
"all_preds",
")",
",",
"n_fwd_times_copy",
")",
")",
"if",
"not",
"need_intermediate",
":",
"all_preds",
"=",
"[",
"all_preds",
"[",
"-",
"1",
"]",
"]",
"all_pixs",
"=",
"[",
"all_pixs",
"[",
"-",
"1",
"]",
"]",
"all_addl_losses",
"=",
"[",
"all_addl_losses",
"[",
"-",
"1",
"]",
"]",
"# Will compute solved or not later, after decode, in case the classifier",
"# needs that information",
"return",
"all_preds",
",",
"all_pixs",
",",
"all_addl_losses"
] | [
1590,
4
] | [
1637,
51
] | python | en | ['en', 'error', 'th'] | False |
Fwd._slice_for_dyn | (self, features_batched, n_hist_frames, nslices=-1) |
Args:
features_batched: BxTx.... can deal with any following
dimensions, typically it is (BxTxNobjxDxH'xW')
n_hist_frames (int): Number of frames to use as history
nslices (int): If -1, make as many slices of the training data
as possible. If 1, keep only the first one. (1 used when
training classifier on top, which should always see videos
from the start)
Returns:
B'x n_hist_frames x ... (B'x n_hist_frames x Nobj x D x H' x W')
|
Args:
features_batched: BxTx.... can deal with any following
dimensions, typically it is (BxTxNobjxDxH'xW')
n_hist_frames (int): Number of frames to use as history
nslices (int): If -1, make as many slices of the training data
as possible. If 1, keep only the first one. (1 used when
training classifier on top, which should always see videos
from the start) | def _slice_for_dyn(self, features_batched, n_hist_frames, nslices=-1):
"""
Args:
features_batched: BxTx.... can deal with any following
dimensions, typically it is (BxTxNobjxDxH'xW')
n_hist_frames (int): Number of frames to use as history
nslices (int): If -1, make as many slices of the training data
as possible. If 1, keep only the first one. (1 used when
training classifier on top, which should always see videos
from the start)
Returns:
B'x n_hist_frames x ... (B'x n_hist_frames x Nobj x D x H' x W')
"""
clip_hist = []
assert features_batched.shape[1] >= n_hist_frames
for i in range((features_batched.shape[1] - n_hist_frames + 1)):
if nslices > 0 and i >= nslices:
break
clip_hist.append(features_batched[:, i:i + n_hist_frames, ...])
clip_hist = torch.cat(clip_hist, dim=0)
return clip_hist | [
"def",
"_slice_for_dyn",
"(",
"self",
",",
"features_batched",
",",
"n_hist_frames",
",",
"nslices",
"=",
"-",
"1",
")",
":",
"clip_hist",
"=",
"[",
"]",
"assert",
"features_batched",
".",
"shape",
"[",
"1",
"]",
">=",
"n_hist_frames",
"for",
"i",
"in",
"range",
"(",
"(",
"features_batched",
".",
"shape",
"[",
"1",
"]",
"-",
"n_hist_frames",
"+",
"1",
")",
")",
":",
"if",
"nslices",
">",
"0",
"and",
"i",
">=",
"nslices",
":",
"break",
"clip_hist",
".",
"append",
"(",
"features_batched",
"[",
":",
",",
"i",
":",
"i",
"+",
"n_hist_frames",
",",
"...",
"]",
")",
"clip_hist",
"=",
"torch",
".",
"cat",
"(",
"clip_hist",
",",
"dim",
"=",
"0",
")",
"return",
"clip_hist"
] | [
1639,
4
] | [
1660,
24
] | python | en | ['en', 'error', 'th'] | False |
Fwd._forward_dec | (self, feats, pixels) |
Args:
feats: List of features (BxD) from the dynamics prediction stage,
one for each time step predicted.
pixels: List of corresponding pixels from the dynamics model. The
dyn model may or may not actually generate new pixels.
|
Args:
feats: List of features (BxD) from the dynamics prediction stage,
one for each time step predicted.
pixels: List of corresponding pixels from the dynamics model. The
dyn model may or may not actually generate new pixels.
| def _forward_dec(self, feats, pixels):
"""
Args:
feats: List of features (BxD) from the dynamics prediction stage,
one for each time step predicted.
pixels: List of corresponding pixels from the dynamics model. The
dyn model may or may not actually generate new pixels.
"""
return [self.dec(feat, pix) for feat, pix in zip(feats, pixels)] | [
"def",
"_forward_dec",
"(",
"self",
",",
"feats",
",",
"pixels",
")",
":",
"return",
"[",
"self",
".",
"dec",
"(",
"feat",
",",
"pix",
")",
"for",
"feat",
",",
"pix",
"in",
"zip",
"(",
"feats",
",",
"pixels",
")",
"]"
] | [
1662,
4
] | [
1670,
72
] | python | en | ['en', 'error', 'th'] | False |
Fwd.cswm_loss | (self, pred, gt, hinge=1.0) |
The energy based contrastive loss.
Args:
pred (BxNobjxDxH'xW')
gt (BxNobjxDxH'xW')
From https://github.com/tkipf/c-swm/blob/master/modules.py#L94
|
The energy based contrastive loss.
Args:
pred (BxNobjxDxH'xW')
gt (BxNobjxDxH'xW')
From https://github.com/tkipf/c-swm/blob/master/modules.py#L94
| def cswm_loss(self, pred, gt, hinge=1.0):
"""
The energy based contrastive loss.
Args:
pred (BxNobjxDxH'xW')
gt (BxNobjxDxH'xW')
From https://github.com/tkipf/c-swm/blob/master/modules.py#L94
"""
pred = pred.view(pred.shape[:2] + (-1, ))
gt = gt.view(gt.shape[:2] + (-1, ))
batch_size = gt.size(0)
perm = np.random.permutation(batch_size)
neg = gt[perm]
def energy(pred, gt, sigma=0.5):
"""Energy function based on normalized squared L2 norm.
Args:
pred (B, Nobj, D')
gt (B, Nobj, D')
"""
norm = 0.5 / (sigma**2)
diff = pred - gt
return norm * diff.pow(2).sum(2).mean(1)
pos_loss = energy(pred, gt)
zeros = torch.zeros_like(pos_loss)
pos_loss = pos_loss.mean()
neg_loss = torch.max(zeros, hinge - energy(pred, neg)).mean()
return pos_loss + neg_loss | [
"def",
"cswm_loss",
"(",
"self",
",",
"pred",
",",
"gt",
",",
"hinge",
"=",
"1.0",
")",
":",
"pred",
"=",
"pred",
".",
"view",
"(",
"pred",
".",
"shape",
"[",
":",
"2",
"]",
"+",
"(",
"-",
"1",
",",
")",
")",
"gt",
"=",
"gt",
".",
"view",
"(",
"gt",
".",
"shape",
"[",
":",
"2",
"]",
"+",
"(",
"-",
"1",
",",
")",
")",
"batch_size",
"=",
"gt",
".",
"size",
"(",
"0",
")",
"perm",
"=",
"np",
".",
"random",
".",
"permutation",
"(",
"batch_size",
")",
"neg",
"=",
"gt",
"[",
"perm",
"]",
"def",
"energy",
"(",
"pred",
",",
"gt",
",",
"sigma",
"=",
"0.5",
")",
":",
"\"\"\"Energy function based on normalized squared L2 norm.\n Args:\n pred (B, Nobj, D')\n gt (B, Nobj, D')\n \"\"\"",
"norm",
"=",
"0.5",
"/",
"(",
"sigma",
"**",
"2",
")",
"diff",
"=",
"pred",
"-",
"gt",
"return",
"norm",
"*",
"diff",
".",
"pow",
"(",
"2",
")",
".",
"sum",
"(",
"2",
")",
".",
"mean",
"(",
"1",
")",
"pos_loss",
"=",
"energy",
"(",
"pred",
",",
"gt",
")",
"zeros",
"=",
"torch",
".",
"zeros_like",
"(",
"pos_loss",
")",
"pos_loss",
"=",
"pos_loss",
".",
"mean",
"(",
")",
"neg_loss",
"=",
"torch",
".",
"max",
"(",
"zeros",
",",
"hinge",
"-",
"energy",
"(",
"pred",
",",
"neg",
")",
")",
".",
"mean",
"(",
")",
"return",
"pos_loss",
"+",
"neg_loss"
] | [
1673,
4
] | [
1701,
34
] | python | en | ['en', 'error', 'th'] | False |
Fwd.autoencoder_loss | (self, pix, latent, autoenc_loss_ratio) |
Runs a random portion of the actual frames through decoder to incur a
loss to encourage the intermediate representation to learn a good
autoencoder as well. Random fraction only for compute reasons.
Ideally would run every frame (ratio = 1)
Args:
pix (B, T, H, W): Actual pixels of the input frames
latent (B, T, Nobj, D, H', W'): Latent representation of the input
frames
autoenc_loss_ratio (float): What percentage of the input frames to
run it on. Only for compute reasons, ideally run it on all.
Returns:
loss {'autoenc': (1,) <float>} for the loss
|
Runs a random portion of the actual frames through decoder to incur a
loss to encourage the intermediate representation to learn a good
autoencoder as well. Random fraction only for compute reasons.
Ideally would run every frame (ratio = 1)
Args:
pix (B, T, H, W): Actual pixels of the input frames
latent (B, T, Nobj, D, H', W'): Latent representation of the input
frames
autoenc_loss_ratio (float): What percentage of the input frames to
run it on. Only for compute reasons, ideally run it on all.
Returns:
loss {'autoenc': (1,) <float>} for the loss
| def autoencoder_loss(self, pix, latent, autoenc_loss_ratio):
"""
Runs a random portion of the actual frames through decoder to incur a
loss to encourage the intermediate representation to learn a good
autoencoder as well. Random fraction only for compute reasons.
Ideally would run every frame (ratio = 1)
Args:
pix (B, T, H, W): Actual pixels of the input frames
latent (B, T, Nobj, D, H', W'): Latent representation of the input
frames
autoenc_loss_ratio (float): What percentage of the input frames to
run it on. Only for compute reasons, ideally run it on all.
Returns:
loss {'autoenc': (1,) <float>} for the loss
"""
# Flatten the Batch and time dimension to get all the frames
pix_flat = torch.flatten(pix, 0, 1)
latent_flat = torch.flatten(latent, 0, 1)
# Select a subset of the frames to run the loss on
assert pix_flat.shape[0] == latent_flat.shape[0]
idx = np.arange(pix_flat.shape[0])
np.random.shuffle(idx)
sel_cnt = int(autoenc_loss_ratio * len(idx))
idx_sel = np.sort(idx[:sel_cnt])
pix_flat_sel = pix_flat[idx_sel, ...]
latent_flat_sel = latent_flat[idx_sel, ...]
# Generate the pixels for the latent, and incur loss
pred_flat_sel = combine_obj_pixels(self.dec(latent_flat_sel, None), 1)
loss = self.pix_loss(pred_flat_sel, pix_flat_sel).unsqueeze(0)
return {'autoenc_pix': loss} | [
"def",
"autoencoder_loss",
"(",
"self",
",",
"pix",
",",
"latent",
",",
"autoenc_loss_ratio",
")",
":",
"# Flatten the Batch and time dimension to get all the frames",
"pix_flat",
"=",
"torch",
".",
"flatten",
"(",
"pix",
",",
"0",
",",
"1",
")",
"latent_flat",
"=",
"torch",
".",
"flatten",
"(",
"latent",
",",
"0",
",",
"1",
")",
"# Select a subset of the frames to run the loss on",
"assert",
"pix_flat",
".",
"shape",
"[",
"0",
"]",
"==",
"latent_flat",
".",
"shape",
"[",
"0",
"]",
"idx",
"=",
"np",
".",
"arange",
"(",
"pix_flat",
".",
"shape",
"[",
"0",
"]",
")",
"np",
".",
"random",
".",
"shuffle",
"(",
"idx",
")",
"sel_cnt",
"=",
"int",
"(",
"autoenc_loss_ratio",
"*",
"len",
"(",
"idx",
")",
")",
"idx_sel",
"=",
"np",
".",
"sort",
"(",
"idx",
"[",
":",
"sel_cnt",
"]",
")",
"pix_flat_sel",
"=",
"pix_flat",
"[",
"idx_sel",
",",
"...",
"]",
"latent_flat_sel",
"=",
"latent_flat",
"[",
"idx_sel",
",",
"...",
"]",
"# Generate the pixels for the latent, and incur loss",
"pred_flat_sel",
"=",
"combine_obj_pixels",
"(",
"self",
".",
"dec",
"(",
"latent_flat_sel",
",",
"None",
")",
",",
"1",
")",
"loss",
"=",
"self",
".",
"pix_loss",
"(",
"pred_flat_sel",
",",
"pix_flat_sel",
")",
".",
"unsqueeze",
"(",
"0",
")",
"return",
"{",
"'autoenc_pix'",
":",
"loss",
"}"
] | [
1708,
4
] | [
1737,
36
] | python | en | ['en', 'error', 'th'] | False |
Fwd.solved_or_not_loss | (self, clip_preds_solved, vid_is_solved) |
Repeat the is_solved to as many times the batch was repeated to get
the class label at each forward prediction
Args:
clip_preds_solved (B',)
vid_is_solved (B,)
B and B' might be different but B' must be a multiple of B, since
it happens when num_slices > 1
Returns:
loss {'ce': (1,) <float>} for the loss
|
Repeat the is_solved to as many times the batch was repeated to get
the class label at each forward prediction
Args:
clip_preds_solved (B',)
vid_is_solved (B,)
B and B' might be different but B' must be a multiple of B, since
it happens when num_slices > 1
Returns:
loss {'ce': (1,) <float>} for the loss
| def solved_or_not_loss(self, clip_preds_solved, vid_is_solved):
"""
Repeat the is_solved to as many times the batch was repeated to get
the class label at each forward prediction
Args:
clip_preds_solved (B',)
vid_is_solved (B,)
B and B' might be different but B' must be a multiple of B, since
it happens when num_slices > 1
Returns:
loss {'ce': (1,) <float>} for the loss
"""
assert clip_preds_solved.shape[0] % vid_is_solved.shape[0] == 0
return {
'ce':
self.ce_loss(
clip_preds_solved,
vid_is_solved.repeat((clip_preds_solved.shape[0] //
vid_is_solved.shape[0], ))).unsqueeze(0)
} | [
"def",
"solved_or_not_loss",
"(",
"self",
",",
"clip_preds_solved",
",",
"vid_is_solved",
")",
":",
"assert",
"clip_preds_solved",
".",
"shape",
"[",
"0",
"]",
"%",
"vid_is_solved",
".",
"shape",
"[",
"0",
"]",
"==",
"0",
"return",
"{",
"'ce'",
":",
"self",
".",
"ce_loss",
"(",
"clip_preds_solved",
",",
"vid_is_solved",
".",
"repeat",
"(",
"(",
"clip_preds_solved",
".",
"shape",
"[",
"0",
"]",
"//",
"vid_is_solved",
".",
"shape",
"[",
"0",
"]",
",",
")",
")",
")",
".",
"unsqueeze",
"(",
"0",
")",
"}"
] | [
1739,
4
] | [
1758,
9
] | python | en | ['en', 'error', 'th'] | False |
Fwd._compute_losses | (self, clip_pred, clip_pred_pix, vid_feat, vid,
n_hist_frames, n_fwd_times) |
Compute all losses possible.
|
Compute all losses possible.
| def _compute_losses(self, clip_pred, clip_pred_pix, vid_feat, vid,
n_hist_frames, n_fwd_times):
"""
Compute all losses possible.
"""
dummy_loss = torch.Tensor([-1]).to(clip_pred.device)
losses = {}
# NCE and pixel loss
# find the GT for each clip, note that all predictions may not have a GT
# since the last n_hist_frames for a video will make a prediction that
# goes out of the list of frames that were extracted for that video.
feat_preds = []
feat_gt = []
pix_preds = []
pix_gt = []
batch_size = vid_feat.shape[0]
gt_max_time = vid_feat.shape[1]
# Max slices that could have been made of the data, to use all of the
# training clip
max_slices_with_gt = gt_max_time - n_hist_frames - n_fwd_times + 1
num_slices = clip_pred.shape[0] // batch_size
for i in range(min(max_slices_with_gt, num_slices)):
corr_pred = clip_pred[i * batch_size:(i + 1) * batch_size, ...]
# Get the corresponding GT predictions for this pred
corr_gt = vid_feat[:, i + n_hist_frames + n_fwd_times - 1]
assert corr_gt.shape == corr_pred.shape
feat_preds.append(corr_pred)
feat_gt.append(corr_gt)
# Same thing for pix
if clip_pred_pix is not None:
corr_pix_pred = clip_pred_pix[i * vid_feat.shape[0]:(i + 1) *
vid_feat.shape[0], ...]
corr_pix_gt = vid[:, i + n_hist_frames + n_fwd_times - 1]
pix_preds.append(corr_pix_pred)
pix_gt.append(corr_pix_gt)
if len(feat_gt) > 0:
# Keep a batch dimension to the loss, since it will be run over
# multiple GPUs
feat_preds = torch.cat(feat_preds)
feat_gt = torch.cat(feat_gt)
losses['nce'] = self.nce_loss(feat_preds, feat_gt).unsqueeze(0)
losses['cswm'] = self.cswm_loss(feat_preds, feat_gt).unsqueeze(0)
else:
losses['nce'] = dummy_loss
losses['cswm'] = dummy_loss
# Reconstruction loss
if len(pix_gt) > 0:
losses['pix'] = self.pix_loss(torch.cat(pix_preds),
torch.cat(pix_gt)).unsqueeze(0)
else:
losses['pix'] = dummy_loss
return losses | [
"def",
"_compute_losses",
"(",
"self",
",",
"clip_pred",
",",
"clip_pred_pix",
",",
"vid_feat",
",",
"vid",
",",
"n_hist_frames",
",",
"n_fwd_times",
")",
":",
"dummy_loss",
"=",
"torch",
".",
"Tensor",
"(",
"[",
"-",
"1",
"]",
")",
".",
"to",
"(",
"clip_pred",
".",
"device",
")",
"losses",
"=",
"{",
"}",
"# NCE and pixel loss",
"# find the GT for each clip, note that all predictions may not have a GT",
"# since the last n_hist_frames for a video will make a prediction that",
"# goes out of the list of frames that were extracted for that video.",
"feat_preds",
"=",
"[",
"]",
"feat_gt",
"=",
"[",
"]",
"pix_preds",
"=",
"[",
"]",
"pix_gt",
"=",
"[",
"]",
"batch_size",
"=",
"vid_feat",
".",
"shape",
"[",
"0",
"]",
"gt_max_time",
"=",
"vid_feat",
".",
"shape",
"[",
"1",
"]",
"# Max slices that could have been made of the data, to use all of the",
"# training clip",
"max_slices_with_gt",
"=",
"gt_max_time",
"-",
"n_hist_frames",
"-",
"n_fwd_times",
"+",
"1",
"num_slices",
"=",
"clip_pred",
".",
"shape",
"[",
"0",
"]",
"//",
"batch_size",
"for",
"i",
"in",
"range",
"(",
"min",
"(",
"max_slices_with_gt",
",",
"num_slices",
")",
")",
":",
"corr_pred",
"=",
"clip_pred",
"[",
"i",
"*",
"batch_size",
":",
"(",
"i",
"+",
"1",
")",
"*",
"batch_size",
",",
"...",
"]",
"# Get the corresponding GT predictions for this pred",
"corr_gt",
"=",
"vid_feat",
"[",
":",
",",
"i",
"+",
"n_hist_frames",
"+",
"n_fwd_times",
"-",
"1",
"]",
"assert",
"corr_gt",
".",
"shape",
"==",
"corr_pred",
".",
"shape",
"feat_preds",
".",
"append",
"(",
"corr_pred",
")",
"feat_gt",
".",
"append",
"(",
"corr_gt",
")",
"# Same thing for pix",
"if",
"clip_pred_pix",
"is",
"not",
"None",
":",
"corr_pix_pred",
"=",
"clip_pred_pix",
"[",
"i",
"*",
"vid_feat",
".",
"shape",
"[",
"0",
"]",
":",
"(",
"i",
"+",
"1",
")",
"*",
"vid_feat",
".",
"shape",
"[",
"0",
"]",
",",
"...",
"]",
"corr_pix_gt",
"=",
"vid",
"[",
":",
",",
"i",
"+",
"n_hist_frames",
"+",
"n_fwd_times",
"-",
"1",
"]",
"pix_preds",
".",
"append",
"(",
"corr_pix_pred",
")",
"pix_gt",
".",
"append",
"(",
"corr_pix_gt",
")",
"if",
"len",
"(",
"feat_gt",
")",
">",
"0",
":",
"# Keep a batch dimension to the loss, since it will be run over",
"# multiple GPUs",
"feat_preds",
"=",
"torch",
".",
"cat",
"(",
"feat_preds",
")",
"feat_gt",
"=",
"torch",
".",
"cat",
"(",
"feat_gt",
")",
"losses",
"[",
"'nce'",
"]",
"=",
"self",
".",
"nce_loss",
"(",
"feat_preds",
",",
"feat_gt",
")",
".",
"unsqueeze",
"(",
"0",
")",
"losses",
"[",
"'cswm'",
"]",
"=",
"self",
".",
"cswm_loss",
"(",
"feat_preds",
",",
"feat_gt",
")",
".",
"unsqueeze",
"(",
"0",
")",
"else",
":",
"losses",
"[",
"'nce'",
"]",
"=",
"dummy_loss",
"losses",
"[",
"'cswm'",
"]",
"=",
"dummy_loss",
"# Reconstruction loss",
"if",
"len",
"(",
"pix_gt",
")",
">",
"0",
":",
"losses",
"[",
"'pix'",
"]",
"=",
"self",
".",
"pix_loss",
"(",
"torch",
".",
"cat",
"(",
"pix_preds",
")",
",",
"torch",
".",
"cat",
"(",
"pix_gt",
")",
")",
".",
"unsqueeze",
"(",
"0",
")",
"else",
":",
"losses",
"[",
"'pix'",
"]",
"=",
"dummy_loss",
"return",
"losses"
] | [
1762,
4
] | [
1814,
21
] | python | en | ['en', 'error', 'th'] | False |
Fwd._cls | (self, feat_hist, pix_hist, feat_preds, pix_preds) |
Wrapper around the classifier, collates all the input frames/features
and predicted future frames/features.
The images, features are already summed over the objects
Args:
feat_hist: (B, T, C, H', W')
pix_hist: (B, T, 7, H, W)
feat_preds [list of (B, C, H', W')] -- len = num predictions
pix_preds [list of (B, 7, H, W)] -- len = num predictions
The elements could be None, since not all models predict pixels
Returns:
(B,) predicted scores for the clips
|
Wrapper around the classifier, collates all the input frames/features
and predicted future frames/features.
The images, features are already summed over the objects
Args:
feat_hist: (B, T, C, H', W')
pix_hist: (B, T, 7, H, W)
feat_preds [list of (B, C, H', W')] -- len = num predictions
pix_preds [list of (B, 7, H, W)] -- len = num predictions
The elements could be None, since not all models predict pixels
Returns:
(B,) predicted scores for the clips
| def _cls(self, feat_hist, pix_hist, feat_preds, pix_preds):
"""
Wrapper around the classifier, collates all the input frames/features
and predicted future frames/features.
The images, features are already summed over the objects
Args:
feat_hist: (B, T, C, H', W')
pix_hist: (B, T, 7, H, W)
feat_preds [list of (B, C, H', W')] -- len = num predictions
pix_preds [list of (B, 7, H, W)] -- len = num predictions
The elements could be None, since not all models predict pixels
Returns:
(B,) predicted scores for the clips
"""
feats_combined = feat_hist
if feat_preds is not None and len(feat_preds) > 0:
feats_combined = torch.cat([feat_hist] +
[el.unsqueeze(1) for el in feat_preds],
dim=1)
pix_combined = pix_hist
if (pix_preds is not None and len(pix_preds) > 0
and pix_preds[0] is not None):
pix_combined = torch.cat([pix_combined] +
[el.unsqueeze(1) for el in pix_preds],
dim=1)
# Sum over objs -- we want the classifier model to see everything
# at the same time
# They are summed now, but need the dimension still
pix_combined = pix_combined.unsqueeze(2)
feats_combined = feats_combined.unsqueeze(2)
# If need to keep only a subset of the frames
if self.nframes_to_cls > 0:
pix_combined = pix_combined[:, :self.nframes_to_cls, ...]
feats_combined = feats_combined[:, :self.nframes_to_cls, ...]
feats_combined = self.spat_att(feats_combined)
# Keep the last prediction, as that should ideally be the best
# prediction of whether it was solved or not
# torch.max was hard to optimize through
return self.cls(feats_combined, pix_combined)[:, -1] | [
"def",
"_cls",
"(",
"self",
",",
"feat_hist",
",",
"pix_hist",
",",
"feat_preds",
",",
"pix_preds",
")",
":",
"feats_combined",
"=",
"feat_hist",
"if",
"feat_preds",
"is",
"not",
"None",
"and",
"len",
"(",
"feat_preds",
")",
">",
"0",
":",
"feats_combined",
"=",
"torch",
".",
"cat",
"(",
"[",
"feat_hist",
"]",
"+",
"[",
"el",
".",
"unsqueeze",
"(",
"1",
")",
"for",
"el",
"in",
"feat_preds",
"]",
",",
"dim",
"=",
"1",
")",
"pix_combined",
"=",
"pix_hist",
"if",
"(",
"pix_preds",
"is",
"not",
"None",
"and",
"len",
"(",
"pix_preds",
")",
">",
"0",
"and",
"pix_preds",
"[",
"0",
"]",
"is",
"not",
"None",
")",
":",
"pix_combined",
"=",
"torch",
".",
"cat",
"(",
"[",
"pix_combined",
"]",
"+",
"[",
"el",
".",
"unsqueeze",
"(",
"1",
")",
"for",
"el",
"in",
"pix_preds",
"]",
",",
"dim",
"=",
"1",
")",
"# Sum over objs -- we want the classifier model to see everything",
"# at the same time",
"# They are summed now, but need the dimension still",
"pix_combined",
"=",
"pix_combined",
".",
"unsqueeze",
"(",
"2",
")",
"feats_combined",
"=",
"feats_combined",
".",
"unsqueeze",
"(",
"2",
")",
"# If need to keep only a subset of the frames",
"if",
"self",
".",
"nframes_to_cls",
">",
"0",
":",
"pix_combined",
"=",
"pix_combined",
"[",
":",
",",
":",
"self",
".",
"nframes_to_cls",
",",
"...",
"]",
"feats_combined",
"=",
"feats_combined",
"[",
":",
",",
":",
"self",
".",
"nframes_to_cls",
",",
"...",
"]",
"feats_combined",
"=",
"self",
".",
"spat_att",
"(",
"feats_combined",
")",
"# Keep the last prediction, as that should ideally be the best",
"# prediction of whether it was solved or not",
"# torch.max was hard to optimize through",
"return",
"self",
".",
"cls",
"(",
"feats_combined",
",",
"pix_combined",
")",
"[",
":",
",",
"-",
"1",
"]"
] | [
1816,
4
] | [
1854,
60
] | python | en | ['en', 'error', 'th'] | False |
Fwd.forward | (self,
vid,
vid_is_solved,
n_hist_frames=3,
n_fwd_times=1,
n_fwd_times_incur_loss=999999,
run_decode=False,
compute_losses=False,
need_intermediate=False,
autoenc_loss_ratio=0.0,
nslices=-1) |
Args:
vid: (BxTxNobjxHxW) The input video
vid_is_solved: (Bx1) Whether the video is solved in the end of not.
Could be None at test time.
n_hist_frames: (int) Number of frames to use as history for
prediction
n_fwd_times: (int) How many times to run the forward dynamics model
n_fwd_times_incur_loss (int): Upto how many of these forwards to
incur loss on.
run_decode: (bool) Decode the features into pixel output
compute_losses: Should be set at train time. Will compute losses,
whatever it can given the data (eg, if vid_is_solved is not
passed to the function, it will not compute the CE loss).
need_intermediate (bool): Set true if you want to run the dynamics
model and need all the intermediate results. Else, will return
a list with only 1 element, the final output.
autoenc_loss_ratio (float btw 0-1): Set to 1 to run auto-encoder
style loss on all frames when run_decode is set.
num_slices (int): See in the _slice_for_dyn fn
Returns:
clip_feat: BxTxD
|
Args:
vid: (BxTxNobjxHxW) The input video
vid_is_solved: (Bx1) Whether the video is solved in the end of not.
Could be None at test time.
n_hist_frames: (int) Number of frames to use as history for
prediction
n_fwd_times: (int) How many times to run the forward dynamics model
n_fwd_times_incur_loss (int): Upto how many of these forwards to
incur loss on.
run_decode: (bool) Decode the features into pixel output
compute_losses: Should be set at train time. Will compute losses,
whatever it can given the data (eg, if vid_is_solved is not
passed to the function, it will not compute the CE loss).
need_intermediate (bool): Set true if you want to run the dynamics
model and need all the intermediate results. Else, will return
a list with only 1 element, the final output.
autoenc_loss_ratio (float btw 0-1): Set to 1 to run auto-encoder
style loss on all frames when run_decode is set.
num_slices (int): See in the _slice_for_dyn fn
Returns:
clip_feat: BxTxD
| def forward(self,
vid,
vid_is_solved,
n_hist_frames=3,
n_fwd_times=1,
n_fwd_times_incur_loss=999999,
run_decode=False,
compute_losses=False,
need_intermediate=False,
autoenc_loss_ratio=0.0,
nslices=-1):
"""
Args:
vid: (BxTxNobjxHxW) The input video
vid_is_solved: (Bx1) Whether the video is solved in the end of not.
Could be None at test time.
n_hist_frames: (int) Number of frames to use as history for
prediction
n_fwd_times: (int) How many times to run the forward dynamics model
n_fwd_times_incur_loss (int): Upto how many of these forwards to
incur loss on.
run_decode: (bool) Decode the features into pixel output
compute_losses: Should be set at train time. Will compute losses,
whatever it can given the data (eg, if vid_is_solved is not
passed to the function, it will not compute the CE loss).
need_intermediate (bool): Set true if you want to run the dynamics
model and need all the intermediate results. Else, will return
a list with only 1 element, the final output.
autoenc_loss_ratio (float btw 0-1): Set to 1 to run auto-encoder
style loss on all frames when run_decode is set.
num_slices (int): See in the _slice_for_dyn fn
Returns:
clip_feat: BxTxD
"""
vid_preproc = self.preproc.preprocess_vid(vid)
obj_feat = self.enc(vid_preproc)
clip_hist = self._slice_for_dyn(obj_feat,
n_hist_frames,
nslices=nslices)
vid_hist = self._slice_for_dyn(vid_preproc,
n_hist_frames,
nslices=nslices)
assert clip_hist.shape[1] == n_hist_frames
clip_hist = self.interactor(clip_hist)
clip_preds, clip_preds_pix, clip_preds_addl_losses = self._forward_dyn(
clip_hist, vid_hist, n_fwd_times, need_intermediate)
if run_decode:
clip_preds_pix = self._forward_dec(clip_preds, clip_preds_pix)
else:
clip_preds_pix = [None] * len(clip_preds)
# Compute the solved or not, will only do for the ones asked for
clip_preds_solved = self._cls(
combine_obj_pixels(clip_hist, 2), combine_obj_pixels(vid_hist, 2),
[combine_obj_pixels(el, 1) for el in clip_preds],
[combine_obj_pixels(el, 1) for el in clip_preds_pix])
all_losses = []
clip_preds_pix_unpreproc_for_loss = [
self.preproc.unpreprocess_frame_for_loss(el)
for el in clip_preds_pix
]
if compute_losses:
for i in range(min(len(clip_preds), n_fwd_times_incur_loss)):
# Compute losses at each prediction step, if need_intermediate
# is set. Else, it will only return a single output
# (at the last prediction), and then we can only incur loss at
# that point.
if not need_intermediate:
assert len(clip_preds) == 1
pred_id = -1
# Only loss on predicting the final rolled out obs
this_fwd_times = n_fwd_times
else:
assert len(clip_preds) == n_fwd_times
pred_id = i
this_fwd_times = i + 1
all_losses.append(
self._compute_losses(
# For the loss, using only the last prediction (for now)
clip_preds[pred_id],
combine_obj_pixels(
clip_preds_pix_unpreproc_for_loss[pred_id], 1),
obj_feat,
combine_obj_pixels(vid, 2),
n_hist_frames,
this_fwd_times))
all_losses = average_losses(all_losses)
all_losses.update(average_losses(clip_preds_addl_losses))
all_losses.update(
self.solved_or_not_loss(clip_preds_solved, vid_is_solved))
# Add losses on the provided frames if requested
if run_decode and autoenc_loss_ratio > 0:
all_losses.update(
self.autoencoder_loss(combine_obj_pixels(vid, 2), obj_feat,
autoenc_loss_ratio))
clip_preds_pix_unpreproc = [
combine_obj_pixels(self.preproc.unpreprocess_frame_after_loss(el),
1) for el in clip_preds_pix_unpreproc_for_loss
]
all_preds = {
'feats': clip_preds,
'is_solved': clip_preds_solved,
'pixels': clip_preds_pix_unpreproc,
}
return all_preds, all_losses | [
"def",
"forward",
"(",
"self",
",",
"vid",
",",
"vid_is_solved",
",",
"n_hist_frames",
"=",
"3",
",",
"n_fwd_times",
"=",
"1",
",",
"n_fwd_times_incur_loss",
"=",
"999999",
",",
"run_decode",
"=",
"False",
",",
"compute_losses",
"=",
"False",
",",
"need_intermediate",
"=",
"False",
",",
"autoenc_loss_ratio",
"=",
"0.0",
",",
"nslices",
"=",
"-",
"1",
")",
":",
"vid_preproc",
"=",
"self",
".",
"preproc",
".",
"preprocess_vid",
"(",
"vid",
")",
"obj_feat",
"=",
"self",
".",
"enc",
"(",
"vid_preproc",
")",
"clip_hist",
"=",
"self",
".",
"_slice_for_dyn",
"(",
"obj_feat",
",",
"n_hist_frames",
",",
"nslices",
"=",
"nslices",
")",
"vid_hist",
"=",
"self",
".",
"_slice_for_dyn",
"(",
"vid_preproc",
",",
"n_hist_frames",
",",
"nslices",
"=",
"nslices",
")",
"assert",
"clip_hist",
".",
"shape",
"[",
"1",
"]",
"==",
"n_hist_frames",
"clip_hist",
"=",
"self",
".",
"interactor",
"(",
"clip_hist",
")",
"clip_preds",
",",
"clip_preds_pix",
",",
"clip_preds_addl_losses",
"=",
"self",
".",
"_forward_dyn",
"(",
"clip_hist",
",",
"vid_hist",
",",
"n_fwd_times",
",",
"need_intermediate",
")",
"if",
"run_decode",
":",
"clip_preds_pix",
"=",
"self",
".",
"_forward_dec",
"(",
"clip_preds",
",",
"clip_preds_pix",
")",
"else",
":",
"clip_preds_pix",
"=",
"[",
"None",
"]",
"*",
"len",
"(",
"clip_preds",
")",
"# Compute the solved or not, will only do for the ones asked for",
"clip_preds_solved",
"=",
"self",
".",
"_cls",
"(",
"combine_obj_pixels",
"(",
"clip_hist",
",",
"2",
")",
",",
"combine_obj_pixels",
"(",
"vid_hist",
",",
"2",
")",
",",
"[",
"combine_obj_pixels",
"(",
"el",
",",
"1",
")",
"for",
"el",
"in",
"clip_preds",
"]",
",",
"[",
"combine_obj_pixels",
"(",
"el",
",",
"1",
")",
"for",
"el",
"in",
"clip_preds_pix",
"]",
")",
"all_losses",
"=",
"[",
"]",
"clip_preds_pix_unpreproc_for_loss",
"=",
"[",
"self",
".",
"preproc",
".",
"unpreprocess_frame_for_loss",
"(",
"el",
")",
"for",
"el",
"in",
"clip_preds_pix",
"]",
"if",
"compute_losses",
":",
"for",
"i",
"in",
"range",
"(",
"min",
"(",
"len",
"(",
"clip_preds",
")",
",",
"n_fwd_times_incur_loss",
")",
")",
":",
"# Compute losses at each prediction step, if need_intermediate",
"# is set. Else, it will only return a single output",
"# (at the last prediction), and then we can only incur loss at",
"# that point.",
"if",
"not",
"need_intermediate",
":",
"assert",
"len",
"(",
"clip_preds",
")",
"==",
"1",
"pred_id",
"=",
"-",
"1",
"# Only loss on predicting the final rolled out obs",
"this_fwd_times",
"=",
"n_fwd_times",
"else",
":",
"assert",
"len",
"(",
"clip_preds",
")",
"==",
"n_fwd_times",
"pred_id",
"=",
"i",
"this_fwd_times",
"=",
"i",
"+",
"1",
"all_losses",
".",
"append",
"(",
"self",
".",
"_compute_losses",
"(",
"# For the loss, using only the last prediction (for now)",
"clip_preds",
"[",
"pred_id",
"]",
",",
"combine_obj_pixels",
"(",
"clip_preds_pix_unpreproc_for_loss",
"[",
"pred_id",
"]",
",",
"1",
")",
",",
"obj_feat",
",",
"combine_obj_pixels",
"(",
"vid",
",",
"2",
")",
",",
"n_hist_frames",
",",
"this_fwd_times",
")",
")",
"all_losses",
"=",
"average_losses",
"(",
"all_losses",
")",
"all_losses",
".",
"update",
"(",
"average_losses",
"(",
"clip_preds_addl_losses",
")",
")",
"all_losses",
".",
"update",
"(",
"self",
".",
"solved_or_not_loss",
"(",
"clip_preds_solved",
",",
"vid_is_solved",
")",
")",
"# Add losses on the provided frames if requested",
"if",
"run_decode",
"and",
"autoenc_loss_ratio",
">",
"0",
":",
"all_losses",
".",
"update",
"(",
"self",
".",
"autoencoder_loss",
"(",
"combine_obj_pixels",
"(",
"vid",
",",
"2",
")",
",",
"obj_feat",
",",
"autoenc_loss_ratio",
")",
")",
"clip_preds_pix_unpreproc",
"=",
"[",
"combine_obj_pixels",
"(",
"self",
".",
"preproc",
".",
"unpreprocess_frame_after_loss",
"(",
"el",
")",
",",
"1",
")",
"for",
"el",
"in",
"clip_preds_pix_unpreproc_for_loss",
"]",
"all_preds",
"=",
"{",
"'feats'",
":",
"clip_preds",
",",
"'is_solved'",
":",
"clip_preds_solved",
",",
"'pixels'",
":",
"clip_preds_pix_unpreproc",
",",
"}",
"return",
"all_preds",
",",
"all_losses"
] | [
1856,
4
] | [
1959,
36
] | python | en | ['en', 'error', 'th'] | False |
block_output_tokens | (blocks, true_tokens) |
blocks = the output from blockify
true_tokens = a list of true tokens
|
blocks = the output from blockify
true_tokens = a list of true tokens
| def block_output_tokens(blocks, true_tokens):
"""
blocks = the output from blockify
true_tokens = a list of true tokens
"""
assert len(blocks) == len(true_tokens)
for k in range_(len(blocks)):
block_tokens = re.split(r"\s+", blocks[k].text.strip())
assert block_tokens == true_tokens[k] | [
"def",
"block_output_tokens",
"(",
"blocks",
",",
"true_tokens",
")",
":",
"assert",
"len",
"(",
"blocks",
")",
"==",
"len",
"(",
"true_tokens",
")",
"for",
"k",
"in",
"range_",
"(",
"len",
"(",
"blocks",
")",
")",
":",
"block_tokens",
"=",
"re",
".",
"split",
"(",
"r\"\\s+\"",
",",
"blocks",
"[",
"k",
"]",
".",
"text",
".",
"strip",
"(",
")",
")",
"assert",
"block_tokens",
"==",
"true_tokens",
"[",
"k",
"]"
] | [
21,
0
] | [
29,
45
] | python | en | ['en', 'error', 'th'] | False |
TestBlockifier.test_lxml_error | (self) | tests the case where lxml raises an error during parsing
also handles case where lxml returns None for the tree | tests the case where lxml raises an error during parsing | def test_lxml_error(self):
"""tests the case where lxml raises an error during parsing
also handles case where lxml returns None for the tree"""
# this raises an error in parsing
with pytest.raises(BlockifyError):
Blockifier.blockify("")
# this returns None in lxml
assert etree.fromstring("<!--", etree.HTMLParser(recover=True)) is None
with pytest.raises(BlockifyError):
Blockifier.blockify("<!--") | [
"def",
"test_lxml_error",
"(",
"self",
")",
":",
"# this raises an error in parsing",
"with",
"pytest",
".",
"raises",
"(",
"BlockifyError",
")",
":",
"Blockifier",
".",
"blockify",
"(",
"\"\"",
")",
"# this returns None in lxml",
"assert",
"etree",
".",
"fromstring",
"(",
"\"<!--\"",
",",
"etree",
".",
"HTMLParser",
"(",
"recover",
"=",
"True",
")",
")",
"is",
"None",
"with",
"pytest",
".",
"raises",
"(",
"BlockifyError",
")",
":",
"Blockifier",
".",
"blockify",
"(",
"\"<!--\"",
")"
] | [
48,
4
] | [
58,
39
] | python | en | ['en', 'en', 'en'] | True |
TestBlockifier.test_very_simple | (self) | test_very_simple | test_very_simple | def test_very_simple(self):
"""test_very_simple"""
s = """<div>some text
<script> skip this </script>
more text here
</div>"""
blocks = Blockifier.blockify(s)
block_output_tokens(blocks, [['some', 'text', 'more', 'text', 'here']]) | [
"def",
"test_very_simple",
"(",
"self",
")",
":",
"s",
"=",
"\"\"\"<div>some text\n <script> skip this </script>\n more text here\n </div>\"\"\"",
"blocks",
"=",
"Blockifier",
".",
"blockify",
"(",
"s",
")",
"block_output_tokens",
"(",
"blocks",
",",
"[",
"[",
"'some'",
",",
"'text'",
",",
"'more'",
",",
"'text'",
",",
"'here'",
"]",
"]",
")"
] | [
60,
4
] | [
67,
79
] | python | en | ['en', 'en', 'en'] | False |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.