Search is not available for this dataset
identifier
stringlengths
1
155
parameters
stringlengths
2
6.09k
docstring
stringlengths
11
63.4k
docstring_summary
stringlengths
0
63.4k
function
stringlengths
29
99.8k
function_tokens
sequence
start_point
sequence
end_point
sequence
language
stringclasses
1 value
docstring_language
stringlengths
2
7
docstring_language_predictions
stringlengths
18
23
is_langid_reliable
stringclasses
2 values
DatabaseIntrospection.get_table_list
(self, cursor)
Return a list of table and view names in the current database.
Return a list of table and view names in the current database.
def get_table_list(self, cursor): """Return a list of table and view names in the current database.""" cursor.execute("SHOW FULL TABLES") return [TableInfo(row[0], {'BASE TABLE': 't', 'VIEW': 'v'}.get(row[1])) for row in cursor.fetchall()]
[ "def", "get_table_list", "(", "self", ",", "cursor", ")", ":", "cursor", ".", "execute", "(", "\"SHOW FULL TABLES\"", ")", "return", "[", "TableInfo", "(", "row", "[", "0", "]", ",", "{", "'BASE TABLE'", ":", "'t'", ",", "'VIEW'", ":", "'v'", "}", ".", "get", "(", "row", "[", "1", "]", ")", ")", "for", "row", "in", "cursor", ".", "fetchall", "(", ")", "]" ]
[ 66, 4 ]
[ 70, 45 ]
python
en
['en', 'en', 'en']
True
DatabaseIntrospection.get_table_description
(self, cursor, table_name)
Return a description of the table with the DB-API cursor.description interface."
Return a description of the table with the DB-API cursor.description interface."
def get_table_description(self, cursor, table_name): """ Return a description of the table with the DB-API cursor.description interface." """ json_constraints = {} if self.connection.mysql_is_mariadb and self.connection.features.can_introspect_json_field: # JSON data type is an alias for LONGTEXT in MariaDB, select # JSON_VALID() constraints to introspect JSONField. cursor.execute(""" SELECT c.constraint_name AS column_name FROM information_schema.check_constraints AS c WHERE c.table_name = %s AND LOWER(c.check_clause) = 'json_valid(`' + LOWER(c.constraint_name) + '`)' AND c.constraint_schema = DATABASE() """, [table_name]) json_constraints = {row[0] for row in cursor.fetchall()} # A default collation for the given table. cursor.execute(""" SELECT table_collation FROM information_schema.tables WHERE table_schema = DATABASE() AND table_name = %s """, [table_name]) row = cursor.fetchone() default_column_collation = row[0] if row else '' # information_schema database gives more accurate results for some figures: # - varchar length returned by cursor.description is an internal length, # not visible length (#5725) # - precision and scale (for decimal fields) (#5014) # - auto_increment is not available in cursor.description cursor.execute(""" SELECT column_name, data_type, character_maximum_length, numeric_precision, numeric_scale, extra, column_default, CASE WHEN collation_name = %s THEN NULL ELSE collation_name END AS collation_name, CASE WHEN column_type LIKE '%% unsigned' THEN 1 ELSE 0 END AS is_unsigned FROM information_schema.columns WHERE table_name = %s AND table_schema = DATABASE() """, [default_column_collation, table_name]) field_info = {line[0]: InfoLine(*line) for line in cursor.fetchall()} cursor.execute("SELECT * FROM %s LIMIT 1" % self.connection.ops.quote_name(table_name)) def to_int(i): return int(i) if i is not None else i fields = [] for line in cursor.description: info = field_info[line[0]] fields.append(FieldInfo( *line[:3], to_int(info.max_len) or line[3], to_int(info.num_prec) or line[4], to_int(info.num_scale) or line[5], line[6], info.column_default, info.collation, info.extra, info.is_unsigned, line[0] in json_constraints, )) return fields
[ "def", "get_table_description", "(", "self", ",", "cursor", ",", "table_name", ")", ":", "json_constraints", "=", "{", "}", "if", "self", ".", "connection", ".", "mysql_is_mariadb", "and", "self", ".", "connection", ".", "features", ".", "can_introspect_json_field", ":", "# JSON data type is an alias for LONGTEXT in MariaDB, select", "# JSON_VALID() constraints to introspect JSONField.", "cursor", ".", "execute", "(", "\"\"\"\n SELECT c.constraint_name AS column_name\n FROM information_schema.check_constraints AS c\n WHERE\n c.table_name = %s AND\n LOWER(c.check_clause) = 'json_valid(`' + LOWER(c.constraint_name) + '`)' AND\n c.constraint_schema = DATABASE()\n \"\"\"", ",", "[", "table_name", "]", ")", "json_constraints", "=", "{", "row", "[", "0", "]", "for", "row", "in", "cursor", ".", "fetchall", "(", ")", "}", "# A default collation for the given table.", "cursor", ".", "execute", "(", "\"\"\"\n SELECT table_collation\n FROM information_schema.tables\n WHERE table_schema = DATABASE()\n AND table_name = %s\n \"\"\"", ",", "[", "table_name", "]", ")", "row", "=", "cursor", ".", "fetchone", "(", ")", "default_column_collation", "=", "row", "[", "0", "]", "if", "row", "else", "''", "# information_schema database gives more accurate results for some figures:", "# - varchar length returned by cursor.description is an internal length,", "# not visible length (#5725)", "# - precision and scale (for decimal fields) (#5014)", "# - auto_increment is not available in cursor.description", "cursor", ".", "execute", "(", "\"\"\"\n SELECT\n column_name, data_type, character_maximum_length,\n numeric_precision, numeric_scale, extra, column_default,\n CASE\n WHEN collation_name = %s THEN NULL\n ELSE collation_name\n END AS collation_name,\n CASE\n WHEN column_type LIKE '%% unsigned' THEN 1\n ELSE 0\n END AS is_unsigned\n FROM information_schema.columns\n WHERE table_name = %s AND table_schema = DATABASE()\n \"\"\"", ",", "[", "default_column_collation", ",", "table_name", "]", ")", "field_info", "=", "{", "line", "[", "0", "]", ":", "InfoLine", "(", "*", "line", ")", "for", "line", "in", "cursor", ".", "fetchall", "(", ")", "}", "cursor", ".", "execute", "(", "\"SELECT * FROM %s LIMIT 1\"", "%", "self", ".", "connection", ".", "ops", ".", "quote_name", "(", "table_name", ")", ")", "def", "to_int", "(", "i", ")", ":", "return", "int", "(", "i", ")", "if", "i", "is", "not", "None", "else", "i", "fields", "=", "[", "]", "for", "line", "in", "cursor", ".", "description", ":", "info", "=", "field_info", "[", "line", "[", "0", "]", "]", "fields", ".", "append", "(", "FieldInfo", "(", "*", "line", "[", ":", "3", "]", ",", "to_int", "(", "info", ".", "max_len", ")", "or", "line", "[", "3", "]", ",", "to_int", "(", "info", ".", "num_prec", ")", "or", "line", "[", "4", "]", ",", "to_int", "(", "info", ".", "num_scale", ")", "or", "line", "[", "5", "]", ",", "line", "[", "6", "]", ",", "info", ".", "column_default", ",", "info", ".", "collation", ",", "info", ".", "extra", ",", "info", ".", "is_unsigned", ",", "line", "[", "0", "]", "in", "json_constraints", ",", ")", ")", "return", "fields" ]
[ 72, 4 ]
[ 141, 21 ]
python
en
['en', 'error', 'th']
False
DatabaseIntrospection.get_relations
(self, cursor, table_name)
Return a dictionary of {field_name: (field_name_other_table, other_table)} representing all relationships to the given table.
Return a dictionary of {field_name: (field_name_other_table, other_table)} representing all relationships to the given table.
def get_relations(self, cursor, table_name): """ Return a dictionary of {field_name: (field_name_other_table, other_table)} representing all relationships to the given table. """ constraints = self.get_key_columns(cursor, table_name) relations = {} for my_fieldname, other_table, other_field in constraints: relations[my_fieldname] = (other_field, other_table) return relations
[ "def", "get_relations", "(", "self", ",", "cursor", ",", "table_name", ")", ":", "constraints", "=", "self", ".", "get_key_columns", "(", "cursor", ",", "table_name", ")", "relations", "=", "{", "}", "for", "my_fieldname", ",", "other_table", ",", "other_field", "in", "constraints", ":", "relations", "[", "my_fieldname", "]", "=", "(", "other_field", ",", "other_table", ")", "return", "relations" ]
[ 150, 4 ]
[ 159, 24 ]
python
en
['en', 'error', 'th']
False
DatabaseIntrospection.get_key_columns
(self, cursor, table_name)
Return a list of (column_name, referenced_table_name, referenced_column_name) for all key columns in the given table.
Return a list of (column_name, referenced_table_name, referenced_column_name) for all key columns in the given table.
def get_key_columns(self, cursor, table_name): """ Return a list of (column_name, referenced_table_name, referenced_column_name) for all key columns in the given table. """ key_columns = [] cursor.execute(""" SELECT column_name, referenced_table_name, referenced_column_name FROM information_schema.key_column_usage WHERE table_name = %s AND table_schema = DATABASE() AND referenced_table_name IS NOT NULL AND referenced_column_name IS NOT NULL""", [table_name]) key_columns.extend(cursor.fetchall()) return key_columns
[ "def", "get_key_columns", "(", "self", ",", "cursor", ",", "table_name", ")", ":", "key_columns", "=", "[", "]", "cursor", ".", "execute", "(", "\"\"\"\n SELECT column_name, referenced_table_name, referenced_column_name\n FROM information_schema.key_column_usage\n WHERE table_name = %s\n AND table_schema = DATABASE()\n AND referenced_table_name IS NOT NULL\n AND referenced_column_name IS NOT NULL\"\"\"", ",", "[", "table_name", "]", ")", "key_columns", ".", "extend", "(", "cursor", ".", "fetchall", "(", ")", ")", "return", "key_columns" ]
[ 161, 4 ]
[ 175, 26 ]
python
en
['en', 'error', 'th']
False
DatabaseIntrospection.get_storage_engine
(self, cursor, table_name)
Retrieve the storage engine for a given table. Return the default storage engine if the table doesn't exist.
Retrieve the storage engine for a given table. Return the default storage engine if the table doesn't exist.
def get_storage_engine(self, cursor, table_name): """ Retrieve the storage engine for a given table. Return the default storage engine if the table doesn't exist. """ cursor.execute( "SELECT engine " "FROM information_schema.tables " "WHERE table_name = %s", [table_name]) result = cursor.fetchone() if not result: return self.connection.features._mysql_storage_engine return result[0]
[ "def", "get_storage_engine", "(", "self", ",", "cursor", ",", "table_name", ")", ":", "cursor", ".", "execute", "(", "\"SELECT engine \"", "\"FROM information_schema.tables \"", "\"WHERE table_name = %s\"", ",", "[", "table_name", "]", ")", "result", "=", "cursor", ".", "fetchone", "(", ")", "if", "not", "result", ":", "return", "self", ".", "connection", ".", "features", ".", "_mysql_storage_engine", "return", "result", "[", "0", "]" ]
[ 177, 4 ]
[ 189, 24 ]
python
en
['en', 'error', 'th']
False
DatabaseIntrospection.get_constraints
(self, cursor, table_name)
Retrieve any constraints or keys (unique, pk, fk, check, index) across one or more columns.
Retrieve any constraints or keys (unique, pk, fk, check, index) across one or more columns.
def get_constraints(self, cursor, table_name): """ Retrieve any constraints or keys (unique, pk, fk, check, index) across one or more columns. """ constraints = {} # Get the actual constraint names and columns name_query = """ SELECT kc.`constraint_name`, kc.`column_name`, kc.`referenced_table_name`, kc.`referenced_column_name` FROM information_schema.key_column_usage AS kc WHERE kc.table_schema = DATABASE() AND kc.table_name = %s ORDER BY kc.`ordinal_position` """ cursor.execute(name_query, [table_name]) for constraint, column, ref_table, ref_column in cursor.fetchall(): if constraint not in constraints: constraints[constraint] = { 'columns': OrderedSet(), 'primary_key': False, 'unique': False, 'index': False, 'check': False, 'foreign_key': (ref_table, ref_column) if ref_column else None, } if self.connection.features.supports_index_column_ordering: constraints[constraint]['orders'] = [] constraints[constraint]['columns'].add(column) # Now get the constraint types type_query = """ SELECT c.constraint_name, c.constraint_type FROM information_schema.table_constraints AS c WHERE c.table_schema = DATABASE() AND c.table_name = %s """ cursor.execute(type_query, [table_name]) for constraint, kind in cursor.fetchall(): if kind.lower() == "primary key": constraints[constraint]['primary_key'] = True constraints[constraint]['unique'] = True elif kind.lower() == "unique": constraints[constraint]['unique'] = True # Add check constraints. if self.connection.features.can_introspect_check_constraints: unnamed_constraints_index = 0 columns = {info.name for info in self.get_table_description(cursor, table_name)} if self.connection.mysql_is_mariadb: type_query = """ SELECT c.constraint_name, c.check_clause FROM information_schema.check_constraints AS c WHERE c.constraint_schema = DATABASE() AND c.table_name = %s """ else: type_query = """ SELECT cc.constraint_name, cc.check_clause FROM information_schema.check_constraints AS cc, information_schema.table_constraints AS tc WHERE cc.constraint_schema = DATABASE() AND tc.table_schema = cc.constraint_schema AND cc.constraint_name = tc.constraint_name AND tc.constraint_type = 'CHECK' AND tc.table_name = %s """ cursor.execute(type_query, [table_name]) for constraint, check_clause in cursor.fetchall(): constraint_columns = self._parse_constraint_columns(check_clause, columns) # Ensure uniqueness of unnamed constraints. Unnamed unique # and check columns constraints have the same name as # a column. if set(constraint_columns) == {constraint}: unnamed_constraints_index += 1 constraint = '__unnamed_constraint_%s__' % unnamed_constraints_index constraints[constraint] = { 'columns': constraint_columns, 'primary_key': False, 'unique': False, 'index': False, 'check': True, 'foreign_key': None, } # Now add in the indexes cursor.execute("SHOW INDEX FROM %s" % self.connection.ops.quote_name(table_name)) for table, non_unique, index, colseq, column, order, type_ in [ x[:6] + (x[10],) for x in cursor.fetchall() ]: if index not in constraints: constraints[index] = { 'columns': OrderedSet(), 'primary_key': False, 'unique': False, 'check': False, 'foreign_key': None, } if self.connection.features.supports_index_column_ordering: constraints[index]['orders'] = [] constraints[index]['index'] = True constraints[index]['type'] = Index.suffix if type_ == 'BTREE' else type_.lower() constraints[index]['columns'].add(column) if self.connection.features.supports_index_column_ordering: constraints[index]['orders'].append('DESC' if order == 'D' else 'ASC') # Convert the sorted sets to lists for constraint in constraints.values(): constraint['columns'] = list(constraint['columns']) return constraints
[ "def", "get_constraints", "(", "self", ",", "cursor", ",", "table_name", ")", ":", "constraints", "=", "{", "}", "# Get the actual constraint names and columns", "name_query", "=", "\"\"\"\n SELECT kc.`constraint_name`, kc.`column_name`,\n kc.`referenced_table_name`, kc.`referenced_column_name`\n FROM information_schema.key_column_usage AS kc\n WHERE\n kc.table_schema = DATABASE() AND\n kc.table_name = %s\n ORDER BY kc.`ordinal_position`\n \"\"\"", "cursor", ".", "execute", "(", "name_query", ",", "[", "table_name", "]", ")", "for", "constraint", ",", "column", ",", "ref_table", ",", "ref_column", "in", "cursor", ".", "fetchall", "(", ")", ":", "if", "constraint", "not", "in", "constraints", ":", "constraints", "[", "constraint", "]", "=", "{", "'columns'", ":", "OrderedSet", "(", ")", ",", "'primary_key'", ":", "False", ",", "'unique'", ":", "False", ",", "'index'", ":", "False", ",", "'check'", ":", "False", ",", "'foreign_key'", ":", "(", "ref_table", ",", "ref_column", ")", "if", "ref_column", "else", "None", ",", "}", "if", "self", ".", "connection", ".", "features", ".", "supports_index_column_ordering", ":", "constraints", "[", "constraint", "]", "[", "'orders'", "]", "=", "[", "]", "constraints", "[", "constraint", "]", "[", "'columns'", "]", ".", "add", "(", "column", ")", "# Now get the constraint types", "type_query", "=", "\"\"\"\n SELECT c.constraint_name, c.constraint_type\n FROM information_schema.table_constraints AS c\n WHERE\n c.table_schema = DATABASE() AND\n c.table_name = %s\n \"\"\"", "cursor", ".", "execute", "(", "type_query", ",", "[", "table_name", "]", ")", "for", "constraint", ",", "kind", "in", "cursor", ".", "fetchall", "(", ")", ":", "if", "kind", ".", "lower", "(", ")", "==", "\"primary key\"", ":", "constraints", "[", "constraint", "]", "[", "'primary_key'", "]", "=", "True", "constraints", "[", "constraint", "]", "[", "'unique'", "]", "=", "True", "elif", "kind", ".", "lower", "(", ")", "==", "\"unique\"", ":", "constraints", "[", "constraint", "]", "[", "'unique'", "]", "=", "True", "# Add check constraints.", "if", "self", ".", "connection", ".", "features", ".", "can_introspect_check_constraints", ":", "unnamed_constraints_index", "=", "0", "columns", "=", "{", "info", ".", "name", "for", "info", "in", "self", ".", "get_table_description", "(", "cursor", ",", "table_name", ")", "}", "if", "self", ".", "connection", ".", "mysql_is_mariadb", ":", "type_query", "=", "\"\"\"\n SELECT c.constraint_name, c.check_clause\n FROM information_schema.check_constraints AS c\n WHERE\n c.constraint_schema = DATABASE() AND\n c.table_name = %s\n \"\"\"", "else", ":", "type_query", "=", "\"\"\"\n SELECT cc.constraint_name, cc.check_clause\n FROM\n information_schema.check_constraints AS cc,\n information_schema.table_constraints AS tc\n WHERE\n cc.constraint_schema = DATABASE() AND\n tc.table_schema = cc.constraint_schema AND\n cc.constraint_name = tc.constraint_name AND\n tc.constraint_type = 'CHECK' AND\n tc.table_name = %s\n \"\"\"", "cursor", ".", "execute", "(", "type_query", ",", "[", "table_name", "]", ")", "for", "constraint", ",", "check_clause", "in", "cursor", ".", "fetchall", "(", ")", ":", "constraint_columns", "=", "self", ".", "_parse_constraint_columns", "(", "check_clause", ",", "columns", ")", "# Ensure uniqueness of unnamed constraints. Unnamed unique", "# and check columns constraints have the same name as", "# a column.", "if", "set", "(", "constraint_columns", ")", "==", "{", "constraint", "}", ":", "unnamed_constraints_index", "+=", "1", "constraint", "=", "'__unnamed_constraint_%s__'", "%", "unnamed_constraints_index", "constraints", "[", "constraint", "]", "=", "{", "'columns'", ":", "constraint_columns", ",", "'primary_key'", ":", "False", ",", "'unique'", ":", "False", ",", "'index'", ":", "False", ",", "'check'", ":", "True", ",", "'foreign_key'", ":", "None", ",", "}", "# Now add in the indexes", "cursor", ".", "execute", "(", "\"SHOW INDEX FROM %s\"", "%", "self", ".", "connection", ".", "ops", ".", "quote_name", "(", "table_name", ")", ")", "for", "table", ",", "non_unique", ",", "index", ",", "colseq", ",", "column", ",", "order", ",", "type_", "in", "[", "x", "[", ":", "6", "]", "+", "(", "x", "[", "10", "]", ",", ")", "for", "x", "in", "cursor", ".", "fetchall", "(", ")", "]", ":", "if", "index", "not", "in", "constraints", ":", "constraints", "[", "index", "]", "=", "{", "'columns'", ":", "OrderedSet", "(", ")", ",", "'primary_key'", ":", "False", ",", "'unique'", ":", "False", ",", "'check'", ":", "False", ",", "'foreign_key'", ":", "None", ",", "}", "if", "self", ".", "connection", ".", "features", ".", "supports_index_column_ordering", ":", "constraints", "[", "index", "]", "[", "'orders'", "]", "=", "[", "]", "constraints", "[", "index", "]", "[", "'index'", "]", "=", "True", "constraints", "[", "index", "]", "[", "'type'", "]", "=", "Index", ".", "suffix", "if", "type_", "==", "'BTREE'", "else", "type_", ".", "lower", "(", ")", "constraints", "[", "index", "]", "[", "'columns'", "]", ".", "add", "(", "column", ")", "if", "self", ".", "connection", ".", "features", ".", "supports_index_column_ordering", ":", "constraints", "[", "index", "]", "[", "'orders'", "]", ".", "append", "(", "'DESC'", "if", "order", "==", "'D'", "else", "'ASC'", ")", "# Convert the sorted sets to lists", "for", "constraint", "in", "constraints", ".", "values", "(", ")", ":", "constraint", "[", "'columns'", "]", "=", "list", "(", "constraint", "[", "'columns'", "]", ")", "return", "constraints" ]
[ 204, 4 ]
[ 314, 26 ]
python
en
['en', 'error', 'th']
False
reconstruction_evaluation
(X_time_orig, X_time_recon, training_mode)
Reconstruction loss on evaluation set. Given time major original and reconstructed features data and the training mode, return loss and eval_metrics_ops. Args: X_time_orig: Time major original features data. X_time_recon: Time major reconstructed features data. training_mode: Current training mode. Returns: loss: Scalar reconstruction loss. eval_metric_ops: Evaluation metrics of reconstruction.
Reconstruction loss on evaluation set.
def reconstruction_evaluation(X_time_orig, X_time_recon, training_mode): """Reconstruction loss on evaluation set. Given time major original and reconstructed features data and the training mode, return loss and eval_metrics_ops. Args: X_time_orig: Time major original features data. X_time_recon: Time major reconstructed features data. training_mode: Current training mode. Returns: loss: Scalar reconstruction loss. eval_metric_ops: Evaluation metrics of reconstruction. """ loss = tf.losses.mean_squared_error( labels=X_time_orig, predictions=X_time_recon) eval_metric_ops = None if training_mode == "reconstruction": # Reconstruction eval metrics eval_metric_ops = { "rmse": tf.metrics.root_mean_squared_error( labels=X_time_orig, predictions=X_time_recon), "mae": tf.metrics.mean_absolute_error( labels=X_time_orig, predictions=X_time_recon) } return loss, eval_metric_ops
[ "def", "reconstruction_evaluation", "(", "X_time_orig", ",", "X_time_recon", ",", "training_mode", ")", ":", "loss", "=", "tf", ".", "losses", ".", "mean_squared_error", "(", "labels", "=", "X_time_orig", ",", "predictions", "=", "X_time_recon", ")", "eval_metric_ops", "=", "None", "if", "training_mode", "==", "\"reconstruction\"", ":", "# Reconstruction eval metrics", "eval_metric_ops", "=", "{", "\"rmse\"", ":", "tf", ".", "metrics", ".", "root_mean_squared_error", "(", "labels", "=", "X_time_orig", ",", "predictions", "=", "X_time_recon", ")", ",", "\"mae\"", ":", "tf", ".", "metrics", ".", "mean_absolute_error", "(", "labels", "=", "X_time_orig", ",", "predictions", "=", "X_time_recon", ")", "}", "return", "loss", ",", "eval_metric_ops" ]
[ 3, 0 ]
[ 32, 30 ]
python
en
['en', 'en', 'en']
True
RandomRec.__init__
(self, train_file=None, test_file=None, output_file=None, rank_length=10, sep='\t', output_sep='\t')
Random Recommender for Item Recommendation This algorithm predicts a rank for each user using the count of number of feedback of users and items Usage:: >> RandomRec(train).compute() >> RandomRec(train, test, ranking).compute() :param train_file: File which contains the train set. This file needs to have at least 3 columns (user item feedback_value). :type train_file: str :param test_file: File which contains the test set. This file needs to have at least 3 columns (user item feedback_value). :type test_file: str, default None :param output_file: File with dir to write the final predictions :type output_file: str, default None :param rank_length: Size of the rank that must be generated by the predictions of the recommender algorithm :type rank_length: int, default 10 :param sep: Delimiter for input files :type sep: str, default '\t' :param output_sep: Delimiter for output file :type output_sep: str, default '\t'
Random Recommender for Item Recommendation
def __init__(self, train_file=None, test_file=None, output_file=None, rank_length=10, sep='\t', output_sep='\t'): """ Random Recommender for Item Recommendation This algorithm predicts a rank for each user using the count of number of feedback of users and items Usage:: >> RandomRec(train).compute() >> RandomRec(train, test, ranking).compute() :param train_file: File which contains the train set. This file needs to have at least 3 columns (user item feedback_value). :type train_file: str :param test_file: File which contains the test set. This file needs to have at least 3 columns (user item feedback_value). :type test_file: str, default None :param output_file: File with dir to write the final predictions :type output_file: str, default None :param rank_length: Size of the rank that must be generated by the predictions of the recommender algorithm :type rank_length: int, default 10 :param sep: Delimiter for input files :type sep: str, default '\t' :param output_sep: Delimiter for output file :type output_sep: str, default '\t' """ super(RandomRec, self).__init__(train_file=train_file, test_file=test_file, output_file=output_file, rank_length=rank_length, sep=sep, output_sep=output_sep) self.recommender_name = 'Random Recommender'
[ "def", "__init__", "(", "self", ",", "train_file", "=", "None", ",", "test_file", "=", "None", ",", "output_file", "=", "None", ",", "rank_length", "=", "10", ",", "sep", "=", "'\\t'", ",", "output_sep", "=", "'\\t'", ")", ":", "super", "(", "RandomRec", ",", "self", ")", ".", "__init__", "(", "train_file", "=", "train_file", ",", "test_file", "=", "test_file", ",", "output_file", "=", "output_file", ",", "rank_length", "=", "rank_length", ",", "sep", "=", "sep", ",", "output_sep", "=", "output_sep", ")", "self", ".", "recommender_name", "=", "'Random Recommender'" ]
[ 20, 4 ]
[ 56, 52 ]
python
en
['en', 'error', 'th']
False
RandomRec.predict
(self)
Method to predict a rank for each user. For each pair out of train set, predict a random score for it.
Method to predict a rank for each user.
def predict(self): """ Method to predict a rank for each user. For each pair out of train set, predict a random score for it. """ for user in set(self.users): predictions = list() for item in self.train_set['items_unobserved'].get(user, []): predictions.append((user, item, random.uniform(0, 1))) predictions = sorted(predictions, key=lambda x: -x[2]) self.ranking += predictions[:self.rank_length]
[ "def", "predict", "(", "self", ")", ":", "for", "user", "in", "set", "(", "self", ".", "users", ")", ":", "predictions", "=", "list", "(", ")", "for", "item", "in", "self", ".", "train_set", "[", "'items_unobserved'", "]", ".", "get", "(", "user", ",", "[", "]", ")", ":", "predictions", ".", "append", "(", "(", "user", ",", "item", ",", "random", ".", "uniform", "(", "0", ",", "1", ")", ")", ")", "predictions", "=", "sorted", "(", "predictions", ",", "key", "=", "lambda", "x", ":", "-", "x", "[", "2", "]", ")", "self", ".", "ranking", "+=", "predictions", "[", ":", "self", ".", "rank_length", "]" ]
[ 58, 4 ]
[ 71, 58 ]
python
en
['en', 'error', 'th']
False
RandomRec.compute
(self, verbose=True, metrics=None, verbose_evaluation=True, as_table=False, table_sep='\t')
Extends compute method from BaseItemRecommendation. Method to run recommender algorithm :param verbose: Print recommender and database information :type verbose: bool, default True :param metrics: List of evaluation metrics :type metrics: list, default None :param verbose_evaluation: Print the evaluation results :type verbose_evaluation: bool, default True :param as_table: Print the evaluation results as table :type as_table: bool, default False :param table_sep: Delimiter for print results (only work with verbose=True and as_table=True) :type table_sep: str, default '\t'
Extends compute method from BaseItemRecommendation. Method to run recommender algorithm
def compute(self, verbose=True, metrics=None, verbose_evaluation=True, as_table=False, table_sep='\t'): """ Extends compute method from BaseItemRecommendation. Method to run recommender algorithm :param verbose: Print recommender and database information :type verbose: bool, default True :param metrics: List of evaluation metrics :type metrics: list, default None :param verbose_evaluation: Print the evaluation results :type verbose_evaluation: bool, default True :param as_table: Print the evaluation results as table :type as_table: bool, default False :param table_sep: Delimiter for print results (only work with verbose=True and as_table=True) :type table_sep: str, default '\t' """ super(RandomRec, self).compute(verbose=verbose) if verbose: print("prediction_time:: %4f sec" % timed(self.predict)) print('\n') else: self.predict() self.write_ranking() if self.test_file is not None: self.evaluate(metrics, verbose_evaluation, as_table=as_table, table_sep=table_sep)
[ "def", "compute", "(", "self", ",", "verbose", "=", "True", ",", "metrics", "=", "None", ",", "verbose_evaluation", "=", "True", ",", "as_table", "=", "False", ",", "table_sep", "=", "'\\t'", ")", ":", "super", "(", "RandomRec", ",", "self", ")", ".", "compute", "(", "verbose", "=", "verbose", ")", "if", "verbose", ":", "print", "(", "\"prediction_time:: %4f sec\"", "%", "timed", "(", "self", ".", "predict", ")", ")", "print", "(", "'\\n'", ")", "else", ":", "self", ".", "predict", "(", ")", "self", ".", "write_ranking", "(", ")", "if", "self", ".", "test_file", "is", "not", "None", ":", "self", ".", "evaluate", "(", "metrics", ",", "verbose_evaluation", ",", "as_table", "=", "as_table", ",", "table_sep", "=", "table_sep", ")" ]
[ 73, 4 ]
[ 106, 94 ]
python
en
['en', 'error', 'th']
False
tune_anomaly_thresholds_unsupervised_training
( cur_batch_size, time_anom_thresh_var, mahalanobis_dist_time, count_thresh_time_var, mean_thresh_time_var, var_thresh_time_var, feat_anom_thresh_var, mahalanobis_dist_feat, count_thresh_feat_var, mean_thresh_feat_var, var_thresh_feat_var, params, dummy_var)
Tunes anomaly thresholds during unsupervised training mode. Given dimensions of inputs, mahalanobis distances, and variables tracking counts, means, and variances of mahalanobis distance, returns loss and train_op. Args: cur_batch_size: Current batch size, could be partially filled. time_anom_thresh_var: Time anomaly threshold variable. mahalanobis_dist_time: Time major mahalanobis distance. count_thresh_time_var: Time major running count of number of records. mean_thresh_time_var: Time major running mean of mahalanobis distance. var_thresh_time_var: Time major running variance of mahalanobis distance. feat_anom_thresh_var: Feature anomaly threshold variable. mahalanobis_dist_feat: Feature major mahalanobis distance. count_thresh_feat_var: Feature major running count of number of records. mean_thresh_feat_var: Feature major running mean of mahalanobis distance. var_thresh_feat_var: Feature major running variance of mahalanobis distance. params: Dictionary of parameters. dummy_var: Dummy variable used to allow training mode to happen since it requires a gradient to tie back to the graph dependency. Returns: loss: The scalar loss to tie our updates back to Estimator graph. train_op: The train operation to tie our updates back to Estimator graph.
Tunes anomaly thresholds during unsupervised training mode.
def tune_anomaly_thresholds_unsupervised_training( cur_batch_size, time_anom_thresh_var, mahalanobis_dist_time, count_thresh_time_var, mean_thresh_time_var, var_thresh_time_var, feat_anom_thresh_var, mahalanobis_dist_feat, count_thresh_feat_var, mean_thresh_feat_var, var_thresh_feat_var, params, dummy_var): """Tunes anomaly thresholds during unsupervised training mode. Given dimensions of inputs, mahalanobis distances, and variables tracking counts, means, and variances of mahalanobis distance, returns loss and train_op. Args: cur_batch_size: Current batch size, could be partially filled. time_anom_thresh_var: Time anomaly threshold variable. mahalanobis_dist_time: Time major mahalanobis distance. count_thresh_time_var: Time major running count of number of records. mean_thresh_time_var: Time major running mean of mahalanobis distance. var_thresh_time_var: Time major running variance of mahalanobis distance. feat_anom_thresh_var: Feature anomaly threshold variable. mahalanobis_dist_feat: Feature major mahalanobis distance. count_thresh_feat_var: Feature major running count of number of records. mean_thresh_feat_var: Feature major running mean of mahalanobis distance. var_thresh_feat_var: Feature major running variance of mahalanobis distance. params: Dictionary of parameters. dummy_var: Dummy variable used to allow training mode to happen since it requires a gradient to tie back to the graph dependency. Returns: loss: The scalar loss to tie our updates back to Estimator graph. train_op: The train operation to tie our updates back to Estimator graph. """ with tf.variable_scope( name_or_scope="mahalanobis_dist_thresh_vars", reuse=tf.AUTO_REUSE): # Time based mahalanobis_dist_time_flat = tf.reshape( tensor=mahalanobis_dist_time, shape=[cur_batch_size * params["seq_len"]]) singleton_time_condition = tf.equal( x=cur_batch_size * params["seq_len"], y=1) var_time_var, mean_time_var, count_time_var = tf.cond( pred=singleton_time_condition, true_fn=lambda: singleton_batch_var_variable_updating( params["seq_len"], mahalanobis_dist_time_flat, count_thresh_time_var, mean_thresh_time_var, var_thresh_time_var), false_fn=lambda: non_singleton_batch_var_variable_updating( cur_batch_size, params["seq_len"], mahalanobis_dist_time_flat, count_thresh_time_var, mean_thresh_time_var, var_thresh_time_var)) # Features based mahalanobis_dist_feat_flat = tf.reshape( tensor=mahalanobis_dist_feat, shape=[cur_batch_size * params["num_feat"]]) singleton_feat_condition = tf.equal( x=cur_batch_size * params["num_feat"], y=1) var_feat_var, mean_feat_var, count_feat_var = tf.cond( pred=singleton_feat_condition, true_fn=lambda: singleton_batch_var_variable_updating( params["num_feat"], mahalanobis_dist_feat_flat, count_thresh_feat_var, mean_thresh_feat_var, var_thresh_feat_var), false_fn=lambda: non_singleton_batch_var_variable_updating( cur_batch_size, params["num_feat"], mahalanobis_dist_feat_flat, count_thresh_feat_var, mean_thresh_feat_var, var_thresh_feat_var)) # Lastly use control dependencies around loss to enforce the mahalanobis # variables to be assigned, the control order matters, hence the separate # contexts. with tf.control_dependencies( control_inputs=[var_time_var, var_feat_var]): with tf.control_dependencies( control_inputs=[mean_time_var, mean_feat_var]): with tf.control_dependencies( control_inputs=[count_time_var, count_feat_var]): time_out = mean_time_var time_out += params["time_thresh_scl"] * tf.sqrt(x=var_time_var) feat_out = mean_feat_var feat_out += params["feat_thresh_scl"] * tf.sqrt(x=var_feat_var) with tf.control_dependencies( control_inputs=[tf.assign(ref=time_anom_thresh_var, value=time_out), tf.assign(ref=feat_anom_thresh_var, value=feat_out)]): loss = tf.reduce_sum( input_tensor=tf.zeros(shape=(), dtype=tf.float64) * dummy_var) train_op = tf.contrib.layers.optimize_loss( loss=loss, global_step=tf.train.get_global_step(), learning_rate=params["learning_rate"], optimizer="SGD") return loss, train_op
[ "def", "tune_anomaly_thresholds_unsupervised_training", "(", "cur_batch_size", ",", "time_anom_thresh_var", ",", "mahalanobis_dist_time", ",", "count_thresh_time_var", ",", "mean_thresh_time_var", ",", "var_thresh_time_var", ",", "feat_anom_thresh_var", ",", "mahalanobis_dist_feat", ",", "count_thresh_feat_var", ",", "mean_thresh_feat_var", ",", "var_thresh_feat_var", ",", "params", ",", "dummy_var", ")", ":", "with", "tf", ".", "variable_scope", "(", "name_or_scope", "=", "\"mahalanobis_dist_thresh_vars\"", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "# Time based", "mahalanobis_dist_time_flat", "=", "tf", ".", "reshape", "(", "tensor", "=", "mahalanobis_dist_time", ",", "shape", "=", "[", "cur_batch_size", "*", "params", "[", "\"seq_len\"", "]", "]", ")", "singleton_time_condition", "=", "tf", ".", "equal", "(", "x", "=", "cur_batch_size", "*", "params", "[", "\"seq_len\"", "]", ",", "y", "=", "1", ")", "var_time_var", ",", "mean_time_var", ",", "count_time_var", "=", "tf", ".", "cond", "(", "pred", "=", "singleton_time_condition", ",", "true_fn", "=", "lambda", ":", "singleton_batch_var_variable_updating", "(", "params", "[", "\"seq_len\"", "]", ",", "mahalanobis_dist_time_flat", ",", "count_thresh_time_var", ",", "mean_thresh_time_var", ",", "var_thresh_time_var", ")", ",", "false_fn", "=", "lambda", ":", "non_singleton_batch_var_variable_updating", "(", "cur_batch_size", ",", "params", "[", "\"seq_len\"", "]", ",", "mahalanobis_dist_time_flat", ",", "count_thresh_time_var", ",", "mean_thresh_time_var", ",", "var_thresh_time_var", ")", ")", "# Features based", "mahalanobis_dist_feat_flat", "=", "tf", ".", "reshape", "(", "tensor", "=", "mahalanobis_dist_feat", ",", "shape", "=", "[", "cur_batch_size", "*", "params", "[", "\"num_feat\"", "]", "]", ")", "singleton_feat_condition", "=", "tf", ".", "equal", "(", "x", "=", "cur_batch_size", "*", "params", "[", "\"num_feat\"", "]", ",", "y", "=", "1", ")", "var_feat_var", ",", "mean_feat_var", ",", "count_feat_var", "=", "tf", ".", "cond", "(", "pred", "=", "singleton_feat_condition", ",", "true_fn", "=", "lambda", ":", "singleton_batch_var_variable_updating", "(", "params", "[", "\"num_feat\"", "]", ",", "mahalanobis_dist_feat_flat", ",", "count_thresh_feat_var", ",", "mean_thresh_feat_var", ",", "var_thresh_feat_var", ")", ",", "false_fn", "=", "lambda", ":", "non_singleton_batch_var_variable_updating", "(", "cur_batch_size", ",", "params", "[", "\"num_feat\"", "]", ",", "mahalanobis_dist_feat_flat", ",", "count_thresh_feat_var", ",", "mean_thresh_feat_var", ",", "var_thresh_feat_var", ")", ")", "# Lastly use control dependencies around loss to enforce the mahalanobis", "# variables to be assigned, the control order matters, hence the separate", "# contexts.", "with", "tf", ".", "control_dependencies", "(", "control_inputs", "=", "[", "var_time_var", ",", "var_feat_var", "]", ")", ":", "with", "tf", ".", "control_dependencies", "(", "control_inputs", "=", "[", "mean_time_var", ",", "mean_feat_var", "]", ")", ":", "with", "tf", ".", "control_dependencies", "(", "control_inputs", "=", "[", "count_time_var", ",", "count_feat_var", "]", ")", ":", "time_out", "=", "mean_time_var", "time_out", "+=", "params", "[", "\"time_thresh_scl\"", "]", "*", "tf", ".", "sqrt", "(", "x", "=", "var_time_var", ")", "feat_out", "=", "mean_feat_var", "feat_out", "+=", "params", "[", "\"feat_thresh_scl\"", "]", "*", "tf", ".", "sqrt", "(", "x", "=", "var_feat_var", ")", "with", "tf", ".", "control_dependencies", "(", "control_inputs", "=", "[", "tf", ".", "assign", "(", "ref", "=", "time_anom_thresh_var", ",", "value", "=", "time_out", ")", ",", "tf", ".", "assign", "(", "ref", "=", "feat_anom_thresh_var", ",", "value", "=", "feat_out", ")", "]", ")", ":", "loss", "=", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "tf", ".", "zeros", "(", "shape", "=", "(", ")", ",", "dtype", "=", "tf", ".", "float64", ")", "*", "dummy_var", ")", "train_op", "=", "tf", ".", "contrib", ".", "layers", ".", "optimize_loss", "(", "loss", "=", "loss", ",", "global_step", "=", "tf", ".", "train", ".", "get_global_step", "(", ")", ",", "learning_rate", "=", "params", "[", "\"learning_rate\"", "]", ",", "optimizer", "=", "\"SGD\"", ")", "return", "loss", ",", "train_op" ]
[ 7, 0 ]
[ 125, 23 ]
python
en
['en', 'zu', 'en']
True
tune_anomaly_thresholds_unsupervised_eval
( cur_batch_size, time_anom_thresh_var, mahalanobis_dist_time, feat_anom_thresh_var, mahalanobis_dist_feat)
Checks tuned anomaly thresholds during supervised evaluation mode. Given dimensions of inputs, mahalanobis distances, and variables tracking counts, means, and variances of mahalanobis distance, returns loss and train_op. Args: cur_batch_size: Current batch size, could be partially filled. time_anom_thresh_var: Time anomaly threshold variable. mahalanobis_dist_time: Time major mahalanobis distance. feat_anom_thresh_var: Feature anomaly threshold variable. mahalanobis_dist_feat: Feature major mahalanobis distance. Returns: loss: The scalar loss to tie our updates back to Estimator graph. eval_metric_ops: Evaluation metrics of threshold tuning.
Checks tuned anomaly thresholds during supervised evaluation mode.
def tune_anomaly_thresholds_unsupervised_eval( cur_batch_size, time_anom_thresh_var, mahalanobis_dist_time, feat_anom_thresh_var, mahalanobis_dist_feat): """Checks tuned anomaly thresholds during supervised evaluation mode. Given dimensions of inputs, mahalanobis distances, and variables tracking counts, means, and variances of mahalanobis distance, returns loss and train_op. Args: cur_batch_size: Current batch size, could be partially filled. time_anom_thresh_var: Time anomaly threshold variable. mahalanobis_dist_time: Time major mahalanobis distance. feat_anom_thresh_var: Feature anomaly threshold variable. mahalanobis_dist_feat: Feature major mahalanobis distance. Returns: loss: The scalar loss to tie our updates back to Estimator graph. eval_metric_ops: Evaluation metrics of threshold tuning. """ loss = tf.zeros(shape=[], dtype=tf.float64) # Flag predictions as either normal or anomalous # shape = (cur_batch_size,) time_anom_flags = flag_anomalies_by_thresholding( cur_batch_size, mahalanobis_dist_time, time_anom_thresh_var) # shape = (cur_batch_size,) feat_anom_flags = flag_anomalies_by_thresholding( cur_batch_size, mahalanobis_dist_feat, feat_anom_thresh_var) # Anomaly detection eval metrics eval_metric_ops = { # Time based "time_anom_tp": tf.metrics.mean(values=time_anom_flags), # Features based "feat_anom_tp": tf.metrics.mean(values=feat_anom_flags) } return loss, eval_metric_ops
[ "def", "tune_anomaly_thresholds_unsupervised_eval", "(", "cur_batch_size", ",", "time_anom_thresh_var", ",", "mahalanobis_dist_time", ",", "feat_anom_thresh_var", ",", "mahalanobis_dist_feat", ")", ":", "loss", "=", "tf", ".", "zeros", "(", "shape", "=", "[", "]", ",", "dtype", "=", "tf", ".", "float64", ")", "# Flag predictions as either normal or anomalous", "# shape = (cur_batch_size,)", "time_anom_flags", "=", "flag_anomalies_by_thresholding", "(", "cur_batch_size", ",", "mahalanobis_dist_time", ",", "time_anom_thresh_var", ")", "# shape = (cur_batch_size,)", "feat_anom_flags", "=", "flag_anomalies_by_thresholding", "(", "cur_batch_size", ",", "mahalanobis_dist_feat", ",", "feat_anom_thresh_var", ")", "# Anomaly detection eval metrics", "eval_metric_ops", "=", "{", "# Time based", "\"time_anom_tp\"", ":", "tf", ".", "metrics", ".", "mean", "(", "values", "=", "time_anom_flags", ")", ",", "# Features based", "\"feat_anom_tp\"", ":", "tf", ".", "metrics", ".", "mean", "(", "values", "=", "feat_anom_flags", ")", "}", "return", "loss", ",", "eval_metric_ops" ]
[ 128, 0 ]
[ 171, 30 ]
python
en
['en', 'en', 'en']
True
BaseManager.__str__
(self)
Return "app_label.model_label.manager_name".
Return "app_label.model_label.manager_name".
def __str__(self): """Return "app_label.model_label.manager_name".""" return '%s.%s' % (self.model._meta.label, self.name)
[ "def", "__str__", "(", "self", ")", ":", "return", "'%s.%s'", "%", "(", "self", ".", "model", ".", "_meta", ".", "label", ",", "self", ".", "name", ")" ]
[ 33, 4 ]
[ 35, 60 ]
python
en
['en', 'da', 'en']
False
BaseManager.deconstruct
(self)
Return a 5-tuple of the form (as_manager (True), manager_class, queryset_class, args, kwargs). Raise a ValueError if the manager is dynamically generated.
Return a 5-tuple of the form (as_manager (True), manager_class, queryset_class, args, kwargs).
def deconstruct(self): """ Return a 5-tuple of the form (as_manager (True), manager_class, queryset_class, args, kwargs). Raise a ValueError if the manager is dynamically generated. """ qs_class = self._queryset_class if getattr(self, '_built_with_as_manager', False): # using MyQuerySet.as_manager() return ( True, # as_manager None, # manager_class '%s.%s' % (qs_class.__module__, qs_class.__name__), # qs_class None, # args None, # kwargs ) else: module_name = self.__module__ name = self.__class__.__name__ # Make sure it's actually there and not an inner class module = import_module(module_name) if not hasattr(module, name): raise ValueError( "Could not find manager %s in %s.\n" "Please note that you need to inherit from managers you " "dynamically generated with 'from_queryset()'." % (name, module_name) ) return ( False, # as_manager '%s.%s' % (module_name, name), # manager_class None, # qs_class self._constructor_args[0], # args self._constructor_args[1], # kwargs )
[ "def", "deconstruct", "(", "self", ")", ":", "qs_class", "=", "self", ".", "_queryset_class", "if", "getattr", "(", "self", ",", "'_built_with_as_manager'", ",", "False", ")", ":", "# using MyQuerySet.as_manager()", "return", "(", "True", ",", "# as_manager", "None", ",", "# manager_class", "'%s.%s'", "%", "(", "qs_class", ".", "__module__", ",", "qs_class", ".", "__name__", ")", ",", "# qs_class", "None", ",", "# args", "None", ",", "# kwargs", ")", "else", ":", "module_name", "=", "self", ".", "__module__", "name", "=", "self", ".", "__class__", ".", "__name__", "# Make sure it's actually there and not an inner class", "module", "=", "import_module", "(", "module_name", ")", "if", "not", "hasattr", "(", "module", ",", "name", ")", ":", "raise", "ValueError", "(", "\"Could not find manager %s in %s.\\n\"", "\"Please note that you need to inherit from managers you \"", "\"dynamically generated with 'from_queryset()'.\"", "%", "(", "name", ",", "module_name", ")", ")", "return", "(", "False", ",", "# as_manager", "'%s.%s'", "%", "(", "module_name", ",", "name", ")", ",", "# manager_class", "None", ",", "# qs_class", "self", ".", "_constructor_args", "[", "0", "]", ",", "# args", "self", ".", "_constructor_args", "[", "1", "]", ",", "# kwargs", ")" ]
[ 40, 4 ]
[ 75, 13 ]
python
en
['en', 'error', 'th']
False
BaseManager._set_creation_counter
(self)
Set the creation counter value for this instance and increment the class-level copy.
Set the creation counter value for this instance and increment the class-level copy.
def _set_creation_counter(self): """ Set the creation counter value for this instance and increment the class-level copy. """ self.creation_counter = BaseManager.creation_counter BaseManager.creation_counter += 1
[ "def", "_set_creation_counter", "(", "self", ")", ":", "self", ".", "creation_counter", "=", "BaseManager", ".", "creation_counter", "BaseManager", ".", "creation_counter", "+=", "1" ]
[ 119, 4 ]
[ 125, 41 ]
python
en
['en', 'error', 'th']
False
BaseManager.get_queryset
(self)
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the Manager.
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the Manager.
def get_queryset(self): """ Return a new QuerySet object. Subclasses can override this method to customize the behavior of the Manager. """ return self._queryset_class(model=self.model, using=self._db, hints=self._hints)
[ "def", "get_queryset", "(", "self", ")", ":", "return", "self", ".", "_queryset_class", "(", "model", "=", "self", ".", "model", ",", "using", "=", "self", ".", "_db", ",", "hints", "=", "self", ".", "_hints", ")" ]
[ 141, 4 ]
[ 146, 88 ]
python
en
['en', 'error', 'th']
False
task_log_audit
(self: Task, user_id: int, verb: AuditVerbEnum, app_label: str, model: str, object_id: int)
log changes into audit
log changes into audit
def task_log_audit(self: Task, user_id: int, verb: AuditVerbEnum, app_label: str, model: str, object_id: int): """ log changes into audit """ try: # get object using content type obj_type = ContentType.objects.get(app_label=app_label, model=model) user = User.objects.get(id=user_id) # save audit Audit.objects.create(action=verb, user=user, content_type=obj_type, object_id=object_id) except Exception as ex: wait = backoff(self.request.retries) self.retry(countdown=wait, exc=ex)
[ "def", "task_log_audit", "(", "self", ":", "Task", ",", "user_id", ":", "int", ",", "verb", ":", "AuditVerbEnum", ",", "app_label", ":", "str", ",", "model", ":", "str", ",", "object_id", ":", "int", ")", ":", "try", ":", "# get object using content type", "obj_type", "=", "ContentType", ".", "objects", ".", "get", "(", "app_label", "=", "app_label", ",", "model", "=", "model", ")", "user", "=", "User", ".", "objects", ".", "get", "(", "id", "=", "user_id", ")", "# save audit", "Audit", ".", "objects", ".", "create", "(", "action", "=", "verb", ",", "user", "=", "user", ",", "content_type", "=", "obj_type", ",", "object_id", "=", "object_id", ")", "except", "Exception", "as", "ex", ":", "wait", "=", "backoff", "(", "self", ".", "request", ".", "retries", ")", "self", ".", "retry", "(", "countdown", "=", "wait", ",", "exc", "=", "ex", ")" ]
[ 13, 0 ]
[ 26, 42 ]
python
en
['en', 'da', 'en']
True
optimize
(node, environment)
The context hint can be used to perform an static optimization based on the context given.
The context hint can be used to perform an static optimization based on the context given.
def optimize(node, environment): """The context hint can be used to perform an static optimization based on the context given.""" optimizer = Optimizer(environment) return optimizer.visit(node)
[ "def", "optimize", "(", "node", ",", "environment", ")", ":", "optimizer", "=", "Optimizer", "(", "environment", ")", "return", "optimizer", ".", "visit", "(", "node", ")" ]
[ 22, 0 ]
[ 26, 32 ]
python
en
['en', 'en', 'en']
True
Optimizer.fold
(self, node, eval_ctx=None)
Do constant folding.
Do constant folding.
def fold(self, node, eval_ctx=None): """Do constant folding.""" node = self.generic_visit(node) try: return nodes.Const.from_untrusted(node.as_const(eval_ctx), lineno=node.lineno, environment=self.environment) except nodes.Impossible: return node
[ "def", "fold", "(", "self", ",", "node", ",", "eval_ctx", "=", "None", ")", ":", "node", "=", "self", ".", "generic_visit", "(", "node", ")", "try", ":", "return", "nodes", ".", "Const", ".", "from_untrusted", "(", "node", ".", "as_const", "(", "eval_ctx", ")", ",", "lineno", "=", "node", ".", "lineno", ",", "environment", "=", "self", ".", "environment", ")", "except", "nodes", ".", "Impossible", ":", "return", "node" ]
[ 34, 4 ]
[ 42, 23 ]
python
en
['en', 'pt', 'en']
True
MultipleObjectMixin.get_queryset
(self)
Return the list of items for this view. The return value must be an iterable and may be an instance of `QuerySet` in which case `QuerySet` specific behavior will be enabled.
Return the list of items for this view.
def get_queryset(self): """ Return the list of items for this view. The return value must be an iterable and may be an instance of `QuerySet` in which case `QuerySet` specific behavior will be enabled. """ if self.queryset is not None: queryset = self.queryset if isinstance(queryset, QuerySet): queryset = queryset.all() elif self.model is not None: queryset = self.model._default_manager.all() else: raise ImproperlyConfigured( "%(cls)s is missing a QuerySet. Define " "%(cls)s.model, %(cls)s.queryset, or override " "%(cls)s.get_queryset()." % { 'cls': self.__class__.__name__ } ) ordering = self.get_ordering() if ordering: if isinstance(ordering, str): ordering = (ordering,) queryset = queryset.order_by(*ordering) return queryset
[ "def", "get_queryset", "(", "self", ")", ":", "if", "self", ".", "queryset", "is", "not", "None", ":", "queryset", "=", "self", ".", "queryset", "if", "isinstance", "(", "queryset", ",", "QuerySet", ")", ":", "queryset", "=", "queryset", ".", "all", "(", ")", "elif", "self", ".", "model", "is", "not", "None", ":", "queryset", "=", "self", ".", "model", ".", "_default_manager", ".", "all", "(", ")", "else", ":", "raise", "ImproperlyConfigured", "(", "\"%(cls)s is missing a QuerySet. Define \"", "\"%(cls)s.model, %(cls)s.queryset, or override \"", "\"%(cls)s.get_queryset().\"", "%", "{", "'cls'", ":", "self", ".", "__class__", ".", "__name__", "}", ")", "ordering", "=", "self", ".", "get_ordering", "(", ")", "if", "ordering", ":", "if", "isinstance", "(", "ordering", ",", "str", ")", ":", "ordering", "=", "(", "ordering", ",", ")", "queryset", "=", "queryset", ".", "order_by", "(", "*", "ordering", ")", "return", "queryset" ]
[ 20, 4 ]
[ 47, 23 ]
python
en
['en', 'error', 'th']
False
MultipleObjectMixin.get_ordering
(self)
Return the field or fields to use for ordering the queryset.
Return the field or fields to use for ordering the queryset.
def get_ordering(self): """Return the field or fields to use for ordering the queryset.""" return self.ordering
[ "def", "get_ordering", "(", "self", ")", ":", "return", "self", ".", "ordering" ]
[ 49, 4 ]
[ 51, 28 ]
python
en
['en', 'en', 'en']
True
MultipleObjectMixin.paginate_queryset
(self, queryset, page_size)
Paginate the queryset, if needed.
Paginate the queryset, if needed.
def paginate_queryset(self, queryset, page_size): """Paginate the queryset, if needed.""" paginator = self.get_paginator( queryset, page_size, orphans=self.get_paginate_orphans(), allow_empty_first_page=self.get_allow_empty()) page_kwarg = self.page_kwarg page = self.kwargs.get(page_kwarg) or self.request.GET.get(page_kwarg) or 1 try: page_number = int(page) except ValueError: if page == 'last': page_number = paginator.num_pages else: raise Http404(_('Page is not “last”, nor can it be converted to an int.')) try: page = paginator.page(page_number) return (paginator, page, page.object_list, page.has_other_pages()) except InvalidPage as e: raise Http404(_('Invalid page (%(page_number)s): %(message)s') % { 'page_number': page_number, 'message': str(e) })
[ "def", "paginate_queryset", "(", "self", ",", "queryset", ",", "page_size", ")", ":", "paginator", "=", "self", ".", "get_paginator", "(", "queryset", ",", "page_size", ",", "orphans", "=", "self", ".", "get_paginate_orphans", "(", ")", ",", "allow_empty_first_page", "=", "self", ".", "get_allow_empty", "(", ")", ")", "page_kwarg", "=", "self", ".", "page_kwarg", "page", "=", "self", ".", "kwargs", ".", "get", "(", "page_kwarg", ")", "or", "self", ".", "request", ".", "GET", ".", "get", "(", "page_kwarg", ")", "or", "1", "try", ":", "page_number", "=", "int", "(", "page", ")", "except", "ValueError", ":", "if", "page", "==", "'last'", ":", "page_number", "=", "paginator", ".", "num_pages", "else", ":", "raise", "Http404", "(", "_", "(", "'Page is not “last”, nor can it be converted to an int.'))", "", "", "try", ":", "page", "=", "paginator", ".", "page", "(", "page_number", ")", "return", "(", "paginator", ",", "page", ",", "page", ".", "object_list", ",", "page", ".", "has_other_pages", "(", ")", ")", "except", "InvalidPage", "as", "e", ":", "raise", "Http404", "(", "_", "(", "'Invalid page (%(page_number)s): %(message)s'", ")", "%", "{", "'page_number'", ":", "page_number", ",", "'message'", ":", "str", "(", "e", ")", "}", ")" ]
[ 53, 4 ]
[ 74, 14 ]
python
en
['en', 'en', 'en']
True
MultipleObjectMixin.get_paginate_by
(self, queryset)
Get the number of items to paginate by, or ``None`` for no pagination.
Get the number of items to paginate by, or ``None`` for no pagination.
def get_paginate_by(self, queryset): """ Get the number of items to paginate by, or ``None`` for no pagination. """ return self.paginate_by
[ "def", "get_paginate_by", "(", "self", ",", "queryset", ")", ":", "return", "self", ".", "paginate_by" ]
[ 76, 4 ]
[ 80, 31 ]
python
en
['en', 'error', 'th']
False
MultipleObjectMixin.get_paginator
(self, queryset, per_page, orphans=0, allow_empty_first_page=True, **kwargs)
Return an instance of the paginator for this view.
Return an instance of the paginator for this view.
def get_paginator(self, queryset, per_page, orphans=0, allow_empty_first_page=True, **kwargs): """Return an instance of the paginator for this view.""" return self.paginator_class( queryset, per_page, orphans=orphans, allow_empty_first_page=allow_empty_first_page, **kwargs)
[ "def", "get_paginator", "(", "self", ",", "queryset", ",", "per_page", ",", "orphans", "=", "0", ",", "allow_empty_first_page", "=", "True", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "paginator_class", "(", "queryset", ",", "per_page", ",", "orphans", "=", "orphans", ",", "allow_empty_first_page", "=", "allow_empty_first_page", ",", "*", "*", "kwargs", ")" ]
[ 82, 4 ]
[ 87, 68 ]
python
en
['en', 'en', 'en']
True
MultipleObjectMixin.get_paginate_orphans
(self)
Return the maximum number of orphans extend the last page by when paginating.
Return the maximum number of orphans extend the last page by when paginating.
def get_paginate_orphans(self): """ Return the maximum number of orphans extend the last page by when paginating. """ return self.paginate_orphans
[ "def", "get_paginate_orphans", "(", "self", ")", ":", "return", "self", ".", "paginate_orphans" ]
[ 89, 4 ]
[ 94, 36 ]
python
en
['en', 'error', 'th']
False
MultipleObjectMixin.get_allow_empty
(self)
Return ``True`` if the view should display empty lists and ``False`` if a 404 should be raised instead.
Return ``True`` if the view should display empty lists and ``False`` if a 404 should be raised instead.
def get_allow_empty(self): """ Return ``True`` if the view should display empty lists and ``False`` if a 404 should be raised instead. """ return self.allow_empty
[ "def", "get_allow_empty", "(", "self", ")", ":", "return", "self", ".", "allow_empty" ]
[ 96, 4 ]
[ 101, 31 ]
python
en
['en', 'error', 'th']
False
MultipleObjectMixin.get_context_object_name
(self, object_list)
Get the name of the item to be used in the context.
Get the name of the item to be used in the context.
def get_context_object_name(self, object_list): """Get the name of the item to be used in the context.""" if self.context_object_name: return self.context_object_name elif hasattr(object_list, 'model'): return '%s_list' % object_list.model._meta.model_name else: return None
[ "def", "get_context_object_name", "(", "self", ",", "object_list", ")", ":", "if", "self", ".", "context_object_name", ":", "return", "self", ".", "context_object_name", "elif", "hasattr", "(", "object_list", ",", "'model'", ")", ":", "return", "'%s_list'", "%", "object_list", ".", "model", ".", "_meta", ".", "model_name", "else", ":", "return", "None" ]
[ 103, 4 ]
[ 110, 23 ]
python
en
['en', 'en', 'en']
True
MultipleObjectMixin.get_context_data
(self, *, object_list=None, **kwargs)
Get the context for this view.
Get the context for this view.
def get_context_data(self, *, object_list=None, **kwargs): """Get the context for this view.""" queryset = object_list if object_list is not None else self.object_list page_size = self.get_paginate_by(queryset) context_object_name = self.get_context_object_name(queryset) if page_size: paginator, page, queryset, is_paginated = self.paginate_queryset(queryset, page_size) context = { 'paginator': paginator, 'page_obj': page, 'is_paginated': is_paginated, 'object_list': queryset } else: context = { 'paginator': None, 'page_obj': None, 'is_paginated': False, 'object_list': queryset } if context_object_name is not None: context[context_object_name] = queryset context.update(kwargs) return super().get_context_data(**context)
[ "def", "get_context_data", "(", "self", ",", "*", ",", "object_list", "=", "None", ",", "*", "*", "kwargs", ")", ":", "queryset", "=", "object_list", "if", "object_list", "is", "not", "None", "else", "self", ".", "object_list", "page_size", "=", "self", ".", "get_paginate_by", "(", "queryset", ")", "context_object_name", "=", "self", ".", "get_context_object_name", "(", "queryset", ")", "if", "page_size", ":", "paginator", ",", "page", ",", "queryset", ",", "is_paginated", "=", "self", ".", "paginate_queryset", "(", "queryset", ",", "page_size", ")", "context", "=", "{", "'paginator'", ":", "paginator", ",", "'page_obj'", ":", "page", ",", "'is_paginated'", ":", "is_paginated", ",", "'object_list'", ":", "queryset", "}", "else", ":", "context", "=", "{", "'paginator'", ":", "None", ",", "'page_obj'", ":", "None", ",", "'is_paginated'", ":", "False", ",", "'object_list'", ":", "queryset", "}", "if", "context_object_name", "is", "not", "None", ":", "context", "[", "context_object_name", "]", "=", "queryset", "context", ".", "update", "(", "kwargs", ")", "return", "super", "(", ")", ".", "get_context_data", "(", "*", "*", "context", ")" ]
[ 112, 4 ]
[ 135, 50 ]
python
en
['en', 'en', 'en']
True
MultipleObjectTemplateResponseMixin.get_template_names
(self)
Return a list of template names to be used for the request. Must return a list. May not be called if render_to_response is overridden.
Return a list of template names to be used for the request. Must return a list. May not be called if render_to_response is overridden.
def get_template_names(self): """ Return a list of template names to be used for the request. Must return a list. May not be called if render_to_response is overridden. """ try: names = super().get_template_names() except ImproperlyConfigured: # If template_name isn't specified, it's not a problem -- # we just start with an empty list. names = [] # If the list is a queryset, we'll invent a template name based on the # app and model name. This name gets put at the end of the template # name list so that user-supplied names override the automatically- # generated ones. if hasattr(self.object_list, 'model'): opts = self.object_list.model._meta names.append("%s/%s%s.html" % (opts.app_label, opts.model_name, self.template_name_suffix)) elif not names: raise ImproperlyConfigured( "%(cls)s requires either a 'template_name' attribute " "or a get_queryset() method that returns a QuerySet." % { 'cls': self.__class__.__name__, } ) return names
[ "def", "get_template_names", "(", "self", ")", ":", "try", ":", "names", "=", "super", "(", ")", ".", "get_template_names", "(", ")", "except", "ImproperlyConfigured", ":", "# If template_name isn't specified, it's not a problem --", "# we just start with an empty list.", "names", "=", "[", "]", "# If the list is a queryset, we'll invent a template name based on the", "# app and model name. This name gets put at the end of the template", "# name list so that user-supplied names override the automatically-", "# generated ones.", "if", "hasattr", "(", "self", ".", "object_list", ",", "'model'", ")", ":", "opts", "=", "self", ".", "object_list", ".", "model", ".", "_meta", "names", ".", "append", "(", "\"%s/%s%s.html\"", "%", "(", "opts", ".", "app_label", ",", "opts", ".", "model_name", ",", "self", ".", "template_name_suffix", ")", ")", "elif", "not", "names", ":", "raise", "ImproperlyConfigured", "(", "\"%(cls)s requires either a 'template_name' attribute \"", "\"or a get_queryset() method that returns a QuerySet.\"", "%", "{", "'cls'", ":", "self", ".", "__class__", ".", "__name__", ",", "}", ")", "return", "names" ]
[ 164, 4 ]
[ 190, 20 ]
python
en
['en', 'error', 'th']
False
image_resize2square
(image, desired_size=None)
Resize image to a square by specific resolution(desired_size).
Resize image to a square by specific resolution(desired_size).
def image_resize2square(image, desired_size=None): ''' Resize image to a square by specific resolution(desired_size). ''' assert (image is not None), 'Image cannot be None.' # Initialize the dimensions of the image to be resized and # grab the size of image old_size = image.shape[:2] # if both the width and height are None, then return the # original image if desired_size is None or desired_size == 0: return image # calculate the ratio of the height and construct theima # dimensions ratio = float(desired_size) / max(old_size) new_size = tuple([int(x * ratio) for x in old_size]) # new_size should be in (width, height) format resized = cv2.resize(image, (new_size[1], new_size[0])) delta_w = desired_size - new_size[1] delta_h = desired_size - new_size[0] top, bottom = delta_h // 2, delta_h - (delta_h // 2) left, right = delta_w // 2, delta_w - (delta_w // 2) # Assign background color for padding areas. Default is Black. bg_color = BACKGROUND_COLOR new_image = cv2.copyMakeBorder(resized, top, bottom, left, right, cv2.BORDER_CONSTANT, value=bg_color) # return the resized image return new_image
[ "def", "image_resize2square", "(", "image", ",", "desired_size", "=", "None", ")", ":", "assert", "(", "image", "is", "not", "None", ")", ",", "'Image cannot be None.'", "# Initialize the dimensions of the image to be resized and", "# grab the size of image", "old_size", "=", "image", ".", "shape", "[", ":", "2", "]", "# if both the width and height are None, then return the", "# original image", "if", "desired_size", "is", "None", "or", "desired_size", "==", "0", ":", "return", "image", "# calculate the ratio of the height and construct theima", "# dimensions", "ratio", "=", "float", "(", "desired_size", ")", "/", "max", "(", "old_size", ")", "new_size", "=", "tuple", "(", "[", "int", "(", "x", "*", "ratio", ")", "for", "x", "in", "old_size", "]", ")", "# new_size should be in (width, height) format", "resized", "=", "cv2", ".", "resize", "(", "image", ",", "(", "new_size", "[", "1", "]", ",", "new_size", "[", "0", "]", ")", ")", "delta_w", "=", "desired_size", "-", "new_size", "[", "1", "]", "delta_h", "=", "desired_size", "-", "new_size", "[", "0", "]", "top", ",", "bottom", "=", "delta_h", "//", "2", ",", "delta_h", "-", "(", "delta_h", "//", "2", ")", "left", ",", "right", "=", "delta_w", "//", "2", ",", "delta_w", "-", "(", "delta_w", "//", "2", ")", "# Assign background color for padding areas. Default is Black.", "bg_color", "=", "BACKGROUND_COLOR", "new_image", "=", "cv2", ".", "copyMakeBorder", "(", "resized", ",", "top", ",", "bottom", ",", "left", ",", "right", ",", "cv2", ".", "BORDER_CONSTANT", ",", "value", "=", "bg_color", ")", "# return the resized image", "return", "new_image" ]
[ 49, 0 ]
[ 82, 20 ]
python
en
['en', 'error', 'th']
False
create_path
(data_dir)
Create a specific path to store result images. - Under the data directory, two separated folders will store image and masking files - Example: - data_dir- |- IMAGE_FOLDER |- MASK_FOLDER
Create a specific path to store result images. - Under the data directory, two separated folders will store image and masking files - Example: - data_dir- |- IMAGE_FOLDER |- MASK_FOLDER
def create_path(data_dir): ''' Create a specific path to store result images. - Under the data directory, two separated folders will store image and masking files - Example: - data_dir- |- IMAGE_FOLDER |- MASK_FOLDER ''' try: output_image_path = join(data_dir, IMAGE_FOLDER) if not os.path.isdir(output_image_path): os.makedirs(output_image_path) output_mask_path = join(data_dir, MASK_FOLDER) if not os.path.isdir(output_mask_path): os.makedirs(output_mask_path) return output_image_path, output_mask_path except Exception as e: logging.error('\nCreate folders error! Message: %s' % (str(e))) exit(0)
[ "def", "create_path", "(", "data_dir", ")", ":", "try", ":", "output_image_path", "=", "join", "(", "data_dir", ",", "IMAGE_FOLDER", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "output_image_path", ")", ":", "os", ".", "makedirs", "(", "output_image_path", ")", "output_mask_path", "=", "join", "(", "data_dir", ",", "MASK_FOLDER", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "output_mask_path", ")", ":", "os", ".", "makedirs", "(", "output_mask_path", ")", "return", "output_image_path", ",", "output_mask_path", "except", "Exception", "as", "e", ":", "logging", ".", "error", "(", "'\\nCreate folders error! Message: %s'", "%", "(", "str", "(", "e", ")", ")", ")", "exit", "(", "0", ")" ]
[ 85, 0 ]
[ 105, 15 ]
python
en
['en', 'error', 'th']
False
main
(args)
The main entry point of the program - This program will download image from MS COCO 2017 (Microsoft Common Objects in Context) repo and generate annotation to the specific object classes.
The main entry point of the program - This program will download image from MS COCO 2017 (Microsoft Common Objects in Context) repo and generate annotation to the specific object classes.
def main(args): ''' The main entry point of the program - This program will download image from MS COCO 2017 (Microsoft Common Objects in Context) repo and generate annotation to the specific object classes. ''' plt.ioff() data_dir = args.data_root_dir category_list = list(args.category) annFile = args.annotation_file num = args.number file_name = '' # Create path for output output_image_path, output_mask_path = create_path(data_dir) # initialize COCO API for instance annotations coco = COCO(annFile) # get all images containing given categories, select one at random catIds = coco.getCatIds(catNms=category_list) if args.id is not None: imgIds = list(args.id) num = len(imgIds) else: # Get image id list from categories. imgIds = coco.getImgIds(catIds=catIds) print('\nImage Generating...') for i in tqdm(range(num)): try: if args.id is not None: img = coco.loadImgs(imgIds[i])[0] # Load imgs with the specified ids. else: img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0] except Exception as e: print('\nError: Image ID: %s cannot be found in the annotation file.' % (e)) continue # use url to load image I = io.imread(img['coco_url']) resolution = args.resolution if resolution != 0: I = image_resize2square(I, args.resolution) else: pass plt.axis('off') file_name = join(output_image_path, FILE_MIDDLE_NAME + str(i) + '.png') plt.imsave(file_name, I) # Get annotation ids that satisfy the given filter conditions. annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None) anns = coco.loadAnns(annIds) # load anns with the specified ids mask = coco.annToMask(anns[0]) # Generate mask for j in range(len(anns)): mask += coco.annToMask(anns[j]) # Background color = (R,G,B)=[68, 1, 84] for MS COCO 2017 # save the mask image mask = image_resize2square(mask, args.resolution) file_name = join(output_mask_path, FILE_MIDDLE_NAME + str(i) + '.png') plt.imsave(file_name, mask) print('\nProgram finished !') return True
[ "def", "main", "(", "args", ")", ":", "plt", ".", "ioff", "(", ")", "data_dir", "=", "args", ".", "data_root_dir", "category_list", "=", "list", "(", "args", ".", "category", ")", "annFile", "=", "args", ".", "annotation_file", "num", "=", "args", ".", "number", "file_name", "=", "''", "# Create path for output", "output_image_path", ",", "output_mask_path", "=", "create_path", "(", "data_dir", ")", "# initialize COCO API for instance annotations", "coco", "=", "COCO", "(", "annFile", ")", "# get all images containing given categories, select one at random", "catIds", "=", "coco", ".", "getCatIds", "(", "catNms", "=", "category_list", ")", "if", "args", ".", "id", "is", "not", "None", ":", "imgIds", "=", "list", "(", "args", ".", "id", ")", "num", "=", "len", "(", "imgIds", ")", "else", ":", "# Get image id list from categories.", "imgIds", "=", "coco", ".", "getImgIds", "(", "catIds", "=", "catIds", ")", "print", "(", "'\\nImage Generating...'", ")", "for", "i", "in", "tqdm", "(", "range", "(", "num", ")", ")", ":", "try", ":", "if", "args", ".", "id", "is", "not", "None", ":", "img", "=", "coco", ".", "loadImgs", "(", "imgIds", "[", "i", "]", ")", "[", "0", "]", "# Load imgs with the specified ids.", "else", ":", "img", "=", "coco", ".", "loadImgs", "(", "imgIds", "[", "np", ".", "random", ".", "randint", "(", "0", ",", "len", "(", "imgIds", ")", ")", "]", ")", "[", "0", "]", "except", "Exception", "as", "e", ":", "print", "(", "'\\nError: Image ID: %s cannot be found in the annotation file.'", "%", "(", "e", ")", ")", "continue", "# use url to load image", "I", "=", "io", ".", "imread", "(", "img", "[", "'coco_url'", "]", ")", "resolution", "=", "args", ".", "resolution", "if", "resolution", "!=", "0", ":", "I", "=", "image_resize2square", "(", "I", ",", "args", ".", "resolution", ")", "else", ":", "pass", "plt", ".", "axis", "(", "'off'", ")", "file_name", "=", "join", "(", "output_image_path", ",", "FILE_MIDDLE_NAME", "+", "str", "(", "i", ")", "+", "'.png'", ")", "plt", ".", "imsave", "(", "file_name", ",", "I", ")", "# Get annotation ids that satisfy the given filter conditions.", "annIds", "=", "coco", ".", "getAnnIds", "(", "imgIds", "=", "img", "[", "'id'", "]", ",", "catIds", "=", "catIds", ",", "iscrowd", "=", "None", ")", "anns", "=", "coco", ".", "loadAnns", "(", "annIds", ")", "# load anns with the specified ids", "mask", "=", "coco", ".", "annToMask", "(", "anns", "[", "0", "]", ")", "# Generate mask", "for", "j", "in", "range", "(", "len", "(", "anns", ")", ")", ":", "mask", "+=", "coco", ".", "annToMask", "(", "anns", "[", "j", "]", ")", "# Background color = (R,G,B)=[68, 1, 84] for MS COCO 2017", "# save the mask image", "mask", "=", "image_resize2square", "(", "mask", ",", "args", ".", "resolution", ")", "file_name", "=", "join", "(", "output_mask_path", ",", "FILE_MIDDLE_NAME", "+", "str", "(", "i", ")", "+", "'.png'", ")", "plt", ".", "imsave", "(", "file_name", ",", "mask", ")", "print", "(", "'\\nProgram finished !'", ")", "return", "True" ]
[ 108, 0 ]
[ 177, 15 ]
python
en
['en', 'error', 'th']
False
PostGISAdapter.__init__
(self, obj, geography=False)
Initialize on the spatial object.
Initialize on the spatial object.
def __init__(self, obj, geography=False): """ Initialize on the spatial object. """ self.is_geometry = isinstance(obj, (GEOSGeometry, PostGISAdapter)) # Getting the WKB (in string form, to allow easy pickling of # the adaptor) and the SRID from the geometry or raster. if self.is_geometry: self.ewkb = bytes(obj.ewkb) self._adapter = Binary(self.ewkb) else: self.ewkb = to_pgraster(obj) self.srid = obj.srid self.geography = geography
[ "def", "__init__", "(", "self", ",", "obj", ",", "geography", "=", "False", ")", ":", "self", ".", "is_geometry", "=", "isinstance", "(", "obj", ",", "(", "GEOSGeometry", ",", "PostGISAdapter", ")", ")", "# Getting the WKB (in string form, to allow easy pickling of", "# the adaptor) and the SRID from the geometry or raster.", "if", "self", ".", "is_geometry", ":", "self", ".", "ewkb", "=", "bytes", "(", "obj", ".", "ewkb", ")", "self", ".", "_adapter", "=", "Binary", "(", "self", ".", "ewkb", ")", "else", ":", "self", ".", "ewkb", "=", "to_pgraster", "(", "obj", ")", "self", ".", "srid", "=", "obj", ".", "srid", "self", ".", "geography", "=", "geography" ]
[ 11, 4 ]
[ 26, 34 ]
python
en
['en', 'error', 'th']
False
PostGISAdapter.__conform__
(self, proto)
Does the given protocol conform to what Psycopg2 expects?
Does the given protocol conform to what Psycopg2 expects?
def __conform__(self, proto): """Does the given protocol conform to what Psycopg2 expects?""" if proto == ISQLQuote: return self else: raise Exception('Error implementing psycopg2 protocol. Is psycopg2 installed?')
[ "def", "__conform__", "(", "self", ",", "proto", ")", ":", "if", "proto", "==", "ISQLQuote", ":", "return", "self", "else", ":", "raise", "Exception", "(", "'Error implementing psycopg2 protocol. Is psycopg2 installed?'", ")" ]
[ 28, 4 ]
[ 33, 91 ]
python
en
['en', 'en', 'en']
True
PostGISAdapter.prepare
(self, conn)
This method allows escaping the binary in the style required by the server's `standard_conforming_string` setting.
This method allows escaping the binary in the style required by the server's `standard_conforming_string` setting.
def prepare(self, conn): """ This method allows escaping the binary in the style required by the server's `standard_conforming_string` setting. """ if self.is_geometry: self._adapter.prepare(conn)
[ "def", "prepare", "(", "self", ",", "conn", ")", ":", "if", "self", ".", "is_geometry", ":", "self", ".", "_adapter", ".", "prepare", "(", "conn", ")" ]
[ 48, 4 ]
[ 54, 39 ]
python
en
['en', 'error', 'th']
False
PostGISAdapter.getquoted
(self)
Return a properly quoted string for use in PostgreSQL/PostGIS.
Return a properly quoted string for use in PostgreSQL/PostGIS.
def getquoted(self): """ Return a properly quoted string for use in PostgreSQL/PostGIS. """ if self.is_geometry: # Psycopg will figure out whether to use E'\\000' or '\000'. return '%s(%s)' % ( 'ST_GeogFromWKB' if self.geography else 'ST_GeomFromEWKB', self._adapter.getquoted().decode() ) else: # For rasters, add explicit type cast to WKB string. return "'%s'::raster" % self.ewkb
[ "def", "getquoted", "(", "self", ")", ":", "if", "self", ".", "is_geometry", ":", "# Psycopg will figure out whether to use E'\\\\000' or '\\000'.", "return", "'%s(%s)'", "%", "(", "'ST_GeogFromWKB'", "if", "self", ".", "geography", "else", "'ST_GeomFromEWKB'", ",", "self", ".", "_adapter", ".", "getquoted", "(", ")", ".", "decode", "(", ")", ")", "else", ":", "# For rasters, add explicit type cast to WKB string.", "return", "\"'%s'::raster\"", "%", "self", ".", "ewkb" ]
[ 56, 4 ]
[ 68, 45 ]
python
en
['en', 'error', 'th']
False
upsample
(base_model, x, layers, mode: XModelMode)
Feature extraction upsampling/generation before regression and heatmap heads. :param base_model: tf.keras.Model object :param x: output from last layer of base_model :param layers: layer names from backbone :param mode: upsampling mode for features :return: base_model and features
Feature extraction upsampling/generation before regression and heatmap heads. :param base_model: tf.keras.Model object :param x: output from last layer of base_model :param layers: layer names from backbone :param mode: upsampling mode for features :return: base_model and features
def upsample(base_model, x, layers, mode: XModelMode): """ Feature extraction upsampling/generation before regression and heatmap heads. :param base_model: tf.keras.Model object :param x: output from last layer of base_model :param layers: layer names from backbone :param mode: upsampling mode for features :return: base_model and features """ with tf.name_scope("upsample"): layers = [base_model.get_layer(layer_name) for layer_name in layers] model_multi_output = tf.keras.Model( inputs=base_model.input, outputs=[layer.output for layer in layers], name="multioutput" ) c2, c3, c4, c5 = model_multi_output(x) c5 = tf.keras.layers.Dropout(rate=0.5)(c5) c4 = tf.keras.layers.Dropout(rate=0.4)(c4) c3 = tf.keras.layers.Dropout(rate=0.3)(c3) c2 = tf.keras.layers.Dropout(rate=0.2)(c2) # You can create your own upsample layer for example FPN # if you need here, you need to also add this mode to the XmodelMode enum if mode == XModelMode.SIMPLE: deconv = deConv2DBatchNorm(c5, filters=256, kernel_size=(4, 4), name="deconv1") deconv = deConv2DBatchNorm(deconv, filters=128, kernel_size=(4, 4), name="deconv2") features = deConv2DBatchNorm(deconv, filters=64, kernel_size=(4, 4), name="features") return base_model, features if mode == XModelMode.DCN: dcn = deformConv2D(c5, 256, name="up1") dcn = deformConv2D(dcn, 128, name="up2") features = deformConv2D(dcn, 64, name="features") return base_model, features if mode == XModelMode.DCNSHORTCUT or mode == XModelMode.DCNSHORTCUTCONCAT: ratio = 2 if mode == XModelMode.DCNSHORTCUTCONCAT else 1 dcn = deformConv2DShortcut(c5, c4, 1, filters=256 / ratio, mode=mode, name="deformconv1") dcn = deformConv2DShortcut(dcn, c3, 2, filters=128 / ratio, mode=mode, name="deformconv2") features = deformConv2DShortcut(dcn, c2, 3, filters=64 / ratio, mode=mode, name="features") return base_model, features if mode == XModelMode.CONCAT: x = upsampleConcat(256, 256, c5, c4, name="up1") x = upsampleConcat(128, 128, x, c3, name="up2") features = upsampleConcat(64, 64, x, c2, name="features") return base_model, features if mode == XModelMode.SUM: p5 = conv2DBatchNorm(c5, filters=128, kernel_size=(1, 1), name="conv2D_up5") p4 = upsampleSum(p5, c4, name="up4") p3 = upsampleSum(p4, c3, name="up3") p2 = upsampleSum(p3, c2, name="up2") features = conv2DBatchNorm(p2, filters=128, kernel_size=(3, 3), name="features") return base_model, features raise ValueError(f"Unsupported mode {mode}.")
[ "def", "upsample", "(", "base_model", ",", "x", ",", "layers", ",", "mode", ":", "XModelMode", ")", ":", "with", "tf", ".", "name_scope", "(", "\"upsample\"", ")", ":", "layers", "=", "[", "base_model", ".", "get_layer", "(", "layer_name", ")", "for", "layer_name", "in", "layers", "]", "model_multi_output", "=", "tf", ".", "keras", ".", "Model", "(", "inputs", "=", "base_model", ".", "input", ",", "outputs", "=", "[", "layer", ".", "output", "for", "layer", "in", "layers", "]", ",", "name", "=", "\"multioutput\"", ")", "c2", ",", "c3", ",", "c4", ",", "c5", "=", "model_multi_output", "(", "x", ")", "c5", "=", "tf", ".", "keras", ".", "layers", ".", "Dropout", "(", "rate", "=", "0.5", ")", "(", "c5", ")", "c4", "=", "tf", ".", "keras", ".", "layers", ".", "Dropout", "(", "rate", "=", "0.4", ")", "(", "c4", ")", "c3", "=", "tf", ".", "keras", ".", "layers", ".", "Dropout", "(", "rate", "=", "0.3", ")", "(", "c3", ")", "c2", "=", "tf", ".", "keras", ".", "layers", ".", "Dropout", "(", "rate", "=", "0.2", ")", "(", "c2", ")", "# You can create your own upsample layer for example FPN", "# if you need here, you need to also add this mode to the XmodelMode enum", "if", "mode", "==", "XModelMode", ".", "SIMPLE", ":", "deconv", "=", "deConv2DBatchNorm", "(", "c5", ",", "filters", "=", "256", ",", "kernel_size", "=", "(", "4", ",", "4", ")", ",", "name", "=", "\"deconv1\"", ")", "deconv", "=", "deConv2DBatchNorm", "(", "deconv", ",", "filters", "=", "128", ",", "kernel_size", "=", "(", "4", ",", "4", ")", ",", "name", "=", "\"deconv2\"", ")", "features", "=", "deConv2DBatchNorm", "(", "deconv", ",", "filters", "=", "64", ",", "kernel_size", "=", "(", "4", ",", "4", ")", ",", "name", "=", "\"features\"", ")", "return", "base_model", ",", "features", "if", "mode", "==", "XModelMode", ".", "DCN", ":", "dcn", "=", "deformConv2D", "(", "c5", ",", "256", ",", "name", "=", "\"up1\"", ")", "dcn", "=", "deformConv2D", "(", "dcn", ",", "128", ",", "name", "=", "\"up2\"", ")", "features", "=", "deformConv2D", "(", "dcn", ",", "64", ",", "name", "=", "\"features\"", ")", "return", "base_model", ",", "features", "if", "mode", "==", "XModelMode", ".", "DCNSHORTCUT", "or", "mode", "==", "XModelMode", ".", "DCNSHORTCUTCONCAT", ":", "ratio", "=", "2", "if", "mode", "==", "XModelMode", ".", "DCNSHORTCUTCONCAT", "else", "1", "dcn", "=", "deformConv2DShortcut", "(", "c5", ",", "c4", ",", "1", ",", "filters", "=", "256", "/", "ratio", ",", "mode", "=", "mode", ",", "name", "=", "\"deformconv1\"", ")", "dcn", "=", "deformConv2DShortcut", "(", "dcn", ",", "c3", ",", "2", ",", "filters", "=", "128", "/", "ratio", ",", "mode", "=", "mode", ",", "name", "=", "\"deformconv2\"", ")", "features", "=", "deformConv2DShortcut", "(", "dcn", ",", "c2", ",", "3", ",", "filters", "=", "64", "/", "ratio", ",", "mode", "=", "mode", ",", "name", "=", "\"features\"", ")", "return", "base_model", ",", "features", "if", "mode", "==", "XModelMode", ".", "CONCAT", ":", "x", "=", "upsampleConcat", "(", "256", ",", "256", ",", "c5", ",", "c4", ",", "name", "=", "\"up1\"", ")", "x", "=", "upsampleConcat", "(", "128", ",", "128", ",", "x", ",", "c3", ",", "name", "=", "\"up2\"", ")", "features", "=", "upsampleConcat", "(", "64", ",", "64", ",", "x", ",", "c2", ",", "name", "=", "\"features\"", ")", "return", "base_model", ",", "features", "if", "mode", "==", "XModelMode", ".", "SUM", ":", "p5", "=", "conv2DBatchNorm", "(", "c5", ",", "filters", "=", "128", ",", "kernel_size", "=", "(", "1", ",", "1", ")", ",", "name", "=", "\"conv2D_up5\"", ")", "p4", "=", "upsampleSum", "(", "p5", ",", "c4", ",", "name", "=", "\"up4\"", ")", "p3", "=", "upsampleSum", "(", "p4", ",", "c3", ",", "name", "=", "\"up3\"", ")", "p2", "=", "upsampleSum", "(", "p3", ",", "c2", ",", "name", "=", "\"up2\"", ")", "features", "=", "conv2DBatchNorm", "(", "p2", ",", "filters", "=", "128", ",", "kernel_size", "=", "(", "3", ",", "3", ")", ",", "name", "=", "\"features\"", ")", "return", "base_model", ",", "features", "raise", "ValueError", "(", "f\"Unsupported mode {mode}.\"", ")" ]
[ 13, 0 ]
[ 70, 53 ]
python
en
['en', 'error', 'th']
False
ApplicationCommunicator.wait
(self, timeout=1)
Waits for the application to stop itself and returns any exceptions.
Waits for the application to stop itself and returns any exceptions.
async def wait(self, timeout=1): """ Waits for the application to stop itself and returns any exceptions. """ try: async with async_timeout(timeout): try: await self.future self.future.result() except asyncio.CancelledError: pass finally: if not self.future.done(): self.future.cancel() try: await self.future except asyncio.CancelledError: pass
[ "async", "def", "wait", "(", "self", ",", "timeout", "=", "1", ")", ":", "try", ":", "async", "with", "async_timeout", "(", "timeout", ")", ":", "try", ":", "await", "self", ".", "future", "self", ".", "future", ".", "result", "(", ")", "except", "asyncio", ".", "CancelledError", ":", "pass", "finally", ":", "if", "not", "self", ".", "future", ".", "done", "(", ")", ":", "self", ".", "future", ".", "cancel", "(", ")", "try", ":", "await", "self", ".", "future", "except", "asyncio", ".", "CancelledError", ":", "pass" ]
[ 22, 4 ]
[ 39, 24 ]
python
en
['en', 'error', 'th']
False
ApplicationCommunicator.send_input
(self, message)
Sends a single message to the application
Sends a single message to the application
async def send_input(self, message): """ Sends a single message to the application """ # Give it the message await self.input_queue.put(message)
[ "async", "def", "send_input", "(", "self", ",", "message", ")", ":", "# Give it the message", "await", "self", ".", "input_queue", ".", "put", "(", "message", ")" ]
[ 56, 4 ]
[ 61, 43 ]
python
en
['en', 'error', 'th']
False
ApplicationCommunicator.receive_output
(self, timeout=1)
Receives a single message from the application, with optional timeout.
Receives a single message from the application, with optional timeout.
async def receive_output(self, timeout=1): """ Receives a single message from the application, with optional timeout. """ # Make sure there's not an exception to raise from the task if self.future.done(): self.future.result() # Wait and receive the message try: async with async_timeout(timeout): return await self.output_queue.get() except asyncio.TimeoutError as e: # See if we have another error to raise inside if self.future.done(): self.future.result() else: self.future.cancel() try: await self.future except asyncio.CancelledError: pass raise e
[ "async", "def", "receive_output", "(", "self", ",", "timeout", "=", "1", ")", ":", "# Make sure there's not an exception to raise from the task", "if", "self", ".", "future", ".", "done", "(", ")", ":", "self", ".", "future", ".", "result", "(", ")", "# Wait and receive the message", "try", ":", "async", "with", "async_timeout", "(", "timeout", ")", ":", "return", "await", "self", ".", "output_queue", ".", "get", "(", ")", "except", "asyncio", ".", "TimeoutError", "as", "e", ":", "# See if we have another error to raise inside", "if", "self", ".", "future", ".", "done", "(", ")", ":", "self", ".", "future", ".", "result", "(", ")", "else", ":", "self", ".", "future", ".", "cancel", "(", ")", "try", ":", "await", "self", ".", "future", "except", "asyncio", ".", "CancelledError", ":", "pass", "raise", "e" ]
[ 63, 4 ]
[ 84, 19 ]
python
en
['en', 'error', 'th']
False
ApplicationCommunicator.receive_nothing
(self, timeout=0.1, interval=0.01)
Checks that there is no message to receive in the given time.
Checks that there is no message to receive in the given time.
async def receive_nothing(self, timeout=0.1, interval=0.01): """ Checks that there is no message to receive in the given time. """ # `interval` has precedence over `timeout` start = time.monotonic() while time.monotonic() - start < timeout: if not self.output_queue.empty(): return False await asyncio.sleep(interval) return self.output_queue.empty()
[ "async", "def", "receive_nothing", "(", "self", ",", "timeout", "=", "0.1", ",", "interval", "=", "0.01", ")", ":", "# `interval` has precedence over `timeout`", "start", "=", "time", ".", "monotonic", "(", ")", "while", "time", ".", "monotonic", "(", ")", "-", "start", "<", "timeout", ":", "if", "not", "self", ".", "output_queue", ".", "empty", "(", ")", ":", "return", "False", "await", "asyncio", ".", "sleep", "(", "interval", ")", "return", "self", ".", "output_queue", ".", "empty", "(", ")" ]
[ 86, 4 ]
[ 96, 40 ]
python
en
['en', 'error', 'th']
False
video_and_frame_level_model
(features, labels, mode, params)
features['video_id'].shape = (batch_size, 1) features['mean_rgb'].shape = (batch_size, 1024) features['mean_audio'].shape = (batch_size, 128) features['rgb'].shape = (batch_size, MAX_FRAMES, 1024) features['audio'].shape = (batch_size, MAX_FRAMES, 128)
features['video_id'].shape = (batch_size, 1) features['mean_rgb'].shape = (batch_size, 1024) features['mean_audio'].shape = (batch_size, 128) features['rgb'].shape = (batch_size, MAX_FRAMES, 1024) features['audio'].shape = (batch_size, MAX_FRAMES, 128)
def video_and_frame_level_model(features, labels, mode, params): ''' features['video_id'].shape = (batch_size, 1) features['mean_rgb'].shape = (batch_size, 1024) features['mean_audio'].shape = (batch_size, 128) features['rgb'].shape = (batch_size, MAX_FRAMES, 1024) features['audio'].shape = (batch_size, MAX_FRAMES, 128) ''' print("\nvideo_and_frame_level_model: features = {}".format(features)) print("video_and_frame_level_model: labels = {}".format(labels)) print("video_and_frame_level_model: mode = {}".format(mode)) # 0. Initial setup # Get the current batch size in case this is a partially full batch current_batch_size = tf.shape(features['video_id'])[0] print("video_and_frame_level_model: current_batch_size = {}".format(current_batch_size)) # 1. Configure networks ################################################################################ # VIDEO NETWORK # Concatenate the mean_rgb and mean_audio features together along columns in order to flatten them into one vector per example combined_video_features = tf.concat(values = [features['mean_rgb'], features['mean_audio']], axis = 1) # shape = (current_batch_size, 1024 + 128) print("video_and_frame_level_model: combined_video_features = {}".format(combined_video_features)) # Create the input layer to our video DNN video_network = combined_video_features # shape = (current_batch_size, 1024 + 128) print("video_and_frame_level_model: video_network = combined_video_features = {}".format(video_network)) # Add video hidden layers with the given number of units/neurons per layer for units in params['video_hidden_units']: video_network = tf.layers.dense(inputs = video_network, units = units, activation = tf.nn.relu) # shape = (current_batch_size, units) print("video_and_frame_level_model: video_network = {}, units = {}".format(video_network, units)) # Connect the final hidden layer to a dense layer with no activation to get a video logit for each class video_logits = tf.layers.dense(inputs = video_network, units = NUM_CLASSES, activation = None) # shape = (current_batch_size, NUM_CLASSES) print("video_and_frame_level_model: video_logits = {}".format(video_logits)) # Find the video probabilities of all video logits video_probabilities = tf.sigmoid(video_logits) # shape = (current_batch_size, NUM_CLASSES) print("video_and_frame_level_model: video_probabilities = {}".format(video_probabilities)) ################################################################################ # FRAME NETWORK # Concatenate the rgb and audio features together along columns in order to flatten them into one vector per example per frame combined_frame_features = tf.concat(values = [features['rgb'], features['audio']], axis = 2) # shape = (current_batch_size, MAX_FRAMES, 1024 + 128) print("video_and_frame_level_model: combined_frame_features = {}".format(combined_frame_features)) # Reshape feature vectors per frame so that we have instead batch_size * MAX_FRAMES examples to go through our frame DNN reshaped_combined_frame_features = tf.reshape(tensor = combined_frame_features, shape = [current_batch_size * MAX_FRAMES, 1024 + 128]) # shape = (current_batch_size * MAX_FRAMES, 1024 + 128) print("video_and_frame_level_model: reshaped_combined_frame_features = {}".format(reshaped_combined_frame_features)) # Create the input layer to our frame DNN frame_network = reshaped_combined_frame_features # shape = (current_batch_size * MAX_FRAMES, 1024 + 128) print("video_and_frame_level_model: frame_network = reshaped_combined_frame_features = {}".format(frame_network)) # Add frame hidden layers with the given number of units/neurons per layer for units in params['frame_hidden_units']: frame_network = tf.layers.dense(inputs = frame_network, units = units, activation = tf.nn.relu) # shape = (current_batch_size * MAX_FRAMES, units) print("video_and_frame_level_model: frame_network = {}, units = {}".format(frame_network, units)) # Connect the final hidden layer to a dense layer with no activation to get a frame logit for each class frame_logits = tf.layers.dense(inputs = frame_network, units = NUM_CLASSES, activation = None) # shape = (current_batch_size * MAX_FRAMES, NUM_CLASSES) print("video_and_frame_level_model: frame_logits = {}".format(frame_logits)) # Find the frame probabilities of all frame logits using sigmoid since this is multi-class, multi-label frame_probabilities = tf.sigmoid(frame_logits) # shape = (current_batch_size * MAX_FRAMES, NUM_CLASSES) print("video_and_frame_level_model: frame_probabilities = {}".format(frame_probabilities)) # Reshape the frame probability tensor so that each frame has its own matrix reshaped_frame_probabilities = tf.reshape(tensor = frame_probabilities, shape = [current_batch_size, MAX_FRAMES, NUM_CLASSES]) # shape = (current_batch_size, MAX_FRAMES, NUM_CLASSES) print("video_and_frame_level_model: reshaped_frame_probabilities = {}".format(reshaped_frame_probabilities)) # Average the frame probabilities over all frames per each example and each class average_probabilities_over_frames = tf.reduce_mean(input_tensor = reshaped_frame_probabilities, axis = 1) # shape = (current_batch_size, NUM_CLASSES) print("video_and_frame_level_model: average_probabilities_over_frames = {}".format(average_probabilities_over_frames)) ################################################################################ # Average together the video and frame probabilities combined_probabilities = (video_probabilities + average_probabilities_over_frames) * 0.5 # shape = (current_batch_size, NUM_CLASSES) print("video_and_frame_level_model: combined_probabilities = {}".format(combined_probabilities)) # Select the top k probablities in descending order top_k_probabilities = tf.nn.top_k(input = combined_probabilities, k = params['top_k'], sorted = True) # shape = (current_batch_size, top_k) print("video_and_frame_level_model: top_k_probabilities = {}".format(top_k_probabilities)) # Find the inverse of all of the average probabilities to get all of the average logits inverse_probabilities_logits = tf.log(combined_probabilities + 0.00000001) - tf.log(1.0 - combined_probabilities + 0.00000001) # shape = (current_batch_size, NUM_CLASSES) print("video_and_frame_level_model: inverse_probabilities_logits = {}".format(inverse_probabilities_logits)) # Select the top k logits using the indices of the top k probabilities in descending order top_k_logits = tf.map_fn(fn = lambda x: tf.gather(params = inverse_probabilities_logits[x], indices = top_k_probabilities.indices[x]), elems = tf.range(start = 0, limit = current_batch_size), dtype = tf.float32) # shape = (current_batch_size, 1, top_k) print("frame_level_model: top_k_logits = {}".format(top_k_logits)) # The top k classes in descending order of likelihood top_k_classes = top_k_probabilities.indices # shape = (current_batch_size, top_k) print("video_and_frame_level_model: top_k_classes = {}".format(top_k_classes)) # The 0/1 predictions based on a threshold, in this case the threshold is if the probability it greater than random chance predictions = tf.where( condition = average_probabilities_over_frames > 1.0 / NUM_CLASSES, # shape = (current_batch_size, NUM_CLASSES) x = tf.ones_like(tensor = average_probabilities_over_frames, dtype = tf.float32), y = tf.zeros_like(tensor = average_probabilities_over_frames, dtype = tf.float32)) print("video_and_frame_level_model: predictions = {}".format(predictions)) # The 0/1 top k predictions based on a threshold, in this case the threshold is if the probability it greater than random chance top_k_predictions = tf.where( condition = top_k_probabilities.values > 1.0 / NUM_CLASSES, # shape = (current_batch_size, top_k) x = tf.ones_like(tensor = top_k_probabilities.values, dtype = tf.float32), y = tf.zeros_like(tensor = top_k_probabilities.values, dtype = tf.float32)) print("video_and_frame_level_model: top_k_predictions = {}\n".format(top_k_predictions)) # 2. Loss function, training/eval ops if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL: # Since this is a multi-class, multi-label problem, we will use sigmoid activation and cross entropy loss # We already have the probabilities we can use the cross entropy formula directly to calculate the loss loss = tf.reduce_mean(input_tensor = -tf.reduce_sum(input_tensor = labels * tf.log(x = average_probabilities_over_frames + 0.00000001), axis = 1)) train_op = tf.contrib.layers.optimize_loss( loss = loss, global_step = tf.train.get_global_step(), learning_rate = 0.01, optimizer = "Adam") eval_metric_ops = { "accuracy": tf.metrics.mean_per_class_accuracy(labels = labels, predictions = predictions, num_classes = NUM_CLASSES) } else: loss = None train_op = None eval_metric_ops = None # 3. Create predictions predictions_dict = {"logits": top_k_logits, "probabilities": top_k_probabilities.values, "predictions": top_k_predictions, "classes": top_k_classes} # 4. Create export outputs export_outputs = {"predict_export_outputs": tf.estimator.export.PredictOutput(outputs = predictions_dict)} # 5. Return EstimatorSpec return tf.estimator.EstimatorSpec( mode = mode, predictions = predictions_dict, loss = loss, train_op = train_op, eval_metric_ops = eval_metric_ops, export_outputs = export_outputs)
[ "def", "video_and_frame_level_model", "(", "features", ",", "labels", ",", "mode", ",", "params", ")", ":", "print", "(", "\"\\nvideo_and_frame_level_model: features = {}\"", ".", "format", "(", "features", ")", ")", "print", "(", "\"video_and_frame_level_model: labels = {}\"", ".", "format", "(", "labels", ")", ")", "print", "(", "\"video_and_frame_level_model: mode = {}\"", ".", "format", "(", "mode", ")", ")", "# 0. Initial setup", "# Get the current batch size in case this is a partially full batch", "current_batch_size", "=", "tf", ".", "shape", "(", "features", "[", "'video_id'", "]", ")", "[", "0", "]", "print", "(", "\"video_and_frame_level_model: current_batch_size = {}\"", ".", "format", "(", "current_batch_size", ")", ")", "# 1. Configure networks", "################################################################################", "# VIDEO NETWORK", "# Concatenate the mean_rgb and mean_audio features together along columns in order to flatten them into one vector per example", "combined_video_features", "=", "tf", ".", "concat", "(", "values", "=", "[", "features", "[", "'mean_rgb'", "]", ",", "features", "[", "'mean_audio'", "]", "]", ",", "axis", "=", "1", ")", "# shape = (current_batch_size, 1024 + 128)", "print", "(", "\"video_and_frame_level_model: combined_video_features = {}\"", ".", "format", "(", "combined_video_features", ")", ")", "# Create the input layer to our video DNN", "video_network", "=", "combined_video_features", "# shape = (current_batch_size, 1024 + 128)", "print", "(", "\"video_and_frame_level_model: video_network = combined_video_features = {}\"", ".", "format", "(", "video_network", ")", ")", "# Add video hidden layers with the given number of units/neurons per layer", "for", "units", "in", "params", "[", "'video_hidden_units'", "]", ":", "video_network", "=", "tf", ".", "layers", ".", "dense", "(", "inputs", "=", "video_network", ",", "units", "=", "units", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ")", "# shape = (current_batch_size, units)", "print", "(", "\"video_and_frame_level_model: video_network = {}, units = {}\"", ".", "format", "(", "video_network", ",", "units", ")", ")", "# Connect the final hidden layer to a dense layer with no activation to get a video logit for each class", "video_logits", "=", "tf", ".", "layers", ".", "dense", "(", "inputs", "=", "video_network", ",", "units", "=", "NUM_CLASSES", ",", "activation", "=", "None", ")", "# shape = (current_batch_size, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: video_logits = {}\"", ".", "format", "(", "video_logits", ")", ")", "# Find the video probabilities of all video logits", "video_probabilities", "=", "tf", ".", "sigmoid", "(", "video_logits", ")", "# shape = (current_batch_size, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: video_probabilities = {}\"", ".", "format", "(", "video_probabilities", ")", ")", "################################################################################", "# FRAME NETWORK", "# Concatenate the rgb and audio features together along columns in order to flatten them into one vector per example per frame", "combined_frame_features", "=", "tf", ".", "concat", "(", "values", "=", "[", "features", "[", "'rgb'", "]", ",", "features", "[", "'audio'", "]", "]", ",", "axis", "=", "2", ")", "# shape = (current_batch_size, MAX_FRAMES, 1024 + 128)", "print", "(", "\"video_and_frame_level_model: combined_frame_features = {}\"", ".", "format", "(", "combined_frame_features", ")", ")", "# Reshape feature vectors per frame so that we have instead batch_size * MAX_FRAMES examples to go through our frame DNN", "reshaped_combined_frame_features", "=", "tf", ".", "reshape", "(", "tensor", "=", "combined_frame_features", ",", "shape", "=", "[", "current_batch_size", "*", "MAX_FRAMES", ",", "1024", "+", "128", "]", ")", "# shape = (current_batch_size * MAX_FRAMES, 1024 + 128)", "print", "(", "\"video_and_frame_level_model: reshaped_combined_frame_features = {}\"", ".", "format", "(", "reshaped_combined_frame_features", ")", ")", "# Create the input layer to our frame DNN", "frame_network", "=", "reshaped_combined_frame_features", "# shape = (current_batch_size * MAX_FRAMES, 1024 + 128)", "print", "(", "\"video_and_frame_level_model: frame_network = reshaped_combined_frame_features = {}\"", ".", "format", "(", "frame_network", ")", ")", "# Add frame hidden layers with the given number of units/neurons per layer", "for", "units", "in", "params", "[", "'frame_hidden_units'", "]", ":", "frame_network", "=", "tf", ".", "layers", ".", "dense", "(", "inputs", "=", "frame_network", ",", "units", "=", "units", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ")", "# shape = (current_batch_size * MAX_FRAMES, units)", "print", "(", "\"video_and_frame_level_model: frame_network = {}, units = {}\"", ".", "format", "(", "frame_network", ",", "units", ")", ")", "# Connect the final hidden layer to a dense layer with no activation to get a frame logit for each class", "frame_logits", "=", "tf", ".", "layers", ".", "dense", "(", "inputs", "=", "frame_network", ",", "units", "=", "NUM_CLASSES", ",", "activation", "=", "None", ")", "# shape = (current_batch_size * MAX_FRAMES, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: frame_logits = {}\"", ".", "format", "(", "frame_logits", ")", ")", "# Find the frame probabilities of all frame logits using sigmoid since this is multi-class, multi-label", "frame_probabilities", "=", "tf", ".", "sigmoid", "(", "frame_logits", ")", "# shape = (current_batch_size * MAX_FRAMES, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: frame_probabilities = {}\"", ".", "format", "(", "frame_probabilities", ")", ")", "# Reshape the frame probability tensor so that each frame has its own matrix", "reshaped_frame_probabilities", "=", "tf", ".", "reshape", "(", "tensor", "=", "frame_probabilities", ",", "shape", "=", "[", "current_batch_size", ",", "MAX_FRAMES", ",", "NUM_CLASSES", "]", ")", "# shape = (current_batch_size, MAX_FRAMES, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: reshaped_frame_probabilities = {}\"", ".", "format", "(", "reshaped_frame_probabilities", ")", ")", "# Average the frame probabilities over all frames per each example and each class", "average_probabilities_over_frames", "=", "tf", ".", "reduce_mean", "(", "input_tensor", "=", "reshaped_frame_probabilities", ",", "axis", "=", "1", ")", "# shape = (current_batch_size, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: average_probabilities_over_frames = {}\"", ".", "format", "(", "average_probabilities_over_frames", ")", ")", "################################################################################", "# Average together the video and frame probabilities", "combined_probabilities", "=", "(", "video_probabilities", "+", "average_probabilities_over_frames", ")", "*", "0.5", "# shape = (current_batch_size, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: combined_probabilities = {}\"", ".", "format", "(", "combined_probabilities", ")", ")", "# Select the top k probablities in descending order", "top_k_probabilities", "=", "tf", ".", "nn", ".", "top_k", "(", "input", "=", "combined_probabilities", ",", "k", "=", "params", "[", "'top_k'", "]", ",", "sorted", "=", "True", ")", "# shape = (current_batch_size, top_k)", "print", "(", "\"video_and_frame_level_model: top_k_probabilities = {}\"", ".", "format", "(", "top_k_probabilities", ")", ")", "# Find the inverse of all of the average probabilities to get all of the average logits", "inverse_probabilities_logits", "=", "tf", ".", "log", "(", "combined_probabilities", "+", "0.00000001", ")", "-", "tf", ".", "log", "(", "1.0", "-", "combined_probabilities", "+", "0.00000001", ")", "# shape = (current_batch_size, NUM_CLASSES)", "print", "(", "\"video_and_frame_level_model: inverse_probabilities_logits = {}\"", ".", "format", "(", "inverse_probabilities_logits", ")", ")", "# Select the top k logits using the indices of the top k probabilities in descending order", "top_k_logits", "=", "tf", ".", "map_fn", "(", "fn", "=", "lambda", "x", ":", "tf", ".", "gather", "(", "params", "=", "inverse_probabilities_logits", "[", "x", "]", ",", "indices", "=", "top_k_probabilities", ".", "indices", "[", "x", "]", ")", ",", "elems", "=", "tf", ".", "range", "(", "start", "=", "0", ",", "limit", "=", "current_batch_size", ")", ",", "dtype", "=", "tf", ".", "float32", ")", "# shape = (current_batch_size, 1, top_k)", "print", "(", "\"frame_level_model: top_k_logits = {}\"", ".", "format", "(", "top_k_logits", ")", ")", "# The top k classes in descending order of likelihood", "top_k_classes", "=", "top_k_probabilities", ".", "indices", "# shape = (current_batch_size, top_k)", "print", "(", "\"video_and_frame_level_model: top_k_classes = {}\"", ".", "format", "(", "top_k_classes", ")", ")", "# The 0/1 predictions based on a threshold, in this case the threshold is if the probability it greater than random chance", "predictions", "=", "tf", ".", "where", "(", "condition", "=", "average_probabilities_over_frames", ">", "1.0", "/", "NUM_CLASSES", ",", "# shape = (current_batch_size, NUM_CLASSES)", "x", "=", "tf", ".", "ones_like", "(", "tensor", "=", "average_probabilities_over_frames", ",", "dtype", "=", "tf", ".", "float32", ")", ",", "y", "=", "tf", ".", "zeros_like", "(", "tensor", "=", "average_probabilities_over_frames", ",", "dtype", "=", "tf", ".", "float32", ")", ")", "print", "(", "\"video_and_frame_level_model: predictions = {}\"", ".", "format", "(", "predictions", ")", ")", "# The 0/1 top k predictions based on a threshold, in this case the threshold is if the probability it greater than random chance", "top_k_predictions", "=", "tf", ".", "where", "(", "condition", "=", "top_k_probabilities", ".", "values", ">", "1.0", "/", "NUM_CLASSES", ",", "# shape = (current_batch_size, top_k)", "x", "=", "tf", ".", "ones_like", "(", "tensor", "=", "top_k_probabilities", ".", "values", ",", "dtype", "=", "tf", ".", "float32", ")", ",", "y", "=", "tf", ".", "zeros_like", "(", "tensor", "=", "top_k_probabilities", ".", "values", ",", "dtype", "=", "tf", ".", "float32", ")", ")", "print", "(", "\"video_and_frame_level_model: top_k_predictions = {}\\n\"", ".", "format", "(", "top_k_predictions", ")", ")", "# 2. Loss function, training/eval ops ", "if", "mode", "==", "tf", ".", "estimator", ".", "ModeKeys", ".", "TRAIN", "or", "mode", "==", "tf", ".", "estimator", ".", "ModeKeys", ".", "EVAL", ":", "# Since this is a multi-class, multi-label problem, we will use sigmoid activation and cross entropy loss", "# We already have the probabilities we can use the cross entropy formula directly to calculate the loss", "loss", "=", "tf", ".", "reduce_mean", "(", "input_tensor", "=", "-", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "labels", "*", "tf", ".", "log", "(", "x", "=", "average_probabilities_over_frames", "+", "0.00000001", ")", ",", "axis", "=", "1", ")", ")", "train_op", "=", "tf", ".", "contrib", ".", "layers", ".", "optimize_loss", "(", "loss", "=", "loss", ",", "global_step", "=", "tf", ".", "train", ".", "get_global_step", "(", ")", ",", "learning_rate", "=", "0.01", ",", "optimizer", "=", "\"Adam\"", ")", "eval_metric_ops", "=", "{", "\"accuracy\"", ":", "tf", ".", "metrics", ".", "mean_per_class_accuracy", "(", "labels", "=", "labels", ",", "predictions", "=", "predictions", ",", "num_classes", "=", "NUM_CLASSES", ")", "}", "else", ":", "loss", "=", "None", "train_op", "=", "None", "eval_metric_ops", "=", "None", "# 3. Create predictions", "predictions_dict", "=", "{", "\"logits\"", ":", "top_k_logits", ",", "\"probabilities\"", ":", "top_k_probabilities", ".", "values", ",", "\"predictions\"", ":", "top_k_predictions", ",", "\"classes\"", ":", "top_k_classes", "}", "# 4. Create export outputs", "export_outputs", "=", "{", "\"predict_export_outputs\"", ":", "tf", ".", "estimator", ".", "export", ".", "PredictOutput", "(", "outputs", "=", "predictions_dict", ")", "}", "# 5. Return EstimatorSpec", "return", "tf", ".", "estimator", ".", "EstimatorSpec", "(", "mode", "=", "mode", ",", "predictions", "=", "predictions_dict", ",", "loss", "=", "loss", ",", "train_op", "=", "train_op", ",", "eval_metric_ops", "=", "eval_metric_ops", ",", "export_outputs", "=", "export_outputs", ")" ]
[ 197, 0 ]
[ 350, 40 ]
python
en
['en', 'error', 'th']
False
FileSystemKeyValueStorage.__init__
(self, root_path)
Create a new Storage object. All files will be stored under the root_path location :param root_path: The base folder for all storage files
Create a new Storage object.
def __init__(self, root_path): """ Create a new Storage object. All files will be stored under the root_path location :param root_path: The base folder for all storage files """ if root_path is None: root_path = gettempdir() if not os.path.isdir(root_path): os.makedirs(root_path) self._root_path = root_path
[ "def", "__init__", "(", "self", ",", "root_path", ")", ":", "if", "root_path", "is", "None", ":", "root_path", "=", "gettempdir", "(", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "root_path", ")", ":", "os", ".", "makedirs", "(", "root_path", ")", "self", ".", "_root_path", "=", "root_path" ]
[ 14, 4 ]
[ 28, 35 ]
python
en
['en', 'error', 'th']
False
FileSystemKeyValueStorage._get_key_full_path
(self, key)
Generate the file path for the key :param key: The key :return: The absolute path of the value file associated with the key
Generate the file path for the key
def _get_key_full_path(self, key): """ Generate the file path for the key :param key: The key :return: The absolute path of the value file associated with the key """ return os.path.join(self._root_path, key + self._item_ext)
[ "def", "_get_key_full_path", "(", "self", ",", "key", ")", ":", "return", "os", ".", "path", ".", "join", "(", "self", ".", "_root_path", ",", "key", "+", "self", ".", "_item_ext", ")" ]
[ 60, 4 ]
[ 68, 66 ]
python
en
['en', 'error', 'th']
False
FileSystemKeyValueStorage._exists
(self, key)
Indicate whether key exists :param key: The key :return: bool True if the file for the given key exists
Indicate whether key exists
def _exists(self, key): """ Indicate whether key exists :param key: The key :return: bool True if the file for the given key exists """ return os.path.isfile(self._get_key_full_path(key))
[ "def", "_exists", "(", "self", ",", "key", ")", ":", "return", "os", ".", "path", ".", "isfile", "(", "self", ".", "_get_key_full_path", "(", "key", ")", ")" ]
[ 70, 4 ]
[ 78, 59 ]
python
en
['en', 'error', 'th']
False
api_client
()
api client without authentication
api client without authentication
def api_client() -> Generator[APIClient, None, None]: """ api client without authentication """ from rest_framework.test import APIClient yield APIClient()
[ "def", "api_client", "(", ")", "->", "Generator", "[", "APIClient", ",", "None", ",", "None", "]", ":", "from", "rest_framework", ".", "test", "import", "APIClient", "yield", "APIClient", "(", ")" ]
[ 14, 0 ]
[ 17, 21 ]
python
en
['en', 'fr', 'en']
True
auth_api_client
(db, api_client)
APIClient with authentication factory
APIClient with authentication factory
def auth_api_client(db, api_client): """ APIClient with authentication factory """ def make_auth_client(user: AbstractUser) -> APIClient: # api_client.force_login(user=user) # login api_client.force_authenticate(user=user) return api_client yield make_auth_client # logout on tear down api_client.force_authenticate(user=None)
[ "def", "auth_api_client", "(", "db", ",", "api_client", ")", ":", "def", "make_auth_client", "(", "user", ":", "AbstractUser", ")", "->", "APIClient", ":", "# api_client.force_login(user=user)", "# login", "api_client", ".", "force_authenticate", "(", "user", "=", "user", ")", "return", "api_client", "yield", "make_auth_client", "# logout on tear down", "api_client", ".", "force_authenticate", "(", "user", "=", "None", ")" ]
[ 21, 0 ]
[ 34, 44 ]
python
en
['en', 'en', 'en']
True
create_user
(db, django_user_model: AbstractUser, test_password: str)
factory for creating users
factory for creating users
def create_user(db, django_user_model: AbstractUser, test_password: str): """ factory for creating users """ def make_user(username, email, first_name, last_name) -> AbstractUser: new_user: AbstractUser = User.objects.create(username=username, email=email, first_name=first_name, last_name=last_name) # assign password new_user.set_password(test_password) new_user.save() return new_user yield make_user
[ "def", "create_user", "(", "db", ",", "django_user_model", ":", "AbstractUser", ",", "test_password", ":", "str", ")", ":", "def", "make_user", "(", "username", ",", "email", ",", "first_name", ",", "last_name", ")", "->", "AbstractUser", ":", "new_user", ":", "AbstractUser", "=", "User", ".", "objects", ".", "create", "(", "username", "=", "username", ",", "email", "=", "email", ",", "first_name", "=", "first_name", ",", "last_name", "=", "last_name", ")", "# assign password", "new_user", ".", "set_password", "(", "test_password", ")", "new_user", ".", "save", "(", ")", "return", "new_user", "yield", "make_user" ]
[ 43, 0 ]
[ 54, 19 ]
python
en
['en', 'en', 'en']
True
create_image
()
image file factory
image file factory
def create_image(): """ image file factory """ with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tf: image = Image.new("RGB", (100, 100), color="#ddd") image.save(tf, format="JPEG") tf.close() yield tf # clean up image.close()
[ "def", "create_image", "(", ")", ":", "with", "tempfile", ".", "NamedTemporaryFile", "(", "suffix", "=", "\".jpg\"", ",", "delete", "=", "False", ")", "as", "tf", ":", "image", "=", "Image", ".", "new", "(", "\"RGB\"", ",", "(", "100", ",", "100", ")", ",", "color", "=", "\"#ddd\"", ")", "image", ".", "save", "(", "tf", ",", "format", "=", "\"JPEG\"", ")", "tf", ".", "close", "(", ")", "yield", "tf", "# clean up", "image", ".", "close", "(", ")" ]
[ 66, 0 ]
[ 76, 17 ]
python
en
['en', 'en', 'en']
True
delete_selected
(modeladmin, request, queryset)
Default action which deletes the selected objects. This action first displays a confirmation page which shows all the deletable objects, or, if the user has no permission one of the related childs (foreignkeys), a "permission denied" message. Next, it deletes all selected objects and redirects back to the change list.
Default action which deletes the selected objects.
def delete_selected(modeladmin, request, queryset): """ Default action which deletes the selected objects. This action first displays a confirmation page which shows all the deletable objects, or, if the user has no permission one of the related childs (foreignkeys), a "permission denied" message. Next, it deletes all selected objects and redirects back to the change list. """ opts = modeladmin.model._meta app_label = opts.app_label # Populate deletable_objects, a data structure of all related objects that # will also be deleted. deletable_objects, model_count, perms_needed, protected = modeladmin.get_deleted_objects(queryset, request) # The user has already confirmed the deletion. # Do the deletion and return None to display the change list view again. if request.POST.get('post') and not protected: if perms_needed: raise PermissionDenied n = queryset.count() if n: for obj in queryset: obj_display = str(obj) modeladmin.log_deletion(request, obj, obj_display) modeladmin.delete_queryset(request, queryset) modeladmin.message_user(request, _("Successfully deleted %(count)d %(items)s.") % { "count": n, "items": model_ngettext(modeladmin.opts, n) }, messages.SUCCESS) # Return None to display the change list page again. return None objects_name = model_ngettext(queryset) if perms_needed or protected: title = _("Cannot delete %(name)s") % {"name": objects_name} else: title = _("Are you sure?") context = { **modeladmin.admin_site.each_context(request), 'title': title, 'objects_name': str(objects_name), 'deletable_objects': [deletable_objects], 'model_count': dict(model_count).items(), 'queryset': queryset, 'perms_lacking': perms_needed, 'protected': protected, 'opts': opts, 'action_checkbox_name': helpers.ACTION_CHECKBOX_NAME, 'media': modeladmin.media, } request.current_app = modeladmin.admin_site.name # Display the confirmation page return TemplateResponse(request, modeladmin.delete_selected_confirmation_template or [ "admin/%s/%s/delete_selected_confirmation.html" % (app_label, opts.model_name), "admin/%s/delete_selected_confirmation.html" % app_label, "admin/delete_selected_confirmation.html" ], context)
[ "def", "delete_selected", "(", "modeladmin", ",", "request", ",", "queryset", ")", ":", "opts", "=", "modeladmin", ".", "model", ".", "_meta", "app_label", "=", "opts", ".", "app_label", "# Populate deletable_objects, a data structure of all related objects that", "# will also be deleted.", "deletable_objects", ",", "model_count", ",", "perms_needed", ",", "protected", "=", "modeladmin", ".", "get_deleted_objects", "(", "queryset", ",", "request", ")", "# The user has already confirmed the deletion.", "# Do the deletion and return None to display the change list view again.", "if", "request", ".", "POST", ".", "get", "(", "'post'", ")", "and", "not", "protected", ":", "if", "perms_needed", ":", "raise", "PermissionDenied", "n", "=", "queryset", ".", "count", "(", ")", "if", "n", ":", "for", "obj", "in", "queryset", ":", "obj_display", "=", "str", "(", "obj", ")", "modeladmin", ".", "log_deletion", "(", "request", ",", "obj", ",", "obj_display", ")", "modeladmin", ".", "delete_queryset", "(", "request", ",", "queryset", ")", "modeladmin", ".", "message_user", "(", "request", ",", "_", "(", "\"Successfully deleted %(count)d %(items)s.\"", ")", "%", "{", "\"count\"", ":", "n", ",", "\"items\"", ":", "model_ngettext", "(", "modeladmin", ".", "opts", ",", "n", ")", "}", ",", "messages", ".", "SUCCESS", ")", "# Return None to display the change list page again.", "return", "None", "objects_name", "=", "model_ngettext", "(", "queryset", ")", "if", "perms_needed", "or", "protected", ":", "title", "=", "_", "(", "\"Cannot delete %(name)s\"", ")", "%", "{", "\"name\"", ":", "objects_name", "}", "else", ":", "title", "=", "_", "(", "\"Are you sure?\"", ")", "context", "=", "{", "*", "*", "modeladmin", ".", "admin_site", ".", "each_context", "(", "request", ")", ",", "'title'", ":", "title", ",", "'objects_name'", ":", "str", "(", "objects_name", ")", ",", "'deletable_objects'", ":", "[", "deletable_objects", "]", ",", "'model_count'", ":", "dict", "(", "model_count", ")", ".", "items", "(", ")", ",", "'queryset'", ":", "queryset", ",", "'perms_lacking'", ":", "perms_needed", ",", "'protected'", ":", "protected", ",", "'opts'", ":", "opts", ",", "'action_checkbox_name'", ":", "helpers", ".", "ACTION_CHECKBOX_NAME", ",", "'media'", ":", "modeladmin", ".", "media", ",", "}", "request", ".", "current_app", "=", "modeladmin", ".", "admin_site", ".", "name", "# Display the confirmation page", "return", "TemplateResponse", "(", "request", ",", "modeladmin", ".", "delete_selected_confirmation_template", "or", "[", "\"admin/%s/%s/delete_selected_confirmation.html\"", "%", "(", "app_label", ",", "opts", ".", "model_name", ")", ",", "\"admin/%s/delete_selected_confirmation.html\"", "%", "app_label", ",", "\"admin/delete_selected_confirmation.html\"", "]", ",", "context", ")" ]
[ 17, 0 ]
[ 79, 15 ]
python
en
['en', 'error', 'th']
False
GroupBasedRecommender.__init__
(self, train_files=None, test_file=None, output_file=None, similarity_metric="cosine", rank_length=10, k_groups=3, recommender='UserKNN', as_binary=False, sep='\t', output_sep='\t', max_int_kmedoids=1000, parser='', user_weights=False)
Group-Based for Item Recommendation This algorithm predicts a rank for each user using a co-clustering algorithm Usage:: >> GroupBasedRecommender([train_history], test).compute() >> GroupBasedRecommender([train_history, train_rating], test, as_binary=True).compute() :param train_files: List of train files :type train_files: list :param test_file: File which contains the test set. This file needs to have at least 3 columns (user item feedback_value). :type test_file: str, default None :param output_file: File with dir to write the final predictions :type output_file: str, default None :param similarity_metric: Pairwise metric to compute the similarity between the users. Reference about distances: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.pdist.html :type similarity_metric: str, default cosine :param as_binary: If True, the explicit feedback will be transform to binary :type as_binary: bool, default False :param sep: Delimiter for input files :type sep: str, default '\t' :param output_sep: Delimiter for output file :type output_sep: str, default '\t'
Group-Based for Item Recommendation
def __init__(self, train_files=None, test_file=None, output_file=None, similarity_metric="cosine", rank_length=10, k_groups=3, recommender='UserKNN', as_binary=False, sep='\t', output_sep='\t', max_int_kmedoids=1000, parser='', user_weights=False): """ Group-Based for Item Recommendation This algorithm predicts a rank for each user using a co-clustering algorithm Usage:: >> GroupBasedRecommender([train_history], test).compute() >> GroupBasedRecommender([train_history, train_rating], test, as_binary=True).compute() :param train_files: List of train files :type train_files: list :param test_file: File which contains the test set. This file needs to have at least 3 columns (user item feedback_value). :type test_file: str, default None :param output_file: File with dir to write the final predictions :type output_file: str, default None :param similarity_metric: Pairwise metric to compute the similarity between the users. Reference about distances: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.pdist.html :type similarity_metric: str, default cosine :param as_binary: If True, the explicit feedback will be transform to binary :type as_binary: bool, default False :param sep: Delimiter for input files :type sep: str, default '\t' :param output_sep: Delimiter for output file :type output_sep: str, default '\t' """ super(GroupBasedRecommender, self).__init__(train_file='', test_file=test_file, output_file=output_file, as_binary=as_binary, rank_length=rank_length, similarity_metric=similarity_metric, sep=sep, output_sep=output_sep) self.recommender_name = 'Group Based Recommender Algorithm' self.train_files = train_files self.k_groups = k_groups self.recommender = recommender self.max_int_kmedoids = max_int_kmedoids self.parser = parser self.user_weights = user_weights # internal vars self.n_files = 0 self.train_set_list = [] self.distance_matrix = None self.dir_name = None self.gb_train_files = [] self.weighted_matrices = [] self.k_users_in_cluster = []
[ "def", "__init__", "(", "self", ",", "train_files", "=", "None", ",", "test_file", "=", "None", ",", "output_file", "=", "None", ",", "similarity_metric", "=", "\"cosine\"", ",", "rank_length", "=", "10", ",", "k_groups", "=", "3", ",", "recommender", "=", "'UserKNN'", ",", "as_binary", "=", "False", ",", "sep", "=", "'\\t'", ",", "output_sep", "=", "'\\t'", ",", "max_int_kmedoids", "=", "1000", ",", "parser", "=", "''", ",", "user_weights", "=", "False", ")", ":", "super", "(", "GroupBasedRecommender", ",", "self", ")", ".", "__init__", "(", "train_file", "=", "''", ",", "test_file", "=", "test_file", ",", "output_file", "=", "output_file", ",", "as_binary", "=", "as_binary", ",", "rank_length", "=", "rank_length", ",", "similarity_metric", "=", "similarity_metric", ",", "sep", "=", "sep", ",", "output_sep", "=", "output_sep", ")", "self", ".", "recommender_name", "=", "'Group Based Recommender Algorithm'", "self", ".", "train_files", "=", "train_files", "self", ".", "k_groups", "=", "k_groups", "self", ".", "recommender", "=", "recommender", "self", ".", "max_int_kmedoids", "=", "max_int_kmedoids", "self", ".", "parser", "=", "parser", "self", ".", "user_weights", "=", "user_weights", "# internal vars", "self", ".", "n_files", "=", "0", "self", ".", "train_set_list", "=", "[", "]", "self", ".", "distance_matrix", "=", "None", "self", ".", "dir_name", "=", "None", "self", ".", "gb_train_files", "=", "[", "]", "self", ".", "weighted_matrices", "=", "[", "]", "self", ".", "k_users_in_cluster", "=", "[", "]" ]
[ 31, 4 ]
[ 89, 36 ]
python
en
['en', 'error', 'th']
False
GroupBasedRecommender.read_files
(self)
Method to initialize recommender algorithm.
Method to initialize recommender algorithm.
def read_files(self): """ Method to initialize recommender algorithm. """ self.n_files = len(self.train_files) self.users = [] self.items = [] for train_file in self.train_files: train_set = ReadFile(train_file, sep=self.sep, as_binary=self.as_binary).read() self.users += train_set['users'] self.items += train_set['items'] self.train_set_list.append(train_set) self.dir_name = os.path.dirname(train_file) self.users = set(self.users) self.items = set(self.items) if self.test_file is not None: self.test_set = ReadFile(self.test_file).read() self.users = sorted(set(list(self.users) + list(self.test_set['users']))) self.items = sorted(set(list(self.items) + list(self.test_set['items']))) for i, item in enumerate(self.items): self.item_to_item_id.update({item: i}) self.item_id_to_item.update({i: item}) for u, user in enumerate(self.users): self.user_to_user_id.update({user: u}) self.user_id_to_user.update({u: user})
[ "def", "read_files", "(", "self", ")", ":", "self", ".", "n_files", "=", "len", "(", "self", ".", "train_files", ")", "self", ".", "users", "=", "[", "]", "self", ".", "items", "=", "[", "]", "for", "train_file", "in", "self", ".", "train_files", ":", "train_set", "=", "ReadFile", "(", "train_file", ",", "sep", "=", "self", ".", "sep", ",", "as_binary", "=", "self", ".", "as_binary", ")", ".", "read", "(", ")", "self", ".", "users", "+=", "train_set", "[", "'users'", "]", "self", ".", "items", "+=", "train_set", "[", "'items'", "]", "self", ".", "train_set_list", ".", "append", "(", "train_set", ")", "self", ".", "dir_name", "=", "os", ".", "path", ".", "dirname", "(", "train_file", ")", "self", ".", "users", "=", "set", "(", "self", ".", "users", ")", "self", ".", "items", "=", "set", "(", "self", ".", "items", ")", "if", "self", ".", "test_file", "is", "not", "None", ":", "self", ".", "test_set", "=", "ReadFile", "(", "self", ".", "test_file", ")", ".", "read", "(", ")", "self", ".", "users", "=", "sorted", "(", "set", "(", "list", "(", "self", ".", "users", ")", "+", "list", "(", "self", ".", "test_set", "[", "'users'", "]", ")", ")", ")", "self", ".", "items", "=", "sorted", "(", "set", "(", "list", "(", "self", ".", "items", ")", "+", "list", "(", "self", ".", "test_set", "[", "'items'", "]", ")", ")", ")", "for", "i", ",", "item", "in", "enumerate", "(", "self", ".", "items", ")", ":", "self", ".", "item_to_item_id", ".", "update", "(", "{", "item", ":", "i", "}", ")", "self", ".", "item_id_to_item", ".", "update", "(", "{", "i", ":", "item", "}", ")", "for", "u", ",", "user", "in", "enumerate", "(", "self", ".", "users", ")", ":", "self", ".", "user_to_user_id", ".", "update", "(", "{", "user", ":", "u", "}", ")", "self", ".", "user_id_to_user", ".", "update", "(", "{", "u", ":", "user", "}", ")" ]
[ 91, 4 ]
[ 122, 50 ]
python
en
['en', 'error', 'th']
False
GroupBasedRecommender.compute_distance
(self)
Method to compute a distance matrix from train set
Method to compute a distance matrix from train set
def compute_distance(self): """ Method to compute a distance matrix from train set """ # Calculate distance matrix distance_matrix = np.float32(squareform(pdist(self.matrix, self.similarity_metric))) # Remove NaNs distance_matrix[np.isnan(distance_matrix)] = 1.0 return distance_matrix
[ "def", "compute_distance", "(", "self", ")", ":", "# Calculate distance matrix", "distance_matrix", "=", "np", ".", "float32", "(", "squareform", "(", "pdist", "(", "self", ".", "matrix", ",", "self", ".", "similarity_metric", ")", ")", ")", "# Remove NaNs", "distance_matrix", "[", "np", ".", "isnan", "(", "distance_matrix", ")", "]", "=", "1.0", "return", "distance_matrix" ]
[ 124, 4 ]
[ 135, 30 ]
python
en
['en', 'error', 'th']
False
SelectionPreferences.__init__
( self, allow_yanked: bool, allow_all_prereleases: bool = False, format_control: Optional[FormatControl] = None, prefer_binary: bool = False, ignore_requires_python: Optional[bool] = None, )
Create a SelectionPreferences object. :param allow_yanked: Whether files marked as yanked (in the sense of PEP 592) are permitted to be candidates for install. :param format_control: A FormatControl object or None. Used to control the selection of source packages / binary packages when consulting the index and links. :param prefer_binary: Whether to prefer an old, but valid, binary dist over a new source dist. :param ignore_requires_python: Whether to ignore incompatible "Requires-Python" values in links. Defaults to False.
Create a SelectionPreferences object.
def __init__( self, allow_yanked: bool, allow_all_prereleases: bool = False, format_control: Optional[FormatControl] = None, prefer_binary: bool = False, ignore_requires_python: Optional[bool] = None, ) -> None: """Create a SelectionPreferences object. :param allow_yanked: Whether files marked as yanked (in the sense of PEP 592) are permitted to be candidates for install. :param format_control: A FormatControl object or None. Used to control the selection of source packages / binary packages when consulting the index and links. :param prefer_binary: Whether to prefer an old, but valid, binary dist over a new source dist. :param ignore_requires_python: Whether to ignore incompatible "Requires-Python" values in links. Defaults to False. """ if ignore_requires_python is None: ignore_requires_python = False self.allow_yanked = allow_yanked self.allow_all_prereleases = allow_all_prereleases self.format_control = format_control self.prefer_binary = prefer_binary self.ignore_requires_python = ignore_requires_python
[ "def", "__init__", "(", "self", ",", "allow_yanked", ":", "bool", ",", "allow_all_prereleases", ":", "bool", "=", "False", ",", "format_control", ":", "Optional", "[", "FormatControl", "]", "=", "None", ",", "prefer_binary", ":", "bool", "=", "False", ",", "ignore_requires_python", ":", "Optional", "[", "bool", "]", "=", "None", ",", ")", "->", "None", ":", "if", "ignore_requires_python", "is", "None", ":", "ignore_requires_python", "=", "False", "self", ".", "allow_yanked", "=", "allow_yanked", "self", ".", "allow_all_prereleases", "=", "allow_all_prereleases", "self", ".", "format_control", "=", "format_control", "self", ".", "prefer_binary", "=", "prefer_binary", "self", ".", "ignore_requires_python", "=", "ignore_requires_python" ]
[ 18, 4 ]
[ 45, 60 ]
python
en
['en', 'en', 'en']
True
ValidationError.__init__
(self, message, code=None, params=None)
The `message` argument can be a single error, a list of errors, or a dictionary that maps field names to lists of errors. What we define as an "error" can be either a simple string or an instance of ValidationError with its message attribute set, and what we define as list or dictionary can be an actual `list` or `dict` or an instance of ValidationError with its `error_list` or `error_dict` attribute set.
The `message` argument can be a single error, a list of errors, or a dictionary that maps field names to lists of errors. What we define as an "error" can be either a simple string or an instance of ValidationError with its message attribute set, and what we define as list or dictionary can be an actual `list` or `dict` or an instance of ValidationError with its `error_list` or `error_dict` attribute set.
def __init__(self, message, code=None, params=None): """ The `message` argument can be a single error, a list of errors, or a dictionary that maps field names to lists of errors. What we define as an "error" can be either a simple string or an instance of ValidationError with its message attribute set, and what we define as list or dictionary can be an actual `list` or `dict` or an instance of ValidationError with its `error_list` or `error_dict` attribute set. """ super().__init__(message, code, params) if isinstance(message, ValidationError): if hasattr(message, 'error_dict'): message = message.error_dict elif not hasattr(message, 'message'): message = message.error_list else: message, code, params = message.message, message.code, message.params if isinstance(message, dict): self.error_dict = {} for field, messages in message.items(): if not isinstance(messages, ValidationError): messages = ValidationError(messages) self.error_dict[field] = messages.error_list elif isinstance(message, list): self.error_list = [] for message in message: # Normalize plain strings to instances of ValidationError. if not isinstance(message, ValidationError): message = ValidationError(message) if hasattr(message, 'error_dict'): self.error_list.extend(sum(message.error_dict.values(), [])) else: self.error_list.extend(message.error_list) else: self.message = message self.code = code self.params = params self.error_list = [self]
[ "def", "__init__", "(", "self", ",", "message", ",", "code", "=", "None", ",", "params", "=", "None", ")", ":", "super", "(", ")", ".", "__init__", "(", "message", ",", "code", ",", "params", ")", "if", "isinstance", "(", "message", ",", "ValidationError", ")", ":", "if", "hasattr", "(", "message", ",", "'error_dict'", ")", ":", "message", "=", "message", ".", "error_dict", "elif", "not", "hasattr", "(", "message", ",", "'message'", ")", ":", "message", "=", "message", ".", "error_list", "else", ":", "message", ",", "code", ",", "params", "=", "message", ".", "message", ",", "message", ".", "code", ",", "message", ".", "params", "if", "isinstance", "(", "message", ",", "dict", ")", ":", "self", ".", "error_dict", "=", "{", "}", "for", "field", ",", "messages", "in", "message", ".", "items", "(", ")", ":", "if", "not", "isinstance", "(", "messages", ",", "ValidationError", ")", ":", "messages", "=", "ValidationError", "(", "messages", ")", "self", ".", "error_dict", "[", "field", "]", "=", "messages", ".", "error_list", "elif", "isinstance", "(", "message", ",", "list", ")", ":", "self", ".", "error_list", "=", "[", "]", "for", "message", "in", "message", ":", "# Normalize plain strings to instances of ValidationError.", "if", "not", "isinstance", "(", "message", ",", "ValidationError", ")", ":", "message", "=", "ValidationError", "(", "message", ")", "if", "hasattr", "(", "message", ",", "'error_dict'", ")", ":", "self", ".", "error_list", ".", "extend", "(", "sum", "(", "message", ".", "error_dict", ".", "values", "(", ")", ",", "[", "]", ")", ")", "else", ":", "self", ".", "error_list", ".", "extend", "(", "message", ".", "error_list", ")", "else", ":", "self", ".", "message", "=", "message", "self", ".", "code", "=", "code", "self", ".", "params", "=", "params", "self", ".", "error_list", "=", "[", "self", "]" ]
[ 108, 4 ]
[ 149, 36 ]
python
en
['en', 'error', 'th']
False
convert_parquet_to_iceberg
(parquet_file: ParquetFile)
Given two Iceberg schema's returns a list of column_names for all id's in the file schema that are projected in the expected schema Parameters ---------- parquet_file : pyarrow.parquet.ParquetFile The Parquet File to use to extract the iceberg schema Returns ------- iceberg.api.Schema returns an equivalent iceberg Schema based on the arrow schema read from the file
Given two Iceberg schema's returns a list of column_names for all id's in the file schema that are projected in the expected schema
def convert_parquet_to_iceberg(parquet_file: ParquetFile) -> Schema: # noqa: ignore=C901 """ Given two Iceberg schema's returns a list of column_names for all id's in the file schema that are projected in the expected schema Parameters ---------- parquet_file : pyarrow.parquet.ParquetFile The Parquet File to use to extract the iceberg schema Returns ------- iceberg.api.Schema returns an equivalent iceberg Schema based on the arrow schema read from the file """ return arrow_to_iceberg(parquet_file.schema_arrow)
[ "def", "convert_parquet_to_iceberg", "(", "parquet_file", ":", "ParquetFile", ")", "->", "Schema", ":", "# noqa: ignore=C901", "return", "arrow_to_iceberg", "(", "parquet_file", ".", "schema_arrow", ")" ]
[ 119, 0 ]
[ 134, 54 ]
python
en
['en', 'error', 'th']
False
arrow_to_iceberg
(arrow_schema: pa.Schema)
Use an arrow schema, which contains the field_id metadata, to create an equivalent iceberg Schema Parameters ---------- arrow_schema : pyarrow.Schema An Arrow schema with the parquet field_id metadata Returns ------- iceberg.api.Schema returns an equivalent iceberg Schema based on the arrow schema read from the file
Use an arrow schema, which contains the field_id metadata, to create an equivalent iceberg Schema
def arrow_to_iceberg(arrow_schema: pa.Schema) -> Schema: """ Use an arrow schema, which contains the field_id metadata, to create an equivalent iceberg Schema Parameters ---------- arrow_schema : pyarrow.Schema An Arrow schema with the parquet field_id metadata Returns ------- iceberg.api.Schema returns an equivalent iceberg Schema based on the arrow schema read from the file """ return Schema([get_field(col) for col in arrow_schema])
[ "def", "arrow_to_iceberg", "(", "arrow_schema", ":", "pa", ".", "Schema", ")", "->", "Schema", ":", "return", "Schema", "(", "[", "get_field", "(", "col", ")", "for", "col", "in", "arrow_schema", "]", ")" ]
[ 137, 0 ]
[ 151, 59 ]
python
en
['en', 'error', 'th']
False
train_and_evaluate
(args)
Train and evaluate custom Estimator with three training modes. Given the dictionary of parameters, create custom Estimator and run up to three training modes then return Estimator object. Args: args: Dictionary of parameters. Returns: Estimator object.
Train and evaluate custom Estimator with three training modes.
def train_and_evaluate(args): """Train and evaluate custom Estimator with three training modes. Given the dictionary of parameters, create custom Estimator and run up to three training modes then return Estimator object. Args: args: Dictionary of parameters. Returns: Estimator object. """ # Create our custom estimator using our model function estimator = tf.estimator.Estimator( model_fn=anomaly_detection, model_dir=args["output_dir"], params={key: val for key, val in args.items()}) if args["training_mode"] == "reconstruction": # Calculate max_steps max_steps = int(args["reconstruction_epochs"] * args["train_examples"]) max_steps = max_steps // args["train_batch_size"] max_steps += args["previous_train_steps"] # Create eval spec to read in our validation data eval_spec = tf.estimator.EvalSpec( input_fn=read_dataset( filename=args["eval_file_pattern"], mode=tf.estimator.ModeKeys.EVAL, batch_size=args["eval_batch_size"], params=args), steps=None, start_delay_secs=args["start_delay_secs"], # start eval after N secs throttle_secs=args["throttle_secs"]) # evaluate every N secs if args["model_type"] == "pca": # Create train spec to read in our training data train_spec = tf.estimator.TrainSpec( input_fn=read_dataset( filename=args["train_file_pattern"], mode=tf.estimator.ModeKeys.EVAL, # read through train data once batch_size=args["train_batch_size"], params=args), max_steps=max_steps) # Check to see if we need to additionally tune principal components if not args["autotune_principal_components"]: # Create train and evaluate loop to train and evaluate our estimator tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) else: if (args["k_principal_components_time"] is None or args["k_principal_components_feat"] is None): # Create train and evaluate loop to train and evaluate our estimator tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) else: # dense_autoencoder or lstm_enc_dec_autoencoder # Create early stopping hook to help reduce overfitting early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook( estimator=estimator, metric_name="rmse", max_steps_without_decrease=100, min_steps=1000, run_every_secs=60, run_every_steps=None) # Create train spec to read in our training data train_spec = tf.estimator.TrainSpec( input_fn=read_dataset( filename=args["train_file_pattern"], mode=tf.estimator.ModeKeys.TRAIN, batch_size=args["train_batch_size"], params=args), max_steps=max_steps, hooks=[early_stopping_hook]) # Create train and evaluate loop to train and evaluate our estimator tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) else: # Calculate max_steps max_steps = args["train_examples"] // args["train_batch_size"] max_steps += args["previous_train_steps"] # if args["training_mode"] == "calculate_error_distribution_statistics" # Get final mahalanobis statistics over the entire val_1 dataset # if args["training_mode"] == "tune_anomaly_thresholds" # Tune anomaly thresholds using val_2 and val_anom datasets train_spec = tf.estimator.TrainSpec( input_fn=read_dataset( filename=args["train_file_pattern"], mode=tf.estimator.ModeKeys.EVAL, # read through val data once batch_size=args["train_batch_size"], params=args), max_steps=max_steps) if args["training_mode"] == "calculate_error_distribution_statistics": # Don't create exporter for serving yet since anomaly thresholds # aren't trained yet exporter = None elif args["training_mode"] == "tune_anomaly_thresholds": # Create exporter that uses serving_input_fn to create saved_model # for serving exporter = tf.estimator.LatestExporter( name="exporter", serving_input_receiver_fn=lambda: serving_input_fn( args["feat_names"], args["seq_len"])) else: print("{0} isn't a valid training mode!".format(args["training_mode"])) # Create eval spec to read in our validation data and export our model eval_spec = tf.estimator.EvalSpec( input_fn=read_dataset( filename=args["eval_file_pattern"], mode=tf.estimator.ModeKeys.EVAL, batch_size=args["eval_batch_size"], params=args), steps=None, exporters=exporter, start_delay_secs=args["start_delay_secs"], # start eval after N secs throttle_secs=args["throttle_secs"]) # evaluate every N secs if (args["training_mode"] == "calculate_error_distribution_statistics" or args["training_mode"] == "tune_anomaly_thresholds"): # Create train and evaluate loop to train and evaluate our estimator tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) return
[ "def", "train_and_evaluate", "(", "args", ")", ":", "# Create our custom estimator using our model function", "estimator", "=", "tf", ".", "estimator", ".", "Estimator", "(", "model_fn", "=", "anomaly_detection", ",", "model_dir", "=", "args", "[", "\"output_dir\"", "]", ",", "params", "=", "{", "key", ":", "val", "for", "key", ",", "val", "in", "args", ".", "items", "(", ")", "}", ")", "if", "args", "[", "\"training_mode\"", "]", "==", "\"reconstruction\"", ":", "# Calculate max_steps", "max_steps", "=", "int", "(", "args", "[", "\"reconstruction_epochs\"", "]", "*", "args", "[", "\"train_examples\"", "]", ")", "max_steps", "=", "max_steps", "//", "args", "[", "\"train_batch_size\"", "]", "max_steps", "+=", "args", "[", "\"previous_train_steps\"", "]", "# Create eval spec to read in our validation data", "eval_spec", "=", "tf", ".", "estimator", ".", "EvalSpec", "(", "input_fn", "=", "read_dataset", "(", "filename", "=", "args", "[", "\"eval_file_pattern\"", "]", ",", "mode", "=", "tf", ".", "estimator", ".", "ModeKeys", ".", "EVAL", ",", "batch_size", "=", "args", "[", "\"eval_batch_size\"", "]", ",", "params", "=", "args", ")", ",", "steps", "=", "None", ",", "start_delay_secs", "=", "args", "[", "\"start_delay_secs\"", "]", ",", "# start eval after N secs", "throttle_secs", "=", "args", "[", "\"throttle_secs\"", "]", ")", "# evaluate every N secs", "if", "args", "[", "\"model_type\"", "]", "==", "\"pca\"", ":", "# Create train spec to read in our training data", "train_spec", "=", "tf", ".", "estimator", ".", "TrainSpec", "(", "input_fn", "=", "read_dataset", "(", "filename", "=", "args", "[", "\"train_file_pattern\"", "]", ",", "mode", "=", "tf", ".", "estimator", ".", "ModeKeys", ".", "EVAL", ",", "# read through train data once", "batch_size", "=", "args", "[", "\"train_batch_size\"", "]", ",", "params", "=", "args", ")", ",", "max_steps", "=", "max_steps", ")", "# Check to see if we need to additionally tune principal components", "if", "not", "args", "[", "\"autotune_principal_components\"", "]", ":", "# Create train and evaluate loop to train and evaluate our estimator", "tf", ".", "estimator", ".", "train_and_evaluate", "(", "estimator", "=", "estimator", ",", "train_spec", "=", "train_spec", ",", "eval_spec", "=", "eval_spec", ")", "else", ":", "if", "(", "args", "[", "\"k_principal_components_time\"", "]", "is", "None", "or", "args", "[", "\"k_principal_components_feat\"", "]", "is", "None", ")", ":", "# Create train and evaluate loop to train and evaluate our estimator", "tf", ".", "estimator", ".", "train_and_evaluate", "(", "estimator", "=", "estimator", ",", "train_spec", "=", "train_spec", ",", "eval_spec", "=", "eval_spec", ")", "else", ":", "# dense_autoencoder or lstm_enc_dec_autoencoder", "# Create early stopping hook to help reduce overfitting", "early_stopping_hook", "=", "tf", ".", "contrib", ".", "estimator", ".", "stop_if_no_decrease_hook", "(", "estimator", "=", "estimator", ",", "metric_name", "=", "\"rmse\"", ",", "max_steps_without_decrease", "=", "100", ",", "min_steps", "=", "1000", ",", "run_every_secs", "=", "60", ",", "run_every_steps", "=", "None", ")", "# Create train spec to read in our training data", "train_spec", "=", "tf", ".", "estimator", ".", "TrainSpec", "(", "input_fn", "=", "read_dataset", "(", "filename", "=", "args", "[", "\"train_file_pattern\"", "]", ",", "mode", "=", "tf", ".", "estimator", ".", "ModeKeys", ".", "TRAIN", ",", "batch_size", "=", "args", "[", "\"train_batch_size\"", "]", ",", "params", "=", "args", ")", ",", "max_steps", "=", "max_steps", ",", "hooks", "=", "[", "early_stopping_hook", "]", ")", "# Create train and evaluate loop to train and evaluate our estimator", "tf", ".", "estimator", ".", "train_and_evaluate", "(", "estimator", "=", "estimator", ",", "train_spec", "=", "train_spec", ",", "eval_spec", "=", "eval_spec", ")", "else", ":", "# Calculate max_steps", "max_steps", "=", "args", "[", "\"train_examples\"", "]", "//", "args", "[", "\"train_batch_size\"", "]", "max_steps", "+=", "args", "[", "\"previous_train_steps\"", "]", "# if args[\"training_mode\"] == \"calculate_error_distribution_statistics\"", "# Get final mahalanobis statistics over the entire val_1 dataset", "# if args[\"training_mode\"] == \"tune_anomaly_thresholds\"", "# Tune anomaly thresholds using val_2 and val_anom datasets", "train_spec", "=", "tf", ".", "estimator", ".", "TrainSpec", "(", "input_fn", "=", "read_dataset", "(", "filename", "=", "args", "[", "\"train_file_pattern\"", "]", ",", "mode", "=", "tf", ".", "estimator", ".", "ModeKeys", ".", "EVAL", ",", "# read through val data once", "batch_size", "=", "args", "[", "\"train_batch_size\"", "]", ",", "params", "=", "args", ")", ",", "max_steps", "=", "max_steps", ")", "if", "args", "[", "\"training_mode\"", "]", "==", "\"calculate_error_distribution_statistics\"", ":", "# Don't create exporter for serving yet since anomaly thresholds", "# aren't trained yet", "exporter", "=", "None", "elif", "args", "[", "\"training_mode\"", "]", "==", "\"tune_anomaly_thresholds\"", ":", "# Create exporter that uses serving_input_fn to create saved_model", "# for serving", "exporter", "=", "tf", ".", "estimator", ".", "LatestExporter", "(", "name", "=", "\"exporter\"", ",", "serving_input_receiver_fn", "=", "lambda", ":", "serving_input_fn", "(", "args", "[", "\"feat_names\"", "]", ",", "args", "[", "\"seq_len\"", "]", ")", ")", "else", ":", "print", "(", "\"{0} isn't a valid training mode!\"", ".", "format", "(", "args", "[", "\"training_mode\"", "]", ")", ")", "# Create eval spec to read in our validation data and export our model", "eval_spec", "=", "tf", ".", "estimator", ".", "EvalSpec", "(", "input_fn", "=", "read_dataset", "(", "filename", "=", "args", "[", "\"eval_file_pattern\"", "]", ",", "mode", "=", "tf", ".", "estimator", ".", "ModeKeys", ".", "EVAL", ",", "batch_size", "=", "args", "[", "\"eval_batch_size\"", "]", ",", "params", "=", "args", ")", ",", "steps", "=", "None", ",", "exporters", "=", "exporter", ",", "start_delay_secs", "=", "args", "[", "\"start_delay_secs\"", "]", ",", "# start eval after N secs", "throttle_secs", "=", "args", "[", "\"throttle_secs\"", "]", ")", "# evaluate every N secs", "if", "(", "args", "[", "\"training_mode\"", "]", "==", "\"calculate_error_distribution_statistics\"", "or", "args", "[", "\"training_mode\"", "]", "==", "\"tune_anomaly_thresholds\"", ")", ":", "# Create train and evaluate loop to train and evaluate our estimator", "tf", ".", "estimator", ".", "train_and_evaluate", "(", "estimator", "=", "estimator", ",", "train_spec", "=", "train_spec", ",", "eval_spec", "=", "eval_spec", ")", "return" ]
[ 10, 0 ]
[ 138, 8 ]
python
en
['en', 'en', 'en']
True
ImagePalette.getdata
(self)
Get palette contents in format suitable for the low-level ``im.putpalette`` primitive. .. warning:: This method is experimental.
Get palette contents in format suitable for the low-level ``im.putpalette`` primitive.
def getdata(self): """ Get palette contents in format suitable for the low-level ``im.putpalette`` primitive. .. warning:: This method is experimental. """ if self.rawmode: return self.rawmode, self.palette return self.mode, self.tobytes()
[ "def", "getdata", "(", "self", ")", ":", "if", "self", ".", "rawmode", ":", "return", "self", ".", "rawmode", ",", "self", ".", "palette", "return", "self", ".", "mode", ",", "self", ".", "tobytes", "(", ")" ]
[ 72, 4 ]
[ 81, 40 ]
python
en
['en', 'error', 'th']
False
ImagePalette.tobytes
(self)
Convert palette to bytes. .. warning:: This method is experimental.
Convert palette to bytes.
def tobytes(self): """Convert palette to bytes. .. warning:: This method is experimental. """ if self.rawmode: raise ValueError("palette contains raw palette data") if isinstance(self.palette, bytes): return self.palette arr = array.array("B", self.palette) return arr.tobytes()
[ "def", "tobytes", "(", "self", ")", ":", "if", "self", ".", "rawmode", ":", "raise", "ValueError", "(", "\"palette contains raw palette data\"", ")", "if", "isinstance", "(", "self", ".", "palette", ",", "bytes", ")", ":", "return", "self", ".", "palette", "arr", "=", "array", ".", "array", "(", "\"B\"", ",", "self", ".", "palette", ")", "return", "arr", ".", "tobytes", "(", ")" ]
[ 83, 4 ]
[ 93, 28 ]
python
en
['en', 'en', 'en']
True
ImagePalette.getcolor
(self, color, image=None)
Given an rgb tuple, allocate palette entry. .. warning:: This method is experimental.
Given an rgb tuple, allocate palette entry.
def getcolor(self, color, image=None): """Given an rgb tuple, allocate palette entry. .. warning:: This method is experimental. """ if self.rawmode: raise ValueError("palette contains raw palette data") if isinstance(color, tuple): if self.mode == "RGB": if len(color) == 4 and color[3] == 255: color = color[:3] elif self.mode == "RGBA": if len(color) == 3: color += (255,) try: return self.colors[color] except KeyError as e: # allocate new color slot if not isinstance(self.palette, bytearray): self._palette = bytearray(self.palette) index = len(self.palette) // 3 special_colors = () if image: special_colors = ( image.info.get("background"), image.info.get("transparency"), ) while index in special_colors: index += 1 if index >= 256: if image: # Search for an unused index for i, count in reversed(list(enumerate(image.histogram()))): if count == 0 and i not in special_colors: index = i break if index >= 256: raise ValueError("cannot allocate more than 256 colors") from e self.colors[color] = index if index * 3 < len(self.palette): self._palette = ( self.palette[: index * 3] + bytes(color) + self.palette[index * 3 + 3 :] ) else: self._palette += bytes(color) self.dirty = 1 return index else: raise ValueError(f"unknown color specifier: {repr(color)}")
[ "def", "getcolor", "(", "self", ",", "color", ",", "image", "=", "None", ")", ":", "if", "self", ".", "rawmode", ":", "raise", "ValueError", "(", "\"palette contains raw palette data\"", ")", "if", "isinstance", "(", "color", ",", "tuple", ")", ":", "if", "self", ".", "mode", "==", "\"RGB\"", ":", "if", "len", "(", "color", ")", "==", "4", "and", "color", "[", "3", "]", "==", "255", ":", "color", "=", "color", "[", ":", "3", "]", "elif", "self", ".", "mode", "==", "\"RGBA\"", ":", "if", "len", "(", "color", ")", "==", "3", ":", "color", "+=", "(", "255", ",", ")", "try", ":", "return", "self", ".", "colors", "[", "color", "]", "except", "KeyError", "as", "e", ":", "# allocate new color slot", "if", "not", "isinstance", "(", "self", ".", "palette", ",", "bytearray", ")", ":", "self", ".", "_palette", "=", "bytearray", "(", "self", ".", "palette", ")", "index", "=", "len", "(", "self", ".", "palette", ")", "//", "3", "special_colors", "=", "(", ")", "if", "image", ":", "special_colors", "=", "(", "image", ".", "info", ".", "get", "(", "\"background\"", ")", ",", "image", ".", "info", ".", "get", "(", "\"transparency\"", ")", ",", ")", "while", "index", "in", "special_colors", ":", "index", "+=", "1", "if", "index", ">=", "256", ":", "if", "image", ":", "# Search for an unused index", "for", "i", ",", "count", "in", "reversed", "(", "list", "(", "enumerate", "(", "image", ".", "histogram", "(", ")", ")", ")", ")", ":", "if", "count", "==", "0", "and", "i", "not", "in", "special_colors", ":", "index", "=", "i", "break", "if", "index", ">=", "256", ":", "raise", "ValueError", "(", "\"cannot allocate more than 256 colors\"", ")", "from", "e", "self", ".", "colors", "[", "color", "]", "=", "index", "if", "index", "*", "3", "<", "len", "(", "self", ".", "palette", ")", ":", "self", ".", "_palette", "=", "(", "self", ".", "palette", "[", ":", "index", "*", "3", "]", "+", "bytes", "(", "color", ")", "+", "self", ".", "palette", "[", "index", "*", "3", "+", "3", ":", "]", ")", "else", ":", "self", ".", "_palette", "+=", "bytes", "(", "color", ")", "self", ".", "dirty", "=", "1", "return", "index", "else", ":", "raise", "ValueError", "(", "f\"unknown color specifier: {repr(color)}\"", ")" ]
[ 98, 4 ]
[ 148, 71 ]
python
en
['en', 'en', 'it']
True
ImagePalette.save
(self, fp)
Save palette to text file. .. warning:: This method is experimental.
Save palette to text file.
def save(self, fp): """Save palette to text file. .. warning:: This method is experimental. """ if self.rawmode: raise ValueError("palette contains raw palette data") if isinstance(fp, str): fp = open(fp, "w") fp.write("# Palette\n") fp.write(f"# Mode: {self.mode}\n") for i in range(256): fp.write(f"{i}") for j in range(i * len(self.mode), (i + 1) * len(self.mode)): try: fp.write(f" {self.palette[j]}") except IndexError: fp.write(" 0") fp.write("\n") fp.close()
[ "def", "save", "(", "self", ",", "fp", ")", ":", "if", "self", ".", "rawmode", ":", "raise", "ValueError", "(", "\"palette contains raw palette data\"", ")", "if", "isinstance", "(", "fp", ",", "str", ")", ":", "fp", "=", "open", "(", "fp", ",", "\"w\"", ")", "fp", ".", "write", "(", "\"# Palette\\n\"", ")", "fp", ".", "write", "(", "f\"# Mode: {self.mode}\\n\"", ")", "for", "i", "in", "range", "(", "256", ")", ":", "fp", ".", "write", "(", "f\"{i}\"", ")", "for", "j", "in", "range", "(", "i", "*", "len", "(", "self", ".", "mode", ")", ",", "(", "i", "+", "1", ")", "*", "len", "(", "self", ".", "mode", ")", ")", ":", "try", ":", "fp", ".", "write", "(", "f\" {self.palette[j]}\"", ")", "except", "IndexError", ":", "fp", ".", "write", "(", "\" 0\"", ")", "fp", ".", "write", "(", "\"\\n\"", ")", "fp", ".", "close", "(", ")" ]
[ 150, 4 ]
[ 169, 18 ]
python
en
['en', 'en', 'en']
True
load_coco_classes
(coco)
Loads the class to label mapping (and inverse) for COCO.
Loads the class to label mapping (and inverse) for COCO.
def load_coco_classes(coco): """ Loads the class to label mapping (and inverse) for COCO. """ # load class names (name -> label) categories = coco.loadCats(coco.getCatIds()) categories.sort(key=lambda x: x["id"]) classes = {} coco_labels = {} coco_labels_inverse = {} for c in categories: coco_labels[len(classes)] = c["id"] coco_labels_inverse[c["id"]] = len(classes) classes[c["name"]] = len(classes) return classes, coco_labels, coco_labels_inverse
[ "def", "load_coco_classes", "(", "coco", ")", ":", "# load class names (name -> label)", "categories", "=", "coco", ".", "loadCats", "(", "coco", ".", "getCatIds", "(", ")", ")", "categories", ".", "sort", "(", "key", "=", "lambda", "x", ":", "x", "[", "\"id\"", "]", ")", "classes", "=", "{", "}", "coco_labels", "=", "{", "}", "coco_labels_inverse", "=", "{", "}", "for", "c", "in", "categories", ":", "coco_labels", "[", "len", "(", "classes", ")", "]", "=", "c", "[", "\"id\"", "]", "coco_labels_inverse", "[", "c", "[", "\"id\"", "]", "]", "=", "len", "(", "classes", ")", "classes", "[", "c", "[", "\"name\"", "]", "]", "=", "len", "(", "classes", ")", "return", "classes", ",", "coco_labels", ",", "coco_labels_inverse" ]
[ 21, 0 ]
[ 36, 52 ]
python
en
['en', 'en', 'en']
True
_execfile
(filename, globals, locals=None)
Python 3 implementation of execfile.
Python 3 implementation of execfile.
def _execfile(filename, globals, locals=None): """ Python 3 implementation of execfile. """ mode = 'rb' with open(filename, mode) as stream: script = stream.read() if locals is None: locals = globals code = compile(script, filename, 'exec') exec(code, globals, locals)
[ "def", "_execfile", "(", "filename", ",", "globals", ",", "locals", "=", "None", ")", ":", "mode", "=", "'rb'", "with", "open", "(", "filename", ",", "mode", ")", "as", "stream", ":", "script", "=", "stream", ".", "read", "(", ")", "if", "locals", "is", "None", ":", "locals", "=", "globals", "code", "=", "compile", "(", "script", ",", "filename", ",", "'exec'", ")", "exec", "(", "code", ",", "globals", ",", "locals", ")" ]
[ 34, 0 ]
[ 44, 31 ]
python
en
['en', 'error', 'th']
False
override_temp
(replacement)
Monkey-patch tempfile.tempdir with replacement, ensuring it exists
Monkey-patch tempfile.tempdir with replacement, ensuring it exists
def override_temp(replacement): """ Monkey-patch tempfile.tempdir with replacement, ensuring it exists """ pkg_resources.py31compat.makedirs(replacement, exist_ok=True) saved = tempfile.tempdir tempfile.tempdir = replacement try: yield finally: tempfile.tempdir = saved
[ "def", "override_temp", "(", "replacement", ")", ":", "pkg_resources", ".", "py31compat", ".", "makedirs", "(", "replacement", ",", "exist_ok", "=", "True", ")", "saved", "=", "tempfile", ".", "tempdir", "tempfile", ".", "tempdir", "=", "replacement", "try", ":", "yield", "finally", ":", "tempfile", ".", "tempdir", "=", "saved" ]
[ 68, 0 ]
[ 81, 32 ]
python
en
['en', 'error', 'th']
False
save_modules
()
Context in which imported modules are saved. Translates exceptions internal to the context into the equivalent exception outside the context.
Context in which imported modules are saved.
def save_modules(): """ Context in which imported modules are saved. Translates exceptions internal to the context into the equivalent exception outside the context. """ saved = sys.modules.copy() with ExceptionSaver() as saved_exc: yield saved sys.modules.update(saved) # remove any modules imported since del_modules = ( mod_name for mod_name in sys.modules if mod_name not in saved # exclude any encodings modules. See #285 and not mod_name.startswith('encodings.') ) _clear_modules(del_modules) saved_exc.resume()
[ "def", "save_modules", "(", ")", ":", "saved", "=", "sys", ".", "modules", ".", "copy", "(", ")", "with", "ExceptionSaver", "(", ")", "as", "saved_exc", ":", "yield", "saved", "sys", ".", "modules", ".", "update", "(", "saved", ")", "# remove any modules imported since", "del_modules", "=", "(", "mod_name", "for", "mod_name", "in", "sys", ".", "modules", "if", "mod_name", "not", "in", "saved", "# exclude any encodings modules. See #285", "and", "not", "mod_name", ".", "startswith", "(", "'encodings.'", ")", ")", "_clear_modules", "(", "del_modules", ")", "saved_exc", ".", "resume", "(", ")" ]
[ 144, 0 ]
[ 165, 22 ]
python
en
['en', 'error', 'th']
False
_needs_hiding
(mod_name)
>>> _needs_hiding('setuptools') True >>> _needs_hiding('pkg_resources') True >>> _needs_hiding('setuptools_plugin') False >>> _needs_hiding('setuptools.__init__') True >>> _needs_hiding('distutils') True >>> _needs_hiding('os') False >>> _needs_hiding('Cython') True
>>> _needs_hiding('setuptools') True >>> _needs_hiding('pkg_resources') True >>> _needs_hiding('setuptools_plugin') False >>> _needs_hiding('setuptools.__init__') True >>> _needs_hiding('distutils') True >>> _needs_hiding('os') False >>> _needs_hiding('Cython') True
def _needs_hiding(mod_name): """ >>> _needs_hiding('setuptools') True >>> _needs_hiding('pkg_resources') True >>> _needs_hiding('setuptools_plugin') False >>> _needs_hiding('setuptools.__init__') True >>> _needs_hiding('distutils') True >>> _needs_hiding('os') False >>> _needs_hiding('Cython') True """ pattern = re.compile(r'(setuptools|pkg_resources|distutils|Cython)(\.|$)') return bool(pattern.match(mod_name))
[ "def", "_needs_hiding", "(", "mod_name", ")", ":", "pattern", "=", "re", ".", "compile", "(", "r'(setuptools|pkg_resources|distutils|Cython)(\\.|$)'", ")", "return", "bool", "(", "pattern", ".", "match", "(", "mod_name", ")", ")" ]
[ 197, 0 ]
[ 215, 40 ]
python
en
['en', 'error', 'th']
False
hide_setuptools
()
Remove references to setuptools' modules from sys.modules to allow the invocation to import the most appropriate setuptools. This technique is necessary to avoid issues such as #315 where setuptools upgrading itself would fail to find a function declared in the metadata.
Remove references to setuptools' modules from sys.modules to allow the invocation to import the most appropriate setuptools. This technique is necessary to avoid issues such as #315 where setuptools upgrading itself would fail to find a function declared in the metadata.
def hide_setuptools(): """ Remove references to setuptools' modules from sys.modules to allow the invocation to import the most appropriate setuptools. This technique is necessary to avoid issues such as #315 where setuptools upgrading itself would fail to find a function declared in the metadata. """ modules = filter(_needs_hiding, sys.modules) _clear_modules(modules)
[ "def", "hide_setuptools", "(", ")", ":", "modules", "=", "filter", "(", "_needs_hiding", ",", "sys", ".", "modules", ")", "_clear_modules", "(", "modules", ")" ]
[ 218, 0 ]
[ 226, 27 ]
python
en
['en', 'error', 'th']
False
run_setup
(setup_script, args)
Run a distutils setup script, sandboxed in its directory
Run a distutils setup script, sandboxed in its directory
def run_setup(setup_script, args): """Run a distutils setup script, sandboxed in its directory""" setup_dir = os.path.abspath(os.path.dirname(setup_script)) with setup_context(setup_dir): try: sys.argv[:] = [setup_script] + list(args) sys.path.insert(0, setup_dir) # reset to include setup dir, w/clean callback list working_set.__init__() working_set.callbacks.append(lambda dist: dist.activate()) # __file__ should be a byte string on Python 2 (#712) dunder_file = ( setup_script if isinstance(setup_script, str) else setup_script.encode(sys.getfilesystemencoding()) ) with DirectorySandbox(setup_dir): ns = dict(__file__=dunder_file, __name__='__main__') _execfile(setup_script, ns) except SystemExit as v: if v.args and v.args[0]: raise
[ "def", "run_setup", "(", "setup_script", ",", "args", ")", ":", "setup_dir", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "setup_script", ")", ")", "with", "setup_context", "(", "setup_dir", ")", ":", "try", ":", "sys", ".", "argv", "[", ":", "]", "=", "[", "setup_script", "]", "+", "list", "(", "args", ")", "sys", ".", "path", ".", "insert", "(", "0", ",", "setup_dir", ")", "# reset to include setup dir, w/clean callback list", "working_set", ".", "__init__", "(", ")", "working_set", ".", "callbacks", ".", "append", "(", "lambda", "dist", ":", "dist", ".", "activate", "(", ")", ")", "# __file__ should be a byte string on Python 2 (#712)", "dunder_file", "=", "(", "setup_script", "if", "isinstance", "(", "setup_script", ",", "str", ")", "else", "setup_script", ".", "encode", "(", "sys", ".", "getfilesystemencoding", "(", ")", ")", ")", "with", "DirectorySandbox", "(", "setup_dir", ")", ":", "ns", "=", "dict", "(", "__file__", "=", "dunder_file", ",", "__name__", "=", "'__main__'", ")", "_execfile", "(", "setup_script", ",", "ns", ")", "except", "SystemExit", "as", "v", ":", "if", "v", ".", "args", "and", "v", ".", "args", "[", "0", "]", ":", "raise" ]
[ 229, 0 ]
[ 252, 21 ]
python
en
['en', 'lb', 'en']
True
UnpickleableException.dump
(type, exc)
Always return a dumped (pickled) type and exc. If exc can't be pickled, wrap it in UnpickleableException first.
Always return a dumped (pickled) type and exc. If exc can't be pickled, wrap it in UnpickleableException first.
def dump(type, exc): """ Always return a dumped (pickled) type and exc. If exc can't be pickled, wrap it in UnpickleableException first. """ try: return pickle.dumps(type), pickle.dumps(exc) except Exception: # get UnpickleableException inside the sandbox from setuptools.sandbox import UnpickleableException as cls return cls.dump(cls, cls(repr(exc)))
[ "def", "dump", "(", "type", ",", "exc", ")", ":", "try", ":", "return", "pickle", ".", "dumps", "(", "type", ")", ",", "pickle", ".", "dumps", "(", "exc", ")", "except", "Exception", ":", "# get UnpickleableException inside the sandbox", "from", "setuptools", ".", "sandbox", "import", "UnpickleableException", "as", "cls", "return", "cls", ".", "dump", "(", "cls", ",", "cls", "(", "repr", "(", "exc", ")", ")", ")" ]
[ 100, 4 ]
[ 110, 48 ]
python
en
['en', 'error', 'th']
False
ExceptionSaver.resume
(self)
restore and re-raise any exception
restore and re-raise any exception
def resume(self): "restore and re-raise any exception" if '_saved' not in vars(self): return type, exc = map(pickle.loads, self._saved) six.reraise(type, exc, self._tb)
[ "def", "resume", "(", "self", ")", ":", "if", "'_saved'", "not", "in", "vars", "(", "self", ")", ":", "return", "type", ",", "exc", "=", "map", "(", "pickle", ".", "loads", ",", "self", ".", "_saved", ")", "six", ".", "reraise", "(", "type", ",", "exc", ",", "self", ".", "_tb", ")" ]
[ 133, 4 ]
[ 140, 40 ]
python
en
['en', 'en', 'en']
True
AbstractSandbox.run
(self, func)
Run 'func' under os sandboxing
Run 'func' under os sandboxing
def run(self, func): """Run 'func' under os sandboxing""" with self: return func()
[ "def", "run", "(", "self", ",", "func", ")", ":", "with", "self", ":", "return", "func", "(", ")" ]
[ 285, 4 ]
[ 288, 25 ]
python
es
['es', 'jv', 'pt']
False
AbstractSandbox._validate_path
(self, path)
Called to remap or validate any path, whether input or output
Called to remap or validate any path, whether input or output
def _validate_path(self, path): """Called to remap or validate any path, whether input or output""" return path
[ "def", "_validate_path", "(", "self", ",", "path", ")", ":", "return", "path" ]
[ 355, 4 ]
[ 357, 19 ]
python
en
['en', 'en', 'en']
True
AbstractSandbox._remap_input
(self, operation, path, *args, **kw)
Called for path inputs
Called for path inputs
def _remap_input(self, operation, path, *args, **kw): """Called for path inputs""" return self._validate_path(path)
[ "def", "_remap_input", "(", "self", ",", "operation", ",", "path", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "return", "self", ".", "_validate_path", "(", "path", ")" ]
[ 359, 4 ]
[ 361, 40 ]
python
en
['en', 'en', 'en']
True
AbstractSandbox._remap_output
(self, operation, path)
Called for path outputs
Called for path outputs
def _remap_output(self, operation, path): """Called for path outputs""" return self._validate_path(path)
[ "def", "_remap_output", "(", "self", ",", "operation", ",", "path", ")", ":", "return", "self", ".", "_validate_path", "(", "path", ")" ]
[ 363, 4 ]
[ 365, 40 ]
python
en
['en', 'en', 'en']
True
AbstractSandbox._remap_pair
(self, operation, src, dst, *args, **kw)
Called for path pairs like rename, link, and symlink operations
Called for path pairs like rename, link, and symlink operations
def _remap_pair(self, operation, src, dst, *args, **kw): """Called for path pairs like rename, link, and symlink operations""" return ( self._remap_input(operation + '-from', src, *args, **kw), self._remap_input(operation + '-to', dst, *args, **kw) )
[ "def", "_remap_pair", "(", "self", ",", "operation", ",", "src", ",", "dst", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "return", "(", "self", ".", "_remap_input", "(", "operation", "+", "'-from'", ",", "src", ",", "*", "args", ",", "*", "*", "kw", ")", ",", "self", ".", "_remap_input", "(", "operation", "+", "'-to'", ",", "dst", ",", "*", "args", ",", "*", "*", "kw", ")", ")" ]
[ 367, 4 ]
[ 372, 9 ]
python
en
['en', 'en', 'en']
True
DirectorySandbox._remap_input
(self, operation, path, *args, **kw)
Called for path inputs
Called for path inputs
def _remap_input(self, operation, path, *args, **kw): """Called for path inputs""" if operation in self.write_ops and not self._ok(path): self._violation(operation, os.path.realpath(path), *args, **kw) return path
[ "def", "_remap_input", "(", "self", ",", "operation", ",", "path", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "if", "operation", "in", "self", ".", "write_ops", "and", "not", "self", ".", "_ok", "(", "path", ")", ":", "self", ".", "_violation", "(", "operation", ",", "os", ".", "path", ".", "realpath", "(", "path", ")", ",", "*", "args", ",", "*", "*", "kw", ")", "return", "path" ]
[ 448, 4 ]
[ 452, 19 ]
python
en
['en', 'en', 'en']
True
DirectorySandbox._remap_pair
(self, operation, src, dst, *args, **kw)
Called for path pairs like rename, link, and symlink operations
Called for path pairs like rename, link, and symlink operations
def _remap_pair(self, operation, src, dst, *args, **kw): """Called for path pairs like rename, link, and symlink operations""" if not self._ok(src) or not self._ok(dst): self._violation(operation, src, dst, *args, **kw) return (src, dst)
[ "def", "_remap_pair", "(", "self", ",", "operation", ",", "src", ",", "dst", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "if", "not", "self", ".", "_ok", "(", "src", ")", "or", "not", "self", ".", "_ok", "(", "dst", ")", ":", "self", ".", "_violation", "(", "operation", ",", "src", ",", "dst", ",", "*", "args", ",", "*", "*", "kw", ")", "return", "(", "src", ",", "dst", ")" ]
[ 454, 4 ]
[ 458, 25 ]
python
en
['en', 'en', 'en']
True
DirectorySandbox.open
(self, file, flags, mode=0o777, *args, **kw)
Called for low-level os.open()
Called for low-level os.open()
def open(self, file, flags, mode=0o777, *args, **kw): """Called for low-level os.open()""" if flags & WRITE_FLAGS and not self._ok(file): self._violation("os.open", file, flags, mode, *args, **kw) return _os.open(file, flags, mode, *args, **kw)
[ "def", "open", "(", "self", ",", "file", ",", "flags", ",", "mode", "=", "0o777", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "if", "flags", "&", "WRITE_FLAGS", "and", "not", "self", ".", "_ok", "(", "file", ")", ":", "self", ".", "_violation", "(", "\"os.open\"", ",", "file", ",", "flags", ",", "mode", ",", "*", "args", ",", "*", "*", "kw", ")", "return", "_os", ".", "open", "(", "file", ",", "flags", ",", "mode", ",", "*", "args", ",", "*", "*", "kw", ")" ]
[ 460, 4 ]
[ 464, 55 ]
python
en
['en', 'en', 'en']
True
transform
(data, ops=[])
transform
transform
def transform(data, ops=[]): """ transform """ for op in ops: data = op(data) return data
[ "def", "transform", "(", "data", ",", "ops", "=", "[", "]", ")", ":", "for", "op", "in", "ops", ":", "data", "=", "op", "(", "data", ")", "return", "data" ]
[ 39, 0 ]
[ 43, 15 ]
python
en
['en', 'ru', 'en']
False
wsgi_to_bytes
(data)
coerce wsgi unicode represented bytes to real ones
coerce wsgi unicode represented bytes to real ones
def wsgi_to_bytes(data): """coerce wsgi unicode represented bytes to real ones""" if isinstance(data, bytes): return data return data.encode("latin1")
[ "def", "wsgi_to_bytes", "(", "data", ")", ":", "if", "isinstance", "(", "data", ",", "bytes", ")", ":", "return", "data", "return", "data", ".", "encode", "(", "\"latin1\"", ")" ]
[ 199, 0 ]
[ 203, 32 ]
python
en
['en', 'sn', 'en']
True
quote_header_value
(value, extra_chars="", allow_token=True)
Quote a header value if necessary. .. versionadded:: 0.5 :param value: the value to quote. :param extra_chars: a list of extra characters to skip quoting. :param allow_token: if this is enabled token values are returned unchanged.
Quote a header value if necessary.
def quote_header_value(value, extra_chars="", allow_token=True): """Quote a header value if necessary. .. versionadded:: 0.5 :param value: the value to quote. :param extra_chars: a list of extra characters to skip quoting. :param allow_token: if this is enabled token values are returned unchanged. """ if isinstance(value, bytes): value = bytes_to_wsgi(value) value = str(value) if allow_token: token_chars = _token_chars | set(extra_chars) if set(value).issubset(token_chars): return value return '"%s"' % value.replace("\\", "\\\\").replace('"', '\\"')
[ "def", "quote_header_value", "(", "value", ",", "extra_chars", "=", "\"\"", ",", "allow_token", "=", "True", ")", ":", "if", "isinstance", "(", "value", ",", "bytes", ")", ":", "value", "=", "bytes_to_wsgi", "(", "value", ")", "value", "=", "str", "(", "value", ")", "if", "allow_token", ":", "token_chars", "=", "_token_chars", "|", "set", "(", "extra_chars", ")", "if", "set", "(", "value", ")", ".", "issubset", "(", "token_chars", ")", ":", "return", "value", "return", "'\"%s\"'", "%", "value", ".", "replace", "(", "\"\\\\\"", ",", "\"\\\\\\\\\"", ")", ".", "replace", "(", "'\"'", ",", "'\\\\\"'", ")" ]
[ 214, 0 ]
[ 231, 67 ]
python
en
['en', 'en', 'en']
True
unquote_header_value
(value, is_filename=False)
r"""Unquotes a header value. (Reversal of :func:`quote_header_value`). This does not use the real unquoting but what browsers are actually using for quoting. .. versionadded:: 0.5 :param value: the header value to unquote.
r"""Unquotes a header value. (Reversal of :func:`quote_header_value`). This does not use the real unquoting but what browsers are actually using for quoting.
def unquote_header_value(value, is_filename=False): r"""Unquotes a header value. (Reversal of :func:`quote_header_value`). This does not use the real unquoting but what browsers are actually using for quoting. .. versionadded:: 0.5 :param value: the header value to unquote. """ if value and value[0] == value[-1] == '"': # this is not the real unquoting, but fixing this so that the # RFC is met will result in bugs with internet explorer and # probably some other browsers as well. IE for example is # uploading files with "C:\foo\bar.txt" as filename value = value[1:-1] # if this is a filename and the starting characters look like # a UNC path, then just return the value without quotes. Using the # replace sequence below on a UNC path has the effect of turning # the leading double slash into a single slash and then # _fix_ie_filename() doesn't work correctly. See #458. if not is_filename or value[:2] != "\\\\": return value.replace("\\\\", "\\").replace('\\"', '"') return value
[ "def", "unquote_header_value", "(", "value", ",", "is_filename", "=", "False", ")", ":", "if", "value", "and", "value", "[", "0", "]", "==", "value", "[", "-", "1", "]", "==", "'\"'", ":", "# this is not the real unquoting, but fixing this so that the", "# RFC is met will result in bugs with internet explorer and", "# probably some other browsers as well. IE for example is", "# uploading files with \"C:\\foo\\bar.txt\" as filename", "value", "=", "value", "[", "1", ":", "-", "1", "]", "# if this is a filename and the starting characters look like", "# a UNC path, then just return the value without quotes. Using the", "# replace sequence below on a UNC path has the effect of turning", "# the leading double slash into a single slash and then", "# _fix_ie_filename() doesn't work correctly. See #458.", "if", "not", "is_filename", "or", "value", "[", ":", "2", "]", "!=", "\"\\\\\\\\\"", ":", "return", "value", ".", "replace", "(", "\"\\\\\\\\\"", ",", "\"\\\\\"", ")", ".", "replace", "(", "'\\\\\"'", ",", "'\"'", ")", "return", "value" ]
[ 234, 0 ]
[ 257, 16 ]
python
en
['en', 'en', 'en']
True
dump_options_header
(header, options)
The reverse function to :func:`parse_options_header`. :param header: the header to dump :param options: a dict of options to append.
The reverse function to :func:`parse_options_header`.
def dump_options_header(header, options): """The reverse function to :func:`parse_options_header`. :param header: the header to dump :param options: a dict of options to append. """ segments = [] if header is not None: segments.append(header) for key, value in iteritems(options): if value is None: segments.append(key) else: segments.append("%s=%s" % (key, quote_header_value(value))) return "; ".join(segments)
[ "def", "dump_options_header", "(", "header", ",", "options", ")", ":", "segments", "=", "[", "]", "if", "header", "is", "not", "None", ":", "segments", ".", "append", "(", "header", ")", "for", "key", ",", "value", "in", "iteritems", "(", "options", ")", ":", "if", "value", "is", "None", ":", "segments", ".", "append", "(", "key", ")", "else", ":", "segments", ".", "append", "(", "\"%s=%s\"", "%", "(", "key", ",", "quote_header_value", "(", "value", ")", ")", ")", "return", "\"; \"", ".", "join", "(", "segments", ")" ]
[ 260, 0 ]
[ 274, 30 ]
python
en
['en', 'en', 'en']
True
dump_header
(iterable, allow_token=True)
Dump an HTTP header again. This is the reversal of :func:`parse_list_header`, :func:`parse_set_header` and :func:`parse_dict_header`. This also quotes strings that include an equals sign unless you pass it as dict of key, value pairs. >>> dump_header({'foo': 'bar baz'}) 'foo="bar baz"' >>> dump_header(('foo', 'bar baz')) 'foo, "bar baz"' :param iterable: the iterable or dict of values to quote. :param allow_token: if set to `False` tokens as values are disallowed. See :func:`quote_header_value` for more details.
Dump an HTTP header again. This is the reversal of :func:`parse_list_header`, :func:`parse_set_header` and :func:`parse_dict_header`. This also quotes strings that include an equals sign unless you pass it as dict of key, value pairs.
def dump_header(iterable, allow_token=True): """Dump an HTTP header again. This is the reversal of :func:`parse_list_header`, :func:`parse_set_header` and :func:`parse_dict_header`. This also quotes strings that include an equals sign unless you pass it as dict of key, value pairs. >>> dump_header({'foo': 'bar baz'}) 'foo="bar baz"' >>> dump_header(('foo', 'bar baz')) 'foo, "bar baz"' :param iterable: the iterable or dict of values to quote. :param allow_token: if set to `False` tokens as values are disallowed. See :func:`quote_header_value` for more details. """ if isinstance(iterable, dict): items = [] for key, value in iteritems(iterable): if value is None: items.append(key) else: items.append( "%s=%s" % (key, quote_header_value(value, allow_token=allow_token)) ) else: items = [quote_header_value(x, allow_token=allow_token) for x in iterable] return ", ".join(items)
[ "def", "dump_header", "(", "iterable", ",", "allow_token", "=", "True", ")", ":", "if", "isinstance", "(", "iterable", ",", "dict", ")", ":", "items", "=", "[", "]", "for", "key", ",", "value", "in", "iteritems", "(", "iterable", ")", ":", "if", "value", "is", "None", ":", "items", ".", "append", "(", "key", ")", "else", ":", "items", ".", "append", "(", "\"%s=%s\"", "%", "(", "key", ",", "quote_header_value", "(", "value", ",", "allow_token", "=", "allow_token", ")", ")", ")", "else", ":", "items", "=", "[", "quote_header_value", "(", "x", ",", "allow_token", "=", "allow_token", ")", "for", "x", "in", "iterable", "]", "return", "\", \"", ".", "join", "(", "items", ")" ]
[ 277, 0 ]
[ 303, 27 ]
python
en
['en', 'en', 'en']
True
parse_list_header
(value)
Parse lists as described by RFC 2068 Section 2. In particular, parse comma-separated lists where the elements of the list may include quoted-strings. A quoted-string could contain a comma. A non-quoted string could have quotes in the middle. Quotes are removed automatically after parsing. It basically works like :func:`parse_set_header` just that items may appear multiple times and case sensitivity is preserved. The return value is a standard :class:`list`: >>> parse_list_header('token, "quoted value"') ['token', 'quoted value'] To create a header from the :class:`list` again, use the :func:`dump_header` function. :param value: a string with a list header. :return: :class:`list`
Parse lists as described by RFC 2068 Section 2.
def parse_list_header(value): """Parse lists as described by RFC 2068 Section 2. In particular, parse comma-separated lists where the elements of the list may include quoted-strings. A quoted-string could contain a comma. A non-quoted string could have quotes in the middle. Quotes are removed automatically after parsing. It basically works like :func:`parse_set_header` just that items may appear multiple times and case sensitivity is preserved. The return value is a standard :class:`list`: >>> parse_list_header('token, "quoted value"') ['token', 'quoted value'] To create a header from the :class:`list` again, use the :func:`dump_header` function. :param value: a string with a list header. :return: :class:`list` """ result = [] for item in _parse_list_header(value): if item[:1] == item[-1:] == '"': item = unquote_header_value(item[1:-1]) result.append(item) return result
[ "def", "parse_list_header", "(", "value", ")", ":", "result", "=", "[", "]", "for", "item", "in", "_parse_list_header", "(", "value", ")", ":", "if", "item", "[", ":", "1", "]", "==", "item", "[", "-", "1", ":", "]", "==", "'\"'", ":", "item", "=", "unquote_header_value", "(", "item", "[", "1", ":", "-", "1", "]", ")", "result", ".", "append", "(", "item", ")", "return", "result" ]
[ 306, 0 ]
[ 333, 17 ]
python
en
['en', 'en', 'en']
True
parse_dict_header
(value, cls=dict)
Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict (or any other mapping object created from the type with a dict like interface provided by the `cls` argument): >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. .. versionchanged:: 0.9 Added support for `cls` argument. :param value: a string with a dict header. :param cls: callable to use for storage of parsed results. :return: an instance of `cls`
Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict (or any other mapping object created from the type with a dict like interface provided by the `cls` argument):
def parse_dict_header(value, cls=dict): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict (or any other mapping object created from the type with a dict like interface provided by the `cls` argument): >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. .. versionchanged:: 0.9 Added support for `cls` argument. :param value: a string with a dict header. :param cls: callable to use for storage of parsed results. :return: an instance of `cls` """ result = cls() if not isinstance(value, text_type): # XXX: validate value = bytes_to_wsgi(value) for item in _parse_list_header(value): if "=" not in item: result[item] = None continue name, value = item.split("=", 1) if value[:1] == value[-1:] == '"': value = unquote_header_value(value[1:-1]) result[name] = value return result
[ "def", "parse_dict_header", "(", "value", ",", "cls", "=", "dict", ")", ":", "result", "=", "cls", "(", ")", "if", "not", "isinstance", "(", "value", ",", "text_type", ")", ":", "# XXX: validate", "value", "=", "bytes_to_wsgi", "(", "value", ")", "for", "item", "in", "_parse_list_header", "(", "value", ")", ":", "if", "\"=\"", "not", "in", "item", ":", "result", "[", "item", "]", "=", "None", "continue", "name", ",", "value", "=", "item", ".", "split", "(", "\"=\"", ",", "1", ")", "if", "value", "[", ":", "1", "]", "==", "value", "[", "-", "1", ":", "]", "==", "'\"'", ":", "value", "=", "unquote_header_value", "(", "value", "[", "1", ":", "-", "1", "]", ")", "result", "[", "name", "]", "=", "value", "return", "result" ]
[ 336, 0 ]
[ 374, 17 ]
python
en
['en', 'en', 'en']
True
parse_options_header
(value, multiple=False)
Parse a ``Content-Type`` like header into a tuple with the content type and the options: >>> parse_options_header('text/html; charset=utf8') ('text/html', {'charset': 'utf8'}) This should not be used to parse ``Cache-Control`` like headers that use a slightly different format. For these headers use the :func:`parse_dict_header` function. .. versionchanged:: 0.15 :rfc:`2231` parameter continuations are handled. .. versionadded:: 0.5 :param value: the header to parse. :param multiple: Whether try to parse and return multiple MIME types :return: (mimetype, options) or (mimetype, options, mimetype, options, …) if multiple=True
Parse a ``Content-Type`` like header into a tuple with the content type and the options:
def parse_options_header(value, multiple=False): """Parse a ``Content-Type`` like header into a tuple with the content type and the options: >>> parse_options_header('text/html; charset=utf8') ('text/html', {'charset': 'utf8'}) This should not be used to parse ``Cache-Control`` like headers that use a slightly different format. For these headers use the :func:`parse_dict_header` function. .. versionchanged:: 0.15 :rfc:`2231` parameter continuations are handled. .. versionadded:: 0.5 :param value: the header to parse. :param multiple: Whether try to parse and return multiple MIME types :return: (mimetype, options) or (mimetype, options, mimetype, options, …) if multiple=True """ if not value: return "", {} result = [] value = "," + value.replace("\n", ",") while value: match = _option_header_start_mime_type.match(value) if not match: break result.append(match.group(1)) # mimetype options = {} # Parse options rest = match.group(2) continued_encoding = None while rest: optmatch = _option_header_piece_re.match(rest) if not optmatch: break option, count, encoding, language, option_value = optmatch.groups() # Continuations don't have to supply the encoding after the # first line. If we're in a continuation, track the current # encoding to use for subsequent lines. Reset it when the # continuation ends. if not count: continued_encoding = None else: if not encoding: encoding = continued_encoding continued_encoding = encoding option = unquote_header_value(option) if option_value is not None: option_value = unquote_header_value(option_value, option == "filename") if encoding is not None: option_value = _unquote(option_value).decode(encoding) if count: # Continuations append to the existing value. For # simplicity, this ignores the possibility of # out-of-order indices, which shouldn't happen anyway. options[option] = options.get(option, "") + option_value else: options[option] = option_value rest = rest[optmatch.end() :] result.append(options) if multiple is False: return tuple(result) value = rest return tuple(result) if result else ("", {})
[ "def", "parse_options_header", "(", "value", ",", "multiple", "=", "False", ")", ":", "if", "not", "value", ":", "return", "\"\"", ",", "{", "}", "result", "=", "[", "]", "value", "=", "\",\"", "+", "value", ".", "replace", "(", "\"\\n\"", ",", "\",\"", ")", "while", "value", ":", "match", "=", "_option_header_start_mime_type", ".", "match", "(", "value", ")", "if", "not", "match", ":", "break", "result", ".", "append", "(", "match", ".", "group", "(", "1", ")", ")", "# mimetype", "options", "=", "{", "}", "# Parse options", "rest", "=", "match", ".", "group", "(", "2", ")", "continued_encoding", "=", "None", "while", "rest", ":", "optmatch", "=", "_option_header_piece_re", ".", "match", "(", "rest", ")", "if", "not", "optmatch", ":", "break", "option", ",", "count", ",", "encoding", ",", "language", ",", "option_value", "=", "optmatch", ".", "groups", "(", ")", "# Continuations don't have to supply the encoding after the", "# first line. If we're in a continuation, track the current", "# encoding to use for subsequent lines. Reset it when the", "# continuation ends.", "if", "not", "count", ":", "continued_encoding", "=", "None", "else", ":", "if", "not", "encoding", ":", "encoding", "=", "continued_encoding", "continued_encoding", "=", "encoding", "option", "=", "unquote_header_value", "(", "option", ")", "if", "option_value", "is", "not", "None", ":", "option_value", "=", "unquote_header_value", "(", "option_value", ",", "option", "==", "\"filename\"", ")", "if", "encoding", "is", "not", "None", ":", "option_value", "=", "_unquote", "(", "option_value", ")", ".", "decode", "(", "encoding", ")", "if", "count", ":", "# Continuations append to the existing value. For", "# simplicity, this ignores the possibility of", "# out-of-order indices, which shouldn't happen anyway.", "options", "[", "option", "]", "=", "options", ".", "get", "(", "option", ",", "\"\"", ")", "+", "option_value", "else", ":", "options", "[", "option", "]", "=", "option_value", "rest", "=", "rest", "[", "optmatch", ".", "end", "(", ")", ":", "]", "result", ".", "append", "(", "options", ")", "if", "multiple", "is", "False", ":", "return", "tuple", "(", "result", ")", "value", "=", "rest", "return", "tuple", "(", "result", ")", "if", "result", "else", "(", "\"\"", ",", "{", "}", ")" ]
[ 377, 0 ]
[ 446, 48 ]
python
en
['en', 'en', 'en']
True
parse_accept_header
(value, cls=None)
Parses an HTTP Accept-* header. This does not implement a complete valid algorithm but one that supports at least value and quality extraction. Returns a new :class:`Accept` object (basically a list of ``(value, quality)`` tuples sorted by the quality with some additional accessor methods). The second parameter can be a subclass of :class:`Accept` that is created with the parsed values and returned. :param value: the accept header string to be parsed. :param cls: the wrapper class for the return value (can be :class:`Accept` or a subclass thereof) :return: an instance of `cls`.
Parses an HTTP Accept-* header. This does not implement a complete valid algorithm but one that supports at least value and quality extraction.
def parse_accept_header(value, cls=None): """Parses an HTTP Accept-* header. This does not implement a complete valid algorithm but one that supports at least value and quality extraction. Returns a new :class:`Accept` object (basically a list of ``(value, quality)`` tuples sorted by the quality with some additional accessor methods). The second parameter can be a subclass of :class:`Accept` that is created with the parsed values and returned. :param value: the accept header string to be parsed. :param cls: the wrapper class for the return value (can be :class:`Accept` or a subclass thereof) :return: an instance of `cls`. """ if cls is None: cls = Accept if not value: return cls(None) result = [] for match in _accept_re.finditer(value): quality = match.group(2) if not quality: quality = 1 else: quality = max(min(float(quality), 1), 0) result.append((match.group(1), quality)) return cls(result)
[ "def", "parse_accept_header", "(", "value", ",", "cls", "=", "None", ")", ":", "if", "cls", "is", "None", ":", "cls", "=", "Accept", "if", "not", "value", ":", "return", "cls", "(", "None", ")", "result", "=", "[", "]", "for", "match", "in", "_accept_re", ".", "finditer", "(", "value", ")", ":", "quality", "=", "match", ".", "group", "(", "2", ")", "if", "not", "quality", ":", "quality", "=", "1", "else", ":", "quality", "=", "max", "(", "min", "(", "float", "(", "quality", ")", ",", "1", ")", ",", "0", ")", "result", ".", "append", "(", "(", "match", ".", "group", "(", "1", ")", ",", "quality", ")", ")", "return", "cls", "(", "result", ")" ]
[ 449, 0 ]
[ 479, 22 ]
python
en
['en', 'en', 'en']
True
parse_cache_control_header
(value, on_update=None, cls=None)
Parse a cache control header. The RFC differs between response and request cache control, this method does not. It's your responsibility to not use the wrong control statements. .. versionadded:: 0.5 The `cls` was added. If not specified an immutable :class:`~werkzeug.datastructures.RequestCacheControl` is returned. :param value: a cache control header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.CacheControl` object is changed. :param cls: the class for the returned object. By default :class:`~werkzeug.datastructures.RequestCacheControl` is used. :return: a `cls` object.
Parse a cache control header. The RFC differs between response and request cache control, this method does not. It's your responsibility to not use the wrong control statements.
def parse_cache_control_header(value, on_update=None, cls=None): """Parse a cache control header. The RFC differs between response and request cache control, this method does not. It's your responsibility to not use the wrong control statements. .. versionadded:: 0.5 The `cls` was added. If not specified an immutable :class:`~werkzeug.datastructures.RequestCacheControl` is returned. :param value: a cache control header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.CacheControl` object is changed. :param cls: the class for the returned object. By default :class:`~werkzeug.datastructures.RequestCacheControl` is used. :return: a `cls` object. """ if cls is None: cls = RequestCacheControl if not value: return cls(None, on_update) return cls(parse_dict_header(value), on_update)
[ "def", "parse_cache_control_header", "(", "value", ",", "on_update", "=", "None", ",", "cls", "=", "None", ")", ":", "if", "cls", "is", "None", ":", "cls", "=", "RequestCacheControl", "if", "not", "value", ":", "return", "cls", "(", "None", ",", "on_update", ")", "return", "cls", "(", "parse_dict_header", "(", "value", ")", ",", "on_update", ")" ]
[ 482, 0 ]
[ 503, 51 ]
python
en
['en', 'en', 'en']
True
parse_set_header
(value, on_update=None)
Parse a set-like header and return a :class:`~werkzeug.datastructures.HeaderSet` object: >>> hs = parse_set_header('token, "quoted value"') The return value is an object that treats the items case-insensitively and keeps the order of the items: >>> 'TOKEN' in hs True >>> hs.index('quoted value') 1 >>> hs HeaderSet(['token', 'quoted value']) To create a header from the :class:`HeaderSet` again, use the :func:`dump_header` function. :param value: a set header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.HeaderSet` object is changed. :return: a :class:`~werkzeug.datastructures.HeaderSet`
Parse a set-like header and return a :class:`~werkzeug.datastructures.HeaderSet` object:
def parse_set_header(value, on_update=None): """Parse a set-like header and return a :class:`~werkzeug.datastructures.HeaderSet` object: >>> hs = parse_set_header('token, "quoted value"') The return value is an object that treats the items case-insensitively and keeps the order of the items: >>> 'TOKEN' in hs True >>> hs.index('quoted value') 1 >>> hs HeaderSet(['token', 'quoted value']) To create a header from the :class:`HeaderSet` again, use the :func:`dump_header` function. :param value: a set header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.HeaderSet` object is changed. :return: a :class:`~werkzeug.datastructures.HeaderSet` """ if not value: return HeaderSet(None, on_update) return HeaderSet(parse_list_header(value), on_update)
[ "def", "parse_set_header", "(", "value", ",", "on_update", "=", "None", ")", ":", "if", "not", "value", ":", "return", "HeaderSet", "(", "None", ",", "on_update", ")", "return", "HeaderSet", "(", "parse_list_header", "(", "value", ")", ",", "on_update", ")" ]
[ 506, 0 ]
[ 533, 57 ]
python
en
['en', 'haw', 'en']
True
parse_authorization_header
(value)
Parse an HTTP basic/digest authorization header transmitted by the web browser. The return value is either `None` if the header was invalid or not given, otherwise an :class:`~werkzeug.datastructures.Authorization` object. :param value: the authorization header to parse. :return: a :class:`~werkzeug.datastructures.Authorization` object or `None`.
Parse an HTTP basic/digest authorization header transmitted by the web browser. The return value is either `None` if the header was invalid or not given, otherwise an :class:`~werkzeug.datastructures.Authorization` object.
def parse_authorization_header(value): """Parse an HTTP basic/digest authorization header transmitted by the web browser. The return value is either `None` if the header was invalid or not given, otherwise an :class:`~werkzeug.datastructures.Authorization` object. :param value: the authorization header to parse. :return: a :class:`~werkzeug.datastructures.Authorization` object or `None`. """ if not value: return value = wsgi_to_bytes(value) try: auth_type, auth_info = value.split(None, 1) auth_type = auth_type.lower() except ValueError: return if auth_type == b"basic": try: username, password = base64.b64decode(auth_info).split(b":", 1) except Exception: return return Authorization( "basic", { "username": to_unicode(username, _basic_auth_charset), "password": to_unicode(password, _basic_auth_charset), }, ) elif auth_type == b"digest": auth_map = parse_dict_header(auth_info) for key in "username", "realm", "nonce", "uri", "response": if key not in auth_map: return if "qop" in auth_map: if not auth_map.get("nc") or not auth_map.get("cnonce"): return return Authorization("digest", auth_map)
[ "def", "parse_authorization_header", "(", "value", ")", ":", "if", "not", "value", ":", "return", "value", "=", "wsgi_to_bytes", "(", "value", ")", "try", ":", "auth_type", ",", "auth_info", "=", "value", ".", "split", "(", "None", ",", "1", ")", "auth_type", "=", "auth_type", ".", "lower", "(", ")", "except", "ValueError", ":", "return", "if", "auth_type", "==", "b\"basic\"", ":", "try", ":", "username", ",", "password", "=", "base64", ".", "b64decode", "(", "auth_info", ")", ".", "split", "(", "b\":\"", ",", "1", ")", "except", "Exception", ":", "return", "return", "Authorization", "(", "\"basic\"", ",", "{", "\"username\"", ":", "to_unicode", "(", "username", ",", "_basic_auth_charset", ")", ",", "\"password\"", ":", "to_unicode", "(", "password", ",", "_basic_auth_charset", ")", ",", "}", ",", ")", "elif", "auth_type", "==", "b\"digest\"", ":", "auth_map", "=", "parse_dict_header", "(", "auth_info", ")", "for", "key", "in", "\"username\"", ",", "\"realm\"", ",", "\"nonce\"", ",", "\"uri\"", ",", "\"response\"", ":", "if", "key", "not", "in", "auth_map", ":", "return", "if", "\"qop\"", "in", "auth_map", ":", "if", "not", "auth_map", ".", "get", "(", "\"nc\"", ")", "or", "not", "auth_map", ".", "get", "(", "\"cnonce\"", ")", ":", "return", "return", "Authorization", "(", "\"digest\"", ",", "auth_map", ")" ]
[ 536, 0 ]
[ 573, 48 ]
python
en
['en', 'en', 'en']
True
parse_www_authenticate_header
(value, on_update=None)
Parse an HTTP WWW-Authenticate header into a :class:`~werkzeug.datastructures.WWWAuthenticate` object. :param value: a WWW-Authenticate header to parse. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.WWWAuthenticate` object is changed. :return: a :class:`~werkzeug.datastructures.WWWAuthenticate` object.
Parse an HTTP WWW-Authenticate header into a :class:`~werkzeug.datastructures.WWWAuthenticate` object.
def parse_www_authenticate_header(value, on_update=None): """Parse an HTTP WWW-Authenticate header into a :class:`~werkzeug.datastructures.WWWAuthenticate` object. :param value: a WWW-Authenticate header to parse. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.WWWAuthenticate` object is changed. :return: a :class:`~werkzeug.datastructures.WWWAuthenticate` object. """ if not value: return WWWAuthenticate(on_update=on_update) try: auth_type, auth_info = value.split(None, 1) auth_type = auth_type.lower() except (ValueError, AttributeError): return WWWAuthenticate(value.strip().lower(), on_update=on_update) return WWWAuthenticate(auth_type, parse_dict_header(auth_info), on_update)
[ "def", "parse_www_authenticate_header", "(", "value", ",", "on_update", "=", "None", ")", ":", "if", "not", "value", ":", "return", "WWWAuthenticate", "(", "on_update", "=", "on_update", ")", "try", ":", "auth_type", ",", "auth_info", "=", "value", ".", "split", "(", "None", ",", "1", ")", "auth_type", "=", "auth_type", ".", "lower", "(", ")", "except", "(", "ValueError", ",", "AttributeError", ")", ":", "return", "WWWAuthenticate", "(", "value", ".", "strip", "(", ")", ".", "lower", "(", ")", ",", "on_update", "=", "on_update", ")", "return", "WWWAuthenticate", "(", "auth_type", ",", "parse_dict_header", "(", "auth_info", ")", ",", "on_update", ")" ]
[ 576, 0 ]
[ 593, 78 ]
python
en
['en', 'en', 'en']
True
parse_if_range_header
(value)
Parses an if-range header which can be an etag or a date. Returns a :class:`~werkzeug.datastructures.IfRange` object. .. versionadded:: 0.7
Parses an if-range header which can be an etag or a date. Returns a :class:`~werkzeug.datastructures.IfRange` object.
def parse_if_range_header(value): """Parses an if-range header which can be an etag or a date. Returns a :class:`~werkzeug.datastructures.IfRange` object. .. versionadded:: 0.7 """ if not value: return IfRange() date = parse_date(value) if date is not None: return IfRange(date=date) # drop weakness information return IfRange(unquote_etag(value)[0])
[ "def", "parse_if_range_header", "(", "value", ")", ":", "if", "not", "value", ":", "return", "IfRange", "(", ")", "date", "=", "parse_date", "(", "value", ")", "if", "date", "is", "not", "None", ":", "return", "IfRange", "(", "date", "=", "date", ")", "# drop weakness information", "return", "IfRange", "(", "unquote_etag", "(", "value", ")", "[", "0", "]", ")" ]
[ 596, 0 ]
[ 608, 42 ]
python
en
['en', 'en', 'en']
True
parse_range_header
(value, make_inclusive=True)
Parses a range header into a :class:`~werkzeug.datastructures.Range` object. If the header is missing or malformed `None` is returned. `ranges` is a list of ``(start, stop)`` tuples where the ranges are non-inclusive. .. versionadded:: 0.7
Parses a range header into a :class:`~werkzeug.datastructures.Range` object. If the header is missing or malformed `None` is returned. `ranges` is a list of ``(start, stop)`` tuples where the ranges are non-inclusive.
def parse_range_header(value, make_inclusive=True): """Parses a range header into a :class:`~werkzeug.datastructures.Range` object. If the header is missing or malformed `None` is returned. `ranges` is a list of ``(start, stop)`` tuples where the ranges are non-inclusive. .. versionadded:: 0.7 """ if not value or "=" not in value: return None ranges = [] last_end = 0 units, rng = value.split("=", 1) units = units.strip().lower() for item in rng.split(","): item = item.strip() if "-" not in item: return None if item.startswith("-"): if last_end < 0: return None try: begin = int(item) except ValueError: return None end = None last_end = -1 elif "-" in item: begin, end = item.split("-", 1) begin = begin.strip() end = end.strip() if not begin.isdigit(): return None begin = int(begin) if begin < last_end or last_end < 0: return None if end: if not end.isdigit(): return None end = int(end) + 1 if begin >= end: return None else: end = None last_end = end ranges.append((begin, end)) return Range(units, ranges)
[ "def", "parse_range_header", "(", "value", ",", "make_inclusive", "=", "True", ")", ":", "if", "not", "value", "or", "\"=\"", "not", "in", "value", ":", "return", "None", "ranges", "=", "[", "]", "last_end", "=", "0", "units", ",", "rng", "=", "value", ".", "split", "(", "\"=\"", ",", "1", ")", "units", "=", "units", ".", "strip", "(", ")", ".", "lower", "(", ")", "for", "item", "in", "rng", ".", "split", "(", "\",\"", ")", ":", "item", "=", "item", ".", "strip", "(", ")", "if", "\"-\"", "not", "in", "item", ":", "return", "None", "if", "item", ".", "startswith", "(", "\"-\"", ")", ":", "if", "last_end", "<", "0", ":", "return", "None", "try", ":", "begin", "=", "int", "(", "item", ")", "except", "ValueError", ":", "return", "None", "end", "=", "None", "last_end", "=", "-", "1", "elif", "\"-\"", "in", "item", ":", "begin", ",", "end", "=", "item", ".", "split", "(", "\"-\"", ",", "1", ")", "begin", "=", "begin", ".", "strip", "(", ")", "end", "=", "end", ".", "strip", "(", ")", "if", "not", "begin", ".", "isdigit", "(", ")", ":", "return", "None", "begin", "=", "int", "(", "begin", ")", "if", "begin", "<", "last_end", "or", "last_end", "<", "0", ":", "return", "None", "if", "end", ":", "if", "not", "end", ".", "isdigit", "(", ")", ":", "return", "None", "end", "=", "int", "(", "end", ")", "+", "1", "if", "begin", ">=", "end", ":", "return", "None", "else", ":", "end", "=", "None", "last_end", "=", "end", "ranges", ".", "append", "(", "(", "begin", ",", "end", ")", ")", "return", "Range", "(", "units", ",", "ranges", ")" ]
[ 611, 0 ]
[ 660, 31 ]
python
en
['en', 'de', 'en']
True
parse_content_range_header
(value, on_update=None)
Parses a range header into a :class:`~werkzeug.datastructures.ContentRange` object or `None` if parsing is not possible. .. versionadded:: 0.7 :param value: a content range header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.ContentRange` object is changed.
Parses a range header into a :class:`~werkzeug.datastructures.ContentRange` object or `None` if parsing is not possible.
def parse_content_range_header(value, on_update=None): """Parses a range header into a :class:`~werkzeug.datastructures.ContentRange` object or `None` if parsing is not possible. .. versionadded:: 0.7 :param value: a content range header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.ContentRange` object is changed. """ if value is None: return None try: units, rangedef = (value or "").strip().split(None, 1) except ValueError: return None if "/" not in rangedef: return None rng, length = rangedef.split("/", 1) if length == "*": length = None elif length.isdigit(): length = int(length) else: return None if rng == "*": return ContentRange(units, None, None, length, on_update=on_update) elif "-" not in rng: return None start, stop = rng.split("-", 1) try: start = int(start) stop = int(stop) + 1 except ValueError: return None if is_byte_range_valid(start, stop, length): return ContentRange(units, start, stop, length, on_update=on_update)
[ "def", "parse_content_range_header", "(", "value", ",", "on_update", "=", "None", ")", ":", "if", "value", "is", "None", ":", "return", "None", "try", ":", "units", ",", "rangedef", "=", "(", "value", "or", "\"\"", ")", ".", "strip", "(", ")", ".", "split", "(", "None", ",", "1", ")", "except", "ValueError", ":", "return", "None", "if", "\"/\"", "not", "in", "rangedef", ":", "return", "None", "rng", ",", "length", "=", "rangedef", ".", "split", "(", "\"/\"", ",", "1", ")", "if", "length", "==", "\"*\"", ":", "length", "=", "None", "elif", "length", ".", "isdigit", "(", ")", ":", "length", "=", "int", "(", "length", ")", "else", ":", "return", "None", "if", "rng", "==", "\"*\"", ":", "return", "ContentRange", "(", "units", ",", "None", ",", "None", ",", "length", ",", "on_update", "=", "on_update", ")", "elif", "\"-\"", "not", "in", "rng", ":", "return", "None", "start", ",", "stop", "=", "rng", ".", "split", "(", "\"-\"", ",", "1", ")", "try", ":", "start", "=", "int", "(", "start", ")", "stop", "=", "int", "(", "stop", ")", "+", "1", "except", "ValueError", ":", "return", "None", "if", "is_byte_range_valid", "(", "start", ",", "stop", ",", "length", ")", ":", "return", "ContentRange", "(", "units", ",", "start", ",", "stop", ",", "length", ",", "on_update", "=", "on_update", ")" ]
[ 663, 0 ]
[ 705, 76 ]
python
en
['en', 'en', 'en']
True
quote_etag
(etag, weak=False)
Quote an etag. :param etag: the etag to quote. :param weak: set to `True` to tag it "weak".
Quote an etag.
def quote_etag(etag, weak=False): """Quote an etag. :param etag: the etag to quote. :param weak: set to `True` to tag it "weak". """ if '"' in etag: raise ValueError("invalid etag") etag = '"%s"' % etag if weak: etag = "W/" + etag return etag
[ "def", "quote_etag", "(", "etag", ",", "weak", "=", "False", ")", ":", "if", "'\"'", "in", "etag", ":", "raise", "ValueError", "(", "\"invalid etag\"", ")", "etag", "=", "'\"%s\"'", "%", "etag", "if", "weak", ":", "etag", "=", "\"W/\"", "+", "etag", "return", "etag" ]
[ 708, 0 ]
[ 719, 15 ]
python
en
['en', 'en', 'es']
True
unquote_etag
(etag)
Unquote a single etag: >>> unquote_etag('W/"bar"') ('bar', True) >>> unquote_etag('"bar"') ('bar', False) :param etag: the etag identifier to unquote. :return: a ``(etag, weak)`` tuple.
Unquote a single etag:
def unquote_etag(etag): """Unquote a single etag: >>> unquote_etag('W/"bar"') ('bar', True) >>> unquote_etag('"bar"') ('bar', False) :param etag: the etag identifier to unquote. :return: a ``(etag, weak)`` tuple. """ if not etag: return None, None etag = etag.strip() weak = False if etag.startswith(("W/", "w/")): weak = True etag = etag[2:] if etag[:1] == etag[-1:] == '"': etag = etag[1:-1] return etag, weak
[ "def", "unquote_etag", "(", "etag", ")", ":", "if", "not", "etag", ":", "return", "None", ",", "None", "etag", "=", "etag", ".", "strip", "(", ")", "weak", "=", "False", "if", "etag", ".", "startswith", "(", "(", "\"W/\"", ",", "\"w/\"", ")", ")", ":", "weak", "=", "True", "etag", "=", "etag", "[", "2", ":", "]", "if", "etag", "[", ":", "1", "]", "==", "etag", "[", "-", "1", ":", "]", "==", "'\"'", ":", "etag", "=", "etag", "[", "1", ":", "-", "1", "]", "return", "etag", ",", "weak" ]
[ 722, 0 ]
[ 742, 21 ]
python
fr
['fr', 'it', 'pt']
False
parse_etags
(value)
Parse an etag header. :param value: the tag header to parse :return: an :class:`~werkzeug.datastructures.ETags` object.
Parse an etag header.
def parse_etags(value): """Parse an etag header. :param value: the tag header to parse :return: an :class:`~werkzeug.datastructures.ETags` object. """ if not value: return ETags() strong = [] weak = [] end = len(value) pos = 0 while pos < end: match = _etag_re.match(value, pos) if match is None: break is_weak, quoted, raw = match.groups() if raw == "*": return ETags(star_tag=True) elif quoted: raw = quoted if is_weak: weak.append(raw) else: strong.append(raw) pos = match.end() return ETags(strong, weak)
[ "def", "parse_etags", "(", "value", ")", ":", "if", "not", "value", ":", "return", "ETags", "(", ")", "strong", "=", "[", "]", "weak", "=", "[", "]", "end", "=", "len", "(", "value", ")", "pos", "=", "0", "while", "pos", "<", "end", ":", "match", "=", "_etag_re", ".", "match", "(", "value", ",", "pos", ")", "if", "match", "is", "None", ":", "break", "is_weak", ",", "quoted", ",", "raw", "=", "match", ".", "groups", "(", ")", "if", "raw", "==", "\"*\"", ":", "return", "ETags", "(", "star_tag", "=", "True", ")", "elif", "quoted", ":", "raw", "=", "quoted", "if", "is_weak", ":", "weak", ".", "append", "(", "raw", ")", "else", ":", "strong", ".", "append", "(", "raw", ")", "pos", "=", "match", ".", "end", "(", ")", "return", "ETags", "(", "strong", ",", "weak", ")" ]
[ 745, 0 ]
[ 771, 30 ]
python
br
['br', 'gd', 'es']
False
generate_etag
(data)
Generate an etag for some data.
Generate an etag for some data.
def generate_etag(data): """Generate an etag for some data.""" return md5(data).hexdigest()
[ "def", "generate_etag", "(", "data", ")", ":", "return", "md5", "(", "data", ")", ".", "hexdigest", "(", ")" ]
[ 774, 0 ]
[ 776, 32 ]
python
en
['no', 'en', 'es']
False