post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/course-schedule/discuss/2795313/Python-Solution-Beats-97-Solutions | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = [[] for _ in range(numCourses)]
indegree = [0 for _ in range(numCourses)]
for edge in prerequisites:
graph[edge[0]].append(edge[1])
indegree[edge[1]] += 1
queue = []
for degree in range(len(indegree)):
if indegree[degree]==0:
queue.append(degree)
ans = []
while queue:
curr_node = queue.pop(0)
for node in graph[curr_node]:
indegree[node] -= 1
if indegree[node] == 0 :
queue.append(node)
ans.append(curr_node)
if len(ans) == numCourses:
return True
return False | course-schedule | Python Solution Beats 97% Solutions | manishchhipa | 0 | 7 | course schedule | 207 | 0.454 | Medium | 3,500 |
https://leetcode.com/problems/course-schedule/discuss/2784880/Simple-Python-Solution | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# cycle detection problem
preMap = { i:[] for i in range(numCourses) }
for crs, pre in prerequisites:
preMap[crs].append(pre)
# visitSet = all courses along the curr DFS path (cycle detection)
visitSet = set()
def dfs(crs):
# base cases
if crs in visitSet:
return False
if preMap[crs] == []:
return True
visitSet.add(crs)
for pre in preMap[crs]:
if not dfs(pre):
return False
visitSet.remove(crs)
preMap[crs] = []
return True
for crs in range(numCourses):
if not dfs(crs):
return False
return True | course-schedule | Simple Python Solution | ekomboy012 | 0 | 4 | course schedule | 207 | 0.454 | Medium | 3,501 |
https://leetcode.com/problems/course-schedule/discuss/2774671/Topological-easy-to-understand | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = collections.defaultdict(list)
indegree = [0] * numCourses
topologicalSort = []
# Build graph and calculate indegree
for course,prerec in prerequisites:
graph[course].append(prerec)
indegree[prerec]+=1
# Until the topological sort is done(Or fails)
while len(topologicalSort) != numCourses:
# Find a source with a indegree of 0
try:
source = indegree.index(0)
# If it doesnt exists, there is a cycle
except:
return False
indegree[source] = -1
topologicalSort.append(source)
for node in graph[source]:
indegree[node] -=1
return True | course-schedule | Topological easy to understand | Sarthaksin1857 | 0 | 4 | course schedule | 207 | 0.454 | Medium | 3,502 |
https://leetcode.com/problems/course-schedule/discuss/2769438/Topological-Sorting-easily-written-in-python | class Solution:
# topological sorting in python
def canFinish(self, n: int, pre: List[List[int]]) -> bool:
graph = defaultdict(list)
indegree = defaultdict(int)
for a, b in pre:
graph[a].append(b)
graph[b].append(a)
indegree[a] += 1
q = deque()
for node in graph:
if node not in indegree:
q.append(node)
while q:
node = q.popleft()
for nei in graph[node]:
indegree[nei] -= 1
if indegree[nei] == 0:
q.append(nei)
for node in graph:
if node in indegree and indegree[node] > 0: return False
return True | course-schedule | Topological Sorting easily written in python | shiv-codes | 0 | 13 | course schedule | 207 | 0.454 | Medium | 3,503 |
https://leetcode.com/problems/course-schedule/discuss/2761106/Simple-Beginner-Friendly-Approach-or-DFS-or-O(V%2BE) | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
self.graph = defaultdict(list)
for pre in prerequisites:
self.graph[pre[0]].append(pre[1])
self.visited = set()
self.path = set()
self.order = []
for course in range(numCourses):
if course not in self.visited:
self.visited.add(course)
if not self.dfs(course):
return False
return True
def dfs(self, vertex):
self.path.add(vertex)
for neighbour in self.graph[vertex]:
if neighbour in self.path:
return False
if neighbour not in self.visited:
self.visited.add(neighbour)
if not self.dfs(neighbour):
return False
self.path.remove(vertex)
self.order.append(vertex)
return True | course-schedule | Simple Beginner Friendly Approach | DFS | O(V+E) | sonnylaskar | 0 | 8 | course schedule | 207 | 0.454 | Medium | 3,504 |
https://leetcode.com/problems/course-schedule/discuss/2760799/simple-detect-DAG-using-DFS-striver-solution | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
dic=defaultdict(list)
for a,b in prerequisites:
dic[a]+=[b]
vis=[0]*(numCourses)
dfsvis=[0]*numCourses
def dfs(node):
vis[node]=1
dfsvis[node]=1
if node in dic:
for it in dic[node]:
if vis[it]==0:
if not dfs(it):
return False
elif vis[it]==1 and dfsvis[it]==1:
return False
dfsvis[node]=0
return True
for i in range(numCourses):
if vis[i]==0:
ans=dfs(i)
if not ans:
return False
return True | course-schedule | simple detect DAG using DFS , striver solution | aryan3012 | 0 | 14 | course schedule | 207 | 0.454 | Medium | 3,505 |
https://leetcode.com/problems/course-schedule/discuss/2752083/Python3-or-Two-Approach-or-TopoSort-or-Cycle-Detection | class Solution:
def canFinish(self, numCourses: int, pre: List[List[int]]) -> bool:
def TopoSort(graph,indegree):
ans=[]
stack=[course for course in range(numCourses) if indegree[course]==0]
while stack:
currCourse=stack.pop()
ans.append(currCourse)
for it in graph[currCourse]:
indegree[it]-=1
if indegree[it]==0:
stack.append(it)
return len(ans)==numCourses
indegree=[0 for i in range(numCourses)]
graph=[[] for i in range(numCourses)]
for u,v in pre:
indegree[v]+=1
graph[u].append(v)
return TopoSort(graph,indegree) | course-schedule | [Python3] | Two Approach | TopoSort | Cycle Detection | swapnilsingh421 | 0 | 7 | course schedule | 207 | 0.454 | Medium | 3,506 |
https://leetcode.com/problems/course-schedule/discuss/2752083/Python3-or-Two-Approach-or-TopoSort-or-Cycle-Detection | class Solution:
def canFinish(self, numCourses: int, pre: List[List[int]]) -> bool:
graph=[[] for i in range(numCourses)]
vis=set()
temp_vis=set()
def dfs(course):
for it in graph[course]:
if it in temp_vis:
return True
if it not in vis:
vis.add(it)
temp_vis.add(it)
if dfs(it):
return True
temp_vis.remove(it)
return False
for u,v in pre:
graph[u].append(v)
for course in range(numCourses):
if course not in vis:
vis.add(course)
temp_vis.add(course)
if dfs(course):
return False
temp_vis.remove(course)
return True | course-schedule | [Python3] | Two Approach | TopoSort | Cycle Detection | swapnilsingh421 | 0 | 7 | course schedule | 207 | 0.454 | Medium | 3,507 |
https://leetcode.com/problems/course-schedule/discuss/2739412/Python-dfs-solution | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
adjMap = collections.defaultdict(list)
for course, pre in prerequisites:
adjMap[course].append(pre)
visited = set()
def dfs(crs):
if crs in visited:
return False
if adjMap[crs] == []:
return True
visited.add(crs)
for pre in adjMap[crs]:
if not dfs(pre):
return False
visited.remove(crs)
adjMap[crs] = []
return True
for n in range(numCourses):
if not dfs(n):
return False
return True | course-schedule | Python dfs solution | gcheng81 | 0 | 20 | course schedule | 207 | 0.454 | Medium | 3,508 |
https://leetcode.com/problems/course-schedule/discuss/2739343/Python-Simple-Cycle-Detection-Method | class Solution:
def buildGraph(self, numCourses, prerequisites):
self.graph = [[] for _ in range(numCourses)]
for course, prerequisite in prerequisites:
self.graph[prerequisite].append(course)
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
if not prerequisites:
return True
self.buildGraph(numCourses, prerequisites)
self.ok = True
self.visited = [False for _ in range(numCourses)]
def traverse(node, path):
if not self.ok or self.visited[node]:
return
self.visited[node] = True
path.append(node)
for neighbour in self.graph[node]:
if neighbour in path:
self.ok = False
else:
traverse(neighbour, path)
path.pop()
for i in range(numCourses):
traverse(i, [])
return self.ok | course-schedule | Python Simple Cycle Detection Method | Rui_Liu_Rachel | 0 | 16 | course schedule | 207 | 0.454 | Medium | 3,509 |
https://leetcode.com/problems/course-schedule/discuss/2735127/simple-pythonor-DFS | class Solution:
def traversed(self, now_point):
#print(self.onpath, self.flag, now_point)
if self.onpath[now_point]:
self.flag = True
return
if self.visited[now_point] or self.flag:
return
self.visited[now_point] = True
self.onpath[now_point] = True
for t in self.graph[now_point]:
self.traversed(t)
self.onpath[now_point] = False
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
self.graph = [[]for _ in range(numCourses)]
for i in prerequisites:
a = i[0]
b = i[1]
self.graph[b].append(a)
#print(self.graph)
self.flag = False
self.onpath = [False for _ in range(numCourses)]
self.visited = [False for _ in range(numCourses)]
for i in range(numCourses):
self.traversed(i)
if self.flag:
return False
return True | course-schedule | simple python| DFS | lucy_sea | 0 | 1 | course schedule | 207 | 0.454 | Medium | 3,510 |
https://leetcode.com/problems/course-schedule/discuss/2733375/Python-DFS | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = defaultdict(list)
seen = set()
for next_course, prev_course in prerequisites:
graph[prev_course].append(next_course)
def detectCycle(node, path):
# we can skip a node if that node has already been visited
if node in seen:
return False
# if node in the execution stack then we detected cycle, e.g. 1 -> 2 -> 1
if path.get(node):
return True
path[node] = True
for course in graph[node]:
if detectCycle(course, path):
return True
del path[node]
seen.add(node)
return False
for course in range(numCourses):
if detectCycle(course, {}):
return False
return True | course-schedule | Python DFS | alexdomoryonok | 0 | 6 | course schedule | 207 | 0.454 | Medium | 3,511 |
https://leetcode.com/problems/course-schedule/discuss/2718675/DFS-coloring-python3-solution | class Solution:
# O(V + E) time,
# O(V + E) space,
# Approach: dfs coloring, topological sort
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = defaultdict(list)
for course, required in prerequisites:
graph[required].append(course)
def hasCycle(curr_course, colors):
if colors[curr_course] == 2: return False
if colors[curr_course] == 1: return True
colors[curr_course] = 1
for neighbor in graph[curr_course]:
if hasCycle(neighbor, colors): return True
colors[curr_course] = 2
return False
colors = [0 for _ in range(numCourses)]
for course in range(numCourses):
if hasCycle(course, colors): return False
return True | course-schedule | DFS coloring python3 solution | destifo | 0 | 4 | course schedule | 207 | 0.454 | Medium | 3,512 |
https://leetcode.com/problems/course-schedule/discuss/2710789/PYTHON-SOLUTION | class Solution:
def canFinish(self, num: int, pre: List[List[int]]) -> bool:
graph=defaultdict(list)
indegree=[0]*num
for u,v in pre:
indegree[v]+=1
graph[u].append(v)
queue=deque()
for v in range(num):
if indegree[v]==0:
queue.append(v)
count=0
while queue:
u=queue.popleft()
count+=1
for v in graph[u]:
indegree[v]-=1
if indegree[v]==0:
queue.append(v)
return count==num | course-schedule | PYTHON SOLUTION | shashank_2000 | 0 | 20 | course schedule | 207 | 0.454 | Medium | 3,513 |
https://leetcode.com/problems/course-schedule/discuss/2661459/Python3-Topological-Sort | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# topological sort
# must take course b before taking course a
in_degrees = {key: [] for key in range(numCourses)}
out_degrees = {key: [] for key in range(numCourses)}
top_sort = []
for prereq in prerequisites:
in_degrees[prereq[0]].append(prereq[1])
out_degrees[prereq[1]].append(prereq[0])
no_indegrees = []
for key, value in in_degrees.items():
if not len(value):
no_indegrees.append(key)
while len(no_indegrees):
cur = no_indegrees.pop()
top_sort.append(cur)
for out in out_degrees[cur]:
in_degrees[out].remove(cur)
if not in_degrees[out]:
no_indegrees.append(out)
return len(top_sort) == numCourses | course-schedule | Python3, Topological Sort | jzhao49 | 0 | 5 | course schedule | 207 | 0.454 | Medium | 3,514 |
https://leetcode.com/problems/course-schedule/discuss/2655428/BFS-(Kahns-Algorithm)-Python | class Solution:
def getCounts(self, graph):
counts = {node: 0 for node in graph}
for parent in graph:
for child in graph[parent]:
counts[child] += 1
return counts
def topoSort(self, numCourses,graph):
q = deque()
counts = self.getCounts(graph)
res = 0
for node in counts:
if counts[node] == 0:
q.append(node)
while q:
node = q.popleft()
res += 1
for child in graph[node]:
counts[child] -= 1
if counts[child] == 0:
q.append(child)
return res == numCourses
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = {course: [] for course in range(numCourses)}
for b, a in prerequisites:
graph[b].append(a)
return self.topoSort(numCourses, graph) | course-schedule | BFS (Kahns Algorithm) - Python | user3734a | 0 | 5 | course schedule | 207 | 0.454 | Medium | 3,515 |
https://leetcode.com/problems/course-schedule/discuss/2374271/Python-runtime-28.97-memory-63.14 | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
d = {}
for i in range(numCourses):
d[i] = []
for pre in prerequisites:
d[pre[1]].append(pre[0])
for num in range(numCourses):
if not self.check(num, set(), d):
return False
return True
def check(self, num, path, d):
if num in path:
return False
path.add(num)
while d[num] != []:
node = d[num].pop()
if not self.check(node, path, d):
return False
path.remove(num)
return True | course-schedule | Python, runtime 28.97%, memory 63.14% | tsai00150 | 0 | 63 | course schedule | 207 | 0.454 | Medium | 3,516 |
https://leetcode.com/problems/course-schedule/discuss/2343372/Python-topological-sort | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# { course : List[classes with course as prereq] }
prerequisites_map = defaultdict(list)
# number of prerequisites each course has
indegrees = defaultdict(int)
# Fill in values for prerequisites_map and indegrees
for course, prereq in prerequisites:
prerequisites_map[prereq].append(course)
indegrees[course] += 1
# Add courses with no prereqs to stack (could also be a queue or a set)
stack = deque()
for course in range(numCourses):
if indegrees[course] == 0:
stack.append(course)
# Find a topological ordering, if possible
topological_ordering = []
while stack:
curr_course = stack.pop()
topological_ordering.append(curr_course)
for neighbor in prerequisites_map[curr_course]:
# Remove edge we're currently exploring from graph (equivalent to taking the course curr_course)
indegrees[neighbor] -= 1
# If we meet all of the prereqs for neighbor, add it to the stack
if indegrees[neighbor] == 0:
stack.append(neighbor)
# If len(topological_ordering) < numCourses, there is a cycle
return len(topological_ordering) == numCourses | course-schedule | Python topological sort | chromium-52 | 0 | 75 | course schedule | 207 | 0.454 | Medium | 3,517 |
https://leetcode.com/problems/course-schedule/discuss/2329370/Python3-or-Topological-Sorting-using-Kahn's-Algorithm-BFS | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
#First, we will process each and every prerequisite to get a sense of each course
#node's indegree and map out an adjacency list representation of the directed
#graph in a 2d array!
#list comprehension to initialize adjacency list 1-d arrays numCourses of them!
#If we let n= numCourses and m = len(prereqs)
#Time:O(m + n + n*n), in the worst case: the vertex's adjacency list goes out to every other vertex
#in graph! -> O(m+ n^2)
#Space: O(n*n + n + n + n) -> O(n^2)
graph = [[] for _ in range(numCourses)]
#initializing an 1-d array that keeps track of the indegrees!
indegrees = [0] * numCourses
#first, iterate through prereq and build up our graph as well as update indegrees array!
for dest, src in prerequisites:
#add the edge going from src to destin the appropriate adjacency list!
graph[src].append(dest)
#update the indegree of destination node!
indegrees[dest] += 1
#initialize our todo queue!
todo = deque()
#this will keep track of number of nodes we deleted along with all of its outgoing edges as we
#proceed with Kahn's algorithm for Topological sorting!
index = 0
ordering = [None] * numCourses
#iterate through our indegrees array and enqueue all courses that have no prereqs at the very beg!
for i in range(len(indegrees)):
#if ith course has no prereqs, add it to the queue!
if(indegrees[i] == 0):
todo.append(i)
#proceed with kahn's algorithm as long as queue is nonempty!
while todo:
#dequeue from our todo!
current = todo.pop()
neighbors = graph[current]
for neighbor in neighbors:
#decrement the indegrees of each and every neighbor to the current node we just dequeued!
indegrees[neighbor] -= 1
#if deleting that particular edge made neighbor course also have no prereqs, make sure to
#add it to the queue!
if(indegrees[neighbor] == 0):
todo.append(neighbor)
ordering[index] = current
index += 1
#if we don't have cycle we should have processed every single unvisited node and be able to take
#all the course! -> This implies our index would have ended up out of bounds at index numCourses
#if Kahn's algorithm went to completion!
#otherwise, if we have cycle, we can't take all courses since we have interdependency!
if(index == numCourses):
return True
return False | course-schedule | Python3 | Topological Sorting using Kahn's Algorithm BFS | JOON1234 | 0 | 41 | course schedule | 207 | 0.454 | Medium | 3,518 |
https://leetcode.com/problems/course-schedule/discuss/2329095/Python3-or-Need-Help-Figuring-Key-Error-for-TopSort-Approach | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
#First, we will process each and every prerequisite to get a sense of each course
#node's indegree and map out an adjacency list representation of the directed
#graph!
indegrees = [0] * numCourses
#hashmap will be used for adjacency-list representation!
hashmap = {}
#this for loop will find initial indegrees of every node and map out adjacency-list
#representation of the graph of the sitatuation!
for pre in prerequisites:
course_want = pre[0]
prereq = pre[1]
if(prereq not in hashmap):
hashmap[prereq] = [course_want]
else:
further_courses = hashmap[prereq]
hashmap[prereq] = further_courses.append(course_want)
indegrees[course_want] += 1
queue = []
ordering = []
for i in range(len(indegrees)):
#if the course has no prereqs, then add it to the queue!
if(indegrees[i] == 0):
queue.append(i)
#as long as queue is not empty, do topological sorting!
while queue:
node = queue[0]
queue = queue[1:]
if node in hashmap[node]:
neighbors = hashmap[node]
for neighbor in neighbors:
indegrees[neighbor] -= 1
#check if deleting the directed edge from node to neighbor
#made neighboring course have no prereqs!
if(indegrees[neighbor] == 0):
queue.append(neighbor)
ordering.append(node)
#at the end, if index does not equal numCourses, then we did not process every node -> we have a
#cycle in graph -> we can't take every Course!
if(len(ordering) != numCourses):
print(hashmap)
return False
return True | course-schedule | Python3 | Need Help Figuring Key Error for TopSort Approach | JOON1234 | 0 | 4 | course schedule | 207 | 0.454 | Medium | 3,519 |
https://leetcode.com/problems/course-schedule/discuss/2297675/Python-BFS-Topological-Sort | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = defaultdict(list)
deg = defaultdict(int)
for course, pre in prerequisites:
graph[pre].append(course)
deg[course] += 1
queue = deque([i for i in range(numCourses) if deg[i] == 0])
while queue:
curr_course = queue.popleft()
while graph[curr_course]:
next_course = graph[curr_course].pop()
if next_course in deg:
deg[next_course] -= 1
if deg[next_course] == 0:
queue.append(next_course)
return True if max(deg.values()) == 0 else False | course-schedule | Python BFS Topological Sort | willager | 0 | 44 | course schedule | 207 | 0.454 | Medium | 3,520 |
https://leetcode.com/problems/course-schedule/discuss/2274217/Clear-Python-solution-using-directed-graph-and-DFS-traversal | class Solution:
hasCycle = False
onPaths = []
visited = []
def __init(self):
self.hasCycle = hasCycle
self.onPaths = onPaths
self.visited = visited
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# check if there exists a mutual dependency for class prerequisites
self.hasCycle = False
# record all the nodes in an one-time traveral
self.onPaths = [False] * numCourses
# record all visited nodes to avoid starting from a node twice
self.visited = [False] * numCourses
graph = self.buildGraph(numCourses, prerequisites)
for i in range(numCourses):
self.traverse(graph, i)
return (not self.hasCycle)
def traverse(self, graph, s):
if (self.onPaths[s] == True):
self.hasCycle = True
if (self.visited[s] == True or self.hasCycle == True):
return;
self.visited[s] = True
self.onPaths[s] = True
for i in graph[s]:
self.traverse(graph, i)
self.onPaths[s] = False
def buildGraph(self, numCourses, prerequisites):
graph = [None] * numCourses
for i in range(numCourses):
graph[i] = []
for edge in prerequisites:
fromNode = edge[1]
toNode = edge[0]
graph[fromNode].append(toNode)
return graph | course-schedule | Clear Python solution using directed graph and DFS traversal | leqinancy | 0 | 32 | course schedule | 207 | 0.454 | Medium | 3,521 |
https://leetcode.com/problems/course-schedule/discuss/2272158/Python3-Simple-Solution-or-Iteration | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
if len(prerequisites) == 0 : return True
primary, secondary = [], []
for x in prerequisites :
primary.append(x[1])
secondary.append(x[0])
current = []
current.append(primary[0])
while True :
try : primaryIndex = primary.index(current[-1])
except : primaryIndex = -1
if primaryIndex == -1 :
try : indexToRemove = primary.index(current[-2])
except :
current.pop()
current.append(primary[0])
continue
primary.pop(indexToRemove)
secondary.pop(indexToRemove)
current.pop(-1)
else :
secondaryValue = secondary[primaryIndex]
if secondaryValue in current : return False
current.append(secondaryValue)
if len(primary) == 0 : return True | course-schedule | Python3 Simple Solution | Iteration | jasoriasaksham01 | 0 | 69 | course schedule | 207 | 0.454 | Medium | 3,522 |
https://leetcode.com/problems/course-schedule/discuss/2184476/Based-on-Cycle-Detection-in-a-directed-graph-oror-DFS | class Solution:
def dfs(self, i, graph, color):
color[i] = "GRAY"
for neighbour in graph[i]:
if color[neighbour] == "GRAY":
return True
elif color[neighbour] == "WHITE" and self.dfs(neighbour, graph, color):
return True
color[i] = "BLACK"
return False
def detectCycle(self, V, graph):
color = ["WHITE"]*V
for i in range(V):
if color[i] == "WHITE":
if self.dfs(i, graph, color):
return True
return False
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = {i:[] for i in range(numCourses)}
for course, prerequisite in prerequisites:
graph[course].append(prerequisite)
isFinish = not self.detectCycle(numCourses, graph)
return isFinish | course-schedule | Based on Cycle Detection in a directed graph || DFS | Vaibhav7860 | 0 | 73 | course schedule | 207 | 0.454 | Medium | 3,523 |
https://leetcode.com/problems/course-schedule/discuss/2153401/207.-Java-and-Python-solution-with-My-comments | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
# idea: topological sort to find if there is a cycle in graph, dfs
# if cycle exsits, then it is not possible to finish courses.
# save a graph by using matrix/array
graph = [[] for _ in range(numCourses)]
visited = [0]* numCourses
# create graph
for pair in prerequisites:
x, y = pair
graph[x].append(y)
# visit each node:
for i in range(numCourses):
# check cycle from current node
if not self.dfs(graph, visited, i):
# if any one time of dfs return False, it means there is cycle, so we cannot finish course schedule
return False
return True
#For DFS, in each visit, we start from a node and keep visiting its neighbors,
# if at a time we return to a visited node, there is a cycle.
# Otherwise, start again from another unvisited node and repeat this process.
def dfs(self, graph, visited, i):
# if we see the node again in the current trip, it's a cycle
if visited[i] == -1:
return False
# a dfs has been done starting from this node, no cycle is found
if visited[i] == 1:
return True
# mark as being visited, so in the curruent trip, if we see a node with -1 again, it means there is a cycle
visited[i] = -1
# visit all neighbours of the node
for j in graph[i]:
if not self.dfs(graph, visited, j):
return False
# after visit all the neighbours,
# set all nodes along current path as valid path (no cycle) by flag +1
visited[i] = 1
return True | course-schedule | 207. Java & Python solution with My comments | JunyiLin | 0 | 54 | course schedule | 207 | 0.454 | Medium | 3,524 |
https://leetcode.com/problems/course-schedule/discuss/2056354/Python3-or-Topo-Sort-or-Easy-Understand | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
def count_parents(graph):
counts = {node: 0 for node in graph}
for parent in graph:
for node in graph[parent]:
counts[node] += 1
return counts
def topo_sort(graph):
seq, queue =[], deque()
counts = count_parents(graph)
for node in counts:
if counts[node] == 0:
queue.append(node)
seq.append(node)
if len(queue) == 0:
return False
while queue:
node = queue.popleft()
for child in graph[node]:
counts[child] -= 1
if counts[child] == 0:
queue.append(child)
seq.append(child)
return len(seq) == numCourses
graph = {node: [] for node in range(numCourses)}
for seq in prerequisites:
preq, course = seq[0], seq[1]
graph[course].append(preq)
return topo_sort(graph) | course-schedule | Python3 | Topo Sort | Easy Understand | itachieve | 0 | 83 | course schedule | 207 | 0.454 | Medium | 3,525 |
https://leetcode.com/problems/course-schedule/discuss/2009740/Clean-Python-3-Solution-(Topological-Sorting-%2B-BFS) | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
in_degrees = [0] * numCourses
for v, _ in prerequisites:
in_degrees[v] += 1
q = []
for i in range(len(in_degrees)):
if in_degrees[i] == 0:
q.append(i)
finished = 0
while q:
u0 = q.pop(0)
finished += 1
for v, u in prerequisites:
if u == u0:
in_degrees[v] -= 1
if in_degrees[v] == 0:
q.append(v)
return True if finished == numCourses else False | course-schedule | Clean Python 3 Solution (Topological Sorting + BFS) | Hongbo-Miao | 0 | 176 | course schedule | 207 | 0.454 | Medium | 3,526 |
https://leetcode.com/problems/course-schedule/discuss/1999693/Easy-Python3-cycle-detection-with-recursive-DFS-(clear-comments) | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
#The prerequisites can be represented as a directed graph, thus
#let's do a dfs to detect a dependency cycle
#course -> [prereqs]
graph = {}
#Prepare graph of course dependency
for i in range(numCourses):
graph[i] = []
for pr in prerequisites:
graph[pr[0]].append(pr[1])
gray = set() #grey vertexs: discovered, but not all of its neighbours have been visited (might incur in a cycle)
black = set() #black vertexs: discovered and all its neighbours have been visited (no cycle)
#Using a simple visited set works with undirected graph only.
#In directed graph, a cycle is present if and only if a node is seen again
#before all its descendants have been visited: if a node has a neighbor which is grey, then there is a cycle.
#This logic is easier to code using recursive DFS
def cycle_detect(course):
if course in gray: #cycle!
return True
if course in black: #Early cut-off to avoid TLE, since there will be no cycles anyway
return False
#Exhaust dependency path
gray.add(course)
for dep in graph[course]:
if cycle_detect(dep):
return True
#Exhausted all the neighbors and no cycle was detected.
#Move node to black list
gray.remove(course)
black.add(course)
return False
#Explore all possible dependency paths
#in search of a dependency loop
for course in range(numCourses):
if course not in black: #No need to check for cycle again, since the DFS from this node was successful
if cycle_detect(course):
return False
return True | course-schedule | Easy Python3 cycle detection with recursive DFS (clear comments) | Zikker | 0 | 43 | course schedule | 207 | 0.454 | Medium | 3,527 |
https://leetcode.com/problems/course-schedule/discuss/1970724/Python-BFS-topological-sort | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
children = defaultdict(list)
count_parents = defaultdict(int)
nodes = set()
for child, parent in prerequisites:
children[parent].append(child)
count_parents[child] += 1
nodes.add(parent)
nodes.add(child)
q = deque(node for node in nodes if node not in count_parents)
count_visited = 0
while q:
node = q.popleft()
count_visited += 1
for child in children[node]:
count_parents[child] -= 1
if count_parents[child] == 0:
q.append(child)
return count_visited == len(nodes) | course-schedule | Python, BFS topological sort | blue_sky5 | 0 | 103 | course schedule | 207 | 0.454 | Medium | 3,528 |
https://leetcode.com/problems/course-schedule/discuss/1970682/Python-DFS-cycle-detection | class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
STATUS_VISITING = 0
STATUS_VISITED = 1
def no_cycle(node):
if node in status:
if status[node] == STATUS_VISITED:
return True
else:
return False
status[node] = STATUS_VISITING
for child in adj[node]:
if not no_cycle(child):
return False
status[node] = STATUS_VISITED
return True
adj = defaultdict(list)
nodes = set()
for a, b in prerequisites:
adj[b].append(a)
nodes.add(b)
status = {}
for node in nodes:
if not no_cycle(node):
return False
return True | course-schedule | Python, DFS cycle detection | blue_sky5 | 0 | 75 | course schedule | 207 | 0.454 | Medium | 3,529 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1774062/Python-Explanation-of-sliding-window-using-comments | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left = 0 # keep track of left pointer
rsum = 0 # keep the running sum
res = None # Answer we will return
# Iterate through the array, the index will be your right pointer
for right in range(len(nums)):
# Add the current value to the running sum
rsum += nums[right]
# Once you reach a value at or equal to the target you
# can use a while loop to start subtracting the values from left
# to right so that you can produce the minimum size subarray
while rsum >= target:
# The result is either the current result you have,
# or the count of numbers from the current left position
# to the rightmost position. You need it to be right + 1
# because index starts at 0 (if you based the right as the
# last index it would be 4 or len(nums) - 1)
# If res is None we compare it against the max float,
# saves us from having an if/else
res = min(res or float('inf'), right + 1 - left)
# Subtract the number to see if we can continue subtracting based
# on the while loop case and increment the left pointer
rsum -= nums[left]
left += 1
return res or 0 | minimum-size-subarray-sum | Python - Explanation of sliding window using comments | iamricks | 8 | 376 | minimum size subarray sum | 209 | 0.445 | Medium | 3,530 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2348029/Python-Easy-sliding-window-with-explanation | class Solution:
def minSubArrayLen(self, target, nums):
# Init left pointer and answer
l, ans = 0, len(nums) + 1
# Init sum of subarray
s = 0
# Iterate through all numbers as right subarray
for r in range(len(nums)):
# Add right number to sum
s += nums[r]
# Check for subarray greater than or equal to target
while s >= target:
# Calculate new min
ans = min(ans, r - l + 1)
# Remove current left nubmer from sum
s -= nums[l]
# Move left index up one
l += 1
# No solution
if ans == len(nums) + 1:
return 0
# Solution
return ans | minimum-size-subarray-sum | [Python] Easy sliding window with explanation | drblessing | 6 | 301 | minimum size subarray sum | 209 | 0.445 | Medium | 3,531 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/862364/O(N*LOG(N))-SOLUTION-EXPLAINED-PYTHON | class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
"""
O(N*LOG(N)) Solution using prefix-sum array
Since, we know all of the elements are positive, we can
generate a prefix-sum array for the given nums array,
which will be guaranteed to be in increasing order, aka a sorted list.
Use this knowledge to then perform a binary search on the prefix-sum
array for every element in the nums array, so that we can find the
smallest sub-array starting from element at index = i with sum >= s,
IF there is one - there might be no sub-array from index = i to the end of
the array that sums to s or more. For example, nums = [8, 2, 3] & s = 8:
There is no subarray starting from index 1 or 2 that sums to 8 or more,
only from index 0.
"""
n = len(nums)
if not n or sum(nums) < s:
return 0
# Generate prefix-sum array:
# [2,3,1,2,4,3] = nums
# [0,2,5,6,8,12,15] = prefix-sum
F = [num for num in nums]
F.insert(0, 0)
for i in range(1, n+1):
F[i] += F[i-1]
answer = float('inf')
# Perform binary search on the prefix-sums array
# for every element in the nums array to get the
# smallest sub-array starting from index i that sums
# to s or more, IF there is one
for i in range(n):
l, r = i, n
while l <= r:
mid = (l+r)//2
if F[mid] - F[i] >= s:
r = mid-1
else:
l = mid + 1
if l <= n and F[l] - F[i] >= s:
answer = min(answer, l-i)
return answer if answer != float('inf') else 0 | minimum-size-subarray-sum | O(N*LOG(N)) SOLUTION EXPLAINED PYTHON | nyc_coder | 3 | 130 | minimum size subarray sum | 209 | 0.445 | Medium | 3,532 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2802486/Python-oror-Easy-ororSliding-Window | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
n=len(nums)
i=j=0
s=nums[0]
m=9999999
while j<n and i<=j:
if s>=target:
m=min(m,j-i+1)
s-=nums[i]
i+=1
else:
j+=1
if j<n:
s+=nums[j]
if m!=9999999:
return m
return 0 | minimum-size-subarray-sum | Python || Easy ||Sliding Window | DareDevil_007 | 2 | 116 | minimum size subarray sum | 209 | 0.445 | Medium | 3,533 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2564106/Python-or-Two-Pointers-w-comments | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
l = 0
curSum = 0
minLen = float('inf')
for r in range(len(nums)):
# add to curSum
curSum += nums[r]
while curSum >= target and l <= r:
# update minlen
minLen = min(minLen, (r - l)+1)
# minlen ever hits 1, just return 1
if minLen == 1:
return 1
# update cursum and l pointer
curSum -= nums[l]
l += 1
return minLen if minLen != float('inf') else 0 | minimum-size-subarray-sum | Python | Two Pointers w/ comments | Mark5013 | 1 | 120 | minimum size subarray sum | 209 | 0.445 | Medium | 3,534 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2398279/Binary-Search-%2B-Sliding-Window | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
low, high = 1, len(nums) + 1
while (low < high):
mid = (low + high)//2
if self.slidingWin(target, nums, mid):
high = mid
else:
low = mid + 1
if self.slidingWin(target, nums, low): return low
else: return 0
def slidingWin(self, target, nums, k):
curSum = 0
maxSum = 0
l = 0
for i in range(len(nums)):
curSum += nums[i]
if i > k - 1:
curSum -= nums[l]
l += 1
maxSum = max(curSum, maxSum)
return (maxSum >= target) | minimum-size-subarray-sum | Binary Search + Sliding Window | logeshsrinivasans | 1 | 178 | minimum size subarray sum | 209 | 0.445 | Medium | 3,535 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1620080/Python-oror-Easy-Solution-oror-O(n)-and-O(1) | class Solution:
def minSubArrayLen(self, t: int, lst: List[int]) -> int:
i, j = 0, 0
count = 0
maxi = 10 ** 5
while j < len(lst):
count += lst[j]
if count == t:
if maxi > (j - i + 1):
maxi = (j - i + 1)
count -= lst[i]
i += 1
j += 1
elif count > t:
if maxi > (j - i + 1):
maxi = (j - i + 1)
count -= lst[i]
count -= lst[j]
i += 1
else:
j += 1
if maxi == 10 ** 5:
return 0
return maxi | minimum-size-subarray-sum | Python || Easy Solution || O(n) and O(1) | naveenrathore | 1 | 224 | minimum size subarray sum | 209 | 0.445 | Medium | 3,536 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1378327/Python-O(N)-2-solutions | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left = 0
mx = float('inf')
N = len(nums)
currentSum = 0
for right in range(N):
currentSum += nums[right]
while currentSum >= target:
mx = min(mx, right - left + 1)
currentSum -= nums[left]
left += 1
return 0 if mx == float('inf') else mx | minimum-size-subarray-sum | [Python] O(N) 2 solutions | ShSaktagan | 1 | 180 | minimum size subarray sum | 209 | 0.445 | Medium | 3,537 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1378327/Python-O(N)-2-solutions | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left = right = 0
mx = float('inf')
N = len(nums)
currentSum = 0
while left < N or right < N:
if currentSum >= target:
mx = min(mx, right - left)
if currentSum < target and right < N:
currentSum += nums[right]
right += 1
elif left < N:
currentSum -= nums[left]
left += 1
return 0 if mx == float('inf') else mx | minimum-size-subarray-sum | [Python] O(N) 2 solutions | ShSaktagan | 1 | 180 | minimum size subarray sum | 209 | 0.445 | Medium | 3,538 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1227341/Sliding-Window-of-Python3 | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
length = len(nums)
if length == 0:
return 0
left, total, ans = 0, 0, float('inf')
for i in range(length):
total += nums[i]
while total >= target:
ans = min(ans, i + 1 - left)
total -= nums[left]
left += 1
return 0 if ans == float('inf') else ans | minimum-size-subarray-sum | Sliding Window of Python3 | faris-shi | 1 | 59 | minimum size subarray sum | 209 | 0.445 | Medium | 3,539 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2842053/BEATS-99-SUBMISSIONS-oror-FASTEST-AND-EASIEST-oror-SLIDING-WINDOW | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
l,total=0,0
res=float("inf")
for r in range(len(nums)):
total += nums[r]
while total >=target:
res =min((r-l +1),res)
total -=nums[l]
l +=1
return 0 if res==float("inf") else res | minimum-size-subarray-sum | BEATS 99% SUBMISSIONS || FASTEST AND EASIEST || SLIDING WINDOW | Pritz10 | 0 | 2 | minimum size subarray sum | 209 | 0.445 | Medium | 3,540 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2838746/Python-O(n)-solution-Accepted | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left: int = 0
curr_sum: int = 0
min_len = len(nums)
for i in range(len(nums)):
curr_sum += nums[i]
while curr_sum >= target:
min_len = min(min_len, i - left + 1)
curr_sum -= nums[left]
left += 1
return 0 if min_len == len(nums) and sum(nums) < target else min_len | minimum-size-subarray-sum | Python O(n) solution [Accepted] | lllchak | 0 | 3 | minimum size subarray sum | 209 | 0.445 | Medium | 3,541 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2838377/Python-Solution-Clear | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
ans=float('inf')
left=0
summ=0
for i in range(len(nums)):
summ+=nums[i]
while summ>=target:
ans=min(ans,i+1-left)
summ-=nums[left]
left+=1
return ans if ans!=inf else 0 | minimum-size-subarray-sum | Python Solution - Clear | jainsiddharth99 | 0 | 2 | minimum size subarray sum | 209 | 0.445 | Medium | 3,542 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2809775/Python-Solution-with-sliding-window | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
res = float("inf")
total = 0
l,r = 0,-1
while r<len(nums):
if total<target:
r+=1
if r>=len(nums): break
total += nums[r]
else:
res = min(res,r-l+1)
total -= nums[l]
l+=1
return res if res!=float("inf") else 0 | minimum-size-subarray-sum | [Python] Solution with sliding window | kevin-shu | 0 | 4 | minimum size subarray sum | 209 | 0.445 | Medium | 3,543 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2802193/Minimum-size-subarray-sum | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
if target in nums:
return 1
res=1e9
s=0;left=0
for right,val in enumerate(nums):
s+=val
while s>=target:
res=min(res,right-left+1)
s-=nums[left]
left+=1
return res if res!=1e9 else 0 | minimum-size-subarray-sum | Minimum size subarray sum | hemanth_12 | 0 | 3 | minimum size subarray sum | 209 | 0.445 | Medium | 3,544 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2796577/Easy-Python-Solution-using-Sliding-Window-Approach | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
min_length = float('inf')
num_sum = 0
left = 0
for right, _ in enumerate(nums):
num_sum += nums[right]
while num_sum >= target:
min_length = min(min_length, right - left + 1)
num_sum -= nums[left]
left += 1
return 0 if min_length == float('inf') else min_length | minimum-size-subarray-sum | Easy Python Solution using Sliding Window Approach | nadirahcodes | 0 | 2 | minimum size subarray sum | 209 | 0.445 | Medium | 3,545 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2794176/Clean-Python-Sliding-Window-solution | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
minLen = 100001
start = 0
end = 0
s = 0
while end < len(nums):
s += nums[end]
while s >= target:
minLen = min(minLen, end - start + 1)
s -= nums[start]
start += 1
end += 1
return minLen if minLen != 100001 else 0 | minimum-size-subarray-sum | Clean Python Sliding Window solution | disturbedbrown1 | 0 | 1 | minimum size subarray sum | 209 | 0.445 | Medium | 3,546 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2791236/sliding-window-and-Time-complexity%3AO(n) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
minimum=math.inf
start,end,summ=0,0,0
while end<len(nums):
summ=summ+nums[end]
end=end+1
while summ>=target and end>start:
summ=summ-nums[start]
start=start+1
minimum=min(minimum,end-start+1)
if minimum==math.inf:
return 0
return minimum | minimum-size-subarray-sum | sliding window & Time complexity:O(n) | ManojDluffy | 0 | 3 | minimum size subarray sum | 209 | 0.445 | Medium | 3,547 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2783718/Sliding-Window-O(N)-solution | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
start, end , cur_max = 0, 0 , math.inf
if len(nums) == 0 : return 0
running_sum = 0
while start <= end and end < len(nums):
if running_sum + nums[end] >= target:
cur_max = min(cur_max,end - start+1)
running_sum -= nums[start]
start+=1
else:
running_sum += nums[end]
end+=1
if start == 0 and end == len(nums) and running_sum < target:
cur_max = 0
return cur_max | minimum-size-subarray-sum | Sliding Window O(N) solution | ishitakumardps | 0 | 3 | minimum size subarray sum | 209 | 0.445 | Medium | 3,548 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2697615/Python-solution | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
ans = float('inf')
sums = 0
length = len(nums)
left = 0
for right in range(length):
sums += nums[right]
while sums >= target and right >= left:
ans = min(ans, right - left + 1)
sums -= nums[left]
left += 1
return ans if ans != float('inf') else 0 | minimum-size-subarray-sum | Python solution | maomao1010 | 0 | 6 | minimum size subarray sum | 209 | 0.445 | Medium | 3,549 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2692034/Python-O(N)-O(1) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
l = r = curr = 0
res = sys.maxsize
for r in range(len(nums)):
curr += nums[r]
while curr >= target and l <= r:
res = min(res, r - l + 1)
curr -= nums[l]
l += 1
return res if res != sys.maxsize else 0 | minimum-size-subarray-sum | Python - O(N), O(1) | Teecha13 | 0 | 10 | minimum size subarray sum | 209 | 0.445 | Medium | 3,550 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2662977/slidding-Window-technique-python | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
l, total = 0, 0
res = float("inf")
for r in range(len(nums)):
total += nums[r]
while total >= target:
res = min(r - l + 1, res)
total -= nums[l]
l += 1
return 0 if res == float("inf") else res | minimum-size-subarray-sum | slidding Window technique python | sahilkumar158 | 0 | 2 | minimum size subarray sum | 209 | 0.445 | Medium | 3,551 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2552734/Python-Solution-or-Beats-97 | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
i=0
s=0
n=len(nums)
mini=1e9
for j in range(n):
s+=nums[j]
while s>=target:
mini=min(mini, j-i+1)
s-=nums[i]
i+=1
if mini==1e9:
return 0
return mini | minimum-size-subarray-sum | Python Solution | Beats 97% | Siddharth_singh | 0 | 82 | minimum size subarray sum | 209 | 0.445 | Medium | 3,552 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2504239/fast-or-easy-python-code | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
n=len(nums)
if n==0:
return 0
i=0
j=0
minlen=n
currsum=0
valid=False
while j<n:
currsum+=nums[j]
j+=1
while currsum>=target:
valid=True
minlen=min(minlen,j-i)
currsum-=nums[i]
i+=1
if valid:
return minlen
else:
return 0 | minimum-size-subarray-sum | fast | easy python code | ayushigupta2409 | 0 | 40 | minimum size subarray sum | 209 | 0.445 | Medium | 3,553 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2407765/Min-Size-Subarray-Sum-or-Python-or-Sliding-Window-or-Time-Complexity%3A-O(n) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
minimum = float("inf")
window_sum, window_start = 0,0
for window_end in range(len(nums)):
window_sum += nums[window_end]
while window_sum >= target:
# for this step you add one due to the indexing issues
minimum = min(minimum,window_end -window_start +1)
window_sum -= nums[window_start]
window_start += 1
if minimum != float("inf"):
return minimum
return 0 | minimum-size-subarray-sum | Min Size Subarray Sum | Python | Sliding Window | Time Complexity: O(n) | obaissa | 0 | 56 | minimum size subarray sum | 209 | 0.445 | Medium | 3,554 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2406225/Sliding-Window-and-Two-Pointer | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
if nums[0]>=target:
return 1
summ=nums[0]
left=0
l=float('inf')
for right in range(1,len(nums)):
if nums[right]>=target:
return 1
summ+=nums[right]
while summ>=target and left<=right:
summ-=nums[left]
l=min(l,right-left+1)
left+=1
if l==float('inf'):
return 0
return int(l) | minimum-size-subarray-sum | Sliding Window and Two Pointer | Neerajbirajdar | 0 | 41 | minimum size subarray sum | 209 | 0.445 | Medium | 3,555 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2277144/Python-O(n)-easy | class Solution(object):
def minSubArrayLen(self, s, nums):
if sum(nums)< s:
return 0
ans, sum_ = sys.maxsize, 0
i = 0
j = 0
while j<len(nums):
sum_+= nums[j]
if sum_>=s:
while sum_>=s:
ans = min(ans, j-i+1)
sum_-=nums[i]
i+=1
print(i,j)
j+=1
return ans | minimum-size-subarray-sum | Python O(n) easy | Abhi_009 | 0 | 128 | minimum size subarray sum | 209 | 0.445 | Medium | 3,556 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2191209/Sliding-Window-Approach | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
i, j, n = 0, 0, len(nums)
s = 0
minLength = float('inf')
while j < n:
s += nums[j]
if s < target:
j += 1
else:
while s >= target:
minLength = min(minLength, j - i + 1)
s -= nums[i]
i += 1
j += 1
if minLength != float('inf'):
return minLength
else:
return 0 | minimum-size-subarray-sum | Sliding Window Approach | Vaibhav7860 | 0 | 85 | minimum size subarray sum | 209 | 0.445 | Medium | 3,557 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2166807/Python-Sliding-Window-(Thought-Process) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
# Handle null/empty scenario
if not nums:
return 0
# Define start/end pointers, running counter
start = 0
end = 0
counter = nums[0]
# Since we're comparing minimums, start at infinity (positive)
minimumLength = math.inf
while end < len(nums):
if counter >= target:
# Calculate minimum length
minimumLength = min(minimumLength, end - start + 1)
# Subtract from counter
counter -= nums[start]
# Increment start of window
start +=1
else:
# Increment counter
end += 1
# Increment end and add, if above target
if end <= (len(nums) - 1):
counter += nums[end]
# Handle case where we never reach target amount
return 0 if minimumLength == math.inf else minimumLength | minimum-size-subarray-sum | [Python] Sliding Window (Thought Process) | ernestshackleton | 0 | 145 | minimum size subarray sum | 209 | 0.445 | Medium | 3,558 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2144806/Python-two-pointers | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
start = 0
end = -1
sum_ = 0
result = math.inf
while end < len(nums):
if sum_ < target:
if end < len(nums) - 1:
sum_ += nums[end + 1]
end += 1
else:
sum_ -= nums[start]
start += 1
if sum_ >= target:
result = min(result, end - start + 1)
return result if result is not math.inf else 0 | minimum-size-subarray-sum | Python, two pointers | blue_sky5 | 0 | 21 | minimum size subarray sum | 209 | 0.445 | Medium | 3,559 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2092765/O(n)-Time-Complexity-Python-Solution | class Solution:
def minSubArrayLen(self, target, nums):
res = float("inf")
sumcheck = length = 0
for inx,num in enumerate(nums):
sumcheck,length = sumcheck+num,length+1
if sumcheck >= target:
#while subtracting elements from the left doesn't unsatisfy the constraint
while (valcheck := sumcheck-nums[inx-length+1]) >= target:
sumcheck = valcheck
length -= 1
res = min(res,length)
return res if res != float("inf") else 0 | minimum-size-subarray-sum | O(n) Time Complexity Python Solution | tomaetotomahto | 0 | 87 | minimum size subarray sum | 209 | 0.445 | Medium | 3,560 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2080577/Python-or-Easy-Solution-Using-Two-Pointer | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
# ///// TC: O(N) and SC: O(1) ////////
l,total = 0,0
res = float('inf')
for r in range(len(nums)):
total += nums[r]
while total >= target:
res = min(res,(r-l+1))
total -= nums[l]
l += 1
return 0 if res == float('inf') else res | minimum-size-subarray-sum | Python | Easy Solution Using Two Pointer | __Asrar | 0 | 95 | minimum size subarray sum | 209 | 0.445 | Medium | 3,561 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/2065685/Python-3-or-Sliding-Window-or-faster-than-93.43 | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
res = math.inf
l = r = s = 0
while r < len(nums):
s += nums[r]
if s >= target:
while l <= r and s >= target:
s -= nums[l]
l += 1
res = min(res, r - l + 2)
r += 1
return res if res < math.inf else 0 | minimum-size-subarray-sum | Python 3 | Sliding Window | faster than 93.43% | anels | 0 | 27 | minimum size subarray sum | 209 | 0.445 | Medium | 3,562 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1923041/5-Lines-Python-Solution-oror-99-Faster-oror-Memory-less-than-60 | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
l=0 ; sm=0 ; ans=len(nums)+1
for r in range(len(nums)):
sm+=nums[r]
while sm>=target: ans=min(ans,r-l+1) ; sm-=nums[l] ; l+=1
return 0 if ans>len(nums) else ans | minimum-size-subarray-sum | 5-Lines Python Solution || 99% Faster || Memory less than 60% | Taha-C | 0 | 98 | minimum size subarray sum | 209 | 0.445 | Medium | 3,563 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1856292/Python-(Simple-Approach-and-Beginner-friendly) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
total = 0
mini = float('inf')
j = 0
for i in range(len(nums)):
total+=nums[i]
while total >= target:
mini = min(mini, len(nums[j:i+1]))
total-=nums[j]
j+=1
return 0 if mini == float('inf') else mini
############## WORKS BUT TIME EXCEEDS FOR SOME TEST CASES ###################
# arr = []
# for i in range(0, len(nums)):
# for j in range(i+1, len(nums)+1):
# if sum(nums[i:j]) >= target:
# arr.append(len(nums[i:j]))
# return min(arr) if arr else 0 | minimum-size-subarray-sum | Python (Simple Approach and Beginner-friendly) | vishvavariya | 0 | 75 | minimum size subarray sum | 209 | 0.445 | Medium | 3,564 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1834369/Python-easy-to-read-and-understand-or-sliding-window | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
ans, i, sums = float("inf"), 0, 0
for j in range(len(nums)):
sums += nums[j]
while sums >= target:
ans = min(ans, j-i+1)
sums -= nums[i]
i = i+1
return 0 if ans == float("inf") else ans | minimum-size-subarray-sum | Python easy to read and understand | sliding window | sanial2001 | 0 | 141 | minimum size subarray sum | 209 | 0.445 | Medium | 3,565 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1801655/Python-Single-Loop-Sliding-Window-11-LoC | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
i, j, runningSum = 0, 0, 0
minLen = sys.maxsize
while j < len(nums):
if runningSum + nums[j] >= target:
minLen = min(minLen, j - i + 1)
runningSum -= nums[i]
i += 1
else:
runningSum += nums[j]
j += 1
return minLen if minLen != sys.maxsize else 0 | minimum-size-subarray-sum | Python - Single Loop Sliding Window - 11 LoC | olsonj | 0 | 92 | minimum size subarray sum | 209 | 0.445 | Medium | 3,566 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1712179/Two-pointers-and-binary-search | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left = 0
sum_ = 0
count = len(nums)
for right in range(len(nums)):
sum_ += nums[right]
if sum_<target:
continue
while sum_>=target and left<=right:
sum_ -= nums[left]
left += 1
count = min(count, right-left+2)
if left==0 and sum_<target:
return 0
else:
return count | minimum-size-subarray-sum | Two pointers and binary search | michaelniki | 0 | 35 | minimum size subarray sum | 209 | 0.445 | Medium | 3,567 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1712179/Two-pointers-and-binary-search | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
prefix_sum = [0]
for n in nums:
prefix_sum.append(prefix_sum[-1] + n)
res = inf
for start in range(len(prefix_sum) - 1):
left, right = start, len(prefix_sum) - 1
while left < right:
mid = left + (right - left) // 2
if prefix_sum[mid] - prefix_sum[start] >= target:
right = mid
else:
left = mid + 1
if prefix_sum[right] - prefix_sum[start] >= target:
res = min(res, right - start)
return res if res != inf else 0 | minimum-size-subarray-sum | Two pointers and binary search | michaelniki | 0 | 35 | minimum size subarray sum | 209 | 0.445 | Medium | 3,568 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1692536/Python-faster-than-99.6-with-only-one-loop | class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
i = j = 0
length = len(nums)
lastIndex = length - 1
minimum = length
summ = nums[i]
while (i < length):
if (nums[i] >= s):
return 1
if (j < lastIndex and summ < s):
j += 1
summ += nums[j]
elif (j < length and summ >= s):
minimum = min(minimum, j-i+1)
summ -= nums[i]
i += 1
else: # same as elif (j == length and sum(nums[i:j+1]) < s):
break
if (i == 0): # when the sum of whole array is less than target value
return 0
return minimum | minimum-size-subarray-sum | Python faster than 99.6%, with only one loop | hikoichihara | 0 | 158 | minimum size subarray sum | 209 | 0.445 | Medium | 3,569 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1468233/Python3-Sliding-window-solution-O(n) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
begin, cur_sum = 0, 0
_min = len(nums) + 1
for end in range(len(nums)):
cur_sum += nums[end]
while cur_sum >= target:
_min = min(_min, end - begin + 1)
cur_sum -= nums[begin]
begin += 1
if _min > len(nums):
return 0
return _min | minimum-size-subarray-sum | [Python3] Sliding window solution O(n) | maosipov11 | 0 | 37 | minimum size subarray sum | 209 | 0.445 | Medium | 3,570 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1231620/Detailed-explanation-using-two-pointers-faster-than-99-submission | class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
slow = 0
fast = 1
curr_sum = nums[0]
res = len(nums) + 1
n = len(nums)
while fast < n:
if curr_sum >= s:
res = min(res, fast-slow)
curr_sum -= nums[slow]
slow += 1
else:
curr_sum += nums[fast]
fast += 1
while slow < n and curr_sum >= s:
res = min(res, fast-slow)
curr_sum -= nums[slow]
slow +=1
return res if res != len(nums) + 1 else 0 | minimum-size-subarray-sum | Detailed explanation using two pointers, faster than 99% submission | PatrickPro2 | 0 | 58 | minimum size subarray sum | 209 | 0.445 | Medium | 3,571 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1138542/python-solution-(faster-than-99.5-solutions) | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
start=0
end=0
n=len(nums)
curr_len=n+1
curr=0
while(end<n):
while(curr<target and end<n):
curr+=nums[end]
end+=1
while(curr>=target and start<n):
if end-start<curr_len:
curr_len=end-start
curr-=nums[start]
start+=1
return curr_len if curr_len!=n+1 else 0 | minimum-size-subarray-sum | python solution (faster than 99.5% solutions) | samarthnehe | 0 | 236 | minimum size subarray sum | 209 | 0.445 | Medium | 3,572 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1110558/Python3-solution | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
result: Union[float, int] = float('inf')
left: int = 0
cur_sum: int = 0
for i in range(len(nums)):
cur_sum += nums[i]
while cur_sum >= target:
result = min(result, i + 1 - left)
cur_sum -= nums[left]
left += 1
return result if result != float('inf') else 0 | minimum-size-subarray-sum | Python3 solution | alexforcode | 0 | 115 | minimum size subarray sum | 209 | 0.445 | Medium | 3,573 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1095463/Python-solutions | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left = summ = 0
res = float('inf')
for i in range(len(nums)):
summ += nums[i]
while(summ >= target):
res = min(res, i+1-left)
summ -= nums[left]
left += 1
return res if res != float('inf') else 0 | minimum-size-subarray-sum | Python solutions | ginaaiusing | 0 | 285 | minimum size subarray sum | 209 | 0.445 | Medium | 3,574 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/978970/Python-faster-than-96 | class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
result = float('inf')
left = 0
total = 0
for i in range(len(nums)):
total += nums[i]
while total >= s:
#result = min(result, i+1 - left)
if result > i+1-left:
result = i+1-left
total -= nums[left]
left+=1
return result if result!=float('inf') else 0 | minimum-size-subarray-sum | Python faster than 96% | Skywalker5423 | 0 | 321 | minimum size subarray sum | 209 | 0.445 | Medium | 3,575 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/862306/TWO-POINTER-SOLUTION-EXPLAINED-PYTHON | class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
n = len(nums)
if not n:
return 0
left = right = 0
answer = float('inf')
total = 0
while right < n:
total += nums[right]
if total >= s:
answer = min(answer, right-left+1)
while total >= s:
total -= nums[left]
left += 1
if total >= s:
answer = min(answer, right-left+1)
right += 1
return answer if answer != float('inf') else 0 | minimum-size-subarray-sum | TWO POINTER SOLUTION EXPLAINED PYTHON | nyc_coder | 0 | 43 | minimum size subarray sum | 209 | 0.445 | Medium | 3,576 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/734704/Python3-sliding-window | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
ans = inf
ii = 0
for i, x in enumerate(nums):
target -= x
while ii <= i and target <= 0:
ans = min(ans, i - ii + 1)
target += nums[ii]
ii += 1
return ans if ans < inf else 0 | minimum-size-subarray-sum | [Python3] sliding window | ye15 | 0 | 99 | minimum size subarray sum | 209 | 0.445 | Medium | 3,577 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/495388/Python3-O(n)-solution-using-two-pointers | class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
if s in nums: return 1
res,n,left_index,sums = float("inf"),len(nums),0,0
for i in range(n):
sums += nums[i]
while s<=sums:
res=min(res,i+1-left_index)
sums -= nums[left_index]
left_index+=1
return res if res!=float("inf") else 0 | minimum-size-subarray-sum | Python3 O(n) solution using two pointers | jb07 | 0 | 94 | minimum size subarray sum | 209 | 0.445 | Medium | 3,578 |
https://leetcode.com/problems/minimum-size-subarray-sum/discuss/1190414/python3-Two-pointers-easy | class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
lb = 0
ub = 0
wSum = nums[0]
numLen = len(nums)
ans = []
while lb<numLen:
# print(lb, ub, wSum)
if wSum >= target:
ans.append(ub-lb+1)
if wSum < target and ub+1< numLen:
ub+=1
wSum += nums[ub]
else:
wSum -= nums[lb]
lb+=1
# print(ans)
if ans:
return min(ans)
return 0 | minimum-size-subarray-sum | python3 Two pointers easy | GC_in | -1 | 230 | minimum size subarray sum | 209 | 0.445 | Medium | 3,579 |
https://leetcode.com/problems/course-schedule-ii/discuss/1327646/Elegant-Python-DFS | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
# Handle edge case.
if not prerequisites: return [course for course in range(numCourses)]
# 'parents' maps each course to a list of its pre
# -requisites.
parents = {course: [] for course in range(numCourses)}
for course, prerequisite in prerequisites:
parents[course].append(prerequisite)
topological_order = []
visited, current_path = [False]*numCourses, [False]*numCourses
# Returns False if the digraph rooted at 'course'
# is acyclic, else, appends courses to 'topological
# _order' in topological order and returns True.
def dfs(course):
if current_path[course]: return False
if visited[course]: return True
visited[course], current_path[course] = True, True
if parents[course]:
for parent in parents[course]:
if not dfs(parent): return False
topological_order.append(course)
current_path[course] = False
return True
for course in range(numCourses):
if not dfs(course): return []
return topological_order | course-schedule-ii | Elegant Python DFS | soma28 | 4 | 467 | course schedule ii | 210 | 0.481 | Medium | 3,580 |
https://leetcode.com/problems/course-schedule-ii/discuss/1642387/Python3-ITERATIVE-TOPOSORT-(-_-)-Explained | class Solution:
def findOrder(self, numCourses: int, pr: List[List[int]]) -> List[int]:
# Build adjacency list
adj = defaultdict(list)
for a, b in prerequisites:
adj[b].append(a)
# TopoSort
topo = list()
vis = set()
processed = set()
for node in range(numCourses):
if node in vis:
continue
st = [node]
while st:
cur = st[-1]
vis.add(cur)
if cur in processed:
st.pop()
continue
for ch in adj[cur]:
if not ch in vis:
st.append(ch)
if cur == st[-1]:
topo.append(st.pop())
processed.add(cur)
# Result
res = []
i = 0
pos = dict()
while topo:
node = topo.pop()
pos[node] = i
i += 1
res.append(node)
# Check for cycles
for parent, children in adj.items():
for child in children:
if pos[parent] > pos[child]:
return []
return res | course-schedule-ii | ✔️ [Python3] ITERATIVE TOPOSORT (´-_ゝ-`), Explained | artod | 3 | 170 | course schedule ii | 210 | 0.481 | Medium | 3,581 |
https://leetcode.com/problems/course-schedule-ii/discuss/822651/Python3-DFS-and-BFS | class Solution:
def findOrder(self, numCourses: int, prerequisites):
# DFS 用递归
# 先找到 上了某门课以后可以解锁的全后置课,放入dict neighborNode 中
# 再做一个 status dict, 用来记录查找的状态, 默认value 0 代表没访问过
# dfs 更改 status, 0 代表没访问; 1 代表访问中; 2 代表访问过
# 如果递归遇到1,表示已成环,则无法上完所有课,返回 false;否则递归更新上课顺序在 result 里
from collections import deque
result=deque([])
neighborNodes = collections.defaultdict(list)
status = collections.defaultdict(int)
for nodeTo,nodeFrom in prerequisites:
neighborNodes[nodeFrom].append(nodeTo)
def dfs(node):
if status[node]==1:
return False # 成环了,无法上完所有课
if status[node]:
return #如果访问过了,退出
status[node] = 1 #没访问过,递归,把顺序 appendleft 加入deque中
for next_node in neighborNodes[node]:
if dfs(next_node) == False:
return False
status[node] = 2
result.appendleft(node)
for node in range(numCourses):
if dfs(node) == False:
return []
return result | course-schedule-ii | Python3 DFS and BFS | meiyaowen | 2 | 90 | course schedule ii | 210 | 0.481 | Medium | 3,582 |
https://leetcode.com/problems/course-schedule-ii/discuss/822651/Python3-DFS-and-BFS | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
# BFS 用deque
from collections import deque
q = deque([])
result = deque([])
inDegree = [0]*numCourses
neighborNodes = collections.defaultdict(list)
# 计算每一门课的入度, 找到 每一门 course 可以解锁的课程
for nodeTo, nodeFrom in prerequisites:
inDegree[nodeTo] +=1
neighborNodes[nodeFrom].append(nodeTo)
# 将入度=0 的课程放入 deque 中,可以先上
for node in range(numCourses):
if not inDegree[node]:
q.append(node)
while q:
node = q.pop()
result.append(node)
for next_node in neighborNodes[node]:
inDegree[next_node] -=1
if not inDegree[next_node]: q.append(next_node)
# 如果有环,则 上过课的数量会小于 课程总数,返回[]
if len(result) == numCourses: return result
return [] | course-schedule-ii | Python3 DFS and BFS | meiyaowen | 2 | 90 | course schedule ii | 210 | 0.481 | Medium | 3,583 |
https://leetcode.com/problems/course-schedule-ii/discuss/2368808/Python-Easy-Short-Optimal-or-Simple-DFS-or-94-time-percentile | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
preq = defaultdict(list)
for x in prerequisites:
preq[x[0]] += [x[1]]
order = []
visited = {}
def isCycleDFS(node):
if node in visited:
return visited[node]
visited[node] = True
for n in preq[node]:
if isCycleDFS(n): return True
visited[node] = False
order.append(node)
return False
for i in range(numCourses):
if isCycleDFS(i): return []
return order | course-schedule-ii | [Python] Easy, Short, Optimal | Simple DFS | 94% time percentile | LongQ | 1 | 42 | course schedule ii | 210 | 0.481 | Medium | 3,584 |
https://leetcode.com/problems/course-schedule-ii/discuss/2314708/Python-Simple-Solution-2-Dicts-%2B-BFS | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
if numCourses <= 0:
return []
inDegree = {}
adjList = {}
for i in range(numCourses):
inDegree[i] = 0
adjList[i] = []
for child, parent in prerequisites:
adjList[parent].append(child)
inDegree[child] += 1
q = deque()
for i in range(numCourses):
if inDegree[i] == 0:
q.append(i)
order = []
visit = set()
while len(q) > 0:
cur = q.popleft()
order.append(cur)
visit.add(cur)
for n in adjList[cur]:
inDegree[n] -= 1
if n not in visit and inDegree[n] == 0:
q.append(n)
if len(order) == numCourses:
return order
return [] | course-schedule-ii | Python - Simple Solution - 2 Dicts + BFS | worldofthomas | 1 | 29 | course schedule ii | 210 | 0.481 | Medium | 3,585 |
https://leetcode.com/problems/course-schedule-ii/discuss/1753718/Clean-Python-Topological-Sort-Solution | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
graph = {i:[] for i in range(numCourses)}
in_degree = {i: 0 for i in range(numCourses)}
for dest, prev in prerequisites:
graph[prev].append(dest)
in_degree[dest] += 1
course_chose, ans = 0, []
queue = collections.deque()
for node, value in in_degree.items():
if value == 0:
queue.append(node)
while queue:
curr_node = queue.popleft()
course_chose += 1
ans.append(curr_node)
for dest in graph[curr_node]:
in_degree[dest] -= 1
if in_degree[dest] == 0:
queue.append(dest)
if course_chose != numCourses: return []
return ans | course-schedule-ii | Clean Python Topological Sort Solution | Chingtat27 | 1 | 119 | course schedule ii | 210 | 0.481 | Medium | 3,586 |
https://leetcode.com/problems/course-schedule-ii/discuss/1672343/Python3-BFS-98.2-or-Detailed-Explained-or-Beginner-Friendly | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
# init DAG: Course pre -> Course
d = defaultdict(list)
# indegree list: there are # courses as pre-requisites for takign Course A
indeg = [0] * numCourses
# c: course; p: pre for course
for c, p in prerequisites:
d[p].append(c)
# p -> c will increase the indegree of c
indeg[c] += 1
# BFS queue: enque all the 0 indegree courses
q = deque([i for i, x in enumerate(indeg) if x == 0])
# milestone check, good habit
# print(q)
# learning path
ans = []
while q:
cur = q.popleft()
# add it to our learning path
ans.append(cur)
# apply BFS to cur can yield the affected courses, decrease their indegree by 1
for c in d[cur]:
indeg[c] -= 1
# if the indegree reach 0, enque
if indeg[c] == 0:
q.append(c)
return ans if len(ans) == numCourses else [] | course-schedule-ii | Python3 BFS 98.2% | Detailed Explained | Beginner Friendly | doneowth | 1 | 70 | course schedule ii | 210 | 0.481 | Medium | 3,587 |
https://leetcode.com/problems/course-schedule-ii/discuss/1643809/Python3-(Beats-95)-Intuitive-%2B-Easy-to-Understand-%2B-Comments-or-BFS | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
cToP = {c: 0 for c in range(numCourses)} # Maps course to number of prerequisites
pToC = {p: [] for p in range(numCourses)} # Maps prerequisite to list of courses
for c, p in prerequisites:
cToP[c] += 1
pToC[p].append(c)
# We should start with courses with no prerequisites and then continue (BFS)
coursesToTake = [c for c, pS in cToP.items() if not pS]
res = []
while coursesToTake:
res.extend(coursesToTake)
nextCoursesToTake = []
for p in coursesToTake:
for c in pToC[p]:
cToP[c] -= 1
if not cToP[c]:
nextCoursesToTake.append(c)
coursesToTake = nextCoursesToTake
return res if not any(cToP.values()) else [] # Return result if all courses have 0 prerequisites else return an empty list | course-schedule-ii | [Python3] (Beats 95%) Intuitive + Easy to Understand + Comments | BFS | PatrickOweijane | 1 | 180 | course schedule ii | 210 | 0.481 | Medium | 3,588 |
https://leetcode.com/problems/course-schedule-ii/discuss/1583778/Python3-or-Faster-%3A-95.06-or-Recursive-Approach | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
def dfs(node, seen):
if node in seen:
self.cycle = True
else:
if not self.visited[node]:
self.visited[node] = True
seen.add(node)
if node in self.dict_:
for pre_course in self.dict_[node]:
if self.cycle:
break
dfs(pre_course, seen)
self.final.append(node)
seen.remove(node)
self.visited = [False]*numCourses
self.dict_ = dict()
self.cycle = False
self.final = []
for course, pre_course in prerequisites:
if course not in self.dict_:
self.dict_[course] = [pre_course]
else:
self.dict_[course].append(pre_course)
for course in range(numCourses):
if self.cycle:
return []
dfs(course, set())
return self.final | course-schedule-ii | Python3 | Faster : 95.06 | Recursive Approach | Call-Me-AJ | 1 | 219 | course schedule ii | 210 | 0.481 | Medium | 3,589 |
https://leetcode.com/problems/course-schedule-ii/discuss/824281/Q269-Alien-Dictionary-BFS | class Solution:
def alienOrder(self, words: List[str]) -> str:
# BFS
# https://leetcode-cn.com/problems/alien-dictionary/solution/python3-tuo-bu-pai-xu-by-bbqq-2/
neighborNodes = collections.defaultdict(list)
queue = collections.deque([])
result = collections.deque([])
#初始化入度表
str = "".join(words)
inDegree = dict.fromkeys(set(str), 0)
#每两个互相比, 更新 neighborNode, 和 入度表
for i in range(len(words)-1):
w1=words[i]
w2=words[i+1]
minlen = min(len(w1),len(w2))
for j in range(minlen):
if w1[j] == w2[j]:
if j == minlen-1 and len(w1) > len(w2): # 如果两个字符串完全相同,但是第一个比第二个长,
return "" # 则认为是不合法的,返回空
else:
pass
else: # 否则只有第一个不同的字母间有 topo order
neighborNodes[w1[j]].append(w2[j])
inDegree[w2[j]]+=1
break
# 把入度为0的字幕放入 queue 中
for key in inDegree:
if inDegree[key] == 0: queue.append(key)
# 每次弹出一个字母,之后的node入度-1
while queue:
node = queue.pop()
result.append(node)
for next_node in neighborNodes[node]:
inDegree[next_node]-=1
if inDegree[next_node]==0: queue.append(next_node)
if len(result) != len(inDegree):
return ""
else:
return "".join(result) | course-schedule-ii | Q269 Alien Dictionary BFS | meiyaowen | 1 | 101 | course schedule ii | 210 | 0.481 | Medium | 3,590 |
https://leetcode.com/problems/course-schedule-ii/discuss/735092/Python3-tri-color-approach | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
graph = {}
for u, v in prerequisites:
graph.setdefault(v, []).append(u)
def fn(x):
"""Return True if cycle is deteced."""
if visited[x]: return visited[x] == 1
visited[x] = 1
for xx in graph.get(x, []):
if fn(xx): return True
ans.append(x) # collect values
visited[x] = 2
return False
ans = []
visited = [0]*numCourses
for x in range(numCourses):
if fn(x): return []
return ans[::-1] | course-schedule-ii | [Python3] tri-color approach | ye15 | 1 | 183 | course schedule ii | 210 | 0.481 | Medium | 3,591 |
https://leetcode.com/problems/course-schedule-ii/discuss/735092/Python3-tri-color-approach | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
graph = [[] for _ in range(numCourses)]
indeg = [0] * numCourses
for v, u in prerequisites:
graph[u].append(v)
indeg[v] += 1
ans = []
for i, x in enumerate(indeg):
if x == 0: ans.append(i)
for u in ans:
for v in graph[u]:
indeg[v] -= 1
if indeg[v] == 0: ans.append(v)
return ans if len(ans) == numCourses else [] | course-schedule-ii | [Python3] tri-color approach | ye15 | 1 | 183 | course schedule ii | 210 | 0.481 | Medium | 3,592 |
https://leetcode.com/problems/course-schedule-ii/discuss/342214/Python3-100-DFS-solution-100ms | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
# create graph
graph = [[] for _ in range(numCourses)]
for pre in prerequisites:
graph[pre[0]].append(pre[1])
ans = []
seen = [0 for _ in range(numCourses)]
# dfs
def topSort(node, graph, seen, ans):
if (seen[node] != 0): return seen[node]
seen[node] = -1 # mark as seen
for neigh in graph[node]:
if(topSort(neigh, graph, seen, ans)==-1):
return -1
ans.append(node)
seen[node] = 1 # done without cycle
return 0
for i in range(numCourses):
if (seen[i] == 0):
if (topSort(i, graph, seen, ans)==-1): # cycle
return []
return ans | course-schedule-ii | [Python3] 100% DFS solution 100ms | PrGxw | 1 | 124 | course schedule ii | 210 | 0.481 | Medium | 3,593 |
https://leetcode.com/problems/course-schedule-ii/discuss/2833655/Python3-Beats-75-Double-Dictionaries | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
needed = {i:set() for i in range(numCourses)}
satisfies = {i:set() for i in range(numCourses)}
for [a, b] in prerequisites:
needed[b].add(a)
satisfies[a].add(b)
look_at = set([i for i in range(numCourses)])
done = set()
ret= []
while look_at:
cc = look_at.pop()
if cc in done or len(satisfies[cc]):
continue
ret.append(cc)
done.add(cc)
for i in needed[cc]:
look_at.add(i)
satisfies[i].remove(cc)
if len(ret) < numCourses:
return []
return ret | course-schedule-ii | Python3 Beats 75% Double Dictionaries | godshiva | 0 | 2 | course schedule ii | 210 | 0.481 | Medium | 3,594 |
https://leetcode.com/problems/course-schedule-ii/discuss/2826124/Easy-understand-solution | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
routes = collections.defaultdict(list)
need = collections.defaultdict(set)
lst = [0] * numCourses
for premise in prerequisites:
lst[premise[0]] += 1
routes[premise[1]].append(premise[0])
need[premise[0]].add(premise[1])
queue = collections.deque()
answer = []
seen = set()
for ind in range(numCourses):
if lst[ind] == 0:
answer.append(ind)
queue.append(ind)
while queue:
cur = queue.popleft()
lst = routes[cur]
seen.add(cur)
for item in lst:
if len(need[item].difference(seen)) == 0:
queue.append(item)
answer.append(item)
if len(answer) == numCourses:
return answer
return [] | course-schedule-ii | Easy understand solution | lllymka | 0 | 4 | course schedule ii | 210 | 0.481 | Medium | 3,595 |
https://leetcode.com/problems/course-schedule-ii/discuss/2822539/Python3-Both-BFS-and-DFS-methods | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:.
self.graph = [[] for _ in range(numCourses)] # Directed graph. index = from. value = to.
self.visited = [False] * numCourses
self.onPath = [False] * numCourses
self.postOrder = []
self.hasCycle = False
for prerequisity in prerequisites:
self.graph[prerequisity[1]].append(prerequisity[0]) # Build graph
for i in range(numCourses): # In case there's non-connected graph, we need to loop all graphs
self.dfs(i)
if self.hasCycle:
return []
return self.postOrder[::-1] # DO NOT Return postOrder.reverse() cause reverse() function return void...
def dfs(self, node):
if self.onPath[node]: # node already on the path -> means there's a cycle.
self.hasCycle = True
return
if self.visited[node] or self.hasCycle:
# visited -> the sub-graph has been checked. hasCycle -> find a cycle, we can return earlier.
return
self.visited[node] = True
self.onPath[node] = True
for neigh in self.graph[node]:
self.dfs(neigh)
self.postOrder.append(node)
self.onPath[node] = False
return | course-schedule-ii | [Python3] Both BFS and DFS methods | Cceline00 | 0 | 6 | course schedule ii | 210 | 0.481 | Medium | 3,596 |
https://leetcode.com/problems/course-schedule-ii/discuss/2822106/cycle-check-with-dos-in-python | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
if prerequisites == []:
return range(numCourses)
graph = [[] for i in range(numCourses)]
for ls in prerequisites:
graph[ls[1]].append(ls[0])
hasCycle = False
visited = [False for i in range(numCourses)]
onpath = visited.copy()
seq = []
def traverse(n):
nonlocal hasCycle
if onpath[n]:
hasCycle = True
return
if hasCycle or visited[n]:
return
onpath[n] = True
visited[n] = True
for i in graph[n]:
traverse(i)
seq.append(n)
onpath[n] = False
for i in range(numCourses):
if not visited[i]:
traverse(i)
return seq[::-1] if not hasCycle else [] | course-schedule-ii | cycle check with dos in python | ychhhen | 0 | 3 | course schedule ii | 210 | 0.481 | Medium | 3,597 |
https://leetcode.com/problems/course-schedule-ii/discuss/2819063/Python-solution-or-DFS | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
prerequisite = defaultdict(list)
ans = []
# 0 : Unchecked, 1: Checking, 2: Completed
Status = [0] * numCourses
for cur, pre in prerequisites:
prerequisite[cur].append(pre)
def LearnTheCourse(num):
if Status[num] == 2:
return True
elif Status[num] == 1:
return False
else:
Status[num] = 1
for pre in prerequisite[num]:
if not LearnTheCourse(pre):
return False
ans.append(num)
Status[num] = 2
return True
for i in range(numCourses):
if not LearnTheCourse(i):
return []
return ans | course-schedule-ii | Python solution | DFS | maomao1010 | 0 | 5 | course schedule ii | 210 | 0.481 | Medium | 3,598 |
https://leetcode.com/problems/course-schedule-ii/discuss/2819060/Python-or-DAG-or-Topological-Sort | class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
adjlist = [[] for _ in range(numCourses)]
for src, dst in prerequisites:
adjlist[src].append(dst)
visited = [-1]*numCourses
departure = [-1]*numCourses
topsort = []
def dfs(node):
visited[node] = 1
for nbr in adjlist[node]:
if visited[nbr] == -1:
if dfs(nbr):
return True
else:
if departure[nbr] == -1:
return True
departure[node] = 1
topsort.append(node)
for node in range(numCourses):
if visited[node] == -1:
if dfs(node):
return []
return topsort | course-schedule-ii | Python | DAG | Topological Sort | ajay_gc | 0 | 3 | course schedule ii | 210 | 0.481 | Medium | 3,599 |
Subsets and Splits