post_href
stringlengths
57
213
python_solutions
stringlengths
71
22.3k
slug
stringlengths
3
77
post_title
stringlengths
1
100
user
stringlengths
3
29
upvotes
int64
-20
1.2k
views
int64
0
60.9k
problem_title
stringlengths
3
77
number
int64
1
2.48k
acceptance
float64
0.14
0.91
difficulty
stringclasses
3 values
__index_level_0__
int64
0
34k
https://leetcode.com/problems/course-schedule-ii/discuss/2795475/Python-Solution-Easy-to-Understand
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: graph = [[] for _ in range(numCourses)] indegree = [0 for _ in range(numCourses)] for course in prerequisites: graph[course[0]].append(course[1]) indegree[course[1]] += 1 queue = [] for node in range(numCourses): if indegree[node] ==0 : queue.append(node) course_order = [] while queue: curr_node = queue.pop(0) for node in graph[curr_node]: indegree[node] -= 1 if indegree[node] == 0: queue.append(node) course_order.append(curr_node) if len(course_order) == numCourses: return course_order[::-1] return []
course-schedule-ii
Python Solution Easy to Understand
manishchhipa
0
1
course schedule ii
210
0.481
Medium
3,600
https://leetcode.com/problems/course-schedule-ii/discuss/2794927/Simple-Depth-First-Search-and-Topological-Sort
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: seen = collections.defaultdict(bool) pos = collections.defaultdict(int) graph = collections.defaultdict(list) def dfs(course) -> bool: if seen[course] == 2: return True minPos = 0 seen[course] = 1 for nxt in graph[course]: if seen[nxt] == 1: # cycle return False elif seen[nxt] == 0: check = dfs(nxt) if not check: return False minPos = min(minPos, pos[nxt]) pos[course] = minPos - 1 seen[course] = 2 return True for a, b in prerequisites: graph[b].append(a) for course in range(numCourses): if seen[course] == 0: check = dfs(course) if not check: return [] courses = list(range(numCourses)) return sorted(courses, key=lambda course: pos[course])
course-schedule-ii
Simple Depth First Search and Topological Sort
ananth360
0
2
course schedule ii
210
0.481
Medium
3,601
https://leetcode.com/problems/course-schedule-ii/discuss/2763691/Simple-Beginner-Friendly-Approach-or-DFS-or-O(V%2BE)
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: self.graph = defaultdict(list) for pre in prerequisites: self.graph[pre[0]].append(pre[1]) self.visited = set() self.path = set() self.order = [] for course in range(numCourses): if course not in self.visited: self.visited.add(course) if not self.dfs(course): return [] return self.order def dfs(self, vertex): self.path.add(vertex) for neighbour in self.graph[vertex]: if neighbour in self.path: return False #early exit if neighbour not in self.visited: self.visited.add(neighbour) if not self.dfs(neighbour): return False self.path.remove(vertex) #remove from path and add to order self.order.append(vertex) return True
course-schedule-ii
Simple Beginner Friendly Approach | DFS | O(V+E)
sonnylaskar
0
6
course schedule ii
210
0.481
Medium
3,602
https://leetcode.com/problems/course-schedule-ii/discuss/2760808/Using-khan's-algorithm-BFS-striver-solution
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: if numCourses==1: return [0] dic=defaultdict(list) for a,b in prerequisites: dic[a]+=[b] vis=[0]*numCourses for i in range(numCourses): if i in dic: for node in dic[i]: vis[node]+=1 q=[] ans=[] for i in range(numCourses): if vis[i]==0: q.append(i) while q: node=q.pop(0) ans.append(node) if node in dic: for it in dic[node]: vis[it]-=1 if vis[it]==0: q.append(it) if vis[it]<0: return [] if len(ans)==numCourses: return ans[::-1]
course-schedule-ii
Using khan's algorithm, BFS, striver solution
aryan3012
0
4
course schedule ii
210
0.481
Medium
3,603
https://leetcode.com/problems/course-schedule-ii/discuss/2741463/simple-pythonor-DFS
class Solution: def traverse(self, now_point): if now_point in self.onpath: self.circle = True return if now_point in self.visited or self.circle: return self.onpath.append(now_point) self.visited.append(now_point) for j in self.graph[now_point]: self.traverse(j) self.postorder.append(now_point) self.onpath.pop() def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: self.graph = [[]for _ in range(numCourses)] for ask in prerequisites: a = ask[0] b = ask[1] self.graph[b].append(a) self.visited = [] self.onpath = [] self.postorder = [] self.circle = False for i in range(numCourses): self.traverse(i) if self.circle: return [] return self.postorder[::-1]
course-schedule-ii
simple python| DFS
lucy_sea
0
2
course schedule ii
210
0.481
Medium
3,604
https://leetcode.com/problems/course-schedule-ii/discuss/2716054/Python3-solution-with-detailed-explanation-O(V%2BE)-both-time-and-space-complexity
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: # init the nodes. for each node, first element # is the state of DFS. 0 means not discovered yet, # 1 means discovered, 2 means finished. node's # second element is the adjancent neighbors that # it connects to. undiscovered, discovered, finished = 0, 1, 2 nodes = [{"state": undiscovered, "neighbors": []} for i in range(numCourses)] for cur, pre in prerequisites: nodes[cur]["neighbors"].append(pre) res = [] # do a DFS. Graph will have a loop iff we find a node that's # discovered but not yet finished. The key idea is that if # we found a loop, then no solution cuz you have a prerequisites # loop. If loop doesn't exist, then we push the course in DFS # order. If you need some more info on DFS and DAG, # introduction to algorithms by THC is a really good book. def DFS(curNodeIndex): curNode = nodes[curNodeIndex] if curNode["state"]: return curNode["state"] == finished curNode["state"] = discovered for i in curNode["neighbors"]: if not DFS(i): return False curNode["state"] = finished res.append(curNodeIndex) return True for i in range(numCourses): if not DFS(i): return [] return res
course-schedule-ii
Python3 solution with detailed explanation, O(V+E) both time and space complexity
tinmanSimon
0
9
course schedule ii
210
0.481
Medium
3,605
https://leetcode.com/problems/course-schedule-ii/discuss/2713174/python3-simple-dfs-iterative-solution
class Solution: def findOrder(self, numCourses: int, pre: List[List[int]]) -> List[int]: graph={c:[] for c in range(numCourses)} for i in pre: graph[i[1]].append(i[0]) cycle , vis = set(), set() output = deque([]) for e in graph: if e not in vis: stk=[e] while stk: child=False temp=stk[-1] cycle.add(temp) for nb in graph[stk[-1]]: if nb in cycle: return [] if nb not in vis: if not child: child=True stk.append(nb) if not child: stk.pop() cycle.remove(temp) if temp not in vis: output.appendleft(temp) vis.add(temp) return output
course-schedule-ii
python3 simple dfs iterative solution
benon
0
9
course schedule ii
210
0.481
Medium
3,606
https://leetcode.com/problems/course-schedule-ii/discuss/2710912/PYTHON-SOLUTION
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: indegree=[0]*(numCourses) graph=defaultdict(list) res=[] for courses in prerequisites: graph[courses[1]].append(courses[0]) indegree[courses[0]] += 1 queue=deque() for v in range(numCourses): if indegree[v]==0: queue.append(v) while queue: u=queue.popleft() res.append(u) for v in graph[u]: indegree[v]-=1 if indegree[v]==0: queue.append(v) if len(res)==numCourses: return res return []
course-schedule-ii
PYTHON SOLUTION
shashank_2000
0
16
course schedule ii
210
0.481
Medium
3,607
https://leetcode.com/problems/course-schedule-ii/discuss/2695167/python3-95-topoligical-sort
class Solution: def findOrder(self, N: int, prerequisites: List[List[int]]) -> List[int]: if not prerequisites: return list(range(N)) prereqs_course, prereqs_amount = defaultdict(list), defaultdict(int) for _, (c, pr) in enumerate(prerequisites): prereqs_amount[c] += 1 prereqs_course[pr].append(c) ans = [] que = deque() que.extend(set(range(N)) - set(prereqs_amount)) while que: pr = que.popleft() ans.append(pr) for c in prereqs_course[pr]: prereqs_amount[c] -= 1 if prereqs_amount[c] < 1: que.append(c) if len(ans) == N: return ans return []
course-schedule-ii
python3 95% topoligical sort
1ncu804u
0
7
course schedule ii
210
0.481
Medium
3,608
https://leetcode.com/problems/course-schedule-ii/discuss/2623419/DFS-BFS-AND-KHAN'S-ALGORITHM
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: # BFS / KAHN'S ALGORITHM preMap = {i: [] for i in range(numCourses)} indegree = [0 for _ in range(numCourses)] """ numCourses = 4 prerequisites = [[1,0],[2,0],[3,1],[3,2]] """ for course, pre in prerequisites: indegree[course] += 1 preMap[pre].append(course) queue = collections.deque([course for course in preMap if indegree[course] == 0]) results = [] count = 0 while queue: course = queue.popleft() results.append(course) for pre in preMap[course]: indegree[pre] -= 1 if indegree[pre] == 0: queue.append(pre) count += 1 return results if count == numCourses else [] # DFS APPROACH checkCycle = [0 for _ in range(numCourses)] visit, cycle, results = set(), set(), [] def dfs(course): if checkCycle[course] == -1: return False if checkCycle[course] == 1: return True checkCycle[course] = -1 for pre in preMap[course]: if not dfs(pre): return False checkCycle[course] = 1 results.append(course) return True for course in range(numCourses): if not dfs(course): return [] return results
course-schedule-ii
DFS / BFS AND KHAN'S ALGORITHM
leomensah
0
26
course schedule ii
210
0.481
Medium
3,609
https://leetcode.com/problems/course-schedule-ii/discuss/2597705/Python-Easy-DFS
class Solution: def findOrder(self, n: int, pre: List[List[int]]) -> List[int]: res = [] vis = [0]*n adj = [[] for _ in range(n)] for p in pre: adj[p[0]].append(p[1]) for u in range(n): if vis[u] == 0: if self.dfs(u, adj, vis, res): return [] return res def dfs(self, u, adj, vis, res): vis[u] = 1 for v in adj[u]: if vis[v] == 0: if self.dfs(v, adj, vis, res) == True: return True elif vis[v] == 1: return True vis[u] = 2 res.append(u) return False
course-schedule-ii
Python Easy DFS
lokeshsenthilkumar
0
52
course schedule ii
210
0.481
Medium
3,610
https://leetcode.com/problems/course-schedule-ii/discuss/2537428/Course-Schedule-II%3A-Python3-Top-Sort-Kahn-algo
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: def top_sort(DAG: dict): # Time Complexity O(V+E), Space Complexity O(V+E) # Topological sort: Kahn's algorithm # step 1: create the incoming_degree dictionary {X: #} to indicate how many incoming edges a node X has incoming_degree = { node: 0 for node in DAG } for node in DAG: for this_after_node in DAG[node]: incoming_degree[this_after_node] += 1 # step 2: create a queue for nodes without any incoming edges queue_of_before_nodes = [] for node in incoming_degree: if incoming_degree[node] == 0: queue_of_before_nodes.append(node) # step 3: remove the adjacency in the "after nodes" for each "before node" # when the incoming degree of the "after node" becomes 0, it will become another "before node" # do this repeatedly until there is no more "before nodes" in the queue top_order = [] while queue_of_before_nodes: this_before_node = queue_of_before_nodes.pop(0) top_order.append(this_before_node) for this_after_node in DAG[this_before_node]: incoming_degree[this_after_node] -= 1 if incoming_degree[this_after_node] == 0: queue_of_before_nodes.append(this_after_node) # if the graph contains a cycle, it won't be the same as n if len(top_order) != len(DAG): return [] return top_order # step 1: create the DAG (directed acyclic graph) for the adjacency rule in the data # for example, a dictionary {X: Y} to indicate that X (a before node) must be before Y (an after node) DAG = { course: set() for course in range(numCourses) } for dest, src in prerequisites: DAG[src].add(dest) # step 2: perform the topological sort res = top_sort(DAG) return res
course-schedule-ii
Course Schedule II: Python3 Top Sort Kahn algo
NinjaBlack
0
11
course schedule ii
210
0.481
Medium
3,611
https://leetcode.com/problems/course-schedule-ii/discuss/2506001/Python-Solution-or-using-DFS-orTopological-sort
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: prereq = {c : [] for c in range(numCourses)} for crs, pre in prerequisites: prereq[crs].append(pre) visit, cycle = set(), set() output= [] def dfs(crs): if crs in cycle: return False if crs in visit: return True cycle.add(crs) for pre in prereq[crs]: if dfs(pre) == False: return False cycle.remove(crs) visit.add(crs) output.append(crs) return True for c in range(numCourses): if dfs(c) == False: return [] return output
course-schedule-ii
Python Solution | using DFS |Topological sort
nikhitamore
0
71
course schedule ii
210
0.481
Medium
3,612
https://leetcode.com/problems/course-schedule-ii/discuss/2190467/Python3-Topological-Sort-Easy-to-understand
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: preMap = { _ : [] for _ in range(numCourses)} for cur, pre in prerequisites: preMap[cur].append(pre) path = set() # path to remember all the node on the path we have visited res = [] def dfs(n): if n in res: # node has already been added, we don't need to search again return True if n in path: # circle found return False path.add(n) for pre in preMap[n]: if not dfs(pre): return False # start a new path path.remove(n) # means there is no prerequisite for the current node, we have reached the bottom, so we can safely take this course first res.append(n) return True for n in range(numCourses): if not dfs(n): # circle found, return empty list return [] return res ```
course-schedule-ii
Python3 Topological Sort Easy to understand
jethu
0
17
course schedule ii
210
0.481
Medium
3,613
https://leetcode.com/problems/course-schedule-ii/discuss/2184681/Topological-Sort-oror-Detecting-Cycle-in-a-Directed-Graph-oror-DFS
class Solution: def topologicalSort(self, node, graph, visited, stack): visited[node] = True for neighbour in graph[node]: if visited[neighbour] == False: self.topologicalSort(neighbour, graph, visited, stack) stack.append(node) def dfs(self, i, graph, color): color[i] = "GRAY" for neighbour in graph[i]: if color[neighbour] == "GRAY": return True elif color[neighbour] == "WHITE" and self.dfs(neighbour, graph, color): return True color[i] = "BLACK" return False def detectCycle(self, V, graph): color = ["WHITE"]*V for i in range(V): if color[i] == "WHITE": if self.dfs(i, graph, color): return True return False def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: graph = {i:[] for i in range(numCourses)} for course, pre in prerequisites: graph[course].append(pre) # print(self.detectCycle(numCourses, graph)) if self.detectCycle(numCourses, graph): return [] else: stack = [] visited = [False]*(numCourses) for i in range(numCourses): if visited[i] == False: self.topologicalSort(i, graph, visited, stack) return stack
course-schedule-ii
Topological Sort || Detecting Cycle in a Directed Graph || DFS
Vaibhav7860
0
42
course schedule ii
210
0.481
Medium
3,614
https://leetcode.com/problems/course-schedule-ii/discuss/2153529/210.-Python-solution-with-my-comments
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: graph = [[] for i in range(numCourses)] visited = [0]*numCourses res = [] for pair in prerequisites: x, y = pair graph[x].append(y) for i in range(numCourses): if not self.dfs(graph, visited, i, res): return [] return res def dfs(self, graph, visited, i, res): if visited[i]==-1: return False if visited[i]==1: return True visited[i]=-1 for j in graph[i]: if not self.dfs(graph, visited, j, res): return False visited[i]=1 res.append(i) #acts like we traverse each unvisited node, then form a non-cycle path return True
course-schedule-ii
210. Python solution with my comments
JunyiLin
0
34
course schedule ii
210
0.481
Medium
3,615
https://leetcode.com/problems/course-schedule-ii/discuss/2118581/Python3-Solution-88
class Solution: def __init__(self): self.graph = {} self.v = 0 def isCyclicUtil(self, v, visited, recStack, progressStack): visited[v] = True recStack[v] = True if v not in self.graph: recStack[v]=False progressStack.append(v) return False for neighbour in self.graph[v]: if visited[neighbour] == False: if self.isCyclicUtil(neighbour, visited, recStack, progressStack) == True: progressStack.clear() return True elif recStack[neighbour] == True: return True recStack[v] = False progressStack.append(v) return False def isCyclic(self): visited = [False] * (self.v) recStack = [False] * (self.v) progress = [] for node in range(self.v): if visited[node] == False: if self.isCyclicUtil(node,visited,recStack, progress) == True: return progress return progress def findOrder(self, numCourses: int, prerequisites: list[list[int]]) -> list[int]: graph={} for a,b in prerequisites: if a in graph: graph[a].append(b) else: graph[a]=[b] self.graph=graph self.v=numCourses return self.isCyclic()
course-schedule-ii
Python3 Solution 88%
ComicCoder023
0
52
course schedule ii
210
0.481
Medium
3,616
https://leetcode.com/problems/course-schedule-ii/discuss/2117795/simple-iterative-dfs
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: courses = [[] for _ in range(numCourses)] for course, pre in prerequisites: courses[course].append(pre) visited = {} order = [] for i in range(numCourses): if visited.get(i, 0) == 0: stack = [i] while(stack): node = stack[-1] if visited.get(node, 0)==-1: stack.pop() order.append(node) visited[node] = 1 continue if visited.get(node, 0)==1: stack.pop() continue visited[node] = -1 for c in courses[node]: if visited.get(c, 0)==-1: return [] if visited.get(c, 0)==0: stack.append(c) return order
course-schedule-ii
simple iterative dfs
gabhinav001
0
62
course schedule ii
210
0.481
Medium
3,617
https://leetcode.com/problems/course-schedule-ii/discuss/2093015/Python3%3A-Simple-DFS-%2B-Backtracking-Solution-using-defaultdict-and-Sets-(no-Topological-Sort)
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: """ DFS + backtracking """ def dfs(course): visited.add(course) path.add(course) # backtracking for pre in graph[course]: if pre in path: return False if pre not in visited and not dfs(pre): return False path.remove(course) res.append(course) return True from collections import defaultdict graph = defaultdict(list, {k:[] for k in range(numCourses)}) for course, pre in prerequisites: if course == pre: return [] graph[course].append(pre) res = [] visited = set() path = set() for course in list(graph): if course not in visited and not dfs(course): return [] return res
course-schedule-ii
Python3: Simple DFS + Backtracking Solution using defaultdict and Sets (no Topological Sort)
yunglinchang
0
48
course schedule ii
210
0.481
Medium
3,618
https://leetcode.com/problems/course-schedule-ii/discuss/2068732/Python-or-Topological-Sorting-or-O(n)-Time-O(n)-space
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: graph = defaultdict(list) for a, b in prerequisites: graph[b].append(a) onPath = [False for _ in range(numCourses)] visited = [False for _ in range(numCourses)] hasCycle = False courses = [] def traverse(node): nonlocal hasCycle if onPath[node]: hasCycle = True return if visited[node] or hasCycle: return onPath[node] = True visited[node] = True # print("pre", node) # similar to root, left, right, so orders not guaranteed for n in graph[node]: traverse(n) # print("post", node) # similar to right, left, root, so order is reversed courses.append(node) onPath[node] = False for i in range(numCourses): traverse(i) if hasCycle: return [] return courses[::-1]
course-schedule-ii
Python | Topological Sorting | O(n) Time, O(n) space
Kiyomi_
0
44
course schedule ii
210
0.481
Medium
3,619
https://leetcode.com/problems/course-schedule-ii/discuss/2041842/course-schedule-oror-python3-oror-topological-oror-DFS
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: # Nothing just modification of course-schedule-1 graph = [[] for _ in range(numCourses)] visit = [0 for _ in range(numCourses)] stack=[] for x, y in prerequisites: graph[x].append(y) def dfs(i,stack): # if cyclee found than smply return empty set if visit[i] == -1: return [] if visit[i] == 1: return True visit[i] = -1 # if we encounter state to be -1 in just adajacent of any node directly return empty set # as it formed cycle there for j in graph[i]: if not dfs(j,stack): return [] # else we marked node as visited and keeps on appending till it depend on others visit[i] = 1 stack.append(i) return True for i in range(numCourses): if not dfs(i,stack): return [] # simply return stack which represent order of visiting node , if it doesn't contains any cycle. return stack
course-schedule-ii
course schedule || python3 || topological || DFS
Aniket_liar07
0
30
course schedule ii
210
0.481
Medium
3,620
https://leetcode.com/problems/course-schedule-ii/discuss/2036907/Python3-DFS-solution-explained
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: visited = [None] * numCourses onPath = [None] * numCourses adjList = [[] for i in range(numCourses)] res = [] for i in range(numCourses): adjList.append([]) for pre in prerequisites: adjList[pre[1]].append(pre[0]) def traverse(i): if onPath[i]: return False if visited[i]: return True visited[i] = True onPath[i] = True for neighbor in adjList[i]: if False == traverse(neighbor): return False onPath[i] = False res.append(i) for i in range(numCourses): if False == traverse(i): return [] res.reverse() return res
course-schedule-ii
Python3 DFS solution explained
TongHeartYes
0
33
course schedule ii
210
0.481
Medium
3,621
https://leetcode.com/problems/course-schedule-ii/discuss/2009702/Clean-Python-3-Solution-(Topological-Sorting-%2B-BFS)
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: in_degrees = [0] * numCourses for v, _ in prerequisites: in_degrees[v] += 1 q = [] for i in range(len(in_degrees)): if in_degrees[i] == 0: q.append(i) res = [] while q: u0 = q.pop(0) res.append(u0) for v, u in prerequisites: if u == u0: in_degrees[v] -= 1 if in_degrees[v] == 0: q.append(v) return res if len(res) == numCourses else []
course-schedule-ii
Clean Python 3 Solution (Topological Sorting + BFS)
Hongbo-Miao
0
83
course schedule ii
210
0.481
Medium
3,622
https://leetcode.com/problems/course-schedule-ii/discuss/1970320/Python3-Topological-Sort-Two-Solutions-with-BFS-and-DFS
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: graph = [[] for x in range(numCourses)] for dest, src in prerequisites: graph[src].append(dest) index = [numCourses - 1] result = [0] * numCourses seen = [False] * numCourses for cur in range(numCourses): cycle = [False] * numCourses if seen[cur] == False: hasCycle = self.dfs(cur, graph, seen, cycle, result, index) if hasCycle: return [] return result def dfs(self, cur, graph, seen, cycle, result, index) -> bool: seen[cur] = True cycle[cur] = True for neigh in graph[cur]: if seen[neigh] == False: hasCycle = self.dfs(neigh, graph, seen, cycle, result, index) if hasCycle: return True elif cycle[neigh]: return True result[index[0]] = cur index[0] -= 1 cycle[cur] = False return False
course-schedule-ii
Python3 Topological Sort Two Solutions with BFS & DFS
shtanriverdi
0
50
course schedule ii
210
0.481
Medium
3,623
https://leetcode.com/problems/course-schedule-ii/discuss/1914146/Python-DFS-oror-Topological-Sort-oror-Simple-and-Easy
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: preMap = collections.defaultdict(list) for crs, pre in prerequisites: preMap[crs].append(pre) output = [] visit, cycle = set(), set() def dfs(crs): if crs in cycle: return False if crs in visit: return True cycle.add(crs) for pre in preMap[crs]: if dfs(pre) == False: return False cycle.remove(crs) visit.add(crs) output.append(crs) return True for i in range(numCourses): if dfs(i) == False: return [] return output
course-schedule-ii
Python - DFS || Topological Sort || Simple and Easy
dayaniravi123
0
70
course schedule ii
210
0.481
Medium
3,624
https://leetcode.com/problems/course-schedule-ii/discuss/1906705/python-topological-sort-solution.-Easy-to-understand
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: incomingNodesCount = [0 for i in range(numCourses)] graph = {i:[] for i in range(numCourses)} # create a graph from the given prerequisites for prereq in prerequisites: # bi : [ai] ai = prereq[0] bi = prereq[1] if bi not in graph: graph[bi]=[ai] else: graph[bi].append(ai) incomingNodesCount[ai]+=1 # now get all the nodes with no incoming queue = [] i = 0 while i < len(incomingNodesCount): if incomingNodesCount[i] == 0: queue.append(i) i+=1 path = [] while len(queue): first = queue.pop(0) path.append(first) for nei in graph[first]: incomingNodesCount[nei] -= 1 if incomingNodesCount[nei] == 0: queue.append(nei) if set(incomingNodesCount) != set([0]): # some courses could not be taken (circular dependency) return [] return path
course-schedule-ii
python topological sort solution. Easy to understand
karanbhandari
0
96
course schedule ii
210
0.481
Medium
3,625
https://leetcode.com/problems/course-schedule-ii/discuss/1890364/Python-Topological-Sorting
class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: ans = [] d = {} indegree = {} for i in range(numCourses): d[i] = [] indegree[i] = 0 for i in prerequisites: d[i[0]].append(i[1]) indegree[i[1]] += 1 queue = [] for i in indegree: if indegree[i] == 0: queue.append(i) while queue: curr = queue.pop(0) ans.insert(0,curr) for i in d[curr]: if indegree[i] > 0: indegree[i]-= 1 if indegree[i] == 0: queue.append(i) for i in indegree: if indegree[i] != 0: return [] return(ans)
course-schedule-ii
Python Topological Sorting
DietCoke777
0
45
course schedule ii
210
0.481
Medium
3,626
https://leetcode.com/problems/word-search-ii/discuss/2351408/python3-solution-oror-99-more-faster-oror-39-ms
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: m = len(board) n = len(board[0]) res = [] d = [[0, 1], [0, -1], [1, 0], [-1, 0]] ref = set() for i in range(m): for j in range(n-1): ref.add(board[i][j] + board[i][j+1]) for j in range(n): for i in range(m-1): ref.add(board[i][j] + board[i+1][j]) for word in words: f = True for i in range(len(word)-1): if word[i:i+2] not in ref and word[i+1] + word[i] not in ref: f = False break if not f: continue if self.findWord(word, m, n, board, d): res.append(word) return res def findWord(self, word, m, n, board, d) -> bool: if word[:4] == word[0] * 4: word = ''.join([c for c in reversed(word)]) starts = [] stack = [] visited = set() for i in range(m): for j in range(n): if board[i][j] == word[0]: if len(word) == 1: return True starts.append((i, j)) for start in starts: stack.append(start) visited.add((start, )) l = 1 while stack != [] and l < len(word): x, y = stack[-1] for dxy in d: nx, ny = x + dxy[0], y + dxy[1] if 0 <= nx < m and 0 <= ny < n: if board[nx][ny] == word[l]: if (nx, ny) not in stack and tuple(stack) + ((nx, ny),) not in visited: stack.append((nx, ny)) visited.add(tuple(stack)) l += 1 if l == len(word): return True break else: stack.pop() l -= 1 else: return False
word-search-ii
python3 solution || 99% more faster || 39 ms
vimla_kushwaha
3
301
word search ii
212
0.368
Hard
3,627
https://leetcode.com/problems/word-search-ii/discuss/1061088/Python-AC-Backtracking-in-three-steps%3A-Terminate-Success-Backtrack
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: @functools.lru_cache(None) def backtrack(i, j, path): # 1) terminate if i not in range(0, len(board)): return if j not in range(0, len(board[0])): return if board[i][j] == "#": return # 2) success path += board[i][j] if path in self.words: self.result.add(path) # 3) backtrack c = board[i][j] board[i][j] = "#" for x, y in [(i+1, j), (i-1, j), (i, j-1), (i, j+1)]: backtrack(x, y, path) board[i][j] = c self.words = set(words) self.result = set() for i in range(len(board)): for j in range(len(board[0])): backtrack(i, j, "") return self.result
word-search-ii
Python AC Backtracking in three steps: Terminate, Success, Backtrack
dev-josh
3
342
word search ii
212
0.368
Hard
3,628
https://leetcode.com/problems/word-search-ii/discuss/2779919/or-Python-or-Trie-Easy-Solution
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: res = [] Trie = lambda : defaultdict(Trie) root = Trie() def add(s): cur = root for c in s: cur = cur[c] cur['$'] = s for word in words: add(word) m, n = len(board), len(board[0]) def dfs(i, j, root): ch = board[i][j] cur = root.get(ch) if not cur: return if '$' in cur: res.append(cur['$']) del cur['$'] board[i][j] = '#' if i<m-1: dfs(i+1, j, cur) if i>0: dfs(i-1, j, cur) if j<n-1: dfs(i, j+1, cur) if j>0: dfs(i, j-1, cur) board[i][j] = ch for i in range(m): for j in range(n): dfs(i, j, root) return res
word-search-ii
✔️ | Python | Trie Easy Solution
code_alone
2
289
word search ii
212
0.368
Hard
3,629
https://leetcode.com/problems/word-search-ii/discuss/2781923/Python-or-Trie-with-node-deletion
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: rows, cols = len(board), len(board[0]) directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] seen = [] res = set() trie = {} for word in words: current = trie for c in word: if c not in current: current[c] = {} current = current[c] current['#'] = word #to denote end of word def dfs(r, c, seen, node): if '#' in node: res.add(node['#']) del node['#'] for dr, dc in directions: nr, nc = r + dr, c + dc if nr in range(rows) and nc in range(cols) and (nr, nc) not in seen and board[nr][nc] in node: seen.append((nr, nc)) dfs(nr, nc, seen, node[board[nr][nc]]) if len(node[board[nr][nc]]) == 0: del node[board[nr][nc]] seen.pop() for r in range(rows): for c in range(cols): if board[r][c] in trie: seen.append((r, c)) dfs(r, c, seen, trie[board[r][c]]) seen.pop() return list(res)
word-search-ii
Python | Trie with node deletion
KevinJM17
1
38
word search ii
212
0.368
Hard
3,630
https://leetcode.com/problems/word-search-ii/discuss/2794297/DP-Approach-More-intuitive-than-Trie
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: if not board: return [] rtn = [] memo = {} for word in words: self.dp(board, word, memo) if not (-1,-1) in memo[word]: rtn.append(word) validatedRtn = [] for w in rtn: for k in memo[w]: if self.dfs(board, k[0], k[1], w): validatedRtn.append(w) break return validatedRtn def dp(self, board, word, memo): if word in memo: return leftOver = word[1:] if leftOver != '': self.dp(board, leftOver, memo) if (-1, -1) in memo[leftOver]: memo[word] = {(-1,-1): 1} return for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == word[0]: if leftOver == '' or (i,j+1) in memo[leftOver] or (i,j-1) in memo[leftOver] or (i+1,j) in memo[leftOver] or (i-1,j) in memo[leftOver]: if word in memo: memo[word][(i,j)] = 1 else: memo[word] = {(i,j): 1} if not word in memo: memo[word] = {(-1,-1): 1} def dfs(self, board, i, j, word): if len(word) == 0: # all the characters are checked return True if i<0 or i>=len(board) or j<0 or j>=len(board[0]) or word[0]!=board[i][j]: return False tmp = board[i][j] # first character is found, check the remaining part board[i][j] = "#" # avoid visit agian # check whether can find "word" along one direction res = self.dfs(board, i+1, j, word[1:]) or self.dfs(board, i-1, j, word[1:]) \ or self.dfs(board, i, j+1, word[1:]) or self.dfs(board, i, j-1, word[1:]) board[i][j] = tmp return res
word-search-ii
DP Approach - More intuitive than Trie
nickpavini
0
11
word search ii
212
0.368
Hard
3,631
https://leetcode.com/problems/word-search-ii/discuss/2788822/Python3-Faster-than-90-explained-using-dictionaries-and-NO-Tries
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: prefix = {} word2prefixes = {} #for pruning for w in words: word2prefixes[w] = set() for i in range(1,len(w)+1): p = w[0:i] if p in prefix: prefix[p]+=1 else: prefix[p]=1 word2prefixes[w].add(p) words = set(words) found = set() nrows,ncols = len(board),len(board[0]) visited = set() def dfs(node,w): visited.add(node) x,y = node if w in words: found.add(w) #remove all its prefixes to prevent duplicate searches in the board words.remove(w) for w_ in word2prefixes[w]: prefix[w_]-=1 if prefix[w_]==0: prefix.pop(w_) word2prefixes.pop(w) for nei in [(x+1,y),(x,y+1),(x-1,y),(x,y-1)]: nx,ny = nei if nei not in visited\ and nx>=0 and nx<nrows\ and ny>=0 and ny<ncols: new_w = w + board[nx][ny] if new_w in prefix: dfs(nei,new_w) visited.remove(node) #start from only valid states for i in range(nrows): for j in range(ncols): if board[i][j] in prefix: dfs((i,j),board[i][j]) return list(found)
word-search-ii
Python3 Faster than 90% explained using dictionaries and NO Tries
user9611y
0
11
word search ii
212
0.368
Hard
3,632
https://leetcode.com/problems/word-search-ii/discuss/2787688/Python-3-backtracking-%2B-Trie-friendly-to-beginner-no-fancy-syntax
class Solution: def buildtrie(self, words): trie = {} head = trie for word in words: for letter in word: if letter not in trie: trie[letter] = {} trie = trie[letter] trie['$'] = {} trie = head return trie def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: trie = self.buildtrie(words) res = set() def inBounds(i, j, m, n): return 0<=i<m and 0<=j<n def backtracking(i, j, node, track, m, n, visited, board): nonlocal res nonlocal trie if '$' in node: res.add(''.join(track)) if len(node.keys())==1: return directions = [[+1,0], [-1,0], [0,+1], [0,-1]] for direction in directions: x = i+direction[0]; y = j+direction[1] if inBounds(x,y,m,n) and visited[x][y] == 0: char = board[x][y] if char in node: visited[x][y] = 1 record = node node = node[char] track.append(char) backtracking(x, y, node, track, m, n, visited, board) track.pop() node = record visited[x][y] = 0 m = len(board) n = len(board[0]) visited = [0 for _ in range(n)] visited = [list(visited) for _ in range(m)] track = [] for i in range(m): for j in range(n): if board[i][j] in trie: visited[i][j] = 1 node = trie[board[i][j]] track.append(board[i][j]) backtracking(i, j, node, track, m, n, visited, board) track.pop() visited[i][j] = 0 return list(res)
word-search-ii
Python 3 backtracking + Trie, friendly to beginner, no fancy syntax
Arana
0
8
word search ii
212
0.368
Hard
3,633
https://leetcode.com/problems/word-search-ii/discuss/2785159/Python-%2B-DFS-with-Trie-Lookup
class Solution: def __init__(self): self.res = [] self.m = 0 self.n = 0 self.board = [[]] def add(self, s:str, root): cur = root for c in s: cur = cur[c] cur[' ```] = s def dfs(self, i:int, j:int, root): char = self.board[i][j] word = root.get(char) if not word: return if ' ``` in word: self.res.append(word[' ```]) del word[' ```] self.board[i][j] = '#' if i < self.m - 1: self.dfs(i+1, j , word) if i> 0: self.dfs(i-1, j, word) if j < self.n - 1: self.dfs(i, j+1, word) if j > 0: self.dfs(i, j-1, word) self.board[i][j] = char def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: Trie = lambda : defaultdict(Trie) #get length of board(row and col) self.m, self.n = len(board), len(board[0]) self.board = board #create a lookup root = Trie() #add dictionary words to lookup for word in words: self.add(word, root) for i in range(self.m): for j in range(self.n): self.dfs(i, j, root) return self.res
word-search-ii
Python + DFS with Trie Lookup
ratva0717
0
21
word search ii
212
0.368
Hard
3,634
https://leetcode.com/problems/word-search-ii/discuss/2782513/Help-optimizing-NON-TRIE-based-set-inclusion-method.-Accepted-one-time-TLE-ever-after
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: word_set = set(words) prefix_set = set() rows = len(board) cols = len(board[0]) words_found = [] for word in words: for i in range(len(word)): prefix_set.add("".join(word[:i + 1])) def traverse_grid(m: int, n: int, protoword: str, visited: set) -> List[str]: found_words = [] if protoword in word_set: found_words.append( protoword ) if protoword not in prefix_set: return found_words if m - 1 >= 0 and (m - 1, n) not in visited: found_words += traverse_grid( m - 1, n, protoword + board[m - 1][n], visited.union({(m - 1, n)}) ) if m + 1 < rows and (m + 1, n) not in visited: found_words += traverse_grid( m + 1, n, protoword + board[m + 1][n], visited.union({(m + 1, n)}) ) if n - 1 >= 0 and (m, n - 1) not in visited: found_words += traverse_grid( m, n - 1, protoword + board[m][n - 1], visited.union({(m, n - 1)}) ) if n + 1 < cols and (m, n + 1) not in visited: found_words += traverse_grid( m, n + 1, protoword + board[m][n + 1], visited.union({(m, n + 1)}) ) return found_words for m in range(rows): for n in range(cols): words_found += traverse_grid(m, n, board[m][n], {(m,n)} ) return set(words_found)
word-search-ii
Help optimizing NON-TRIE based set-inclusion method. Accepted one time, TLE ever after
cswartzell
0
15
word search ii
212
0.368
Hard
3,635
https://leetcode.com/problems/word-search-ii/discuss/2781477/python-solution
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: Words = set() m = len(board) n = len(board[0]) map = [[0]*n for i in range(m)] for i in words: Words.add(i) prefix = set() for it in words: for j in range(len(it) -1): prefix.add(it[:j+1]) def dfs(row, col, strin): parent = strin strin += board[row][col] if strin in prefix or strin in Words: map[row][col] = 1 if strin in Words: Words.remove(strin) output.append(strin) for i, j in adjacent(row,col): dfs(i, j, strin) map[row][col] = 0 return def adjacent(row, col): res = [] if row - 1 >= 0 and map[row - 1][col] == 0: res.append([row - 1, col]) if row + 1 < m and map[row + 1][col] == 0: res.append([row + 1, col]) if col + 1 < n and map[row][col + 1] == 0: res.append([row, col + 1]) if col - 1 >= 0 and map[row][col - 1] == 0: res.append([row, col - 1]) return res output = [] for i in range(m): for j in range(n): map[i][j] = 1 dfs(i, j, '') map[i][j] = 0 return output
word-search-ii
python solution
_saurav_pandey_
0
12
word search ii
212
0.368
Hard
3,636
https://leetcode.com/problems/word-search-ii/discuss/2781476/python-solution
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: Words = set() m = len(board) n = len(board[0]) map = [[0]*n for i in range(m)] for i in words: Words.add(i) prefix = set() for it in words: for j in range(len(it) -1): prefix.add(it[:j+1]) def dfs(row, col, strin): parent = strin strin += board[row][col] if strin in prefix or strin in Words: map[row][col] = 1 if strin in Words: Words.remove(strin) output.append(strin) for i, j in adjacent(row,col): dfs(i, j, strin) map[row][col] = 0 return def adjacent(row, col): res = [] if row - 1 >= 0 and map[row - 1][col] == 0: res.append([row - 1, col]) if row + 1 < m and map[row + 1][col] == 0: res.append([row + 1, col]) if col + 1 < n and map[row][col + 1] == 0: res.append([row, col + 1]) if col - 1 >= 0 and map[row][col - 1] == 0: res.append([row, col - 1]) return res output = [] for i in range(m): for j in range(n): map[i][j] = 1 dfs(i, j, '') map[i][j] = 0 return output
word-search-ii
python solution
_saurav_pandey_
0
8
word search ii
212
0.368
Hard
3,637
https://leetcode.com/problems/word-search-ii/discuss/2780396/Simple-Python-Trie-solution
class Solution: def findWords(self, board: list[list[str]], words: list[str]) -> list[str]: hasword = "true" trie = {} for word in words: root = trie for c in word: root = root.setdefault(c, {}) root[hasword] = word output = [] def findWord(i, j, root): if hasword in root: output.append(root[hasword]) del root[hasword] save = board[i][j] board[i][j] = '#' for x, y in ((i-1,j), (i+1,j), (i,j-1), (i,j+1)): if 0<=x<len(board) and 0<=y<len(board[0]) and board[x][y] in root: findWord(x, y, root[board[x][y]]) board[i][j] = save for i, row in enumerate(board): for j, c in enumerate(row): if c in trie: findWord(i, j, trie[c]) return output
word-search-ii
Simple Python Trie solution
tinlittle
0
30
word search ii
212
0.368
Hard
3,638
https://leetcode.com/problems/word-search-ii/discuss/2780368/Python3-Solution
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: m = len(board) n = len(board[0]) res = [] d = [[0, 1], [0, -1], [1, 0], [-1, 0]] ref = set() for i in range(m): for j in range(n-1): ref.add(board[i][j] + board[i][j+1]) for j in range(n): for i in range(m-1): ref.add(board[i][j] + board[i+1][j]) for word in words: f = True for i in range(len(word)-1): if word[i:i+2] not in ref and word[i+1] + word[i] not in ref: f = False break if not f: continue if self.findWord(word, m, n, board, d): res.append(word) return res def findWord(self, word, m, n, board, d) -> bool: if word[:4] == word[0] * 4: word = ''.join([c for c in reversed(word)]) starts = [] stack = [] visited = set() for i in range(m): for j in range(n): if board[i][j] == word[0]: if len(word) == 1: return True starts.append((i, j)) for start in starts: stack.append(start) visited.add((start, )) l = 1 while stack != [] and l < len(word): x, y = stack[-1] for dxy in d: nx, ny = x + dxy[0], y + dxy[1] if 0 <= nx < m and 0 <= ny < n: if board[nx][ny] == word[l]: if (nx, ny) not in stack and tuple(stack) + ((nx, ny),) not in visited: stack.append((nx, ny)) visited.add(tuple(stack)) l += 1 if l == len(word): return True break else: stack.pop() l -= 1 else: return False
word-search-ii
Python3 Solution
Motaharozzaman1996
0
19
word search ii
212
0.368
Hard
3,639
https://leetcode.com/problems/word-search-ii/discuss/2780002/Python3-Trim-The-Trie-to-Beat-TLE
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: """LeetCode 212 What a journey! I have solved this problem before by myself, but the same method back then no longer worked today, because the test cases had been enlarged. This means the method must be even more optimized. I was not able to figure out the optimized method, so I took a look at various comments. It turns out the trick is at trimming the trie on the words that have already been identified. This prevents duplication in the result and avoids traversing the same path that has been done before. The mechanism used for trimming is to keep a 'count' of the number of times a node has been passed through during the creation of the trie. Then, each time a word has been found, we go through the same path and decrement the count. This way, when all the words that go through a node have been found, that node's count would decrement to 0. We don't have to traverse that node anymore. With trimming, I was able to pass OC. 4136 ms, faster than 32.07% But I am too lazy right now to figure out the time complexity. """ trie = lambda: defaultdict(trie) board_count = Counter(chain(*board)) # count the frequency of each letter in board root = trie() # Preprocess the words. Eliminate all the ones that are impossible to be # formed by the letters in board for word in words: for le, c in Counter(word).items(): if board_count[le] < c: break else: node = root node['count'] = node.get('count', 0) + 1 for le in word: node = node[le] # keep track of the number of words passing through this le node['count'] = node.get('count', 0) + 1 node['*'] = word def check(i: int, j: int, node) -> List[str]: cur_le = board[i][j] board[i][j] = '.' res = [] if cur_le in node and node['count'] > 0: next_node = node[cur_le] if '*' in next_node: w = next_node['*'] res.append(w) # remove the word and decrement count for the current word del next_node['*'] tmp = root for le in w: tmp = tmp[le] tmp['count'] -= 1 for di, dj in [(0, 1), (0, -1), (1, 0), (-1, 0)]: ni, nj = i + di, j + dj if 0 <= ni < M and 0 <= nj < N and board[ni][nj] != '.': res.extend(check(ni, nj, next_node)) board[i][j] = cur_le return res M, N = len(board), len(board[0]) res = [] for i in range(M): for j in range(N): res.extend(check(i, j, root)) return res
word-search-ii
[Python3] Trim The Trie to Beat TLE
FanchenBao
0
23
word search ii
212
0.368
Hard
3,640
https://leetcode.com/problems/word-search-ii/discuss/2779891/Python3-solution-with-trie-removal
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: def _trie(): return defaultdict(_trie) _trie.TERMINAL = None _trie.PARENT = 'pa' _trie.LETTER = 'le' #None and 2-character string to avoid overwriting traversal keys self.trie = _trie() self.trie[_trie.PARENT] = None #add words into trie for word in words: trie = self.trie for letter in word: if letter not in trie: new_trie = trie[letter] new_trie[_trie.PARENT] = trie new_trie[_trie.LETTER] = letter trie = trie[letter] trie[_trie.TERMINAL] = word M = len(board) N = len(board[0]) res = [] seen = set() def search(trie, y, x): if y < 0 or x < 0 or y >= M or x >= N: return if (y, x) in seen: return seen.add((y, x)) if board[y][x] not in trie: seen.remove((y, x)) return trie = trie[board[y][x]] if _trie.TERMINAL in trie: #word res.append(trie[_trie.TERMINAL]) del trie[_trie.TERMINAL] if len(trie) == 2: #only has 'PARENT' and 'LETTER', longest trie has been reached while len(trie) == 2 and trie[_trie.PARENT]: #since we only start removing when the longest trie has been reached #we need a loop to also remove the shorter ones parent_trie = trie[_trie.PARENT] del parent_trie[trie[_trie.LETTER]] del trie trie = parent_trie seen.remove((y, x)) return search(trie, y-1, x) search(trie, y+1, x) search(trie, y, x-1) search(trie, y, x+1) seen.remove((y, x)) return for y in range(M): for x in range(N): search(self.trie, y, x) return res
word-search-ii
Python3 solution with trie removal
TheDucker1
0
19
word search ii
212
0.368
Hard
3,641
https://leetcode.com/problems/word-search-ii/discuss/2554597/Python-simple-trie-solution
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: class Trie: def __init__(self) -> None: self.root={} def insert(self,word): cur=self.root for w in word: if w not in cur: cur[w]={} cur=cur[w] cur["#"]=True trie=Trie() for word in words: trie.insert(word) m=len(board) n=len(board[0]) res=[] directions=[(0,1),(0,-1),(1,0),(-1,0)] def dfs(i,j,board,m,n,cur_dict,cur_str): cur_str+=board[i][j] prev=cur_dict temp=board[i][j] cur_dict=cur_dict[temp] board[i][j]="#" if "#" in cur_dict: res.append(cur_str) # need to delete # del cur_dict["#"] if not cur_dict.keys(): board[i][j]=temp del prev[temp] return for dir in directions: x,y=i+dir[0],j+dir[1] if x<0 or y<0 or x>=m or y>=n or board[x][y] not in cur_dict: continue dfs(x,y,board,m,n,cur_dict,cur_str) board[i][j]=temp for i in range(m): for j in range(n): if board[i][j] in trie.root: dfs(i,j,board,m,n,trie.root,"") return res
word-search-ii
Python simple trie solution
shatheesh
0
150
word search ii
212
0.368
Hard
3,642
https://leetcode.com/problems/word-search-ii/discuss/2395867/python-trie-and-dfs-or-anyone-knows-why-this-is-slow
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: trie = {} for w in words: cur = trie for c in w: if c not in cur: cur[c] = {} cur = cur[c] cur[-1] = -1 ans = [] for i in range(len(board)): for j in range(len(board[0])): self.dfs(board, i,j,"",trie, ans) return ans def dfs(self, board, i,j,path,trie, ans): if i<0 or j<0 or i>=len(board) or j >= len(board[0]): return if board[i][j] in trie: temp = board[i][j] board[i][j] = "#" cur = trie[temp] if -1 in cur: ans.append(path+temp) cur.pop(-1) self.dfs(board,i-1, j,path+temp, cur, ans) self.dfs(board,i+1, j,path+temp, cur, ans) self.dfs(board,i, j-1,path+temp, cur, ans) self.dfs(board,i, j+1,path+temp, cur, ans) board[i][j] = temp
word-search-ii
python trie and dfs | anyone knows why this is slow?
li87o
0
141
word search ii
212
0.368
Hard
3,643
https://leetcode.com/problems/word-search-ii/discuss/1966819/Word-Search-II-Python-3Totally-Math-Method
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: words_out = [] for w_x in words: inx_words = [] inx_count = [] for xx in range(len(w_x)): inx_words.append(self.index_all(board, w_x[xx])) inx_count.append(len(inx_words[xx])) if inx_count.count(0) > 0: pass else: board_2 = [] for x in range(len(board)): for y in range(len(board[0])): try: b2 = [f'{board[x][y]}{board[x][y + 1]}'] except IndexError: b2 = [0] try: b2 += [f'{board[x][y]}{board[x + 1][y]}'] except IndexError: b2 += [0] b2 += [f'{board[x][y]}{board[x][y - 1]}', f'{board[x][y]}{board[x - 1][y]}'] if x == 0 and y == 0: board_2 += b2[:2] elif x == 0 and y != 0: board_2 += b2[:3] elif x != 0 and y == 0: board_2 += [b2[0], b2[1], b2[3]] else: board_2 += b2 break_c = False for x in range(len(w_x) - 1): words_2 = w_x[x] + w_x[x + 1] if board_2.count(words_2) == 0: break_c = True break if break_c: continue w_x0 = w_x[:] if inx_count[-1] <= inx_count[0]: w_x = w_x[::-1] inx_words = inx_words[::-1] inx = [0 for i in range(len(w_x))] while inx[0] < len(inx_words[0]): inx_s1 = inx_words[0][inx[0]] i = 1 path = [inx_s1] inx_words0 = [aa[:] for aa in inx_words] while i < len(w_x): try: for ix in range(i, len(w_x)): if inx_words0[ix].count(inx_s1) > 0: inx_words0[ix].remove(inx_s1) inx_s2 = inx_words0[i][inx[i]] inx_s12 = [[inx_s1[0] + 1, inx_s1[1]], [inx_s1[0] - 1, inx_s1[1]], [inx_s1[0], inx_s1[1] + 1], [inx_s1[0], inx_s1[1] - 1]] if inx_s12.count(inx_s2) == 0: inx[i] += 1 break inx_s1 = inx_s2 path.append(inx_s1) i += 1 except IndexError: inx[i - 1] += 1 inx[i:] = [0] * (len(w_x) - i) break if i == len(w_x): inx[i - 1] += 1 if len(w_x) == len(set(map(tuple, path))): words_out.append(w_x0) break return words_out def index_all(self, my_list, v): inx_s = [] for i, x in enumerate(my_list): inx_c = [i for i, m in enumerate(x) if m == v] for xx in inx_c: inx_s.append([i, xx]) return inx_s
word-search-ii
Word Search II - [Python 3]Totally Math Method
kkimm
0
115
word search ii
212
0.368
Hard
3,644
https://leetcode.com/problems/word-search-ii/discuss/1783115/Python3-or-Faster-than-60-Memory-less-than-99
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: h, w = len(board), len(board[0]) def visit(word, start, i, j, path=[]): if start >= len(word): path.append([i, j]) return True elif len(word)-1 == start and word[start] == board[i][j]: path.append([i, j]) return True elif word[start] != board[i][j]: return False else: path.append([i, j]) res = [] for a, b in [[1, 0], [-1, 0], [0, 1], [0,-1]]: if 0 <= i+a < h and 0 <= j+b < w and [i+a, j+b] not in path: newp = [e for e in path] res.append(visit(word, start+1, i+a, j+b, newp)) if res and True in res: return True vocab = set([board[i][j] for i in range(h) for j in range(w)]) out = [] for word in words: chars = set(word) skip = False for c in chars: if c not in vocab: skip = True break if skip: continue res = False for i in range(h): for j in range(w): if word[0] == board[i][j]: res = visit(word, 0, i, j, []) if res: break if res: out.append(word) break return out
word-search-ii
Python3 | Faster than 60%, Memory less than 99%
elainefaith0314
0
165
word search ii
212
0.368
Hard
3,645
https://leetcode.com/problems/word-search-ii/discuss/1429990/Simple-Trie-based-solution-35-Lines-(50-50)
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: ### ADD to Trie def add(word): if word[0] not in trie: trie[word[0]] = {} addOn(word[1:],trie[word[0]]) def addOn(word,node): if not word: node['$'] = True return if word[0] not in node: node[word[0]] = {} addOn(word[1:],node[word[0]]) ### search+backtrack over Trie def search(i,j,path,node) -> bool: if '$' in node and node['$']: response.append(''.join(path+[board[i][j]])) node['$'] = False # Ensures no duplicate entry in response. letter = board[i][j] board[i][j] = '#' path.append(letter) for x,y in [[0,-1],[-1,0],[0,1],[1,0]]: c,d=x+i,y+j if 0 <= c < m and 0 <= d < n and board[c][d] in node: search(c,d,path,node[board[c][d]]) path.pop() board[i][j] = letter ### Main trie,response = {},[] for word in words: add(word) m,n = len(board),len(board[0]) for i in range(m): for j in range(n): if board[i][j] in trie: search(i,j,[],trie[board[i][j]]) return response
word-search-ii
Simple Trie based solution , 35 Lines (50%, 50%)
worker-bee
0
125
word search ii
212
0.368
Hard
3,646
https://leetcode.com/problems/word-search-ii/discuss/1242247/Python-DFS-Beats-99-Pass-All-Test-Cases-But-WRONG
class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: # My Effort - Passed all test cases, yet backtracking line doesn't work cntBoard = collections.Counter(''.join([e for row in board for e in row ])) cntW = [collections.Counter(w) for w in words] idxBoard = collections.defaultdict(list) m, n = len(board), len(board[0]) for i in range(m): for j in range(n): idxBoard[board[i][j]].append((i,j)) # print(idxBoard) dirs = [(0,1), (0,-1), (-1,0), (1,0)] # dirs = [(0,1), (0,-1), (1,0), (-1,0)] # fail some test cases def dfs(x, y, w, i): if i == len(w): return True for a, b in dirs: nx, ny = x + a, y + b if 0 <= nx < m and 0 <= ny < n and (nx, ny) not in visited and board[nx][ny] == w[i]: visited.add((nx, ny)) return dfs(nx, ny, w, i+1) # if I don't add return, the recursive function call returns None or False # visited.remove((nx, ny)) # However, if I add return, this line is never executed, backtracking doesn't work but we actually need backtracking ans = [] for w in words: if collections.Counter(w) - cntBoard: continue for x, y in idxBoard[w[0]]: visited = set() visited.add((x,y)) result = dfs(x, y, w, 1) if result: ans.append(w) break return ans
word-search-ii
Python DFS Beats 99% Pass All Test Cases But WRONG
Yan_Air
0
290
word search ii
212
0.368
Hard
3,647
https://leetcode.com/problems/house-robber-ii/discuss/2158878/Do-house-robber-twice
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] dp = {} def getResult(a,i): if i>=len(a): return 0 if i in dp: return dp[i] sum = 0 if i<len(a)-1: sum+= max(a[i]+getResult(a,i+2),a[i+1]+getResult(a,i+3)) else: sum+=a[i]+getResult(a,i+2) dp[i] = sum return sum x = getResult(nums[:len(nums)-1],0) dp = {} y = getResult(nums[1:],0) return max(x, y)
house-robber-ii
📌 Do house robber twice
Dark_wolf_jss
4
104
house robber ii
213
0.407
Medium
3,648
https://leetcode.com/problems/house-robber-ii/discuss/2345845/Success-Details-Runtime%3A-41-ms-oror-Python3-oror-vimla_kushwaha
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] a1 = 0 b1 = nums[0] a2 = 0 b2 = nums[1] for i in range(1, len(nums) - 1): a1, b1 = b1, max(a1 + nums[i], b1) a2, b2 = b2, max(a2 + nums[i + 1], b2) return max(b1, b2)
house-robber-ii
Success Details Runtime: 41 ms, || Python3 || vimla_kushwaha
vimla_kushwaha
3
94
house robber ii
213
0.407
Medium
3,649
https://leetcode.com/problems/house-robber-ii/discuss/2345845/Success-Details-Runtime%3A-41-ms-oror-Python3-oror-vimla_kushwaha
class Solution: def rob(self, nums: List[int]) -> int: n=len(nums) # step 1 or 2 if n<=2: return max(nums) return max(self.helper(nums[:-1]),self.helper(nums[1:])) def helper(self,nums): dp=[0]*len(nums) dp[0]=nums[0] dp[1]=max(nums[0],nums[1]) for i in range(2,len(nums)): dp[i]=max(nums[i]+dp[i-2],dp[i-1]) return max(dp)
house-robber-ii
Success Details Runtime: 41 ms, || Python3 || vimla_kushwaha
vimla_kushwaha
3
94
house robber ii
213
0.407
Medium
3,650
https://leetcode.com/problems/house-robber-ii/discuss/2177085/Python-DP-or-Beats-99-or-Very-Clearly-explained!
class Solution: def rob(self, houses: List[int]) -> int: if len(houses) == 1: return houses[0] if len(houses) == 2 or len(houses) == 3: return max(houses) def find(nums): n = len(nums) dp = [0] * n dp[0], dp[1], dp[2] = nums[0], nums[1], nums[2] + nums[0] for i in range(3, n): dp[i] = max(dp[i-2], dp[i-3]) + nums[i] return max(dp[-1], dp[-2]) return max(find(houses[1:]), find(houses[:-1]))
house-robber-ii
✅Python DP | Beats 99% | Very Clearly explained!
PythonerAlex
3
182
house robber ii
213
0.407
Medium
3,651
https://leetcode.com/problems/house-robber-ii/discuss/1468663/Python-or-DP-or-Memoization-or-With-Comments
class Solution: def hh(self,nums): dp=nums.copy() #memo table dp[1]=max(dp[0],dp[1]) #this loop stores the values in memo table as : highest amount that can be stolen upto that house for i in range(2,len(nums)): dp[i]=max(dp[i-2]+nums[i],dp[i-1]) return max(dp) def rob(self, nums: List[int]) -> int: if len(nums)<3: #if less than 3 numbers are present in array then no need to loop return max(nums) # as first element and last element cant be used at the same time we can consider one at time and run the process return max(self.hh(nums[1:]),self.hh(nums[:-1]))
house-robber-ii
Python | DP | Memoization | With Comments
nmk0462
2
205
house robber ii
213
0.407
Medium
3,652
https://leetcode.com/problems/house-robber-ii/discuss/2269240/Python-3-oror-Dynamic-programming
class Solution: def rob(self, nums: List[int]) -> int: return max(nums[0], self.helper(nums[1:]), self.helper(nums[:-1])) def helper(self, nums): rob1, rob2 = 0, 0 for n in nums: newRob = max(rob1 + n, rob2) rob1 = rob2 rob2 = newRob return rob2
house-robber-ii
Python 3 || Dynamic programming
sagarhasan273
1
24
house robber ii
213
0.407
Medium
3,653
https://leetcode.com/problems/house-robber-ii/discuss/2034891/Pythonor-Easy-Solution-including-Helper-function-of-House-Robber-1
class Solution: def rob(self, nums): return max(nums[0], self.helper(nums[1:]), self.helper(nums[:-1])) def helper(self, nums): rob1, rob2 = 0, 0 for n in nums: newRob = max(rob1 + n, rob2) rob1 = rob2 rob2 = newRob return rob2
house-robber-ii
Python| Easy Solution including Helper function of House Robber 1
shikha_pandey
1
132
house robber ii
213
0.407
Medium
3,654
https://leetcode.com/problems/house-robber-ii/discuss/1505865/Python3-Easy-DFS-%2B-Memoization
class Solution: def rob(self, nums: List[int]) -> int: n = len(nums) @cache def dfs(i, robbedFirst): if (i >= n or (i == n - 1 and robbedFirst)): return 0 return max(dfs(i + 1, robbedFirst), nums[i] + dfs(i + 2, robbedFirst)) return max(dfs(1, False), nums[0] + dfs(2, True))
house-robber-ii
Python3 - Easy DFS + Memoization ✅
Bruception
1
222
house robber ii
213
0.407
Medium
3,655
https://leetcode.com/problems/house-robber-ii/discuss/1468736/Python-DP-solution
class Solution: def rob(self, nums: List[int]) -> int: dp = [0]*(len(nums)-1) if len(nums)==1: return nums[0] if len(nums)==2: return max(nums[0],nums[1]) else: # from starting to n-1 dp[0] = nums[0] dp[1] = max(nums[0],nums[1]) for i in range(2,len(nums)-1): dp[i] = max(nums[i]+dp[i-2],dp[i-1]) res1 = dp[-1] #from second to last dp[0] = nums[1] dp[1] = max(nums[1],nums[2]) for i in range(2,len(nums)-1): dp[i] = max(nums[i+1]+dp[i-2],dp[i-1]) res2 = dp[-1] return max(res1,res2)
house-robber-ii
Python DP solution
dhanikshetty
1
182
house robber ii
213
0.407
Medium
3,656
https://leetcode.com/problems/house-robber-ii/discuss/1459822/PyPy3-Solution-using-DP-w-comments
class Solution: def rob(self, nums: List[int]) -> int: # If array is empty if not len(nums): return 0 # If array has no more than three elements, # as it is a circular array we can only select # one of the three elements. if len(nums) <= 3: return max(nums) # For all other cases, i.e., no. of elements are more # than three # Init n = len(nums) # Function to solve the subproblem def maxAmountRobbed(arr: List) -> int: # If array is empty if not len(arr): return 0 # If array has only two elements if len(arr) <= 2: return max(arr) # For all other cases m = len(arr) t = dict() # When only first element is scanned t[0] = arr[0] # When first two elements are scanned t[1] = max(arr[0], arr[1]) # Scanning from second elements onwards for i in range(2,m): t[i] = max(arr[i] + t[i-2], t[i-1]) return t[m-1] # IF we take 0th value we have to consider next possible # values are upto n-1, as 0 and n are connected v1 = maxAmountRobbed(nums[0:n-1]) # IF we take 1th value we have to consider next possible # values up to n, as 0 and n are connected v2 = maxAmountRobbed(nums[1:n]) return max(v1,v2)
house-robber-ii
[Py/Py3] Solution using DP w/ comments
ssshukla26
1
163
house robber ii
213
0.407
Medium
3,657
https://leetcode.com/problems/house-robber-ii/discuss/1440067/Simple-Python-dynamic-programming-solution
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) <= 3: return max(nums) def max_profit(money): dp = [0]*len(money) for i in range(len(dp)): prev = dp[i-1] if i > 0 else 0 prevprev = dp[i-2] if i > 1 else 0 dp[i] = max(prev, prevprev+money[i]) return dp[-1] plan1 = max_profit(nums[:-1]) # either rob houses 0 to n-1 plan2 = max_profit(nums[1:]) # or rob houses 1 to n return max(plan1, plan2)
house-robber-ii
Simple Python dynamic programming solution
Charlesl0129
1
121
house robber ii
213
0.407
Medium
3,658
https://leetcode.com/problems/house-robber-ii/discuss/893967/A-straightforward-solution-Python-faster-than-87.5
class Solution: def rob(self, a: List[int]) -> int: @lru_cache(maxsize=None) def g(i): if i == 0: return 0 if i == 1: return a[1] return max(g(i-1), g(i-2) + a[i]) @lru_cache(maxsize=None) def f(i): if i == 0: return a[0] if i == 1: return max(a[0], a[1]) if i == n-1: return max(f(n-2), g(n-3) + a[n-1]) return max(f(i-1), f(i-2) + a[i]) n = len(a) return f(n-1)
house-robber-ii
A straightforward solution [Python, faster than 87.5%]
dh7
1
102
house robber ii
213
0.407
Medium
3,659
https://leetcode.com/problems/house-robber-ii/discuss/751488/Python-3%3A-O(N)-time-and-O(1)-space-easy-solution.
class Solution: def rob(self, nums: List[int]) -> int: if len(nums)==1: return nums[0] elif len(nums)==0: return 0 return max(self.robHelper(nums[1:]),self.robHelper(nums[:-1])) def robHelper(self, arr): """ :type nums: List[int] :rtype: int """ if len(arr)==0: return 0 if len(arr)==1: return arr[0] if len(arr)==2: return max(arr) # maxSums[0] = arr[0] first = arr[0] second = max(first , arr[1]) for i in range(2,len(arr)): current = max(second,first+arr[i]) first =second second = current return second
house-robber-ii
[Python 3]: O(N) time and O(1) space easy solution.
py_js
1
88
house robber ii
213
0.407
Medium
3,660
https://leetcode.com/problems/house-robber-ii/discuss/2843265/Dynamic-Programming-Python3.
class Solution: def rob(self, nums: List[int]) -> int: n=len(nums) if (n==1): return nums[0] if (n==2): return max(nums[0],nums[1]) if (n==3): return max(nums[0],nums[1],nums[2]) def robPlain(nums): nums[1]=max(nums[0],nums[1]) for i in range(2,len(nums)): nums[i]=max(nums[i-1],nums[i-2]+nums[i]) return nums[-1] return max(robPlain(nums[:-1]),robPlain(nums[1:]))
house-robber-ii
Dynamic Programming, Python3.
minhhoanghectorjack
0
2
house robber ii
213
0.407
Medium
3,661
https://leetcode.com/problems/house-robber-ii/discuss/2843180/Python-DP
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) <= 2: return max(nums) DP0, DP1 = 0, 0 for i in range(len(nums) - 1): DP0, DP1 = DP1, max(DP0 + nums[i], DP1) res = DP1 DP0, DP1 = 0, 0 for i in range(1, len(nums)): DP0, DP1 = DP1, max(DP0 + nums[i], DP1) return max(res, DP1)
house-robber-ii
[Python] DP
i-hate-covid
0
2
house robber ii
213
0.407
Medium
3,662
https://leetcode.com/problems/house-robber-ii/discuss/2822264/Python-solution-or-DP-faster-than-91
class Solution: def rob(self, nums: List[int]) -> int: n = len(nums) dp1 = [0] * n dp2 = [0] * n if n <= 3: return max(nums) # take first dp1[0] = nums[0] dp1[1] = nums[1] #take last dp2[1] = nums[1] dp2[2] = nums[2] for i in range(2,n-1): dp1[i] = max(dp1[i-1], dp1[i-2] + nums[i], dp1[i-3] + nums[i]) for i in range(2,n): dp2[i] = max(dp2[i-1], dp2[i-2] + nums[i], dp2[i-3] + nums[i]) return max(dp1[-2], dp2[-1])
house-robber-ii
Python solution | DP faster than 91%
maomao1010
0
4
house robber ii
213
0.407
Medium
3,663
https://leetcode.com/problems/house-robber-ii/discuss/2821933/Python-Using-First-Version-But-Checking-Houses-Length-1
class Solution: def rob(self, nums: List[int]) -> int: ''' Here, the additional condition is that first &amp; last house are "adjacent" so we can instead take the max of range excluding first vs. excluding last In case only 1 house, return itself ''' if len(nums) == 1: return nums[0] return max(self.loot(nums[:-1]), self.loot(nums[1:])) def loot(self, houses): ''' The idea is, given we cannot rob 2 adjacent houses, we care do we rob current-house + last-last-house or do we forgo current-house, and take last-house To make calculations and base cases easier, we can prefix 2 houses 0, 0,[2,7, 9, 3, 1] curr + last-last OR just last 0 0 2 2 + 0 = 2 or 0 0 0 2 7 7 + 0 = 7 or 2 0 0 2 7 11 9 + 2 = 11 or 7 0 0 2 7 11 11 3 + 7 = 10 or 11 0 0 2 7 11 11 12 1 + 11 = 12 or 12 ''' last_last, last = 0, 0 for house in houses: curr = max(house + last_last, last) last_last, last = last, curr return last
house-robber-ii
[Python] Using First Version, But Checking Houses Length 1
graceiscoding
0
3
house robber ii
213
0.407
Medium
3,664
https://leetcode.com/problems/house-robber-ii/discuss/2811029/PYTHON-99-Faster-Solution
class Solution: def rob(self, nums: List[int]) -> int: bup = nums[:] nums = nums[:-1] a, b = 0, 0 for i in nums: a, b = b, max(i+a, b) ans = b nums = bup[1:] a, b = 0, 0 for i in nums: a, b = b, max(i+a, b) return max(b, ans, bup[0])
house-robber-ii
PYTHON 99% Faster Solution
hks_007
0
5
house robber ii
213
0.407
Medium
3,665
https://leetcode.com/problems/house-robber-ii/discuss/2794738/Concise-O(1)-space-solution
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) < 3: return max(nums) return max(self.robLinear(nums, 1, len(nums)), self.robLinear(nums,0,len(nums)-1)) def robLinear(self, nums: List[int], l: int, r: int) -> int: c1, c2 = 0, 0 for i in range(l, r): c1, c2 = c2, max(c2, nums[i] + c1) return c2
house-robber-ii
Concise O(1) space solution
mittoocode
0
2
house robber ii
213
0.407
Medium
3,666
https://leetcode.com/problems/house-robber-ii/discuss/2730934/Veryy-easy-to-understand-beginner-level-Bottom-up
class Solution: def solve1(self, nums): # exclude first 1 - ()n-1) n = len(nums) dp = [0]*n dp[0] = 0 dp[1] = nums[1] dp[2] = max(nums[1] , nums[2]) for i in range(2 , n): take = nums[i] if i > 2: take += dp[i-2] no = dp[i-1] dp[i] = max(take , no) return dp[n-1] def solve2(self , nums): # 0 to n-2 exclude last element n = len(nums)-1 dp = [0]*n dp[0] = nums[0] for i in range(1 , n): take = nums[i] if i >1: take += dp[i-2] no = dp[i-1] dp[i] = max(take , no) return dp[n-1] def rob(self, nums: List[int]) -> int: n = len(nums) if(n==1): return nums[n-1] if(n==2): return max(nums[0] , nums[1]) f2 = self.solve2(nums) # 0 to n-2 exclude last element f1 = self.solve1(nums) return max(f1 , f2)
house-robber-ii
Veryy easy to understand , beginner level Bottom-up
rajitkumarchauhan99
0
8
house robber ii
213
0.407
Medium
3,667
https://leetcode.com/problems/house-robber-ii/discuss/2713307/Python-solution-or-dp-and-O(n)-times
class Solution: def rob(self, nums: List[int]) -> int: length = len(nums) if length <= 3: return max(nums) dp1 = [0] * length dp2 = [0] * length dp1[0] = nums[0] dp1[1] = nums[1] dp1[2] = max(dp1[0] + nums[2], dp1[1]) dp2[1] = nums[1] dp2[2] = nums[2] for i in range(3, len(nums) - 1): dp1[i] = max(dp1[i-2] + nums[i], dp1[i-1], dp1[i-3] + nums[i]) for i in range(3, len(nums)): dp2[i] = max(dp2[i-2] + nums[i], dp2[i-1], dp2[i-3] + nums[i]) return max(dp1 + dp2)
house-robber-ii
Python solution | dp & O(n) times
maomao1010
0
14
house robber ii
213
0.407
Medium
3,668
https://leetcode.com/problems/house-robber-ii/discuss/2710477/PYTHON-easy-oror-solution-or-using-DP-bottom-up-approach
class Solution: def rob(self, nums: List[int]) -> int: n=len(nums) if n==1: return nums[-1] if n==2: return max(nums[0],nums[1]) last=[0]*(n-1) first=[0]*(n-1) last[0]=nums[0] last[1]=max(nums[0],nums[1]) first[0]=nums[1] first[1]=max(nums[1],nums[2]) for i in range (2,n-1): last[i]=max(nums[i]+last[i-2],last[i-1]) first[i]=max(nums[i+1]+first[i-2],first[i-1]) return max(first[-1],last[-1])
house-robber-ii
PYTHON easy || solution | using DP bottom up approach
tush18
0
6
house robber ii
213
0.407
Medium
3,669
https://leetcode.com/problems/house-robber-ii/discuss/2707603/Python-DP
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] def dp(cur, d, nums): if d[cur] != -1: return d[cur] if cur >= len(nums) - 2: # print(d, nums, cur) d[cur] = nums[cur] return d[cur] elif cur >= len(nums) - 3: d[cur] = nums[cur] + dp(cur + 2, d, nums) else: d[cur] = nums[cur] + max(dp(cur + 2, d, nums), dp(cur + 3, d, nums)) return d[cur] n = len(nums) res = 0 for i in range(len(nums)): temp = nums[:] temp = temp[i:] + temp[:i] temp.pop() d = [-1] * n dp(0, d, temp) res = max(res, max(d)) return res
house-robber-ii
Python DP
JSTM2022
0
3
house robber ii
213
0.407
Medium
3,670
https://leetcode.com/problems/house-robber-ii/discuss/2665019/Python-or-Dynamic-programming-(with-comments)-or-O(n)
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] # For the first iteration we start from 1st house. # But we can't visit last house so we dont't fill last value of dp1 array dp1 = [0]*len(nums) dp1[0], dp1[1] = nums[0], max(nums[0], nums[1]) for i in range(2, len(nums) - 1): dp1[i] = max(dp1[i - 1], dp1[i - 2] + nums[i]) # On the second iteration we start from second house # Because of that, we can visit last house dp2 = [0]*len(nums) dp2[0], dp2[1] = 0, nums[1] for i in range(2, len(nums)): dp2[i] = max(dp2[i - 1], dp2[i - 2] + nums[i]) # Here is one thing - for dp1 we should use penultimate element return max(dp1[-2], dp2[-1])
house-robber-ii
Python | Dynamic programming (with comments) | O(n)
LordVader1
0
30
house robber ii
213
0.407
Medium
3,671
https://leetcode.com/problems/house-robber-ii/discuss/2660830/here-is-my-solution-O(n)-greatergreater%3A)
class Solution: def rob(self, n: List[int]) -> int: l=len(n) if(l==1): return n[0] elif l==2: return max(n[0],n[1]) else: prev2=n[0] prev1=max(prev2,n[1]) for i in range(2,(l-1)): pick=n[i]+prev2 notpick=prev1 prev2=prev1 prev1=max(pick,notpick) ans1=prev1 prev2=n[1] prev1=max(prev2,n[2]) for i in range(3,(l)): pick=n[i]+prev2 notpick=prev1 prev2=prev1 prev1=max(pick,notpick) ans2=prev1 return max(ans1,ans2)
house-robber-ii
here is my solution O(n)->>:)
re__fresh
0
3
house robber ii
213
0.407
Medium
3,672
https://leetcode.com/problems/house-robber-ii/discuss/2652964/Pyhton-easy-oror-DP-oror
class Solution: def rob(self, A: List[int]) -> int: if len(A)<4: return max(A) def solve(A): dp = [0]*len(A) dp[0],dp[1] = A[0],max(A[0],A[1]) for i in range(2,len(A)): dp[i] = max(A[i]+dp[i-2],dp[i-1]) return dp[-1] return max(solve(A[1:]),solve(A[:-1]))
house-robber-ii
Pyhton easy || DP ||
Akash_chavan
0
10
house robber ii
213
0.407
Medium
3,673
https://leetcode.com/problems/house-robber-ii/discuss/2597575/Simple-python-code-with-explanation
class Solution: def rob(self, nums: List[int]) -> int: return max(nums[0],self.helper(nums[1:]),self.helper(nums[:-1])) def helper(self,nums): nums.insert(0,0) nums.insert(0,0) rob1= 0 rob2 = 1 for i in range(2,len(nums)): nums[i] = max((nums[i] + nums[rob1]),nums[rob2]) rob1 +=1 rob2 +=1 return nums[-1]
house-robber-ii
Simple python code with explanation
thomanani
0
60
house robber ii
213
0.407
Medium
3,674
https://leetcode.com/problems/house-robber-ii/discuss/2587297/Python-Solution-using-DP
class Solution: def rob(self, nums: List[int]) -> int: return max(nums[0], self.helper(nums[1:]), self.helper(nums[:-1])) def helper(self, nums): rob1, rob2 = 0, 0 for n in nums: temp = max(n + rob1, rob2) rob1 = rob2 rob2 = temp return rob2
house-robber-ii
Python Solution using DP
nikhitamore
0
25
house robber ii
213
0.407
Medium
3,675
https://leetcode.com/problems/house-robber-ii/discuss/2545377/Python-Recursion-or-beats-99.98
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] return max(self.dp(nums[0:len(nums)-1]), self.dp(nums[1:len(nums)])) def dp(self, subarray: List[int]) -> int: rob2 = 0 rob1 = 0 for i in subarray: rob2, rob1 = max(rob2, rob1 + i), rob2 return rob2
house-robber-ii
Python Recursion | beats 99.98%
amany5642
0
79
house robber ii
213
0.407
Medium
3,676
https://leetcode.com/problems/house-robber-ii/discuss/2519285/Python-%3A-House-Robber-1-Code-Copy-paste
class Solution: def rob(self, num: List[int]) -> int: if len(num)==1: return num[0] def rob1(nums): n=len(nums) # dp=[0 for i in range(n)] if n==1: return nums[0] prev2=nums[0] prev1=max(nums[0],nums[1]) # prev2=dp[0] for i in range(2,n): temp=prev1 prev1=max(prev2+nums[i],prev1) prev2=temp return prev1 return max(rob1(num[1:]),rob1(num[:-1]))
house-robber-ii
Python : House Robber 1 Code Copy paste
Prithiviraj1927
0
38
house robber ii
213
0.407
Medium
3,677
https://leetcode.com/problems/house-robber-ii/discuss/2518898/Easy-Solution-based-on-House-Rober-I-Python
class Solution: def rob(self, nums: List[int]) -> int: # Check if only one element if len(nums) == 1: return nums[0] # First iteration rob1, rob2 = 0, 0 for i in nums[:-1]: temp = max(i+rob1, rob2) rob1 = rob2 rob2 = temp res1 = rob2 # Second iteration rob1, rob2 = 0, 0 for i in nums[1:]: temp = max(i+rob1, rob2) rob1 = rob2 rob2 = temp res2 = rob2 return max(res1,res2)
house-robber-ii
Easy Solution based on House Rober I - Python
cosminpm
0
27
house robber ii
213
0.407
Medium
3,678
https://leetcode.com/problems/house-robber-ii/discuss/2407869/Python-3-solution-with-tabulation%2Bspace-optimization-and-29-ms-time
class Solution: def solveTabSop(self,nums): curr = 0 prev2 = 0 prev = nums[0] for i in range(1,len(nums)): curr = max(prev2+nums[i] , prev) prev2= prev prev = curr return prev def rob(self,nums): if(len(nums)==1): return nums[0] if len(nums)==3: return max(nums) n=len(nums) # return self.solve(nums,n-1) first = nums[0:n-1] last = nums[1::] return max(self.solveTabSop(first),self.solveTabSop(last))
house-robber-ii
Python 3 solution with tabulation+space optimization and 29 ms time
Sahil-Chandel
0
26
house robber ii
213
0.407
Medium
3,679
https://leetcode.com/problems/house-robber-ii/discuss/2354633/Python-Bottom-Up-Approach-or-Easy-Solution
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] if len(nums) == 2: return max(nums[0], nums[1]) return max(nums[0], self.helper(nums[1:]), self.helper(nums[:-1])) def helper(self, nums: List[int]): nums.append(0) for i in range(len(nums)-3, -1, -1): nums[i] = max(nums[i+1], nums[i]+nums[i+2]) return max(nums[0], nums[1])
house-robber-ii
Python Bottom Up Approach | Easy Solution
shreeruparel
0
61
house robber ii
213
0.407
Medium
3,680
https://leetcode.com/problems/house-robber-ii/discuss/2352350/DP-or-Python-or-Beats-93.92
class Solution: def solve(self, ind, first_ind=0): if ind >= len(self.nums): return 0 if first_ind and ind == len(self.nums) - 1 and ind != 0: return -1e9 if self.dp.get(ind) is not None and self.dp[ind][first_ind] is not None: return self.dp[ind][first_ind] self.dp[ind] = [None] * 2 self.dp[ind][first_ind] = max(self.solve(ind + 2, first_ind) + self.nums[ind], self.solve(ind + 3, first_ind) + self.nums[ind]) return self.dp[ind][first_ind] def rob(self, nums: List[int]) -> int: self.dp = {} self.nums = nums return max(self.solve(0, 1), self.solve(1), self.solve(2))
house-robber-ii
DP | Python | Beats 93.92%
fake_death
0
66
house robber ii
213
0.407
Medium
3,681
https://leetcode.com/problems/house-robber-ii/discuss/2328288/Python-Solution-%3A-Reusing-code-of-House-Robber-I
class Solution: def rob(self, nums: List[int]) -> int: return max(nums[0], self.helper(nums[1:]), self.helper(nums[:-1])) def helper(self, nums): ans1, ans2 = 0, 0 for n in nums: temp = max(n + ans1, ans2) ans1 = ans2 ans2 = temp return ans2
house-robber-ii
Python Solution : Reusing code of House Robber I
zip_demons
0
70
house robber ii
213
0.407
Medium
3,682
https://leetcode.com/problems/house-robber-ii/discuss/2327570/SIMPLE-oror-FASTER-THAN-91
class Solution: def helper(self,nums): n=len(nums) prev,prev2=nums[0],0 for i in range(1,n): if i>1: curr=max(nums[i]+prev2,prev) else: curr=max(nums[i],prev) prev2,prev=prev,curr return prev def rob(self,nums): if len(nums)==1: return nums[0] return max(self.helper(nums[1:]),self.helper(nums[:-1]))
house-robber-ii
SIMPLE || FASTER THAN 91%
vijayvardhan6
0
31
house robber ii
213
0.407
Medium
3,683
https://leetcode.com/problems/house-robber-ii/discuss/2313993/Python-Slower-than-95-but-easy
class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] res = [0]*len(nums) res[0] = 0 res[1] = nums[1] for i in range(2,len(nums)): res[i] = nums[i] + max(res[:i-1]) a = max(res[:]) res[0] = nums[0] for i in range(2,len(nums)): res[i] = nums[i] + max(res[:i-1]) b = max(res[:-1]) return max(a,b)
house-robber-ii
[Python] Slower than 95%, but easy
AvocadoDiCaprio
0
11
house robber ii
213
0.407
Medium
3,684
https://leetcode.com/problems/house-robber-ii/discuss/2285785/Python-DP-Beats-98-with-full-working-explanation
class Solution: def rob(self, nums: List[int]) -> int: # Time: O(n) and Space: O(1) # breaking the list into 1 to n and 0 to n-1, such that 0 and n are adjacent to each other # so, we can only include one of them and finding the max value from these lists and comparing them with 0 to find the max value among them # in case of empty list the helper function will return null, so nums[0] will return an empty list return max(nums[0], self.helper(nums[1:]), self.helper(nums[:-1])) def helper(self, nums): # helper function is explained thoroughly in House Robber I solution rob1, rob2 = 0, 0 for n in nums: # n represents current house newRob = max(rob1 + n, rob2) # max of till previous-1 + current house or till previous not adjacent houses rob1 = rob2 rob2 = newRob return rob2
house-robber-ii
Python [DP / Beats 98%] with full working explanation
DanishKhanbx
0
67
house robber ii
213
0.407
Medium
3,685
https://leetcode.com/problems/house-robber-ii/discuss/2269100/Python-Dynamic-Programming-Easy-Soln
class Solution: def rob(self, nums: List[int]) -> int: n = len(nums) return max(nums[0], self.helper(0, nums[1:], None), self.helper(0, nums[:n-1], None)) def helper(self, i, nums, lookup=None): lookup = {} if lookup is None else lookup if i in lookup: return lookup[i] if i >= len(nums): return 0 lookup[i] = max(nums[i]+self.helper(i+2, nums, lookup), self.helper(i+1, nums, lookup)) return lookup[i]
house-robber-ii
Python Dynamic Programming Easy Soln
logeshsrinivasans
0
66
house robber ii
213
0.407
Medium
3,686
https://leetcode.com/problems/house-robber-ii/discuss/2254112/Easy-Python-Solution-or-DP-or-Memoization-or-Faster-than-97
class Solution: def rob(self, nums: List[int]) -> int: # memoization implementation if len(nums)==1: return nums[0] def helper(ind, dp, arr): if ind==0: return arr[0] if ind<0: return 0 if dp[ind]!=-1: return dp[ind] pick=arr[ind] if ind>1: pick+=helper(ind-2, dp, arr) notPick=helper(ind-1, dp, arr) dp[ind]=max(pick, notPick) return dp[ind] first=nums[:-1] last=nums[1:] dp_first=[-1]*(len(first)) dp_last=[-1]*(len(last)) return max(helper(len(first)-1, dp_first, first), helper(len(last)-1, dp_last, last)) # tabulation implementation # first=nums[:-1] # dp_first=[0]*len(first) # dp_first[0]=nums[0] # for i in range(1, len(first)): # if i>1: # dp_first[i]=max(dp_first[i-1], dp_first[i-2]+first[i]) # else: # dp_first[i]=max(dp_first[i-1], first[i]) # last=nums[1:] # dp_last=[0]*len(last) # dp_last[-1]=last[-1] # for i in range(len(last)-2, -1, -1): # if i<len(last)-2: # dp_last[i]=max(dp_last[i+1], dp_last[i+2]+last[i]) # else: # dp_last[i]=max(dp_last[i+1], last[i]) # return max(dp_last[0], dp_first[-1])
house-robber-ii
Easy Python Solution | DP | Memoization | Faster than 97%
Siddharth_singh
0
103
house robber ii
213
0.407
Medium
3,687
https://leetcode.com/problems/house-robber-ii/discuss/2233758/Faster-than-84-of-python-submission-and-68-less-space-usage
class Solution: def rob(self, nums: List[int]) -> int: # This below function is also a solution to HouseRobber-I question def helper(nums): rob1, rob2 = 0, 0 for value in nums: newRobValue = max(value+rob1, rob2) rob1 = rob2 rob2 = newRobValue return rob2 return max(nums[0], helper(nums[1:]), helper(nums[:-1]))
house-robber-ii
Faster than 84% of python submission and 68% less space usage
himanshu17__
0
40
house robber ii
213
0.407
Medium
3,688
https://leetcode.com/problems/house-robber-ii/discuss/2227186/Easy-Python-Solution-using-DP-or-House-Robber-II
class Solution: def helper(self, nums): rob1, rob2 = 0, 0 for n in nums: temp = max(rob1 + n, rob2) rob1 = rob2 rob2 = temp return rob2 def rob(self, nums: List[int]) -> int: return max(nums[0],self.helper(nums[1:]),self.helper(nums[:-1]))
house-robber-ii
Easy Python Solution using DP | House Robber II
nishanrahman1994
0
53
house robber ii
213
0.407
Medium
3,689
https://leetcode.com/problems/house-robber-ii/discuss/2218149/House-Robber2-House-Robber1-with-1-extra-variable-or-recursion-with-memoization
class Solution: def rob(self, nums: List[int]) -> int: if len(nums)==1: return nums[0] def robbing(index,memo,choosed): if index in memo:return memo[index] if index==0:return nums[index] if choosed else 0 if index<0:return 0 pick=nums[index]+robbing(index-2,memo,choosed) notpick=0+robbing(index-1,memo,choosed) memo[index]=max(pick,notpick) return memo[index] return max(robbing(len(nums)-2,{},True),robbing(len(nums)-1,{},False))
house-robber-ii
House Robber2 = House Robber1 with 1 extra variable | recursion with memoization
glimloop
0
84
house robber ii
213
0.407
Medium
3,690
https://leetcode.com/problems/house-robber-ii/discuss/2066723/Simple-Python-solution-oror-DYNAMIC-PROGRAMMING
class Solution: def rob(self, nums: List[int]) -> int: n=len(nums) if n<=1: return nums[0] dp = [[-1]*n for _ in range(2)] def rob(ind,dp,arr): if ind == 0: return arr[ind] if ind<0: return 0 if dp[ind] != -1: return dp[ind] pick = arr[ind] + rob(ind-2,dp,arr) not_pick = 0 + rob(ind-1,dp,arr) dp[ind] = max(pick, not_pick) return dp[ind] temp1 = nums[1:] temp2 = nums[0:n-1] return max(rob(len(temp1)-1, dp[0], temp1), rob(len(temp2)-1, dp[1], temp2))
house-robber-ii
Simple Python solution || DYNAMIC PROGRAMMING
testbugsk
0
102
house robber ii
213
0.407
Medium
3,691
https://leetcode.com/problems/house-robber-ii/discuss/2033940/Python-Faster-DP-Solution-(O(1)-memory-O(n)-time)
class Solution: def helper(self, arr, start, end): prev2 = 0 prev1 = 0 maxRes = 0 for i in range(start, end): maxRes = max(prev2 + arr[i], prev1) prev2 = prev1 prev1 = maxRes return maxRes def rob(self, nums: List[int]) -> int: n = len(nums) if n == 1: return nums[0] return max(self.helper(nums, 0, n-1), self.helper(nums, 1, n))
house-robber-ii
Python Faster DP Solution (O(1) memory, O(n) time)
dbansal18
0
65
house robber ii
213
0.407
Medium
3,692
https://leetcode.com/problems/house-robber-ii/discuss/2024010/Python-or-DP-or-Easy-to-Understand
class Solution: def rob(self, nums: List[int]) -> int: n = len(nums) if n == 1: return nums[0] if n == 2: return max(nums[0], nums[1]) # result1: don't consider the first house # result2: don't consider the last house result1 = self.robRange(nums, 1, n-1) result2 = self.robRange(nums, 0, n-2) return max(result1, result2) def robRange(self, nums, start, end): dp = [0] * len(nums) dp[start] = nums[start] dp[start + 1] = max(nums[start], nums[start + 1]) for i in range(start + 2, end + 1): dp[i] = max(dp[i -2] + nums[i], dp[i - 1]) return dp[end]
house-robber-ii
Python | DP | Easy to Understand
Mikey98
0
127
house robber ii
213
0.407
Medium
3,693
https://leetcode.com/problems/shortest-palindrome/discuss/2157861/No-DP-No-DS-Intuitive-with-comments-oror-Python
class Solution: def shortestPalindrome(self, s: str) -> str: end = 0 # if the string itself is a palindrome return it if(s == s[::-1]): return s # Otherwise find the end index of the longest palindrome that starts # from the first character of the string for i in range(len(s)+1): if(s[:i]==s[:i][::-1]): end=i-1 # return the string with the remaining characters other than # the palindrome reversed and added at the beginning return (s[end+1:][::-1])+s
shortest-palindrome
No DP; No DS; Intuitive with comments || Python
a-myth
2
124
shortest palindrome
214
0.322
Hard
3,694
https://leetcode.com/problems/shortest-palindrome/discuss/1665104/Python3-groupby-solution-without-KMP
class Solution1: def shortestPalindrome(self, s: str) -> str: """We create two new arrays to represent the original string. We use `groupby` to count the number of repeats of each consecutive letters and record them in two arrays. One is letters, recording all consecutively distinct letters. The other is indices, recording the index of the last appearance of the corresponding letter in letters. Let idx = len(indices) - 2. We want to examine whether a palindrome can be formed from the start of s with the repeats of letters[idx] being in the middle. There are three scenarios. 1. idx reaches the first letter and still no palindrome insight. We need to reverse the substring starting from indices[idx + 1] to the end and add it to the front of s. 2. A palindrome is found when idx is not pointing to the first letter of s. This means we just need to reverse the remaining of s outside the palindrome and add it to the front of s. 3. idx has not reached the first letter of s, yet a palindrome almost forms. By almost forms, it means that the palindrome check has reaches the first letter and the first letter is equal to the last letter in the current palindrome check, yet the number of repeats of these two do not match. In particular, the number of repeats of the first letter is smaller than that of the last letter in check. In this case, we can simply add to the front the difference in count between the first and the last letter to form the palindrome, and then add the reversed remaining substring to the front. O(N), 56 ms, 73% ranking. """ letters = ['#'] indices = [-1] for k, g in groupby(s): letters.append(k) indices.append(indices[-1] + len(list(g))) idx = len(indices) - 2 while idx >= 0: # scenario 1 if idx == 1: return s[:indices[1]:-1] + s # palindrome check lo, hi = idx - 1, idx + 1 while lo >= 1 and hi < len(indices): if letters[lo] != letters[hi] or (indices[lo] - indices[lo - 1]) != (indices[hi] - indices[hi - 1]): break lo -= 1 hi += 1 # scenario 2 if lo == 0: return s[:indices[hi - 1]:-1] + s # scenario 3 if lo == 1 and hi < len(indices) and letters[lo] == letters[hi]: dif = (indices[hi] - indices[hi - 1]) - (indices[lo] - indices[lo - 1]) if dif > 0: return s[:indices[hi]:-1] + letters[lo] * dif + s idx -= 1 return s
shortest-palindrome
[Python3] `groupby` solution without KMP
FanchenBao
2
99
shortest palindrome
214
0.322
Hard
3,695
https://leetcode.com/problems/shortest-palindrome/discuss/2820508/100-Faster-Python-Solution-using-KMP-Algorithm
class Solution: def shortestPalindrome(self, s: str) -> str: def kmp(txt, patt): newString = patt + '#' + txt freqArray = [0 for _ in range(len(newString))] i = 1 length = 0 while i < len(newString): if newString[i] == newString[length]: length += 1 freqArray[i] = length i += 1 else: if length > 0: length = freqArray[length - 1] else: freqArray[i] = 0 i += 1 return freqArray[-1] cnt = kmp(s[::-1],s) return s[cnt:][::-1]+s
shortest-palindrome
100% Faster Python Solution - using KMP Algorithm
prateekgoel7248
1
32
shortest palindrome
214
0.322
Hard
3,696
https://leetcode.com/problems/shortest-palindrome/discuss/2541808/Python3-Epic-3-Liner
class Solution: def shortestPalindrome(self, s: str) -> str: for i in range(len(s), -1, -1): if s[:i] == s[i-1::-1]: return s[:i-1:-1] + s
shortest-palindrome
Python3 Epic 3 Liner
ryangrayson
1
155
shortest palindrome
214
0.322
Hard
3,697
https://leetcode.com/problems/shortest-palindrome/discuss/2159251/Python-Stupidly-Simple-5-lines-solution
class Solution: def shortestPalindrome(self, s: str) -> str: if not s: return "" for i in reversed(range(len(s))): if s[0:i+1] == s[i::-1]: return s[:i:-1] + s
shortest-palindrome
[Python] Stupidly Simple 5 lines solution
Saksham003
1
175
shortest palindrome
214
0.322
Hard
3,698
https://leetcode.com/problems/shortest-palindrome/discuss/739903/Python3-2-line-brute-force-and-9-line-KMP
class Solution: def shortestPalindrome(self, s: str) -> str: k = next((i for i in range(len(s), 0, -1) if s[:i] == s[:i][::-1]), 0) return s[k:][::-1] + s
shortest-palindrome
[Python3] 2-line brute force & 9-line KMP
ye15
1
92
shortest palindrome
214
0.322
Hard
3,699