post_href
stringlengths
57
213
python_solutions
stringlengths
71
22.3k
slug
stringlengths
3
77
post_title
stringlengths
1
100
user
stringlengths
3
29
upvotes
int64
-20
1.2k
views
int64
0
60.9k
problem_title
stringlengths
3
77
number
int64
1
2.48k
acceptance
float64
0.14
0.91
difficulty
stringclasses
3 values
__index_level_0__
int64
0
34k
https://leetcode.com/problems/combination-sum-iii/discuss/1429952/Python-backtracking-solution-for-Combination-Sum-I-II-and-III
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: nums = list(range(1, 10)) res = [] path = [] index = 0 total = 0 self.backtrack(k, n, nums, res, path, index, total) return res def backtrack(self, k, n, nums, res, path, index, total): if len(path) == k and total == n: res.append(path[:]) return if total > n: return for i in range(index, len(nums)): path.append(nums[i]) self.backtrack(k, n, nums, res, path, i+1, total + nums[i]) path.pop()
combination-sum-iii
Python backtracking solution for Combination Sum I, II and III
treksis
0
80
combination sum iii
216
0.672
Medium
3,800
https://leetcode.com/problems/combination-sum-iii/discuss/1376521/combination-sum-III-or-Python3-or-Backtracking
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: dg=[1,2,3,4,5,6,7,8,9] ds=[] self.ans=[] self.solve(0,k,n,ds,dg) return self.ans def solve(self,strt,k,n,ds,dg): if len(ds)==k and sum(ds)==n: self.ans.append(ds[:]) return for i in range(strt,len(dg)): ds.append(dg[i]) self.solve(i+1,k,n,ds,dg) ds.pop() return
combination-sum-iii
combination sum III | Python3 | Backtracking
swapnilsingh421
0
56
combination sum iii
216
0.672
Medium
3,801
https://leetcode.com/problems/combination-sum-iii/discuss/1372731/Python3-solution
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: l = list(range(1,10)) ans = [] for i in range(1,2**9+1): x = bin(i)[2:].zfill(9) if x.count('1') == k: s = 0 for j in range(9): if x[j] == '1': s += (j+1) if s == n: z = [] for j in range(9): if x[j] == '1': z += [(j+1)] ans += [z] return ans
combination-sum-iii
Python3 solution
EklavyaJoshi
0
28
combination sum iii
216
0.672
Medium
3,802
https://leetcode.com/problems/combination-sum-iii/discuss/1353807/Python3-Backtracking-Simple-beat-70
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: res = [] def backtrack(remain,start,comb): if len(comb) == k: if remain == 0: res.append(list(comb)) return for i in range(start,min(9,remain)): comb.append(i+1) backtrack(remain-i-1,i+1,comb) comb.pop() backtrack(n,0,[]) return res
combination-sum-iii
Python3 Backtracking Simple beat 70%
caw062
0
60
combination sum iii
216
0.672
Medium
3,803
https://leetcode.com/problems/combination-sum-iii/discuss/1336746/Python3-faster-than-91.27-backtracking
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: result = [] def traverse(cur: List[int], curSet: set, memo: List[set], s: int, index: int): if s == n: if curSet not in memo and len(cur) == k: result.append(cur) memo.append(curSet) else: return if s > n: return for i in range(index, 10): copy = cur.copy() copySet = curSet.copy() copy.append(i) copySet.add(i) # no need to compute anymore if len(copy) > k: continue traverse( copy, copySet, memo, s + i, i + 1 ) traverse([], set(), [], 0, 1) return result
combination-sum-iii
Python3 - faster than 91.27%, backtracking
CC_CheeseCake
0
15
combination sum iii
216
0.672
Medium
3,804
https://leetcode.com/problems/combination-sum-iii/discuss/842992/simple-python-recursive-solution-or-faster-than-89-submisssions
class Solution: def Util(self, k, n, i, sm, curstr): if sm == n and len(curstr) == k: return [list(map(int, curstr))] if sm > n or len(curstr) > k: return [[]] if i >= 10: return [[]] ret1 = self.Util(k, n, i + 1, sm + i, curstr + str(i)) ret2 = self.Util(k, n, i + 1, sm, curstr) if ret1 != [[]] and ret2 != [[]]: return ret1 + ret2 if ret1 != [[]]: return ret1 if ret2 != [[]]: return ret2 else: return [[]] def combinationSum3(self, k: int, n: int) -> List[List[int]]: ans = self.Util(k, n, 1, 0, '') if ans == [[]]: return [] return ans
combination-sum-iii
simple python recursive solution | faster than 89 % submisssions
_YASH_
0
26
combination sum iii
216
0.672
Medium
3,805
https://leetcode.com/problems/combination-sum-iii/discuss/753226/Python3-easy-understanding
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: def helper(arr, idx, k, n): if n < 0: return if k == 0 and n == 0: res.append(deepcopy(arr)) return for i in range(idx, min(n + 1, 10)): arr.append(i) helper(arr, i + 1, k - 1, n - i) arr.pop() res = [] helper([], 1, k, n) return res
combination-sum-iii
Python3 easy understanding
tianboh
0
38
combination sum iii
216
0.672
Medium
3,806
https://leetcode.com/problems/combination-sum-iii/discuss/738244/Python3-combination-sum-I-II-III
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: def fn(n, i=1): """Populate ans with a stack.""" if n < 0 or len(stack) > k: return if n == 0 and len(stack) == k: return ans.append(stack.copy()) for ii in range(i, 10): stack.append(ii) fn(n-ii, ii+1) stack.pop() ans, stack = [], [] fn(n) return ans
combination-sum-iii
[Python3] combination sum I, II, III
ye15
0
78
combination sum iii
216
0.672
Medium
3,807
https://leetcode.com/problems/combination-sum-iii/discuss/738244/Python3-combination-sum-I-II-III
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: dp = [[] for _ in range(n+1)] dp[0].append([]) for x in range(1, 10): for i in reversed(range(n)): if i+x <= n: for seq in dp[i]: dp[i+x].append(seq + [x]) return [seq for seq in dp[-1] if len(seq) == k]
combination-sum-iii
[Python3] combination sum I, II, III
ye15
0
78
combination sum iii
216
0.672
Medium
3,808
https://leetcode.com/problems/combination-sum-iii/discuss/738244/Python3-combination-sum-I-II-III
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: ans, stack = [], [] x = 1 while True: if len(stack) == k and sum(stack) == n: ans.append(stack.copy()) if len(stack) == k or k - len(stack) > 10 - x: if not stack: break x = stack.pop() + 1 else: stack.append(x) x += 1 return ans
combination-sum-iii
[Python3] combination sum I, II, III
ye15
0
78
combination sum iii
216
0.672
Medium
3,809
https://leetcode.com/problems/combination-sum-iii/discuss/536806/Python-(DFS%2BBacktracking)
class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: res = [] self.backtrack(k, n, [],0,1, res) return res def backtrack(self, k, n, cur, comb, ind, res): if comb > n: return elif comb == n and len(cur) == k: res.append([]+cur) else: for i in range(ind,10): cur.append(i) self.backtrack(k, n, cur, comb+i, i+1, res) cur.pop()
combination-sum-iii
Python (DFS+Backtracking)
tohbaino
0
119
combination sum iii
216
0.672
Medium
3,810
https://leetcode.com/problems/contains-duplicate/discuss/1496268/Python-98-speed-faster
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(set(nums)) != len(nums)
contains-duplicate
Python // 98% speed faster
fabioo29
11
1,900
contains duplicate
217
0.613
Easy
3,811
https://leetcode.com/problems/contains-duplicate/discuss/2546139/3-different-Python-solutions
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(set(nums)) != len(nums)
contains-duplicate
📌 3 different Python solutions
croatoan
10
807
contains duplicate
217
0.613
Easy
3,812
https://leetcode.com/problems/contains-duplicate/discuss/2546139/3-different-Python-solutions
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: res = {} for i in nums: if i not in res: res[i] = 1 else: return True return False
contains-duplicate
📌 3 different Python solutions
croatoan
10
807
contains duplicate
217
0.613
Easy
3,813
https://leetcode.com/problems/contains-duplicate/discuss/2546139/3-different-Python-solutions
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return set(collections.Counter(nums).values()) != set([1])
contains-duplicate
📌 3 different Python solutions
croatoan
10
807
contains duplicate
217
0.613
Easy
3,814
https://leetcode.com/problems/contains-duplicate/discuss/2196197/Python-One-liner
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: seen = {} for i in range(len(nums)): seen[nums[i]] = seen.get(nums[i], 0) + 1 for k, v in seen.items(): if v > 1: return True return False
contains-duplicate
✅Python - One liner
thesauravs
10
655
contains duplicate
217
0.613
Easy
3,815
https://leetcode.com/problems/contains-duplicate/discuss/2196197/Python-One-liner
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return not len(nums) == len(set(nums))
contains-duplicate
✅Python - One liner
thesauravs
10
655
contains duplicate
217
0.613
Easy
3,816
https://leetcode.com/problems/contains-duplicate/discuss/2196197/Python-One-liner
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: temp = set() count = 0 for num in nums: temp.add(num) count += 1 if len(temp) != count: return True return False
contains-duplicate
✅Python - One liner
thesauravs
10
655
contains duplicate
217
0.613
Easy
3,817
https://leetcode.com/problems/contains-duplicate/discuss/2593840/SIMPLE-PYTHON3-SOLUTION-ONE-LINER-easiest-using-set
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return False if len(nums)==len(list(set(nums))) else True
contains-duplicate
✅✔ SIMPLE PYTHON3 SOLUTION ✅✔ ONE LINER easiest using set
rajukommula
9
1,100
contains duplicate
217
0.613
Easy
3,818
https://leetcode.com/problems/contains-duplicate/discuss/343102/Solution-in-Python-3-(beats-~100)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(set(nums)) != len(nums) - Python 3 - Junaid Mansuri
contains-duplicate
Solution in Python 3 (beats ~100%)
junaidmansuri
9
3,100
contains duplicate
217
0.613
Easy
3,819
https://leetcode.com/problems/contains-duplicate/discuss/1128103/Simple-Python-Solution-Faster-than-95
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(set(nums))!=len(nums)
contains-duplicate
Simple Python Solution; Faster than 95%
Annushams
8
1,400
contains duplicate
217
0.613
Easy
3,820
https://leetcode.com/problems/contains-duplicate/discuss/2340241/fast-short-and-simple-python-code
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: ls=len(set(nums)) l=len(nums) return l>ls
contains-duplicate
fast, short & simple python code
ayushigupta2409
6
532
contains duplicate
217
0.613
Easy
3,821
https://leetcode.com/problems/contains-duplicate/discuss/2803000/87.55-TC-with-simple-python-solution-for-Contains-Duplicate-problem
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: dict_nums = {} for i in nums: if i in dict_nums: return True else: dict_nums[i] = 1 return False
contains-duplicate
😎 87.55% TC with simple python solution for Contains Duplicate problem
Pragadeeshwaran_Pasupathi
4
773
contains duplicate
217
0.613
Easy
3,822
https://leetcode.com/problems/contains-duplicate/discuss/2657081/Python-or-1-liner-set-solution
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(nums) > len(set(nums))
contains-duplicate
Python | 1-liner set solution
LordVader1
4
349
contains duplicate
217
0.613
Easy
3,823
https://leetcode.com/problems/contains-duplicate/discuss/2642318/Python-oror-Easily-Understood-oror-Faster-than-96-oror-ONELINE-SOLUTION
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return False if len(nums)==len(list(set(nums))) else True
contains-duplicate
🔥 Python || Easily Understood ✅ || Faster than 96% || ONELINE SOLUTION
rajukommula
3
233
contains duplicate
217
0.613
Easy
3,824
https://leetcode.com/problems/contains-duplicate/discuss/2364314/Solution-that-beats-95.35-in-Runtime-97.45-in-Memory-Usage.
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: love = set() while nums: temp = nums.pop() if temp in love: return True else: love.add(temp)
contains-duplicate
Solution that beats 95.35% in Runtime, 97.45% in Memory Usage.
HappyLunchJazz
3
562
contains duplicate
217
0.613
Easy
3,825
https://leetcode.com/problems/contains-duplicate/discuss/1947745/Python3-Using-Python-Sets-(faster-than-91)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # In this solution, we use a python set to remove any duplicates, then convert the set back into a list. # Python Sets are a unique data structure that only contains unique items and are unordered and unchangable. # Learn more about sets: https://www.w3schools.com/python/python_sets.asp # With this, if there are any duplicates we will know because the new list will have less items than the original if(len(nums) > len(list(set(nums)))): return True else: return False
contains-duplicate
[Python3] Using Python Sets (faster than 91%)
Rustizx
3
176
contains duplicate
217
0.613
Easy
3,826
https://leetcode.com/problems/contains-duplicate/discuss/1886465/Python-One-liner-or-Time-Complexity-%3A-O(n)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(nums) != len(set(nums))
contains-duplicate
Python One liner | Time Complexity : O(n)
parthpatel9414
3
265
contains duplicate
217
0.613
Easy
3,827
https://leetcode.com/problems/contains-duplicate/discuss/1779672/Python-Simple-Python-Solution-With-Two-Approach
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: t=list(dict.fromkeys(nums)) if len(t)!=len(nums): return True else: return False
contains-duplicate
[ Python ] ✔✅ Simple Python Solution With Two Approach 🔥✌
ASHOK_KUMAR_MEGHVANSHI
3
451
contains duplicate
217
0.613
Easy
3,828
https://leetcode.com/problems/contains-duplicate/discuss/1779672/Python-Simple-Python-Solution-With-Two-Approach
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: dictionary = {} for num in nums: if num not in dictionary: dictionary[num] = 1 else: return True return False
contains-duplicate
[ Python ] ✔✅ Simple Python Solution With Two Approach 🔥✌
ASHOK_KUMAR_MEGHVANSHI
3
451
contains duplicate
217
0.613
Easy
3,829
https://leetcode.com/problems/contains-duplicate/discuss/1568960/Python-Very-Easy-Solution-or-Using-HashSet
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # Time and Space: O(n) # 1st Approach: hashSet = set() for i in range(len(nums)): if nums[i] in hashSet: return True hashSet.add(nums[i]) # 2nd Approach: hashMap = dict() for i in range(len(nums)): if nums[i] in hashMap: return True else: hashMap[i] = 1
contains-duplicate
Python Very Easy Solution | Using HashSet
leet_satyam
3
457
contains duplicate
217
0.613
Easy
3,830
https://leetcode.com/problems/contains-duplicate/discuss/1250561/Python3-dollarolution-(one-lineSimple-code)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return (len(nums) != len(set(nums)))
contains-duplicate
Python3 $olution (one line/Simple code)
AakRay
3
447
contains duplicate
217
0.613
Easy
3,831
https://leetcode.com/problems/contains-duplicate/discuss/381953/Python-solutions
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(set(nums)) < len(nums)
contains-duplicate
Python solutions
amchoukir
3
932
contains duplicate
217
0.613
Easy
3,832
https://leetcode.com/problems/contains-duplicate/discuss/2263172/One-line-solution-217.-Contains-Duplicate
class Solution(object): def containsDuplicate(self, nums): return len(nums)!= len(set(nums))
contains-duplicate
One line solution 217. Contains Duplicate
m_e_shivam
2
304
contains duplicate
217
0.613
Easy
3,833
https://leetcode.com/problems/contains-duplicate/discuss/2089924/Python3-4-solutions-from-O(n2)-to-O(n)-in-runtime-O(n)-to-O(1)-in-memory
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return self.containDuplicateWithSet(nums) # O(n^2) || O(1) def containDuplicateBruteForce(self, array): if not array: return False for i in range(len(array)): for j in range(i + 1, len(array)): if array[i] == array[j]: return True return False # where n is the number of elements in the array # O(n) || O(n) def containDuplicateWithSet(self, array): if not array: return False hashSet = set() for i in array: if i in hashSet: return True hashSet.add(i) return False # OR return len(set(array)) == len(array) # O(nlogn) || O(1) def containDuplicateWithSorting(self, array): if not array: return False array.sort() for i in range(1, len(array)): if array[i-1] == array[i]: return True return False
contains-duplicate
Python3 4 solutions from O(n^2) to O(n) in runtime; O(n) to O(1) in memory
arshergon
2
423
contains duplicate
217
0.613
Easy
3,834
https://leetcode.com/problems/contains-duplicate/discuss/1909604/3-Different-Approaches-w-Explaination-O(n2)-O(nlogn)-O(n)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # BruteForce # Time: O(n^2) Space: O(1) # Here, we'll simply compare each and every pair of element in the list # and if there's a pair which has the same value # then we'll return True for i in range(len(nums)): for j in range(len(nums)): if i == j: continue elif nums[i] == nums[j]: return True return False # The above solution wll give TLE because of the constraints # So, let's get to a more optimal solution # Sorting method # Time: O(nlogn) Space: O(1) # Here, we'll sort the list and check if the current and next element are equal # if yes, the return True nums.sort() for i in range(1,len(nums)): if nums[i] == nums[i-1]: return True return False # The above solution works but we can get more optimal solution # so, let's find out the solution # Dictionary method #Time: O(n) Space: O(n) # Here, we'll traverse through the list and in each iteration # we'll keep the count of the element in the dictionary # if for some element the count == 2 we'll return True res = {} for el in nums: if el in res: return True else: res[el] = 1 return False
contains-duplicate
3 Different Approaches w/ Explaination O(n^2) O(nlogn) O(n)
introvertednerd
2
239
contains duplicate
217
0.613
Easy
3,835
https://leetcode.com/problems/contains-duplicate/discuss/1734583/Python-one-line-solution
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return not(len(set(nums)) == len(nums))
contains-duplicate
Python one line solution
rushikeshjaisur11
2
566
contains duplicate
217
0.613
Easy
3,836
https://leetcode.com/problems/contains-duplicate/discuss/1246656/WEEB-DOES-PYTHON(3-METHODS)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: nums = sorted(nums) for i in range(len(nums)-1): if nums[i] == nums[i+1]: return True return False # METHOD 2: using the Counter function from collections # return True if Counter(nums).most_common(1)[0][1] > 1 else False # METHOD 3: using sets # return len(nums) != len(set(nums))
contains-duplicate
WEEB DOES PYTHON(3 METHODS)
Skywalker5423
2
353
contains duplicate
217
0.613
Easy
3,837
https://leetcode.com/problems/contains-duplicate/discuss/819888/Python-One-Line-Easy
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return True if len(set(nums)) < len(nums) else False # TC: O(n) # SC: O(n)
contains-duplicate
Python One Line, Easy
airksh
2
150
contains duplicate
217
0.613
Easy
3,838
https://leetcode.com/problems/contains-duplicate/discuss/2747229/Contains-Duplicate-or-Python-1-liner
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: if len(set(nums)) != len(nums): return True
contains-duplicate
Contains Duplicate | Python 1 liner
ygygupta0
1
46
contains duplicate
217
0.613
Easy
3,839
https://leetcode.com/problems/contains-duplicate/discuss/2730690/1-Liner-Python3
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return (len(nums) != len(set(nums)))
contains-duplicate
1 Liner, Python3
zoominL1
1
10
contains duplicate
217
0.613
Easy
3,840
https://leetcode.com/problems/contains-duplicate/discuss/2426099/Python3-2-Approaches-with-Big-O-breakdown-results-(99.8-runtime)-and-explanation
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # I want to try this two ways to compare complexity and runtime if len(nums) == 0: return False # 1. Sort the array, then loop through to search for neighbours # Complexity = Sorting + Looping through comparing # = O(nlogn) + O(n) # = O(nlogn) # Results: 697ms (47.8%), 26.2MB (5.20%) #nums.sort() #for i in range(1, len(nums)): # if nums[i] == nums[i-1]: return True #return False # 2. Loop through the array updating a dict (hashmap) and return if the entry already exists # Complexity = Looping * dictionary lookup # = O(n) * O(1) on average # Results: 435ms (99.8%), 26MB (72.7%) seen = {} for i in nums: if seen.get(i): return True seen[i] = 1 return False
contains-duplicate
[Python3] 2 Approaches with Big O breakdown, results (99.8% runtime), and explanation
connorthecrowe
1
142
contains duplicate
217
0.613
Easy
3,841
https://leetcode.com/problems/contains-duplicate/discuss/2361442/python3-or-Hashmap
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: numsDict = {} for i in range(len(nums)): if nums[i] not in numsDict: numsDict[nums[i]] = 1 else: numsDict[nums[i]] += 1 for k, v in numsDict.items(): if v > 1: return True return False
contains-duplicate
python3 | Hashmap
arvindchoudhary33
1
60
contains duplicate
217
0.613
Easy
3,842
https://leetcode.com/problems/contains-duplicate/discuss/2317509/Solution-(Faster-than-90-)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: num = set(nums) if len(num) < len(nums): return True return False
contains-duplicate
Solution (Faster than 90 %)
fiqbal997
1
210
contains duplicate
217
0.613
Easy
3,843
https://leetcode.com/problems/contains-duplicate/discuss/2287903/Easy-python3-using-set(updated)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: hashset = set() for num in nums: if num in hashset: return True hashset.add(num) return False
contains-duplicate
Easy python3 using set(updated)
__Simamina__
1
120
contains duplicate
217
0.613
Easy
3,844
https://leetcode.com/problems/contains-duplicate/discuss/2246533/Python3-solution-using-set
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: if len(nums)==0: return False d = set() for i in nums: if i in d: return True else: d.add(i) return False
contains-duplicate
📌 Python3 solution using set
Dark_wolf_jss
1
56
contains duplicate
217
0.613
Easy
3,845
https://leetcode.com/problems/contains-duplicate/discuss/2188042/Python-Hash-Set-oror-Two-Pointer-oror-Brute-Force-easy-solutions
class Solution: # Most efficient in TIME among the solutions def containsDuplicate(self, nums: List[int]) -> bool: # Time: O(1) and Space: O(n) hashset=set() for n in nums: if n in hashset:return True hashset.add(n) return False
contains-duplicate
Python [ Hash Set || Two Pointer || Brute Force ] easy solutions
DanishKhanbx
1
263
contains duplicate
217
0.613
Easy
3,846
https://leetcode.com/problems/contains-duplicate/discuss/2188042/Python-Hash-Set-oror-Two-Pointer-oror-Brute-Force-easy-solutions
class Solution: # Most efficient in SPACE among the solutions def containsDuplicate(self, nums: List[int]) -> bool: # Time: O(nlogn) and Space: O(1) nums.sort() l = 0 r = l + 1 while r < len(nums): if nums[l] == nums[r]: return True l = l + 1 r = l + 1 return False
contains-duplicate
Python [ Hash Set || Two Pointer || Brute Force ] easy solutions
DanishKhanbx
1
263
contains duplicate
217
0.613
Easy
3,847
https://leetcode.com/problems/contains-duplicate/discuss/2188042/Python-Hash-Set-oror-Two-Pointer-oror-Brute-Force-easy-solutions
class Solution: # Time limit exceeds def containsDuplicate(self, nums: List[int]) -> bool: for i in range(len(nums)): for j in range(i+1,len(nums)): if nums[i]==nums[j]: return True return False
contains-duplicate
Python [ Hash Set || Two Pointer || Brute Force ] easy solutions
DanishKhanbx
1
263
contains duplicate
217
0.613
Easy
3,848
https://leetcode.com/problems/contains-duplicate/discuss/2175684/Python-One-Liner-Solution-454-ms-faster-than-97.56
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return True if(len(nums)>len(set(nums))) else False
contains-duplicate
Python One Liner Solution 454 ms, faster than 97.56%
thetimeloops
1
262
contains duplicate
217
0.613
Easy
3,849
https://leetcode.com/problems/contains-duplicate/discuss/2002489/Python-easy-to-read-and-understand-or-set
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: d = set() for num in nums: if num in d: return True d.add(num) return False
contains-duplicate
Python easy to read and understand | set
sanial2001
1
291
contains duplicate
217
0.613
Easy
3,850
https://leetcode.com/problems/contains-duplicate/discuss/1917418/Python-3-Simple-one-line-solution-oror-88-faster
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(nums) != len(list(set(nums)))
contains-duplicate
Python 3 Simple one line solution || 88% faster
VINOD27
1
187
contains duplicate
217
0.613
Easy
3,851
https://leetcode.com/problems/contains-duplicate/discuss/1903448/Python-1-liner-explained
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(nums) != len(set(nums))
contains-duplicate
Python 1 liner explained
fox-of-snow
1
119
contains duplicate
217
0.613
Easy
3,852
https://leetcode.com/problems/contains-duplicate/discuss/1893043/Python3-1-line-99.5-faster
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: return len(set(nums)) != len(nums)
contains-duplicate
Python3, 1 line 99.5% faster
AK_gautam
1
192
contains duplicate
217
0.613
Easy
3,853
https://leetcode.com/problems/contains-duplicate/discuss/1772859/Contains-Duplicate-Python-O(n)
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: hashset = set() #declaring hashset for n in nums: #n is iterator if n in hashset: #if n exists in hashset return true return True hashset.add(n) #else add it to hashset return False #duplicate not exist return false
contains-duplicate
Contains Duplicate Python O(n)
prasadshembekar
1
348
contains duplicate
217
0.613
Easy
3,854
https://leetcode.com/problems/contains-duplicate/discuss/1606977/3-ways%3Asort%2Bset-hashtable-counter-package
class Solution(object): def containsDuplicate(self, nums): """ :type nums: List[int] :rtype: bool """ #1 # a = list(set(nums)) # nums.sort() # a.sort() # return False if a==nums else True #2 hash_table = {} for num in nums: hash_table[num] = hash_table.get(num, 0)+1 return False if max(hash_table.values()) == 1 else True # #3 # from collections import Counter # return False if set(Counter(nums).values()) == {1} else True
contains-duplicate
3 ways:sort+set, hashtable, counter package
Allisonzhang4
1
136
contains duplicate
217
0.613
Easy
3,855
https://leetcode.com/problems/the-skyline-problem/discuss/2640697/Python-oror-Easily-Understood-oror-Faster-oror-with-maximum-heap-explained
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: # for the same x, (x, -H) should be in front of (x, 0) # For Example 2, we should process (2, -3) then (2, 0), as there's no height change x_height_right_tuples = sorted([(L, -H, R) for L, R, H in buildings] + [(R, 0, "doesn't matter") for _, R, _ in buildings]) # (0, float('inf')) is always in max_heap, so max_heap[0] is always valid result, max_heap = [[0, 0]], [(0, float('inf'))] for x, negative_height, R in x_height_right_tuples: while x >= max_heap[0][1]: # reduce max height up to date, i.e. only consider max height in the right side of line x heapq.heappop(max_heap) if negative_height: # Consider each height, as it may be the potential max height heapq.heappush(max_heap, (negative_height, R)) curr_max_height = -max_heap[0][0] if result[-1][1] != curr_max_height: result.append([x, curr_max_height]) return result[1:]
the-skyline-problem
🔥 Python || Easily Understood ✅ || Faster || with maximum heap explained
rajukommula
12
1,100
the skyline problem
218
0.416
Hard
3,856
https://leetcode.com/problems/the-skyline-problem/discuss/2640781/My-Python-Solution-with-Comments
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: events = [] for L, R, H in buildings: # append start point of building events.append((L, -H, R)) # append end point of building events.append((R, 0, 0)) # sort the event events.sort() # init for result and heap res = [[0, 0]] hp = [(0, float("inf"))] for pos, negH, R in events: # pop out building which is end while hp[0][1] <= pos: heapq.heappop(hp) # if it is a start of building, push it into heap as current building if negH != 0: heapq.heappush(hp, (negH, R)) # if change in height with previous key point, append to result if res[-1][1] != -hp[0][0]: res.append([pos, -hp[0][0]]) return res[1:]
the-skyline-problem
My Python Solution with Comments ✅
Khacker
3
408
the skyline problem
218
0.416
Hard
3,857
https://leetcode.com/problems/the-skyline-problem/discuss/2642224/Python-two-heaps-to-maintain-the-max-height
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: change_point = [] for start, end, height in buildings: # 1 means the start of the building # -1 means the end of the building change_point.append([start, 1, height]) change_point.append([end, -1, height]) change_point.sort(key = lambda x:[x[0], -x[1], -x[2]]) res = [] heap = [] # height remove_heap = [] for i, (position, flag, height) in enumerate(change_point): # add a building if flag == 1: heapq.heappush(heap, -height) # remove a building else: heapq.heappush(remove_heap, -height) # remove all the removed height, to avoid taking the removed height as the highest while len(remove_heap) > 0 and heap[0] == remove_heap[0]: heapq.heappop(heap) heapq.heappop(remove_heap) # no building at the current position if len(heap) == 0: res.append([position, 0]) else: # take consideration of the first and the last one # if the current max height equals the last height(two adjacent buildings), continue # if the current position has multiple operations(only take the highest one), continue if i == 0 or i == len(change_point)-1 or (-heap[0] != res[-1][1] and position != change_point[i+1][0]): res.append([position, -heap[0]]) # current max height return res
the-skyline-problem
[Python] two heaps to maintain the max height
henryluo108
2
42
the skyline problem
218
0.416
Hard
3,858
https://leetcode.com/problems/the-skyline-problem/discuss/2641854/Faster-than-93.17-or-Single-priority-Queue-or-Easy-to-understand-or-Python3-or-Max-heap
class Solution(object): def getSkyline(self, buildings): """ :type buildings: List[List[int]] :rtype: List[List[int]] """ buildings.sort(key=lambda x:[x[0],-x[2]]) #Sort elements according to x-axis (ascending) and height(descending) new_b=[] max_r=-float('inf') min_l=float('inf') for i in buildings: new_b.append([-i[2],i[0],i[1]]) #Create new array for priority queue with [-1*height, left,right], as we are creating max heap max_r=max(max_r,i[1]) min_l=min(min_l,i[0]) ans=[[0,0,max_r+1]] #for default when the buildings at a specific point is over f_ans=[] heapq.heapify(ans) while min_l<=max_r: while new_b and min_l>=new_b[0][1]: temp=new_b.pop(0) heapq.heappush(ans,temp) while ans and ans[0][2]<=min_l: heapq.heappop(ans) if not f_ans or f_ans[-1][1]!=(-ans[0][0]): f_ans.append([min_l,-ans[0][0]]) if new_b: min_l=min(ans[0][2],new_b[0][1]) #To update the min_l according to the next element and the element itself else: min_l=ans[0][2] return f_ans
the-skyline-problem
Faster than 93.17% | Single priority Queue | Easy to understand | Python3 | Max heap
ankush_A2U8C
2
122
the skyline problem
218
0.416
Hard
3,859
https://leetcode.com/problems/the-skyline-problem/discuss/741467/Python3-priority-queue
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: buildings.append([inf, inf, 0]) # sentinel ans, pq = [], [] # max-heap for li, ri, hi in buildings: while pq and -pq[0][1] < li: _, rj = heappop(pq) while pq and -pq[0][1] <= -rj: heappop(pq) hj = pq[0][0] if pq else 0 ans.append((-rj, -hj)) if 0 < hi and (not pq or -pq[0][0] < hi): if ans and ans[-1][0] == li: ans.pop() ans.append((li, hi)) heappush(pq, (-hi, -ri)) return ans
the-skyline-problem
[Python3] priority queue
ye15
2
423
the skyline problem
218
0.416
Hard
3,860
https://leetcode.com/problems/the-skyline-problem/discuss/2642707/Clean-Python3-or-Heap-or-O(n-log(n))
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: buildings.sort(key = lambda k: (k[0], -k[2])) # by left (asc), then by height (desc) buildings.append([float('inf'), float('inf'), 0]) # to help with end condition height_mxheap = [] # [(height, right), ...] skyline = [] # [(left, height), ...] for left, right, height in buildings: # while max height building has been passed while height_mxheap and height_mxheap[0][1] <= left: _, last_right = heapq.heappop(height_mxheap) if last_right == left: # has alredy been accounted for continue # pop all shorter heights with a right that passed before last_right while height_mxheap and height_mxheap[0][1] <= last_right: heapq.heappop(height_mxheap) if height_mxheap: # if there is something left, end the previous section and add this if skyline[-1][1] != -height_mxheap[0][0]: skyline.append([last_right, -height_mxheap[0][0]]) else: # if there is nothing, add a 0 section skyline.append([last_right, 0]) heapq.heappush(height_mxheap, (-height, right)) max_height = -height_mxheap[0][0] # start next section with current max height building if not skyline or skyline[-1][1] != max_height: skyline.append([left, max_height]) return skyline
the-skyline-problem
Clean Python3 | Heap | O(n log(n))
ryangrayson
1
102
the skyline problem
218
0.416
Hard
3,861
https://leetcode.com/problems/the-skyline-problem/discuss/2641280/Python3-Extremely-bad-and-convoluted-solution-but-surprisingly-fast
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: """LeetCode 218 My God. I did it by myself. Could've passed on the first try, but got a little confused about the first if condition. It was fixed very quickly. This solution is pure analysis. We sort the buildings in descent for heights, and if heights are the same, sort left ascend. Then we build the range for each contour. We use the left bound as key, and the value is [right bound, left height, right height] For each new building, we sort the keys, so that we can use binary search to see where the new building shall be placed. Since the height of the new building is not heigher than all the existing contours, any time the new building has left or right side stuck out, we record the results. Also, if the new building touches or merges with some of the existing contour, we update the contour or delete it. It's convoluted, but it can be done if one is patient enough. 106 ms, faster than 99.75% """ buildings.sort(key=lambda lst: (lst[2], -lst[0]), reverse=True) # the values are [right bound, left height, right height] left_bounds = {buildings[0][0]: [buildings[0][1], buildings[0][2], buildings[0][2]]} res = [[buildings[0][0], buildings[0][2]]] for l, r, h in buildings[1:]: sorted_left = sorted(left_bounds) idx = bisect_right(sorted_left, l) if idx == len(sorted_left) and l > left_bounds[sorted_left[idx - 1]][0]: pl = sorted_left[idx - 1] pr, plh, prh = left_bounds[pl] if pr < l: res.append([l, h]) left_bounds[l] = [r, h, h] else: left_bounds[pl][0] = r if prh > h: res.append([pr, h]) left_bounds[pl][0] = r left_bounds[pl][2] = h elif idx == 0: res.append([l, h]) if r < sorted_left[0]: left_bounds[l] = [r, h, h] else: some_r_bigger = False for sl in sorted_left: if left_bounds[sl][0] < r: if left_bounds[sl][2] > h: res.append([left_bounds[sl][0], h]) del left_bounds[sl] else: some_r_bigger = True break if not some_r_bigger or r < sl: left_bounds[l] = [r, h, h] else: left_bounds[l] = [left_bounds[sl][0], h, left_bounds[sl][2]] del left_bounds[sl] else: pl = sorted_left[idx - 1] if r <= left_bounds[pl][0]: continue if l > left_bounds[pl][0]: res.append([l, h]) elif left_bounds[pl][2] > h: res.append([left_bounds[pl][0], h]) i = idx some_r_bigger = False while i < len(sorted_left): sl = sorted_left[i] if left_bounds[sl][0] < r: if left_bounds[sl][2] > h: res.append([left_bounds[sl][0], h]) del left_bounds[sl] else: some_r_bigger = True break i += 1 if not some_r_bigger or r < sorted_left[i]: if l > left_bounds[pl][0]: left_bounds[l] = [r, h, h] else: left_bounds[pl][0] = r left_bounds[pl][2] = h else: sl = sorted_left[i] if l > left_bounds[pl][0]: left_bounds[l] = [left_bounds[sl][0], h, left_bounds[sl][2]] else: left_bounds[pl][0] = left_bounds[sl][0] left_bounds[pl][2] = left_bounds[sl][2] del left_bounds[sl] # print(l, r, h) # print(left_bounds) for r, _, _ in left_bounds.values(): res.append([r, 0]) return sorted(res)
the-skyline-problem
[Python3] Extremely bad and convoluted solution, but surprisingly fast
FanchenBao
1
150
the skyline problem
218
0.416
Hard
3,862
https://leetcode.com/problems/the-skyline-problem/discuss/1248136/python3-o(n-logn)-divide-and-conquer-method-with-detailed-comments
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: # base case: if len(buildings) == 1: return [[buildings[0][0], buildings[0][2]], [buildings[0][1], 0]] # prepare to divide the buildings into two parts left, right = 0, len(buildings) - 1 mid = left + (right - left) // 2 # recuesive case: left_skyline = self.getSkyline(buildings[0:mid + 1]) right_skyline = self.getSkyline(buildings[mid + 1:]) # merge the left and the right skyline return self.merge_skyline(left_skyline, right_skyline) def merge_skyline(self, left: List[List[int]], right: List[List[int]]) -> List[List[int]]: # index of the left and right buildings i, j = 0, 0 # height of the left and right buildings left_y, right_y = 0, 0 skyline = [] # while traverse both the left and right building while i < len(left) and j < len(right): # choose the building with the smaller x coodinate to be the added to the skyline skyline_x = min(left[i][0], right[j][0]) # if the position in the left building's x coordinate is smaller than the right one if left[i][0] < right[j][0]: # the height of the left building left_y = left[i][1] # if not the first right building. (to avoid right[-1][1] out of index) if j > 0: right_y = right[j - 1][1] skyline_y = max(left_y, right_y) i += 1 # similar to the smaller case: elif left[i][0] > right[j][0]: right_y = right[j][1] if i > 0: left_y = left[i - 1][1] skyline_y = max(left_y, right_y) j += 1 # if the x coodinates are the same, just get the higher y coordinate and both move to the next point else: left_y = left[i][1] right_y = right[j][1] skyline_y = max(left_y, right_y) i += 1 j += 1 # if skyline empty if not skyline: last_max = 0 else: last_max = skyline[-1][1] # if the current height is not equal to the last height, add it to the skyline if skyline_y != last_max: skyline.append([skyline_x, skyline_y]) # append what's left in the list left or right which is already the skyline skyline.extend(left[i:] or right[j:]) return skyline
the-skyline-problem
python3 o(n logn) divide and conquer method with detailed comments
holmesmoon
1
278
the skyline problem
218
0.416
Hard
3,863
https://leetcode.com/problems/the-skyline-problem/discuss/2644004/Python3-Wow-That-Was-Fun
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: bc = 0 b = [] m = 0 for [li, ri, hi] in buildings: b.append((li, hi, bc)) b.append((ri, 0, bc)) m = max(ri, m) bc += 1 b.sort() b.append((m+10**6, 0, -1)) deleted = set() cb = [(0, -2)] j = 0 le = 0 outp = [] i = 0 while i < m + 1: new_deletion = False while b[j][0] <= i: p, e, build = b[j] j += 1 if e == 0: deleted.add(build) new_deletion = True else: heappush(cb, (-e, build)) if new_deletion: while cb[0][1] in deleted: heappop(cb) cu = -cb[0][0] if cu!=le: le=cu outp.append([i, le]) i = b[j][0] return outp
the-skyline-problem
Python3 Wow That Was Fun
godshiva
0
12
the skyline problem
218
0.416
Hard
3,864
https://leetcode.com/problems/the-skyline-problem/discuss/2643773/Python-Sorting-Heap-Two-Pointers
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: result = [] cur = defaultdict(int) heights = [] heapq.heapify(heights) buildings.sort(key=lambda x: (x[0], -x[2])) ends = sorted(buildings, key=lambda x: (x[1], x[2])) # two pointers p_beg, p_end = 0, 0 while p_end < len(buildings): # check for the last if p_beg < len(buildings): beg = buildings[p_beg] else: beg = [float('inf')] end = ends[p_end] if beg[0] <= end[1]: p_beg += 1 height = beg[2] cur[height] += 1 if cur[height] > 1: continue if not heights or -heights[0] < height: result.append([beg[0], height]) heapq.heappush(heights, -height) else: p_end += 1 height = end[2] cur[height] -= 1 if cur[height] > 0: continue if -heights[0] == height: heapq.heappop(heights) while heights and cur[-heights[0]] == 0: heapq.heappop(heights) result.append([end[1], 0 if not heights else -heights[0]]) return result
the-skyline-problem
Python, Sorting, Heap, Two Pointers
sadomtsevvs
0
12
the skyline problem
218
0.416
Hard
3,865
https://leetcode.com/problems/the-skyline-problem/discuss/2643176/Python-3-simple-direct-approach-with-no-heap-or-other-imported-functions
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: points = [] for i in buildings: points.append([i[0], i[2], 1]) points.append([i[1], i[2], 0]) points.sort(key = lambda x : [x[0], -x[1], -x[2]] ) #print(points) ans = [] mx = [0] for i in points: if(i[-1] == 1): if(i[1] > max(mx)): ans.append([i[0],i[1]]) mx.append(i[1]) elif(i[-1] == 0): if(i[1] == max(mx) and mx.count(i[1]) == 1 ): mx.remove(i[1]) ans.append([i[0],max(mx)]) else: mx.remove(i[1]) n = len(ans) i = 1 while(i < n): if(ans[i][0] == ans[i-1][0]): del ans[i-1] i -=1 n -=1 i +=1 return(ans)
the-skyline-problem
Python 3 simple direct approach with no heap or other imported functions
user2800NJ
0
14
the skyline problem
218
0.416
Hard
3,866
https://leetcode.com/problems/the-skyline-problem/discuss/2641072/PYTHON-SOLUTION-oror-EASY-TO-UNDERSTAND-oror-SIMPLE-SOLUTION
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: height = [] for i,j,k in buildings: height.append([i,-k]) height.append([j,k]) height_sorted = sorted(height) current_height = 0 ans = [] stack = [0] for i,j in height_sorted: current_height = max(stack) #STARTING RECTANGLE if j<0 and abs(j)>current_height: stack.append(-j) ans.append([i,max(stack)]) # print(-j) elif j<0: stack.append(-j) elif j>0: stack.remove(j) if current_height!=max(stack): ans.append([i,max(stack)]) return ans
the-skyline-problem
PYTHON SOLUTION || EASY TO UNDERSTAND || SIMPLE SOLUTION
Airodragon
0
49
the skyline problem
218
0.416
Hard
3,867
https://leetcode.com/problems/the-skyline-problem/discuss/2395544/python-max-heap
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: stack = [] ans = [] while buildings or stack: if not stack or(buildings and stack[0][2]>=buildings[0][0]): nb = buildings.pop(0)#Add new building heapq.heappush(stack, (-nb[2], nb[0],nb[1])) while buildings and buildings[0][0]==nb[0]: #Add all buildings starging with the same x coordinate nb = buildings.pop(0) heapq.heappush(stack, (-nb[2], nb[0],nb[1])) if not ans or -stack[0][0]!= ans[-1][1]: ans.append([stack[0][1], -stack[0][0]])#Add a point to the answers when the newly add building expands the skyline else:#stack is empty or the next building is not overlapping, updating the right part pb = heapq.heappop(stack) #previous highest while stack: if stack[0][2]<=pb[2]: heapq.heappop(stack)#delete buildings that are covered else: if -stack[0][0]!= ans[-1][1]: ans.append([pb[2], -stack[0][0]]) break if not stack:#add the bottom point ans.append([pb[2], 0]) return ans
the-skyline-problem
python max heap
li87o
0
96
the skyline problem
218
0.416
Hard
3,868
https://leetcode.com/problems/the-skyline-problem/discuss/955076/The-Skyline-Problem-or-python3-Divide-and-Conquer
class Solution: def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]: if not buildings: return [] if len(buildings) == 1: return [[buildings[0][0], buildings[0][2]],[buildings[0][1], 0]] mid = (len(buildings)-1) // 2 left = self.getSkyline(buildings[0:mid+1]) right = self.getSkyline(buildings[mid+1:]) return self.merge(left, right) def merge(self, left, right): i = j = h1 = h2 = 0 ret = [] while i < len(left) and j < len(right): if left[i][0] < right[j][0]: h1 = left[i][1] new = [left[i][0], max(h1, h2)] if not ret or ret[-1][1] != new[1]: ret.append(new) i += 1 elif left[i][0] > right[j][0]: h2 = right[j][1] new = [right[j][0], max(h1, h2)] if not ret or ret[-1][1]!=new[1]: ret.append(new) j+=1 else: h1 = left[i][1] h2 = right[j][1] new = [right[j][0], max(h1, h2)] if not ret or ret[-1][1] != new[1]: ret.append([right[j][0],max(h1, h2)]) i += 1 j += 1 while i < len(left): if not ret or ret[-1][1] != left[i][1]: ret.append(left[i][:]) i+=1 while j < len(right): if not ret or ret[-1][1] != right[j][1]: ret.append(right[j][:]) j+=1 return ret
the-skyline-problem
The Skyline Problem | python3 Divide and Conquer
hangyu1130
-1
152
the skyline problem
218
0.416
Hard
3,869
https://leetcode.com/problems/contains-duplicate-ii/discuss/2463150/Very-Easy-oror-100-oror-Fully-Explained-oror-Java-C%2B%2B-Python-Javascript-Python3-(Using-HashSet)
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: # Create hset for storing previous of k elements... hset = {} # Traverse for all elements of the given array in a for loop... for idx in range(len(nums)): # If duplicate element is present at distance less than equal to k, return true... if nums[idx] in hset and abs(idx - hset[nums[idx]]) <= k: return True hset[nums[idx]] = idx # If no duplicate element is found then return false... return False
contains-duplicate-ii
Very Easy || 100% || Fully Explained || Java, C++, Python, Javascript, Python3 (Using HashSet)
PratikSen07
45
3,400
contains duplicate ii
219
0.423
Easy
3,870
https://leetcode.com/problems/contains-duplicate-ii/discuss/2727788/Python's-Simple-and-Easy-to-Understand-Solutionor-O(n)-Solution-or-99-Faster
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: # Create dictionary for Lookup lookup = {} for i in range(len(nums)): # If num is present in lookup and satisfy the condition return True if nums[i] in lookup and abs(lookup[nums[i]]-i) <= k: return True # If num is not present in lookup then add it to lookup lookup[nums[i]] = i return False
contains-duplicate-ii
✔️ Python's Simple and Easy to Understand Solution| O(n) Solution | 99% Faster 🔥
pniraj657
11
1,100
contains duplicate ii
219
0.423
Easy
3,871
https://leetcode.com/problems/contains-duplicate-ii/discuss/381965/Python-solutions
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: positions = {} for idx, num in enumerate(nums): if num in positions and (idx - positions[num] <= k): return True positions[num] = idx return False
contains-duplicate-ii
Python solutions
amchoukir
7
1,500
contains duplicate ii
219
0.423
Easy
3,872
https://leetcode.com/problems/contains-duplicate-ii/discuss/381965/Python-solutions
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: rolling_window = set() for idx, num in enumerate(nums): if idx > k: rolling_window.remove(nums[idx-k-1]) if num in rolling_window: return True rolling_window.add(num) return False
contains-duplicate-ii
Python solutions
amchoukir
7
1,500
contains duplicate ii
219
0.423
Easy
3,873
https://leetcode.com/problems/contains-duplicate-ii/discuss/1631026/easy-solution-python
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: if len(set(nums)) == len(nums): return False for i in range(len(nums)): if len(nums[i:i+k+1])!=len(set(nums[i:i+k+1])): return True return False
contains-duplicate-ii
easy solution python
diksha_choudhary
6
758
contains duplicate ii
219
0.423
Easy
3,874
https://leetcode.com/problems/contains-duplicate-ii/discuss/1364843/Easy-to-understand
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: if len(set(nums)) == len(nums): return False for i in range(len(nums)): if len(set(nums[i : i+k+1])) < len(nums[i : i+k+1]): return True return False
contains-duplicate-ii
Easy to understand
samirpaul1
6
513
contains duplicate ii
219
0.423
Easy
3,875
https://leetcode.com/problems/contains-duplicate-ii/discuss/2189626/Python3-Sliding-Window
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: l = set() for i in range(len(nums)): if len(l) >= k+1: l.remove(nums[i-k-1]) # remove left-most elem if nums[i] in l: return True l.add(nums[i]) return False
contains-duplicate-ii
Python3 Sliding Window
alapha23
5
324
contains duplicate ii
219
0.423
Easy
3,876
https://leetcode.com/problems/contains-duplicate-ii/discuss/1015739/Easy-and-Clear-Solution-Python-3
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: if len(nums)<2 : return False if k>=len(nums): return len(set(nums))<len(nums) aux=set(nums[0:k+1]) if len(aux)!=k+1: return True for i in range(1,len(nums)-k): aux.remove(nums[i-1]) aux.add(nums[i+k]) if len(aux)!=k+1: return True return False
contains-duplicate-ii
Easy & Clear Solution Python 3
moazmar
5
1,100
contains duplicate ii
219
0.423
Easy
3,877
https://leetcode.com/problems/contains-duplicate-ii/discuss/2200965/Python3-Easy-to-Understand-or-Dictionary
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: seen = {} for i in range(len(nums)): if nums[i] in seen and abs(i - seen[nums[i]]) <= k: return True seen[nums[i]] = i return False
contains-duplicate-ii
✅Python3 Easy to Understand | Dictionary
thesauravs
4
137
contains duplicate ii
219
0.423
Easy
3,878
https://leetcode.com/problems/contains-duplicate-ii/discuss/549053/Python-simple-solution-72-ms-faster-than-90.80
class Solution(object): def containsNearbyDuplicate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: bool """ if len(nums) == len(set(nums)): return False for i in range(len(nums)): for j in range(i + 1, len(nums)): if nums[i] == nums[j]: if j - i <= k: return True return False
contains-duplicate-ii
Python simple solution 72 ms, faster than 90.80%
hemina
4
798
contains duplicate ii
219
0.423
Easy
3,879
https://leetcode.com/problems/contains-duplicate-ii/discuss/343138/Solution-in-Python-3-(beats-~95)-(very-short)
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: N = {} for i,n in enumerate(nums): if n in N and i - N[n] <= k: return True N[n] = i return False - Python 3 - Junaid Mansuri
contains-duplicate-ii
Solution in Python 3 (beats ~95%) (very short)
junaidmansuri
3
601
contains duplicate ii
219
0.423
Easy
3,880
https://leetcode.com/problems/contains-duplicate-ii/discuss/2729337/Python-most-easy
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: x = {} for i in range(len(nums)): if nums[i] in x: if i - x[nums[i]] <= k: return True else: x[nums[i]] = i else: x[nums[i]] = i return False
contains-duplicate-ii
Python most easy
codewithsonukumar
2
186
contains duplicate ii
219
0.423
Easy
3,881
https://leetcode.com/problems/contains-duplicate-ii/discuss/1981958/PYTHON-3-EASY-SOLUTION
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: if(len(set(nums))==len(nums)): #checking if duplicates exist. return(False) i=0 while(i<len(nums)-1): if(len(set(nums[i:i+k+1]))!=len(nums[i:i+k+1])): return(True) i+=1 return(False)
contains-duplicate-ii
PYTHON 3 EASY SOLUTION
saibackinaction1
2
465
contains duplicate ii
219
0.423
Easy
3,882
https://leetcode.com/problems/contains-duplicate-ii/discuss/1848798/python-easy-noob-solution-97
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: hash = {} for index,num in enumerate(nums): if num in hash and index-hash[num]<=k: return True hash[num] = index return False
contains-duplicate-ii
python easy noob solution 97%
Brillianttyagi
2
254
contains duplicate ii
219
0.423
Easy
3,883
https://leetcode.com/problems/contains-duplicate-ii/discuss/1824677/Python-Easiest-Solution-90.12-Faster-Beg-to-Adv-Hashmap
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: if len(nums) == len(set(nums)): return False for i in range(len(nums)): for j in range(i+1, len(nums)): if i != j and nums[i] == nums[j] and abs(i - j) <= k: return True return False
contains-duplicate-ii
Python Easiest Solution, 90.12 % Faster, Beg to Adv, Hashmap
rlakshay14
2
210
contains duplicate ii
219
0.423
Easy
3,884
https://leetcode.com/problems/contains-duplicate-ii/discuss/1824677/Python-Easiest-Solution-90.12-Faster-Beg-to-Adv-Hashmap
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: hashmap = {} for i,v in enumerate(nums): if v in hashmap and i - hashmap[v] <= k: return True hashmap[v] = i return False
contains-duplicate-ii
Python Easiest Solution, 90.12 % Faster, Beg to Adv, Hashmap
rlakshay14
2
210
contains duplicate ii
219
0.423
Easy
3,885
https://leetcode.com/problems/contains-duplicate-ii/discuss/1684158/Python-andand-Kotlin-solutions-%2B-explanation-(self-made-BST)
class Solution: # O(n) Space &amp; O(n) Time def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: """ 1. why do we need hashtable? => i &amp; j can be any indicies, not simply adjacent ones 2. why do we put `curr_num` in ht after? => we need to find if two DIFFERENT idxs have the same value """ ht = {} for i in range(len(nums)): curr_num = nums[i] if curr_num in ht: # means values are similar idx = ht[curr_num] # get that another index if abs(i - idx) <= k: return True ht[curr_num] = i return False # tree def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: """ Use BST + use Height Balanced feature """ tree = BST(nums[0]) for i in range(1, len(nums)): num = nums[i] if tree.search(num) and k != 0: # second check is for the following: # [1,2,1] # 0 return True tree.insert(num) tree.length += 1 if tree.length > k: # we need to move this window and remove in FIFO style tree.remove(nums[i - k]) tree.length -= 1 return False class BST: def __init__(self, root, left=None, right=None): self.root = root self.left = left self.right = right self.length = 1 def search(self, value): curr = self while curr: if curr.root > value: curr = curr.left elif curr.root < value: curr = curr.right else: return True return False def insert(self, value): if value < self.root: if self.left is None: self.left = BST(value) return else: self.left.insert(value) else: if self.right is None: self.right = BST(value) return else: self.right.insert(value) def remove(self, value, parent=None): # cases to deal with # 1. if both childs are in place # 2. if no parent (find at first try) + only one child (when both above is dealth with) # 3. if parent exists, but only 1 child curr = self while curr: if curr.root > value: parent = curr curr = curr.left elif curr.root < value: parent = curr curr = curr.right else: if curr.left is not None and curr.right is not None: curr.root = curr.right.minFind() # change itself happens here curr.right.remove(curr.root, curr) # remove smallest from the right tree as we put it in the root elif parent is None: # means we found the value instantly without if/elif + only one child if curr.left is not None: curr.root = curr.left.root curr.right = curr.left.right curr.left = curr.left.left # assign last as you'll need it elif curr.right is not None: curr.root = curr.right.root curr.left = curr.right.left curr.right = curr.right.right # assign last as you'll need it else: pass # no children elif parent.left == curr: # 5 # / #4 this to be removed # \ # 3 parent.left = curr.left if curr.left is not None else curr.right elif parent.right == curr: parent.right = curr.left if curr.left is not None else curr.right break return self def minFind(self): curr = self while curr.left: curr = curr.left return curr.root
contains-duplicate-ii
二つのPython && 二つのKotlin solutions + explanation (self-made BST)
SleeplessChallenger
2
127
contains duplicate ii
219
0.423
Easy
3,886
https://leetcode.com/problems/contains-duplicate-ii/discuss/1447805/Python3-Faster-Than-98.66-Easy-Solution-With-Explanation
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: d = {} for i in range(len(nums)): if nums[i] not in d: d[nums[i]] = i else: if i - d[nums[i]] <= k: return True else: d[nums[i]] = i return False
contains-duplicate-ii
Python3 Faster Than 98.66%, Easy Solution With Explanation
Hejita
2
338
contains duplicate ii
219
0.423
Easy
3,887
https://leetcode.com/problems/contains-duplicate-ii/discuss/1218124/Python3Easy-understanding-solution-use-dict
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: dic = {} for idx, num in enumerate(nums): if num in dic and idx - dic[num] <= k: return True dic[num] = idx return False
contains-duplicate-ii
【Python3】Easy understanding solution use dict
qiaochow
2
97
contains duplicate ii
219
0.423
Easy
3,888
https://leetcode.com/problems/contains-duplicate-ii/discuss/613239/Python-Solution-98ms-Easy-to-Understand-Explained
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: d = dict() for i in range(0,len(nums)): if nums[i] in d: if abs(d[nums[i]]-i) <= k: return True else: d[nums[i]] = i else: d[nums[i]]=i return False
contains-duplicate-ii
Python Solution 98ms [Easy to Understand] Explained
code_zero
2
202
contains duplicate ii
219
0.423
Easy
3,889
https://leetcode.com/problems/contains-duplicate-ii/discuss/2728597/Python-(using-dictionary)
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: dict = {} for i in range(len(nums)): if nums[i] in dict: if i - dict[nums[i]] <= k: return True else: dict[nums[i]] = i else: dict[nums[i]] = i return False
contains-duplicate-ii
Python (using dictionary)
anandanshul001
1
72
contains duplicate ii
219
0.423
Easy
3,890
https://leetcode.com/problems/contains-duplicate-ii/discuss/2728505/Very-simple-solution-in-CPP-and-Python
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: E = dict() for i in range(len(nums)): n = nums[i] if n in E: if abs(E[n] - i) <= k: return True E[n] = i return False
contains-duplicate-ii
Very simple solution in CPP & Python
nuoxoxo
1
64
contains duplicate ii
219
0.423
Easy
3,891
https://leetcode.com/problems/contains-duplicate-ii/discuss/2728305/Sweet-solution.-Beats-91
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: hashMap = {} for i, n in enumerate(nums): if n in hashMap: diff = i - hashMap[n] if diff <= k: return True hashMap[n] = i return False
contains-duplicate-ii
Sweet solution. Beats 91%
sukumar-satapathy
1
101
contains duplicate ii
219
0.423
Easy
3,892
https://leetcode.com/problems/contains-duplicate-ii/discuss/2728134/Python-or-Dict-and-deque-solution-or-O(n)
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: stat, q = defaultdict(int), deque([]) for num in nums: stat[num] += 1 q.append(num) if stat[num] > 1: return True if len(q) == k + 1: stat[q.popleft()] -= 1 return False
contains-duplicate-ii
Python | Dict and deque solution | O(n)
LordVader1
1
30
contains duplicate ii
219
0.423
Easy
3,893
https://leetcode.com/problems/contains-duplicate-ii/discuss/2234782/Python-HashMap-Beats-75
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: d = {} prev = 0 for i in range(len(nums)): if nums[i] not in d: d[nums[i]] = i else: prev = d[nums[i]] # Keep track of the previous index d[nums[i]] = i if abs(i - prev) <=k: return True return False
contains-duplicate-ii
Python HashMap Beats 75%
theReal007
1
91
contains duplicate ii
219
0.423
Easy
3,894
https://leetcode.com/problems/contains-duplicate-ii/discuss/2210474/Easy-Python-Solution-oror-O(n)
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: obj = {} for i, j in enumerate(nums): if j in obj and i - obj[j] <= k: return True else: obj[j] = i return False
contains-duplicate-ii
Easy Python Solution || O(n)
MorgDzh
1
87
contains duplicate ii
219
0.423
Easy
3,895
https://leetcode.com/problems/contains-duplicate-ii/discuss/2192641/Python-solution
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: ones = [] if len(set(nums)) == len(nums): return False for i in range(0,len(nums)): if nums[i] in ones: continue if nums.count(nums[i]) == 1: ones.append(nums[i]) continue for j in range(i+1,len(nums)): if nums[i] == nums[j] and abs(i-j) <= k: return True else: return False
contains-duplicate-ii
Python solution
StikS32
1
165
contains duplicate ii
219
0.423
Easy
3,896
https://leetcode.com/problems/contains-duplicate-ii/discuss/1605516/Python-Hashmap-Easy-Small-Solution
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: hashmap={} i=0 while(i<len(nums)): current=nums[i] if(current in hashmap and i-hashmap[current]<=k): return True else: hashmap[current]=i i+=1 return False ```
contains-duplicate-ii
Python Hashmap Easy Small Solution
akshattrivedi9
1
185
contains duplicate ii
219
0.423
Easy
3,897
https://leetcode.com/problems/contains-duplicate-ii/discuss/1488297/python3-O(n)-Solution
class Solution: def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool: dct = dict() for indx,val in enumerate(nums): if val in dct: if indx-dct[val]<=k: return True dct[val]=indx else: dct[val]=indx return False
contains-duplicate-ii
[python3] O(n) Solution
_jorjis
1
203
contains duplicate ii
219
0.423
Easy
3,898
https://leetcode.com/problems/contains-duplicate-ii/discuss/1243656/Python-Three-approaches
class Solution: def containsNearbyDuplicate(self, nums: List[int], target: int) -> bool: #Method 3: add index to dict and then use the two-sum logic(lookback and check if condition is satisfied) d = {} for k,v in enumerate(nums): if v in d and k - d[v] <= target: return True d[v] = k return False #Method 2: Dict plus combinations - Mem Limit Exceeded # d = defaultdict(list) # for i in range(len(nums)): # d[nums[i]] += [i] # print(d) # for k in d.keys(): # l = len(d[k]) # if l >= 2: # from itertools import combinations # for combo in list(combinations(d[k],2)): # if abs(combo[0] - combo[1]) <= target: # return True # return False #Method 1: Brute Force - TLE # for i in range(len(nums)): # for j in range(i, len(nums)): # if nums[i] != nums[j]: # continue # else: # if j != i and abs(i - j) <= k: # # print(i,j) # return True # return False
contains-duplicate-ii
Python - Three approaches
mehrotrasan16
1
327
contains duplicate ii
219
0.423
Easy
3,899