|
"""LibriTTS dataset with phone alignments, prosody and mel spectrograms.""" |
|
|
|
import os |
|
from pathlib import Path |
|
import hashlib |
|
import pickle |
|
|
|
import datasets |
|
import pandas as pd |
|
import numpy as np |
|
from tqdm.contrib.concurrent import process_map |
|
from tqdm.auto import tqdm |
|
from multiprocessing import cpu_count |
|
from PIL import Image |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_VERSION = "0.0.1" |
|
|
|
_CITATION = """\ |
|
@inproceedings{48008, |
|
title = {LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech}, |
|
author = {Heiga Zen and Rob Clark and Ron J. Weiss and Viet Dang and Ye Jia and Yonghui Wu and Yu Zhang and Zhifeng Chen}, |
|
year = {2019}, |
|
URL = {https://arxiv.org/abs/1904.02882}, |
|
booktitle = {Interspeech} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Dataset containing Mel Spectrograms, Prosody and Phone Alignments for the LibriTTS dataset. |
|
""" |
|
|
|
_URLS = { |
|
"dev.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_clean.tar.gz", |
|
"dev.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_other.tar.gz", |
|
"test.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_clean.tar.gz", |
|
"test.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_other.tar.gz", |
|
"train.clean.100": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_100.tar.gz", |
|
"train.clean.360": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_360.tar.gz", |
|
"train.other.500": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_other_500.tar.gz", |
|
} |
|
|
|
|
|
class LibriTTSConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(LibriTTSConfig, self).__init__(**kwargs) |
|
|
|
|
|
class LibriTTS(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
LibriTTSConfig( |
|
name="libritts", |
|
version=datasets.Version(_VERSION, ""), |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = { |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"chapter_id": datasets.Value("string"), |
|
"phones": datasets.Value("string"), |
|
"mel": datasets.Value("string"), |
|
"prosody": datasets.Value("string"), |
|
"speaker_utterance": datasets.Value("string"), |
|
"mean_speaker_utterance": datasets.Value("string"), |
|
"mean_speaker": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/cdminix/libritts-phones-and-mel", |
|
citation=_CITATION, |
|
task_templates=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=key, |
|
gen_kwargs={"data_path": dl_manager.download_and_extract(value)}, |
|
) |
|
for key, value in _URLS.items() |
|
] |
|
|
|
return splits |
|
|
|
def _df_from_path(self, path): |
|
mel_path = Path(path) |
|
prosody_path = Path(str(mel_path).replace("_mel.png", "_prosody.png")) |
|
phones_path = Path(str(mel_path).replace("_mel.png", "_phones.npy")) |
|
overall_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.npy")) |
|
temporal_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.png")) |
|
mean_speaker_path = mel_path.parent.parent / "mean_speaker.npy" |
|
text = Path(str(mel_path).replace("_mel.png", "_text.txt")).read_text().lower() |
|
|
|
speaker_id = mel_path.parent.parent.name |
|
chapter_id = mel_path.parent.name |
|
_id = str(mel_path).replace("_mel.png", "") |
|
|
|
return { |
|
"id": _id, |
|
"speaker_id": speaker_id, |
|
"chapter_id": chapter_id, |
|
"phones": phones_path, |
|
"mel": mel_path, |
|
"prosody": prosody_path, |
|
"speaker_utterance": temporal_speaker_path, |
|
"mean_speaker_utterance": overall_speaker_path, |
|
"mean_speaker": mean_speaker_path, |
|
"text": text, |
|
} |
|
|
|
def _df_from_paths_mp(self, paths): |
|
return pd.DataFrame( |
|
process_map( |
|
self._df_from_path, |
|
paths, |
|
desc="Reading files", |
|
max_workers=cpu_count(), |
|
chunksize=100, |
|
) |
|
) |
|
|
|
def _create_mean_speaker(self, df): |
|
|
|
for _, speaker_df in df.groupby("speaker_id"): |
|
if not Path(speaker_df["mean_speaker"].iloc[0]).exists(): |
|
mean_speaker = np.mean( |
|
np.array( |
|
[np.load(path) for path in speaker_df["mean_speaker_utterance"]] |
|
), |
|
axis=0, |
|
) |
|
np.save(speaker_df["mean_speaker"].iloc[0], mean_speaker) |
|
|
|
def _generate_examples(self, data_path): |
|
"""Generate examples.""" |
|
logger.info("⏳ Generating examples from = %s", data_path) |
|
|
|
paths = sorted(list(Path(data_path).rglob("*_mel.png"))) |
|
|
|
df = self._df_from_paths_mp(paths) |
|
|
|
self._create_mean_speaker(df) |
|
|
|
for i, row in tqdm(df.iterrows(), desc="Generating examples"): |
|
yield row["id"], row.to_dict() |
|
|