Datasets:
Formats:
parquet
Size:
10K - 100K
ArXiv:
Tags:
personalization
instance_detection
instance_classification
instance_segmentation
instance_retrieval
License:
license: mit | |
size_categories: | |
- 10K<n<100K | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: test | |
path: data/test-* | |
- split: test_dense | |
path: data/test_dense-* | |
dataset_info: | |
features: | |
- name: image | |
dtype: image | |
- name: mask | |
dtype: image | |
- name: label | |
dtype: string | |
- name: scene_type | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 27536486.0 | |
num_examples: 300 | |
- name: test | |
num_bytes: 1057988392.0 | |
num_examples: 10888 | |
- name: test_dense | |
num_bytes: 142893072.0 | |
num_examples: 1200 | |
download_size: 1168238221 | |
dataset_size: 1228417950.0 | |
tags: | |
- personalization | |
- instance_detection | |
- instance_classification | |
- instance_segmentation | |
- instance_retrieval | |
# PODS: Personal Object Discrimination Suite | |
<h3 align="center"><a href="https://personalized-rep.github.io" style="color: #2088FF;">🌐Project page</a>            | |
<a href="https://arxiv.org/abs/2412.16156" style="color: #2088FF;">📖Paper</a>            | |
<a href="https://github.com/ssundaram21/personalized-rep" style="color: #2088FF;">GitHub</a><br></h3> | |
We introduce the PODS (Personal Object Discrimination Suite) dataset, a new benchmark for personalized vision tasks. | |
<p align="center"> | |
<img src="https://cdn-uploads.huggingface.co/production/uploads/65f9d4100f717eb3e67556df/uMgazSWsxjqEa4wXSmkVi.jpeg" alt="pods.jpg" /> | |
</p> | |
## PODS | |
The PODS dataset is new a benchmark for personalized vision tasks. It includes: | |
* 100 common household objects from 5 semantic categories | |
* 4 tasks (classification, retrieval, segmentation, detection) | |
* 4 test splits with different distribution shifts. | |
* 71-201 test images per instance with classification label annotations. | |
* 12 test images per instance (3 per split) with segmentation annotations. | |
Metadata is stored in two files: | |
* `pods_info.json`: | |
* `classes`: A list of class names | |
* `class_to_idx`: Mapping of each class to an integer id | |
* `class_to_sc`: Mapping of each class to a broad, single-word semantic category | |
* `class_to_split`: Mapping of each class to the `val` or `test` split. | |
* `pods_image_annos.json`: Maps every image ID to its class and test split (one of `[train, objects, pose, all]`) | |
## Using PODS | |
### Loading the dataset using HuggingFace | |
To load the dataset using HuggingFace `datasets`, install the library by `pip install datasets` | |
``` | |
from datasets import load_dataset | |
pods_dataset = load_dataset("chaenayo/PODS") | |
``` | |
You can also specify a split by: | |
``` | |
pods_dataset = load_dataset("chaenayo/PODS", split="train") # or "test" or "test_dense" | |
``` | |
### Loading the dataset directly | |
PODS can also be directly downloaded via command: | |
``` | |
wget https://data.csail.mit.edu/personal_rep/pods.zip | |
``` | |
## Citation | |
If you find our dataset useful, please cite our paper: | |
``` | |
@article{sundaram2024personalized, | |
title = {Personalized Representation from Personalized Generation} | |
author = {Sundaram, Shobhita and Chae, Julia and Tian, Yonglong and Beery, Sara and Isola, Phillip}, | |
journal = {Arxiv}, | |
year = {2024}, | |
} | |
``` |