title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Towards meaningful physics from generative models
hep-lat cond-mat.stat-mech cs.LG
In several physical systems, important properties characterizing the system itself are theoretically related with specific degrees of freedom. Although standard Monte Carlo simulations provide an effective tool to accurately reconstruct the physical configurations of the system, they are unable to isolate the different contributions corresponding to different degrees of freedom. Here we show that unsupervised deep learning can become a valid support to MC simulation, coupling useful insights in the phases detection task with good reconstruction performance. As a testbed we consider the 2D XY model, showing that a deep neural network based on variational autoencoders can detect the continuous Kosterlitz-Thouless (KT) transitions, and that, if endowed with the appropriate constrains, they generate configurations with meaningful physical content.
Marco Cristoforetti, Giuseppe Jurman, Andrea I. Nardelli, Cesare Furlanello
null
1705.09524
null
null
Classification regions of deep neural networks
cs.CV cs.AI cs.LG stat.ML
The goal of this paper is to analyze the geometric properties of deep neural network classifiers in the input space. We specifically study the topology of classification regions created by deep networks, as well as their associated decision boundary. Through a systematic empirical investigation, we show that state-of-the-art deep nets learn connected classification regions, and that the decision boundary in the vicinity of datapoints is flat along most directions. We further draw an essential connection between two seemingly unrelated properties of deep networks: their sensitivity to additive perturbations in the inputs, and the curvature of their decision boundary. The directions where the decision boundary is curved in fact remarkably characterize the directions to which the classifier is the most vulnerable. We finally leverage a fundamental asymmetry in the curvature of the decision boundary of deep nets, and propose a method to discriminate between original images, and images perturbed with small adversarial examples. We show the effectiveness of this purely geometric approach for detecting small adversarial perturbations in images, and for recovering the labels of perturbed images.
Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, Stefano Soatto
null
1705.09552
null
null
Robustness of classifiers to universal perturbations: a geometric perspective
cs.CV cs.AI cs.LG stat.ML
Deep networks have recently been shown to be vulnerable to universal perturbations: there exist very small image-agnostic perturbations that cause most natural images to be misclassified by such classifiers. In this paper, we propose the first quantitative analysis of the robustness of classifiers to universal perturbations, and draw a formal link between the robustness to universal perturbations, and the geometry of the decision boundary. Specifically, we establish theoretical bounds on the robustness of classifiers under two decision boundary models (flat and curved models). We show in particular that the robustness of deep networks to universal perturbations is driven by a key property of their curvature: there exists shared directions along which the decision boundary of deep networks is systematically positively curved. Under such conditions, we prove the existence of small universal perturbations. Our analysis further provides a novel geometric method for computing universal perturbations, in addition to explaining their properties.
Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, Stefano Soatto
null
1705.09554
null
null
Bayesian GAN
stat.ML cs.AI cs.CV cs.LG
Generative adversarial networks (GANs) can implicitly learn rich distributions over images, audio, and data which are hard to model with an explicit likelihood. We present a practical Bayesian formulation for unsupervised and semi-supervised learning with GANs. Within this framework, we use stochastic gradient Hamiltonian Monte Carlo to marginalize the weights of the generator and discriminator networks. The resulting approach is straightforward and obtains good performance without any standard interventions such as feature matching, or mini-batch discrimination. By exploring an expressive posterior over the parameters of the generator, the Bayesian GAN avoids mode-collapse, produces interpretable and diverse candidate samples, and provides state-of-the-art quantitative results for semi-supervised learning on benchmarks including SVHN, CelebA, and CIFAR-10, outperforming DCGAN, Wasserstein GANs, and DCGAN ensembles.
Yunus Saatchi, Andrew Gordon Wilson
null
1705.09558
null
null
Combinatorial Multi-Armed Bandits with Filtered Feedback
cs.LG stat.ML
Motivated by problems in search and detection we present a solution to a Combinatorial Multi-Armed Bandit (CMAB) problem with both heavy-tailed reward distributions and a new class of feedback, filtered semibandit feedback. In a CMAB problem an agent pulls a combination of arms from a set $\{1,...,k\}$ in each round, generating random outcomes from probability distributions associated with these arms and receiving an overall reward. Under semibandit feedback it is assumed that the random outcomes generated are all observed. Filtered semibandit feedback allows the outcomes that are observed to be sampled from a second distribution conditioned on the initial random outcomes. This feedback mechanism is valuable as it allows CMAB methods to be applied to sequential search and detection problems where combinatorial actions are made, but the true rewards (number of objects of interest appearing in the round) are not observed, rather a filtered reward (the number of objects the searcher successfully finds, which must by definition be less than the number that appear). We present an upper confidence bound type algorithm, Robust-F-CUCB, and associated regret bound of order $\mathcal{O}(\ln(n))$ to balance exploration and exploitation in the face of both filtering of reward and heavy tailed reward distributions.
James A. Grant, David S. Leslie, Kevin Glazebrook, Roberto Szechtman
null
1705.09605
null
null
Discriminative Metric Learning with Deep Forest
stat.ML cs.LG
A Discriminative Deep Forest (DisDF) as a metric learning algorithm is proposed in the paper. It is based on the Deep Forest or gcForest proposed by Zhou and Feng and can be viewed as a gcForest modification. The case of the fully supervised learning is studied when the class labels of individual training examples are known. The main idea underlying the algorithm is to assign weights to decision trees in random forest in order to reduce distances between objects from the same class and to increase them between objects from different classes. The weights are training parameters. A specific objective function which combines Euclidean and Manhattan distances and simplifies the optimization problem for training the DisDF is proposed. The numerical experiments illustrate the proposed distance metric algorithm.
Lev V. Utkin and Mikhail A. Ryabinin
null
1705.0962
null
null
Learning Causal Structures Using Regression Invariance
cs.LG cs.AI stat.ML
We study causal inference in a multi-environment setting, in which the functional relations for producing the variables from their direct causes remain the same across environments, while the distribution of exogenous noises may vary. We introduce the idea of using the invariance of the functional relations of the variables to their causes across a set of environments. We define a notion of completeness for a causal inference algorithm in this setting and prove the existence of such algorithm by proposing the baseline algorithm. Additionally, we present an alternate algorithm that has significantly improved computational and sample complexity compared to the baseline algorithm. The experiment results show that the proposed algorithm outperforms the other existing algorithms.
AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Kun Zhang
null
1705.09644
null
null
Anomaly Detection in a Digital Video Broadcasting System Using Timed Automata
cs.LG cs.AI cs.FL cs.LO
This paper focuses on detecting anomalies in a digital video broadcasting (DVB) system from providers' perspective. We learn a probabilistic deterministic real timed automaton profiling benign behavior of encryption control in the DVB control access system. This profile is used as a one-class classifier. Anomalous items in a testing sequence are detected when the sequence is not accepted by the learned model.
Xiaoran Liu and Qin Lin and Sicco Verwer and Dmitri Jarnikov
null
1705.0965
null
null
Style Transfer from Non-Parallel Text by Cross-Alignment
cs.CL cs.LG
This paper focuses on style transfer on the basis of non-parallel text. This is an instance of a broad family of problems including machine translation, decipherment, and sentiment modification. The key challenge is to separate the content from other aspects such as style. We assume a shared latent content distribution across different text corpora, and propose a method that leverages refined alignment of latent representations to perform style transfer. The transferred sentences from one style should match example sentences from the other style as a population. We demonstrate the effectiveness of this cross-alignment method on three tasks: sentiment modification, decipherment of word substitution ciphers, and recovery of word order.
Tianxiao Shen, Tao Lei, Regina Barzilay, Tommi Jaakkola
null
1705.09655
null
null
Fisher GAN
cs.LG stat.ML
Generative Adversarial Networks (GANs) are powerful models for learning complex distributions. Stable training of GANs has been addressed in many recent works which explore different metrics between distributions. In this paper we introduce Fisher GAN which fits within the Integral Probability Metrics (IPM) framework for training GANs. Fisher GAN defines a critic with a data dependent constraint on its second order moments. We show in this paper that Fisher GAN allows for stable and time efficient training that does not compromise the capacity of the critic, and does not need data independent constraints such as weight clipping. We analyze our Fisher IPM theoretically and provide an algorithm based on Augmented Lagrangian for Fisher GAN. We validate our claims on both image sample generation and semi-supervised classification using Fisher GAN.
Youssef Mroueh, Tom Sercu
null
1705.09675
null
null
Multiple Source Domain Adaptation with Adversarial Training of Neural Networks
cs.LG cs.AI stat.ML
While domain adaptation has been actively researched in recent years, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. Naive application of such algorithms on multiple source domain adaptation problem may lead to suboptimal solutions. As a step toward bridging the gap, we propose a new generalization bound for domain adaptation when there are multiple source domains with labeled instances and one target domain with unlabeled instances. Compared with existing bounds, the new bound does not require expert knowledge about the target distribution, nor the optimal combination rule for multisource domains. Interestingly, our theory also leads to an efficient learning strategy using adversarial neural networks: we show how to interpret it as learning feature representations that are invariant to the multiple domain shifts while still being discriminative for the learning task. To this end, we propose two models, both of which we call multisource domain adversarial networks (MDANs): the first model optimizes directly our bound, while the second model is a smoothed approximation of the first one, leading to a more data-efficient and task-adaptive model. The optimization tasks of both models are minimax saddle point problems that can be optimized by adversarial training. To demonstrate the effectiveness of MDANs, we conduct extensive experiments showing superior adaptation performance on three real-world datasets: sentiment analysis, digit classification, and vehicle counting.
Han Zhao, Shanghang Zhang, Guanhang Wu, Jo\~ao P. Costeira, Jos\'e M. F. Moura, Geoffrey J. Gordon
null
1705.09684
null
null
Multi-scale Online Learning and its Applications to Online Auctions
cs.GT cs.DS cs.LG stat.ML
We consider revenue maximization in online auction/pricing problems. A seller sells an identical item in each period to a new buyer, or a new set of buyers. For the online posted pricing problem, we show regret bounds that scale with the best fixed price, rather than the range of the values. We also show regret bounds that are almost scale free, and match the offline sample complexity, when comparing to a benchmark that requires a lower bound on the market share. These results are obtained by generalizing the classical learning from experts and multi-armed bandit problems to their multi-scale versions. In this version, the reward of each action is in a different range, and the regret w.r.t. a given action scales with its own range, rather than the maximum range.
S\'ebastien Bubeck, Nikhil R. Devanur, Zhiyi Huang, Rad Niazadeh
null
1705.097
null
null
Stochastic Feedback Control of Systems with Unknown Nonlinear Dynamics
cs.SY cs.LG
This paper studies the stochastic optimal control problem for systems with unknown dynamics. First, an open-loop deterministic trajectory optimization problem is solved without knowing the explicit form of the dynamical system. Next, a Linear Quadratic Gaussian (LQG) controller is designed for the nominal trajectory-dependent linearized system, such that under a small noise assumption, the actual states remain close to the optimal trajectory. The trajectory-dependent linearized system is identified using input-output experimental data consisting of the impulse responses of the nominal system. A computational example is given to illustrate the performance of the proposed approach.
Dan Yu, Mohammadhussein Rafieisakhaei and Suman Chakravorty
null
1705.09761
null
null
MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks
cs.LG cs.CV
Some recent works revealed that deep neural networks (DNNs) are vulnerable to so-called adversarial attacks where input examples are intentionally perturbed to fool DNNs. In this work, we revisit the DNN training process that includes adversarial examples into the training dataset so as to improve DNN's resilience to adversarial attacks, namely, adversarial training. Our experiments show that different adversarial strengths, i.e., perturbation levels of adversarial examples, have different working zones to resist the attack. Based on the observation, we propose a multi-strength adversarial training method (MAT) that combines the adversarial training examples with different adversarial strengths to defend adversarial attacks. Two training structures - mixed MAT and parallel MAT - are developed to facilitate the tradeoffs between training time and memory occupation. Our results show that MAT can substantially minimize the accuracy degradation of deep learning systems to adversarial attacks on MNIST, CIFAR-10, CIFAR-100, and SVHN.
Chang Song, Hsin-Pai Cheng, Huanrui Yang, Sicheng Li, Chunpeng Wu, Qing Wu, Hai Li, Yiran Chen
null
1705.09764
null
null
Good Semi-supervised Learning that Requires a Bad GAN
cs.LG cs.AI
Semi-supervised learning methods based on generative adversarial networks (GANs) obtained strong empirical results, but it is not clear 1) how the discriminator benefits from joint training with a generator, and 2) why good semi-supervised classification performance and a good generator cannot be obtained at the same time. Theoretically, we show that given the discriminator objective, good semisupervised learning indeed requires a bad generator, and propose the definition of a preferred generator. Empirically, we derive a novel formulation based on our analysis that substantially improves over feature matching GANs, obtaining state-of-the-art results on multiple benchmark datasets.
Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, Ruslan Salakhutdinov
null
1705.09783
null
null
AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks
cs.LG cs.AI cs.DC stat.ML
New types of machine learning hardware in development and entering the market hold the promise of revolutionizing deep learning in a manner as profound as GPUs. However, existing software frameworks and training algorithms for deep learning have yet to evolve to fully leverage the capability of the new wave of silicon. We already see the limitations of existing algorithms for models that exploit structured input via complex and instance-dependent control flow, which prohibits minibatching. We present an asynchronous model-parallel (AMP) training algorithm that is specifically motivated by training on networks of interconnected devices. Through an implementation on multi-core CPUs, we show that AMP training converges to the same accuracy as conventional synchronous training algorithms in a similar number of epochs, but utilizes the available hardware more efficiently even for small minibatch sizes, resulting in significantly shorter overall training times. Our framework opens the door for scaling up a new class of deep learning models that cannot be efficiently trained today.
Alexander L. Gaunt, Matthew A. Johnson, Maik Riechert, Daniel Tarlow, Ryota Tomioka, Dimitrios Vytiniotis, Sam Webster
null
1705.09786
null
null
Deep Complex Networks
cs.NE cs.LG
At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks.
Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Jo\~ao Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, Christopher J Pal
null
1705.09792
null
null
Growth-Optimal Portfolio Selection under CVaR Constraints
q-fin.MF cs.LG
Online portfolio selection research has so far focused mainly on minimizing regret defined in terms of wealth growth. Practical financial decision making, however, is deeply concerned with both wealth and risk. We consider online learning of portfolios of stocks whose prices are governed by arbitrary (unknown) stationary and ergodic processes, where the goal is to maximize wealth while keeping the conditional value at risk (CVaR) below a desired threshold. We characterize the asymptomatically optimal risk-adjusted performance and present an investment strategy whose portfolios are guaranteed to achieve the asymptotic optimal solution while fulfilling the desired risk constraint. We also numerically demonstrate and validate the viability of our method on standard datasets.
Guy Uziel and Ran El-Yaniv
null
1705.098
null
null
PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations
cs.RO cs.CV cs.LG
We propose position-velocity encoders (PVEs) which learn---without supervision---to encode images to positions and velocities of task-relevant objects. PVEs encode a single image into a low-dimensional position state and compute the velocity state from finite differences in position. In contrast to autoencoders, position-velocity encoders are not trained by image reconstruction, but by making the position-velocity representation consistent with priors about interacting with the physical world. We applied PVEs to several simulated control tasks from pixels and achieved promising preliminary results.
Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin Riedmiller
null
1705.09805
null
null
Global hard thresholding algorithms for joint sparse image representation and denoising
cs.CV cs.LG
Sparse coding of images is traditionally done by cutting them into small patches and representing each patch individually over some dictionary given a pre-determined number of nonzero coefficients to use for each patch. In lack of a way to effectively distribute a total number (or global budget) of nonzero coefficients across all patches, current sparse recovery algorithms distribute the global budget equally across all patches despite the wide range of differences in structural complexity among them. In this work we propose a new framework for joint sparse representation and recovery of all image patches simultaneously. We also present two novel global hard thresholding algorithms, based on the notion of variable splitting, for solving the joint sparse model. Experimentation using both synthetic and real data shows effectiveness of the proposed framework for sparse image representation and denoising tasks. Additionally, time complexity analysis of the proposed algorithms indicate high scalability of both algorithms, making them favorable to use on large megapixel images.
Reza Borhani, Jeremy Watt, Aggelos Katsaggelos
null
1705.09816
null
null
Lifelong Generative Modeling
stat.ML cs.LG
Lifelong learning is the problem of learning multiple consecutive tasks in a sequential manner, where knowledge gained from previous tasks is retained and used to aid future learning over the lifetime of the learner. It is essential towards the development of intelligent machines that can adapt to their surroundings. In this work we focus on a lifelong learning approach to unsupervised generative modeling, where we continuously incorporate newly observed distributions into a learned model. We do so through a student-teacher Variational Autoencoder architecture which allows us to learn and preserve all the distributions seen so far, without the need to retain the past data nor the past models. Through the introduction of a novel cross-model regularizer, inspired by a Bayesian update rule, the student model leverages the information learned by the teacher, which acts as a probabilistic knowledge store. The regularizer reduces the effect of catastrophic interference that appears when we learn over sequences of distributions. We validate our model's performance on sequential variants of MNIST, FashionMNIST, PermutedMNIST, SVHN and Celeb-A and demonstrate that our model mitigates the effects of catastrophic interference faced by neural networks in sequential learning scenarios.
Jason Ramapuram, Magda Gregorova, Alexandros Kalousis
10.1016/j.neucom.2020.02.115
1705.09847
null
null
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
stat.ML cs.LG
Often in machine learning, data are collected as a combination of multiple conditions, e.g., the voice recordings of multiple persons, each labeled with an ID. How could we build a model that captures the latent information related to these conditions and generalize to a new one with few data? We present a new model called Latent Variable Multiple Output Gaussian Processes (LVMOGP) and that allows to jointly model multiple conditions for regression and generalize to a new condition with a few data points at test time. LVMOGP infers the posteriors of Gaussian processes together with a latent space representing the information about different conditions. We derive an efficient variational inference method for LVMOGP, of which the computational complexity is as low as sparse Gaussian processes. We show that LVMOGP significantly outperforms related Gaussian process methods on various tasks with both synthetic and real data.
Zhenwen Dai, Mauricio A. \'Alvarez, Neil D. Lawrence
null
1705.09862
null
null
BMXNet: An Open-Source Binary Neural Network Implementation Based on MXNet
cs.LG cs.CV cs.NE
Binary Neural Networks (BNNs) can drastically reduce memory size and accesses by applying bit-wise operations instead of standard arithmetic operations. Therefore it could significantly improve the efficiency and lower the energy consumption at runtime, which enables the application of state-of-the-art deep learning models on low power devices. BMXNet is an open-source BNN library based on MXNet, which supports both XNOR-Networks and Quantized Neural Networks. The developed BNN layers can be seamlessly applied with other standard library components and work in both GPU and CPU mode. BMXNet is maintained and developed by the multimedia research group at Hasso Plattner Institute and released under Apache license. Extensive experiments validate the efficiency and effectiveness of our implementation. The BMXNet library, several sample projects, and a collection of pre-trained binary deep models are available for download at https://github.com/hpi-xnor
Haojin Yang, Martin Fritzsche, Christian Bartz, Christoph Meinel
null
1705.09864
null
null
Dimensionality reduction for acoustic vehicle classification with spectral embedding
stat.ML cs.LG physics.data-an
We propose a method for recognizing moving vehicles, using data from roadside audio sensors. This problem has applications ranging widely, from traffic analysis to surveillance. We extract a frequency signature from the audio signal using a short-time Fourier transform, and treat each time window as an individual data point to be classified. By applying a spectral embedding, we decrease the dimensionality of the data sufficiently for K-nearest neighbors to provide accurate vehicle identification.
Justin Sunu, Allon G. Percus
null
1705.09869
null
null
Convergence Analysis of Two-layer Neural Networks with ReLU Activation
cs.LG
In recent years, stochastic gradient descent (SGD) based techniques has become the standard tools for training neural networks. However, formal theoretical understanding of why SGD can train neural networks in practice is largely missing. In this paper, we make progress on understanding this mystery by providing a convergence analysis for SGD on a rich subset of two-layer feedforward networks with ReLU activations. This subset is characterized by a special structure called "identity mapping". We prove that, if input follows from Gaussian distribution, with standard $O(1/\sqrt{d})$ initialization of the weights, SGD converges to the global minimum in polynomial number of steps. Unlike normal vanilla networks, the "identity mapping" makes our network asymmetric and thus the global minimum is unique. To complement our theory, we are also able to show experimentally that multi-layer networks with this mapping have better performance compared with normal vanilla networks. Our convergence theorem differs from traditional non-convex optimization techniques. We show that SGD converges to optimal in "two phases": In phase I, the gradient points to the wrong direction, however, a potential function $g$ gradually decreases. Then in phase II, SGD enters a nice one point convex region and converges. We also show that the identity mapping is necessary for convergence, as it moves the initial point to a better place for optimization. Experiment verifies our claims.
Yuanzhi Li, Yang Yuan
null
1705.09886
null
null
Bayesian Unification of Gradient and Bandit-based Learning for Accelerated Global Optimisation
cs.AI cs.LG
Bandit based optimisation has a remarkable advantage over gradient based approaches due to their global perspective, which eliminates the danger of getting stuck at local optima. However, for continuous optimisation problems or problems with a large number of actions, bandit based approaches can be hindered by slow learning. Gradient based approaches, on the other hand, navigate quickly in high-dimensional continuous spaces through local optimisation, following the gradient in fine grained steps. Yet, apart from being susceptible to local optima, these schemes are less suited for online learning due to their reliance on extensive trial-and-error before the optimum can be identified. In this paper, we propose a Bayesian approach that unifies the above two paradigms in one single framework, with the aim of combining their advantages. At the heart of our approach we find a stochastic linear approximation of the function to be optimised, where both the gradient and values of the function are explicitly captured. This allows us to learn from both noisy function and gradient observations, and predict these properties across the action space to support optimisation. We further propose an accompanying bandit driven exploration scheme that uses Bayesian credible bounds to trade off exploration against exploitation. Our empirical results demonstrate that by unifying bandit and gradient based learning, one obtains consistently improved performance across a wide spectrum of problem environments. Furthermore, even when gradient feedback is unavailable, the flexibility of our model, including gradient prediction, still allows us outperform competing approaches, although with a smaller margin. Due to the pervasiveness of bandit based optimisation, our scheme opens up for improved performance both in meta-optimisation and in applications where gradient related information is readily available.
Ole-Christoffer Granmo
10.1109/ICMLA.2016.0044
1705.09922
null
null
Learning Data Manifolds with a Cutting Plane Method
cs.LG stat.ML
We consider the problem of classifying data manifolds where each manifold represents invariances that are parameterized by continuous degrees of freedom. Conventional data augmentation methods rely upon sampling large numbers of training examples from these manifolds; instead, we propose an iterative algorithm called M_{CP} based upon a cutting-plane approach that efficiently solves a quadratic semi-infinite programming problem to find the maximum margin solution. We provide a proof of convergence as well as a polynomial bound on the number of iterations required for a desired tolerance in the objective function. The efficiency and performance of M_{CP} are demonstrated in high-dimensional simulations and on image manifolds generated from the ImageNet dataset. Our results indicate that M_{CP} is able to rapidly learn good classifiers and shows superior generalization performance compared with conventional maximum margin methods using data augmentation methods.
SueYeon Chung, Uri Cohen, Haim Sompolinsky, Daniel D. Lee
10.1162/neco_a_01119
1705.09944
null
null
Attribute-Guided Face Generation Using Conditional CycleGAN
cs.CV cs.LG stat.ML
We are interested in attribute-guided face generation: given a low-res face input image, an attribute vector that can be extracted from a high-res image (attribute image), our new method generates a high-res face image for the low-res input that satisfies the given attributes. To address this problem, we condition the CycleGAN and propose conditional CycleGAN, which is designed to 1) handle unpaired training data because the training low/high-res and high-res attribute images may not necessarily align with each other, and to 2) allow easy control of the appearance of the generated face via the input attributes. We demonstrate impressive results on the attribute-guided conditional CycleGAN, which can synthesize realistic face images with appearance easily controlled by user-supplied attributes (e.g., gender, makeup, hair color, eyeglasses). Using the attribute image as identity to produce the corresponding conditional vector and by incorporating a face verification network, the attribute-guided network becomes the identity-guided conditional CycleGAN which produces impressive and interesting results on identity transfer. We demonstrate three applications on identity-guided conditional CycleGAN: identity-preserving face superresolution, face swapping, and frontal face generation, which consistently show the advantage of our new method.
Yongyi Lu, Yu-Wing Tai, Chi-Keung Tang
null
1705.09966
null
null
Deep Learning for User Comment Moderation
cs.CL cs.LG
Experimenting with a new dataset of 1.6M user comments from a Greek news portal and existing datasets of English Wikipedia comments, we show that an RNN outperforms the previous state of the art in moderation. A deep, classification-specific attention mechanism improves further the overall performance of the RNN. We also compare against a CNN and a word-list baseline, considering both fully automatic and semi-automatic moderation.
John Pavlopoulos and Prodromos Malakasiotis and Ion Androutsopoulos
null
1705.09993
null
null
Improving the Expected Improvement Algorithm
cs.LG stat.ML
The expected improvement (EI) algorithm is a popular strategy for information collection in optimization under uncertainty. The algorithm is widely known to be too greedy, but nevertheless enjoys wide use due to its simplicity and ability to handle uncertainty and noise in a coherent decision theoretic framework. To provide rigorous insight into EI, we study its properties in a simple setting of Bayesian optimization where the domain consists of a finite grid of points. This is the so-called best-arm identification problem, where the goal is to allocate measurement effort wisely to confidently identify the best arm using a small number of measurements. In this framework, one can show formally that EI is far from optimal. To overcome this shortcoming, we introduce a simple modification of the expected improvement algorithm. Surprisingly, this simple change results in an algorithm that is asymptotically optimal for Gaussian best-arm identification problems, and provably outperforms standard EI by an order of magnitude.
Chao Qin, Diego Klabjan, and Daniel Russo
null
1705.10033
null
null
Learning Network Structures from Contagion
cs.LG cs.SI
In 2014, Amin, Heidari, and Kearns proved that tree networks can be learned by observing only the infected set of vertices of the contagion process under the independent cascade model, in both the active and passive query models. They also showed empirically that simple extensions of their algorithms work on sparse networks. In this work, we focus on the active model. We prove that a simple modification of Amin et al.'s algorithm works on more general classes of networks, namely (i) networks with large girth and low path growth rate, and (ii) networks with bounded degree. This also provides partial theoretical explanation for Amin et al.'s experiments on sparse networks.
Adisak Supeesun (Kasetsart University, Bangkok, Thailand) and Jittat Fakcharoenphol (Kasetsart University, Bangkok, Thailand)
10.1016/j.ipl.2017.01.005
1705.10051
null
null
Temporal anomaly detection: calibrating the surprise
cs.CR cs.LG
We propose a hybrid approach to temporal anomaly detection in access data of users to databases --- or more generally, any kind of subject-object co-occurrence data. We consider a high-dimensional setting that also requires fast computation at test time. Our methodology identifies anomalies based on a single stationary model, instead of requiring a full temporal one, which would be prohibitive in this setting. We learn a low-rank stationary model from the training data, and then fit a regression model for predicting the expected likelihood score of normal access patterns in the future. The disparity between the predicted likelihood score and the observed one is used to assess the `surprise' at test time. This approach enables calibration of the anomaly score, so that time-varying normal behavior patterns are not considered anomalous. We provide a detailed description of the algorithm, including a convergence analysis, and report encouraging empirical results. One of the data sets that we tested, TDA, is new for the public domain. It consists of two months' worth of database access records from a live system. Our code is publicly available at https://github.com/eyalgut/TLR_anomaly_detection.git. The TDA data set is available at https://www.kaggle.com/eyalgut/binary-traffic-matrices.
Eyal Gutflaish, Aryeh Kontorovich, Sivan Sabato, Ofer Biller, Oded Sofer
null
1705.10085
null
null
DICOD: Distributed Convolutional Sparse Coding
cs.LG stat.ML
In this paper, we introduce DICOD, a convolutional sparse coding algorithm which builds shift invariant representations for long signals. This algorithm is designed to run in a distributed setting, with local message passing, making it communication efficient. It is based on coordinate descent and uses locally greedy updates which accelerate the resolution compared to greedy coordinate selection. We prove the convergence of this algorithm and highlight its computational speed-up which is super-linear in the number of cores used. We also provide empirical evidence for the acceleration properties of our algorithm compared to state-of-the-art methods.
Thomas Moreau, Laurent Oudre, Nicolas Vayatis
null
1705.10087
null
null
Structural Conditions for Projection-Cost Preservation via Randomized Matrix Multiplication
stat.ML cs.LG
Projection-cost preservation is a low-rank approximation guarantee which ensures that the cost of any rank-$k$ projection can be preserved using a smaller sketch of the original data matrix. We present a general structural result outlining four sufficient conditions to achieve projection-cost preservation. These conditions can be satisfied using tools from the Randomized Linear Algebra literature.
Agniva Chowdhury, Jiasen Yang, Petros Drineas
null
1705.10102
null
null
Kernel Implicit Variational Inference
stat.ML cs.AI cs.LG cs.NE
Recent progress in variational inference has paid much attention to the flexibility of variational posteriors. One promising direction is to use implicit distributions, i.e., distributions without tractable densities as the variational posterior. However, existing methods on implicit posteriors still face challenges of noisy estimation and computational infeasibility when applied to models with high-dimensional latent variables. In this paper, we present a new approach named Kernel Implicit Variational Inference that addresses these challenges. As far as we know, for the first time implicit variational inference is successfully applied to Bayesian neural networks, which shows promising results on both regression and classification tasks.
Jiaxin Shi, Shengyang Sun, Jun Zhu
null
1705.10119
null
null
On Residual CNN in text-dependent speaker verification task
cs.SD cs.LG
Deep learning approaches are still not very common in the speaker verification field. We investigate the possibility of using deep residual convolutional neural network with spectrograms as an input features in the text-dependent speaker verification task. Despite the fact that we were not able to surpass the baseline system in quality, we achieved a quite good results for such a new approach getting an 5.23% ERR on the RSR2015 evaluation part. Fusion of the baseline and proposed systems outperformed the best individual system by 18% relatively.
Egor Malykh, Sergey Novoselov, Oleg Kudashev
null
1705.10134
null
null
Kronecker Recurrent Units
cs.LG
Our work addresses two important issues with recurrent neural networks: (1) they are over-parameterized, and (2) the recurrence matrix is ill-conditioned. The former increases the sample complexity of learning and the training time. The latter causes the vanishing and exploding gradient problem. We present a flexible recurrent neural network model called Kronecker Recurrent Units (KRU). KRU achieves parameter efficiency in RNNs through a Kronecker factored recurrent matrix. It overcomes the ill-conditioning of the recurrent matrix by enforcing soft unitary constraints on the factors. Thanks to the small dimensionality of the factors, maintaining these constraints is computationally efficient. Our experimental results on seven standard data-sets reveal that KRU can reduce the number of parameters by three orders of magnitude in the recurrent weight matrix compared to the existing recurrent models, without trading the statistical performance. These results in particular show that while there are advantages in having a high dimensional recurrent space, the capacity of the recurrent part of the model can be dramatically reduced.
Cijo Jose, Moustpaha Cisse and Francois Fleuret
null
1705.10142
null
null
Tangent Cones to TT Varieties
math.OC cs.LG math.AG math.NA
As already done for the matrix case for example in [Joe Harris, Algebraic Geometry - A first course, p.256] we give a parametrization of the Bouligand tangent cone of the variety of tensors of bounded TT rank. We discuss how the proof generalizes to any binary hierarchical format. The parametrization can be rewritten as an orthogonal sum of TT tensors. Its retraction onto the variety is particularly easy to compose. We also give an implicit description of the tangent cone as the solution of a system of polynomial equations.
Benjamin Kutschan
null
1705.10152
null
null
Fast learning rate of deep learning via a kernel perspective
math.ST cs.LG stat.ML stat.TH
We develop a new theoretical framework to analyze the generalization error of deep learning, and derive a new fast learning rate for two representative algorithms: empirical risk minimization and Bayesian deep learning. The series of theoretical analyses of deep learning has revealed its high expressive power and universal approximation capability. Although these analyses are highly nonparametric, existing generalization error analyses have been developed mainly in a fixed dimensional parametric model. To compensate this gap, we develop an infinite dimensional model that is based on an integral form as performed in the analysis of the universal approximation capability. This allows us to define a reproducing kernel Hilbert space corresponding to each layer. Our point of view is to deal with the ordinary finite dimensional deep neural network as a finite approximation of the infinite dimensional one. The approximation error is evaluated by the degree of freedom of the reproducing kernel Hilbert space in each layer. To estimate a good finite dimensional model, we consider both of empirical risk minimization and Bayesian deep learning. We derive its generalization error bound and it is shown that there appears bias-variance trade-off in terms of the number of parameters of the finite dimensional approximation. We show that the optimal width of the internal layers can be determined through the degree of freedom and the convergence rate can be faster than $O(1/\sqrt{n})$ rate which has been shown in the existing studies.
Taiji Suzuki
null
1705.10182
null
null
Adaptive Classification for Prediction Under a Budget
stat.ML cs.LG
We propose a novel adaptive approximation approach for test-time resource-constrained prediction. Given an input instance at test-time, a gating function identifies a prediction model for the input among a collection of models. Our objective is to minimize overall average cost without sacrificing accuracy. We learn gating and prediction models on fully labeled training data by means of a bottom-up strategy. Our novel bottom-up method first trains a high-accuracy complex model. Then a low-complexity gating and prediction model are subsequently learned to adaptively approximate the high-accuracy model in regions where low-cost models are capable of making highly accurate predictions. We pose an empirical loss minimization problem with cost constraints to jointly train gating and prediction models. On a number of benchmark datasets our method outperforms state-of-the-art achieving higher accuracy for the same cost.
Feng Nan, Venkatesh Saligrama
null
1705.10194
null
null
Mining Process Model Descriptions of Daily Life through Event Abstraction
cs.LG cs.AI cs.DB
Process mining techniques focus on extracting insight in processes from event logs. Process mining has the potential to provide valuable insights in (un)healthy habits and to contribute to ambient assisted living solutions when applied on data from smart home environments. However, events recorded in smart home environments are on the level of sensor triggers, at which process discovery algorithms produce overgeneralizing process models that allow for too much behavior and that are difficult to interpret for human experts. We show that abstracting the events to a higher-level interpretation can enable discovery of more precise and more comprehensible models. We present a framework for the extraction of features that can be used for abstraction with supervised learning methods that is based on the XES IEEE standard for event logs. This framework can automatically abstract sensor-level events to their interpretation at the human activity level, after training it on training data for which both the sensor and human activity events are known. We demonstrate our abstraction framework on three real-life smart home event logs and show that the process models that can be discovered after abstraction are more precise indeed.
Niek Tax, Natalia Sidorova, Reinder Haakma, Wil M.P. van der Aalst
10.1007/978-3-319-69266-1_5
1705.10202
null
null
On Multilingual Training of Neural Dependency Parsers
cs.CL cs.LG cs.NE
We show that a recently proposed neural dependency parser can be improved by joint training on multiple languages from the same family. The parser is implemented as a deep neural network whose only input is orthographic representations of words. In order to successfully parse, the network has to discover how linguistically relevant concepts can be inferred from word spellings. We analyze the representations of characters and words that are learned by the network to establish which properties of languages were accounted for. In particular we show that the parser has approximately learned to associate Latin characters with their Cyrillic counterparts and that it can group Polish and Russian words that have a similar grammatical function. Finally, we evaluate the parser on selected languages from the Universal Dependencies dataset and show that it is competitive with other recently proposed state-of-the art methods, while having a simple structure.
Micha{\l} Zapotoczny, Pawe{\l} Rychlikowski, and Jan Chorowski
null
1705.10209
null
null
Latent Intention Dialogue Models
cs.CL cs.LG cs.NE stat.ML
Developing a dialogue agent that is capable of making autonomous decisions and communicating by natural language is one of the long-term goals of machine learning research. Traditional approaches either rely on hand-crafting a small state-action set for applying reinforcement learning that is not scalable or constructing deterministic models for learning dialogue sentences that fail to capture natural conversational variability. In this paper, we propose a Latent Intention Dialogue Model (LIDM) that employs a discrete latent variable to learn underlying dialogue intentions in the framework of neural variational inference. In a goal-oriented dialogue scenario, these latent intentions can be interpreted as actions guiding the generation of machine responses, which can be further refined autonomously by reinforcement learning. The experimental evaluation of LIDM shows that the model out-performs published benchmarks for both corpus-based and human evaluation, demonstrating the effectiveness of discrete latent variable models for learning goal-oriented dialogues.
Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, Steve Young
null
1705.10229
null
null
Deep Learning for Patient-Specific Kidney Graft Survival Analysis
cs.LG stat.ML
An accurate model of patient-specific kidney graft survival distributions can help to improve shared-decision making in the treatment and care of patients. In this paper, we propose a deep learning method that directly models the survival function instead of estimating the hazard function to predict survival times for graft patients based on the principle of multi-task learning. By learning to jointly predict the time of the event, and its rank in the cox partial log likelihood framework, our deep learning approach outperforms, in terms of survival time prediction quality and concordance index, other common methods for survival analysis, including the Cox Proportional Hazards model and a network trained on the cox partial log-likelihood.
Margaux Luck, Tristan Sylvain, H\'elo\"ise Cardinal, Andrea Lodi, Yoshua Bengio
null
1705.10245
null
null
Fast Single-Class Classification and the Principle of Logit Separation
stat.ML cs.LG
We consider neural network training, in applications in which there are many possible classes, but at test-time, the task is a binary classification task of determining whether the given example belongs to a specific class, where the class of interest can be different each time the classifier is applied. For instance, this is the case for real-time image search. We define the Single Logit Classification (SLC) task: training the network so that at test-time, it would be possible to accurately identify whether the example belongs to a given class in a computationally efficient manner, based only on the output logit for this class. We propose a natural principle, the Principle of Logit Separation, as a guideline for choosing and designing losses suitable for the SLC. We show that the cross-entropy loss function is not aligned with the Principle of Logit Separation. In contrast, there are known loss functions, as well as novel batch loss functions that we propose, which are aligned with this principle. In total, we study seven loss functions. Our experiments show that indeed in almost all cases, losses that are aligned with the Principle of Logit Separation obtain at least 20% relative accuracy improvement in the SLC task compared to losses that are not aligned with it, and sometimes considerably more. Furthermore, we show that fast SLC does not cause any drop in binary classification accuracy, compared to standard classification in which all logits are computed, and yields a speedup which grows with the number of classes. For instance, we demonstrate a 10x speedup when the number of classes is 400,000. Tensorflow code for optimizing the new batch losses is publicly available at https://github.com/cruvadom/Logit Separation.
Gil Keren, Sivan Sabato, Bj\"orn Schuller
null
1705.10246
null
null
Boltzmann Exploration Done Right
cs.LG stat.ML
Boltzmann exploration is a classic strategy for sequential decision-making under uncertainty, and is one of the most standard tools in Reinforcement Learning (RL). Despite its widespread use, there is virtually no theoretical understanding about the limitations or the actual benefits of this exploration scheme. Does it drive exploration in a meaningful way? Is it prone to misidentifying the optimal actions or spending too much time exploring the suboptimal ones? What is the right tuning for the learning rate? In this paper, we address several of these questions in the classic setup of stochastic multi-armed bandits. One of our main results is showing that the Boltzmann exploration strategy with any monotone learning-rate sequence will induce suboptimal behavior. As a remedy, we offer a simple non-monotone schedule that guarantees near-optimal performance, albeit only when given prior access to key problem parameters that are typically not available in practical situations (like the time horizon $T$ and the suboptimality gap $\Delta$). More importantly, we propose a novel variant that uses different learning rates for different arms, and achieves a distribution-dependent regret bound of order $\frac{K\log^2 T}{\Delta}$ and a distribution-independent bound of order $\sqrt{KT}\log K$ without requiring such prior knowledge. To demonstrate the flexibility of our technique, we also propose a variant that guarantees the same performance bounds even if the rewards are heavy-tailed.
Nicol\`o Cesa-Bianchi and Claudio Gentile and G\'abor Lugosi and Gergely Neu
null
1705.10257
null
null
Contextual Explanation Networks
cs.LG cs.AI stat.ML
Modern learning algorithms excel at producing accurate but complex models of the data. However, deploying such models in the real-world requires extra care: we must ensure their reliability, robustness, and absence of undesired biases. This motivates the development of models that are equally accurate but can be also easily inspected and assessed beyond their predictive performance. To this end, we introduce contextual explanation networks (CEN)---a class of architectures that learn to predict by generating and utilizing intermediate, simplified probabilistic models. Specifically, CENs generate parameters for intermediate graphical models which are further used for prediction and play the role of explanations. Contrary to the existing post-hoc model-explanation tools, CENs learn to predict and to explain simultaneously. Our approach offers two major advantages: (i) for each prediction valid, instance-specific explanation is generated with no computational overhead and (ii) prediction via explanation acts as a regularizer and boosts performance in data-scarce settings. We analyze the proposed framework theoretically and experimentally. Our results on image and text classification and survival analysis tasks demonstrate that CENs are not only competitive with the state-of-the-art methods but also offer additional insights behind each prediction, that can be valuable for decision support. We also show that while post-hoc methods may produce misleading explanations in certain cases, CENs are consistent and allow to detect such cases systematically.
Maruan Al-Shedivat, Avinava Dubey, Eric P. Xing
null
1705.10301
null
null
Classification of Major Depressive Disorder via Multi-Site Weighted LASSO Model
cs.LG cs.CE stat.AP
Large-scale collaborative analysis of brain imaging data, in psychiatry and neu-rology, offers a new source of statistical power to discover features that boost ac-curacy in disease classification, differential diagnosis, and outcome prediction. However, due to data privacy regulations or limited accessibility to large datasets across the world, it is challenging to efficiently integrate distributed information. Here we propose a novel classification framework through multi-site weighted LASSO: each site performs an iterative weighted LASSO for feature selection separately. Within each iteration, the classification result and the selected features are collected to update the weighting parameters for each feature. This new weight is used to guide the LASSO process at the next iteration. Only the fea-tures that help to improve the classification accuracy are preserved. In tests on da-ta from five sites (299 patients with major depressive disorder (MDD) and 258 normal controls), our method boosted classification accuracy for MDD by 4.9% on average. This result shows the potential of the proposed new strategy as an ef-fective and practical collaborative platform for machine learning on large scale distributed imaging and biobank data.
Dajiang Zhu, Brandalyn C. Riedel, Neda Jahanshad, Nynke A. Groenewold, Dan J. Stein, Ian H. Gotlib, Matthew D. Sacchet, Danai Dima, James H. Cole, Cynthia H.Y. Fu, Henrik Walter, Ilya M. Veer, Thomas Frodl, Lianne Schmaal, Dick J. Veltman, Paul M. Thompson
null
1705.10312
null
null
Deep Learning for Ontology Reasoning
cs.AI cs.LG
In this work, we present a novel approach to ontology reasoning that is based on deep learning rather than logic-based formal reasoning. To this end, we introduce a new model for statistical relational learning that is built upon deep recursive neural networks, and give experimental evidence that it can easily compete with, or even outperform, existing logic-based reasoners on the task of ontology reasoning. More precisely, we compared our implemented system with one of the best logic-based ontology reasoners at present, RDFox, on a number of large standard benchmark datasets, and found that our system attained high reasoning quality, while being up to two orders of magnitude faster.
Patrick Hohenecker and Thomas Lukasiewicz
null
1705.10342
null
null
Neural Embeddings of Graphs in Hyperbolic Space
stat.ML cs.LG
Neural embeddings have been used with great success in Natural Language Processing (NLP). They provide compact representations that encapsulate word similarity and attain state-of-the-art performance in a range of linguistic tasks. The success of neural embeddings has prompted significant amounts of research into applications in domains other than language. One such domain is graph-structured data, where embeddings of vertices can be learned that encapsulate vertex similarity and improve performance on tasks including edge prediction and vertex labelling. For both NLP and graph based tasks, embeddings have been learned in high-dimensional Euclidean spaces. However, recent work has shown that the appropriate isometric space for embedding complex networks is not the flat Euclidean space, but negatively curved, hyperbolic space. We present a new concept that exploits these recent insights and propose learning neural embeddings of graphs in hyperbolic space. We provide experimental evidence that embedding graphs in their natural geometry significantly improves performance on downstream tasks for several real-world public datasets.
Benjamin Paul Chamberlain, James Clough, Marc Peter Deisenroth
null
1705.10359
null
null
Emergent Communication in a Multi-Modal, Multi-Step Referential Game
cs.LG cs.CL cs.CV cs.IT cs.MA math.IT
Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.
Katrina Evtimova, Andrew Drozdov, Douwe Kiela, Kyunghyun Cho
null
1705.10369
null
null
Collaborative Deep Learning for Speech Enhancement: A Run-Time Model Selection Method Using Autoencoders
cs.SD cs.LG
We show that a Modular Neural Network (MNN) can combine various speech enhancement modules, each of which is a Deep Neural Network (DNN) specialized on a particular enhancement job. Differently from an ordinary ensemble technique that averages variations in models, the propose MNN selects the best module for the unseen test signal to produce a greedy ensemble. We see this as Collaborative Deep Learning (CDL), because it can reuse various already-trained DNN models without any further refining. In the proposed MNN selecting the best module during run time is challenging. To this end, we employ a speech AutoEncoder (AE) as an arbitrator, whose input and output are trained to be as similar as possible if its input is clean speech. Therefore, the AE can gauge the quality of the module-specific denoised result by seeing its AE reconstruction error, e.g. low error means that the module output is similar to clean speech. We propose an MNN structure with various modules that are specialized on dealing with a specific noise type, gender, and input Signal-to-Noise Ratio (SNR) value, and empirically prove that it almost always works better than an arbitrarily chosen DNN module and sometimes as good as an oracle result.
Minje Kim
null
1705.10385
null
null
Distributed SAGA: Maintaining linear convergence rate with limited communication
math.OC cs.LG
In recent years, variance-reducing stochastic methods have shown great practical performance, exhibiting linear convergence rate when other stochastic methods offered a sub-linear rate. However, as datasets grow ever bigger and clusters become widespread, the need for fast distribution methods is pressing. We propose here a distribution scheme for SAGA which maintains a linear convergence rate, even when communication between nodes is limited.
Cl\'ement Calauz\`enes and Nicolas Le Roux
null
1705.10405
null
null
Gradient Descent Can Take Exponential Time to Escape Saddle Points
math.OC cs.LG stat.ML
Although gradient descent (GD) almost always escapes saddle points asymptotically [Lee et al., 2016], this paper shows that even with fairly natural random initialization schemes and non-pathological functions, GD can be significantly slowed down by saddle points, taking exponential time to escape. On the other hand, gradient descent with perturbations [Ge et al., 2015, Jin et al., 2017] is not slowed down by saddle points - it can find an approximate local minimizer in polynomial time. This result implies that GD is inherently slower than perturbed GD, and justifies the importance of adding perturbations for efficient non-convex optimization. While our focus is theoretical, we also present experiments that illustrate our theoretical findings.
Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabas Poczos, Aarti Singh
null
1705.10412
null
null
Solving the Conjugacy Decision Problem via Machine Learning
math.GR cs.LG
Machine learning and pattern recognition techniques have been successfully applied to algorithmic problems in free groups. In this paper, we seek to extend these techniques to finitely presented non-free groups, with a particular emphasis on polycyclic and metabelian groups that are of interest to non-commutative cryptography. As a prototypical example, we utilize supervised learning methods to construct classifiers that can solve the conjugacy decision problem, i.e., determine whether or not a pair of elements from a specified group are conjugate. The accuracies of classifiers created using decision trees, random forests, and N-tuple neural network models are evaluated for several non-free groups. The very high accuracy of these classifiers suggests an underlying mathematical relationship with respect to conjugacy in the tested groups.
Jonathan Gryak, Robert M. Haralick, Delaram Kahrobaei
null
1705.10417
null
null
Learning End-to-end Multimodal Sensor Policies for Autonomous Navigation
cs.RO cs.AI cs.LG
Multisensory polices are known to enhance both state estimation and target tracking. However, in the space of end-to-end sensorimotor control, this multi-sensor outlook has received limited attention. Moreover, systematic ways to make policies robust to partial sensor failure are not well explored. In this work, we propose a specific customization of Dropout, called \textit{Sensor Dropout}, to improve multisensory policy robustness and handle partial failure in the sensor-set. We also introduce an additional auxiliary loss on the policy network in order to reduce variance in the band of potential multi- and uni-sensory policies to reduce jerks during policy switching triggered by an abrupt sensor failure or deactivation/activation. Finally, through the visualization of gradients, we show that the learned policies are conditioned on the same latent states representation despite having diverse observations spaces - a hallmark of true sensor-fusion. Simulation results of the multisensory policy, as visualized in TORCS racing game, can be seen here: https://youtu.be/QAK2lcXjNZc.
Guan-Horng Liu, Avinash Siravuru, Sai Prabhakar, Manuela Veloso, George Kantor
null
1705.10422
null
null
The Numerics of GANs
cs.LG
In this paper, we analyze the numerics of common algorithms for training Generative Adversarial Networks (GANs). Using the formalism of smooth two-player games we analyze the associated gradient vector field of GAN training objectives. Our findings suggest that the convergence of current algorithms suffers due to two factors: i) presence of eigenvalues of the Jacobian of the gradient vector field with zero real-part, and ii) eigenvalues with big imaginary part. Using these findings, we design a new algorithm that overcomes some of these limitations and has better convergence properties. Experimentally, we demonstrate its superiority on training common GAN architectures and show convergence on GAN architectures that are known to be notoriously hard to train.
Lars Mescheder, Sebastian Nowozin, Andreas Geiger
null
1705.10461
null
null
Federated Multi-Task Learning
cs.LG stat.ML
Federated learning poses new statistical and systems challenges in training machine learning models over distributed networks of devices. In this work, we show that multi-task learning is naturally suited to handle the statistical challenges of this setting, and propose a novel systems-aware optimization method, MOCHA, that is robust to practical systems issues. Our method and theory for the first time consider issues of high communication cost, stragglers, and fault tolerance for distributed multi-task learning. The resulting method achieves significant speedups compared to alternatives in the federated setting, as we demonstrate through simulations on real-world federated datasets.
Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, Ameet Talwalkar
null
1705.10467
null
null
Iterative Machine Teaching
stat.ML cs.LG
In this paper, we consider the problem of machine teaching, the inverse problem of machine learning. Different from traditional machine teaching which views the learners as batch algorithms, we study a new paradigm where the learner uses an iterative algorithm and a teacher can feed examples sequentially and intelligently based on the current performance of the learner. We show that the teaching complexity in the iterative case is very different from that in the batch case. Instead of constructing a minimal training set for learners, our iterative machine teaching focuses on achieving fast convergence in the learner model. Depending on the level of information the teacher has from the learner model, we design teaching algorithms which can provably reduce the number of teaching examples and achieve faster convergence than learning without teachers. We also validate our theoretical findings with extensive experiments on different data distribution and real image datasets.
Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B. Smith, James M. Rehg, Le Song
null
1705.1047
null
null
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
cs.RO cs.LG
Imitation learning has traditionally been applied to learn a single task from demonstrations thereof. The requirement of structured and isolated demonstrations limits the scalability of imitation learning approaches as they are difficult to apply to real-world scenarios, where robots have to be able to execute a multitude of tasks. In this paper, we propose a multi-modal imitation learning framework that is able to segment and imitate skills from unlabelled and unstructured demonstrations by learning skill segmentation and imitation learning jointly. The extensive simulation results indicate that our method can efficiently separate the demonstrations into individual skills and learn to imitate them using a single multi-modal policy. The video of our experiments is available at http://sites.google.com/view/nips17intentiongan
Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, Joseph Lim
null
1705.10479
null
null
Joint auto-encoders: a flexible multi-task learning framework
stat.ML cs.LG
The incorporation of prior knowledge into learning is essential in achieving good performance based on small noisy samples. Such knowledge is often incorporated through the availability of related data arising from domains and tasks similar to the one of current interest. Ideally one would like to allow both the data for the current task and for previous related tasks to self-organize the learning system in such a way that commonalities and differences between the tasks are learned in a data-driven fashion. We develop a framework for learning multiple tasks simultaneously, based on sharing features that are common to all tasks, achieved through the use of a modular deep feedforward neural network consisting of shared branches, dealing with the common features of all tasks, and private branches, learning the specific unique aspects of each task. Once an appropriate weight sharing architecture has been established, learning takes place through standard algorithms for feedforward networks, e.g., stochastic gradient descent and its variations. The method deals with domain adaptation and multi-task learning in a unified fashion, and can easily deal with data arising from different types of sources. Numerical experiments demonstrate the effectiveness of learning in domain adaptation and transfer learning setups, and provide evidence for the flexible and task-oriented representations arising in the network.
Baruch Epstein. Ron Meir, Tomer Michaeli
null
1705.10494
null
null
Zonotope hit-and-run for efficient sampling from projection DPPs
stat.ML cs.LG stat.CO
Determinantal point processes (DPPs) are distributions over sets of items that model diversity using kernels. Their applications in machine learning include summary extraction and recommendation systems. Yet, the cost of sampling from a DPP is prohibitive in large-scale applications, which has triggered an effort towards efficient approximate samplers. We build a novel MCMC sampler that combines ideas from combinatorial geometry, linear programming, and Monte Carlo methods to sample from DPPs with a fixed sample cardinality, also called projection DPPs. Our sampler leverages the ability of the hit-and-run MCMC kernel to efficiently move across convex bodies. Previous theoretical results yield a fast mixing time of our chain when targeting a distribution that is close to a projection DPP, but not a DPP in general. Our empirical results demonstrate that this extends to sampling projection DPPs, i.e., our sampler is more sample-efficient than previous approaches which in turn translates to faster convergence when dealing with costly-to-evaluate functions, such as summary extraction in our experiments.
Guillaume Gautier, R\'emi Bardenet, Michal Valko
null
1705.10498
null
null
Online to Offline Conversions, Universality and Adaptive Minibatch Sizes
cs.LG math.OC stat.ML
We present an approach towards convex optimization that relies on a novel scheme which converts online adaptive algorithms into offline methods. In the offline optimization setting, our derived methods are shown to obtain favourable adaptive guarantees which depend on the harmonic sum of the queried gradients. We further show that our methods implicitly adapt to the objective's structure: in the smooth case fast convergence rates are ensured without any prior knowledge of the smoothness parameter, while still maintaining guarantees in the non-smooth setting. Our approach has a natural extension to the stochastic setting, resulting in a lazy version of SGD (stochastic GD), where minibathces are chosen \emph{adaptively} depending on the magnitude of the gradients. Thus providing a principled approach towards choosing minibatch sizes.
Kfir Y. Levy
null
1705.10499
null
null
Exploiting Restricted Boltzmann Machines and Deep Belief Networks in Compressed Sensing
cs.LG
This paper proposes a CS scheme that exploits the representational power of restricted Boltzmann machines and deep learning architectures to model the prior distribution of the sparsity pattern of signals belonging to the same class. The determined probability distribution is then used in a maximum a posteriori (MAP) approach for the reconstruction. The parameters of the prior distribution are learned from training data. The motivation behind this approach is to model the higher-order statistical dependencies between the coefficients of the sparse representation, with the final goal of improving the reconstruction. The performance of the proposed method is validated on the Berkeley Segmentation Dataset and the MNIST Database of handwritten digits.
Luisa F. Polania, Kenneth E. Barner
10.1109/TSP.2017.2712128
1705.105
null
null
Quantum Low Entropy based Associative Reasoning or QLEAR Learning
cs.LG cs.IT math.IT
In this paper, we propose the classification method based on a learning paradigm we are going to call Quantum Low Entropy based Associative Reasoning or QLEAR learning. The approach is based on the idea that classification can be understood as supervised clustering, where a quantum entropy in the context of the quantum probabilistic model, will be used as a "capturer" (measure, or external index), of the "natural structure" of the data. By using quantum entropy we do not make any assumption about linear separability of the data that are going to be classified. The basic idea is to find close neighbors to a query sample and then use relative change in the quantum entropy as a measure of similarity of the newly arrived sample with the representatives of interest. In other words, method is based on calculation of quantum entropy of the referent system and its relative change with the addition of the newly arrived sample. Referent system consists of vectors that represent individual classes and that are the most similar, in Euclidean distance sense, to the vector that is analyzed. Here, we analyze the classification problem in the context of measuring similarities to prototype examples of categories. While nearest neighbor classifiers are natural in this setting, they suffer from the problem of high variance (in bias-variance decomposition) in the case of limited sampling. Alternatively, one could use machine learning techniques (like support vector machines) but they involve time-consuming optimization. Here we propose a hybrid of nearest neighbor and machine learning technique which deals naturally with the multi-class setting, has reasonable computational complexity both in training and at run time, and yields excellent results in practice.
Marko V. Jankovic
null
1705.10503
null
null
Implications of Decentralized Q-learning Resource Allocation in Wireless Networks
cs.NI cs.LG
Reinforcement Learning is gaining attention by the wireless networking community due to its potential to learn good-performing configurations only from the observed results. In this work we propose a stateless variation of Q-learning, which we apply to exploit spatial reuse in a wireless network. In particular, we allow networks to modify both their transmission power and the channel used solely based on the experienced throughput. We concentrate in a completely decentralized scenario in which no information about neighbouring nodes is available to the learners. Our results show that although the algorithm is able to find the best-performing actions to enhance aggregate throughput, there is high variability in the throughput experienced by the individual networks. We identify the cause of this variability as the adversarial setting of our setup, in which the most played actions provide intermittent good/poor performance depending on the neighbouring decisions. We also evaluate the effect of the intrinsic learning parameters of the algorithm on this variability.
Francesc Wilhelmi, Boris Bellalta, Cristina Cano, Anders Jonsson
null
1705.10508
null
null
IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models
cs.IR cs.LG
This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.
Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang, Dell Zhang
10.1145/3077136.3080786
1705.10513
null
null
Constrained Policy Optimization
cs.LG
For many applications of reinforcement learning it can be more convenient to specify both a reward function and constraints, rather than trying to design behavior through the reward function. For example, systems that physically interact with or around humans should satisfy safety constraints. Recent advances in policy search algorithms (Mnih et al., 2016, Schulman et al., 2015, Lillicrap et al., 2016, Levine et al., 2016) have enabled new capabilities in high-dimensional control, but do not consider the constrained setting. We propose Constrained Policy Optimization (CPO), the first general-purpose policy search algorithm for constrained reinforcement learning with guarantees for near-constraint satisfaction at each iteration. Our method allows us to train neural network policies for high-dimensional control while making guarantees about policy behavior all throughout training. Our guarantees are based on a new theoretical result, which is of independent interest: we prove a bound relating the expected returns of two policies to an average divergence between them. We demonstrate the effectiveness of our approach on simulated robot locomotion tasks where the agent must satisfy constraints motivated by safety.
Joshua Achiam, David Held, Aviv Tamar, Pieter Abbeel
null
1705.10528
null
null
Multi-Focus Image Fusion Using Sparse Representation and Coupled Dictionary Learning
cs.CV cs.LG
We address the multi-focus image fusion problem, where multiple images captured with different focal settings are to be fused into an all-in-focus image of higher quality. Algorithms for this problem necessarily admit the source image characteristics along with focused and blurred features. However, most sparsity-based approaches use a single dictionary in focused feature space to describe multi-focus images, and ignore the representations in blurred feature space. We propose a multi-focus image fusion approach based on sparse representation using a coupled dictionary. It exploits the observations that the patches from a given training set can be sparsely represented by a couple of overcomplete dictionaries related to the focused and blurred categories of images and that a sparse approximation based on such coupled dictionary leads to a more flexible and therefore better fusion strategy than the one based on just selecting the sparsest representation in the original image estimate. In addition, to improve the fusion performance, we employ a coupled dictionary learning approach that enforces pairwise correlation between atoms of dictionaries learned to represent the focused and blurred feature spaces. We also discuss the advantages of the fusion approach based on coupled dictionary learning, and present efficient algorithms for fusion based on coupled dictionary learning. Extensive experimental comparisons with state-of-the-art multi-focus image fusion algorithms validate the effectiveness of the proposed approach.
Farshad G. Veshki and Sergiy A. Vorobyov
null
1705.10574
null
null
Character-Based Text Classification using Top Down Semantic Model for Sentence Representation
cs.CL cs.LG
Despite the success of deep learning on many fronts especially image and speech, its application in text classification often is still not as good as a simple linear SVM on n-gram TF-IDF representation especially for smaller datasets. Deep learning tends to emphasize on sentence level semantics when learning a representation with models like recurrent neural network or recursive neural network, however from the success of TF-IDF representation, it seems a bag-of-words type of representation has its strength. Taking advantage of both representions, we present a model known as TDSM (Top Down Semantic Model) for extracting a sentence representation that considers both the word-level semantics by linearly combining the words with attention weights and the sentence-level semantics with BiLSTM and use it on text classification. We apply the model on characters and our results show that our model is better than all the other character-based and word-based convolutional neural network models by \cite{zhang15} across seven different datasets with only 1\% of their parameters. We also demonstrate that this model beats traditional linear models on TF-IDF vectors on small and polished datasets like news article in which typically deep learning models surrender.
Zhenzhou Wu and Xin Zheng and Daniel Dahlmeier
null
1705.10586
null
null
Optimizing Memory Efficiency for Convolution Kernels on Kepler GPUs
cs.DC cs.LG
Convolution is a fundamental operation in many applications, such as computer vision, natural language processing, image processing, etc. Recent successes of convolutional neural networks in various deep learning applications put even higher demand on fast convolution. The high computation throughput and memory bandwidth of graphics processing units (GPUs) make GPUs a natural choice for accelerating convolution operations. However, maximally exploiting the available memory bandwidth of GPUs for convolution is a challenging task. This paper introduces a general model to address the mismatch between the memory bank width of GPUs and computation data width of threads. Based on this model, we develop two convolution kernels, one for the general case and the other for a special case with one input channel. By carefully optimizing memory access patterns and computation patterns, we design a communication-optimized kernel for the special case and a communication-reduced kernel for the general case. Experimental data based on implementations on Kepler GPUs show that our kernels achieve 5.16X and 35.5% average performance improvement over the latest cuDNN library, for the special case and the general case, respectively.
Xiaoming Chen, Jianxu Chen, Danny Z. Chen, and Xiaobo Sharon Hu
null
1705.10591
null
null
Approximation learning methods of Harmonic Mappings in relation to Hardy Spaces
math.NA cs.LG
A new Hardy space Hardy space approach of Dirichlet type problem based on Tikhonov regularization and Reproducing Hilbert kernel space is discussed in this paper, which turns out to be a typical extremal problem located on the upper upper-high complex plane. If considering this in the Hardy space, the optimization operator of this problem will be highly simplified and an efficient algorithm is possible. This is mainly realized by the help of reproducing properties of the functions in the Hardy space of upper-high complex plane, and the detail algorithm is proposed. Moreover, harmonic mappings, which is a significant geometric transformation, are commonly used in many applications such as image processing, since it describes the energy minimization mappings between individual manifolds. Particularly, when we focus on the planer mappings between two Euclid planer regions, the harmonic mappings are exist and unique, which is guaranteed solidly by the existence of harmonic function. This property is attractive and simulation results are shown in this paper to ensure the capability of applications such as planer shape distortion and surface registration.
Zhulin Liu and C. L. Philip Chen
10.1109/ICCSS.2016.7586421
1705.10596
null
null
Grammatical Inference as a Satisfiability Modulo Theories Problem
cs.FL cs.LG cs.LO
The problem of learning a minimal consistent model from a set of labeled sequences of symbols is addressed from a satisfiability modulo theories perspective. We present two encodings for deterministic finite automata and extend one of these for Moore and Mealy machines. Our experimental results show that these encodings improve upon the state-of-the-art, and are useful in practice for learning small models.
Rick Smetsers
null
1705.10639
null
null
Conditional Adversarial Domain Adaptation
cs.LG
Adversarial learning has been embedded into deep networks to learn disentangled and transferable representations for domain adaptation. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions native in classification problems. In this paper, we present conditional adversarial domain adaptation, a principled framework that conditions the adversarial adaptation models on discriminative information conveyed in the classifier predictions. Conditional domain adversarial networks (CDANs) are designed with two novel conditioning strategies: multilinear conditioning that captures the cross-covariance between feature representations and classifier predictions to improve the discriminability, and entropy conditioning that controls the uncertainty of classifier predictions to guarantee the transferability. With theoretical guarantees and a few lines of codes, the approach has exceeded state-of-the-art results on five datasets.
Mingsheng Long, Zhangjie Cao, Jianmin Wang, Michael I. Jordan
null
1705.10667
null
null
Feature Squeezing Mitigates and Detects Carlini/Wagner Adversarial Examples
cs.CR cs.LG
Feature squeezing is a recently-introduced framework for mitigating and detecting adversarial examples. In previous work, we showed that it is effective against several earlier methods for generating adversarial examples. In this short note, we report on recent results showing that simple feature squeezing techniques also make deep learning models significantly more robust against the Carlini/Wagner attacks, which are the best known adversarial methods discovered to date.
Weilin Xu, David Evans, Yanjun Qi
null
1705.10686
null
null
Deep Learning is Robust to Massive Label Noise
cs.LG cs.AI cs.CV cs.NE
Deep neural networks trained on large supervised datasets have led to impressive results in image classification and other tasks. However, well-annotated datasets can be time-consuming and expensive to collect, lending increased interest to larger but noisy datasets that are more easily obtained. In this paper, we show that deep neural networks are capable of generalizing from training data for which true labels are massively outnumbered by incorrect labels. We demonstrate remarkably high test performance after training on corrupted data from MNIST, CIFAR, and ImageNet. For example, on MNIST we obtain test accuracy above 90 percent even after each clean training example has been diluted with 100 randomly-labeled examples. Such behavior holds across multiple patterns of label noise, even when erroneous labels are biased towards confusing classes. We show that training in this regime requires a significant but manageable increase in dataset size that is related to the factor by which correct labels have been diluted. Finally, we provide an analysis of our results that shows how increasing noise decreases the effective batch size.
David Rolnick, Andreas Veit, Serge Belongie, Nir Shavit
null
1705.10694
null
null
Multi-Labelled Value Networks for Computer Go
cs.AI cs.LG
This paper proposes a new approach to a novel value network architecture for the game Go, called a multi-labelled (ML) value network. In the ML value network, different values (win rates) are trained simultaneously for different settings of komi, a compensation given to balance the initiative of playing first. The ML value network has three advantages, (a) it outputs values for different komi, (b) it supports dynamic komi, and (c) it lowers the mean squared error (MSE). This paper also proposes a new dynamic komi method to improve game-playing strength. This paper also performs experiments to demonstrate the merits of the architecture. First, the MSE of the ML value network is generally lower than the value network alone. Second, the program based on the ML value network wins by a rate of 67.6% against the program based on the value network alone. Third, the program with the proposed dynamic komi method significantly improves the playing strength over the baseline that does not use dynamic komi, especially for handicap games. To our knowledge, up to date, no handicap games have been played openly by programs using value networks. This paper provides these programs with a useful approach to playing handicap games.
Ti-Rong Wu, I-Chen Wu, Guan-Wun Chen, Ting-han Wei, Tung-Yi Lai, Hung-Chun Wu and Li-Cheng Lan
null
1705.10701
null
null
Fast Regression with an $\ell_\infty$ Guarantee
cs.DS cs.LG
Sketching has emerged as a powerful technique for speeding up problems in numerical linear algebra, such as regression. In the overconstrained regression problem, one is given an $n \times d$ matrix $A$, with $n \gg d$, as well as an $n \times 1$ vector $b$, and one wants to find a vector $\hat{x}$ so as to minimize the residual error $\|Ax-b\|_2$. Using the sketch and solve paradigm, one first computes $S \cdot A$ and $S \cdot b$ for a randomly chosen matrix $S$, then outputs $x' = (SA)^{\dagger} Sb$ so as to minimize $\|SAx' - Sb\|_2$. The sketch-and-solve paradigm gives a bound on $\|x'-x^*\|_2$ when $A$ is well-conditioned. Our main result is that, when $S$ is the subsampled randomized Fourier/Hadamard transform, the error $x' - x^*$ behaves as if it lies in a "random" direction within this bound: for any fixed direction $a\in \mathbb{R}^d$, we have with $1 - d^{-c}$ probability that \[ \langle a, x'-x^*\rangle \lesssim \frac{\|a\|_2\|x'-x^*\|_2}{d^{\frac{1}{2}-\gamma}}, \quad (1) \] where $c, \gamma > 0$ are arbitrary constants. This implies $\|x'-x^*\|_{\infty}$ is a factor $d^{\frac{1}{2}-\gamma}$ smaller than $\|x'-x^*\|_2$. It also gives a better bound on the generalization of $x'$ to new examples: if rows of $A$ correspond to examples and columns to features, then our result gives a better bound for the error introduced by sketch-and-solve when classifying fresh examples. We show that not all oblivious subspace embeddings $S$ satisfy these properties. In particular, we give counterexamples showing that matrices based on Count-Sketch or leverage score sampling do not satisfy these properties. We also provide lower bounds, both on how small $\|x'-x^*\|_2$ can be, and for our new guarantee (1), showing that the subsampled randomized Fourier/Hadamard transform is nearly optimal.
Eric Price, Zhao Song, David P. Woodruff
null
1705.10723
null
null
The Cramer Distance as a Solution to Biased Wasserstein Gradients
cs.LG stat.ML
The Wasserstein probability metric has received much attention from the machine learning community. Unlike the Kullback-Leibler divergence, which strictly measures change in probability, the Wasserstein metric reflects the underlying geometry between outcomes. The value of being sensitive to this geometry has been demonstrated, among others, in ordinal regression and generative modelling. In this paper we describe three natural properties of probability divergences that reflect requirements from machine learning: sum invariance, scale sensitivity, and unbiased sample gradients. The Wasserstein metric possesses the first two properties but, unlike the Kullback-Leibler divergence, does not possess the third. We provide empirical evidence suggesting that this is a serious issue in practice. Leveraging insights from probabilistic forecasting we propose an alternative to the Wasserstein metric, the Cram\'er distance. We show that the Cram\'er distance possesses all three desired properties, combining the best of the Wasserstein and Kullback-Leibler divergences. To illustrate the relevance of the Cram\'er distance in practice we design a new algorithm, the Cram\'er Generative Adversarial Network (GAN), and show that it performs significantly better than the related Wasserstein GAN.
Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan, Stephan Hoyer, R\'emi Munos
null
1705.10743
null
null
Knowledge Base Completion: Baselines Strike Back
cs.LG cs.AI
Many papers have been published on the knowledge base completion task in the past few years. Most of these introduce novel architectures for relation learning that are evaluated on standard datasets such as FB15k and WN18. This paper shows that the accuracy of almost all models published on the FB15k can be outperformed by an appropriately tuned baseline - our reimplementation of the DistMult model. Our findings cast doubt on the claim that the performance improvements of recent models are due to architectural changes as opposed to hyper-parameter tuning or different training objectives. This should prompt future research to re-consider how the performance of models is evaluated and reported.
Rudolf Kadlec, Ondrej Bajgar and Jan Kleindienst
null
1705.10744
null
null
Recurrent Estimation of Distributions
cs.LG stat.ML
This paper presents the recurrent estimation of distributions (RED) for modeling real-valued data in a semiparametric fashion. RED models make two novel uses of recurrent neural networks (RNNs) for density estimation of general real-valued data. First, RNNs are used to transform input covariates into a latent space to better capture conditional dependencies in inputs. After, an RNN is used to compute the conditional distributions of the latent covariates. The resulting model is efficient to train, compute, and sample from, whilst producing normalized pdfs. The effectiveness of RED is shown via several real-world data experiments. Our results show that RED models achieve a lower held-out negative log-likelihood than other neural network approaches across multiple dataset sizes and dimensionalities. Further context of the efficacy of RED is provided by considering anomaly detection tasks, where we also observe better performance over alternative models.
Junier B. Oliva, Kumar Avinava Dubey, Barnabas Poczos, Eric Xing, Jeff Schneider
null
1705.1075
null
null
Generative Models of Visually Grounded Imagination
cs.LG cs.CV stat.ML
It is easy for people to imagine what a man with pink hair looks like, even if they have never seen such a person before. We call the ability to create images of novel semantic concepts visually grounded imagination. In this paper, we show how we can modify variational auto-encoders to perform this task. Our method uses a novel training objective, and a novel product-of-experts inference network, which can handle partially specified (abstract) concepts in a principled and efficient way. We also propose a set of easy-to-compute evaluation metrics that capture our intuitive notions of what it means to have good visual imagination, namely correctness, coverage, and compositionality (the 3 C's). Finally, we perform a detailed comparison of our method with two existing joint image-attribute VAE methods (the JMVAE method of Suzuki et.al. and the BiVCCA method of Wang et.al.) by applying them to two datasets: the MNIST-with-attributes dataset (which we introduce here), and the CelebA dataset.
Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, Kevin Murphy
null
1705.10762
null
null
Forward-Backward Selection with Early Dropping
cs.LG stat.ML
Forward-backward selection is one of the most basic and commonly-used feature selection algorithms available. It is also general and conceptually applicable to many different types of data. In this paper, we propose a heuristic that significantly improves its running time, while preserving predictive accuracy. The idea is to temporarily discard the variables that are conditionally independent with the outcome given the selected variable set. Depending on how those variables are reconsidered and reintroduced, this heuristic gives rise to a family of algorithms with increasingly stronger theoretical guarantees. In distributions that can be faithfully represented by Bayesian networks or maximal ancestral graphs, members of this algorithmic family are able to correctly identify the Markov blanket in the sample limit. In experiments we show that the proposed heuristic increases computational efficiency by about two orders of magnitude in high-dimensional problems, while selecting fewer variables and retaining predictive performance. Furthermore, we show that the proposed algorithm and feature selection with LASSO perform similarly when restricted to select the same number of variables, making the proposed algorithm an attractive alternative for problems where no (efficient) algorithm for LASSO exists.
Giorgos Borboudakis and Ioannis Tsamardinos
null
1705.1077
null
null
Semi-Supervised Learning for Detecting Human Trafficking
cs.LG cs.AI
Human trafficking is one of the most atrocious crimes and among the challenging problems facing law enforcement which demands attention of global magnitude. In this study, we leverage textual data from the website "Backpage"- used for classified advertisement- to discern potential patterns of human trafficking activities which manifest online and identify advertisements of high interest to law enforcement. Due to the lack of ground truth, we rely on a human analyst from law enforcement, for hand-labeling a small portion of the crawled data. We extend the existing Laplacian SVM and present S3VM-R, by adding a regularization term to exploit exogenous information embedded in our feature space in favor of the task at hand. We train the proposed method using labeled and unlabeled data and evaluate it on a fraction of the unlabeled data, herein referred to as unseen data, with our expert's further verification. Results from comparisons between our method and other semi-supervised and supervised approaches on the labeled data demonstrate that our learner is effective in identifying advertisements of high interest to law enforcement
Hamidreza Alvari, Paulo Shakarian, J.E. Kelly Snyder
null
1705.10786
null
null
Surface Networks
stat.ML cs.GR cs.LG
We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator. Despite offering excellent sample complexity and built-in invariances, intrinsic geometry alone is invariant to isometric deformations, making it unsuitable for many applications. To overcome this limitation, we propose several upgrades to GNNs to leverage extrinsic differential geometry properties of three-dimensional surfaces, increasing its modeling power. In particular, we propose to exploit the Dirac operator, whose spectrum detects principal curvature directions --- this is in stark contrast with the classical Laplace operator, which directly measures mean curvature. We coin the resulting models \emph{Surface Networks (SN)}. We prove that these models define shape representations that are stable to deformation and to discretization, and we demonstrate the efficiency and versatility of SNs on two challenging tasks: temporal prediction of mesh deformations under non-linear dynamics and generative models using a variational autoencoder framework with encoders/decoders given by SNs.
Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, Joan Bruna
null
1705.10819
null
null
Accelerating Neural Architecture Search using Performance Prediction
cs.LG cs.CV cs.NE
Methods for neural network hyperparameter optimization and meta-modeling are computationally expensive due to the need to train a large number of model configurations. In this paper, we show that standard frequentist regression models can predict the final performance of partially trained model configurations using features based on network architectures, hyperparameters, and time-series validation performance data. We empirically show that our performance prediction models are much more effective than prominent Bayesian counterparts, are simpler to implement, and are faster to train. Our models can predict final performance in both visual classification and language modeling domains, are effective for predicting performance of drastically varying model architectures, and can even generalize between model classes. Using these prediction models, we also propose an early stopping method for hyperparameter optimization and meta-modeling, which obtains a speedup of a factor up to 6x in both hyperparameter optimization and meta-modeling. Finally, we empirically show that our early stopping method can be seamlessly incorporated into both reinforcement learning-based architecture selection algorithms and bandit based search methods. Through extensive experimentation, we empirically show our performance prediction models and early stopping algorithm are state-of-the-art in terms of prediction accuracy and speedup achieved while still identifying the optimal model configurations.
Bowen Baker, Otkrist Gupta, Ramesh Raskar and Nikhil Naik
null
1705.10823
null
null
Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM
cs.LG
Traditional approaches to differential privacy assume a fixed privacy requirement $\epsilon$ for a computation, and attempt to maximize the accuracy of the computation subject to the privacy constraint. As differential privacy is increasingly deployed in practical settings, it may often be that there is instead a fixed accuracy requirement for a given computation and the data analyst would like to maximize the privacy of the computation subject to the accuracy constraint. This raises the question of how to find and run a maximally private empirical risk minimizer subject to a given accuracy requirement. We propose a general "noise reduction" framework that can apply to a variety of private empirical risk minimization (ERM) algorithms, using them to "search" the space of privacy levels to find the empirically strongest one that meets the accuracy constraint, incurring only logarithmic overhead in the number of privacy levels searched. The privacy analysis of our algorithm leads naturally to a version of differential privacy where the privacy parameters are dependent on the data, which we term ex-post privacy, and which is related to the recently introduced notion of privacy odometers. We also give an ex-post privacy analysis of the classical AboveThreshold privacy tool, modifying it to allow for queries chosen depending on the database. Finally, we apply our approach to two common objectives, regularized linear and logistic regression, and empirically compare our noise reduction methods to (i) inverting the theoretical utility guarantees of standard private ERM algorithms and (ii) a stronger, empirical baseline based on binary search.
Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, Z. Steven Wu
null
1705.10829
null
null
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
stat.ML cs.LG
In unsupervised data generation tasks, besides the generation of a sample based on previous observations, one would often like to give hints to the model in order to bias the generation towards desirable metrics. We propose a method that combines Generative Adversarial Networks (GANs) and reinforcement learning (RL) in order to accomplish exactly that. While RL biases the data generation process towards arbitrary metrics, the GAN component of the reward function ensures that the model still remembers information learned from data. We build upon previous results that incorporated GANs and RL in order to generate sequence data and test this model in several settings for the generation of molecules encoded as text sequences (SMILES) and in the context of music generation, showing for each case that we can effectively bias the generation process towards desired metrics.
Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha Farias, Al\'an Aspuru-Guzik
null
1705.10843
null
null
Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments
cs.SD cs.CL cs.LG
Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks.
Zixing Zhang, J\"urgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu Jin, Bj\"orn Schuller
null
1705.10874
null
null
Optimization of Tree Ensembles
math.OC cs.LG stat.ML
Tree ensemble models such as random forests and boosted trees are among the most widely used and practically successful predictive models in applied machine learning and business analytics. Although such models have been used to make predictions based on exogenous, uncontrollable independent variables, they are increasingly being used to make predictions where the independent variables are controllable and are also decision variables. In this paper, we study the problem of tree ensemble optimization: given a tree ensemble that predicts some dependent variable using controllable independent variables, how should we set these variables so as to maximize the predicted value? We formulate the problem as a mixed-integer optimization problem. We theoretically examine the strength of our formulation, provide a hierarchy of approximate formulations with bounds on approximation quality and exploit the structure of the problem to develop two large-scale solution methods, one based on Benders decomposition and one based on iteratively generating tree split constraints. We test our methodology on real data sets, including two case studies in drug design and customized pricing, and show that our methodology can efficiently solve large-scale instances to near or full optimality, and outperforms solutions obtained by heuristic approaches. In our drug design case, we show how our approach can identify compounds that efficiently trade-off predicted performance and novelty with respect to existing, known compounds. In our customized pricing case, we show how our approach can efficiently determine optimal store-level prices under a random forest model that delivers excellent predictive accuracy.
Velibor V. Mi\v{s}i\'c
null
1705.10883
null
null
High Dimensional Structured Superposition Models
cs.LG stat.ML
High dimensional superposition models characterize observations using parameters which can be written as a sum of multiple component parameters, each with its own structure, e.g., sum of low rank and sparse matrices, sum of sparse and rotated sparse vectors, etc. In this paper, we consider general superposition models which allow sum of any number of component parameters, and each component structure can be characterized by any norm. We present a simple estimator for such models, give a geometric condition under which the components can be accurately estimated, characterize sample complexity of the estimator, and give high probability non-asymptotic bounds on the componentwise estimation error. We use tools from empirical processes and generic chaining for the statistical analysis, and our results, which substantially generalize prior work on superposition models, are in terms of Gaussian widths of suitable sets.
Qilong Gu and Arindam Banerjee
null
1705.10886
null
null
Efficient, sparse representation of manifold distance matrices for classical scaling
stat.ML cs.CV cs.LG cs.NA
Geodesic distance matrices can reveal shape properties that are largely invariant to non-rigid deformations, and thus are often used to analyze and represent 3-D shapes. However, these matrices grow quadratically with the number of points. Thus for large point sets it is common to use a low-rank approximation to the distance matrix, which fits in memory and can be efficiently analyzed using methods such as multidimensional scaling (MDS). In this paper we present a novel sparse method for efficiently representing geodesic distance matrices using biharmonic interpolation. This method exploits knowledge of the data manifold to learn a sparse interpolation operator that approximates distances using a subset of points. We show that our method is 2x faster and uses 20x less memory than current leading methods for solving MDS on large point sets, with similar quality. This enables analyses of large point sets that were previously infeasible.
Javier S. Turek, Alexander Huth
null
1705.10887
null
null
Unsupervised Learning of Disentangled Representations from Video
cs.LG cs.AI cs.CV stat.ML
We present a new model DrNET that learns disentangled image representations from video. Our approach leverages the temporal coherence of video and a novel adversarial loss to learn a representation that factorizes each frame into a stationary part and a temporally varying component. The disentangled representation can be used for a range of tasks. For example, applying a standard LSTM to the time-vary components enables prediction of future frames. We evaluate our approach on a range of synthetic and real videos, demonstrating the ability to coherently generate hundreds of steps into the future.
Emily Denton, Vighnesh Birodkar
null
1705.10915
null
null
The ALAMO approach to machine learning
cs.LG stat.ML
ALAMO is a computational methodology for leaning algebraic functions from data. Given a data set, the approach begins by building a low-complexity, linear model composed of explicit non-linear transformations of the independent variables. Linear combinations of these non-linear transformations allow a linear model to better approximate complex behavior observed in real processes. The model is refined, as additional data are obtained in an adaptive fashion through error maximization sampling using derivative-free optimization. Models built using ALAMO can enforce constraints on the response variables to incorporate first-principles knowledge. The ability of ALAMO to generate simple and accurate models for a number of reaction problems is demonstrated. The error maximization sampling is compared with Latin hypercube designs to demonstrate its sampling efficiency. ALAMO's constrained regression methodology is used to further refine concentration models, resulting in models that perform better on validation data and satisfy upper and lower bounds placed on model outputs.
Zachary T. Wilson and Nikolaos V. Sahinidis
10.1016/j.compchemeng.2017.02.010
1705.10918
null
null
Sequential Dynamic Decision Making with Deep Neural Nets on a Test-Time Budget
stat.ML cs.LG
Deep neural network (DNN) based approaches hold significant potential for reinforcement learning (RL) and have already shown remarkable gains over state-of-art methods in a number of applications. The effectiveness of DNN methods can be attributed to leveraging the abundance of supervised data to learn value functions, Q-functions, and policy function approximations without the need for feature engineering. Nevertheless, the deployment of DNN-based predictors with very deep architectures can pose an issue due to computational and other resource constraints at test-time in a number of applications. We propose a novel approach for reducing the average latency by learning a computationally efficient gating function that is capable of recognizing states in a sequential decision process for which policy prescriptions of a shallow network suffices and deeper layers of the DNN have little marginal utility. The overall system is adaptive in that it dynamically switches control actions based on state-estimates in order to reduce average latency without sacrificing terminal performance. We experiment with a number of alternative loss-functions to train gating functions and shallow policies and show that in a number of applications a speed-up of up to almost 5X can be obtained with little loss in performance.
Henghui Zhu, Feng Nan, Ioannis Paschalidis, Venkatesh Saligrama
null
1705.10924
null
null
Spectral Norm Regularization for Improving the Generalizability of Deep Learning
stat.ML cs.LG
We investigate the generalizability of deep learning based on the sensitivity to input perturbation. We hypothesize that the high sensitivity to the perturbation of data degrades the performance on it. To reduce the sensitivity to perturbation, we propose a simple and effective regularization method, referred to as spectral norm regularization, which penalizes the high spectral norm of weight matrices in neural networks. We provide supportive evidence for the abovementioned hypothesis by experimentally confirming that the models trained using spectral norm regularization exhibit better generalizability than other baseline methods.
Yuichi Yoshida and Takeru Miyato
null
1705.10941
null
null
FALKON: An Optimal Large Scale Kernel Method
stat.ML cs.LG
Kernel methods provide a principled way to perform non linear, nonparametric learning. They rely on solid functional analytic foundations and enjoy optimal statistical properties. However, at least in their basic form, they have limited applicability in large scale scenarios because of stringent computational requirements in terms of time and especially memory. In this paper, we take a substantial step in scaling up kernel methods, proposing FALKON, a novel algorithm that allows to efficiently process millions of points. FALKON is derived combining several algorithmic principles, namely stochastic subsampling, iterative solvers and preconditioning. Our theoretical analysis shows that optimal statistical accuracy is achieved requiring essentially $O(n)$ memory and $O(n\sqrt{n})$ time. An extensive experimental analysis on large scale datasets shows that, even with a single machine, FALKON outperforms previous state of the art solutions, which exploit parallel/distributed architectures.
Alessandro Rudi, Luigi Carratino and Lorenzo Rosasco
null
1705.10958
null
null
Non-Markovian Control with Gated End-to-End Memory Policy Networks
stat.ML cs.AI cs.LG cs.NE
Partially observable environments present an important open challenge in the domain of sequential control learning with delayed rewards. Despite numerous attempts during the two last decades, the majority of reinforcement learning algorithms and associated approximate models, applied to this context, still assume Markovian state transitions. In this paper, we explore the use of a recently proposed attention-based model, the Gated End-to-End Memory Network, for sequential control. We call the resulting model the Gated End-to-End Memory Policy Network. More precisely, we use a model-free value-based algorithm to learn policies for partially observed domains using this memory-enhanced neural network. This model is end-to-end learnable and it features unbounded memory. Indeed, because of its attention mechanism and associated non-parametric memory, the proposed model allows us to define an attention mechanism over the observation stream unlike recurrent models. We show encouraging results that illustrate the capability of our attention-based model in the context of the continuous-state non-stationary control problem of stock trading. We also present an OpenAI Gym environment for simulated stock exchange and explain its relevance as a benchmark for the field of non-Markovian decision process learning.
Julien Perez and Tomi Silander
null
1705.10993
null
null
Adversarial Ranking for Language Generation
cs.CL cs.LG
Generative adversarial networks (GANs) have great successes on synthesizing data. However, the existing GANs restrict the discriminator to be a binary classifier, and thus limit their learning capacity for tasks that need to synthesize output with rich structures such as natural language descriptions. In this paper, we propose a novel generative adversarial network, RankGAN, for generating high-quality language descriptions. Rather than training the discriminator to learn and assign absolute binary predicate for individual data sample, the proposed RankGAN is able to analyze and rank a collection of human-written and machine-written sentences by giving a reference group. By viewing a set of data samples collectively and evaluating their quality through relative ranking scores, the discriminator is able to make better assessment which in turn helps to learn a better generator. The proposed RankGAN is optimized through the policy gradient technique. Experimental results on multiple public datasets clearly demonstrate the effectiveness of the proposed approach.
Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun
null
1705.11001
null
null
Criticality & Deep Learning II: Momentum Renormalisation Group
cond-mat.stat-mech cs.LG
Guided by critical systems found in nature we develop a novel mechanism consisting of inhomogeneous polynomial regularisation via which we can induce scale invariance in deep learning systems. Technically, we map our deep learning (DL) setup to a genuine field theory, on which we act with the Renormalisation Group (RG) in momentum space and produce the flow equations of the couplings; those are translated to constraints and consequently interpreted as "critical regularisation" conditions in the optimiser; the resulting equations hence prove to be sufficient conditions for - and serve as an elegant and simple mechanism to induce scale invariance in any deep learning setup.
Dan Oprisa, Peter Toth
null
1705.11023
null
null