title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
DeepKey: An EEG and Gait Based Dual-Authentication System
cs.LG
Biometric authentication involves various technologies to identify individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, traditional biometric authentication systems (e.g., face recognition, iris, retina, voice, and fingerprint) are facing an increasing risk of being tricked by biometric tools such as anti-surveillance masks, contact lenses, vocoder, or fingerprint films. In this paper, we design a multimodal biometric authentication system named Deepkey, which uses both Electroencephalography (EEG) and gait signals to better protect against such risk. Deepkey consists of two key components: an Invalid ID Filter Model to block unauthorized subjects and an identification model based on attention-based Recurrent Neural Network (RNN) to identify a subject`s EEG IDs and gait IDs in parallel. The subject can only be granted access while all the components produce consistent evidence to match the user`s proclaimed identity. We implement Deepkey with a live deployment in our university and conduct extensive empirical experiments to study its technical feasibility in practice. DeepKey achieves the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) of 0 and 1.0%, respectively. The preliminary results demonstrate that Deepkey is feasible, show consistent superior performance compared to a set of methods, and has the potential to be applied to the authentication deployment in real world settings.
Xiang Zhang, Lina Yao, Chaoran Huang, Tao Gu, Zheng Yang and Yunhao Liu
null
1706.01606
null
null
Retrosynthetic reaction prediction using neural sequence-to-sequence models
cs.LG q-bio.QM stat.ML
We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder-decoder architecture that consists of two recurrent neural networks, which has previously shown great success in solving other sequence-to-sequence prediction tasks such as machine translation. The model is trained on 50,000 experimental reaction examples from the United States patent literature, which span 10 broad reaction types that are commonly used by medicinal chemists. We find that our model performs comparably with a rule-based expert system baseline model, and also overcomes certain limitations associated with rule-based expert systems and with any machine learning approach that contains a rule-based expert system component. Our model provides an important first step towards solving the challenging problem of computational retrosynthetic analysis.
Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen, Stephen Ho, Jack Sloane, Paul Wender, Vijay Pande
null
1706.01643
null
null
Learning Pairwise Disjoint Simple Languages from Positive Examples
cs.LG cs.FL
A classical problem in grammatical inference is to identify a deterministic finite automaton (DFA) from a set of positive and negative examples. In this paper, we address the related - yet seemingly novel - problem of identifying a set of DFAs from examples that belong to different unknown simple regular languages. We propose two methods based on compression for clustering the observed positive examples. We apply our methods to a set of print jobs submitted to large industrial printers.
Alexis Linard, Rick Smetsers, Frits Vaandrager, Umar Waqas, Joost van Pinxten, Sicco Verwer
null
1706.01663
null
null
Limitations on Variance-Reduction and Acceleration Schemes for Finite Sum Optimization
math.OC cs.LG stat.ML
We study the conditions under which one is able to efficiently apply variance-reduction and acceleration schemes on finite sum optimization problems. First, we show that, perhaps surprisingly, the finite sum structure by itself, is not sufficient for obtaining a complexity bound of $\tilde{\cO}((n+L/\mu)\ln(1/\epsilon))$ for $L$-smooth and $\mu$-strongly convex individual functions - one must also know which individual function is being referred to by the oracle at each iteration. Next, we show that for a broad class of first-order and coordinate-descent finite sum algorithms (including, e.g., SDCA, SVRG, SAG), it is not possible to get an `accelerated' complexity bound of $\tilde{\cO}((n+\sqrt{n L/\mu})\ln(1/\epsilon))$, unless the strong convexity parameter is given explicitly. Lastly, we show that when this class of algorithms is used for minimizing $L$-smooth and convex finite sums, the optimal complexity bound is $\tilde{\cO}(n+L/\epsilon)$, assuming that (on average) the same update rule is used in every iteration, and $\tilde{\cO}(n+\sqrt{nL/\epsilon})$, otherwise.
Yossi Arjevani
null
1706.01686
null
null
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC
stat.ML cs.LG stat.CO
It is challenging to develop stochastic gradient based scalable inference for deep discrete latent variable models (LVMs), due to the difficulties in not only computing the gradients, but also adapting the step sizes to different latent factors and hidden layers. For the Poisson gamma belief network (PGBN), a recently proposed deep discrete LVM, we derive an alternative representation that is referred to as deep latent Dirichlet allocation (DLDA). Exploiting data augmentation and marginalization techniques, we derive a block-diagonal Fisher information matrix and its inverse for the simplex-constrained global model parameters of DLDA. Exploiting that Fisher information matrix with stochastic gradient MCMC, we present topic-layer-adaptive stochastic gradient Riemannian (TLASGR) MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. State-of-the-art results are demonstrated on big data sets.
Yulai Cong, Bo Chen, Hongwei Liu, Mingyuan Zhou
null
1706.01724
null
null
Multi-View Kernels for Low-Dimensional Modeling of Seismic Events
cs.LG
The problem of learning from seismic recordings has been studied for years. There is a growing interest in developing automatic mechanisms for identifying the properties of a seismic event. One main motivation is the ability have a reliable identification of man-made explosions. The availability of multiple high-dimensional observations has increased the use of machine learning techniques in a variety of fields. In this work, we propose to use a kernel-fusion based dimensionality reduction framework for generating meaningful seismic representations from raw data. The proposed method is tested on 2023 events that were recorded in Israel and in Jordan. The method achieves promising results in classification of event type as well as in estimating the location of the event. The proposed fusion and dimensionality reduction tools may be applied to other types of geophysical data.
Ofir Lindenbaum, Yuri Bregman, Neta Rabin, Amir Averbuch
10.1109/TGRS.2018.2797537
1706.0175
null
null
Adversarial-Playground: A Visualization Suite for Adversarial Sample Generation
cs.CR cs.AI cs.LG
With growing interest in adversarial machine learning, it is important for machine learning practitioners and users to understand how their models may be attacked. We propose a web-based visualization tool, Adversarial-Playground, to demonstrate the efficacy of common adversarial methods against a deep neural network (DNN) model, built on top of the TensorFlow library. Adversarial-Playground provides users an efficient and effective experience in exploring techniques generating adversarial examples, which are inputs crafted by an adversary to fool a machine learning system. To enable Adversarial-Playground to generate quick and accurate responses for users, we use two primary tactics: (1) We propose a faster variant of the state-of-the-art Jacobian saliency map approach that maintains a comparable evasion rate. (2) Our visualization does not transmit the generated adversarial images to the client, but rather only the matrix describing the sample and the vector representing classification likelihoods. The source code along with the data from all of our experiments are available at \url{https://github.com/QData/AdversarialDNN-Playground}.
Andrew Norton and Yanjun Qi
null
1706.01763
null
null
Deep Factorization for Speech Signal
cs.SD cs.LG
Speech signals are complex intermingling of various informative factors, and this information blending makes decoding any of the individual factors extremely difficult. A natural idea is to factorize each speech frame into independent factors, though it turns out to be even more difficult than decoding each individual factor. A major encumbrance is that the speaker trait, a major factor in speech signals, has been suspected to be a long-term distributional pattern and so not identifiable at the frame level. In this paper, we demonstrated that the speaker factor is also a short-time spectral pattern and can be largely identified with just a few frames using a simple deep neural network (DNN). This discovery motivated a cascade deep factorization (CDF) framework that infers speech factors in a sequential way, and factors previously inferred are used as conditional variables when inferring other factors. Our experiment on an automatic emotion recognition (AER) task demonstrated that this approach can effectively factorize speech signals, and using these factors, the original speech spectrum can be recovered with high accuracy. This factorization and reconstruction approach provides a novel tool for many speech processing tasks.
Dong Wang and Lantian Li and Ying Shi and Yixiang Chen and Zhiyuan Tang
null
1706.01777
null
null
Robust Online Multi-Task Learning with Correlative and Personalized Structures
cs.LG stat.ML
Multi-Task Learning (MTL) can enhance a classifier's generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline or batch setting, and suffers from expensive training cost and poor scalability. To address such inefficiency issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm and the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. Even though the above framework achieves good performance, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. The gradient scheme is applied to optimize log-determinant function and can obtain a closed-form solution for this refined problem. Experimental results on a number of real-world applications verify the efficacy of our method.
Peng Yang, Peilin Zhao, Xin Gao
10.1109/TKDE.2017.2703106
1706.01824
null
null
Efficient Antihydrogen Detection in Antimatter Physics by Deep Learning
physics.ins-det cs.LG hep-ex
Antihydrogen is at the forefront of antimatter research at the CERN Antiproton Decelerator. Experiments aiming to test the fundamental CPT symmetry and antigravity effects require the efficient detection of antihydrogen annihilation events, which is performed using highly granular tracking detectors installed around an antimatter trap. Improving the efficiency of the antihydrogen annihilation detection plays a central role in the final sensitivity of the experiments. We propose deep learning as a novel technique to analyze antihydrogen annihilation data, and compare its performance with a traditional track and vertex reconstruction method. We report that the deep learning approach yields significant improvement, tripling event coverage while simultaneously improving performance by over 5% in terms of Area Under Curve (AUC).
Peter Sadowski, Balint Radics, Ananya, Yasunori Yamazaki, Pierre Baldi
null
1706.01826
null
null
Online Adaptive Machine Learning Based Algorithm for Implied Volatility Surface Modeling
stat.ML cs.LG q-fin.CP
In this work, we design a machine learning based method, online adaptive primal support vector regression (SVR), to model the implied volatility surface (IVS). The algorithm proposed is the first derivation and implementation of an online primal kernel SVR. It features enhancements that allow efficient online adaptive learning by embedding the idea of local fitness and budget maintenance to dynamically update support vectors upon pattern drifts. For algorithm acceleration, we implement its most computationally intensive parts in a Field Programmable Gate Arrays hardware, where a 132x speedup over CPU is achieved during online prediction. Using intraday tick data from the E-mini S&P 500 options market, we show that the Gaussian kernel outperforms the linear kernel in regulating the size of support vectors, and that our empirical IVS algorithm beats two competing online methods with regards to model complexity and regression errors (the mean absolute percentage error of our algorithm is up to 13%). Best results are obtained at the center of the IVS grid due to its larger number of adjacent support vectors than the edges of the grid. Sensitivity analysis is also presented to demonstrate how hyper parameters affect the error rates and model complexity.
Yaxiong Zeng, Diego Klabjan
null
1706.01833
null
null
Attributed Network Embedding for Learning in a Dynamic Environment
cs.SI cs.LG stat.ML
Network embedding leverages the node proximity manifested to learn a low-dimensional node vector representation for each node in the network. The learned embeddings could advance various learning tasks such as node classification, network clustering, and link prediction. Most, if not all, of the existing works, are overwhelmingly performed in the context of plain and static networks. Nonetheless, in reality, network structure often evolves over time with addition/deletion of links and nodes. Also, a vast majority of real-world networks are associated with a rich set of node attributes, and their attribute values are also naturally changing, with the emerging of new content patterns and the fading of old content patterns. These changing characteristics motivate us to seek an effective embedding representation to capture network and attribute evolving patterns, which is of fundamental importance for learning in a dynamic environment. To our best knowledge, we are the first to tackle this problem with the following two challenges: (1) the inherently correlated network and node attributes could be noisy and incomplete, it necessitates a robust consensus representation to capture their individual properties and correlations; (2) the embedding learning needs to be performed in an online fashion to adapt to the changes accordingly. In this paper, we tackle this problem by proposing a novel dynamic attributed network embedding framework - DANE. In particular, DANE first provides an offline method for a consensus embedding and then leverages matrix perturbation theory to maintain the freshness of the end embedding results in an online manner. We perform extensive experiments on both synthetic and real attributed networks to corroborate the effectiveness and efficiency of the proposed framework.
Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, Huan Liu
10.1145/3132847.3132919
1706.0186
null
null
A generalized method toward drug-target interaction prediction via low-rank matrix projection
cs.LG cs.CE physics.bio-ph
Drug-target interaction (DTI) prediction plays a very important role in drug development and drug discovery. Biochemical experiments or \textit{in vitro} methods are very expensive, laborious and time-consuming. Therefore, \textit{in silico} approaches including docking simulation and machine learning have been proposed to solve this problem. In particular, machine learning approaches have attracted increasing attentions recently. However, in addition to the known drug-target interactions, most of the machine learning methods require extra characteristic information such as chemical structures, genome sequences, binding types and so on. Whenever such information is not available, they may perform poor. Very recently, the similarity-based link prediction methods were extended to bipartite networks, which can be applied to solve the DTI prediction problem by using topological information only. In this work, we propose a method based on low-rank matrix projection to solve the DTI prediction problem. On one hand, when there is no extra characteristic information of drugs or targets, the proposed method utilizes only the known interactions. On the other hand, the proposed method can also utilize the extra characteristic information when it is available and the performances will be remarkably improved. Moreover, the proposed method can predict the interactions associated with new drugs or targets of which we know nothing about their associated interactions, but only some characteristic information. We compare the proposed method with ten baseline methods, e.g., six similarity-based methods that utilize only the known interactions and four methods that utilize the extra characteristic information. The datasets and codes implementing the simulations are available at https://github.com/rathapech/DTI_LMP.
Ratha Pech, Dong Hao, Yan-Li Lee, Maryna Po, Tao Zhou
null
1706.01876
null
null
Parameter Space Noise for Exploration
cs.LG cs.AI cs.NE cs.RO stat.ML
Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.
Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, Marcin Andrychowicz
null
1706.01905
null
null
Deep Learning: Generalization Requires Deep Compositional Feature Space Design
cs.LG stat.ML
Generalization error defines the discriminability and the representation power of a deep model. In this work, we claim that feature space design using deep compositional function plays a significant role in generalization along with explicit and implicit regularizations. Our claims are being established with several image classification experiments. We show that the information loss due to convolution and max pooling can be marginalized with the compositional design, improving generalization performance. Also, we will show that learning rate decay acts as an implicit regularizer in deep model training.
Mrinal Haloi
null
1706.01983
null
null
Stacked Convolutional and Recurrent Neural Networks for Bird Audio Detection
cs.SD cs.LG
This paper studies the detection of bird calls in audio segments using stacked convolutional and recurrent neural networks. Data augmentation by blocks mixing and domain adaptation using a novel method of test mixing are proposed and evaluated in regard to making the method robust to unseen data. The contributions of two kinds of acoustic features (dominant frequency and log mel-band energy) and their combinations are studied in the context of bird audio detection. Our best achieved AUC measure on five cross-validations of the development data is 95.5% and 88.1% on the unseen evaluation data.
Sharath Adavanne, Konstantinos Drossos, Emre \c{C}ak{\i}r, Tuomas Virtanen
null
1706.02047
null
null
Are Saddles Good Enough for Deep Learning?
stat.ML cs.LG cs.NE
Recent years have seen a growing interest in understanding deep neural networks from an optimization perspective. It is understood now that converging to low-cost local minima is sufficient for such models to become effective in practice. However, in this work, we propose a new hypothesis based on recent theoretical findings and empirical studies that deep neural network models actually converge to saddle points with high degeneracy. Our findings from this work are new, and can have a significant impact on the development of gradient descent based methods for training deep networks. We validated our hypotheses using an extensive experimental evaluation on standard datasets such as MNIST and CIFAR-10, and also showed that recent efforts that attempt to escape saddles finally converge to saddles with high degeneracy, which we define as `good saddles'. We also verified the famous Wigner's Semicircle Law in our experimental results.
Adepu Ravi Sankar, Vineeth N Balasubramanian
null
1706.02052
null
null
Semi-Supervised Phoneme Recognition with Recurrent Ladder Networks
cs.CL cs.LG cs.NE
Ladder networks are a notable new concept in the field of semi-supervised learning by showing state-of-the-art results in image recognition tasks while being compatible with many existing neural architectures. We present the recurrent ladder network, a novel modification of the ladder network, for semi-supervised learning of recurrent neural networks which we evaluate with a phoneme recognition task on the TIMIT corpus. Our results show that the model is able to consistently outperform the baseline and achieve fully-supervised baseline performance with only 75% of all labels which demonstrates that the model is capable of using unsupervised data as an effective regulariser.
Marian Tietz, Tayfun Alpay, Johannes Twiefel, Stefan Wermter
10.1007/978-3-319-68600-4_1
1706.02124
null
null
Inductive Representation Learning on Large Graphs
cs.SI cs.LG stat.ML
Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.
William L. Hamilton, Rex Ying, Jure Leskovec
null
1706.02216
null
null
Gated Recurrent Neural Tensor Network
cs.LG cs.CL stat.ML
Recurrent Neural Networks (RNNs), which are a powerful scheme for modeling temporal and sequential data need to capture long-term dependencies on datasets and represent them in hidden layers with a powerful model to capture more information from inputs. For modeling long-term dependencies in a dataset, the gating mechanism concept can help RNNs remember and forget previous information. Representing the hidden layers of an RNN with more expressive operations (i.e., tensor products) helps it learn a more complex relationship between the current input and the previous hidden layer information. These ideas can generally improve RNN performances. In this paper, we proposed a novel RNN architecture that combine the concepts of gating mechanism and the tensor product into a single model. By combining these two concepts into a single RNN, our proposed models learn long-term dependencies by modeling with gating units and obtain more expressive and direct interaction between input and hidden layers using a tensor product on 3-dimensional array (tensor) weight parameters. We use Long Short Term Memory (LSTM) RNN and Gated Recurrent Unit (GRU) RNN and combine them with a tensor product inside their formulations. Our proposed RNNs, which are called a Long-Short Term Memory Recurrent Neural Tensor Network (LSTMRNTN) and Gated Recurrent Unit Recurrent Neural Tensor Network (GRURNTN), are made by combining the LSTM and GRU RNN models with the tensor product. We conducted experiments with our proposed models on word-level and character-level language modeling tasks and revealed that our proposed models significantly improved their performance compared to our baseline models.
Andros Tjandra, Sakriani Sakti, Ruli Manurung, Mirna Adriani and Satoshi Nakamura
10.1109/IJCNN.2016.7727233
1706.02222
null
null
Efficient Reinforcement Learning via Initial Pure Exploration
cs.LG stat.ML
In several realistic situations, an interactive learning agent can practice and refine its strategy before going on to be evaluated. For instance, consider a student preparing for a series of tests. She would typically take a few practice tests to know which areas she needs to improve upon. Based of the scores she obtains in these practice tests, she would formulate a strategy for maximizing her scores in the actual tests. We treat this scenario in the context of an agent exploring a fixed-horizon episodic Markov Decision Process (MDP), where the agent can practice on the MDP for some number of episodes (not necessarily known in advance) before starting to incur regret for its actions. During practice, the agent's goal must be to maximize the probability of following an optimal policy. This is akin to the problem of Pure Exploration (PE). We extend the PE problem of Multi Armed Bandits (MAB) to MDPs and propose a Bayesian algorithm called Posterior Sampling for Pure Exploration (PSPE), which is similar to its bandit counterpart. We show that the Bayesian simple regret converges at an optimal exponential rate when using PSPE. When the agent starts being evaluated, its goal would be to minimize the cumulative regret incurred. This is akin to the problem of Reinforcement Learning (RL). The agent uses the Posterior Sampling for Reinforcement Learning algorithm (PSRL) initialized with the posteriors of the practice phase. We hypothesize that this PSPE + PSRL combination is an optimal strategy for minimizing regret in RL problems with an initial practice phase. We show empirical results which prove that having a lower simple regret at the end of the practice phase results in having lower cumulative regret during evaluation.
Sudeep Raja Putta, Theja Tulabandhula
null
1706.02237
null
null
Recurrent computations for visual pattern completion
q-bio.NC cs.AI cs.CV cs.LG
Making inferences from partial information constitutes a critical aspect of cognition. During visual perception, pattern completion enables recognition of poorly visible or occluded objects. We combined psychophysics, physiology and computational models to test the hypothesis that pattern completion is implemented by recurrent computations and present three pieces of evidence that are consistent with this hypothesis. First, subjects robustly recognized objects even when rendered <15% visible, but recognition was largely impaired when processing was interrupted by backward masking. Second, invasive physiological responses along the human ventral cortex exhibited visually selective responses to partially visible objects that were delayed compared to whole objects, suggesting the need for additional computations. These physiological delays were correlated with the effects of backward masking. Third, state-of-the-art feed-forward computational architectures were not robust to partial visibility. However, recognition performance was recovered when the model was augmented with attractor-based recurrent connectivity. These results provide a strong argument of plausibility for the role of recurrent computations in making visual inferences from partial information.
Hanlin Tang, Martin Schrimpf, Bill Lotter, Charlotte Moerman, Ana Paredes, Josue Ortega Caro, Walter Hardesty, David Cox, Gabriel Kreiman
10.1073/pnas.1719397115
1706.0224
null
null
Comparative Analysis of Open Source Frameworks for Machine Learning with Use Case in Single-Threaded and Multi-Threaded Modes
cs.LG cs.CV cs.DC
The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation.
Yuriy Kochura, Sergii Stirenko, Anis Rojbi, Oleg Alienin, Michail Novotarskiy, and Yuri Gordienko
10.1109/STC-CSIT.2017.8098808
1706.02248
null
null
Driver Action Prediction Using Deep (Bidirectional) Recurrent Neural Network
stat.ML cs.AI cs.CV cs.LG cs.NE
Advanced driver assistance systems (ADAS) can be significantly improved with effective driver action prediction (DAP). Predicting driver actions early and accurately can help mitigate the effects of potentially unsafe driving behaviors and avoid possible accidents. In this paper, we formulate driver action prediction as a timeseries anomaly prediction problem. While the anomaly (driver actions of interest) detection might be trivial in this context, finding patterns that consistently precede an anomaly requires searching for or extracting features across multi-modal sensory inputs. We present such a driver action prediction system, including a real-time data acquisition, processing and learning framework for predicting future or impending driver action. The proposed system incorporates camera-based knowledge of the driving environment and the driver themselves, in addition to traditional vehicle dynamics. It then uses a deep bidirectional recurrent neural network (DBRNN) to learn the correlation between sensory inputs and impending driver behavior achieving accurate and high horizon action prediction. The proposed system performs better than other existing systems on driver action prediction tasks and can accurately predict key driver actions including acceleration, braking, lane change and turning at durations of 5sec before the action is executed by the driver.
Oluwatobi Olabiyi, Eric Martinson, Vijay Chintalapudi, Rui Guo
null
1706.02257
null
null
InfoVAE: Information Maximizing Variational Autoencoders
cs.LG cs.AI stat.ML
A key advance in learning generative models is the use of amortized inference distributions that are jointly trained with the models. We find that existing training objectives for variational autoencoders can lead to inaccurate amortized inference distributions and, in some cases, improving the objective provably degrades the inference quality. In addition, it has been observed that variational autoencoders tend to ignore the latent variables when combined with a decoding distribution that is too flexible. We again identify the cause in existing training criteria and propose a new class of objectives (InfoVAE) that mitigate these problems. We show that our model can significantly improve the quality of the variational posterior and can make effective use of the latent features regardless of the flexibility of the decoding distribution. Through extensive qualitative and quantitative analyses, we demonstrate that our models outperform competing approaches on multiple performance metrics.
Shengjia Zhao, Jiaming Song, Stefano Ermon
null
1706.02262
null
null
Graph Convolutional Matrix Completion
stat.ML cs.DB cs.IR cs.LG
We consider matrix completion for recommender systems from the point of view of link prediction on graphs. Interaction data such as movie ratings can be represented by a bipartite user-item graph with labeled edges denoting observed ratings. Building on recent progress in deep learning on graph-structured data, we propose a graph auto-encoder framework based on differentiable message passing on the bipartite interaction graph. Our model shows competitive performance on standard collaborative filtering benchmarks. In settings where complimentary feature information or structured data such as a social network is available, our framework outperforms recent state-of-the-art methods.
Rianne van den Berg, Thomas N. Kipf, Max Welling
null
1706.02263
null
null
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
cs.LG cs.AI cs.NE
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, Igor Mordatch
null
1706.02275
null
null
Meta-Learning for Resampling Recommendation Systems
cs.LG stat.AP stat.CO stat.ME
One possible approach to tackle the class imbalance in classification tasks is to resample a training dataset, i.e., to drop some of its elements or to synthesize new ones. There exist several widely-used resampling methods. Recent research showed that the choice of resampling method significantly affects the quality of classification, which raises resampling selection problem. Exhaustive search for optimal resampling is time-consuming and hence it is of limited use. In this paper, we describe an alternative approach to the resampling selection. We follow the meta-learning concept to build resampling recommendation systems, i.e., algorithms recommending resampling for datasets on the basis of their properties.
Smolyakov Dmitry, Alexander Korotin, Pavel Erofeev, Artem Papanov, Evgeny Burnaev
null
1706.02289
null
null
Sound Event Detection Using Spatial Features and Convolutional Recurrent Neural Network
cs.SD cs.LG
This paper proposes to use low-level spatial features extracted from multichannel audio for sound event detection. We extend the convolutional recurrent neural network to handle more than one type of these multichannel features by learning from each of them separately in the initial stages. We show that instead of concatenating the features of each channel into a single feature vector the network learns sound events in multichannel audio better when they are presented as separate layers of a volume. Using the proposed spatial features over monaural features on the same network gives an absolute F-score improvement of 6.1% on the publicly available TUT-SED 2016 dataset and 2.7% on the TUT-SED 2009 dataset that is fifteen times larger.
Sharath Adavanne, Pasi Pertil\"a, Tuomas Virtanen
null
1706.02291
null
null
Stacked Convolutional and Recurrent Neural Networks for Music Emotion Recognition
cs.SD cs.LG
This paper studies the emotion recognition from musical tracks in the 2-dimensional valence-arousal (V-A) emotional space. We propose a method based on convolutional (CNN) and recurrent neural networks (RNN), having significantly fewer parameters compared with the state-of-the-art method for the same task. We utilize one CNN layer followed by two branches of RNNs trained separately for arousal and valence. The method was evaluated using the 'MediaEval2015 emotion in music' dataset. We achieved an RMSE of 0.202 for arousal and 0.268 for valence, which is the best result reported on this dataset.
Miroslav Malik, Sharath Adavanne, Konstantinos Drossos, Tuomas Virtanen, Dasa Ticha, Roman Jarina
null
1706.02292
null
null
Sound Event Detection in Multichannel Audio Using Spatial and Harmonic Features
cs.SD cs.LG
In this paper, we propose the use of spatial and harmonic features in combination with long short term memory (LSTM) recurrent neural network (RNN) for automatic sound event detection (SED) task. Real life sound recordings typically have many overlapping sound events, making it hard to recognize with just mono channel audio. Human listeners have been successfully recognizing the mixture of overlapping sound events using pitch cues and exploiting the stereo (multichannel) audio signal available at their ears to spatially localize these events. Traditionally SED systems have only been using mono channel audio, motivated by the human listener we propose to extend them to use multichannel audio. The proposed SED system is compared against the state of the art mono channel method on the development subset of TUT sound events detection 2016 database. The usage of spatial and harmonic features are shown to improve the performance of SED.
Sharath Adavanne, Giambattista Parascandolo, Pasi Pertil\"a, Toni Heittola, Tuomas Virtanen
null
1706.02293
null
null
Generative-Discriminative Variational Model for Visual Recognition
cs.LG
The paradigm shift from shallow classifiers with hand-crafted features to end-to-end trainable deep learning models has shown significant improvements on supervised learning tasks. Despite the promising power of deep neural networks (DNN), how to alleviate overfitting during training has been a research topic of interest. In this paper, we present a Generative-Discriminative Variational Model (GDVM) for visual classification, in which we introduce a latent variable inferred from inputs for exhibiting generative abilities towards prediction. In other words, our GDVM casts the supervised learning task as a generative learning process, with data discrimination to be jointly exploited for improved classification. In our experiments, we consider the tasks of multi-class classification, multi-label classification, and zero-shot learning. We show that our GDVM performs favorably against the baselines or recent generative DNN models.
Chih-Kuan Yeh and Yao-Hung Hubert Tsai and Yu-Chiang Frank Wang
null
1706.02295
null
null
Low-shot learning with large-scale diffusion
cs.CV cs.LG stat.ML
This paper considers the problem of inferring image labels from images when only a few annotated examples are available at training time. This setup is often referred to as low-shot learning, where a standard approach is to re-train the last few layers of a convolutional neural network learned on separate classes for which training examples are abundant. We consider a semi-supervised setting based on a large collection of images to support label propagation. This is possible by leveraging the recent advances on large-scale similarity graph construction. We show that despite its conceptual simplicity, scaling label propagation up to hundred millions of images leads to state of the art accuracy in the low-shot learning regime.
Matthijs Douze and Arthur Szlam and Bharath Hariharan and Herv\'e J\'egou
null
1706.02332
null
null
Learning to Extract Semantic Structure from Documents Using Multimodal Fully Convolutional Neural Network
cs.CV cs.LG
We present an end-to-end, multimodal, fully convolutional network for extracting semantic structures from document images. We consider document semantic structure extraction as a pixel-wise segmentation task, and propose a unified model that classifies pixels based not only on their visual appearance, as in the traditional page segmentation task, but also on the content of underlying text. Moreover, we propose an efficient synthetic document generation process that we use to generate pretraining data for our network. Once the network is trained on a large set of synthetic documents, we fine-tune the network on unlabeled real documents using a semi-supervised approach. We systematically study the optimum network architecture and show that both our multimodal approach and the synthetic data pretraining significantly boost the performance.
Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, C. Lee Giles
null
1706.02337
null
null
The Effects of Noisy Labels on Deep Convolutional Neural Networks for Music Tagging
cs.IR cs.LG cs.MM cs.SD
Deep neural networks (DNN) have been successfully applied to music classification including music tagging. However, there are several open questions regarding the training, evaluation, and analysis of DNNs. In this article, we investigate specific aspects of neural networks, the effects of noisy labels, to deepen our understanding of their properties. We analyse and (re-)validate a large music tagging dataset to investigate the reliability of training and evaluation. Using a trained network, we compute label vector similarities which is compared to groundtruth similarity. The results highlight several important aspects of music tagging and neural networks. We show that networks can be effective despite relatively large error rates in groundtruth datasets, while conjecturing that label noise can be the cause of varying tag-wise performance differences. Lastly, the analysis of our trained network provides valuable insight into the relationships between music tags. These results highlight the benefit of using data-driven methods to address automatic music tagging.
Keunwoo Choi and George Fazekas and Kyunghyun Cho and Mark Sandler
null
1706.02361
null
null
Fast Black-box Variational Inference through Stochastic Trust-Region Optimization
cs.LG stat.ML
We introduce TrustVI, a fast second-order algorithm for black-box variational inference based on trust-region optimization and the reparameterization trick. At each iteration, TrustVI proposes and assesses a step based on minibatches of draws from the variational distribution. The algorithm provably converges to a stationary point. We implemented TrustVI in the Stan framework and compared it to two alternatives: Automatic Differentiation Variational Inference (ADVI) and Hessian-free Stochastic Gradient Variational Inference (HFSGVI). The former is based on stochastic first-order optimization. The latter uses second-order information, but lacks convergence guarantees. TrustVI typically converged at least one order of magnitude faster than ADVI, demonstrating the value of stochastic second-order information. TrustVI often found substantially better variational distributions than HFSGVI, demonstrating that our convergence theory can matter in practice.
Jeffrey Regier and Michael I. Jordan and Jon McAuliffe
null
1706.02375
null
null
Training Quantized Nets: A Deeper Understanding
cs.LG cs.CV stat.ML
Currently, deep neural networks are deployed on low-power portable devices by first training a full-precision model using powerful hardware, and then deriving a corresponding low-precision model for efficient inference on such systems. However, training models directly with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memory capacity, and power consumption. Numerous recent publications have studied methods for training quantized networks, but these studies have mostly been empirical. In this work, we investigate training methods for quantized neural networks from a theoretical viewpoint. We first explore accuracy guarantees for training methods under convexity assumptions. We then look at the behavior of these algorithms for non-convex problems, and show that training algorithms that exploit high-precision representations have an important greedy search phase that purely quantized training methods lack, which explains the difficulty of training using low-precision arithmetic.
Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein
null
1706.02379
null
null
Learning the structure of Bayesian Networks via the bootstrap
cs.LG stat.ML
Learning the structure of dependencies among multiple random variables is a problem of considerable theoretical and practical interest. Within the context of Bayesian Networks, a practical and surprisingly successful solution to this learning problem is achieved by adopting score-functions optimisation schema, augmented with multiple restarts to avoid local optima. Yet, the conditions under which such strategies work well are poorly understood, and there are also some intrinsic limitations to learning the directionality of the interaction among the variables. Following an early intuition of Friedman and Koller, we propose to decouple the learning problem into two steps: first, we identify a partial ordering among input variables which constrains the structural learning problem, and then propose an effective bootstrap-based algorithm to simulate augmented data sets, and select the most important dependencies among the variables. By using several synthetic data sets, we show that our algorithm yields better recovery performance than the state of the art, increasing the chances of identifying a globally-optimal solution to the learning problem, and solving also well-known identifiability issues that affect the standard approach. We use our new algorithm to infer statistical dependencies between cancer driver somatic mutations detected by high-throughput genome sequencing data of multiple colorectal cancer patients. In this way, we also show how the proposed methods can shade new insights about cancer initiation, and progression. Code: https://github.com/caravagn/Bootstrap-based-Learning
Giulio Caravagna and Daniele Ramazzotti
null
1706.02386
null
null
CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks
astro-ph.IM cs.LG
Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmology. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally expensive. The application of deep learning techniques to generative modeling is renewing interest in using high dimensional density estimators as computationally inexpensive emulators of fully-fledged simulations. These generative models have the potential to make a dramatic shift in the field of scientific simulations, but for that shift to happen we need to study the performance of such generators in the precision regime needed for science applications. To this end, in this work we apply Generative Adversarial Networks to the problem of generating weak lensing convergence maps. We show that our generator network produces maps that are described by, with high statistical confidence, the same summary statistics as the fully simulated maps.
Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Luki\'c, Rami Al-Rfou, Jan M. Kratochvil
10.1186/s40668-019-0029-9
1706.0239
null
null
A Convex Framework for Fair Regression
cs.LG stat.ML
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the rang from notions of group fairness to strong individual fairness. By varying the weight on the fairness regularizer, we can compute the efficient frontier of the accuracy-fairness trade-off on any given dataset, and we measure the severity of this trade-off via a numerical quantity we call the Price of Fairness (PoF). The centerpiece of our results is an extensive comparative study of the PoF across six different datasets in which fairness is a primary consideration.
Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth
null
1706.02409
null
null
Generalized Value Iteration Networks: Life Beyond Lattices
cs.LG cs.AI
In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding based kernel achieves the best performance. We further propose episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for networks that contain a planning module. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scale and outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image).
Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa C. Smith, Jelena Kova\v{c}evi\'c
null
1706.02416
null
null
Seamless Integration and Coordination of Cognitive Skills in Humanoid Robots: A Deep Learning Approach
cs.AI cs.LG cs.RO
This study investigates how adequate coordination among the different cognitive processes of a humanoid robot can be developed through end-to-end learning of direct perception of visuomotor stream. We propose a deep dynamic neural network model built on a dynamic vision network, a motor generation network, and a higher-level network. The proposed model was designed to process and to integrate direct perception of dynamic visuomotor patterns in a hierarchical model characterized by different spatial and temporal constraints imposed on each level. We conducted synthetic robotic experiments in which a robot learned to read human's intention through observing the gestures and then to generate the corresponding goal-directed actions. Results verify that the proposed model is able to learn the tutored skills and to generalize them to novel situations. The model showed synergic coordination of perception, action and decision making, and it integrated and coordinated a set of cognitive skills including visual perception, intention reading, attention switching, working memory, action preparation and execution in a seamless manner. Analysis reveals that coherent internal representations emerged at each level of the hierarchy. Higher-level representation reflecting actional intention developed by means of continuous integration of the lower-level visuo-proprioceptive stream.
Jungsik Hwang and Jun Tani
null
1706.02423
null
null
Predictive Coding-based Deep Dynamic Neural Network for Visuomotor Learning
cs.AI cs.LG cs.RO q-bio.NC
This study presents a dynamic neural network model based on the predictive coding framework for perceiving and predicting the dynamic visuo-proprioceptive patterns. In our previous study [1], we have shown that the deep dynamic neural network model was able to coordinate visual perception and action generation in a seamless manner. In the current study, we extended the previous model under the predictive coding framework to endow the model with a capability of perceiving and predicting dynamic visuo-proprioceptive patterns as well as a capability of inferring intention behind the perceived visuomotor information through minimizing prediction error. A set of synthetic experiments were conducted in which a robot learned to imitate the gestures of another robot in a simulation environment. The experimental results showed that with given intention states, the model was able to mentally simulate the possible incoming dynamic visuo-proprioceptive patterns in a top-down process without the inputs from the external environment. Moreover, the results highlighted the role of minimizing prediction error in inferring underlying intention of the perceived visuo-proprioceptive patterns, supporting the predictive coding account of the mirror neuron systems. The results also revealed that minimizing prediction error in one modality induced the recall of the corresponding representation of another modality acquired during the consolidative learning of raw-level visuo-proprioceptive patterns.
Jungsik Hwang, Jinhyung Kim, Ahmadreza Ahmadi, Minkyu Choi, Jun Tani
null
1706.02444
null
null
Luck is Hard to Beat: The Difficulty of Sports Prediction
cs.LG stat.AP
Predicting the outcome of sports events is a hard task. We quantify this difficulty with a coefficient that measures the distance between the observed final results of sports leagues and idealized perfectly balanced competitions in terms of skill. This indicates the relative presence of luck and skill. We collected and analyzed all games from 198 sports leagues comprising 1503 seasons from 84 countries of 4 different sports: basketball, soccer, volleyball and handball. We measured the competitiveness by countries and sports. We also identify in each season which teams, if removed from its league, result in a completely random tournament. Surprisingly, not many of them are needed. As another contribution of this paper, we propose a probabilistic graphical model to learn about the teams' skills and to decompose the relative weights of luck and skill in each game. We break down the skill component into factors associated with the teams' characteristics. The model also allows to estimate as 0.36 the probability that an underdog team wins in the NBA league, with a home advantage adding 0.09 to this probability. As shown in the first part of the paper, luck is substantially present even in the most competitive championships, which partially explains why sophisticated and complex feature-based models hardly beat simple models in the task of forecasting sports' outcomes.
Raquel YS Aoki, Renato M Assuncao, Pedro OS Vaz de Melo
10.1145/3097983.3098045
1706.02447
null
null
Distribution-Free One-Pass Learning
cs.LG stat.ML
In many large-scale machine learning applications, data are accumulated with time, and thus, an appropriate model should be able to update in an online paradigm. Moreover, as the whole data volume is unknown when constructing the model, it is desired to scan each data item only once with a storage independent with the data volume. It is also noteworthy that the distribution underlying may change during the data accumulation procedure. To handle such tasks, in this paper we propose DFOP, a distribution-free one-pass learning approach. This approach works well when distribution change occurs during data accumulation, without requiring prior knowledge about the change. Every data item can be discarded once it has been scanned. Besides, theoretical guarantee shows that the estimate error, under a mild assumption, decreases until convergence with high probability. The performance of DFOP for both regression and classification are validated in experiments.
Peng Zhao and Zhi-Hua Zhou
10.1109/TKDE.2019.2937078
1706.02471
null
null
Forward Thinking: Building and Training Neural Networks One Layer at a Time
stat.ML cs.LG
We present a general framework for training deep neural networks without backpropagation. This substantially decreases training time and also allows for construction of deep networks with many sorts of learners, including networks whose layers are defined by functions that are not easily differentiated, like decision trees. The main idea is that layers can be trained one at a time, and once they are trained, the input data are mapped forward through the layer to create a new learning problem. The process is repeated, transforming the data through multiple layers, one at a time, rendering a new data set, which is expected to be better behaved, and on which a final output layer can achieve good performance. We call this forward thinking and demonstrate a proof of concept by achieving state-of-the-art accuracy on the MNIST dataset for convolutional neural networks. We also provide a general mathematical formulation of forward thinking that allows for other types of deep learning problems to be considered.
Chris Hettinger, Tanner Christensen, Ben Ehlert, Jeffrey Humpherys, Tyler Jarvis, and Sean Wade
null
1706.0248
null
null
Where is my forearm? Clustering of body parts from simultaneous tactile and linguistic input using sequential mapping
cs.NE cs.AI cs.CL cs.LG cs.RO
Humans and animals are constantly exposed to a continuous stream of sensory information from different modalities. At the same time, they form more compressed representations like concepts or symbols. In species that use language, this process is further structured by this interaction, where a mapping between the sensorimotor concepts and linguistic elements needs to be established. There is evidence that children might be learning language by simply disambiguating potential meanings based on multiple exposures to utterances in different contexts (cross-situational learning). In existing models, the mapping between modalities is usually found in a single step by directly using frequencies of referent and meaning co-occurrences. In this paper, we present an extension of this one-step mapping and introduce a newly proposed sequential mapping algorithm together with a publicly available Matlab implementation. For demonstration, we have chosen a less typical scenario: instead of learning to associate objects with their names, we focus on body representations. A humanoid robot is receiving tactile stimulations on its body, while at the same time listening to utterances of the body part names (e.g., hand, forearm and torso). With the goal at arriving at the correct "body categories", we demonstrate how a sequential mapping algorithm outperforms one-step mapping. In addition, the effect of data set size and noise in the linguistic input are studied.
Karla Stepanova and Matej Hoffmann and Zdenek Straka and Frederico B. Klein and Angelo Cangelosi and Michal Vavrecka
null
1706.0249
null
null
Context encoders as a simple but powerful extension of word2vec
stat.ML cs.CL cs.LG
With a simple architecture and the ability to learn meaningful word embeddings efficiently from texts containing billions of words, word2vec remains one of the most popular neural language models used today. However, as only a single embedding is learned for every word in the vocabulary, the model fails to optimally represent words with multiple meanings. Additionally, it is not possible to create embeddings for new (out-of-vocabulary) words on the spot. Based on an intuitive interpretation of the continuous bag-of-words (CBOW) word2vec model's negative sampling training objective in terms of predicting context based similarities, we motivate an extension of the model we call context encoders (ConEc). By multiplying the matrix of trained word2vec embeddings with a word's average context vector, out-of-vocabulary (OOV) embeddings and representations for a word with multiple meanings can be created based on the word's local contexts. The benefits of this approach are illustrated by using these word embeddings as features in the CoNLL 2003 named entity recognition (NER) task.
Franziska Horn
null
1706.02496
null
null
Unlocking the Potential of Simulators: Design with RL in Mind
cs.LG cs.RO
Using Reinforcement Learning (RL) in simulation to construct policies useful in real life is challenging. This is often attributed to the sequential decision making aspect: inaccuracies in simulation accumulate over multiple steps, hence the simulated trajectories diverge from what would happen in reality. In our work we show the need to consider another important aspect: the mismatch in simulating control. We bring attention to the need for modeling control as well as dynamics, since oversimplifying assumptions about applying actions of RL policies could make the policies fail on real-world systems. We design a simulator for solving a pivoting task (of interest in Robotics) and demonstrate that even a simple simulator designed with RL in mind outperforms high-fidelity simulators when it comes to learning a policy that is to be deployed on a real robotic system. We show that a phenomenon that is hard to model - friction - could be exploited successfully, even when RL is performed using a simulator with a simple dynamics and noise model. Hence, we demonstrate that as long as the main sources of uncertainty are identified, it could be possible to learn policies applicable to real systems even using a simple simulator. RL-compatible simulators could open the possibilities for applying a wide range of RL algorithms in various fields. This is important, since currently data sparsity in fields like healthcare and education frequently forces researchers and engineers to only consider sample-efficient RL approaches. Successful simulator-aided RL could increase flexibility of experimenting with RL algorithms and help applying RL policies to real-world settings in fields where data is scarce. We believe that lessons learned in Robotics could help other fields design RL-compatible simulators, so we summarize our experience and conclude with suggestions.
Rika Antonova, Silvia Cruciani
null
1706.02501
null
null
Self-Normalizing Neural Networks
cs.LG stat.ML
Deep Learning has revolutionized vision via convolutional neural networks (CNNs) and natural language processing via recurrent neural networks (RNNs). However, success stories of Deep Learning with standard feed-forward neural networks (FNNs) are rare. FNNs that perform well are typically shallow and, therefore cannot exploit many levels of abstract representations. We introduce self-normalizing neural networks (SNNs) to enable high-level abstract representations. While batch normalization requires explicit normalization, neuron activations of SNNs automatically converge towards zero mean and unit variance. The activation function of SNNs are "scaled exponential linear units" (SELUs), which induce self-normalizing properties. Using the Banach fixed-point theorem, we prove that activations close to zero mean and unit variance that are propagated through many network layers will converge towards zero mean and unit variance -- even under the presence of noise and perturbations. This convergence property of SNNs allows to (1) train deep networks with many layers, (2) employ strong regularization, and (3) to make learning highly robust. Furthermore, for activations not close to unit variance, we prove an upper and lower bound on the variance, thus, vanishing and exploding gradients are impossible. We compared SNNs on (a) 121 tasks from the UCI machine learning repository, on (b) drug discovery benchmarks, and on (c) astronomy tasks with standard FNNs and other machine learning methods such as random forests and support vector machines. SNNs significantly outperformed all competing FNN methods at 121 UCI tasks, outperformed all competing methods at the Tox21 dataset, and set a new record at an astronomy data set. The winning SNN architectures are often very deep. Implementations are available at: github.com/bioinf-jku/SNNs.
G\"unter Klambauer, Thomas Unterthiner, Andreas Mayr and Sepp Hochreiter
null
1706.02515
null
null
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
stat.ML cs.LG
Automating statistical modelling is a challenging problem in artificial intelligence. The Automatic Statistician takes a first step in this direction, by employing a kernel search algorithm with Gaussian Processes (GP) to provide interpretable statistical models for regression problems. However this does not scale due to its $O(N^3)$ running time for the model selection. We propose Scalable Kernel Composition (SKC), a scalable kernel search algorithm that extends the Automatic Statistician to bigger data sets. In doing so, we derive a cheap upper bound on the GP marginal likelihood that sandwiches the marginal likelihood with the variational lower bound . We show that the upper bound is significantly tighter than the lower bound and thus useful for model selection.
Hyunjik Kim and Yee Whye Teh
null
1706.02524
null
null
Pain-Free Random Differential Privacy with Sensitivity Sampling
cs.LG cs.CR cs.DB stat.ML
Popular approaches to differential privacy, such as the Laplace and exponential mechanisms, calibrate randomised smoothing through global sensitivity of the target non-private function. Bounding such sensitivity is often a prohibitively complex analytic calculation. As an alternative, we propose a straightforward sampler for estimating sensitivity of non-private mechanisms. Since our sensitivity estimates hold with high probability, any mechanism that would be $(\epsilon,\delta)$-differentially private under bounded global sensitivity automatically achieves $(\epsilon,\delta,\gamma)$-random differential privacy (Hall et al., 2012), without any target-specific calculations required. We demonstrate on worked example learners how our usable approach adopts a naturally-relaxed privacy guarantee, while achieving more accurate releases even for non-private functions that are black-box computer programs.
Benjamin I. P. Rubinstein, Francesco Ald\`a
null
1706.02562
null
null
Clustering with t-SNE, provably
cs.LG stat.ML
t-distributed Stochastic Neighborhood Embedding (t-SNE), a clustering and visualization method proposed by van der Maaten & Hinton in 2008, has rapidly become a standard tool in a number of natural sciences. Despite its overwhelming success, there is a distinct lack of mathematical foundations and the inner workings of the algorithm are not well understood. The purpose of this paper is to prove that t-SNE is able to recover well-separated clusters; more precisely, we prove that t-SNE in the `early exaggeration' phase, an optimization technique proposed by van der Maaten & Hinton (2008) and van der Maaten (2014), can be rigorously analyzed. As a byproduct, the proof suggests novel ways for setting the exaggeration parameter $\alpha$ and step size $h$. Numerical examples illustrate the effectiveness of these rules: in particular, the quality of embedding of topological structures (e.g. the swiss roll) improves. We also discuss a connection to spectral clustering methods.
George C. Linderman, Stefan Steinerberger
null
1706.02582
null
null
Decoupling "when to update" from "how to update"
cs.LG
Deep learning requires data. A useful approach to obtain data is to be creative and mine data from various sources, that were created for different purposes. Unfortunately, this approach often leads to noisy labels. In this paper, we propose a meta algorithm for tackling the noisy labels problem. The key idea is to decouple "when to update" from "how to update". We demonstrate the effectiveness of our algorithm by mining data for gender classification by combining the Labeled Faces in the Wild (LFW) face recognition dataset with a textual genderizing service, which leads to a noisy dataset. While our approach is very simple to implement, it leads to state-of-the-art results. We analyze some convergence properties of the proposed algorithm.
Eran Malach, Shai Shalev-Shwartz
null
1706.02613
null
null
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
stat.ML cs.LG
Generative Adversarial Networks (GANs) have shown remarkable success as a framework for training models to produce realistic-looking data. In this work, we propose a Recurrent GAN (RGAN) and Recurrent Conditional GAN (RCGAN) to produce realistic real-valued multi-dimensional time series, with an emphasis on their application to medical data. RGANs make use of recurrent neural networks in the generator and the discriminator. In the case of RCGANs, both of these RNNs are conditioned on auxiliary information. We demonstrate our models in a set of toy datasets, where we show visually and quantitatively (using sample likelihood and maximum mean discrepancy) that they can successfully generate realistic time-series. We also describe novel evaluation methods for GANs, where we generate a synthetic labelled training dataset, and evaluate on a real test set the performance of a model trained on the synthetic data, and vice-versa. We illustrate with these metrics that RCGANs can generate time-series data useful for supervised training, with only minor degradation in performance on real test data. This is demonstrated on digit classification from 'serialised' MNIST and by training an early warning system on a medical dataset of 17,000 patients from an intensive care unit. We further discuss and analyse the privacy concerns that may arise when using RCGANs to generate realistic synthetic medical time series data.
Crist\'obal Esteban, Stephanie L. Hyland, Gunnar R\"atsch
null
1706.02633
null
null
Nuclear Discrepancy for Active Learning
cs.LG stat.ML
Active learning algorithms propose which unlabeled objects should be queried for their labels to improve a predictive model the most. We study active learners that minimize generalization bounds and uncover relationships between these bounds that lead to an improved approach to active learning. In particular we show the relation between the bound of the state-of-the-art Maximum Mean Discrepancy (MMD) active learner, the bound of the Discrepancy, and a new and looser bound that we refer to as the Nuclear Discrepancy bound. We motivate this bound by a probabilistic argument: we show it considers situations which are more likely to occur. Our experiments indicate that active learning using the tightest Discrepancy bound performs the worst in terms of the squared loss. Overall, our proposed loosest Nuclear Discrepancy generalization bound performs the best. We confirm our probabilistic argument empirically: the other bounds focus on more pessimistic scenarios that are rarer in practice. We conclude that tightness of bounds is not always of main importance and that active learning methods should concentrate on realistic scenarios in order to improve performance.
Tom J. Viering, Jesse H. Krijthe, Marco Loog
null
1706.02645
null
null
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
cs.CV cs.DC cs.LG
Deep learning thrives with large neural networks and large datasets. However, larger networks and larger datasets result in longer training times that impede research and development progress. Distributed synchronous SGD offers a potential solution to this problem by dividing SGD minibatches over a pool of parallel workers. Yet to make this scheme efficient, the per-worker workload must be large, which implies nontrivial growth in the SGD minibatch size. In this paper, we empirically show that on the ImageNet dataset large minibatches cause optimization difficulties, but when these are addressed the trained networks exhibit good generalization. Specifically, we show no loss of accuracy when training with large minibatch sizes up to 8192 images. To achieve this result, we adopt a hyper-parameter-free linear scaling rule for adjusting learning rates as a function of minibatch size and develop a new warmup scheme that overcomes optimization challenges early in training. With these simple techniques, our Caffe2-based system trains ResNet-50 with a minibatch size of 8192 on 256 GPUs in one hour, while matching small minibatch accuracy. Using commodity hardware, our implementation achieves ~90% scaling efficiency when moving from 8 to 256 GPUs. Our findings enable training visual recognition models on internet-scale data with high efficiency.
Priya Goyal, Piotr Doll\'ar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, Kaiming He
null
1706.02677
null
null
Learning Local Receptive Fields and their Weight Sharing Scheme on Graphs
cs.LG cs.CV cs.NE
We propose a simple and generic layer formulation that extends the properties of convolutional layers to any domain that can be described by a graph. Namely, we use the support of its adjacency matrix to design learnable weight sharing filters able to exploit the underlying structure of signals in the same fashion as for images. The proposed formulation makes it possible to learn the weights of the filter as well as a scheme that controls how they are shared across the graph. We perform validation experiments with image datasets and show that these filters offer performances comparable with convolutional ones.
Jean-Charles Vialatte, Vincent Gripon, Gilles Coppin
null
1706.02684
null
null
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
cs.LG stat.ML
We consider the problem of detecting out-of-distribution images in neural networks. We propose ODIN, a simple and effective method that does not require any change to a pre-trained neural network. Our method is based on the observation that using temperature scaling and adding small perturbations to the input can separate the softmax score distributions between in- and out-of-distribution images, allowing for more effective detection. We show in a series of experiments that ODIN is compatible with diverse network architectures and datasets. It consistently outperforms the baseline approach by a large margin, establishing a new state-of-the-art performance on this task. For example, ODIN reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10) when the true positive rate is 95%.
Shiyu Liang, Yixuan Li and R. Srikant
null
1706.0269
null
null
Climbing a shaky ladder: Better adaptive risk estimation
cs.LG
We revisit the \emph{leaderboard problem} introduced by Blum and Hardt (2015) in an effort to reduce overfitting in machine learning benchmarks. We show that a randomized version of their Ladder algorithm achieves leaderboard error O(1/n^{0.4}) compared with the previous best rate of O(1/n^{1/3}). Short of proving that our algorithm is optimal, we point out a major obstacle toward further progress. Specifically, any improvement to our upper bound would lead to asymptotic improvements in the general adaptive estimation setting as have remained elusive in recent years. This connection also directly leads to lower bounds for specific classes of algorithms. In particular, we exhibit a new attack on the leaderboard algorithm that both theoretically and empirically distinguishes between our algorithm and previous leaderboard algorithms.
Moritz Hardt
null
1706.02733
null
null
Avoiding Discrimination through Causal Reasoning
stat.ML cs.CY cs.LG
Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about the causal data generating process?" Through the lens of causality, we make several contributions. First, we crisply articulate why and when observational criteria fail, thus formalizing what was before a matter of opinion. Second, our approach exposes previously ignored subtleties and why they are fundamental to the problem. Finally, we put forward natural causal non-discrimination criteria and develop algorithms that satisfy them.
Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, Bernhard Sch\"olkopf
null
1706.02744
null
null
Gated Orthogonal Recurrent Units: On Learning to Forget
cs.LG cs.NE stat.ML
We present a novel recurrent neural network (RNN) based model that combines the remembering ability of unitary RNNs with the ability of gated RNNs to effectively forget redundant/irrelevant information in its memory. We achieve this by extending unitary RNNs with a gating mechanism. Our model is able to outperform LSTMs, GRUs and Unitary RNNs on several long-term dependency benchmark tasks. We empirically both show the orthogonal/unitary RNNs lack the ability to forget and also the ability of GORU to simultaneously remember long term dependencies while forgetting irrelevant information. This plays an important role in recurrent neural networks. We provide competitive results along with an analysis of our model on many natural sequential tasks including the bAbI Question Answering, TIMIT speech spectrum prediction, Penn TreeBank, and synthetic tasks that involve long-term dependencies such as algorithmic, parenthesis, denoising and copying tasks.
Li Jing, Caglar Gulcehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Solja\v{c}i\'c, Yoshua Bengio
null
1706.02761
null
null
Optimizing expected word error rate via sampling for speech recognition
cs.CL cs.LG cs.NE stat.ML
State-level minimum Bayes risk (sMBR) training has become the de facto standard for sequence-level training of speech recognition acoustic models. It has an elegant formulation using the expectation semiring, and gives large improvements in word error rate (WER) over models trained solely using cross-entropy (CE) or connectionist temporal classification (CTC). sMBR training optimizes the expected number of frames at which the reference and hypothesized acoustic states differ. It may be preferable to optimize the expected WER, but WER does not interact well with the expectation semiring, and previous approaches based on computing expected WER exactly involve expanding the lattices used during training. In this paper we show how to perform optimization of the expected WER by sampling paths from the lattices used during conventional sMBR training. The gradient of the expected WER is itself an expectation, and so may be approximated using Monte Carlo sampling. We show experimentally that optimizing WER during acoustic model training gives 5% relative improvement in WER over a well-tuned sMBR baseline on a 2-channel query recognition task (Google Home).
Matt Shannon
null
1706.02776
null
null
Setting Players' Behaviors in World of Warcraft through Semi-Supervised Learning
cs.AI cs.LG
Digital games are one of the major and most important fields on the entertainment domain, which also involves cinema and music. Numerous attempts have been done to improve the quality of the games including more realistic artistic production and computer science. Assessing the player's behavior, a task known as player modeling, is currently the need of the hour which leads to possible improvements in terms of: (i) better game interaction experience, (ii) better exploitation of the relationship between players, and (iii) increasing/maintaining the number of players interested in the game. In this paper we model players using the basic four behaviors proposed in \cite{BartleArtigo}, namely: achiever, explorer, socializer and killer. Our analysis is carried out using data obtained from the game "World of Warcraft" over 3 years (2006 $-$ 2009). We employ a semi-supervised learning technique in order to find out characteristics that possibly impact player's behavior.
Marcelo Souza Nery, Roque Anderson Teixeira, Victor do Nascimento Silva, Adriano Alonso Veloso
null
1706.0278
null
null
Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
cs.LG stat.ML
Kernel $k$-means clustering can correctly identify and extract a far more varied collection of cluster structures than the linear $k$-means clustering algorithm. However, kernel $k$-means clustering is computationally expensive when the non-linear feature map is high-dimensional and there are many input points. Kernel approximation, e.g., the Nystr\"om method, has been applied in previous works to approximately solve kernel learning problems when both of the above conditions are present. This work analyzes the application of this paradigm to kernel $k$-means clustering, and shows that applying the linear $k$-means clustering algorithm to $\frac{k}{\epsilon} (1 + o(1))$ features constructed using a so-called rank-restricted Nystr\"om approximation results in cluster assignments that satisfy a $1 + \epsilon$ approximation ratio in terms of the kernel $k$-means cost function, relative to the guarantee provided by the same algorithm without the use of the Nystr\"om method. As part of the analysis, this work establishes a novel $1 + \epsilon$ relative-error trace norm guarantee for low-rank approximation using the rank-restricted Nystr\"om approximation. Empirical evaluations on the $8.1$ million instance MNIST8M dataset demonstrate the scalability and usefulness of kernel $k$-means clustering with Nystr\"om approximation. This work argues that spectral clustering using Nystr\"om approximation---a popular and computationally efficient, but theoretically unsound approach to non-linear clustering---should be replaced with the efficient and theoretically sound combination of kernel $k$-means clustering with Nystr\"om approximation. The superior performance of the latter approach is empirically verified.
Shusen Wang and Alex Gittens and Michael W. Mahoney
null
1706.02803
null
null
From Bayesian Sparsity to Gated Recurrent Nets
cs.LG
The iterations of many first-order algorithms, when applied to minimizing common regularized regression functions, often resemble neural network layers with pre-specified weights. This observation has prompted the development of learning-based approaches that purport to replace these iterations with enhanced surrogates forged as DNN models from available training data. For example, important NP-hard sparse estimation problems have recently benefitted from this genre of upgrade, with simple feedforward or recurrent networks ousting proximal gradient-based iterations. Analogously, this paper demonstrates that more powerful Bayesian algorithms for promoting sparsity, which rely on complex multi-loop majorization-minimization techniques, mirror the structure of more sophisticated long short-term memory (LSTM) networks, or alternative gated feedback networks previously designed for sequence prediction. As part of this development, we examine the parallels between latent variable trajectories operating across multiple time-scales during optimization, and the activations within deep network structures designed to adaptively model such characteristic sequences. The resulting insights lead to a novel sparse estimation system that, when granted training data, can estimate optimal solutions efficiently in regimes where other algorithms fail, including practical direction-of-arrival (DOA) and 3D geometry recovery problems. The underlying principles we expose are also suggestive of a learning process for a richer class of multi-loop algorithms in other domains.
Hao He, Bo Xin, David Wipf
null
1706.02815
null
null
A Maximum Matching Algorithm for Basis Selection in Spectral Learning
cs.LG cs.FL stat.ML
We present a solution to scale spectral algorithms for learning sequence functions. We are interested in the case where these functions are sparse (that is, for most sequences they return 0). Spectral algorithms reduce the learning problem to the task of computing an SVD decomposition over a special type of matrix called the Hankel matrix. This matrix is designed to capture the relevant statistics of the training sequences. What is crucial is that to capture long range dependencies we must consider very large Hankel matrices. Thus the computation of the SVD becomes a critical bottleneck. Our solution finds a subset of rows and columns of the Hankel that realizes a compact and informative Hankel submatrix. The novelty lies in the way that this subset is selected: we exploit a maximal bipartite matching combinatorial algorithm to look for a sub-block with full structural rank, and show how computation of this sub-block can be further improved by exploiting the specific structure of Hankel matrices.
Ariadna Quattoni, Xavier Carreras, Matthias Gall\'e
null
1706.02857
null
null
Adaptive Consensus ADMM for Distributed Optimization
cs.LG cs.NA cs.SY
The alternating direction method of multipliers (ADMM) is commonly used for distributed model fitting problems, but its performance and reliability depend strongly on user-defined penalty parameters. We study distributed ADMM methods that boost performance by using different fine-tuned algorithm parameters on each worker node. We present a O(1/k) convergence rate for adaptive ADMM methods with node-specific parameters, and propose adaptive consensus ADMM (ACADMM), which automatically tunes parameters without user oversight.
Zheng Xu, Gavin Taylor, Hao Li, Mario Figueiredo, Xiaoming Yuan, Tom Goldstein
null
1706.02869
null
null
Assessing the Performance of Deep Learning Algorithms for Newsvendor Problem
stat.ML cs.LG
In retailer management, the Newsvendor problem has widely attracted attention as one of basic inventory models. In the traditional approach to solving this problem, it relies on the probability distribution of the demand. In theory, if the probability distribution is known, the problem can be considered as fully solved. However, in any real world scenario, it is almost impossible to even approximate or estimate a better probability distribution for the demand. In recent years, researchers start adopting machine learning approach to learn a demand prediction model by using other feature information. In this paper, we propose a supervised learning that optimizes the demand quantities for products based on feature information. We demonstrate that the original Newsvendor loss function as the training objective outperforms the recently suggested quadratic loss function. The new algorithm has been assessed on both the synthetic data and real-world data, demonstrating better performance.
Yanfei Zhang and Junbin Gao
null
1706.02899
null
null
Characterizing Types of Convolution in Deep Convolutional Recurrent Neural Networks for Robust Speech Emotion Recognition
cs.LG cs.CL cs.MM cs.SD
Deep convolutional neural networks are being actively investigated in a wide range of speech and audio processing applications including speech recognition, audio event detection and computational paralinguistics, owing to their ability to reduce factors of variations, for learning from speech. However, studies have suggested to favor a certain type of convolutional operations when building a deep convolutional neural network for speech applications although there has been promising results using different types of convolutional operations. In this work, we study four types of convolutional operations on different input features for speech emotion recognition under noisy and clean conditions in order to derive a comprehensive understanding. Since affective behavioral information has been shown to reflect temporally varying of mental state and convolutional operation are applied locally in time, all deep neural networks share a deep recurrent sub-network architecture for further temporal modeling. We present detailed quantitative module-wise performance analysis to gain insights into information flows within the proposed architectures. In particular, we demonstrate the interplay of affective information and the other irrelevant information during the progression from one module to another. Finally we show that all of our deep neural networks provide state-of-the-art performance on the eNTERFACE'05 corpus.
Che-Wei Huang, Shrikanth. S. Narayanan
null
1706.02901
null
null
End-to-End Musical Key Estimation Using a Convolutional Neural Network
cs.LG cs.SD
We present an end-to-end system for musical key estimation, based on a convolutional neural network. The proposed system not only out-performs existing key estimation methods proposed in the academic literature; it is also capable of learning a unified model for diverse musical genres that performs comparably to existing systems specialised for specific genres. Our experiments confirm that different genres do differ in their interpretation of tonality, and thus a system tuned e.g. for pop music performs subpar on pieces of electronic music. They also reveal that such cross-genre setups evoke specific types of error (predicting the relative or parallel minor). However, using the data-driven approach proposed in this paper, we can train models that deal with multiple musical styles adequately, and without major losses in accuracy.
Filip Korzeniowski, Gerhard Widmer
null
1706.02921
null
null
K+ Means : An Enhancement Over K-Means Clustering Algorithm
cs.LG
K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this problem we proposed K+ Means algorithm. This algorithm is an enhancement over K-Means algorithm.
Srikanta Kolay, Kumar Sankar Ray, Abhoy Chand Mondal
null
1706.02949
null
null
Stock Trading Using PE ratio: A Dynamic Bayesian Network Modeling on Behavioral Finance and Fundamental Investment
cs.CE cs.AI cs.LG q-fin.GN
On a daily investment decision in a security market, the price earnings (PE) ratio is one of the most widely applied methods being used as a firm valuation tool by investment experts. Unfortunately, recent academic developments in financial econometrics and machine learning rarely look at this tool. In practice, fundamental PE ratios are often estimated only by subjective expert opinions. The purpose of this research is to formalize a process of fundamental PE estimation by employing advanced dynamic Bayesian network (DBN) methodology. The estimated PE ratio from our model can be used either as a information support for an expert to make investment decisions, or as an automatic trading system illustrated in experiments. Forward-backward inference and EM parameter estimation algorithms are derived with respect to the proposed DBN structure. Unlike existing works in literatures, the economic interpretation of our DBN model is well-justified by behavioral finance evidences of volatility. A simple but practical trading strategy is invented based on the result of Bayesian inference. Extensive experiments show that our trading strategy equipped with the inferenced PE ratios consistently outperforms standard investment benchmarks.
Haizhen Wang, Ratthachat Chatpatanasiri, Pairote Sattayatham
null
1706.02985
null
null
Monte-Carlo Tree Search by Best Arm Identification
stat.ML cs.LG
Recent advances in bandit tools and techniques for sequential learning are steadily enabling new applications and are promising the resolution of a range of challenging related problems. We study the game tree search problem, where the goal is to quickly identify the optimal move in a given game tree by sequentially sampling its stochastic payoffs. We develop new algorithms for trees of arbitrary depth, that operate by summarizing all deeper levels of the tree into confidence intervals at depth one, and applying a best arm identification procedure at the root. We prove new sample complexity guarantees with a refined dependence on the problem instance. We show experimentally that our algorithms outperform existing elimination-based algorithms and match previous special-purpose methods for depth-two trees.
Emilie Kaufmann (CNRS, CRIStAL, SEQUEL), Wouter Koolen (CWI)
null
1706.02986
null
null
Symmetry Learning for Function Approximation in Reinforcement Learning
stat.ML cs.AI cs.LG
In this paper we explore methods to exploit symmetries for ensuring sample efficiency in reinforcement learning (RL), this problem deserves ever increasing attention with the recent advances in the use of deep networks for complex RL tasks which require large amount of training data. We introduce a novel method to detect symmetries using reward trails observed during episodic experience and prove its completeness. We also provide a framework to incorporate the discovered symmetries for functional approximation. Finally we show that the use of potential based reward shaping is especially effective for our symmetry exploitation mechanism. Experiments on various classical problems show that our method improves the learning performance significantly by utilizing symmetry information.
Anuj Mahajan and Theja Tulabandhula
null
1706.02999
null
null
Learning optimal wavelet bases using a neural network approach
cs.NE cs.LG
A novel method for learning optimal, orthonormal wavelet bases for representing 1- and 2D signals, based on parallels between the wavelet transform and fully connected artificial neural networks, is described. The structural similarities between these two concepts are reviewed and combined to a "wavenet", allowing for the direct learning of optimal wavelet filter coefficient through stochastic gradient descent with back-propagation over ensembles of training inputs, where conditions on the filter coefficients for constituting orthonormal wavelet bases are cast as quadratic regularisations terms. We describe the practical implementation of this method, and study its performance for high-energy physics collision events for QCD $2 \to 2$ processes. It is shown that an optimal solution is found, even in a high-dimensional search space, and the implications of the result are discussed.
Andreas S{\o}gaard
null
1706.03041
null
null
Depthwise Separable Convolutions for Neural Machine Translation
cs.CL cs.LG
Depthwise separable convolutions reduce the number of parameters and computation used in convolutional operations while increasing representational efficiency. They have been shown to be successful in image classification models, both in obtaining better models than previously possible for a given parameter count (the Xception architecture) and considerably reducing the number of parameters required to perform at a given level (the MobileNets family of architectures). Recently, convolutional sequence-to-sequence networks have been applied to machine translation tasks with good results. In this work, we study how depthwise separable convolutions can be applied to neural machine translation. We introduce a new architecture inspired by Xception and ByteNet, called SliceNet, which enables a significant reduction of the parameter count and amount of computation needed to obtain results like ByteNet, and, with a similar parameter count, achieves new state-of-the-art results. In addition to showing that depthwise separable convolutions perform well for machine translation, we investigate the architectural changes that they enable: we observe that thanks to depthwise separability, we can increase the length of convolution windows, removing the need for filter dilation. We also introduce a new "super-separable" convolution operation that further reduces the number of parameters and computational cost for obtaining state-of-the-art results.
Lukasz Kaiser, Aidan N. Gomez, Francois Chollet
null
1706.03059
null
null
Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations
stat.ML cs.LG
The success of deep convolutional architectures is often attributed in part to their ability to learn multiscale and invariant representations of natural signals. However, a precise study of these properties and how they affect learning guarantees is still missing. In this paper, we consider deep convolutional representations of signals; we study their invariance to translations and to more general groups of transformations, their stability to the action of diffeomorphisms, and their ability to preserve signal information. This analysis is carried by introducing a multilayer kernel based on convolutional kernel networks and by studying the geometry induced by the kernel mapping. We then characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that it contains a large class of convolutional neural networks with homogeneous activation functions. This analysis allows us to separate data representation from learning, and to provide a canonical measure of model complexity, the RKHS norm, which controls both stability and generalization of any learned model. In addition to models in the constructed RKHS, our stability analysis also applies to convolutional networks with generic activations such as rectified linear units, and we discuss its relationship with recent generalization bounds based on spectral norms.
Alberto Bietti and Julien Mairal
null
1706.03078
null
null
Decoupling Learning Rules from Representations
cs.AI cs.LG stat.ML
In the artificial intelligence field, learning often corresponds to changing the parameters of a parameterized function. A learning rule is an algorithm or mathematical expression that specifies precisely how the parameters should be changed. When creating an artificial intelligence system, we must make two decisions: what representation should be used (i.e., what parameterized function should be used) and what learning rule should be used to search through the resulting set of representable functions. Using most learning rules, these two decisions are coupled in a subtle (and often unintentional) way. That is, using the same learning rule with two different representations that can represent the same sets of functions can result in two different outcomes. After arguing that this coupling is undesirable, particularly when using artificial neural networks, we present a method for partially decoupling these two decisions for a broad class of learning rules that span unsupervised learning, reinforcement learning, and supervised learning.
Philip S. Thomas and Christoph Dann and Emma Brunskill
null
1706.031
null
null
An Expectation-Maximization Algorithm for the Fractal Inverse Problem
stat.ML cs.LG
We present an Expectation-Maximization algorithm for the fractal inverse problem: the problem of fitting a fractal model to data. In our setting the fractals are Iterated Function Systems (IFS), with similitudes as the family of transformations. The data is a point cloud in ${\mathbb R}^H$ with arbitrary dimension $H$. Each IFS defines a probability distribution on ${\mathbb R}^H$, so that the fractal inverse problem can be cast as a problem of parameter estimation. We show that the algorithm reconstructs well-known fractals from data, with the model converging to high precision parameters. We also show the utility of the model as an approximation for datasources outside the IFS model class.
Peter Bloem and Steven de Rooij
null
1706.03149
null
null
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
cs.LG cs.SI math.OC
Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios.
David Hallac, Sagar Vare, Stephen Boyd, Jure Leskovec
null
1706.03161
null
null
Recovery Guarantees for One-hidden-layer Neural Networks
cs.LG cs.DS stat.ML
In this paper, we consider regression problems with one-hidden-layer neural networks (1NNs). We distill some properties of activation functions that lead to $\mathit{local~strong~convexity}$ in the neighborhood of the ground-truth parameters for the 1NN squared-loss objective. Most popular nonlinear activation functions satisfy the distilled properties, including rectified linear units (ReLUs), leaky ReLUs, squared ReLUs and sigmoids. For activation functions that are also smooth, we show $\mathit{local~linear~convergence}$ guarantees of gradient descent under a resampling rule. For homogeneous activations, we show tensor methods are able to initialize the parameters to fall into the local strong convexity region. As a result, tensor initialization followed by gradient descent is guaranteed to recover the ground truth with sample complexity $ d \cdot \log(1/\epsilon) \cdot \mathrm{poly}(k,\lambda )$ and computational complexity $n\cdot d \cdot \mathrm{poly}(k,\lambda) $ for smooth homogeneous activations with high probability, where $d$ is the dimension of the input, $k$ ($k\leq d$) is the number of hidden nodes, $\lambda$ is a conditioning property of the ground-truth parameter matrix between the input layer and the hidden layer, $\epsilon$ is the targeted precision and $n$ is the number of samples. To the best of our knowledge, this is the first work that provides recovery guarantees for 1NNs with both sample complexity and computational complexity $\mathit{linear}$ in the input dimension and $\mathit{logarithmic}$ in the precision.
Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon
null
1706.03175
null
null
Image Matching via Loopy RNN
cs.LG cs.CV
Most existing matching algorithms are one-off algorithms, i.e., they usually measure the distance between the two image feature representation vectors for only one time. In contrast, human's vision system achieves this task, i.e., image matching, by recursively looking at specific/related parts of both images and then making the final judgement. Towards this end, we propose a novel loopy recurrent neural network (Loopy RNN), which is capable of aggregating relationship information of two input images in a progressive/iterative manner and outputting the consolidated matching score in the final iteration. A Loopy RNN features two uniqueness. First, built on conventional long short-term memory (LSTM) nodes, it links the output gate of the tail node to the input gate of the head node, thus it brings up symmetry property required for matching. Second, a monotonous loss designed for the proposed network guarantees increasing confidence during the recursive matching process. Extensive experiments on several image matching benchmarks demonstrate the great potential of the proposed method.
Donghao Luo, Bingbing Ni, Yichao Yan, Xiaokang Yang
null
1706.0319
null
null
Online Learning for Neural Machine Translation Post-editing
cs.LG cs.CL
Neural machine translation has meant a revolution of the field. Nevertheless, post-editing the outputs of the system is mandatory for tasks requiring high translation quality. Post-editing offers a unique opportunity for improving neural machine translation systems, using online learning techniques and treating the post-edited translations as new, fresh training data. We review classical learning methods and propose a new optimization algorithm. We thoroughly compare online learning algorithms in a post-editing scenario. Results show significant improvements in translation quality and effort reduction.
\'Alvaro Peris, Luis Cebri\'an and Francisco Casacuberta
null
1706.03196
null
null
Toward Optimal Run Racing: Application to Deep Learning Calibration
cs.LG
This paper aims at one-shot learning of deep neural nets, where a highly parallel setting is considered to address the algorithm calibration problem - selecting the best neural architecture and learning hyper-parameter values depending on the dataset at hand. The notoriously expensive calibration problem is optimally reduced by detecting and early stopping non-optimal runs. The theoretical contribution regards the optimality guarantees within the multiple hypothesis testing framework. Experimentations on the Cifar10, PTB and Wiki benchmarks demonstrate the relevance of the approach with a principled and consistent improvement on the state of the art with no extra hyper-parameter.
Olivier Bousquet, Sylvain Gelly, Karol Kurach, Marc Schoenauer, Michele Sebag, Olivier Teytaud, Damien Vincent
null
1706.03199
null
null
Critical Hyper-Parameters: No Random, No Cry
cs.LG
The selection of hyper-parameters is critical in Deep Learning. Because of the long training time of complex models and the availability of compute resources in the cloud, "one-shot" optimization schemes - where the sets of hyper-parameters are selected in advance (e.g. on a grid or in a random manner) and the training is executed in parallel - are commonly used. It is known that grid search is sub-optimal, especially when only a few critical parameters matter, and suggest to use random search instead. Yet, random search can be "unlucky" and produce sets of values that leave some part of the domain unexplored. Quasi-random methods, such as Low Discrepancy Sequences (LDS) avoid these issues. We show that such methods have theoretical properties that make them appealing for performing hyperparameter search, and demonstrate that, when applied to the selection of hyperparameters of complex Deep Learning models (such as state-of-the-art LSTM language models and image classification models), they yield suitable hyperparameters values with much fewer runs than random search. We propose a particularly simple LDS method which can be used as a drop-in replacement for grid or random search in any Deep Learning pipeline, both as a fully one-shot hyperparameter search or as an initializer in iterative batch optimization.
Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, Damien Vincent
null
1706.032
null
null
ACCNet: Actor-Coordinator-Critic Net for "Learning-to-Communicate" with Deep Multi-agent Reinforcement Learning
cs.AI cs.LG
Communication is a critical factor for the big multi-agent world to stay organized and productive. Typically, most previous multi-agent "learning-to-communicate" studies try to predefine the communication protocols or use technologies such as tabular reinforcement learning and evolutionary algorithm, which can not generalize to changing environment or large collection of agents. In this paper, we propose an Actor-Coordinator-Critic Net (ACCNet) framework for solving "learning-to-communicate" problem. The ACCNet naturally combines the powerful actor-critic reinforcement learning technology with deep learning technology. It can efficiently learn the communication protocols even from scratch under partially observable environment. We demonstrate that the ACCNet can achieve better results than several baselines under both continuous and discrete action space environments. We also analyse the learned protocols and discuss some design considerations.
Hangyu Mao, Zhibo Gong, Yan Ni and Zhen Xiao
null
1706.03235
null
null
Progressive Neural Networks for Transfer Learning in Emotion Recognition
cs.LG
Many paralinguistic tasks are closely related and thus representations learned in one domain can be leveraged for another. In this paper, we investigate how knowledge can be transferred between three paralinguistic tasks: speaker, emotion, and gender recognition. Further, we extend this problem to cross-dataset tasks, asking how knowledge captured in one emotion dataset can be transferred to another. We focus on progressive neural networks and compare these networks to the conventional deep learning method of pre-training and fine-tuning. Progressive neural networks provide a way to transfer knowledge and avoid the forgetting effect present when pre-training neural networks on different tasks. Our experiments demonstrate that: (1) emotion recognition can benefit from using representations originally learned for different paralinguistic tasks and (2) transfer learning can effectively leverage additional datasets to improve the performance of emotion recognition systems.
John Gideon, Soheil Khorram, Zakaria Aldeneh, Dimitrios Dimitriadis, Emily Mower Provost
null
1706.03256
null
null
Stepwise regression for unsupervised learning
cs.LG stat.ML
I consider unsupervised extensions of the fast stepwise linear regression algorithm \cite{efroymson1960multiple}. These extensions allow one to efficiently identify highly-representative feature variable subsets within a given set of jointly distributed variables. This in turn allows for the efficient dimensional reduction of large data sets via the removal of redundant features. Fast search is effected here through the avoidance of repeat computations across trial fits, allowing for a full representative-importance ranking of a set of feature variables to be carried out in $O(n^2 m)$ time, where $n$ is the number of variables and $m$ is the number of data samples available. This runtime complexity matches that needed to carry out a single regression and is $O(n^2)$ faster than that of naive implementations. I present pseudocode suitable for efficient forward, reverse, and forward-reverse unsupervised feature selection. To illustrate the algorithm's application, I apply it to the problem of identifying representative stocks within a given financial market index -- a challenge relevant to the design of Exchange Traded Funds (ETFs). I also characterize the growth of numerical error with iteration step in these algorithms, and finally demonstrate and rationalize the observation that the forward and reverse algorithms return exactly inverted feature orderings in the weakly-correlated feature set regime.
Jonathan Landy
null
1706.03265
null
null
An Alternative to EM for Gaussian Mixture Models: Batch and Stochastic Riemannian Optimization
stat.ML cs.LG
We consider maximum likelihood estimation for Gaussian Mixture Models (Gmms). This task is almost invariably solved (in theory and practice) via the Expectation Maximization (EM) algorithm. EM owes its success to various factors, of which is its ability to fulfill positive definiteness constraints in closed form is of key importance. We propose an alternative to EM by appealing to the rich Riemannian geometry of positive definite matrices, using which we cast Gmm parameter estimation as a Riemannian optimization problem. Surprisingly, such an out-of-the-box Riemannian formulation completely fails and proves much inferior to EM. This motivates us to take a closer look at the problem geometry, and derive a better formulation that is much more amenable to Riemannian optimization. We then develop (Riemannian) batch and stochastic gradient algorithms that outperform EM, often substantially. We provide a non-asymptotic convergence analysis for our stochastic method, which is also the first (to our knowledge) such global analysis for Riemannian stochastic gradient. Numerous empirical results are included to demonstrate the effectiveness of our methods.
Reshad Hosseini, Suvrit Sra
null
1706.03267
null
null
An Online Learning Approach to Generative Adversarial Networks
cs.LG stat.ML
We consider the problem of training generative models with a Generative Adversarial Network (GAN). Although GANs can accurately model complex distributions, they are known to be difficult to train due to instabilities caused by a difficult minimax optimization problem. In this paper, we view the problem of training GANs as finding a mixed strategy in a zero-sum game. Building on ideas from online learning we propose a novel training method named Chekhov GAN 1 . On the theory side, we show that our method provably converges to an equilibrium for semi-shallow GAN architectures, i.e. architectures where the discriminator is a one layer network and the generator is arbitrary. On the practical side, we develop an efficient heuristic guided by our theoretical results, which we apply to commonly used deep GAN architectures. On several real world tasks our approach exhibits improved stability and performance compared to standard GAN training.
Paulina Grnarova and Kfir Y. Levy and Aurelien Lucchi and Thomas Hofmann and Andreas Krause
null
1706.03269
null
null
Deep Recurrent Neural Networks for seizure detection and early seizure detection systems
q-bio.QM cs.LG
Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term electroencephalogram (EEG) recordings. In addition, systems for early seizure detection can lead to the development of new types of intervention systems that are designed to control or shorten the duration of seizure events. In this article, we investigate the utility of recurrent neural networks (RNNs) in designing seizure detection and early seizure detection systems. We propose a deep learning framework via the use of Gated Recurrent Unit (GRU) RNNs for seizure detection. We use publicly available data in order to evaluate our method and demonstrate very promising evaluation results with overall accuracy close to 100 %. We also systematically investigate the application of our method for early seizure warning systems. Our method can detect about 98% of seizure events within the first 5 seconds of the overall epileptic seizure duration.
Sachin S. Talathi
null
1706.03283
null
null
Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters
cs.LG cs.CV cs.DC stat.ML
Deep learning models can take weeks to train on a single GPU-equipped machine, necessitating scaling out DL training to a GPU-cluster. However, current distributed DL implementations can scale poorly due to substantial parameter synchronization over the network, because the high throughput of GPUs allows more data batches to be processed per unit time than CPUs, leading to more frequent network synchronization. We present Poseidon, an efficient communication architecture for distributed DL on GPUs. Poseidon exploits the layered model structures in DL programs to overlap communication and computation, reducing bursty network communication. Moreover, Poseidon uses a hybrid communication scheme that optimizes the number of bytes required to synchronize each layer, according to layer properties and the number of machines. We show that Poseidon is applicable to different DL frameworks by plugging Poseidon into Caffe and TensorFlow. We show that Poseidon enables Caffe and TensorFlow to achieve 15.5x speed-up on 16 single-GPU machines, even with limited bandwidth (10GbE) and the challenging VGG19-22K network for image classification. Moreover, Poseidon-enabled TensorFlow achieves 31.5x speed-up with 32 single-GPU machines on Inception-V3, a 50% improvement over the open-source TensorFlow (20x speed-up).
Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Eric P. Xing
null
1706.03292
null
null
Neural networks and rational functions
cs.LG cs.NE stat.ML
Neural networks and rational functions efficiently approximate each other. In more detail, it is shown here that for any ReLU network, there exists a rational function of degree $O(\text{polylog}(1/\epsilon))$ which is $\epsilon$-close, and similarly for any rational function there exists a ReLU network of size $O(\text{polylog}(1/\epsilon))$ which is $\epsilon$-close. By contrast, polynomials need degree $\Omega(\text{poly}(1/\epsilon))$ to approximate even a single ReLU. When converting a ReLU network to a rational function as above, the hidden constants depend exponentially on the number of layers, which is shown to be tight; in other words, a compositional representation can be beneficial even for rational functions.
Matus Telgarsky
null
1706.03301
null
null
Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible
cs.LG cs.DS
Non-interactive Local Differential Privacy (LDP) requires data analysts to collect data from users through noisy channel at once. In this paper, we extend the frontiers of Non-interactive LDP learning and estimation from several aspects. For learning with smooth generalized linear losses, we propose an approximate stochastic gradient oracle estimated from non-interactive LDP channel, using Chebyshev expansion. Combined with inexact gradient methods, we obtain an efficient algorithm with quasi-polynomial sample complexity bound. For the high-dimensional world, we discover that under $\ell_2$-norm assumption on data points, high-dimensional sparse linear regression and mean estimation can be achieved with logarithmic dependence on dimension, using random projection and approximate recovery. We also extend our methods to Kernel Ridge Regression. Our work is the first one that makes learning and estimation possible for a broad range of learning tasks under non-interactive LDP model.
Kai Zheng, Wenlong Mou, Liwei Wang
null
1706.03316
null
null
On the Sampling Problem for Kernel Quadrature
stat.ML cs.LG math.NA stat.CO
The standard Kernel Quadrature method for numerical integration with random point sets (also called Bayesian Monte Carlo) is known to converge in root mean square error at a rate determined by the ratio $s/d$, where $s$ and $d$ encode the smoothness and dimension of the integrand. However, an empirical investigation reveals that the rate constant $C$ is highly sensitive to the distribution of the random points. In contrast to standard Monte Carlo integration, for which optimal importance sampling is well-understood, the sampling distribution that minimises $C$ for Kernel Quadrature does not admit a closed form. This paper argues that the practical choice of sampling distribution is an important open problem. One solution is considered; a novel automatic approach based on adaptive tempering and sequential Monte Carlo. Empirical results demonstrate a dramatic reduction in integration error of up to 4 orders of magnitude can be achieved with the proposed method.
Francois-Xavier Briol and Chris J. Oates and Jon Cockayne and Wilson Ye Chen and Mark Girolami
null
1706.03369
null
null
Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis
cs.LG stat.ML
The past decade has seen an explosion in the amount of digital information stored in electronic health records (EHR). While primarily designed for archiving patient clinical information and administrative healthcare tasks, many researchers have found secondary use of these records for various clinical informatics tasks. Over the same period, the machine learning community has seen widespread advances in deep learning techniques, which also have been successfully applied to the vast amount of EHR data. In this paper, we review these deep EHR systems, examining architectures, technical aspects, and clinical applications. We also identify shortcomings of current techniques and discuss avenues of future research for EHR-based deep learning.
Benjamin Shickel, Patrick Tighe, Azra Bihorac, Parisa Rashidi
10.1109/JBHI.2017.2767063
1706.03446
null
null
Optimal Auctions through Deep Learning: Advances in Differentiable Economics
cs.GT cs.AI cs.LG
Designing an incentive compatible auction that maximizes expected revenue is an intricate task. The single-item case was resolved in a seminal piece of work by Myerson in 1981, but more than 40 years later a full analytical understanding of the optimal design still remains elusive for settings with two or more items. In this work, we initiate the exploration of the use of tools from deep learning for the automated design of optimal auctions. We model an auction as a multi-layer neural network, frame optimal auction design as a constrained learning problem, and show how it can be solved using standard machine learning pipelines. In addition to providing generalization bounds, we present extensive experimental results, recovering essentially all known solutions that come from the theoretical analysis of optimal auction design problems and obtaining novel mechanisms for settings in which the optimal mechanism is unknown.
Paul D\"utting and Zhe Feng and Harikrishna Narasimhan and David C. Parkes and Sai Srivatsa Ravindranath
null
1706.03459
null
null
Confident Multiple Choice Learning
cs.LG stat.ML
Ensemble methods are arguably the most trustworthy techniques for boosting the performance of machine learning models. Popular independent ensembles (IE) relying on naive averaging/voting scheme have been of typical choice for most applications involving deep neural networks, but they do not consider advanced collaboration among ensemble models. In this paper, we propose new ensemble methods specialized for deep neural networks, called confident multiple choice learning (CMCL): it is a variant of multiple choice learning (MCL) via addressing its overconfidence issue.In particular, the proposed major components of CMCL beyond the original MCL scheme are (i) new loss, i.e., confident oracle loss, (ii) new architecture, i.e., feature sharing and (iii) new training method, i.e., stochastic labeling. We demonstrate the effect of CMCL via experiments on the image classification on CIFAR and SVHN, and the foreground-background segmentation on the iCoseg. In particular, CMCL using 5 residual networks provides 14.05% and 6.60% relative reductions in the top-1 error rates from the corresponding IE scheme for the classification task on CIFAR and SVHN, respectively.
Kimin Lee, Changho Hwang, KyoungSoo Park, Jinwoo Shin
null
1706.03475
null
null
Random Forests, Decision Trees, and Categorical Predictors: The "Absent Levels" Problem
stat.ML cs.LG
One advantage of decision tree based methods like random forests is their ability to natively handle categorical predictors without having to first transform them (e.g., by using feature engineering techniques). However, in this paper, we show how this capability can lead to an inherent "absent levels" problem for decision tree based methods that has never been thoroughly discussed, and whose consequences have never been carefully explored. This problem occurs whenever there is an indeterminacy over how to handle an observation that has reached a categorical split which was determined when the observation in question's level was absent during training. Although these incidents may appear to be innocuous, by using Leo Breiman and Adele Cutler's random forests FORTRAN code and the randomForest R package (Liaw and Wiener, 2002) as motivating case studies, we examine how overlooking the absent levels problem can systematically bias a model. Furthermore, by using three real data examples, we illustrate how absent levels can dramatically alter a model's performance in practice, and we empirically demonstrate how some simple heuristics can be used to help mitigate the effects of the absent levels problem until a more robust theoretical solution is found.
Timothy C. Au
null
1706.03492
null
null