title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
A Meta-Learning Approach to One-Step Active Learning
cs.LG
We consider the problem of learning when obtaining the training labels is costly, which is usually tackled in the literature using active-learning techniques. These approaches provide strategies to choose the examples to label before or during training. These strategies are usually based on heuristics or even theoretical measures, but are not learned as they are directly used during training. We design a model which aims at \textit{learning active-learning strategies} using a meta-learning setting. More specifically, we consider a pool-based setting, where the system observes all the examples of the dataset of a problem and has to choose the subset of examples to label in a single shot. Experiments show encouraging results.
Gabriella Contardo, Ludovic Denoyer, Thierry Artieres
null
1706.08334
null
null
GPU-acceleration for Large-scale Tree Boosting
stat.ML cs.DC cs.LG
In this paper, we present a novel massively parallel algorithm for accelerating the decision tree building procedure on GPUs (Graphics Processing Units), which is a crucial step in Gradient Boosted Decision Tree (GBDT) and random forests training. Previous GPU based tree building algorithms are based on parallel multi-scan or radix sort to find the exact tree split, and thus suffer from scalability and performance issues. We show that using a histogram based algorithm to approximately find the best split is more efficient and scalable on GPU. By identifying the difference between classical GPU-based image histogram construction and the feature histogram construction in decision tree training, we develop a fast feature histogram building kernel on GPU with carefully designed computational and memory access sequence to reduce atomic update conflict and maximize GPU utilization. Our algorithm can be used as a drop-in replacement for histogram construction in popular tree boosting systems to improve their scalability. As an example, to train GBDT on epsilon dataset, our method using a main-stream GPU is 7-8 times faster than histogram based algorithm on CPU in LightGBM and 25 times faster than the exact-split finding algorithm in XGBoost on a dual-socket 28-core Xeon server, while achieving similar prediction accuracy.
Huan Zhang, Si Si, Cho-Jui Hsieh
null
1706.08359
null
null
Approximate Steepest Coordinate Descent
cs.LG math.OC
We propose a new selection rule for the coordinate selection in coordinate descent methods for huge-scale optimization. The efficiency of this novel scheme is provably better than the efficiency of uniformly random selection, and can reach the efficiency of steepest coordinate descent (SCD), enabling an acceleration of a factor of up to $n$, the number of coordinates. In many practical applications, our scheme can be implemented at no extra cost and computational efficiency very close to the faster uniform selection. Numerical experiments with Lasso and Ridge regression show promising improvements, in line with our theoretical guarantees.
Sebastian U. Stich, Anant Raj, Martin Jaggi
null
1706.08427
null
null
Efficiency of quantum versus classical annealing in non-convex learning problems
quant-ph cond-mat.dis-nn cs.LG stat.ML
Quantum annealers aim at solving non-convex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists in designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of non-convex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes is dominated by local minima that cause exponential slow down of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions.
Carlo Baldassi, Riccardo Zecchina
10.1073/pnas.1711456115
1706.0847
null
null
Cognitive Subscore Trajectory Prediction in Alzheimer's Disease
stat.ML cs.LG
Accurate diagnosis of Alzheimer's Disease (AD) entails clinical evaluation of multiple cognition metrics and biomarkers. Metrics such as the Alzheimer's Disease Assessment Scale - Cognitive test (ADAS-cog) comprise multiple subscores that quantify different aspects of a patient's cognitive state such as learning, memory, and language production/comprehension. Although computer-aided diagnostic techniques for classification of a patient's current disease state exist, they provide little insight into the relationship between changes in brain structure and different aspects of a patient's cognitive state that occur over time in AD. We have developed a Convolutional Neural Network architecture that can concurrently predict the trajectories of the 13 subscores comprised by a subject's ADAS-cog examination results from a current minimally preprocessed structural MRI scan up to 36 months from image acquisition time without resorting to manual feature extraction. Mean performance metrics are within range of those of existing techniques that require manual feature selection and are limited to predicting aggregate scores.
Lev E. Givon (1), Laura J. Mariano (1), David O'Dowd (1), John M. Irvine (1), Abraham R. Schneider (1) ((1) The Charles Stark Draper Laboratory, Inc.)
null
1706.08491
null
null
Spectrally-normalized margin bounds for neural networks
cs.LG cs.NE stat.ML
This paper presents a margin-based multiclass generalization bound for neural networks that scales with their margin-normalized "spectral complexity": their Lipschitz constant, meaning the product of the spectral norms of the weight matrices, times a certain correction factor. This bound is empirically investigated for a standard AlexNet network trained with SGD on the mnist and cifar10 datasets, with both original and random labels; the bound, the Lipschitz constants, and the excess risks are all in direct correlation, suggesting both that SGD selects predictors whose complexity scales with the difficulty of the learning task, and secondly that the presented bound is sensitive to this complexity.
Peter Bartlett, Dylan J. Foster, Matus Telgarsky
null
1706.08498
null
null
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
cs.LG stat.ML
Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the "Fr\'echet Inception Distance" (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter
null
1706.085
null
null
On conditional parity as a notion of non-discrimination in machine learning
stat.ML cs.CY cs.LG
We identify conditional parity as a general notion of non-discrimination in machine learning. In fact, several recently proposed notions of non-discrimination, including a few counterfactual notions, are instances of conditional parity. We show that conditional parity is amenable to statistical analysis by studying randomization as a general mechanism for achieving conditional parity and a kernel-based test of conditional parity.
Ya'acov Ritov, Yuekai Sun, Ruofei Zhao
null
1706.08519
null
null
Learning Local Feature Aggregation Functions with Backpropagation
cs.LG stat.ML
This paper introduces a family of local feature aggregation functions and a novel method to estimate their parameters, such that they generate optimal representations for classification (or any task that can be expressed as a cost function minimization problem). To achieve that, we compose the local feature aggregation function with the classifier cost function and we backpropagate the gradient of this cost function in order to update the local feature aggregation function parameters. Experiments on synthetic datasets indicate that our method discovers parameters that model the class-relevant information in addition to the local feature space. Further experiments on a variety of motion and visual descriptors, both on image and video datasets, show that our method outperforms other state-of-the-art local feature aggregation functions, such as Bag of Words, Fisher Vectors and VLAD, by a large margin.
Angelos Katharopoulos, Despoina Paschalidou, Christos Diou and Anastasios Delopoulos
null
1706.0858
null
null
Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study
stat.ML cs.CV cs.LG
Deep neural networks (DNNs) have achieved unprecedented performance on a wide range of complex tasks, rapidly outpacing our understanding of the nature of their solutions. This has caused a recent surge of interest in methods for rendering modern neural systems more interpretable. In this work, we propose to address the interpretability problem in modern DNNs using the rich history of problem descriptions, theories and experimental methods developed by cognitive psychologists to study the human mind. To explore the potential value of these tools, we chose a well-established analysis from developmental psychology that explains how children learn word labels for objects, and applied that analysis to DNNs. Using datasets of stimuli inspired by the original cognitive psychology experiments, we find that state-of-the-art one shot learning models trained on ImageNet exhibit a similar bias to that observed in humans: they prefer to categorize objects according to shape rather than color. The magnitude of this shape bias varies greatly among architecturally identical, but differently seeded models, and even fluctuates within seeds throughout training, despite nearly equivalent classification performance. These results demonstrate the capability of tools from cognitive psychology for exposing hidden computational properties of DNNs, while concurrently providing us with a computational model for human word learning.
Samuel Ritter, David G.T. Barrett, Adam Santoro and Matt M. Botvinick
null
1706.08606
null
null
Fast and robust tensor decomposition with applications to dictionary learning
cs.LG cs.DS stat.ML
We develop fast spectral algorithms for tensor decomposition that match the robustness guarantees of the best known polynomial-time algorithms for this problem based on the sum-of-squares (SOS) semidefinite programming hierarchy. Our algorithms can decompose a 4-tensor with $n$-dimensional orthonormal components in the presence of error with constant spectral norm (when viewed as an $n^2$-by-$n^2$ matrix). The running time is $n^5$ which is close to linear in the input size $n^4$. We also obtain algorithms with similar running time to learn sparsely-used orthogonal dictionaries even when feature representations have constant relative sparsity and non-independent coordinates. The only previous polynomial-time algorithms to solve these problem are based on solving large semidefinite programs. In contrast, our algorithms are easy to implement directly and are based on spectral projections and tensor-mode rearrangements. Or work is inspired by recent of Hopkins, Schramm, Shi, and Steurer (STOC'16) that shows how fast spectral algorithms can achieve the guarantees of SOS for average-case problems. In this work, we introduce general techniques to capture the guarantees of SOS for worst-case problems.
Tselil Schramm and David Steurer
null
1706.08672
null
null
Proceedings of the First International Workshop on Deep Learning and Music
cs.NE cs.LG cs.MM cs.SD
Proceedings of the First International Workshop on Deep Learning and Music, joint with IJCNN, Anchorage, US, May 17-18, 2017
Dorien Herremans, Ching-Hua Chuan
10.13140/RG.2.2.22227.99364/1
1706.08675
null
null
Controlled Tactile Exploration and Haptic Object Recognition
cs.RO cs.LG
In this paper we propose a novel method for in-hand object recognition. The method is composed of a grasp stabilization controller and two exploratory behaviours to capture the shape and the softness of an object. Grasp stabilization plays an important role in recognizing objects. First, it prevents the object from slipping and facilitates the exploration of the object. Second, reaching a stable and repeatable position adds robustness to the learning algorithm and increases invariance with respect to the way in which the robot grasps the object. The stable poses are estimated using a Gaussian mixture model (GMM). We present experimental results showing that using our method the classifier can successfully distinguish 30 objects.We also compare our method with a benchmark experiment, in which the grasp stabilization is disabled. We show, with statistical significance, that our method outperforms the benchmark method.
Massimo Regoli, Nawid Jamali, Giorgio Metta and Lorenzo Natale
10.1109/ICAR.2017.8023495
1706.08697
null
null
Forecasting and Granger Modelling with Non-linear Dynamical Dependencies
cs.LG stat.ML
Traditional linear methods for forecasting multivariate time series are not able to satisfactorily model the non-linear dependencies that may exist in non-Gaussian series. We build on the theory of learning vector-valued functions in the reproducing kernel Hilbert space and develop a method for learning prediction functions that accommodate such non-linearities. The method not only learns the predictive function but also the matrix-valued kernel underlying the function search space directly from the data. Our approach is based on learning multiple matrix-valued kernels, each of those composed of a set of input kernels and a set of output kernels learned in the cone of positive semi-definite matrices. In addition to superior predictive performance in the presence of strong non-linearities, our method also recovers the hidden dynamic relationships between the series and thus is a new alternative to existing graphical Granger techniques.
Magda Gregorov\'a, Alexandros Kalousis, and St\'ephane Marchand-Maillet
null
1706.08811
null
null
Gabor frames and deep scattering networks in audio processing
cs.SD cs.LG
This paper introduces Gabor scattering, a feature extractor based on Gabor frames and Mallat's scattering transform. By using a simple signal model for audio signals specific properties of Gabor scattering are studied. It is shown that for each layer, specific invariances to certain signal characteristics occur. Furthermore, deformation stability of the coefficient vector generated by the feature extractor is derived by using a decoupling technique which exploits the contractivity of general scattering networks. Deformations are introduced as changes in spectral shape and frequency modulation. The theoretical results are illustrated by numerical examples and experiments. Numerical evidence is given by evaluation on a synthetic and a "real" data set, that the invariances encoded by the Gabor scattering transform lead to higher performance in comparison with just using Gabor transform, especially when few training samples are available.
Roswitha Bammer, Monika D\"orfler and Pavol Harar
10.3390/axioms8040106
1706.08818
null
null
TimeNet: Pre-trained deep recurrent neural network for time series classification
cs.LG
Inspired by the tremendous success of deep Convolutional Neural Networks as generic feature extractors for images, we propose TimeNet: a deep recurrent neural network (RNN) trained on diverse time series in an unsupervised manner using sequence to sequence (seq2seq) models to extract features from time series. Rather than relying on data from the problem domain, TimeNet attempts to generalize time series representation across domains by ingesting time series from several domains simultaneously. Once trained, TimeNet can be used as a generic off-the-shelf feature extractor for time series. The representations or embeddings given by a pre-trained TimeNet are found to be useful for time series classification (TSC). For several publicly available datasets from UCR TSC Archive and an industrial telematics sensor data from vehicles, we observe that a classifier learned over the TimeNet embeddings yields significantly better performance compared to (i) a classifier learned over the embeddings given by a domain-specific RNN, as well as (ii) a nearest neighbor classifier based on Dynamic Time Warping.
Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, Gautam Shroff
null
1706.08838
null
null
Preserving Differential Privacy in Convolutional Deep Belief Networks
cs.LG stat.ML
The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions.
NhatHai Phan, Xintao Wu, and Dejing Dou
null
1706.08839
null
null
Gradient Episodic Memory for Continual Learning
cs.LG cs.AI
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.
David Lopez-Paz and Marc'Aurelio Ranzato
null
1706.0884
null
null
Rate-Distortion Classification for Self-Tuning IoT Networks
cs.NI cs.LG
Many future wireless sensor networks and the Internet of Things are expected to follow a software defined paradigm, where protocol parameters and behaviors will be dynamically tuned as a function of the signal statistics. New protocols will be then injected as a software as certain events occur. For instance, new data compressors could be (re)programmed on-the-fly as the monitored signal type or its statistical properties change. We consider a lossy compression scenario, where the application tolerates some distortion of the gathered signal in return for improved energy efficiency. To reap the full benefits of this paradigm, we discuss an automatic sensor profiling approach where the signal class, and in particular the corresponding rate-distortion curve, is automatically assessed using machine learning tools (namely, support vector machines and neural networks). We show that this curve can be reliably estimated on-the-fly through the computation of a small number (from ten to twenty) of statistical features on time windows of a few hundreds samples.
Davide Zordan, Michele Rossi, Michele Zorzi
null
1706.08877
null
null
Unsupervised Feature Selection Based on Space Filling Concept
stat.ML cs.LG stat.ME
The paper deals with the adaptation of a new measure for the unsupervised feature selection problems. The proposed measure is based on space filling concept and is called the coverage measure. This measure was used for judging the quality of an experimental space filling design. In the present work, the coverage measure is adapted for selecting the smallest informative subset of variables by reducing redundancy in data. This paper proposes a simple analogy to apply this measure. It is implemented in a filter algorithm for unsupervised feature selection problems. The proposed filter algorithm is robust with high dimensional data and can be implemented without extra parameters. Further, it is tested with simulated data and real world case studies including environmental data and hyperspectral image. Finally, the results are evaluated by using random forest algorithm.
Mohamed Laib and Mikhail Kanevski
null
1706.08894
null
null
The Fog of War: A Machine Learning Approach to Forecasting Weather on Mars
astro-ph.IM cs.LG cs.NE
For over a decade, scientists at NASA's Jet Propulsion Laboratory (JPL) have been recording measurements from the Martian surface as a part of the Mars Exploration Rovers mission. One quantity of interest has been the opacity of Mars's atmosphere for its importance in day-to-day estimations of the amount of power available to the rover from its solar arrays. This paper proposes the use of neural networks as a method for forecasting Martian atmospheric opacity that is more effective than the current empirical model. The more accurate prediction provided by these networks would allow operators at JPL to make more accurate predictions of the amount of energy available to the rover when they plan activities for coming sols.
Daniele Bellutta
null
1706.08915
null
null
Classical Music Clustering Based on Acoustic Features
cs.IR cs.LG cs.SD
In this paper we cluster 330 classical music pieces collected from MusicNet database based on their musical note sequence. We use shingling and chord trajectory matrices to create signature for each music piece and performed spectral clustering to find the clusters. Based on different resolution, the output clusters distinctively indicate composition from different classical music era and different composing style of the musicians.
Xindi Wang and Syed Arefinul Haque
null
1706.08928
null
null
Reexamining Low Rank Matrix Factorization for Trace Norm Regularization
cs.LG stat.ML
Trace norm regularization is a widely used approach for learning low rank matrices. A standard optimization strategy is based on formulating the problem as one of low rank matrix factorization which, however, leads to a non-convex problem. In practice this approach works well, and it is often computationally faster than standard convex solvers such as proximal gradient methods. Nevertheless, it is not guaranteed to converge to a global optimum, and the optimization can be trapped at poor stationary points. In this paper we show that it is possible to characterize all critical points of the non-convex problem. This allows us to provide an efficient criterion to determine whether a critical point is also a global minimizer. Our analysis suggests an iterative meta-algorithm that dynamically expands the parameter space and allows the optimization to escape any non-global critical point, thereby converging to a global minimizer. The algorithm can be applied to problems such as matrix completion or multitask learning, and our analysis holds for any random initialization of the factor matrices. Finally, we confirm the good performance of the algorithm on synthetic and real datasets.
Carlo Ciliberto, Dimitris Stamos and Massimiliano Pontil
null
1706.08934
null
null
Exploring Generalization in Deep Learning
cs.LG
With a goal of understanding what drives generalization in deep networks, we consider several recently suggested explanations, including norm-based control, sharpness and robustness. We study how these measures can ensure generalization, highlighting the importance of scale normalization, and making a connection between sharpness and PAC-Bayes theory. We then investigate how well the measures explain different observed phenomena.
Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro
null
1706.08947
null
null
Training a Fully Convolutional Neural Network to Route Integrated Circuits
cs.CV cs.AI cs.LG
We present a deep, fully convolutional neural network that learns to route a circuit layout net with appropriate choice of metal tracks and wire class combinations. Inputs to the network are the encoded layouts containing spatial location of pins to be routed. After 15 fully convolutional stages followed by a score comparator, the network outputs 8 layout layers (corresponding to 4 route layers, 3 via layers and an identity-mapped pin layer) which are then decoded to obtain the routed layouts. We formulate this as a binary segmentation problem on a per-pixel per-layer basis, where the network is trained to correctly classify pixels in each layout layer to be 'on' or 'off'. To demonstrate learnability of layout design rules, we train the network on a dataset of 50,000 train and 10,000 validation samples that we generate based on certain pre-defined layout constraints. Precision, recall and $F_1$ score metrics are used to track the training progress. Our network achieves $F_1\approx97\%$ on the train set and $F_1\approx92\%$ on the validation set. We use PyTorch for implementing our model. Code is made publicly available at https://github.com/sjain-stanford/deep-route .
Sambhav R. Jain, Kye Okabe
null
1706.08948
null
null
The k-means-u* algorithm: non-local jumps and greedy retries improve k-means++ clustering
cs.LG
We present a new clustering algorithm called k-means-u* which in many cases is able to significantly improve the clusterings found by k-means++, the current de-facto standard for clustering in Euclidean spaces. First we introduce the k-means-u algorithm which starts from a result of k-means++ and attempts to improve it with a sequence of non-local "jumps" alternated by runs of standard k-means. Each jump transfers the "least useful" center towards the center with the largest local error, offset by a small random vector. This is continued as long as the error decreases and often leads to an improved solution. Occasionally k-means-u terminates despite obvious remaining optimization possibilities. By allowing a limited number of retries for the last jump it is frequently possible to reach better local minima. The resulting algorithm is called k-means-u* and dominates k-means++ wrt. solution quality which is demonstrated empirically using various data sets. By construction the logarithmic quality bound established for k-means++ holds for k-means-u* as well.
Bernd Fritzke
null
1706.09059
null
null
An Actor-Critic Contextual Bandit Algorithm for Personalized Mobile Health Interventions
stat.ML cs.LG
Increasing technological sophistication and widespread use of smartphones and wearable devices provide opportunities for innovative and highly personalized health interventions. A Just-In-Time Adaptive Intervention (JITAI) uses real-time data collection and communication capabilities of modern mobile devices to deliver interventions in real-time that are adapted to the in-the-moment needs of the user. The lack of methodological guidance in constructing data-based JITAIs remains a hurdle in advancing JITAI research despite the increasing popularity of JITAIs among clinical scientists. In this article, we make a first attempt to bridge this methodological gap by formulating the task of tailoring interventions in real-time as a contextual bandit problem. Interpretability requirements in the domain of mobile health lead us to formulate the problem differently from existing formulations intended for web applications such as ad or news article placement. Under the assumption of linear reward function, we choose the reward function (the "critic") parameterization separately from a lower dimensional parameterization of stochastic policies (the "actor"). We provide an online actor-critic algorithm that guides the construction and refinement of a JITAI. Asymptotic properties of the actor-critic algorithm are developed and backed up by numerical experiments. Additional numerical experiments are conducted to test the robustness of the algorithm when idealized assumptions used in the analysis of contextual bandit algorithm are breached.
Huitian Lei, Yangyi Lu, Ambuj Tewari, Susan A. Murphy
null
1706.0909
null
null
Generative Bridging Network in Neural Sequence Prediction
cs.AI cs.LG stat.ML
In order to alleviate data sparsity and overfitting problems in maximum likelihood estimation (MLE) for sequence prediction tasks, we propose the Generative Bridging Network (GBN), in which a novel bridge module is introduced to assist the training of the sequence prediction model (the generator network). Unlike MLE directly maximizing the conditional likelihood, the bridge extends the point-wise ground truth to a bridge distribution conditioned on it, and the generator is optimized to minimize their KL-divergence. Three different GBNs, namely uniform GBN, language-model GBN and coaching GBN, are proposed to penalize confidence, enhance language smoothness and relieve learning burden. Experiments conducted on two recognized sequence prediction tasks (machine translation and abstractive text summarization) show that our proposed GBNs can yield significant improvements over strong baselines. Furthermore, by analyzing samples drawn from different bridges, expected influences on the generator are verified.
Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li, Ming Zhou
null
1706.09152
null
null
Stochastic Bandit Models for Delayed Conversions
cs.LG
Online advertising and product recommendation are important domains of applications for multi-armed bandit methods. In these fields, the reward that is immediately available is most often only a proxy for the actual outcome of interest, which we refer to as a conversion. For instance, in web advertising, clicks can be observed within a few seconds after an ad display but the corresponding sale --if any-- will take hours, if not days to happen. This paper proposes and investigates a new stochas-tic multi-armed bandit model in the framework proposed by Chapelle (2014) --based on empirical studies in the field of web advertising-- in which each action may trigger a future reward that will then happen with a stochas-tic delay. We assume that the probability of conversion associated with each action is unknown while the distribution of the conversion delay is known, distinguishing between the (idealized) case where the conversion events may be observed whatever their delay and the more realistic setting in which late conversions are censored. We provide performance lower bounds as well as two simple but efficient algorithms based on the UCB and KLUCB frameworks. The latter algorithm, which is preferable when conversion rates are low, is based on a Poissonization argument, of independent interest in other settings where aggregation of Bernoulli observations with different success probabilities is required.
Claire Vernade, Olivier Capp\'e, Vianney Perchet
null
1706.09186
null
null
Energy-Based Sequence GANs for Recommendation and Their Connection to Imitation Learning
cs.IR cs.LG stat.ML
Recommender systems aim to find an accurate and efficient mapping from historic data of user-preferred items to a new item that is to be liked by a user. Towards this goal, energy-based sequence generative adversarial nets (EB-SeqGANs) are adopted for recommendation by learning a generative model for the time series of user-preferred items. By recasting the energy function as the feature function, the proposed EB-SeqGANs is interpreted as an instance of maximum-entropy imitation learning.
Jaeyoon Yoo, Heonseok Ha, Jihun Yi, Jongha Ryu, Chanju Kim, Jung-Woo Ha, Young-Han Kim, and Sungroh Yoon
null
1706.092
null
null
Logics and practices of transparency and opacity in real-world applications of public sector machine learning
cs.CY cs.LG
Machine learning systems are increasingly used to support public sector decision-making across a variety of sectors. Given concerns around accountability in these domains, and amidst accusations of intentional or unintentional bias, there have been increased calls for transparency of these technologies. Few, however, have considered how logics and practices concerning transparency have been understood by those involved in the machine learning systems already being piloted and deployed in public bodies today. This short paper distils insights about transparency on the ground from interviews with 27 such actors, largely public servants and relevant contractors, across 5 OECD countries. Considering transparency and opacity in relation to trust and buy-in, better decision-making, and the avoidance of gaming, it seeks to provide useful insights for those hoping to develop socio-technical approaches to transparency that might be useful to practitioners on-the-ground. An extended, archival version of this paper is available as Veale M., Van Kleek M., & Binns R. (2018). `Fairness and accountability design needs for algorithmic support in high-stakes public sector decision-making' Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI'18), http://doi.org/10.1145/3173574.3174014.
Michael Veale
null
1706.09249
null
null
Concentration of tempered posteriors and of their variational approximations
math.ST cs.LG stat.TH
While Bayesian methods are extremely popular in statistics and machine learning, their application to massive datasets is often challenging, when possible at all. Indeed, the classical MCMC algorithms are prohibitively slow when both the model dimension and the sample size are large. Variational Bayesian methods aim at approximating the posterior by a distribution in a tractable family. Thus, MCMC are replaced by an optimization algorithm which is orders of magnitude faster. VB methods have been applied in such computationally demanding applications as including collaborative filtering, image and video processing, NLP and text processing... However, despite very nice results in practice, the theoretical properties of these approximations are usually not known. In this paper, we propose a general approach to prove the concentration of variational approximations of fractional posteriors. We apply our theory to two examples: matrix completion, and Gaussian VB.
Pierre Alquier and James Ridgway
null
1706.09293
null
null
Alternative Semantic Representations for Zero-Shot Human Action Recognition
cs.CV cs.IR cs.LG cs.MM
A proper semantic representation for encoding side information is key to the success of zero-shot learning. In this paper, we explore two alternative semantic representations especially for zero-shot human action recognition: textual descriptions of human actions and deep features extracted from still images relevant to human actions. Such side information are accessible on Web with little cost, which paves a new way in gaining side information for large-scale zero-shot human action recognition. We investigate different encoding methods to generate semantic representations for human actions from such side information. Based on our zero-shot visual recognition method, we conducted experiments on UCF101 and HMDB51 to evaluate two proposed semantic representations . The results suggest that our proposed text- and image-based semantic representations outperform traditional attributes and word vectors considerably for zero-shot human action recognition. In particular, the image-based semantic representations yield the favourable performance even though the representation is extracted from a small number of images per class.
Qian Wang and Ke Chen
null
1706.09317
null
null
Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks
cs.CV cs.LG
Retinal vessel segmentation is an indispensable step for automatic detection of retinal diseases with fundoscopic images. Though many approaches have been proposed, existing methods tend to miss fine vessels or allow false positives at terminal branches. Let alone under-segmentation, over-segmentation is also problematic when quantitative studies need to measure the precise width of vessels. In this paper, we present a method that generates the precise map of retinal vessels using generative adversarial training. Our methods achieve dice coefficient of 0.829 on DRIVE dataset and 0.834 on STARE dataset which is the state-of-the-art performance on both datasets.
Jaemin Son, Sang Jun Park, and Kyu-Hwan Jung
null
1706.09318
null
null
autoBagging: Learning to Rank Bagging Workflows with Metalearning
stat.ML cs.LG
Machine Learning (ML) has been successfully applied to a wide range of domains and applications. One of the techniques behind most of these successful applications is Ensemble Learning (EL), the field of ML that gave birth to methods such as Random Forests or Boosting. The complexity of applying these techniques together with the market scarcity on ML experts, has created the need for systems that enable a fast and easy drop-in replacement for ML libraries. Automated machine learning (autoML) is the field of ML that attempts to answers these needs. Typically, these systems rely on optimization techniques such as bayesian optimization to lead the search for the best model. Our approach differs from these systems by making use of the most recent advances on metalearning and a learning to rank approach to learn from metadata. We propose autoBagging, an autoML system that automatically ranks 63 bagging workflows by exploiting past performance and dataset characterization. Results on 140 classification datasets from the OpenML platform show that autoBagging can yield better performance than the Average Rank method and achieve results that are not statistically different from an ideal model that systematically selects the best workflow for each dataset. For the purpose of reproducibility and generalizability, autoBagging is publicly available as an R package on CRAN.
F\'abio Pinto, V\'itor Cerqueira, Carlos Soares, Jo\~ao Mendes-Moreira
null
1706.09367
null
null
The difference between memory and prediction in linear recurrent networks
cs.LG
Recurrent networks are trained to memorize their input better, often in the hopes that such training will increase the ability of the network to predict. We show that networks designed to memorize input can be arbitrarily bad at prediction. We also find, for several types of inputs, that one-node networks optimized for prediction are nearly at upper bounds on predictive capacity given by Wiener filters, and are roughly equivalent in performance to randomly generated five-node networks. Our results suggest that maximizing memory capacity leads to very different networks than maximizing predictive capacity, and that optimizing recurrent weights can decrease reservoir size by half an order of magnitude.
Sarah Marzen
10.1103/PhysRevE.96.032308
1706.09382
null
null
Recovery of Missing Samples Using Sparse Approximation via a Convex Similarity Measure
stat.ML cs.LG
In this paper, we study the missing sample recovery problem using methods based on sparse approximation. In this regard, we investigate the algorithms used for solving the inverse problem associated with the restoration of missed samples of image signal. This problem is also known as inpainting in the context of image processing and for this purpose, we suggest an iterative sparse recovery algorithm based on constrained $l_1$-norm minimization with a new fidelity metric. The proposed metric called Convex SIMilarity (CSIM) index, is a simplified version of the Structural SIMilarity (SSIM) index, which is convex and error-sensitive. The optimization problem incorporating this criterion, is then solved via Alternating Direction Method of Multipliers (ADMM). Simulation results show the efficiency of the proposed method for missing sample recovery of 1D patch vectors and inpainting of 2D image signals.
Amirhossein Javaheri, Hadi Zayyani, Farokh Marvasti
null
1706.09395
null
null
CatBoost: unbiased boosting with categorical features
cs.LG
This paper presents the key algorithmic techniques behind CatBoost, a new gradient boosting toolkit. Their combination leads to CatBoost outperforming other publicly available boosting implementations in terms of quality on a variety of datasets. Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features. Both techniques were created to fight a prediction shift caused by a special kind of target leakage present in all currently existing implementations of gradient boosting algorithms. In this paper, we provide a detailed analysis of this problem and demonstrate that proposed algorithms solve it effectively, leading to excellent empirical results.
Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin
null
1706.09516
null
null
Neural SLAM: Learning to Explore with External Memory
cs.LG cs.AI cs.RO
We present an approach for agents to learn representations of a global map from sensor data, to aid their exploration in new environments. To achieve this, we embed procedures mimicking that of traditional Simultaneous Localization and Mapping (SLAM) into the soft attention based addressing of external memory architectures, in which the external memory acts as an internal representation of the environment. This structure encourages the evolution of SLAM-like behaviors inside a completely differentiable deep neural network. We show that this approach can help reinforcement learning agents to successfully explore new environments where long-term memory is essential. We validate our approach in both challenging grid-world environments and preliminary Gazebo experiments. A video of our experiments can be found at: https://goo.gl/G2Vu5y.
Jingwei Zhang, Lei Tai, Ming Liu, Joschka Boedecker, Wolfram Burgard
null
1706.0952
null
null
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
cs.LG
We propose a novel and flexible approach to meta-learning for learning-to-learn from only a few examples. Our framework is motivated by actor-critic reinforcement learning, but can be applied to both reinforcement and supervised learning. The key idea is to learn a meta-critic: an action-value function neural network that learns to criticise any actor trying to solve any specified task. For supervised learning, this corresponds to the novel idea of a trainable task-parametrised loss generator. This meta-critic approach provides a route to knowledge transfer that can flexibly deal with few-shot and semi-supervised conditions for both reinforcement and supervised learning. Promising results are shown on both reinforcement and supervised learning problems.
Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, Yongxin Yang
null
1706.09529
null
null
Distributional Adversarial Networks
cs.LG
We propose a framework for adversarial training that relies on a sample rather than a single sample point as the fundamental unit of discrimination. Inspired by discrepancy measures and two-sample tests between probability distributions, we propose two such distributional adversaries that operate and predict on samples, and show how they can be easily implemented on top of existing models. Various experimental results show that generators trained with our distributional adversaries are much more stable and are remarkably less prone to mode collapse than traditional models trained with pointwise prediction discriminators. The application of our framework to domain adaptation also results in considerable improvement over recent state-of-the-art.
Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra
null
1706.09549
null
null
Transforming Musical Signals through a Genre Classifying Convolutional Neural Network
cs.SD cs.LG cs.MM cs.NE
Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this 'informed' network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network 'understands' the music.
S. Geng, G. Ren, M. Ogihara
null
1706.09553
null
null
Music Signal Processing Using Vector Product Neural Networks
cs.SD cs.LG cs.MM cs.NE
We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.
Z.C. Fan, T.S. Chan, Y.H. Yang, and J.S. R. Jang
null
1706.09555
null
null
Machine listening intelligence
cs.SD cs.LG
This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.
C.E. Cella
null
1706.09557
null
null
Audio Spectrogram Representations for Processing with Convolutional Neural Networks
cs.SD cs.LG cs.MM cs.NE
One of the decisions that arise when designing a neural network for any application is how the data should be represented in order to be presented to, and possibly generated by, a neural network. For audio, the choice is less obvious than it seems to be for visual images, and a variety of representations have been used for different applications including the raw digitized sample stream, hand-crafted features, machine discovered features, MFCCs and variants that include deltas, and a variety of spectral representations. This paper reviews some of these representations and issues that arise, focusing particularly on spectrograms for generating audio using neural networks for style transfer.
L. Wyse
null
1706.09559
null
null
Online Convolutional Dictionary Learning
cs.LG cs.CV eess.IV
While a number of different algorithms have recently been proposed for convolutional dictionary learning, this remains an expensive problem. The single biggest impediment to learning from large training sets is the memory requirements, which grow at least linearly with the size of the training set since all existing methods are batch algorithms. The work reported here addresses this limitation by extending online dictionary learning ideas to the convolutional context.
Jialin Liu and Cristina Garcia-Cardona and Brendt Wohlberg and Wotao Yin
10.1109/ICIP.2017.8296573
1706.09563
null
null
Online Reweighted Least Squares Algorithm for Sparse Recovery and Application to Short-Wave Infrared Imaging
cs.LG
We address the problem of sparse recovery in an online setting, where random linear measurements of a sparse signal are revealed sequentially and the objective is to recover the underlying signal. We propose a reweighted least squares (RLS) algorithm to solve the problem of online sparse reconstruction, wherein a system of linear equations is solved using conjugate gradient with the arrival of every new measurement. The proposed online algorithm is useful in a setting where one seeks to design a progressive decoding strategy to reconstruct a sparse signal from linear measurements so that one does not have to wait until all measurements are acquired. Moreover, the proposed algorithm is also useful in applications where it is infeasible to process all the measurements using a batch algorithm, owing to computational and storage constraints. It is not needed a priori to collect a fixed number of measurements; rather one can keep collecting measurements until the quality of reconstruction is satisfactory and stop taking further measurements once the reconstruction is sufficiently accurate. We provide a proof-of-concept by comparing the performance of our algorithm with the RLS-based batch reconstruction strategy, known as iteratively reweighted least squares (IRLS), on natural images. Experiments on a recently proposed focal plane array-based imaging setup show up to 1 dB improvement in output peak signal-to-noise ratio as compared with the total variation-based reconstruction.
Subhadip Mukherjee, Deepak R., Huaijin Chen, Ashok Veeraraghavan, and Chandra Sekhar Seelamantula
null
1706.09585
null
null
Deep learning bank distress from news and numerical financial data
stat.ML cs.LG
In this paper we focus our attention on the exploitation of the information contained in financial news to enhance the performance of a classifier of bank distress. Such information should be analyzed and inserted into the predictive model in the most efficient way and this task deals with all the issues related to text analysis and specifically analysis of news media. Among the different models proposed for such purpose, we investigate one of the possible deep learning approaches, based on a doc2vec representation of the textual data, a kind of neural network able to map the sequential and symbolic text input onto a reduced latent semantic space. Afterwards, a second supervised neural network is trained combining news data with standard financial figures to classify banks whether in distressed or tranquil states, based on a small set of known distress events. Then the final aim is not only the improvement of the predictive performance of the classifier but also to assess the importance of news data in the classification process. Does news data really bring more useful information not contained in standard financial variables? Our results seem to confirm such hypothesis.
Paola Cerchiello, Giancarlo Nicola, Samuel Ronnqvist, Peter Sarlin
null
1706.09627
null
null
Image classification using local tensor singular value decompositions
stat.ML cs.LG stat.CO
From linear classifiers to neural networks, image classification has been a widely explored topic in mathematics, and many algorithms have proven to be effective classifiers. However, the most accurate classifiers typically have significantly high storage costs, or require complicated procedures that may be computationally expensive. We present a novel (nonlinear) classification approach using truncation of local tensor singular value decompositions (tSVD) that robustly offers accurate results, while maintaining manageable storage costs. Our approach takes advantage of the optimality of the representation under the tensor algebra described to determine to which class an image belongs. We extend our approach to a method that can determine specific pairwise match scores, which could be useful in, for example, object recognition problems where pose/position are different. We demonstrate the promise of our new techniques on the MNIST data set.
Elizabeth Newman, Misha Kilmer, and Lior Horesh
null
1706.09693
null
null
A Deep Multimodal Approach for Cold-start Music Recommendation
cs.IR cs.LG
An increasing amount of digital music is being published daily. Music streaming services often ingest all available music, but this poses a challenge: how to recommend new artists for which prior knowledge is scarce? In this work we aim to address this so-called cold-start problem by combining text and audio information with user feedback data using deep network architectures. Our method is divided into three steps. First, artist embeddings are learned from biographies by combining semantics, text features, and aggregated usage data. Second, track embeddings are learned from the audio signal and available feedback data. Finally, artist and track embeddings are combined in a multimodal network. Results suggest that both splitting the recommendation problem between feature levels (i.e., artist metadata and audio track), and merging feature embeddings in a multimodal approach improve the accuracy of the recommendations.
Sergio Oramas, Oriol Nieto, Mohamed Sordo, Xavier Serra
10.1145/3125486.3125492
1706.09739
null
null
Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria
cs.GT cond-mat.stat-mech cs.LG q-fin.EC
We study the distribution of strategies in a large game that models how agents choose among different double auction markets. We classify the possible mean field Nash equilibria, which include potentially segregated states where an agent population can split into subpopulations adopting different strategies. As the game is aggregative, the actual equilibrium strategy distributions remain undetermined, however. We therefore compare with the results of Experience-Weighted Attraction (EWA) learning, which at long times leads to Nash equilibria in the appropriate limits of large intensity of choice, low noise (long agent memory) and perfect imputation of missing scores (fictitious play). The learning dynamics breaks the indeterminacy of the Nash equilibria. Non-trivially, depending on how the relevant limits are taken, more than one type of equilibrium can be selected. These include the standard homogeneous mixed and heterogeneous pure states, but also \emph{heterogeneous mixed} states where different agents play different strategies that are not all pure. The analysis of the EWA learning involves Fokker-Planck modeling combined with large deviation methods. The theoretical results are confirmed by multi-agent simulations.
Robin Nicole and Peter Sollich
10.1371/journal.pone.0196577
1706.09763
null
null
Interpretability via Model Extraction
cs.LG cs.CY stat.ML
The ability to interpret machine learning models has become increasingly important now that machine learning is used to inform consequential decisions. We propose an approach called model extraction for interpreting complex, blackbox models. Our approach approximates the complex model using a much more interpretable model; as long as the approximation quality is good, then statistical properties of the complex model are reflected in the interpretable model. We show how model extraction can be used to understand and debug random forests and neural nets trained on several datasets from the UCI Machine Learning Repository, as well as control policies learned for several classical reinforcement learning problems.
Osbert Bastani and Carolyn Kim and Hamsa Bastani
null
1706.09773
null
null
Feature uncertainty bounding schemes for large robust nonlinear SVM classifiers
stat.ML cs.LG
We consider the binary classification problem when data are large and subject to unknown but bounded uncertainties. We address the problem by formulating the nonlinear support vector machine training problem with robust optimization. To do so, we analyze and propose two bounding schemes for uncertainties associated to random approximate features in low dimensional spaces. The proposed techniques are based on Random Fourier Features and the Nystr\"om methods. The resulting formulations can be solved with efficient stochastic approximation techniques such as stochastic (sub)-gradient, stochastic proximal gradient techniques or their variants.
Nicolas Couellan and Sophie Jan
null
1706.09795
null
null
Data-dependent Generalization Bounds for Multi-class Classification
cs.LG
In this paper, we study data-dependent generalization error bounds exhibiting a mild dependency on the number of classes, making them suitable for multi-class learning with a large number of label classes. The bounds generally hold for empirical multi-class risk minimization algorithms using an arbitrary norm as regularizer. Key to our analysis are new structural results for multi-class Gaussian complexities and empirical $\ell_\infty$-norm covering numbers, which exploit the Lipschitz continuity of the loss function with respect to the $\ell_2$- and $\ell_\infty$-norm, respectively. We establish data-dependent error bounds in terms of complexities of a linear function class defined on a finite set induced by training examples, for which we show tight lower and upper bounds. We apply the results to several prominent multi-class learning machines, exhibiting a tighter dependency on the number of classes than the state of the art. For instance, for the multi-class SVM by Crammer and Singer (2002), we obtain a data-dependent bound with a logarithmic dependency which significantly improves the previous square-root dependency. Experimental results are reported to verify the effectiveness of our theoretical findings.
Yunwen Lei, Urun Dogan, Ding-Xuan Zhou, Marius Kloft
null
1706.09814
null
null
Generalising Random Forest Parameter Optimisation to Include Stability and Cost
stat.ML cs.CY cs.LG
Random forests are among the most popular classification and regression methods used in industrial applications. To be effective, the parameters of random forests must be carefully tuned. This is usually done by choosing values that minimize the prediction error on a held out dataset. We argue that error reduction is only one of several metrics that must be considered when optimizing random forest parameters for commercial applications. We propose a novel metric that captures the stability of random forests predictions, which we argue is key for scenarios that require successive predictions. We motivate the need for multi-criteria optimization by showing that in practical applications, simply choosing the parameters that lead to the lowest error can introduce unnecessary costs and produce predictions that are not stable across independent runs. To optimize this multi-criteria trade-off, we present a new framework that efficiently finds a principled balance between these three considerations using Bayesian optimisation. The pitfalls of optimising forest parameters purely for error reduction are demonstrated using two publicly available real world datasets. We show that our framework leads to parameter settings that are markedly different from the values discovered by error reduction metrics.
C.H. Bryan Liu, Benjamin Paul Chamberlain, Duncan A. Little, Angelo Cardoso
10.1007/978-3-319-71273-4_9
1706.09865
null
null
On the Limitations of First-Order Approximation in GAN Dynamics
cs.LG cs.DS
While Generative Adversarial Networks (GANs) have demonstrated promising performance on multiple vision tasks, their learning dynamics are not yet well understood, both in theory and in practice. To address this issue, we study GAN dynamics in a simple yet rich parametric model that exhibits several of the common problematic convergence behaviors such as vanishing gradients, mode collapse, and diverging or oscillatory behavior. In spite of the non-convex nature of our model, we are able to perform a rigorous theoretical analysis of its convergence behavior. Our analysis reveals an interesting dichotomy: a GAN with an optimal discriminator provably converges, while first order approximations of the discriminator steps lead to unstable GAN dynamics and mode collapse. Our result suggests that using first order discriminator steps (the de-facto standard in most existing GAN setups) might be one of the factors that makes GAN training challenging in practice.
Jerry Li and Aleksander Madry and John Peebles and Ludwig Schmidt
null
1706.09884
null
null
Graph Convolution: A High-Order and Adaptive Approach
cs.LG stat.ML
In this paper, we presented a novel convolutional neural network framework for graph modeling, with the introduction of two new modules specially designed for graph-structured data: the $k$-th order convolution operator and the adaptive filtering module. Importantly, our framework of High-order and Adaptive Graph Convolutional Network (HA-GCN) is a general-purposed architecture that fits various applications on both node and graph centrics, as well as graph generative models. We conducted extensive experiments on demonstrating the advantages of our framework. Particularly, our HA-GCN outperforms the state-of-the-art models on node classification and molecule property prediction tasks. It also generates 32% more real molecules on the molecule generation task, both of which will significantly benefit real-world applications such as material design and drug screening.
Zhenpeng Zhou, and Xiaocheng Li
null
1706.09916
null
null
Phase Retrieval via Randomized Kaczmarz: Theoretical Guarantees
math.NA cs.IT cs.LG math.IT math.PR math.ST stat.TH
We consider the problem of phase retrieval, i.e. that of solving systems of quadratic equations. A simple variant of the randomized Kaczmarz method was recently proposed for phase retrieval, and it was shown numerically to have a computational edge over state-of-the-art Wirtinger flow methods. In this paper, we provide the first theoretical guarantee for the convergence of the randomized Kaczmarz method for phase retrieval. We show that it is sufficient to have as many Gaussian measurements as the dimension, up to a constant factor. Along the way, we introduce a sufficient condition on measurement sets for which the randomized Kaczmarz method is guaranteed to work. We show that Gaussian sampling vectors satisfy this property with high probability; this is proved using a chaining argument coupled with bounds on VC dimension and metric entropy.
Yan Shuo Tan, Roman Vershynin
null
1706.09993
null
null
Hypothesis Testing For Densities and High-Dimensional Multinomials: Sharp Local Minimax Rates
math.ST cs.IT cs.LG math.IT stat.ML stat.TH
We consider the goodness-of-fit testing problem of distinguishing whether the data are drawn from a specified distribution, versus a composite alternative separated from the null in the total variation metric. In the discrete case, we consider goodness-of-fit testing when the null distribution has a possibly growing or unbounded number of categories. In the continuous case, we consider testing a Lipschitz density, with possibly unbounded support, in the low-smoothness regime where the Lipschitz parameter is not assumed to be constant. In contrast to existing results, we show that the minimax rate and critical testing radius in these settings depend strongly, and in a precise way, on the null distribution being tested and this motivates the study of the (local) minimax rate as a function of the null distribution. For multinomials the local minimax rate was recently studied in the work of Valiant and Valiant. We re-visit and extend their results and develop two modifications to the chi-squared test whose performance we characterize. For testing Lipschitz densities, we show that the usual binning tests are inadequate in the low-smoothness regime and we design a spatially adaptive partitioning scheme that forms the basis for our locally minimax optimal tests. Furthermore, we provide the first local minimax lower bounds for this problem which yield a sharp characterization of the dependence of the critical radius on the null hypothesis being tested. In the low-smoothness regime we also provide adaptive tests, that adapt to the unknown smoothness parameter. We illustrate our results with a variety of simulations that demonstrate the practical utility of our proposed tests.
Sivaraman Balakrishnan and Larry Wasserman
null
1706.10003
null
null
Automated Audio Captioning with Recurrent Neural Networks
cs.SD cs.CL cs.LG
We present the first approach to automated audio captioning. We employ an encoder-decoder scheme with an alignment model in between. The input to the encoder is a sequence of log mel-band energies calculated from an audio file, while the output is a sequence of words, i.e. a caption. The encoder is a multi-layered, bi-directional gated recurrent unit (GRU) and the decoder a multi-layered GRU with a classification layer connected to the last GRU of the decoder. The classification layer and the alignment model are fully connected layers with shared weights between timesteps. The proposed method is evaluated using data drawn from a commercial sound effects library, ProSound Effects. The resulting captions were rated through metrics utilized in machine translation and image captioning fields. Results from metrics show that the proposed method can predict words appearing in the original caption, but not always correctly ordered.
Konstantinos Drossos, Sharath Adavanne, Tuomas Virtanen
null
1706.10006
null
null
Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method
cs.LG physics.plasm-ph
Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class$-$imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class$-$imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class$-$balanced effect of Time$-$Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry$-$INTerferometry (POINT) system.
Jian Liu, Ting Lan, Hong Qin
10.1088/1748-0221/12/10/C10004
1706.10018
null
null
Preference-based performance measures for Time-Domain Global Similarity method
cs.LG physics.plasm-ph
For Time-Domain Global Similarity (TDGS) method, which transforms the data cleaning problem into a binary classification problem about the physical similarity between channels, directly adopting common performance measures could only guarantee the performance for physical similarity. Nevertheless, practical data cleaning tasks have preferences for the correctness of original data sequences. To obtain the general expressions of performance measures based on the preferences of tasks, the mapping relations between performance of TDGS method about physical similarity and correctness of data sequences are investigated by probability theory in this paper. Performance measures for TDGS method in several common data cleaning tasks are set. Cases when these preference-based performance measures could be simplified are introduced.
Ting Lan, Jian Liu, Hong Qin
10.1088/1748-0221/12/12/C12008
1706.1002
null
null
Neural Sequence Model Training via $\alpha$-divergence Minimization
stat.ML cs.LG
We propose a new neural sequence model training method in which the objective function is defined by $\alpha$-divergence. We demonstrate that the objective function generalizes the maximum-likelihood (ML)-based and reinforcement learning (RL)-based objective functions as special cases (i.e., ML corresponds to $\alpha \to 0$ and RL to $\alpha \to1$). We also show that the gradient of the objective function can be considered a mixture of ML- and RL-based objective gradients. The experimental results of a machine translation task show that minimizing the objective function with $\alpha > 0$ outperforms $\alpha \to 0$, which corresponds to ML-based methods.
Sotetsu Koyamada, Yuta Kikuchi, Atsunori Kanemura, Shin-ichi Maeda, Shin Ishii
null
1706.10031
null
null
Providing Effective Real-time Feedback in Simulation-based Surgical Training
cs.AI cs.LG
Virtual reality simulation is becoming popular as a training platform in surgical education. However, one important aspect of simulation-based surgical training that has not received much attention is the provision of automated real-time performance feedback to support the learning process. Performance feedback is actionable advice that improves novice behaviour. In simulation, automated feedback is typically extracted from prediction models trained using data mining techniques. Existing techniques suffer from either low effectiveness or low efficiency resulting in their inability to be used in real-time. In this paper, we propose a random forest based method that finds a balance between effectiveness and efficiency. Experimental results in a temporal bone surgery simulation show that the proposed method is able to extract highly effective feedback at a high level of efficiency.
Xingjun Ma, Sudanthi Wijewickrema, Yun Zhou, Shuo Zhou, Stephen O'Leary, James Bailey
null
1706.10036
null
null
Persistence Diagrams with Linear Machine Learning Models
math.AT cs.CV cs.LG
Persistence diagrams have been widely recognized as a compact descriptor for characterizing multiscale topological features in data. When many datasets are available, statistical features embedded in those persistence diagrams can be extracted by applying machine learnings. In particular, the ability for explicitly analyzing the inverse in the original data space from those statistical features of persistence diagrams is significantly important for practical applications. In this paper, we propose a unified method for the inverse analysis by combining linear machine learning models with persistence images. The method is applied to point clouds and cubical sets, showing the ability of the statistical inverse analysis and its advantages.
Ippei Obayashi and Yasuaki Hiraoka
null
1706.10082
null
null
Prepaid or Postpaid? That is the question. Novel Methods of Subscription Type Prediction in Mobile Phone Services
cs.SI cs.LG physics.soc-ph stat.ML
In this paper we investigate the behavioural differences between mobile phone customers with prepaid and postpaid subscriptions. Our study reveals that (a) postpaid customers are more active in terms of service usage and (b) there are strong structural correlations in the mobile phone call network as connections between customers of the same subscription type are much more frequent than those between customers of different subscription types. Based on these observations we provide methods to detect the subscription type of customers by using information about their personal call statistics, and also their egocentric networks simultaneously. The key of our first approach is to cast this classification problem as a problem of graph labelling, which can be solved by max-flow min-cut algorithms. Our experiments show that, by using both user attributes and relationships, the proposed graph labelling approach is able to achieve a classification accuracy of $\sim 87\%$, which outperforms by $\sim 7\%$ supervised learning methods using only user attributes. In our second problem we aim to infer the subscription type of customers of external operators. We propose via approximate methods to solve this problem by using node attributes, and a two-ways indirect inference method based on observed homophilic structural correlations. Our results have straightforward applications in behavioural prediction and personal marketing.
Yongjun Liao, Wei Du, M\'arton Karsai, Carlos Sarraute, Martin Minnoni and Eric Fleury
null
1706.10172
null
null
Rule-Mining based classification: a benchmark study
cs.LG
This study proposed an exhaustive stable/reproducible rule-mining algorithm combined to a classifier to generate both accurate and interpretable models. Our method first extracts rules (i.e., a conjunction of conditions about the values of a small number of input features) with our exhaustive rule-mining algorithm, then constructs a new feature space based on the most relevant rules called "local features" and finally, builds a local predictive model by training a standard classifier on the new local feature space. This local feature space is easy interpretable by providing a human-understandable explanation under the explicit form of rules. Furthermore, our local predictive approach is as powerful as global classical ones like logistic regression (LR), support vector machine (SVM) and rules based methods like random forest (RF) and gradient boosted tree (GBT).
Margaux Luck, Nicolas Pallet, Cecilia Damon
null
1706.10199
null
null
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
stat.ML cs.LG
The goal of this tutorial is to introduce key models, algorithms, and open questions related to the use of optimization methods for solving problems arising in machine learning. It is written with an INFORMS audience in mind, specifically those readers who are familiar with the basics of optimization algorithms, but less familiar with machine learning. We begin by deriving a formulation of a supervised learning problem and show how it leads to various optimization problems, depending on the context and underlying assumptions. We then discuss some of the distinctive features of these optimization problems, focusing on the examples of logistic regression and the training of deep neural networks. The latter half of the tutorial focuses on optimization algorithms, first for convex logistic regression, for which we discuss the use of first-order methods, the stochastic gradient method, variance reducing stochastic methods, and second-order methods. Finally, we discuss how these approaches can be employed to the training of deep neural networks, emphasizing the difficulties that arise from the complex, nonconvex structure of these models.
Frank E. Curtis and Katya Scheinberg
null
1706.10207
null
null
On Fairness, Diversity and Randomness in Algorithmic Decision Making
stat.ML cs.LG
Consider a binary decision making process where a single machine learning classifier replaces a multitude of humans. We raise questions about the resulting loss of diversity in the decision making process. We study the potential benefits of using random classifier ensembles instead of a single classifier in the context of fairness-aware learning and demonstrate various attractive properties: (i) an ensemble of fair classifiers is guaranteed to be fair, for several different measures of fairness, (ii) an ensemble of unfair classifiers can still achieve fair outcomes, and (iii) an ensemble of classifiers can achieve better accuracy-fairness trade-offs than a single classifier. Finally, we introduce notions of distributional fairness to characterize further potential benefits of random classifier ensembles.
Nina Grgi\'c-Hla\v{c}a, Muhammad Bilal Zafar, Krishna P. Gummadi, Adrian Weller
null
1706.10208
null
null
Improving Session Recommendation with Recurrent Neural Networks by Exploiting Dwell Time
cs.IR cs.LG
Recently, Recurrent Neural Networks (RNNs) have been applied to the task of session-based recommendation. These approaches use RNNs to predict the next item in a user session based on the previ- ously visited items. While some approaches consider additional item properties, we argue that item dwell time can be used as an implicit measure of user interest to improve session-based item recommen- dations. We propose an extension to existing RNN approaches that captures user dwell time in addition to the visited items and show that recommendation performance can be improved. Additionally, we investigate the usefulness of a single validation split for model selection in the case of minor improvements and find that in our case the best model is not selected and a fold-like study with different validation sets is necessary to ensure the selection of the best model.
Alexander Dallmann (1), Alexander Grimm (1), Christian P\"olitz (1), Daniel Zoller (1), Andreas Hotho (1 and 2) ((1) University of W\"urzburg, (2) L3S Research Center)
null
1706.10231
null
null
Probabilistic Active Learning of Functions in Structural Causal Models
stat.ML cs.AI cs.LG
We consider the problem of learning the functions computing children from parents in a Structural Causal Model once the underlying causal graph has been identified. This is in some sense the second step after causal discovery. Taking a probabilistic approach to estimating these functions, we derive a natural myopic active learning scheme that identifies the intervention which is optimally informative about all of the unknown functions jointly, given previously observed data. We test the derived algorithms on simple examples, to demonstrate that they produce a structured exploration policy that significantly improves on unstructured base-lines.
Paul K. Rubenstein, Ilya Tolstikhin, Philipp Hennig, Bernhard Schoelkopf
null
1706.10234
null
null
Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes
cs.LG cs.AI stat.ML
It is widely observed that deep learning models with learned parameters generalize well, even with much more model parameters than the number of training samples. We systematically investigate the underlying reasons why deep neural networks often generalize well, and reveal the difference between the minima (with the same training error) that generalize well and those they don't. We show that it is the characteristics the landscape of the loss function that explains the good generalization capability. For the landscape of loss function for deep networks, the volume of basin of attraction of good minima dominates over that of poor minima, which guarantees optimization methods with random initialization to converge to good minima. We theoretically justify our findings through analyzing 2-layer neural networks; and show that the low-complexity solutions have a small norm of Hessian matrix with respect to model parameters. For deeper networks, extensive numerical evidence helps to support our arguments.
Lei Wu, Zhanxing Zhu, Weinan E
null
1706.10239
null
null
Bridging the Gap between Probabilistic and Deterministic Models: A Simulation Study on a Variational Bayes Predictive Coding Recurrent Neural Network Model
cs.AI cs.LG
The current paper proposes a novel variational Bayes predictive coding RNN model, which can learn to generate fluctuated temporal patterns from exemplars. The model learns to maximize the lower bound of the weighted sum of the regularization and reconstruction error terms. We examined how this weighting can affect development of different types of information processing while learning fluctuated temporal patterns. Simulation results show that strong weighting of the reconstruction term causes the development of deterministic chaos for imitating the randomness observed in target sequences, while strong weighting of the regularization term causes the development of stochastic dynamics imitating probabilistic processes observed in targets. Moreover, results indicate that the most generalized learning emerges between these two extremes. The paper concludes with implications in terms of the underlying neuronal mechanisms for autism spectrum disorder and for free action.
Ahmadreza Ahmadi and Jun Tani
null
1706.1024
null
null
SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud
cs.LG cs.CR
Inference using deep neural networks is often outsourced to the cloud since it is a computationally demanding task. However, this raises a fundamental issue of trust. How can a client be sure that the cloud has performed inference correctly? A lazy cloud provider might use a simpler but less accurate model to reduce its own computational load, or worse, maliciously modify the inference results sent to the client. We propose SafetyNets, a framework that enables an untrusted server (the cloud) to provide a client with a short mathematical proof of the correctness of inference tasks that they perform on behalf of the client. Specifically, SafetyNets develops and implements a specialized interactive proof (IP) protocol for verifiable execution of a class of deep neural networks, i.e., those that can be represented as arithmetic circuits. Our empirical results on three- and four-layer deep neural networks demonstrate the run-time costs of SafetyNets for both the client and server are low. SafetyNets detects any incorrect computations of the neural network by the untrusted server with high probability, while achieving state-of-the-art accuracy on the MNIST digit recognition (99.4%) and TIMIT speech recognition tasks (75.22%).
Zahra Ghodsi, Tianyu Gu, Siddharth Garg
null
1706.10268
null
null
Lifelong Learning in Costly Feature Spaces
cs.LG
An important long-term goal in machine learning systems is to build learning agents that, like humans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve their ability to do so efficiently. In this work, our goal is to provide new theoretical insights into the potential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel notion of resource efficiency that is critical in many real-world domains where feature evaluations are costly. That is, our learner aims to reuse information from previously learned related tasks to learn future tasks in a feature-efficient manner. Furthermore, we consider novel combinatorial ways in which learning tasks can relate. Specifically, we design lifelong learning algorithms for two structurally different and widely used families of target functions: decision trees/lists and monomials/polynomials. We also provide strong feature-efficiency guarantees for these algorithms; in fact, we show that in order to learn future targets, we need only slightly more feature evaluations per training example than what is needed to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds on the performance of a lifelong learner in these models, which are in fact tight under some conditions.
Maria-Florina Balcan, Avrim Blum, Vaishnavh Nagarajan
null
1706.10271
null
null
Noisy Networks for Exploration
cs.LG stat.ML
We introduce NoisyNet, a deep reinforcement learning agent with parametric noise added to its weights, and show that the induced stochasticity of the agent's policy can be used to aid efficient exploration. The parameters of the noise are learned with gradient descent along with the remaining network weights. NoisyNet is straightforward to implement and adds little computational overhead. We find that replacing the conventional exploration heuristics for A3C, DQN and dueling agents (entropy reward and $\epsilon$-greedy respectively) with NoisyNet yields substantially higher scores for a wide range of Atari games, in some cases advancing the agent from sub to super-human performance.
Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg
null
1706.10295
null
null
From Parity to Preference-based Notions of Fairness in Classification
stat.ML cs.LG
The adoption of automated, data-driven decision making in an ever expanding range of applications has raised concerns about its potential unfairness towards certain social groups. In this context, a number of recent studies have focused on defining, detecting, and removing unfairness from data-driven decision systems. However, the existing notions of fairness, based on parity (equality) in treatment or outcomes for different social groups, tend to be quite stringent, limiting the overall decision making accuracy. In this paper, we draw inspiration from the fair-division and envy-freeness literature in economics and game theory and propose preference-based notions of fairness -- given the choice between various sets of decision treatments or outcomes, any group of users would collectively prefer its treatment or outcomes, regardless of the (dis)parity as compared to the other groups. Then, we introduce tractable proxies to design margin-based classifiers that satisfy these preference-based notions of fairness. Finally, we experiment with a variety of synthetic and real-world datasets and show that preference-based fairness allows for greater decision accuracy than parity-based fairness.
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P. Gummadi, Adrian Weller
null
1707.0001
null
null
Penalizing Unfairness in Binary Classification
cs.LG stat.ML
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
Yahav Bechavod and Katrina Ligett
null
1707.00044
null
null
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
cs.LG cs.CY
How can we learn a classifier that is "fair" for a protected or sensitive group, when we do not know if the input to the classifier belongs to the protected group? How can we train such a classifier when data on the protected group is difficult to attain? In many settings, finding out the sensitive input attribute can be prohibitively expensive even during model training, and sometimes impossible during model serving. For example, in recommender systems, if we want to predict if a user will click on a given recommendation, we often do not know many attributes of the user, e.g., race or age, and many attributes of the content are hard to determine, e.g., the language or topic. Thus, it is not feasible to use a different classifier calibrated based on knowledge of the sensitive attribute. Here, we use an adversarial training procedure to remove information about the sensitive attribute from the latent representation learned by a neural network. In particular, we study how the choice of data for the adversarial training effects the resulting fairness properties. We find two interesting results: a small amount of data is needed to train these adversarial models, and the data distribution empirically drives the adversary's notion of fairness.
Alex Beutel, Jilin Chen, Zhe Zhao, Ed H. Chi
null
1707.00075
null
null
Exploring the Imposition of Synaptic Precision Restrictions For Evolutionary Synthesis of Deep Neural Networks
cs.NE cs.CV cs.LG
A key contributing factor to incredible success of deep neural networks has been the significant rise on massively parallel computing devices allowing researchers to greatly increase the size and depth of deep neural networks, leading to significant improvements in modeling accuracy. Although deeper, larger, or complex deep neural networks have shown considerable promise, the computational complexity of such networks is a major barrier to utilization in resource-starved scenarios. We explore the synaptogenesis of deep neural networks in the formation of efficient deep neural network architectures within an evolutionary deep intelligence framework, where a probabilistic generative modeling strategy is introduced to stochastically synthesize increasingly efficient yet effective offspring deep neural networks over generations, mimicking evolutionary processes such as heredity, random mutation, and natural selection in a probabilistic manner. In this study, we primarily explore the imposition of synaptic precision restrictions and its impact on the evolutionary synthesis of deep neural networks to synthesize more efficient network architectures tailored for resource-starved scenarios. Experimental results show significant improvements in synaptic efficiency (~10X decrease for GoogLeNet-based DetectNet) and inference speed (>5X increase for GoogLeNet-based DetectNet) while preserving modeling accuracy.
Mohammad Javad Shafiee, Francis Li, and Alexander Wong
null
1707.00095
null
null
SAM: Semantic Attribute Modulation for Language Modeling and Style Variation
cs.CL cs.LG stat.ML
This paper presents a Semantic Attribute Modulation (SAM) for language modeling and style variation. The semantic attribute modulation includes various document attributes, such as titles, authors, and document categories. We consider two types of attributes, (title attributes and category attributes), and a flexible attribute selection scheme by automatically scoring them via an attribute attention mechanism. The semantic attributes are embedded into the hidden semantic space as the generation inputs. With the attributes properly harnessed, our proposed SAM can generate interpretable texts with regard to the input attributes. Qualitative analysis, including word semantic analysis and attention values, shows the interpretability of SAM. On several typical text datasets, we empirically demonstrate the superiority of the Semantic Attribute Modulated language model with different combinations of document attributes. Moreover, we present a style variation for the lyric generation using SAM, which shows a strong connection between the style variation and the semantic attributes.
Wenbo Hu, Lifeng Hua, Lei Li, Hang Su, Tian Wang, Ning Chen, Bo Zhang
null
1707.00117
null
null
Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management
cs.CL cs.AI cs.LG
Deep reinforcement learning (RL) methods have significant potential for dialogue policy optimisation. However, they suffer from a poor performance in the early stages of learning. This is especially problematic for on-line learning with real users. Two approaches are introduced to tackle this problem. Firstly, to speed up the learning process, two sample-efficient neural networks algorithms: trust region actor-critic with experience replay (TRACER) and episodic natural actor-critic with experience replay (eNACER) are presented. For TRACER, the trust region helps to control the learning step size and avoid catastrophic model changes. For eNACER, the natural gradient identifies the steepest ascent direction in policy space to speed up the convergence. Both models employ off-policy learning with experience replay to improve sample-efficiency. Secondly, to mitigate the cold start issue, a corpus of demonstration data is utilised to pre-train the models prior to on-line reinforcement learning. Combining these two approaches, we demonstrate a practical approach to learn deep RL-based dialogue policies and demonstrate their effectiveness in a task-oriented information seeking domain.
Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Milica Gasic, and Steve Young
null
1707.0013
null
null
Fast Approximate Nearest Neighbor Search With The Navigating Spreading-out Graph
cs.LG
Approximate nearest neighbor search (ANNS) is a fundamental problem in databases and data mining. A scalable ANNS algorithm should be both memory-efficient and fast. Some early graph-based approaches have shown attractive theoretical guarantees on search time complexity, but they all suffer from the problem of high indexing time complexity. Recently, some graph-based methods have been proposed to reduce indexing complexity by approximating the traditional graphs; these methods have achieved revolutionary performance on million-scale datasets. Yet, they still can not scale to billion-node databases. In this paper, to further improve the search-efficiency and scalability of graph-based methods, we start by introducing four aspects: (1) ensuring the connectivity of the graph; (2) lowering the average out-degree of the graph for fast traversal; (3) shortening the search path; and (4) reducing the index size. Then, we propose a novel graph structure called Monotonic Relative Neighborhood Graph (MRNG) which guarantees very low search complexity (close to logarithmic time). To further lower the indexing complexity and make it practical for billion-node ANNS problems, we propose a novel graph structure named Navigating Spreading-out Graph (NSG) by approximating the MRNG. The NSG takes the four aspects into account simultaneously. Extensive experiments show that NSG outperforms all the existing algorithms significantly. In addition, NSG shows superior performance in the E-commercial search scenario of Taobao (Alibaba Group) and has been integrated into their search engine at billion-node scale.
Cong Fu, Chao Xiang, Changxu Wang, Deng Cai
null
1707.00143
null
null
Teacher-Student Curriculum Learning
cs.LG cs.AI
We propose Teacher-Student Curriculum Learning (TSCL), a framework for automatic curriculum learning, where the Student tries to learn a complex task and the Teacher automatically chooses subtasks from a given set for the Student to train on. We describe a family of Teacher algorithms that rely on the intuition that the Student should practice more those tasks on which it makes the fastest progress, i.e. where the slope of the learning curve is highest. In addition, the Teacher algorithms address the problem of forgetting by also choosing tasks where the Student's performance is getting worse. We demonstrate that TSCL matches or surpasses the results of carefully hand-crafted curricula in two tasks: addition of decimal numbers with LSTM and navigation in Minecraft. Using our automatically generated curriculum enabled to solve a Minecraft maze that could not be solved at all when training directly on solving the maze, and the learning was an order of magnitude faster than uniform sampling of subtasks.
Tambet Matiisen, Avital Oliver, Taco Cohen, John Schulman
null
1707.00183
null
null
On Scalable Inference with Stochastic Gradient Descent
stat.ML cs.LG
In many applications involving large dataset or online updating, stochastic gradient descent (SGD) provides a scalable way to compute parameter estimates and has gained increasing popularity due to its numerical convenience and memory efficiency. While the asymptotic properties of SGD-based estimators have been established decades ago, statistical inference such as interval estimation remains much unexplored. The traditional resampling method such as the bootstrap is not computationally feasible since it requires to repeatedly draw independent samples from the entire dataset. The plug-in method is not applicable when there are no explicit formulas for the covariance matrix of the estimator. In this paper, we propose a scalable inferential procedure for stochastic gradient descent, which, upon the arrival of each observation, updates the SGD estimate as well as a large number of randomly perturbed SGD estimates. The proposed method is easy to implement in practice. We establish its theoretical properties for a general class of models that includes generalized linear models and quantile regression models as special cases. The finite-sample performance and numerical utility is evaluated by simulation studies and two real data applications.
Yixin Fang, Jinfeng Xu, Lei Yang
null
1707.00192
null
null
Efficient Correlated Topic Modeling with Topic Embedding
cs.LG cs.CL stat.ML
Correlated topic modeling has been limited to small model and problem sizes due to their high computational cost and poor scaling. In this paper, we propose a new model which learns compact topic embeddings and captures topic correlations through the closeness between the topic vectors. Our method enables efficient inference in the low-dimensional embedding space, reducing previous cubic or quadratic time complexity to linear w.r.t the topic size. We further speedup variational inference with a fast sampler to exploit sparsity of topic occurrence. Extensive experiments show that our approach is capable of handling model and data scales which are several orders of magnitude larger than existing correlation results, without sacrificing modeling quality by providing competitive or superior performance in document classification and retrieval.
Junxian He, Zhiting Hu, Taylor Berg-Kirkpatrick, Ying Huang, Eric P. Xing
null
1707.00206
null
null
Location Dependent Dirichlet Processes
stat.ML cs.LG
Dirichlet processes (DP) are widely applied in Bayesian nonparametric modeling. However, in their basic form they do not directly integrate dependency information among data arising from space and time. In this paper, we propose location dependent Dirichlet processes (LDDP) which incorporate nonparametric Gaussian processes in the DP modeling framework to model such dependencies. We develop the LDDP in the context of mixture modeling, and develop a mean field variational inference algorithm for this mixture model. The effectiveness of the proposed modeling framework is shown on an image segmentation task.
Shiliang Sun, John Paisley, Qiuyang Liu
null
1707.0026
null
null
Classification non supervis\'ee des donn\'ees h\'et\'erog\`enes \`a large \'echelle
cs.DB cs.LG
When it comes to cluster massive data, response time, disk access and quality of formed classes becoming major issues for companies. It is in this context that we have come to define a clustering framework for large scale heterogeneous data that contributes to the resolution of these issues. The proposed framework is based on, firstly, the descriptive analysis based on MCA, and secondly, the MapReduce paradigm in a large scale environment. The results are encouraging and prove the efficiency of the hybrid deployment on response quality and time component as on qualitative and quantitative data.
Mohamed Ali Zoghlami, Olfa Arfaoui, Minyar Sassi Hidri, Rahma Ben Ayed
null
1707.00297
null
null
Stochastic Configuration Networks Ensemble for Large-Scale Data Analytics
cs.LG cs.NE
This paper presents a fast decorrelated neuro-ensemble with heterogeneous features for large-scale data analytics, where stochastic configuration networks (SCNs) are employed as base learner models and the well-known negative correlation learning (NCL) strategy is adopted to evaluate the output weights. By feeding a large number of samples into the SCN base models, we obtain a huge sized linear equation system which is difficult to be solved by means of computing a pseudo-inverse used in the least squares method. Based on the group of heterogeneous features, the block Jacobi and Gauss-Seidel methods are employed to iteratively evaluate the output weights, and a convergence analysis is given with a demonstration on the uniqueness of these iterative solutions. Experiments with comparisons on two large-scale datasets are carried out, and the system robustness with respect to the regularizing factor used in NCL is given. Results indicate that the proposed ensemble learning techniques have good potential for resolving large-scale data modelling problems.
Dianhui Wang, Caihao Cui
10.1016/j.ins.2017.07.003
1707.003
null
null
Variance Regularizing Adversarial Learning
stat.ML cs.LG
We introduce a novel approach for training adversarial models by replacing the discriminator score with a bi-modal Gaussian distribution over the real/fake indicator variables. In order to do this, we train the Gaussian classifier to match the target bi-modal distribution implicitly through meta-adversarial training. We hypothesize that this approach ensures a non-zero gradient to the generator, even in the limit of a perfect classifier. We test our method against standard benchmark image datasets as well as show the classifier output distribution is smooth and has overlap between the real and fake modes.
Karan Grewal and R Devon Hjelm and Yoshua Bengio
null
1707.00309
null
null
Dimensionality reduction with missing values imputation
cs.LG cs.DS stat.ML
In this study, we propose a new statical approach for high-dimensionality reduction of heterogenous data that limits the curse of dimensionality and deals with missing values. To handle these latter, we propose to use the Random Forest imputation's method. The main purpose here is to extract useful information and so reducing the search space to facilitate the data exploration process. Several illustrative numeric examples, using data coming from publicly available machine learning repositories are also included. The experimental component of the study shows the efficiency of the proposed analytical approach.
Rania Mkhinini Gahar, Olfa Arfaoui, Minyar Sassi Hidri, Nejib Ben-Hadj Alouane
null
1707.00351
null
null
Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems
stat.ML cs.CV cs.IT cs.LG math.IT
Recently, deep learning approaches with various network architectures have achieved significant performance improvement over existing iterative reconstruction methods in various imaging problems. However, it is still unclear why these deep learning architectures work for specific inverse problems. To address these issues, here we show that the long-searched-for missing link is the convolution framelets for representing a signal by convolving local and non-local bases. The convolution framelets was originally developed to generalize the theory of low-rank Hankel matrix approaches for inverse problems, and this paper further extends the idea so that we can obtain a deep neural network using multilayer convolution framelets with perfect reconstruction (PR) under rectilinear linear unit nonlinearity (ReLU). Our analysis also shows that the popular deep network components such as residual block, redundant filter channels, and concatenated ReLU (CReLU) do indeed help to achieve the PR, while the pooling and unpooling layers should be augmented with high-pass branches to meet the PR condition. Moreover, by changing the number of filter channels and bias, we can control the shrinkage behaviors of the neural network. This discovery leads us to propose a novel theory for deep convolutional framelets neural network. Using numerical experiments with various inverse problems, we demonstrated that our deep convolution framelets network shows consistent improvement over existing deep architectures.This discovery suggests that the success of deep learning is not from a magical power of a black-box, but rather comes from the power of a novel signal representation using non-local basis combined with data-driven local basis, which is indeed a natural extension of classical signal processing theory.
Jong Chul Ye, Yoseob Han, Eunju Cha
null
1707.00372
null
null
Convolutional Dictionary Learning: Acceleration and Convergence
cs.LG math.OC
Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.
Il Yong Chun, Jeffrey A. Fessler
10.1109/TIP.2017.2761545
1707.00389
null
null
Fair Pipelines
cs.CY cs.LG stat.ML
This work facilitates ensuring fairness of machine learning in the real world by decoupling fairness considerations in compound decisions. In particular, this work studies how fairness propagates through a compound decision-making processes, which we call a pipeline. Prior work in algorithmic fairness only focuses on fairness with respect to one decision. However, many decision-making processes require more than one decision. For instance, hiring is at least a two stage model: deciding who to interview from the applicant pool and then deciding who to hire from the interview pool. Perhaps surprisingly, we show that the composition of fair components may not guarantee a fair pipeline under a $(1+\varepsilon)$-equal opportunity definition of fair. However, we identify circumstances that do provide that guarantee. We also propose numerous directions for future work on more general compound machine learning decisions.
Amanda Bower and Sarah N. Kitchen and Laura Niss and Martin J. Strauss and Alexander Vargas and Suresh Venkatasubramanian
null
1707.00391
null
null
Dual Supervised Learning
cs.LG stat.ML
Many supervised learning tasks are emerged in dual forms, e.g., English-to-French translation vs. French-to-English translation, speech recognition vs. text to speech, and image classification vs. image generation. Two dual tasks have intrinsic connections with each other due to the probabilistic correlation between their models. This connection is, however, not effectively utilized today, since people usually train the models of two dual tasks separately and independently. In this work, we propose training the models of two dual tasks simultaneously, and explicitly exploiting the probabilistic correlation between them to regularize the training process. For ease of reference, we call the proposed approach \emph{dual supervised learning}. We demonstrate that dual supervised learning can improve the practical performances of both tasks, for various applications including machine translation, image processing, and sentiment analysis.
Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai Yu, Tie-Yan Liu
null
1707.00415
null
null
Learning Deep Latent Spaces for Multi-Label Classification
cs.LG
Multi-label classification is a practical yet challenging task in machine learning related fields, since it requires the prediction of more than one label category for each input instance. We propose a novel deep neural networks (DNN) based model, Canonical Correlated AutoEncoder (C2AE), for solving this task. Aiming at better relating feature and label domain data for improved classification, we uniquely perform joint feature and label embedding by deriving a deep latent space, followed by the introduction of label-correlation sensitive loss function for recovering the predicted label outputs. Our C2AE is achieved by integrating the DNN architectures of canonical correlation analysis and autoencoder, which allows end-to-end learning and prediction with the ability to exploit label dependency. Moreover, our C2AE can be easily extended to address the learning problem with missing labels. Our experiments on multiple datasets with different scales confirm the effectiveness and robustness of our proposed method, which is shown to perform favorably against state-of-the-art methods for multi-label classification.
Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, Yu-Chiang Frank Wang
null
1707.00418
null
null
Parle: parallelizing stochastic gradient descent
cs.LG cs.DC stat.ML
We propose a new algorithm called Parle for parallel training of deep networks that converges 2-4x faster than a data-parallel implementation of SGD, while achieving significantly improved error rates that are nearly state-of-the-art on several benchmarks including CIFAR-10 and CIFAR-100, without introducing any additional hyper-parameters. We exploit the phenomenon of flat minima that has been shown to lead to improved generalization error for deep networks. Parle requires very infrequent communication with the parameter server and instead performs more computation on each client, which makes it well-suited to both single-machine, multi-GPU settings and distributed implementations.
Pratik Chaudhari, Carlo Baldassi, Riccardo Zecchina, Stefano Soatto, Ameet Talwalkar, Adam Oberman
null
1707.00424
null
null
Recommender System for News Articles using Supervised Learning
cs.IR cs.LG
In the last decade we have observed a mass increase of information, in particular information that is shared through smartphones. Consequently, the amount of information that is available does not allow the average user to be aware of all his options. In this context, recommender systems use a number of techniques to help a user find the desired product. Hence, nowadays recommender systems play an important role. Recommender Systems' aim to identify products that best fits user preferences. These techniques are advantageous to both users and vendors, as it enables the user to rapidly find what he needs and the vendors to promote their products and sales. As the industry became aware of the gains that could be accomplished by using these algorithms, also a very interesting problem for many researchers, recommender systems became a very active area since the mid 90's. Having in mind that this is an ongoing problem the present thesis intends to observe the value of using a recommender algorithm to find users likes by observing her domain preferences. In a balanced probabilistic method, this thesis will show how news topics can be used to recommend news articles. In this thesis, we used different machine learning methods to determine the user ratings for an article. To tackle this problem, supervised learning methods such as linear regression, Naive Bayes and logistic regression are used. All the aforementioned models have a different nature which has an impact on the solution of the given problem. Furthermore, number of experiments are presented and discussed to identify the feature set that fits best to the problem.
Akshay Kumar Chaturvedi, Filipa Peleja, Ana Freire
null
1707.00506
null
null
Hashing over Predicted Future Frames for Informed Exploration of Deep Reinforcement Learning
cs.LG cs.AI stat.ML
In deep reinforcement learning (RL) tasks, an efficient exploration mechanism should be able to encourage an agent to take actions that lead to less frequent states which may yield higher accumulative future return. However, both knowing about the future and evaluating the frequentness of states are non-trivial tasks, especially for deep RL domains, where a state is represented by high-dimensional image frames. In this paper, we propose a novel informed exploration framework for deep RL, where we build the capability for an RL agent to predict over the future transitions and evaluate the frequentness for the predicted future frames in a meaningful manner. To this end, we train a deep prediction model to predict future frames given a state-action pair, and a convolutional autoencoder model to hash over the seen frames. In addition, to utilize the counts derived from the seen frames to evaluate the frequentness for the predicted frames, we tackle the challenge of matching the predicted future frames and their corresponding seen frames at the latent feature level. In this way, we derive a reliable metric for evaluating the novelty of the future direction pointed by each action, and hence inform the agent to explore the least frequent one.
Haiyan Yin, Jianda Chen, Sinno Jialin Pan
null
1707.00524
null
null
Robust Cost-Sensitive Learning for Recommendation with Implicit Feedback
cs.LG cs.IR stat.ML
Recommendation is the task of improving customer experience through personalized recommendation based on users' past feedback. In this paper, we investigate the most common scenario: the user-item (U-I) matrix of implicit feedback. Even though many recommendation approaches are designed based on implicit feedback, they attempt to project the U-I matrix into a low-rank latent space, which is a strict restriction that rarely holds in practice. In addition, although misclassification costs from imbalanced classes are significantly different, few methods take the cost of classification error into account. To address aforementioned issues, we propose a robust framework by decomposing the U-I matrix into two components: (1) a low-rank matrix that captures the common preference, and (2) a sparse matrix that detects the user-specific preference of individuals. A cost-sensitive learning model is embedded into the framework. Specifically, this model exploits different costs in the loss function for the observed and unobserved instances. We show that the resulting non-smooth convex objective can be optimized efficiently by an accelerated projected gradient method with closed-form solutions. Morever, the proposed algorithm can be scaled up to large-sized datasets after a relaxation. The theoretical result shows that even with a small fraction of 1's in the U-I matrix $M\in\mathbb{R}^{n\times m}$, the cost-sensitive error of the proposed model is upper bounded by $O(\frac{\alpha}{\sqrt{mn}})$, where $\alpha$ is a bias over imbalanced classes. Finally, empirical experiments are extensively carried out to evaluate the effectiveness of our proposed algorithm. Encouraging experimental results show that our algorithm outperforms several state-of-the-art algorithms on benchmark recommendation datasets.
Peng Yang, Peilin Zhao, Xin Gao, Yong Liu
null
1707.00536
null
null