title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Least Square Variational Bayesian Autoencoder with Regularization
stat.ML cs.LG
In recent years Variation Autoencoders have become one of the most popular unsupervised learning of complicated distributions.Variational Autoencoder (VAE) provides more efficient reconstructive performance over a traditional autoencoder. Variational auto enocders make better approximaiton than MCMC. The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers. They are a directed graphic models. Variational autoencoder is trained to maximise the variational lower bound. Here we are trying maximise the likelihood and also at the same time we are trying to make a good approximation of the data. Its basically trading of the data log-likelihood and the KL divergence from the true posterior. This paper describes the scenario in which we wish to find a point-estimate to the parameters $\theta$ of some parametric model in which we generate each observations by first sampling a local latent variable and then sampling the associated observation. Here we use least square loss function with regularization in the the reconstruction of the image, the least square loss function was found to give better reconstructed images and had a faster training time.
Gautam Ramachandra
null
1707.03134
null
null
A Simple Neural Attentive Meta-Learner
cs.AI cs.LG cs.NE stat.ML
Deep neural networks excel in regimes with large amounts of data, but tend to struggle when data is scarce or when they need to adapt quickly to changes in the task. In response, recent work in meta-learning proposes training a meta-learner on a distribution of similar tasks, in the hopes of generalization to novel but related tasks by learning a high-level strategy that captures the essence of the problem it is asked to solve. However, many recent meta-learning approaches are extensively hand-designed, either using architectures specialized to a particular application, or hard-coding algorithmic components that constrain how the meta-learner solves the task. We propose a class of simple and generic meta-learner architectures that use a novel combination of temporal convolutions and soft attention; the former to aggregate information from past experience and the latter to pinpoint specific pieces of information. In the most extensive set of meta-learning experiments to date, we evaluate the resulting Simple Neural AttentIve Learner (or SNAIL) on several heavily-benchmarked tasks. On all tasks, in both supervised and reinforcement learning, SNAIL attains state-of-the-art performance by significant margins.
Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel
null
1707.03141
null
null
Efficient mixture model for clustering of sparse high dimensional binary data
cs.LG stat.ML
In this paper we propose a mixture model, SparseMix, for clustering of sparse high dimensional binary data, which connects model-based with centroid-based clustering. Every group is described by a representative and a probability distribution modeling dispersion from this representative. In contrast to classical mixture models based on EM algorithm, SparseMix: -is especially designed for the processing of sparse data, -can be efficiently realized by an on-line Hartigan optimization algorithm, -is able to automatically reduce unnecessary clusters. We perform extensive experimental studies on various types of data, which confirm that SparseMix builds partitions with higher compatibility with reference grouping than related methods. Moreover, constructed representatives often better reveal the internal structure of data.
Marek \'Smieja, Krzysztof Hajto and Jacek Tabor
null
1707.03157
null
null
RegNet: Multimodal Sensor Registration Using Deep Neural Networks
cs.CV cs.AI cs.LG cs.RO
In this paper, we present RegNet, the first deep convolutional neural network (CNN) to infer a 6 degrees of freedom (DOF) extrinsic calibration between multimodal sensors, exemplified using a scanning LiDAR and a monocular camera. Compared to existing approaches, RegNet casts all three conventional calibration steps (feature extraction, feature matching and global regression) into a single real-time capable CNN. Our method does not require any human interaction and bridges the gap between classical offline and target-less online calibration approaches as it provides both a stable initial estimation as well as a continuous online correction of the extrinsic parameters. During training we randomly decalibrate our system in order to train RegNet to infer the correspondence between projected depth measurements and RGB image and finally regress the extrinsic calibration. Additionally, with an iterative execution of multiple CNNs, that are trained on different magnitudes of decalibration, our approach compares favorably to state-of-the-art methods in terms of a mean calibration error of 0.28 degrees for the rotational and 6 cm for the translation components even for large decalibrations up to 1.5 m and 20 degrees.
Nick Schneider, Florian Piewak, Christoph Stiller, Uwe Franke
null
1707.03167
null
null
A Survey on Resilient Machine Learning
cs.AI cs.CR cs.LG
Machine learning based system are increasingly being used for sensitive tasks such as security surveillance, guiding autonomous vehicle, taking investment decisions, detecting and blocking network intrusion and malware etc. However, recent research has shown that machine learning models are venerable to attacks by adversaries at all phases of machine learning (eg, training data collection, training, operation). All model classes of machine learning systems can be misled by providing carefully crafted inputs making them wrongly classify inputs. Maliciously created input samples can affect the learning process of a ML system by either slowing down the learning process, or affecting the performance of the learned mode, or causing the system make error(s) only in attacker's planned scenario. Because of these developments, understanding security of machine learning algorithms and systems is emerging as an important research area among computer security and machine learning researchers and practitioners. We present a survey of this emerging area in machine learning.
Atul Kumar, Sameep Mehta
null
1707.03184
null
null
Accelerated Variance Reduced Stochastic ADMM
cs.LG stat.ML
Recently, many variance reduced stochastic alternating direction method of multipliers (ADMM) methods (e.g.\ SAG-ADMM, SDCA-ADMM and SVRG-ADMM) have made exciting progress such as linear convergence rates for strongly convex problems. However, the best known convergence rate for general convex problems is O(1/T) as opposed to O(1/T^2) of accelerated batch algorithms, where $T$ is the number of iterations. Thus, there still remains a gap in convergence rates between existing stochastic ADMM and batch algorithms. To bridge this gap, we introduce the momentum acceleration trick for batch optimization into the stochastic variance reduced gradient based ADMM (SVRG-ADMM), which leads to an accelerated (ASVRG-ADMM) method. Then we design two different momentum term update rules for strongly convex and general convex cases. We prove that ASVRG-ADMM converges linearly for strongly convex problems. Besides having a low per-iteration complexity as existing stochastic ADMM methods, ASVRG-ADMM improves the convergence rate on general convex problems from O(1/T) to O(1/T^2). Our experimental results show the effectiveness of ASVRG-ADMM.
Yuanyuan Liu, Fanhua Shang, James Cheng
null
1707.0319
null
null
Towards an automated method based on Iterated Local Search optimization for tuning the parameters of Support Vector Machines
cs.AI cs.LG
We provide preliminary details and formulation of an optimization strategy under current development that is able to automatically tune the parameters of a Support Vector Machine over new datasets. The optimization strategy is a heuristic based on Iterated Local Search, a modification of classic hill climbing which iterates calls to a local search routine.
Sergio Consoli, Jacek Kustra, Pieter Vos, Monique Hendriks, Dimitrios Mavroeidis
null
1707.03191
null
null
DeepTrend: A Deep Hierarchical Neural Network for Traffic Flow Prediction
cs.LG
In this paper, we consider the temporal pattern in traffic flow time series, and implement a deep learning model for traffic flow prediction. Detrending based methods decompose original flow series into trend and residual series, in which trend describes the fixed temporal pattern in traffic flow and residual series is used for prediction. Inspired by the detrending method, we propose DeepTrend, a deep hierarchical neural network used for traffic flow prediction which considers and extracts the time-variant trend. DeepTrend has two stacked layers: extraction layer and prediction layer. Extraction layer, a fully connected layer, is used to extract the time-variant trend in traffic flow by feeding the original flow series concatenated with corresponding simple average trend series. Prediction layer, an LSTM layer, is used to make flow prediction by feeding the obtained trend from the output of extraction layer and calculated residual series. To make the model more effective, DeepTrend needs first pre-trained layer-by-layer and then fine-tuned in the entire network. Experiments show that DeepTrend can noticeably boost the prediction performance compared with some traditional prediction models and LSTM with detrending based methods.
Xingyuan Dai, Rui Fu, Yilun Lin, Li Li, Fei-Yue Wang
null
1707.03213
null
null
Similarity Search Over Graphs Using Localized Spectral Analysis
cs.AI cs.LG
This paper provides a new similarity detection algorithm. Given an input set of multi-dimensional data points, where each data point is assumed to be multi-dimensional, and an additional reference data point for similarity finding, the algorithm uses kernel method that embeds the data points into a low dimensional manifold. Unlike other kernel methods, which consider the entire data for the embedding, our method selects a specific set of kernel eigenvectors. The eigenvectors are chosen to separate between the data points and the reference data point so that similar data points can be easily identified as being distinct from most of the members in the dataset.
Yariv Aizenbud, Amir Averbuch, Gil Shabat and Guy Ziv
null
1707.03311
null
null
Dynamic Stochastic Approximation for Multi-stage Stochastic Optimization
math.OC cs.CC cs.LG stat.ML
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of stochastic optimization problems. We show that DSA can achieve an optimal ${\cal O}(1/\epsilon^4)$ rate of convergence in terms of the total number of required scenarios when applied to a three-stage stochastic optimization problem. We further show that this rate of convergence can be improved to ${\cal O}(1/\epsilon^2)$ when the objective function is strongly convex. We also discuss variants of DSA for solving more general multi-stage stochastic optimization problems with the number of stages $T > 3$. The developed DSA algorithms only need to go through the scenario tree once in order to compute an $\epsilon$-solution of the multi-stage stochastic optimization problem. As a result, the memory required by DSA only grows linearly with respect to the number of stages. To the best of our knowledge, this is the first time that stochastic approximation type methods are generalized for multi-stage stochastic optimization with $T \ge 3$.
Guanghui Lan and Zhiqiang Zhou
null
1707.03324
null
null
Deep Learning for Real Time Crime Forecasting
math.NA cs.LG stat.ML
Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatio-temporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both space and time. In this work, we adapt the state-of-the-art deep learning spatio-temporal predictor, ST-ResNet [Zhang et al, AAAI, 2017], to collectively predict crime distribution over the Los Angeles area. Our models are two staged. First, we preprocess the raw crime data. This includes regularization in both space and time to enhance predictable signals. Second, we adapt hierarchical structures of residual convolutional units to train multi-factor crime prediction models. Experiments over a half year period in Los Angeles reveal highly accurate predictive power of our models.
Bao Wang, Duo Zhang, Duanhao Zhang, P.Jeffery Brantingham, Andrea L. Bertozzi
null
1707.0334
null
null
Fast Amortized Inference and Learning in Log-linear Models with Randomly Perturbed Nearest Neighbor Search
cs.LG stat.ML
Inference in log-linear models scales linearly in the size of output space in the worst-case. This is often a bottleneck in natural language processing and computer vision tasks when the output space is feasibly enumerable but very large. We propose a method to perform inference in log-linear models with sublinear amortized cost. Our idea hinges on using Gumbel random variable perturbations and a pre-computed Maximum Inner Product Search data structure to access the most-likely elements in sublinear amortized time. Our method yields provable runtime and accuracy guarantees. Further, we present empirical experiments on ImageNet and Word Embeddings showing significant speedups for sampling, inference, and learning in log-linear models.
Stephen Mussmann, Daniel Levy, Stefano Ermon
null
1707.03372
null
null
Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation
cs.LG cs.AI cs.CV cs.NE cs.RO
Imitation learning is an effective approach for autonomous systems to acquire control policies when an explicit reward function is unavailable, using supervision provided as demonstrations from an expert, typically a human operator. However, standard imitation learning methods assume that the agent receives examples of observation-action tuples that could be provided, for instance, to a supervised learning algorithm. This stands in contrast to how humans and animals imitate: we observe another person performing some behavior and then figure out which actions will realize that behavior, compensating for changes in viewpoint, surroundings, object positions and types, and other factors. We term this kind of imitation learning "imitation-from-observation," and propose an imitation learning method based on video prediction with context translation and deep reinforcement learning. This lifts the assumption in imitation learning that the demonstration should consist of observations in the same environment configuration, and enables a variety of interesting applications, including learning robotic skills that involve tool use simply by observing videos of human tool use. Our experimental results show the effectiveness of our approach in learning a wide range of real-world robotic tasks modeled after common household chores from videos of a human demonstrator, including sweeping, ladling almonds, pushing objects as well as a number of tasks in simulation.
YuXuan Liu, Abhishek Gupta, Pieter Abbeel, Sergey Levine
null
1707.03374
null
null
Learning like humans with Deep Symbolic Networks
cs.AI cond-mat.dis-nn cs.LG
We introduce the Deep Symbolic Network (DSN) model, which aims at becoming the white-box version of Deep Neural Networks (DNN). The DSN model provides a simple, universal yet powerful structure, similar to DNN, to represent any knowledge of the world, which is transparent to humans. The conjecture behind the DSN model is that any type of real world objects sharing enough common features are mapped into human brains as a symbol. Those symbols are connected by links, representing the composition, correlation, causality, or other relationships between them, forming a deep, hierarchical symbolic network structure. Powered by such a structure, the DSN model is expected to learn like humans, because of its unique characteristics. First, it is universal, using the same structure to store any knowledge. Second, it can learn symbols from the world and construct the deep symbolic networks automatically, by utilizing the fact that real world objects have been naturally separated by singularities. Third, it is symbolic, with the capacity of performing causal deduction and generalization. Fourth, the symbols and the links between them are transparent to us, and thus we will know what it has learned or not - which is the key for the security of an AI system. Fifth, its transparency enables it to learn with relatively small data. Sixth, its knowledge can be accumulated. Last but not least, it is more friendly to unsupervised learning than DNN. We present the details of the model, the algorithm powering its automatic learning ability, and describe its usefulness in different use cases. The purpose of this paper is to generate broad interest to develop it within an open source project centered on the Deep Symbolic Network (DSN) model towards the development of general AI.
Qunzhi Zhang and Didier Sornette
null
1707.03377
null
null
DeepCodec: Adaptive Sensing and Recovery via Deep Convolutional Neural Networks
stat.ML cs.LG
In this paper we develop a novel computational sensing framework for sensing and recovering structured signals. When trained on a set of representative signals, our framework learns to take undersampled measurements and recover signals from them using a deep convolutional neural network. In other words, it learns a transformation from the original signals to a near-optimal number of undersampled measurements and the inverse transformation from measurements to signals. This is in contrast to traditional compressive sensing (CS) systems that use random linear measurements and convex optimization or iterative algorithms for signal recovery. We compare our new framework with $\ell_1$-minimization from the phase transition point of view and demonstrate that it outperforms $\ell_1$-minimization in the regions of phase transition plot where $\ell_1$-minimization cannot recover the exact solution. In addition, we experimentally demonstrate how learning measurements enhances the overall recovery performance, speeds up training of recovery framework, and leads to having fewer parameters to learn.
Ali Mousavi, Gautam Dasarathy, Richard G. Baraniuk
null
1707.03386
null
null
SCAN: Learning Hierarchical Compositional Visual Concepts
stat.ML cs.LG
The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined into an exponentially large set of new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such abstractions in the visual domain. SCAN learns concepts through fast symbol association, grounding them in disentangled visual primitives that are discovered in an unsupervised manner. Unlike state of the art multimodal generative model baselines, our approach requires very few pairings between symbols and images and makes no assumptions about the form of symbol representations. Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to break away from its training data distribution and imagine novel visual concepts through symbolically instructed recombination of previously learnt concepts.
Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P Burgess, Matko Bosnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis, Alexander Lerchner
null
1707.03389
null
null
Multi-Task Learning Using Neighborhood Kernels
cs.LG stat.ML
This paper introduces a new and effective algorithm for learning kernels in a Multi-Task Learning (MTL) setting. Although, we consider a MTL scenario here, our approach can be easily applied to standard single task learning, as well. As shown by our empirical results, our algorithm consistently outperforms the traditional kernel learning algorithms such as uniform combination solution, convex combinations of base kernels as well as some kernel alignment-based models, which have been proven to give promising results in the past. We present a Rademacher complexity bound based on which a new Multi-Task Multiple Kernel Learning (MT-MKL) model is derived. In particular, we propose a Support Vector Machine-regularized model in which, for each task, an optimal kernel is learned based on a neighborhood-defining kernel that is not restricted to be positive semi-definite. Comparative experimental results are showcased that underline the merits of our neighborhood-defining framework in both classification and regression problems.
Niloofar Yousefi, Cong Li, Mansooreh Mollaghasemi, Georgios Anagnostopoulos and Michael Georgiopoulos
null
1707.03426
null
null
Initialising Kernel Adaptive Filters via Probabilistic Inference
stat.ML cs.LG
We present a probabilistic framework for both (i) determining the initial settings of kernel adaptive filters (KAFs) and (ii) constructing fully-adaptive KAFs whereby in addition to weights and dictionaries, kernel parameters are learnt sequentially. This is achieved by formulating the estimator as a probabilistic model and defining dedicated prior distributions over the kernel parameters, weights and dictionary, enforcing desired properties such as sparsity. The model can then be trained using a subset of data to initialise standard KAFs or updated sequentially each time a new observation becomes available. Due to the nonlinear/non-Gaussian properties of the model, learning and inference is achieved using gradient-based maximum-a-posteriori optimisation and Markov chain Monte Carlo methods, and can be confidently used to compute predictions. The proposed framework was validated on nonlinear time series of both synthetic and real-world nature, where it outperformed standard KAFs in terms of mean square error and the sparsity of the learnt dictionaries.
Iv\'an Castro, Crist\'obal Silva, Felipe Tobar
null
1707.0345
null
null
Machine Learning in Appearance-based Robot Self-localization
cs.CV cs.LG cs.RO stat.AP
An appearance-based robot self-localization problem is considered in the machine learning framework. The appearance space is composed of all possible images, which can be captured by a robot's visual system under all robot localizations. Using recent manifold learning and deep learning techniques, we propose a new geometrically motivated solution based on training data consisting of a finite set of images captured in known locations of the robot. The solution includes estimation of the robot localization mapping from the appearance space to the robot localization space, as well as estimation of the inverse mapping for modeling visual image features. The latter allows solving the robot localization problem as the Kalman filtering problem.
Alexander Kuleshov, Alexander Bernstein, Evgeny Burnaev, Yury Yanovich
null
1707.03469
null
null
Value Prediction Network
cs.AI cs.LG
This paper proposes a novel deep reinforcement learning (RL) architecture, called Value Prediction Network (VPN), which integrates model-free and model-based RL methods into a single neural network. In contrast to typical model-based RL methods, VPN learns a dynamics model whose abstract states are trained to make option-conditional predictions of future values (discounted sum of rewards) rather than of future observations. Our experimental results show that VPN has several advantages over both model-free and model-based baselines in a stochastic environment where careful planning is required but building an accurate observation-prediction model is difficult. Furthermore, VPN outperforms Deep Q-Network (DQN) on several Atari games even with short-lookahead planning, demonstrating its potential as a new way of learning a good state representation.
Junhyuk Oh, Satinder Singh, Honglak Lee
null
1707.03497
null
null
Deep Learning for Sensor-based Activity Recognition: A Survey
cs.CV cs.AI cs.LG cs.NE
Sensor-based activity recognition seeks the profound high-level knowledge about human activities from multitudes of low-level sensor readings. Conventional pattern recognition approaches have made tremendous progress in the past years. However, those methods often heavily rely on heuristic hand-crafted feature extraction, which could hinder their generalization performance. Additionally, existing methods are undermined for unsupervised and incremental learning tasks. Recently, the recent advancement of deep learning makes it possible to perform automatic high-level feature extraction thus achieves promising performance in many areas. Since then, deep learning based methods have been widely adopted for the sensor-based activity recognition tasks. This paper surveys the recent advance of deep learning based sensor-based activity recognition. We summarize existing literature from three aspects: sensor modality, deep model, and application. We also present detailed insights on existing work and propose grand challenges for future research.
Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng and Lisha Hu
10.1016/j.patrec.2018.02.010
1707.03502
null
null
Proximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
math.OC cs.LG
In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions---a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochastic projected subgradient method. The primary contribution of this paper is a simple proof that the proposed algorithm converges at the same rate as the stochastic gradient method for smooth nonconvex problems. This result appears to be the first convergence rate analysis of a stochastic (or even deterministic) subgradient method for the class of weakly convex functions.
Damek Davis, Benjamin Grimmer
null
1707.03505
null
null
An Introduction to the Practical and Theoretical Aspects of Mixture-of-Experts Modeling
stat.ML cs.LG
Mixture-of-experts (MoE) models are a powerful paradigm for modeling of data arising from complex data generating processes (DGPs). In this article, we demonstrate how different MoE models can be constructed to approximate the underlying DGPs of arbitrary types of data. Due to the probabilistic nature of MoE models, we propose the maximum quasi-likelihood (MQL) estimator as a method for estimating MoE model parameters from data, and we provide conditions under which MQL estimators are consistent and asymptotically normal. The blockwise minorization-maximizatoin (blockwise-MM) algorithm framework is proposed as an all-purpose method for constructing algorithms for obtaining MQL estimators. An example derivation of a blockwise-MM algorithm is provided. We then present a method for constructing information criteria for estimating the number of components in MoE models and provide justification for the classic Bayesian information criterion (BIC). We explain how MoE models can be used to conduct classification, clustering, and regression and we illustrate these applications via a pair of worked examples.
Hien D. Nguyen and Faicel Chamroukhi
null
1707.03538
null
null
Discriminative Block-Diagonal Representation Learning for Image Recognition
cs.CV cs.LG cs.MM
Existing block-diagonal representation researches mainly focuses on casting block-diagonal regularization on training data, while only little attention is dedicated to concurrently learning both block-diagonal representations of training and test data. In this paper, we propose a discriminative block-diagonal low-rank representation (BDLRR) method for recognition. In particular, the elaborate BDLRR is formulated as a joint optimization problem of shrinking the unfavorable representation from off-block-diagonal elements and strengthening the compact block-diagonal representation under the semi-supervised framework of low-rank representation. To this end, we first impose penalty constraints on the negative representation to eliminate the correlation between different classes such that the incoherence criterion of the extra-class representation is boosted. Moreover, a constructed subspace model is developed to enhance the self-expressive power of training samples and further build the representation bridge between the training and test samples, such that the coherence of the learned intra-class representation is consistently heightened. Finally, the resulting optimization problem is solved elegantly by employing an alternative optimization strategy, and a simple recognition algorithm on the learned representation is utilized for final prediction. Extensive experimental results demonstrate that the proposed method achieves superb recognition results on four face image datasets, three character datasets, and the fifteen scene multi-categories dataset. It not only shows superior potential on image recognition but also outperforms state-of-the-art methods.
Zheng Zhang, Yong Xu, Ling Shao, Jian Yang
10.1109/TNNLS.2017.2712801
1707.03548
null
null
Multitask Learning for Fine-Grained Twitter Sentiment Analysis
cs.IR cs.CL cs.LG
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask approach based on a recurrent neural network that benefits by jointly learning them. Our study demonstrates the potential of multitask models on this type of problems and improves the state-of-the-art results in the fine-grained sentiment classification problem.
Georgios Balikas, Simon Moura, Massih-Reza Amini
10.1145/3077136.3080702
1707.03569
null
null
Adversarial Dropout for Supervised and Semi-supervised Learning
cs.LG cs.CV
Recently, the training with adversarial examples, which are generated by adding a small but worst-case perturbation on input examples, has been proved to improve generalization performance of neural networks. In contrast to the individually biased inputs to enhance the generality, this paper introduces adversarial dropout, which is a minimal set of dropouts that maximize the divergence between the outputs from the network with the dropouts and the training supervisions. The identified adversarial dropout are used to reconfigure the neural network to train, and we demonstrated that training on the reconfigured sub-network improves the generalization performance of supervised and semi-supervised learning tasks on MNIST and CIFAR-10. We analyzed the trained model to reason the performance improvement, and we found that adversarial dropout increases the sparsity of neural networks more than the standard dropout does.
Sungrae Park, Jun-Keon Park, Su-Jin Shin, Il-Chul Moon
null
1707.03631
null
null
Speaker-independent Speech Separation with Deep Attractor Network
cs.SD cs.LG
Despite the recent success of deep learning for many speech processing tasks, single-microphone, speaker-independent speech separation remains challenging for two main reasons. The first reason is the arbitrary order of the target and masker speakers in the mixture permutation problem, and the second is the unknown number of speakers in the mixture output dimension problem. We propose a novel deep learning framework for speech separation that addresses both of these issues. We use a neural network to project the time-frequency representation of the mixture signal into a high-dimensional embedding space. A reference point attractor is created in the embedding space to represent each speaker which is defined as the centroid of the speaker in the embedding space. The time-frequency embeddings of each speaker are then forced to cluster around the corresponding attractor point which is used to determine the time-frequency assignment of the speaker. We propose three methods for finding the attractors for each source in the embedding space and compare their advantages and limitations. The objective function for the network is standard signal reconstruction error which enables end-to-end operation during both training and test phases. We evaluated our system using the Wall Street Journal dataset WSJ0 on two and three speaker mixtures and report comparable or better performance than other state-of-the-art deep learning methods for speech separation.
Yi Luo, Zhuo Chen, Nima Mesgarani
10.1109/TASLP.2018.2795749
1707.03634
null
null
Underdamped Langevin MCMC: A non-asymptotic analysis
stat.ML cs.LG stat.CO
We study the underdamped Langevin diffusion when the log of the target distribution is smooth and strongly concave. We present a MCMC algorithm based on its discretization and show that it achieves $\varepsilon$ error (in 2-Wasserstein distance) in $\mathcal{O}(\sqrt{d}/\varepsilon)$ steps. This is a significant improvement over the best known rate for overdamped Langevin MCMC, which is $\mathcal{O}(d/\varepsilon^2)$ steps under the same smoothness/concavity assumptions. The underdamped Langevin MCMC scheme can be viewed as a version of Hamiltonian Monte Carlo (HMC) which has been observed to outperform overdamped Langevin MCMC methods in a number of application areas. We provide quantitative rates that support this empirical wisdom.
Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett and Michael I. Jordan
null
1707.03663
null
null
A Deep Learning Approach for Blind Drift Calibration of Sensor Networks
cs.LG cs.DC
Temporal drift of sensory data is a severe problem impacting the data quality of wireless sensor networks (WSNs). With the proliferation of large-scale and long-term WSNs, it is becoming more important to calibrate sensors when the ground truth is unavailable. This problem is called "blind calibration". In this paper, we propose a novel deep learning method named projection-recovery network (PRNet) to blindly calibrate sensor measurements online. The PRNet first projects the drifted data to a feature space, and uses a powerful deep convolutional neural network to recover the estimated drift-free measurements. We deploy a 24-sensor testbed and provide comprehensive empirical evidence showing that the proposed method significantly improves the sensing accuracy and drifted sensor detection. Compared with previous methods, PRNet can calibrate 2x of drifted sensors at the recovery rate of 80% under the same level of accuracy requirement. We also provide helpful insights for designing deep neural networks for sensor calibration. We hope our proposed simple and effective approach will serve as a solid baseline in blind drift calibration of sensor networks.
Yuzhi Wang and Anqi Yang and Xiaoming Chen and Pengjun Wang and Yu Wang and Huazhong Yang
10.1109/JSEN.2017.2703885
1707.03682
null
null
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
cs.CV cs.LG
Pixel-wise semantic segmentation for visual scene understanding not only needs to be accurate, but also efficient in order to find any use in real-time application. Existing algorithms even though are accurate but they do not focus on utilizing the parameters of neural network efficiently. As a result they are huge in terms of parameters and number of operations; hence slow too. In this paper, we propose a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters. Our network uses only 11.5 million parameters and 21.2 GFLOPs for processing an image of resolution 3x640x360. It gives state-of-the-art performance on CamVid and comparable results on Cityscapes dataset. We also compare our networks processing time on NVIDIA GPU and embedded system device with existing state-of-the-art architectures for different image resolutions.
Abhishek Chaurasia and Eugenio Culurciello
10.1109/VCIP.2017.8305148
1707.03718
null
null
Fastest Convergence for Q-learning
cs.SY cs.LG math.OC
The Zap Q-learning algorithm introduced in this paper is an improvement of Watkins' original algorithm and recent competitors in several respects. It is a matrix-gain algorithm designed so that its asymptotic variance is optimal. Moreover, an ODE analysis suggests that the transient behavior is a close match to a deterministic Newton-Raphson implementation. This is made possible by a two time-scale update equation for the matrix gain sequence. The analysis suggests that the approach will lead to stable and efficient computation even for non-ideal parameterized settings. Numerical experiments confirm the quick convergence, even in such non-ideal cases. A secondary goal of this paper is tutorial. The first half of the paper contains a survey on reinforcement learning algorithms, with a focus on minimum variance algorithms.
Adithya M. Devraj and Sean P. Meyn
null
1707.0377
null
null
Source-Target Inference Models for Spatial Instruction Understanding
cs.CL cs.AI cs.LG cs.RO
Models that can execute natural language instructions for situated robotic tasks such as assembly and navigation have several useful applications in homes, offices, and remote scenarios. We study the semantics of spatially-referred configuration and arrangement instructions, based on the challenging Bisk-2016 blank-labeled block dataset. This task involves finding a source block and moving it to the target position (mentioned via a reference block and offset), where the blocks have no names or colors and are just referred to via spatial location features. We present novel models for the subtasks of source block classification and target position regression, based on joint-loss language and spatial-world representation learning, as well as CNN-based and dual attention models to compute the alignment between the world blocks and the instruction phrases. For target position prediction, we compare two inference approaches: annealed sampling via policy gradient versus expectation inference via supervised regression. Our models achieve the new state-of-the-art on this task, with an improvement of 47% on source block accuracy and 22% on target position distance.
Hao Tan, Mohit Bansal
null
1707.03804
null
null
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
stat.ML cs.LG cs.SI
Methods that learn representations of nodes in a graph play a critical role in network analysis since they enable many downstream learning tasks. We propose Graph2Gauss - an approach that can efficiently learn versatile node embeddings on large scale (attributed) graphs that show strong performance on tasks such as link prediction and node classification. Unlike most approaches that represent nodes as point vectors in a low-dimensional continuous space, we embed each node as a Gaussian distribution, allowing us to capture uncertainty about the representation. Furthermore, we propose an unsupervised method that handles inductive learning scenarios and is applicable to different types of graphs: plain/attributed, directed/undirected. By leveraging both the network structure and the associated node attributes, we are able to generalize to unseen nodes without additional training. To learn the embeddings we adopt a personalized ranking formulation w.r.t. the node distances that exploits the natural ordering of the nodes imposed by the network structure. Experiments on real world networks demonstrate the high performance of our approach, outperforming state-of-the-art network embedding methods on several different tasks. Additionally, we demonstrate the benefits of modeling uncertainty - by analyzing it we can estimate neighborhood diversity and detect the intrinsic latent dimensionality of a graph.
Aleksandar Bojchevski, Stephan G\"unnemann
null
1707.03815
null
null
Process Monitoring on Sequences of System Call Count Vectors
cs.CR cs.LG stat.ML
We introduce a methodology for efficient monitoring of processes running on hosts in a corporate network. The methodology is based on collecting streams of system calls produced by all or selected processes on the hosts, and sending them over the network to a monitoring server, where machine learning algorithms are used to identify changes in process behavior due to malicious activity, hardware failures, or software errors. The methodology uses a sequence of system call count vectors as the data format which can handle large and varying volumes of data. Unlike previous approaches, the methodology introduced in this paper is suitable for distributed collection and processing of data in large corporate networks. We evaluate the methodology both in a laboratory setting on a real-life setup and provide statistics characterizing performance and accuracy of the methodology.
Michael Dymshits, Ben Myara, David Tolpin
null
1707.03821
null
null
Reduced Electron Exposure for Energy-Dispersive Spectroscopy using Dynamic Sampling
cs.LG cs.CV
Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure and chemistry. In this work, we present a novel machine learning based method for dynamic sparse sampling of EDS data using a scanning electron microscope. Our method, based on the supervised learning approach for dynamic sampling algorithm and neural networks based classification of EDS data, allows a dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed elemental maps and spectroscopic data. We believe this approach will enable imaging and elemental mapping of materials that would otherwise be inaccessible to these analysis techniques.
Yan Zhang, G. M. Dilshan Godaliyadda, Nicola Ferrier, Emine B. Gulsoy, Charles A. Bouman, Charudatta Phatak
null
1707.03848
null
null
Estimating the unseen from multiple populations
cs.LG stat.ML
Given samples from a distribution, how many new elements should we expect to find if we continue sampling this distribution? This is an important and actively studied problem, with many applications ranging from unseen species estimation to genomics. We generalize this extrapolation and related unseen estimation problems to the multiple population setting, where population $j$ has an unknown distribution $D_j$ from which we observe $n_j$ samples. We derive an optimal estimator for the total number of elements we expect to find among new samples across the populations. Surprisingly, we prove that our estimator's accuracy is independent of the number of populations. We also develop an efficient optimization algorithm to solve the more general problem of estimating multi-population frequency distributions. We validate our methods and theory through extensive experiments. Finally, on a real dataset of human genomes across multiple ancestries, we demonstrate how our approach for unseen estimation can enable cohort designs that can discover interesting mutations with greater efficiency.
Aditi Raghunathan, Greg Valiant, James Zou
null
1707.03854
null
null
Quasar: Datasets for Question Answering by Search and Reading
cs.CL cs.IR cs.LG
We present two new large-scale datasets aimed at evaluating systems designed to comprehend a natural language query and extract its answer from a large corpus of text. The Quasar-S dataset consists of 37000 cloze-style (fill-in-the-gap) queries constructed from definitions of software entity tags on the popular website Stack Overflow. The posts and comments on the website serve as the background corpus for answering the cloze questions. The Quasar-T dataset consists of 43000 open-domain trivia questions and their answers obtained from various internet sources. ClueWeb09 serves as the background corpus for extracting these answers. We pose these datasets as a challenge for two related subtasks of factoid Question Answering: (1) searching for relevant pieces of text that include the correct answer to a query, and (2) reading the retrieved text to answer the query. We also describe a retrieval system for extracting relevant sentences and documents from the corpus given a query, and include these in the release for researchers wishing to only focus on (2). We evaluate several baselines on both datasets, ranging from simple heuristics to powerful neural models, and show that these lag behind human performance by 16.4% and 32.1% for Quasar-S and -T respectively. The datasets are available at https://github.com/bdhingra/quasar .
Bhuwan Dhingra, Kathryn Mazaitis and William W. Cohen
null
1707.03904
null
null
Influence of Resampling on Accuracy of Imbalanced Classification
stat.ML cs.LG stat.AP
In many real-world binary classification tasks (e.g. detection of certain objects from images), an available dataset is imbalanced, i.e., it has much less representatives of a one class (a minor class), than of another. Generally, accurate prediction of the minor class is crucial but it's hard to achieve since there is not much information about the minor class. One approach to deal with this problem is to preliminarily resample the dataset, i.e., add new elements to the dataset or remove existing ones. Resampling can be done in various ways which raises the problem of choosing the most appropriate one. In this paper we experimentally investigate impact of resampling on classification accuracy, compare resampling methods and highlight key points and difficulties of resampling.
Evgeny Burnaev, Pavel Erofeev, Artem Papanov
10.1117/12.2228523
1707.03905
null
null
Model Selection for Anomaly Detection
stat.ML cs.LG stat.AP
Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.
Evgeny Burnaev, Pavel Erofeev, Dmitry Smolyakov
10.1117/12.2228794
1707.03909
null
null
Representation Learning for Grounded Spatial Reasoning
cs.CL cs.AI cs.LG
The interpretation of spatial references is highly contextual, requiring joint inference over both language and the environment. We consider the task of spatial reasoning in a simulated environment, where an agent can act and receive rewards. The proposed model learns a representation of the world steered by instruction text. This design allows for precise alignment of local neighborhoods with corresponding verbalizations, while also handling global references in the instructions. We train our model with reinforcement learning using a variant of generalized value iteration. The model outperforms state-of-the-art approaches on several metrics, yielding a 45% reduction in goal localization error.
Michael Janner, Karthik Narasimhan, Regina Barzilay
null
1707.03938
null
null
A Brief Study of In-Domain Transfer and Learning from Fewer Samples using A Few Simple Priors
cs.AI cs.LG
Domain knowledge can often be encoded in the structure of a network, such as convolutional layers for vision, which has been shown to increase generalization and decrease sample complexity, or the number of samples required for successful learning. In this study, we ask whether sample complexity can be reduced for systems where the structure of the domain is unknown beforehand, and the structure and parameters must both be learned from the data. We show that sample complexity reduction through learning structure is possible for at least two simple cases. In studying these cases, we also gain insight into how this might be done for more complex domains.
Marc Pickett, Ayush Sekhari, James Davidson
null
1707.03979
null
null
Merge or Not? Learning to Group Faces via Imitation Learning
cs.CV cs.LG
Given a large number of unlabeled face images, face grouping aims at clustering the images into individual identities present in the data. This task remains a challenging problem despite the remarkable capability of deep learning approaches in learning face representation. In particular, grouping results can still be egregious given profile faces and a large number of uninteresting faces and noisy detections. Often, a user needs to correct the erroneous grouping manually. In this study, we formulate a novel face grouping framework that learns clustering strategy from ground-truth simulated behavior. This is achieved through imitation learning (a.k.a apprenticeship learning or learning by watching) via inverse reinforcement learning (IRL). In contrast to existing clustering approaches that group instances by similarity, our framework makes sequential decision to dynamically decide when to merge two face instances/groups driven by short- and long-term rewards. Extensive experiments on three benchmark datasets show that our framework outperforms unsupervised and supervised baselines.
Yue He, Kaidi Cao, Cheng Li and Chen Change Loy
null
1707.03986
null
null
On Measuring and Quantifying Performance: Error Rates, Surrogate Loss, and an Example in SSL
cs.LG cs.CV stat.ML
In various approaches to learning, notably in domain adaptation, active learning, learning under covariate shift, semi-supervised learning, learning with concept drift, and the like, one often wants to compare a baseline classifier to one or more advanced (or at least different) strategies. In this chapter, we basically argue that if such classifiers, in their respective training phases, optimize a so-called surrogate loss that it may also be valuable to compare the behavior of this loss on the test set, next to the regular classification error rate. It can provide us with an additional view on the classifiers' relative performances that error rates cannot capture. As an example, limited but convincing empirical results demonstrates that we may be able to find semi-supervised learning strategies that can guarantee performance improvements with increasing numbers of unlabeled data in terms of log-likelihood. In contrast, the latter may be impossible to guarantee for the classification error rate.
Marco Loog, Jesse H. Krijthe, Are C. Jensen
null
1707.04025
null
null
Kafnets: kernel-based non-parametric activation functions for neural networks
stat.ML cs.AI cs.LG cs.NE
Neural networks are generally built by interleaving (adaptable) linear layers with (fixed) nonlinear activation functions. To increase their flexibility, several authors have proposed methods for adapting the activation functions themselves, endowing them with varying degrees of flexibility. None of these approaches, however, have gained wide acceptance in practice, and research in this topic remains open. In this paper, we introduce a novel family of flexible activation functions that are based on an inexpensive kernel expansion at every neuron. Leveraging over several properties of kernel-based models, we propose multiple variations for designing and initializing these kernel activation functions (KAFs), including a multidimensional scheme allowing to nonlinearly combine information from different paths in the network. The resulting KAFs can approximate any mapping defined over a subset of the real line, either convex or nonconvex. Furthermore, they are smooth over their entire domain, linear in their parameters, and they can be regularized using any known scheme, including the use of $\ell_1$ penalties to enforce sparseness. To the best of our knowledge, no other known model satisfies all these properties simultaneously. In addition, we provide a relatively complete overview on alternative techniques for adapting the activation functions, which is currently lacking in the literature. A large set of experiments validates our proposal.
Simone Scardapane, Steven Van Vaerenbergh, Simone Totaro, Aurelio Uncini
null
1707.04035
null
null
Deep Learning with Topological Signatures
cs.CV cs.LG math.AT
Inferring topological and geometrical information from data can offer an alternative perspective on machine learning problems. Methods from topological data analysis, e.g., persistent homology, enable us to obtain such information, typically in the form of summary representations of topological features. However, such topological signatures often come with an unusual structure (e.g., multisets of intervals) that is highly impractical for most machine learning techniques. While many strategies have been proposed to map these topological signatures into machine learning compatible representations, they suffer from being agnostic to the target learning task. In contrast, we propose a technique that enables us to input topological signatures to deep neural networks and learn a task-optimal representation during training. Our approach is realized as a novel input layer with favorable theoretical properties. Classification experiments on 2D object shapes and social network graphs demonstrate the versatility of the approach and, in case of the latter, we even outperform the state-of-the-art by a large margin.
Christoph Hofer and Roland Kwitt and Marc Niethammer and Andreas Uhl
null
1707.04041
null
null
Stable Distribution Alignment Using the Dual of the Adversarial Distance
cs.LG cs.AI cs.CV
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.
Ben Usman, Kate Saenko, Brian Kulis
null
1707.04046
null
null
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
cs.LG cs.CR cs.CV stat.ML
Even todays most advanced machine learning models are easily fooled by almost imperceptible perturbations of their inputs. Foolbox is a new Python package to generate such adversarial perturbations and to quantify and compare the robustness of machine learning models. It is build around the idea that the most comparable robustness measure is the minimum perturbation needed to craft an adversarial example. To this end, Foolbox provides reference implementations of most published adversarial attack methods alongside some new ones, all of which perform internal hyperparameter tuning to find the minimum adversarial perturbation. Additionally, Foolbox interfaces with most popular deep learning frameworks such as PyTorch, Keras, TensorFlow, Theano and MXNet and allows different adversarial criteria such as targeted misclassification and top-k misclassification as well as different distance measures. The code is licensed under the MIT license and is openly available at https://github.com/bethgelab/foolbox . The most up-to-date documentation can be found at http://foolbox.readthedocs.io .
Jonas Rauber, Wieland Brendel, Matthias Bethge
null
1707.04131
null
null
Distral: Robust Multitask Reinforcement Learning
cs.LG stat.ML
Most deep reinforcement learning algorithms are data inefficient in complex and rich environments, limiting their applicability to many scenarios. One direction for improving data efficiency is multitask learning with shared neural network parameters, where efficiency may be improved through transfer across related tasks. In practice, however, this is not usually observed, because gradients from different tasks can interfere negatively, making learning unstable and sometimes even less data efficient. Another issue is the different reward schemes between tasks, which can easily lead to one task dominating the learning of a shared model. We propose a new approach for joint training of multiple tasks, which we refer to as Distral (Distill & transfer learning). Instead of sharing parameters between the different workers, we propose to share a "distilled" policy that captures common behaviour across tasks. Each worker is trained to solve its own task while constrained to stay close to the shared policy, while the shared policy is trained by distillation to be the centroid of all task policies. Both aspects of the learning process are derived by optimizing a joint objective function. We show that our approach supports efficient transfer on complex 3D environments, outperforming several related methods. Moreover, the proposed learning process is more robust and more stable---attributes that are critical in deep reinforcement learning.
Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, Razvan Pascanu
null
1707.04175
null
null
Be Careful What You Backpropagate: A Case For Linear Output Activations & Gradient Boosting
cs.LG cs.CV
In this work, we show that saturating output activation functions, such as the softmax, impede learning on a number of standard classification tasks. Moreover, we present results showing that the utility of softmax does not stem from the normalization, as some have speculated. In fact, the normalization makes things worse. Rather, the advantage is in the exponentiation of error gradients. This exponential gradient boosting is shown to speed up convergence and improve generalization. To this end, we demonstrate faster convergence and better performance on diverse classification tasks: image classification using CIFAR-10 and ImageNet, and semantic segmentation using PASCAL VOC 2012. In the latter case, using the state-of-the-art neural network architecture, the model converged 33% faster with our method (roughly two days of training less) than with the standard softmax activation, and with a slightly better performance to boot.
Anders Oland and Aayush Bansal and Roger B. Dannenberg and Bhiksha Raj
null
1707.04199
null
null
Learning Features from Co-occurrences: A Theoretical Analysis
cs.CL cs.LG math.ST stat.ML stat.TH
Representing a word by its co-occurrences with other words in context is an effective way to capture the meaning of the word. However, the theory behind remains a challenge. In this work, taking the example of a word classification task, we give a theoretical analysis of the approaches that represent a word X by a function f(P(C|X)), where C is a context feature, P(C|X) is the conditional probability estimated from a text corpus, and the function f maps the co-occurrence measure to a prediction score. We investigate the impact of context feature C and the function f. We also explain the reasons why using the co-occurrences with multiple context features may be better than just using a single one. In addition, some of the results shed light on the theory of feature learning and machine learning in general.
Yanpeng Li
null
1707.04218
null
null
Improving Sparsity in Kernel Adaptive Filters Using a Unit-Norm Dictionary
stat.ML cs.LG
Kernel adaptive filters, a class of adaptive nonlinear time-series models, are known by their ability to learn expressive autoregressive patterns from sequential data. However, for trivial monotonic signals, they struggle to perform accurate predictions and at the same time keep computational complexity within desired boundaries. This is because new observations are incorporated to the dictionary when they are far from what the algorithm has seen in the past. We propose a novel approach to kernel adaptive filtering that compares new observations against dictionary samples in terms of their unit-norm (normalised) versions, meaning that new observations that look like previous samples but have a different magnitude are not added to the dictionary. We achieve this by proposing the unit-norm Gaussian kernel and define a sparsification criterion for this novel kernel. This new methodology is validated on two real-world datasets against standard KAF in terms of the normalised mean square error and the dictionary size.
Felipe Tobar
null
1707.04236
null
null
Predicting Abandonment in Online Coding Tutorials
cs.LG cs.AI cs.HC
Learners regularly abandon online coding tutorials when they get bored or frustrated, but there are few techniques for anticipating this abandonment to intervene. In this paper, we examine the feasibility of predicting abandonment with machine-learned classifiers. Using interaction logs from an online programming game, we extracted a collection of features that are potentially related to learner abandonment and engagement, then developed classifiers for each level. Across the first five levels of the game, our classifiers successfully predicted 61% to 76% of learners who did not complete the next level, achieving an average AUC of 0.68. In these classifiers, features negatively associated with abandonment included account activation and help-seeking behaviors, whereas features positively associated with abandonment included features indicating difficulty and disengagement. These findings highlight the feasibility of providing timely intervention to learners likely to quit.
An Yan, Michael J. Lee, Andrew J. Ko
10.1109/VLHCC.2017.8103467
1707.04291
null
null
Coalescent-based species tree estimation: a stochastic Farris transform
cs.LG math.PR math.ST q-bio.PE stat.TH
The reconstruction of a species phylogeny from genomic data faces two significant hurdles: 1) the trees describing the evolution of each individual gene--i.e., the gene trees--may differ from the species phylogeny and 2) the molecular sequences corresponding to each gene often provide limited information about the gene trees themselves. In this paper we consider an approach to species tree reconstruction that addresses both these hurdles. Specifically, we propose an algorithm for phylogeny reconstruction under the multispecies coalescent model with a standard model of site substitution. The multispecies coalescent is commonly used to model gene tree discordance due to incomplete lineage sorting, a well-studied population-genetic effect. In previous work, an information-theoretic trade-off was derived in this context between the number of loci, $m$, needed for an accurate reconstruction and the length of the locus sequences, $k$. It was shown that to reconstruct an internal branch of length $f$, one needs $m$ to be of the order of $1/[f^{2} \sqrt{k}]$. That previous result was obtained under the molecular clock assumption, i.e., under the assumption that mutation rates (as well as population sizes) are constant across the species phylogeny. Here we generalize this result beyond the restrictive molecular clock assumption, and obtain a new reconstruction algorithm that has the same data requirement (up to log factors). Our main contribution is a novel reduction to the molecular clock case under the multispecies coalescent. As a corollary, we also obtain a new identifiability result of independent interest: for any species tree with $n \geq 3$ species, the rooted species tree can be identified from the distribution of its unrooted weighted gene trees even in the absence of a molecular clock.
Gautam Dasarathy, Elchanan Mossel, Robert Nowak, Sebastien Roch
null
1707.043
null
null
Model compression as constrained optimization, with application to neural nets. Part II: quantization
cs.LG cs.NE math.OC stat.ML
We consider the problem of deep neural net compression by quantization: given a large, reference net, we want to quantize its real-valued weights using a codebook with $K$ entries so that the training loss of the quantized net is minimal. The codebook can be optimally learned jointly with the net, or fixed, as for binarization or ternarization approaches. Previous work has quantized the weights of the reference net, or incorporated rounding operations in the backpropagation algorithm, but this has no guarantee of converging to a loss-optimal, quantized net. We describe a new approach based on the recently proposed framework of model compression as constrained optimization \citep{Carreir17a}. This results in a simple iterative "learning-compression" algorithm, which alternates a step that learns a net of continuous weights with a step that quantizes (or binarizes/ternarizes) the weights, and is guaranteed to converge to local optimum of the loss for quantized nets. We develop algorithms for an adaptive codebook or a (partially) fixed codebook. The latter includes binarization, ternarization, powers-of-two and other important particular cases. We show experimentally that we can achieve much higher compression rates than previous quantization work (even using just 1 bit per weight) with negligible loss degradation.
Miguel \'A. Carreira-Perpi\~n\'an and Yerlan Idelbayev
null
1707.04319
null
null
Tensor-Based Backpropagation in Neural Networks with Non-Sequential Input
cs.LG
Neural networks have been able to achieve groundbreaking accuracy at tasks conventionally considered only doable by humans. Using stochastic gradient descent, optimization in many dimensions is made possible, albeit at a relatively high computational cost. By splitting training data into batches, networks can be distributed and trained vastly more efficiently and with minimal accuracy loss. We have explored the mathematics behind efficiently implementing tensor-based batch backpropagation algorithms. A common approach to batch training is iterating over batch items individually. Explicitly using tensor operations to backpropagate allows training to be performed non-linearly, increasing computational efficiency.
Hirsh R. Agarwal, Andrew Huang
null
1707.04324
null
null
Human-Level Intelligence or Animal-Like Abilities?
cs.AI cs.CY cs.LG stat.ML
The vision systems of the eagle and the snake outperform everything that we can make in the laboratory, but snakes and eagles cannot build an eyeglass or a telescope or a microscope. (Judea Pearl)
Adnan Darwiche
null
1707.04327
null
null
Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy?
cs.DM cs.AI cs.DS cs.LG stat.ML
Submodular functions are a broad class of set functions, which naturally arise in diverse areas. Many algorithms have been suggested for the maximization of these functions. Unfortunately, once the function deviates from submodularity, the known algorithms may perform arbitrarily poorly. Amending this issue, by obtaining approximation results for set functions generalizing submodular functions, has been the focus of recent works. One such class, known as weakly submodular functions, has received a lot of attention. A key result proved by Das and Kempe (2011) showed that the approximation ratio of the greedy algorithm for weakly submodular maximization subject to a cardinality constraint degrades smoothly with the distance from submodularity. However, no results have been obtained for maximization subject to constraints beyond cardinality. In particular, it is not known whether the greedy algorithm achieves any non-trivial approximation ratio for such constraints. In this paper, we prove that a randomized version of the greedy algorithm (previously used by Buchbinder et al. (2014) for a different problem) achieves an approximation ratio of $(1 + 1/\gamma)^{-2}$ for the maximization of a weakly submodular function subject to a general matroid constraint, where $\gamma$ is a parameter measuring the distance of the function from submodularity. Moreover, we also experimentally compare the performance of this version of the greedy algorithm on real world problems against natural benchmarks, and show that the algorithm we study performs well also in practice. To the best of our knowledge, this is the first algorithm with a non-trivial approximation guarantee for maximizing a weakly submodular function subject to a constraint other than the simple cardinality constraint. In particular, it is the first algorithm with such a guarantee for the important and broad class of matroid constraints.
Lin Chen, Moran Feldman, Amin Karbasi
null
1707.04347
null
null
f-GANs in an Information Geometric Nutshell
cs.LG stat.ML
Nowozin \textit{et al} showed last year how to extend the GAN \textit{principle} to all $f$-divergences. The approach is elegant but falls short of a full description of the supervised game, and says little about the key player, the generator: for example, what does the generator actually converge to if solving the GAN game means convergence in some space of parameters? How does that provide hints on the generator's design and compare to the flourishing but almost exclusively experimental literature on the subject? In this paper, we unveil a broad class of distributions for which such convergence happens --- namely, deformed exponential families, a wide superset of exponential families --- and show tight connections with the three other key GAN parameters: loss, game and architecture. In particular, we show that current deep architectures are able to factorize a very large number of such densities using an especially compact design, hence displaying the power of deep architectures and their concinnity in the $f$-GAN game. This result holds given a sufficient condition on \textit{activation functions} --- which turns out to be satisfied by popular choices. The key to our results is a variational generalization of an old theorem that relates the KL divergence between regular exponential families and divergences between their natural parameters. We complete this picture with additional results and experimental insights on how these results may be used to ground further improvements of GAN architectures, via (i) a principled design of the activation functions in the generator and (ii) an explicit integration of proper composite losses' link function in the discriminator.
Richard Nock and Zac Cranko and Aditya Krishna Menon and Lizhen Qu and Robert C. Williamson
null
1707.04385
null
null
Lenient Multi-Agent Deep Reinforcement Learning
cs.MA cs.AI cs.LG
Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated because agents update their policies in parallel [11]. In this work we apply leniency [23] to MA-DRL. Lenient agents map state-action pairs to decaying temperature values that control the amount of leniency applied towards negative policy updates that are sampled from the ERM. This introduces optimism in the value-function update, and has been shown to facilitate cooperation in tabular fully-cooperative multi-agent reinforcement learning problems. We evaluate our Lenient-DQN (LDQN) empirically against the related Hysteretic-DQN (HDQN) algorithm [22] as well as a modified version we call scheduled-HDQN, that uses average reward learning near terminal states. Evaluations take place in extended variations of the Coordinated Multi-Agent Object Transportation Problem (CMOTP) [8] which include fully-cooperative sub-tasks and stochastic rewards. We find that LDQN agents are more likely to converge to the optimal policy in a stochastic reward CMOTP compared to standard and scheduled-HDQN agents.
Gregory Palmer, Karl Tuyls, Daan Bloembergen, Rahul Savani
null
1707.04402
null
null
Guiding InfoGAN with Semi-Supervision
cs.CV cs.LG
In this paper we propose a new semi-supervised GAN architecture (ss-InfoGAN) for image synthesis that leverages information from few labels (as little as 0.22%, max. 10% of the dataset) to learn semantically meaningful and controllable data representations where latent variables correspond to label categories. The architecture builds on Information Maximizing Generative Adversarial Networks (InfoGAN) and is shown to learn both continuous and categorical codes and achieves higher quality of synthetic samples compared to fully unsupervised settings. Furthermore, we show that using small amounts of labeled data speeds-up training convergence. The architecture maintains the ability to disentangle latent variables for which no labels are available. Finally, we contribute an information-theoretic reasoning on how introducing semi-supervision increases mutual information between synthetic and real data.
Adrian Spurr, Emre Aksan, Otmar Hilliges
null
1707.04487
null
null
Capturing the diversity of biological tuning curves using generative adversarial networks
q-bio.QM cs.LG q-bio.NC
Tuning curves characterizing the response selectivities of biological neurons often exhibit large degrees of irregularity and diversity across neurons. Theoretical network models that feature heterogeneous cell populations or random connectivity also give rise to diverse tuning curves. However, a general framework for fitting such models to experimentally measured tuning curves is lacking. We address this problem by proposing to view mechanistic network models as generative models whose parameters can be optimized to fit the distribution of experimentally measured tuning curves. A major obstacle for fitting such models is that their likelihood function is not explicitly available or is highly intractable to compute. Recent advances in machine learning provide ways for fitting generative models without the need to evaluate the likelihood and its gradient. Generative Adversarial Networks (GAN) provide one such framework which has been successful in traditional machine learning tasks. We apply this approach in two separate experiments, showing how GANs can be used to fit commonly used mechanistic models in theoretical neuroscience to datasets of measured tuning curves. This fitting procedure avoids the computationally expensive step of inferring latent variables, e.g. the biophysical parameters of individual cells or the particular realization of the full synaptic connectivity matrix, and directly learns model parameters which characterize the statistics of connectivity or of single-cell properties. Another strength of this approach is that it fits the entire, joint distribution of experimental tuning curves, instead of matching a few summary statistics picked a priori by the user. More generally, this framework opens the door to fitting theoretically motivated dynamical network models directly to simultaneously or non-simultaneously recorded neural responses.
Takafumi Arakaki, G. Barello, Yashar Ahmadian
null
1707.04582
null
null
The Reversible Residual Network: Backpropagation Without Storing Activations
cs.CV cs.LG
Deep residual networks (ResNets) have significantly pushed forward the state-of-the-art on image classification, increasing in performance as networks grow both deeper and wider. However, memory consumption becomes a bottleneck, as one needs to store the activations in order to calculate gradients using backpropagation. We present the Reversible Residual Network (RevNet), a variant of ResNets where each layer's activations can be reconstructed exactly from the next layer's. Therefore, the activations for most layers need not be stored in memory during backpropagation. We demonstrate the effectiveness of RevNets on CIFAR-10, CIFAR-100, and ImageNet, establishing nearly identical classification accuracy to equally-sized ResNets, even though the activation storage requirements are independent of depth.
Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse
null
1707.04585
null
null
GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
cs.LG cs.AI stat.ML
VAEs (Variational AutoEncoders) have proved to be powerful in the context of density modeling and have been used in a variety of contexts for creative purposes. In many settings, the data we model possesses continuous attributes that we would like to take into account at generation time. We propose in this paper GLSR-VAE, a Geodesic Latent Space Regularization for the Variational AutoEncoder architecture and its generalizations which allows a fine control on the embedding of the data into the latent space. When augmenting the VAE loss with this regularization, changes in the learned latent space reflects changes of the attributes of the data. This deeper understanding of the VAE latent space structure offers the possibility to modulate the attributes of the generated data in a continuous way. We demonstrate its efficiency on a monophonic music generation task where we manage to generate variations of discrete sequences in an intended and playful way.
Ga\"etan Hadjeres and Frank Nielsen and Fran\c{c}ois Pachet
null
1707.04588
null
null
Cloud-based or On-device: An Empirical Study of Mobile Deep Inference
cs.PF cs.CV cs.LG
Modern mobile applications are benefiting significantly from the advancement in deep learning, e.g., implementing real-time image recognition and conversational system. Given a trained deep learning model, applications usually need to perform a series of matrix operations based on the input data, in order to infer possible output values. Because of computational complexity and size constraints, these trained models are often hosted in the cloud. To utilize these cloud-based models, mobile apps will have to send input data over the network. While cloud-based deep learning can provide reasonable response time for mobile apps, it restricts the use case scenarios, e.g. mobile apps need to have network access. With mobile specific deep learning optimizations, it is now possible to employ on-device inference. However, because mobile hardware, such as GPU and memory size, can be very limited when compared to its desktop counterpart, it is important to understand the feasibility of this new on-device deep learning inference architecture. In this paper, we empirically evaluate the inference performance of three Convolutional Neural Networks (CNNs) using a benchmark Android application we developed. Our measurement and analysis suggest that on-device inference can cost up to two orders of magnitude greater response time and energy when compared to cloud-based inference, and that loading model and computing probability are two performance bottlenecks for on-device deep inferences.
Tian Guo
null
1707.0461
null
null
On the Complexity of Learning Neural Networks
cs.LG cs.CC
The stunning empirical successes of neural networks currently lack rigorous theoretical explanation. What form would such an explanation take, in the face of existing complexity-theoretic lower bounds? A first step might be to show that data generated by neural networks with a single hidden layer, smooth activation functions and benign input distributions can be learned efficiently. We demonstrate here a comprehensive lower bound ruling out this possibility: for a wide class of activation functions (including all currently used), and inputs drawn from any logconcave distribution, there is a family of one-hidden-layer functions whose output is a sum gate, that are hard to learn in a precise sense: any statistical query algorithm (which includes all known variants of stochastic gradient descent with any loss function) needs an exponential number of queries even using tolerance inversely proportional to the input dimensionality. Moreover, this hard family of functions is realizable with a small (sublinear in dimension) number of activation units in the single hidden layer. The lower bound is also robust to small perturbations of the true weights. Systematic experiments illustrate a phase transition in the training error as predicted by the analysis.
Le Song, Santosh Vempala, John Wilmes, and Bo Xie
null
1707.04615
null
null
Simplified Long Short-term Memory Recurrent Neural Networks: part I
cs.NE cs.LG
We present five variants of the standard Long Short-term Memory (LSTM) recurrent neural networks by uniformly reducing blocks of adaptive parameters in the gating mechanisms. For simplicity, we refer to these models as LSTM1, LSTM2, LSTM3, LSTM4, and LSTM5, respectively. Such parameter-reduced variants enable speeding up data training computations and would be more suitable for implementations onto constrained embedded platforms. We comparatively evaluate and verify our five variant models on the classical MNIST dataset and demonstrate that these variant models are comparable to a standard implementation of the LSTM model while using less number of parameters. Moreover, we observe that in some cases the standard LSTM's accuracy performance will drop after a number of epochs when using the ReLU nonlinearity; in contrast, however, LSTM3, LSTM4 and LSTM5 will retain their performance.
Atra Akandeh and Fathi M. Salem
null
1707.04619
null
null
Simplified Long Short-term Memory Recurrent Neural Networks: part II
cs.NE cs.LG
This is part II of three-part work. Here, we present a second set of inter-related five variants of simplified Long Short-term Memory (LSTM) recurrent neural networks by further reducing adaptive parameters. Two of these models have been introduced in part I of this work. We evaluate and verify our model variants on the benchmark MNIST dataset and assert that these models are comparable to the base LSTM model while use progressively less number of parameters. Moreover, we observe that in case of using the ReLU activation, the test accuracy performance of the standard LSTM will drop after a number of epochs when learning parameter become larger. However all of the new model variants sustain their performance.
Atra Akandeh and Fathi M. Salem
null
1707.04623
null
null
Simplified Long Short-term Memory Recurrent Neural Networks: part III
cs.NE cs.LG
This is part III of three-part work. In parts I and II, we have presented eight variants for simplified Long Short Term Memory (LSTM) recurrent neural networks (RNNs). It is noted that fast computation, specially in constrained computing resources, are an important factor in processing big time-sequence data. In this part III paper, we present and evaluate two new LSTM model variants which dramatically reduce the computational load while retaining comparable performance to the base (standard) LSTM RNNs. In these new variants, we impose (Hadamard) pointwise state multiplications in the cell-memory network in addition to the gating signal networks.
Atra Akandeh and Fathi M. Salem
null
1707.04626
null
null
Predicting multicellular function through multi-layer tissue networks
cs.LG cs.SI q-bio.MN stat.ML
Motivation: Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results: Here we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems
Marinka Zitnik and Jure Leskovec
10.1093/bioinformatics/btx252
1707.04638
null
null
Predictive Liability Models and Visualizations of High Dimensional Retail Employee Data
cs.LG
Employee theft and dishonesty is a major contributor to loss in the retail industry. Retailers have reported the need for more automated analytic tools to assess the liability of their employees. In this work, we train and optimize several machine learning models for regression prediction and analysis on this data, which will help retailers identify and manage risky employees. Since the data we use is very high dimensional, we use feature selection techniques to identify the most contributing factors to an employee's assessed risk. We also use dimension reduction and data embedding techniques to present this dataset in a easy to interpret format.
Richard R. Yang, Mike Borowczak
10.1145/3194206.3195587
1707.04639
null
null
Learning linear structural equation models in polynomial time and sample complexity
cs.LG stat.ML
The problem of learning structural equation models (SEMs) from data is a fundamental problem in causal inference. We develop a new algorithm --- which is computationally and statistically efficient and works in the high-dimensional regime --- for learning linear SEMs from purely observational data with arbitrary noise distribution. We consider three aspects of the problem: identifiability, computational efficiency, and statistical efficiency. We show that when data is generated from a linear SEM over $p$ nodes and maximum degree $d$, our algorithm recovers the directed acyclic graph (DAG) structure of the SEM under an identifiability condition that is more general than those considered in the literature, and without faithfulness assumptions. In the population setting, our algorithm recovers the DAG structure in $\mathcal{O}(p(d^2 + \log p))$ operations. In the finite sample setting, if the estimated precision matrix is sparse, our algorithm has a smoothed complexity of $\widetilde{\mathcal{O}}(p^3 + pd^7)$, while if the estimated precision matrix is dense, our algorithm has a smoothed complexity of $\widetilde{\mathcal{O}}(p^5)$. For sub-Gaussian noise, we show that our algorithm has a sample complexity of $\mathcal{O}(\frac{d^8}{\varepsilon^2} \log (\frac{p}{\sqrt{\delta}}))$ to achieve $\varepsilon$ element-wise additive error with respect to the true autoregression matrix with probability at most $1 - \delta$, while for noise with bounded $(4m)$-th moment, with $m$ being a positive integer, our algorithm has a sample complexity of $\mathcal{O}(\frac{d^8}{\varepsilon^2} (\frac{p^2}{\delta})^{1/m})$.
Asish Ghoshal and Jean Honorio
null
1707.04673
null
null
Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science
cs.NE cs.AI cs.LG
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erd\H{o}s-R\'enyi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, Antonio Liotta
10.1038/s41467-018-04316-3
1707.0478
null
null
Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification
math.OC cs.LG
This work explores the trade-off between the number of samples required to accurately build models of dynamical systems and the degradation of performance in various control objectives due to a coarse approximation. In particular, we show that simple models can be easily fit from input/output data and are sufficient for achieving various control objectives. We derive bounds on the number of noisy input/output samples from a stable linear time-invariant system that are sufficient to guarantee that the corresponding finite impulse response approximation is close to the true system in the $\mathcal{H}_\infty$-norm. We demonstrate that these demands are lower than those derived in prior art which aimed to accurately identify dynamical models. We also explore how different physical input constraints, such as power constraints, affect the sample complexity. Finally, we show how our analysis fits within the established framework of robust control, by demonstrating how a controller designed for an approximate system provably meets performance objectives on the true system.
Stephen Tu, Ross Boczar, Andrew Packard, Benjamin Recht
null
1707.04791
null
null
Block-Normalized Gradient Method: An Empirical Study for Training Deep Neural Network
cs.LG cs.AI
In this paper, we propose a generic and simple strategy for utilizing stochastic gradient information in optimization. The technique essentially contains two consecutive steps in each iteration: 1) computing and normalizing each block (layer) of the mini-batch stochastic gradient; 2) selecting appropriate step size to update the decision variable (parameter) towards the negative of the block-normalized gradient. We conduct extensive empirical studies on various non-convex neural network optimization problems, including multi-layer perceptron, convolution neural networks and recurrent neural networks. The results indicate the block-normalized gradient can help accelerate the training of neural networks. In particular, we observe that the normalized gradient methods having constant step size with occasionally decay, such as SGD with momentum, have better performance in the deep convolution neural networks, while those with adaptive step sizes, such as Adam, perform better in recurrent neural networks. Besides, we also observe this line of methods can lead to solutions with better generalization properties, which is confirmed by the performance improvement over strong baselines.
Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, Jaime Carbonell
null
1707.04822
null
null
Minimax deviation strategies for machine learning and recognition with short learning samples
cs.LG
The article is devoted to the problem of small learning samples in machine learning. The flaws of maximum likelihood learning and minimax learning are looked into and the concept of minimax deviation learning is introduced that is free of those flaws.
Michail Schlesinger, Evgeniy Vodolazskiy
null
1707.04849
null
null
Overcoming Catastrophic Interference by Conceptors
cs.NE cs.LG
Catastrophic interference has been a major roadblock in the research of continual learning. Here we propose a variant of the back-propagation algorithm, "conceptor-aided back-prop" (CAB), in which gradients are shielded by conceptors against degradation of previously learned tasks. Conceptors have their origin in reservoir computing, where they have been previously shown to overcome catastrophic forgetting. CAB extends these results to deep feedforward networks. On the disjoint MNIST task CAB outperforms two other methods for coping with catastrophic interference that have recently been proposed in the deep learning field.
Xu He and Herbert Jaeger
null
1707.04853
null
null
Efficient Architecture Search by Network Transformation
cs.LG cs.AI
Techniques for automatically designing deep neural network architectures such as reinforcement learning based approaches have recently shown promising results. However, their success is based on vast computational resources (e.g. hundreds of GPUs), making them difficult to be widely used. A noticeable limitation is that they still design and train each network from scratch during the exploration of the architecture space, which is highly inefficient. In this paper, we propose a new framework toward efficient architecture search by exploring the architecture space based on the current network and reusing its weights. We employ a reinforcement learning agent as the meta-controller, whose action is to grow the network depth or layer width with function-preserving transformations. As such, the previously validated networks can be reused for further exploration, thus saves a large amount of computational cost. We apply our method to explore the architecture space of the plain convolutional neural networks (no skip-connections, branching etc.) on image benchmark datasets (CIFAR-10, SVHN) with restricted computational resources (5 GPUs). Our method can design highly competitive networks that outperform existing networks using the same design scheme. On CIFAR-10, our model without skip-connections achieves 4.23\% test error rate, exceeding a vast majority of modern architectures and approaching DenseNet. Furthermore, by applying our method to explore the DenseNet architecture space, we are able to achieve more accurate networks with fewer parameters.
Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, Jun Wang
null
1707.04873
null
null
Listening while Speaking: Speech Chain by Deep Learning
cs.CL cs.LG cs.SD
Despite the close relationship between speech perception and production, research in automatic speech recognition (ASR) and text-to-speech synthesis (TTS) has progressed more or less independently without exerting much mutual influence on each other. In human communication, on the other hand, a closed-loop speech chain mechanism with auditory feedback from the speaker's mouth to her ear is crucial. In this paper, we take a step further and develop a closed-loop speech chain model based on deep learning. The sequence-to-sequence model in close-loop architecture allows us to train our model on the concatenation of both labeled and unlabeled data. While ASR transcribes the unlabeled speech features, TTS attempts to reconstruct the original speech waveform based on the text from ASR. In the opposite direction, ASR also attempts to reconstruct the original text transcription given the synthesized speech. To the best of our knowledge, this is the first deep learning model that integrates human speech perception and production behaviors. Our experimental results show that the proposed approach significantly improved the performance more than separate systems that were only trained with labeled data.
Andros Tjandra, Sakriani Sakti, Satoshi Nakamura
null
1707.04879
null
null
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
cs.LG cs.IT math.IT math.OC stat.ML
In this paper we study the problem of learning a shallow artificial neural network that best fits a training data set. We study this problem in the over-parameterized regime where the number of observations are fewer than the number of parameters in the model. We show that with quadratic activations the optimization landscape of training such shallow neural networks has certain favorable characteristics that allow globally optimal models to be found efficiently using a variety of local search heuristics. This result holds for an arbitrary training data of input/output pairs. For differentiable activation functions we also show that gradient descent, when suitably initialized, converges at a linear rate to a globally optimal model. This result focuses on a realizable model where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted weight coefficients.
Mahdi Soltanolkotabi and Adel Javanmard and Jason D. Lee
null
1707.04926
null
null
Comparative Performance Analysis of Neural Networks Architectures on H2O Platform for Various Activation Functions
cs.LG cs.CV cs.PF
Deep learning (deep structured learning, hierarchi- cal learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model high- level abstractions in data by using multiple processing layers with complex structures or otherwise composed of multiple non-linear transformations. In this paper, we present the results of testing neural networks architectures on H2O platform for various activation functions, stopping metrics, and other parameters of machine learning algorithm. It was demonstrated for the use case of MNIST database of handwritten digits in single-threaded mode that blind selection of these parameters can hugely increase (by 2-3 orders) the runtime without the significant increase of precision. This result can have crucial influence for opitmization of available and new machine learning methods, especially for image recognition problems.
Yuriy Kochura, Sergii Stirenko, Yuri Gordienko
10.1109/YSF.2017.8126654
1707.0494
null
null
An Ensemble Boosting Model for Predicting Transfer to the Pediatric Intensive Care Unit
cs.LG stat.AP stat.ML
Our work focuses on the problem of predicting the transfer of pediatric patients from the general ward of a hospital to the pediatric intensive care unit. Using data collected over 5.5 years from the electronic health records of two medical facilities, we develop classifiers based on adaptive boosting and gradient tree boosting. We further combine these learned classifiers into an ensemble model and compare its performance to a modified pediatric early warning score (PEWS) baseline that relies on expert defined guidelines. To gauge model generalizability, we perform an inter-facility evaluation where we train our algorithm on data from one facility and perform evaluation on a hidden test dataset from a separate facility. We show that improvements are witnessed over the PEWS baseline in accuracy (0.77 vs. 0.69), sensitivity (0.80 vs. 0.68), specificity (0.74 vs. 0.70) and AUROC (0.85 vs. 0.73).
Jonathan Rubin, Cristhian Potes, Minnan Xu-Wilson, Junzi Dong, Asif Rahman, Hiep Nguyen, David Moromisato
null
1707.04958
null
null
Deep Learning to Attend to Risk in ICU
cs.LG stat.ML
Modeling physiological time-series in ICU is of high clinical importance. However, data collected within ICU are irregular in time and often contain missing measurements. Since absence of a measure would signify its lack of importance, the missingness is indeed informative and might reflect the decision making by the clinician. Here we propose a deep learning architecture that can effectively handle these challenges for predicting ICU mortality outcomes. The model is based on Long Short-Term Memory, and has layered attention mechanisms. At the sensing layer, the model decides whether to observe and incorporate parts of the current measurements. At the reasoning layer, evidences across time steps are weighted and combined. The model is evaluated on the PhysioNet 2012 dataset showing competitive and interpretable results.
Phuoc Nguyen, Truyen Tran, Svetha Venkatesh
null
1707.0501
null
null
Optimization by gradient boosting
math.ST cs.LG stat.TH
Gradient boosting is a state-of-the-art prediction technique that sequentially produces a model in the form of linear combinations of simple predictors---typically decision trees---by solving an infinite-dimensional convex optimization problem. We provide in the present paper a thorough analysis of two widespread versions of gradient boosting, and introduce a general framework for studying these algorithms from the point of view of functional optimization. We prove their convergence as the number of iterations tends to infinity and highlight the importance of having a strongly convex risk functional to minimize. We also present a reasonable statistical context ensuring consistency properties of the boosting predictors as the sample size grows. In our approach, the optimization procedures are run forever (that is, without resorting to an early stopping strategy), and statistical regularization is basically achieved via an appropriate $L^2$ penalization of the loss and strong convexity arguments.
G\'erard Biau (LSTA, LPMA), Beno\^it Cadre (ENS Rennes, IRMAR)
null
1707.05023
null
null
On consistency of optimal pricing algorithms in repeated posted-price auctions with strategic buyer
cs.GT cs.AI cs.LG stat.ML
We study revenue optimization learning algorithms for repeated posted-price auctions where a seller interacts with a single strategic buyer that holds a fixed private valuation for a good and seeks to maximize his cumulative discounted surplus. For this setting, first, we propose a novel algorithm that never decreases offered prices and has a tight strategic regret bound in $\Theta(\log\log T)$ under some mild assumptions on the buyer surplus discounting. This result closes the open research question on the existence of a no-regret horizon-independent weakly consistent pricing. The proposed algorithm is inspired by our observation that a double decrease of offered prices in a weakly consistent algorithm is enough to cause a linear regret. This motivates us to construct a novel transformation that maps a right-consistent algorithm to a weakly consistent one that never decreases offered prices. Second, we outperform the previously known strategic regret upper bound of the algorithm PRRFES, where the improvement is achieved by means of a finer constant factor $C$ of the principal term $C\log\log T$ in this upper bound. Finally, we generalize results on strategic regret previously known for geometric discounting of the buyer's surplus to discounting of other types, namely: the optimality of the pricing PRRFES to the case of geometrically concave decreasing discounting; and linear lower bound on the strategic regret of a wide range of horizon-independent weakly consistent algorithms to the case of arbitrary discounts.
Alexey Drutsa
null
1707.05101
null
null
Differentially Private Testing of Identity and Closeness of Discrete Distributions
cs.LG cs.DS cs.IT math.IT
We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over $k$ elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under $(\varepsilon, \delta)$-differential privacy. We provide optimal sample complexity algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most $k$. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on differentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By constructing carefully chosen priors over the hypothesis classes, and using Le Cam's two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy.
Jayadev Acharya, Ziteng Sun, Huanyu Zhang
null
1707.05128
null
null
Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation
stat.ML cs.LG
In this paper, we study the trade-offs of different inference approaches for Bayesian matrix factorisation methods, which are commonly used for predicting missing values, and for finding patterns in the data. In particular, we consider Bayesian nonnegative variants of matrix factorisation and tri-factorisation, and compare non-probabilistic inference, Gibbs sampling, variational Bayesian inference, and a maximum-a-posteriori approach. The variational approach is new for the Bayesian nonnegative models. We compare their convergence, and robustness to noise and sparsity of the data, on both synthetic and real-world datasets. Furthermore, we extend the models with the Bayesian automatic relevance determination prior, allowing the models to perform automatic model selection, and demonstrate its efficiency.
Thomas Brouwer, Jes Frellsen, Pietro Li\'o
null
1707.05147
null
null
Trial without Error: Towards Safe Reinforcement Learning via Human Intervention
cs.AI cs.LG cs.NE
AI systems are increasingly applied to complex tasks that involve interaction with humans. During training, such systems are potentially dangerous, as they haven't yet learned to avoid actions that could cause serious harm. How can an AI system explore and learn without making a single mistake that harms humans or otherwise causes serious damage? For model-free reinforcement learning, having a human "in the loop" and ready to intervene is currently the only way to prevent all catastrophes. We formalize human intervention for RL and show how to reduce the human labor required by training a supervised learner to imitate the human's intervention decisions. We evaluate this scheme on Atari games, with a Deep RL agent being overseen by a human for four hours. When the class of catastrophes is simple, we are able to prevent all catastrophes without affecting the agent's learning (whereas an RL baseline fails due to catastrophic forgetting). However, this scheme is less successful when catastrophes are more complex: it reduces but does not eliminate catastrophes and the supervised learner fails on adversarial examples found by the agent. Extrapolating to more challenging environments, we show that our implementation would not scale (due to the infeasible amount of human labor required). We outline extensions of the scheme that are necessary if we are to train model-free agents without a single catastrophe.
William Saunders, Girish Sastry, Andreas Stuhlmueller, Owain Evans
null
1707.05173
null
null
Auxiliary Objectives for Neural Error Detection Models
cs.CL cs.LG cs.NE
We investigate the utility of different auxiliary objectives and training strategies within a neural sequence labeling approach to error detection in learner writing. Auxiliary costs provide the model with additional linguistic information, allowing it to learn general-purpose compositional features that can then be exploited for other objectives. Our experiments show that a joint learning approach trained with parallel labels on in-domain data improves performance over the previous best error detection system. While the resulting model has the same number of parameters, the additional objectives allow it to be optimised more efficiently and achieve better performance.
Marek Rei, Helen Yannakoudakis
null
1707.05227
null
null
Detecting Off-topic Responses to Visual Prompts
cs.CL cs.LG cs.NE
Automated methods for essay scoring have made great progress in recent years, achieving accuracies very close to human annotators. However, a known weakness of such automated scorers is not taking into account the semantic relevance of the submitted text. While there is existing work on detecting answer relevance given a textual prompt, very little previous research has been done to incorporate visual writing prompts. We propose a neural architecture and several extensions for detecting off-topic responses to visual prompts and evaluate it on a dataset of texts written by language learners.
Marek Rei
null
1707.05233
null
null
Artificial Error Generation with Machine Translation and Syntactic Patterns
cs.CL cs.LG
Shortage of available training data is holding back progress in the area of automated error detection. This paper investigates two alternative methods for artificially generating writing errors, in order to create additional resources. We propose treating error generation as a machine translation task, where grammatically correct text is translated to contain errors. In addition, we explore a system for extracting textual patterns from an annotated corpus, which can then be used to insert errors into grammatically correct sentences. Our experiments show that the inclusion of artificially generated errors significantly improves error detection accuracy on both FCE and CoNLL 2014 datasets.
Marek Rei, Mariano Felice, Zheng Yuan, Ted Briscoe
null
1707.05236
null
null
Learning to select data for transfer learning with Bayesian Optimization
cs.CL cs.LG
Domain similarity measures can be used to gauge adaptability and select suitable data for transfer learning, but existing approaches define ad hoc measures that are deemed suitable for respective tasks. Inspired by work on curriculum learning, we propose to \emph{learn} data selection measures using Bayesian Optimization and evaluate them across models, domains and tasks. Our learned measures outperform existing domain similarity measures significantly on three tasks: sentiment analysis, part-of-speech tagging, and parsing. We show the importance of complementing similarity with diversity, and that learned measures are -- to some degree -- transferable across models, domains, and even tasks.
Sebastian Ruder, Barbara Plank
null
1707.05246
null
null
Reverse Curriculum Generation for Reinforcement Learning
cs.AI cs.LG cs.NE cs.RO
Many relevant tasks require an agent to reach a certain state, or to manipulate objects into a desired configuration. For example, we might want a robot to align and assemble a gear onto an axle or insert and turn a key in a lock. These goal-oriented tasks present a considerable challenge for reinforcement learning, since their natural reward function is sparse and prohibitive amounts of exploration are required to reach the goal and receive some learning signal. Past approaches tackle these problems by exploiting expert demonstrations or by manually designing a task-specific reward shaping function to guide the learning agent. Instead, we propose a method to learn these tasks without requiring any prior knowledge other than obtaining a single state in which the task is achieved. The robot is trained in reverse, gradually learning to reach the goal from a set of start states increasingly far from the goal. Our method automatically generates a curriculum of start states that adapts to the agent's performance, leading to efficient training on goal-oriented tasks. We demonstrate our approach on difficult simulated navigation and fine-grained manipulation problems, not solvable by state-of-the-art reinforcement learning methods.
Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, Pieter Abbeel
null
1707.053
null
null
Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis
cs.LG
We present a real-time method for synthesizing highly complex human motions using a novel training regime we call the auto-conditioned Recurrent Neural Network (acRNN). Recently, researchers have attempted to synthesize new motion by using autoregressive techniques, but existing methods tend to freeze or diverge after a couple of seconds due to an accumulation of errors that are fed back into the network. Furthermore, such methods have only been shown to be reliable for relatively simple human motions, such as walking or running. In contrast, our approach can synthesize arbitrary motions with highly complex styles, including dances or martial arts in addition to locomotion. The acRNN is able to accomplish this by explicitly accommodating for autoregressive noise accumulation during training. Our work is the first to our knowledge that demonstrates the ability to generate over 18,000 continuous frames (300 seconds) of new complex human motion w.r.t. different styles.
Zimo Li, Yi Zhou, Shuangjiu Xiao, Chong He, Zeng Huang, Hao Li
null
1707.05363
null
null
Houdini: Fooling Deep Structured Prediction Models
stat.ML cs.AI cs.CR cs.CV cs.LG
Generating adversarial examples is a critical step for evaluating and improving the robustness of learning machines. So far, most existing methods only work for classification and are not designed to alter the true performance measure of the problem at hand. We introduce a novel flexible approach named Houdini for generating adversarial examples specifically tailored for the final performance measure of the task considered, be it combinatorial and non-decomposable. We successfully apply Houdini to a range of applications such as speech recognition, pose estimation and semantic segmentation. In all cases, the attacks based on Houdini achieve higher success rate than those based on the traditional surrogates used to train the models while using a less perceptible adversarial perturbation.
Moustapha Cisse, Yossi Adi, Natalia Neverova and Joseph Keshet
null
1707.05373
null
null
TensorLog: Deep Learning Meets Probabilistic DBs
cs.AI cs.LG
We present an implementation of a probabilistic first-order logic called TensorLog, in which classes of logical queries are compiled into differentiable functions in a neural-network infrastructure such as Tensorflow or Theano. This leads to a close integration of probabilistic logical reasoning with deep-learning infrastructure: in particular, it enables high-performance deep learning frameworks to be used for tuning the parameters of a probabilistic logic. Experimental results show that TensorLog scales to problems involving hundreds of thousands of knowledge-base triples and tens of thousands of examples.
William W. Cohen, Fan Yang, Kathryn Rivard Mazaitis
null
1707.0539
null
null
Freehand Ultrasound Image Simulation with Spatially-Conditioned Generative Adversarial Networks
cs.LG cs.CV
Sonography synthesis has a wide range of applications, including medical procedure simulation, clinical training and multimodality image registration. In this paper, we propose a machine learning approach to simulate ultrasound images at given 3D spatial locations (relative to the patient anatomy), based on conditional generative adversarial networks (GANs). In particular, we introduce a novel neural network architecture that can sample anatomically accurate images conditionally on spatial position of the (real or mock) freehand ultrasound probe. To ensure an effective and efficient spatial information assimilation, the proposed spatially-conditioned GANs take calibrated pixel coordinates in global physical space as conditioning input, and utilise residual network units and shortcuts of conditioning data in the GANs' discriminator and generator, respectively. Using optically tracked B-mode ultrasound images, acquired by an experienced sonographer on a fetus phantom, we demonstrate the feasibility of the proposed method by two sets of quantitative results: distances were calculated between corresponding anatomical landmarks identified in the held-out ultrasound images and the simulated data at the same locations unseen to the networks; a usability study was carried out to distinguish the simulated data from the real images. In summary, we present what we believe are state-of-the-art visually realistic ultrasound images, simulated by the proposed GAN architecture that is stable to train and capable of generating plausibly diverse image samples.
Yipeng Hu, Eli Gibson, Li-Lin Lee, Weidi Xie, Dean C. Barratt, Tom Vercauteren, J. Alison Noble
10.1007/978-3-319-67564-0_11
1707.05392
null
null
Cooperative Hierarchical Dirichlet Processes: Superposition vs. Maximization
cs.LG stat.ML
The cooperative hierarchical structure is a common and significant data structure observed in, or adopted by, many research areas, such as: text mining (author-paper-word) and multi-label classification (label-instance-feature). Renowned Bayesian approaches for cooperative hierarchical structure modeling are mostly based on topic models. However, these approaches suffer from a serious issue in that the number of hidden topics/factors needs to be fixed in advance and an inappropriate number may lead to overfitting or underfitting. One elegant way to resolve this issue is Bayesian nonparametric learning, but existing work in this area still cannot be applied to cooperative hierarchical structure modeling. In this paper, we propose a cooperative hierarchical Dirichlet process (CHDP) to fill this gap. Each node in a cooperative hierarchical structure is assigned a Dirichlet process to model its weights on the infinite hidden factors/topics. Together with measure inheritance from hierarchical Dirichlet process, two kinds of measure cooperation, i.e., superposition and maximization, are defined to capture the many-to-many relationships in the cooperative hierarchical structure. Furthermore, two constructive representations for CHDP, i.e., stick-breaking and international restaurant process, are designed to facilitate the model inference. Experiments on synthetic and real-world data with cooperative hierarchical structures demonstrate the properties and the ability of CHDP for cooperative hierarchical structure modeling and its potential for practical application scenarios.
Junyu Xuan, Jie Lu, Guangquan Zhang, Richard Yi Da Xu
null
1707.0542
null
null
Don't relax: early stopping for convex regularization
math.OC cs.LG
We consider the problem of designing efficient regularization algorithms when regularization is encoded by a (strongly) convex functional. Unlike classical penalization methods based on a relaxation approach, we propose an iterative method where regularization is achieved via early stopping. Our results show that the proposed procedure achieves the same recovery accuracy as penalization methods, while naturally integrating computational considerations. An empirical analysis on a number of problems provides promising results with respect to the state of the art.
Simon Matet, Lorenzo Rosasco, Silvia Villa and Bang Long Vu
null
1707.05422
null
null
DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks
stat.ML cs.LG
Information extraction and user intention identification are central topics in modern query understanding and recommendation systems. In this paper, we propose DeepProbe, a generic information-directed interaction framework which is built around an attention-based sequence to sequence (seq2seq) recurrent neural network. DeepProbe can rephrase, evaluate, and even actively ask questions, leveraging the generative ability and likelihood estimation made possible by seq2seq models. DeepProbe makes decisions based on a derived uncertainty (entropy) measure conditioned on user inputs, possibly with multiple rounds of interactions. Three applications, namely a rewritter, a relevance scorer and a chatbot for ad recommendation, were built around DeepProbe, with the first two serving as precursory building blocks for the third. We first use the seq2seq model in DeepProbe to rewrite a user query into one of standard query form, which is submitted to an ordinary recommendation system. Secondly, we evaluate DeepProbe's seq2seq model-based relevance scoring. Finally, we build a chatbot prototype capable of making active user interactions, which can ask questions that maximize information gain, allowing for a more efficient user intention idenfication process. We evaluate first two applications by 1) comparing with baselines by BLEU and AUC, and 2) human judge evaluation. Both demonstrate significant improvements compared with current state-of-the-art systems, proving their values as useful tools on their own, and at the same time laying a good foundation for the ongoing chatbot application.
Zi Yin, Keng-hao Chang, Ruofei Zhang
10.1145/3097983.3098148
1707.0547
null
null
Vision-based Real Estate Price Estimation
cs.CV cs.LG
Since the advent of online real estate database companies like Zillow, Trulia and Redfin, the problem of automatic estimation of market values for houses has received considerable attention. Several real estate websites provide such estimates using a proprietary formula. Although these estimates are often close to the actual sale prices, in some cases they are highly inaccurate. One of the key factors that affects the value of a house is its interior and exterior appearance, which is not considered in calculating automatic value estimates. In this paper, we evaluate the impact of visual characteristics of a house on its market value. Using deep convolutional neural networks on a large dataset of photos of home interiors and exteriors, we develop a method for estimating the luxury level of real estate photos. We also develop a novel framework for automated value assessment using the above photos in addition to home characteristics including size, offered price and number of bedrooms. Finally, by applying our proposed method for price estimation to a new dataset of real estate photos and metadata, we show that it outperforms Zillow's estimates.
Omid Poursaeed, Tomas Matera, Serge Belongie
10.1007/s00138-018-0922-2
1707.05489
null
null