title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
null
Multi-agent reinforcement learning (MARL) algorithms often suffer from an exponential sample complexity dependence on the number of agents, a phenomenon known as the curse of multiagents. We address this challenge by investigating sample-efficient model-free algorithms in decentralized MARL, and aim to improve existing algorithms along this line. For learning (coarse) correlated equilibria in general-sum Markov games, we propose stage-based V-learning algorithms that significantly simplify the algorithmic design and analysis of recent works, and circumvent a rather complicated no-weighted-regret bandit subroutine. For learning Nash equilibria in Markov potential games, we propose an independent policy gradient algorithm with a decentralized momentum-based variance reduction technique. All our algorithms are decentralized in that each agent can make decisions based on only its local information. Neither communication nor centralized coordination is required during learning, leading to a natural generalization to a large number of agents. Finally, we provide numerical simulations to corroborate our theoretical findings.
Weichao Mao, Lin Yang, Kaiqing Zhang, Tamer Basar
null
null
2,022
icml
How to Stay Curious while avoiding Noisy TVs using Aleatoric Uncertainty Estimation
null
When extrinsic rewards are sparse, artificial agents struggle to explore an environment. Curiosity, implemented as an intrinsic reward for prediction errors, can improve exploration but it is known to fail when faced with action-dependent noise sources (‘noisy TVs’). In an attempt to make exploring agents robust to Noisy TVs, we present a simple solution: aleatoric mapping agents (AMAs). AMAs are a novel form of curiosity that explicitly ascertain which state transitions of the environment are unpredictable, even if those dynamics are induced by the actions of the agent. This is achieved by generating separate forward predictions for the mean and aleatoric uncertainty of future states, with the aim of reducing intrinsic rewards for those transitions that are unpredictable. We demonstrate that in a range of environments AMAs are able to circumvent action-dependent stochastic traps that immobilise conventional curiosity driven agents. Furthermore, we demonstrate empirically that other common exploration approaches—previously thought to be immune to agent-induced randomness—can be trapped by stochastic dynamics.
Augustine Mavor-Parker, Kimberly Young, Caswell Barry, Lewis Griffin
null
null
2,022
icml
Continual Repeated Annealed Flow Transport Monte Carlo
null
We propose Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT), a method that combines a sequential Monte Carlo (SMC) sampler (itself a generalization of Annealed Importance Sampling) with variational inference using normalizing flows. The normalizing flows are directly trained to transport between annealing temperatures using a KL divergence for each transition. This optimization objective is itself estimated using the normalizing flow/SMC approximation. We show conceptually and using multiple empirical examples that CRAFT improves on Annealed Flow Transport Monte Carlo (Arbel et al., 2021), on which it builds and also on Markov chain Monte Carlo (MCMC) based Stochastic Normalizing Flows (Wu et al., 2020). By incorporating CRAFT within particle MCMC, we show that such learnt samplers can achieve impressively accurate results on a challenging lattice field theory example.
Alex Matthews, Michael Arbel, Danilo Jimenez Rezende, Arnaud Doucet
null
null
2,022
icml
Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features
null
Decision trees are one of the most useful and popular methods in the machine learning toolbox. In this paper, we consider the problem of learning optimal decision trees, a combinatorial optimization problem that is challenging to solve at scale. A common approach in the literature is to use greedy heuristics, which may not be optimal. Recently there has been significant interest in learning optimal decision trees using various approaches (e.g., based on integer programming, dynamic programming)—to achieve computational scalability, most of these approaches focus on classification tasks with binary features. In this paper, we present a new discrete optimization method based on branch-and-bound (BnB) to obtain optimal decision trees. Different from existing customized approaches, we consider both regression and classification tasks with continuous features. The basic idea underlying our approach is to split the search space based on the quantiles of the feature distribution—leading to upper and lower bounds for the underlying optimization problem along the BnB iterations. Our proposed algorithm Quant-BnB shows significant speedups compared to existing approaches for shallow optimal trees on various real datasets.
Rahul Mazumder, Xiang Meng, Haoyue Wang
null
null
2,022
icml
ButterflyFlow: Building Invertible Layers with Butterfly Matrices
null
Normalizing flows model complex probability distributions using maps obtained by composing invertible layers. Special linear layers such as masked and 1{\texttimes}1 convolutions play a key role in existing architectures because they increase expressive power while having tractable Jacobians and inverses. We propose a new family of invertible linear layers based on butterfly layers, which are known to theoretically capture complex linear structures including permutations and periodicity, yet can be inverted efficiently. This representational power is a key advantage of our approach, as such structures are common in many real-world datasets. Based on our invertible butterfly layers, we construct a new class of normalizing flow mod- els called ButterflyFlow. Empirically, we demonstrate that ButterflyFlows not only achieve strong density estimation results on natural images such as MNIST, CIFAR-10, and ImageNet-32{\texttimes}32, but also obtain significantly better log-likelihoods on structured datasets such as galaxy images and MIMIC-III patient cohorts{—}all while being more efficient in terms of memory and computation than relevant baselines.
Chenlin Meng, Linqi Zhou, Kristy Choi, Tri Dao, Stefano Ermon
null
null
2,022
icml
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
null
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct modeling of the global and local graph structure and helps to overcome the expressivity and mode collapse issues of one-shot graph generators. Our novel GAN, called SPECTRE, enables the one-shot generation of much larger graphs than previously possible with one-shot models. SPECTRE outperforms state-of-the-art deep autoregressive generators in terms of modeling fidelity, while also avoiding expensive sequential generation and dependence on node ordering. A case in point, in sizable synthetic and real-world graphs SPECTRE achieves a 4-to-170 fold improvement over the best competitor that does not overfit and is 23-to-30 times faster than autoregressive generators.
Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, Roger Wattenhofer
null
null
2,022
icml
Modular Conformal Calibration
null
Uncertainty estimates must be calibrated (i.e., accurate) and sharp (i.e., informative) in order to be useful. This has motivated a variety of methods for recalibration, which use held-out data to turn an uncalibrated model into a calibrated model. However, the applicability of existing methods is limited due to their assumption that the original model is also a probabilistic model. We introduce a versatile class of algorithms for recalibration in regression that we call modular conformal calibration (MCC). This framework allows one to transform any regression model into a calibrated probabilistic model. The modular design of MCC allows us to make simple adjustments to existing algorithms that enable well-behaved distribution predictions. We also provide finite-sample calibration guarantees for MCC algorithms. Our framework recovers isotonic recalibration, conformal calibration, and conformal interval prediction, implying that our theoretical results apply to those methods as well. Finally, we conduct an empirical study of MCC on 17 regression datasets. Our results show that new algorithms designed in our framework achieve near-perfect calibration and improve sharpness relative to existing methods.
Charles Marx, Shengjia Zhao, Willie Neiswanger, Stefano Ermon
null
null
2,022
icml
Causal Transformer for Estimating Counterfactual Outcomes
null
Estimating counterfactual outcomes over time from observational data is relevant for many applications (e.g., personalized medicine). Yet, state-of-the-art methods build upon simple long short-term memory (LSTM) networks, thus rendering inferences for complex, long-range dependencies challenging. In this paper, we develop a novel Causal Transformer for estimating counterfactual outcomes over time. Our model is specifically designed to capture complex, long-range dependencies among time-varying confounders. For this, we combine three transformer subnetworks with separate inputs for time-varying covariates, previous treatments, and previous outcomes into a joint network with in-between cross-attentions. We further develop a custom, end-to-end training procedure for our Causal Transformer. Specifically, we propose a novel counterfactual domain confusion loss to address confounding bias: it aims to learn adversarial balanced representations, so that they are predictive of the next outcome but non-predictive of the current treatment assignment. We evaluate our Causal Transformer based on synthetic and real-world datasets, where it achieves superior performance over current baselines. To the best of our knowledge, this is the first work proposing transformer-based architecture for estimating counterfactual outcomes from longitudinal data.
Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
null
null
2,022
icml
How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection
null
Model stealing attacks present a dilemma for public machine learning APIs. To protect financial investments, companies may be forced to withhold important information about their models that could facilitate theft, including uncertainty estimates and prediction explanations. This compromise is harmful not only to users but also to external transparency. Model stealing defenses seek to resolve this dilemma by making models harder to steal while preserving utility for benign users. However, existing defenses have poor performance in practice, either requiring enormous computational overheads or severe utility trade-offs. To meet these challenges, we present a new approach to model stealing defenses called gradient redirection. At the core of our approach is a provably optimal, efficient algorithm for steering an adversary’s training updates in a targeted manner. Combined with improvements to surrogate networks and a novel coordinated defense strategy, our gradient redirection defense, called GRAD^2, achieves small utility trade-offs and low computational overhead, outperforming the best prior defenses. Moreover, we demonstrate how gradient redirection enables reprogramming the adversary with arbitrary behavior, which we hope will foster work on new avenues of defense.
Mantas Mazeika, Bo Li, David Forsyth
null
null
2,022
icml
Optimizing Tensor Network Contraction Using Reinforcement Learning
null
Quantum Computing (QC) stands to revolutionize computing, but is currently still limited. To develop and test quantum algorithms today, quantum circuits are often simulated on classical computers. Simulating a complex quantum circuit requires computing the contraction of a large network of tensors. The order (path) of contraction can have a drastic effect on the computing cost, but finding an efficient order is a challenging combinatorial optimization problem. We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem. The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment. We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges and obtain significant improvements over state-of-the-art techniques in three varieties of circuits, including the largest scale networks used in contemporary QC.
Eli Meirom, Haggai Maron, Shie Mannor, Gal Chechik
null
null
2,022
icml
Transformers are Meta-Reinforcement Learners
null
The transformer architecture and variants presented a remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task - which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments.
Luckeciano C Melo
null
null
2,022
icml
Distribution Regression with Sliced Wasserstein Kernels
null
The problem of learning functions over spaces of probabilities - or distribution regression - is gaining significant interest in the machine learning community. The main challenge in these settings is to identify a suitable representation capturing all relevant properties of a distribution. The well-established approach in this sense is to use kernel mean embeddings, which lift kernel-induced similarity on the input domain at the probability level. This strategy effectively tackles the two-stage sampling nature of the problem, enabling one to derive estimators with strong statistical guarantees, such as universal consistency and excess risk bounds. However, kernel mean embeddings implicitly hinge on the maximum mean discrepancy (MMD), a metric on probabilities, which is not the most suited to capture geometrical relations between distributions. In contrast, optimal transport (OT) metrics, are potentially more appealing. In this work, we propose an OT-based estimator for distribution regression. We build on the Sliced Wasserstein distance to obtain an OT-based representation. We study the theoretical properties of a kernel ridge regression estimator based on such representation, for which we prove universal consistency and excess risk bounds. Preliminary experiments complement our theoretical findings by showing the effectiveness of the proposed approach and compare it with MMD-based estimators.
Dimitri Meunier, Massimiliano Pontil, Carlo Ciliberto
null
null
2,022
icml
Nested Bandits
null
In many online decision processes, the optimizing agent is called to choose between large numbers of alternatives with many inherent similarities; in turn, these similarities imply closely correlated losses that may confound standard discrete choice models and bandit algorithms. We study this question in the context of nested bandits, a class of adversarial multi-armed bandit problems where the learner seeks to minimize their regret in the presence of a large number of distinct alternatives with a hierarchy of embedded (non-combinatorial) similarities. In this setting, optimal algorithms based on the exponential weights blueprint (like Hedge, EXP3, and their variants) may incur significant regret because they tend to spend excessive amounts of time exploring irrelevant alternatives with similar, suboptimal costs. To account for this, we propose a nested exponential weights (NEW) algorithm that performs a layered exploration of the learner’s set of alternatives based on a nested, step-by-step selection method. In so doing, we obtain a series of tight bounds for the learner’s regret showing that online learning problems with a high degree of similarity between alternatives can be resolved efficiently, without a red bus / blue bus paradox occurring.
Matthieu Martin, Panayotis Mertikopoulos, Thibaud Rahier, Houssam Zenati
null
null
2,022
icml
In defense of dual-encoders for neural ranking
null
Transformer-based models such as BERT have proven successful in information retrieval problem, which seek to identify relevant documents for a given query. There are two broad flavours of such models: cross-attention (CA) models, which learn a joint embedding for the query and document, and dual-encoder (DE) models, which learn separate embeddings for the query and document. Empirically, CA models are often found to be more accurate, which has motivated a series of works seeking to bridge this gap. However, a more fundamental question remains less explored: does this performance gap reflect an inherent limitation in the capacity of DE models, or a limitation in the training of such models? And does such an understanding suggest a principled means of improving DE models? In this paper, we study these questions, with three contributions. First, we establish theoretically that with a sufficiently large embedding dimension, DE models have the capacity to model a broad class of score distributions. Second, we show empirically that on real-world problems, DE models may overfit to spurious correlations in the training set, and thus under-perform on test samples. To mitigate this behaviour, we propose a suitable distillation strategy, and confirm its practical efficacy on the MSMARCO-Passage and Natural Questions benchmarks.
Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar
null
null
2,022
icml
Minimizing Control for Credit Assignment with Strong Feedback
null
The success of deep learning ignited interest in whether the brain learns hierarchical representations using gradient-based learning. However, current biologically plausible methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals, which is problematic in biologically realistic noisy environments and at odds with experimental evidence in neuroscience showing that top-down feedback can significantly influence neural activity. Building upon deep feedback control (DFC), a recently proposed credit assignment method, we combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization. Instead of gradually changing the network weights towards configurations with low output loss, weight updates gradually minimize the amount of feedback required from a controller that drives the network to the supervised output label. Moreover, we show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using learning rules fully local in space and time. We complement our theoretical results with experiments on standard computer-vision benchmarks, showing competitive performance to backpropagation as well as robustness to noise. Overall, our work presents a fundamentally novel view of learning as control minimization, while sidestepping biologically unrealistic assumptions.
Alexander Meulemans, Matilde Tristany Farinha, Maria R. Cervera, João Sacramento, Benjamin F. Grewe
null
null
2,022
icml
Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models
null
A large number of neural network models of associative memory have been proposed in the literature. These include the classical Hopfield networks (HNs), sparse distributed memories (SDMs), and more recently the modern continuous Hopfield networks (MCHNs), which possess close links with self-attention in machine learning. In this paper, we propose a general framework for understanding the operation of such memory networks as a sequence of three operations: similarity, separation, and projection. We derive all these memory models as instances of our general framework with differing similarity and separation functions. We extend the mathematical framework of Krotov et al (2020) to express general associative memory models using neural network dynamics with local computation, and derive a general energy function that is a Lyapunov function of the dynamics. Finally, using our framework, we empirically investigate the capacity of using different similarity functions for these associative memory models, beyond the dot product similarity measure, and demonstrate empirically that Euclidean or Manhattan distance similarity metrics perform substantially better in practice on many tasks, enabling a more robust retrieval and higher memory capacity than existing models.
Beren Millidge, Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, Rafal Bogacz
null
null
2,022
icml
Stochastic Rising Bandits
null
This paper is in the field of stochastic Multi-Armed Bandits (MABs), i.e., those sequential selection techniques able to learn online using only the feedback given by the chosen option (a.k.a. arm). We study a particular case of the rested and restless bandits in which the arms’ expected payoff is monotonically non-decreasing. This characteristic allows designing specifically crafted algorithms that exploit the regularity of the payoffs to provide tight regret bounds. We design an algorithm for the rested case (R-ed-UCB) and one for the restless case (R-less-UCB), providing a regret bound depending on the properties of the instance and, under certain circumstances, of $\widetilde{\mathcal{O}}(T^{\frac{2}{3}})$. We empirically compare our algorithms with state-of-the-art methods for non-stationary MABs over several synthetically generated tasks and an online model selection problem for a real-world dataset. Finally, using synthetic and real-world data, we illustrate the effectiveness of the proposed approaches compared with state-of-the-art algorithms for the non-stationary bandits.
Alberto Maria Metelli, Francesco Trovò, Matteo Pirola, Marcello Restelli
null
null
2,022
icml
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
null
Interpretable graph learning is in need as many scientific applications depend on learning models to collect insights from graph-structured data. Previous works mostly focused on using post-hoc approaches to interpret pre-trained models (graph neural networks in particular). They argue against inherently interpretable models because the good interpretability of these models is often at the cost of their prediction accuracy. However, those post-hoc methods often fail to provide stable interpretation and may extract features that are spuriously correlated with the task. In this work, we address these issues by proposing Graph Stochastic Attention (GSAT). Derived from the information bottleneck principle, GSAT injects stochasticity to the attention weights to block the information from task-irrelevant graph components while learning stochasticity-reduced attention to select task-relevant subgraphs for interpretation. The selected subgraphs provably do not contain patterns that are spuriously correlated with the task under some assumptions. Extensive experiments on eight datasets show that GSAT outperforms the state-of-the-art methods by up to 20% in interpretation AUC and 5% in prediction accuracy. Our code is available at https://github.com/Graph-COM/GSAT.
Siqi Miao, Mia Liu, Pan Li
null
null
2,022
icml
Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt
null
Training on web-scale data can take months. But much computation and time is wasted on redundant and noisy points that are already learnt or not learnable. To accelerate training, we introduce Reducible Holdout Loss Selection (RHO-LOSS), a simple but principled technique which selects approximately those points for training that most reduce the model’s generalization loss. As a result, RHO-LOSS mitigates the weaknesses of existing data selection methods: techniques from the optimization literature typically select "hard" (e.g. high loss) points, but such points are often noisy (not learnable) or less task-relevant. Conversely, curriculum learning prioritizes "easy" points, but such points need not be trained on once learned. In contrast, RHO-LOSS selects points that are learnable, worth learning, and not yet learnt. RHO-LOSS trains in far fewer steps than prior art, improves accuracy, and speeds up training on a wide range of datasets, hyperparameters, and architectures (MLPs, CNNs, and BERT). On the large web-scraped image dataset Clothing-1M, RHO-LOSS trains in 18x fewer steps and reaches 2% higher final accuracy than uniform data shuffling.
Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, Yarin Gal
null
null
2,022
icml
Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions
null
We develop fast algorithms and robust software for convex optimization of two-layer neural networks with ReLU activation functions. Our work leverages a convex re-formulation of the standard weight-decay penalized training problem as a set of group-l1-regularized data-local models, where locality is enforced by polyhedral cone constraints. In the special case of zero-regularization, we show that this problem is exactly equivalent to unconstrained optimization of a convex "gated ReLU" network. For problems with non-zero regularization, we show that convex gated ReLU models obtain data-dependent approximation bounds for the ReLU training problem. To optimize the convex re-formulations, we develop an accelerated proximal gradient method and a practical augmented Lagrangian solver. We show that these approaches are faster than standard training heuristics for the non-convex problem, such as SGD, and outperform commercial interior-point solvers. Experimentally, we verify our theoretical results, explore the group-l1 regularization path, and scale convex optimization for neural networks to image classification on MNIST and CIFAR-10.
Aaron Mishkin, Arda Sahiner, Mert Pilanci
null
null
2,022
icml
EqR: Equivariant Representations for Data-Efficient Reinforcement Learning
null
We study a variety of notions of equivariance as an inductive bias in Reinforcement Learning (RL). In particular, we propose new mechanisms for learning representations that are equivariant to both the agent’s action, as well as symmetry transformations of the state-action pairs. Whereas prior work on exploiting symmetries in deep RL can only incorporate predefined linear transformations, our approach allows non-linear symmetry transformations of state-action pairs to be learned from the data. This is achieved through 1) equivariant Lie algebraic parameterization of state and action encodings, 2) equivariant latent transition models, and 3) the incorporation of symmetry-based losses. We demonstrate the advantages of our method, which we call Equivariant representations for RL (EqR), for Atari games in a data-efficient setting limited to 100K steps of interactions with the environment.
Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, Siamak Ravanbakhsh
null
null
2,022
icml
Modeling Structure with Undirected Neural Networks
null
Neural networks are powerful function estimators, leading to their status as a paradigm of choice for modeling structured data. However, unlike other structured representations that emphasize the modularity of the problem {–} e.g., factor graphs {–} neural networks are usually monolithic mappings from inputs to outputs, with a fixed computation order. This limitation prevents them from capturing different directions of computation and interaction between the modeled variables. In this paper, we combine the representational strengths of factor graphs and of neural networks, proposing undirected neural networks (UNNs): a flexible framework for specifying computations that can be performed in any order. For particular choices, our proposed models subsume and extend many existing architectures: feed-forward, recurrent, self-attention networks, auto-encoders, and networks with implicit layers. We demonstrate the effectiveness of undirected neural architectures, both unstructured and structured, on a range of tasks: tree-constrained dependency parsing, convolutional image classification, and sequence completion with attention. By varying the computation order, we show how a single UNN can be used both as a classifier and a prototype generator, and how it can fill in missing parts of an input sequence, making them a promising field for further research.
Tsvetomila Mihaylova, Vlad Niculae, Andre Martins
null
null
2,022
icml
A Multi-objective / Multi-task Learning Framework Induced by Pareto Stationarity
null
Multi-objective optimization (MOO) and multi-task learning (MTL) have gained much popularity with prevalent use cases such as production model development of regression / classification / ranking models with MOO, and training deep learning models with MTL. Despite the long history of research in MOO, its application to machine learning requires development of solution strategy, and algorithms have recently been developed to solve specific problems such as discovery of any Pareto optimal (PO) solution, and that with a particular form of preference. In this paper, we develop a novel and generic framework to discover a PO solution with multiple forms of preferences. It allows us to formulate a generic MOO / MTL problem to express a preference, which is solved to achieve both alignment with the preference and PO, at the same time. Specifically, we apply the framework to solve the weighted Chebyshev problem and an extension of that. The former is known as a method to discover the Pareto front, the latter helps to find a model that outperforms an existing model with only one run. Experimental results demonstrate not only the method achieves competitive performance with existing methods, but also it allows us to achieve the performance from different forms of preferences.
Michinari Momma, Chaosheng Dong, Jia Liu
null
null
2,022
icml
Power-Law Escape Rate of SGD
null
Stochastic gradient descent (SGD) undergoes complicated multiplicative noise for the mean-square loss. We use this property of SGD noise to derive a stochastic differential equation (SDE) with simpler additive noise by performing a random time change. Using this formalism, we show that the log loss barrier $\Delta\log L=\log[L(\theta^s)/L(\theta^*)]$ between a local minimum $\theta^*$ and a saddle $\theta^s$ determines the escape rate of SGD from the local minimum, contrary to the previous results borrowing from physics that the linear loss barrier $\Delta L=L(\theta^s)-L(\theta^*)$ decides the escape rate. Our escape-rate formula strongly depends on the typical magnitude $h^*$ and the number $n$ of the outlier eigenvalues of the Hessian. This result explains an empirical fact that SGD prefers flat minima with low effective dimensions, giving an insight into implicit biases of SGD.
Takashi Mori, Liu Ziyin, Kangqiao Liu, Masahito Ueda
null
null
2,022
icml
CtrlFormer: Learning Transferable State Representation for Visual Control via Transformer
null
Transformer has achieved great successes in learning vision and language representation, which is general across various downstream tasks. In visual control, learning transferable state representation that can transfer between different control tasks is important to reduce the training sample size. However, porting Transformer to sample-efficient visual control remains a challenging and unsolved problem. To this end, we propose a novel Control Transformer (CtrlFormer), possessing many appealing benefits that prior arts do not have. Firstly, CtrlFormer jointly learns self-attention mechanisms between visual tokens and policy tokens among different control tasks, where multitask representation can be learned and transferred without catastrophic forgetting. Secondly, we carefully design a contrastive reinforcement learning paradigm to train CtrlFormer, enabling it to achieve high sample efficiency, which is important in control problems. For example, in the DMControl benchmark, unlike recent advanced methods that failed by producing a zero score in the “Cartpole” task after transfer learning with 100k samples, CtrlFormer can achieve a state-of-the-art score with only 100k samples while maintaining the performance of previous tasks. The code and models are released in our project homepage.
Yao Mark Mu, Shoufa Chen, Mingyu Ding, Jianyu Chen, Runjian Chen, Ping Luo
null
null
2,022
icml
Generalized Beliefs for Cooperative AI
null
Self-play is a common method for constructing solutions in Markov games that can yield optimal policies in collaborative settings. However, these policies often adopt highly-specialized conventions that make playing with a novel partner difficult. To address this, recent approaches rely on encoding symmetry and convention-awareness into policy training, but these require strong environmental assumptions and can complicate policy training. To overcome this, we propose moving the learning of conventions to the belief space. Specifically, we propose a belief learning paradigm that can maintain beliefs over rollouts of policies not seen at training time, and can thus decode and adapt to novel conventions at test time. We show how to leverage this belief model for both search and training of a best response over a pool of policies to greatly improve zero-shot coordination. We also show how our paradigm promotes explainability and interpretability of nuanced agent conventions.
Darius Muglich, Luisa M Zintgraf, Christian A Schroeder De Witt, Shimon Whiteson, Jakob Foerster
null
null
2,022
icml
POEM: Out-of-Distribution Detection with Posterior Sampling
null
Out-of-distribution (OOD) detection is indispensable for machine learning models deployed in the open world. Recently, the use of an auxiliary outlier dataset during training (also known as outlier exposure) has shown promising performance. As the sample space for potential OOD data can be prohibitively large, sampling informative outliers is essential. In this work, we propose a novel posterior sampling based outlier mining framework, POEM, which facilitates efficient use of outlier data and promotes learning a compact decision boundary between ID and OOD data for improved detection. We show that POEM establishes state-of-the-art performance on common benchmarks. Compared to the current best method that uses a greedy sampling strategy, POEM improves the relative performance by 42.0% and 24.2% (FPR95) on CIFAR-10 and CIFAR-100, respectively. We further provide theoretical insights on the effectiveness of POEM for OOD detection.
Yifei Ming, Ying Fan, Yixuan Li
null
null
2,022
icml
Rethinking Fano’s Inequality in Ensemble Learning
null
We propose a fundamental theory on ensemble learning that evaluates a given ensemble system by a well-grounded set of metrics. Previous studies used a variant of Fano’s inequality of information theory and derived a lower bound of the classification error rate on the basis of the accuracy and diversity of models. We revisit the original Fano’s inequality and argue that the studies did not take into account the information lost when multiple model predictions are combined into a final prediction. To address this issue, we generalize the previous theory to incorporate the information loss. Further, we empirically validate and demonstrate the proposed theory through extensive experiments on actual systems. The theory reveals the strengths and weaknesses of systems on each metric, which will push the theoretical understanding of ensemble learning and give us insights into designing systems.
Terufumi Morishita, Gaku Morio, Shota Horiguchi, Hiroaki Ozaki, Nobuo Nukaga
null
null
2,022
icml
Bounding the Width of Neural Networks via Coupled Initialization A Worst Case Analysis
null
A common method in training neural networks is to initialize all the weights to be independent Gaussian vectors. We observe that by instead initializing the weights into independent pairs, where each pair consists of two identical Gaussian vectors, we can significantly improve the convergence analysis. While a similar technique has been studied for random inputs [Daniely, NeurIPS 2020], it has not been analyzed with arbitrary inputs. Using this technique, we show how to significantly reduce the number of neurons required for two-layer ReLU networks, both in the under-parameterized setting with logistic loss, from roughly $\gamma^{-8}$ [Ji and Telgarsky, ICLR 2020] to $\gamma^{-2}$, where $\gamma$ denotes the separation margin with a Neural Tangent Kernel, as well as in the over-parameterized setting with squared loss, from roughly $n^4$ [Song and Yang, 2019] to $n^2$, implicitly also improving the recent running time bound of [Brand, Peng, Song and Weinstein, ITCS 2021]. For the under-parameterized setting we also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
Alexander Munteanu, Simon Omlor, Zhao Song, David Woodruff
null
null
2,022
icml
Differentially Private Community Detection for Stochastic Block Models
null
The goal of community detection over graphs is to recover underlying labels/attributes of users (e.g., political affiliation) given the connectivity between users. There has been significant recent progress on understanding the fundamental limits of community detection when the graph is generated from a stochastic block model (SBM). Specifically, sharp information theoretic limits and efficient algorithms have been obtained for SBMs as a function of $p$ and $q$, which represent the intra-community and inter-community connection probabilities. In this paper, we study the community detection problem while preserving the privacy of the individual connections between the vertices. Focusing on the notion of $(\epsilon, \delta)$-edge differential privacy (DP), we seek to understand the fundamental tradeoffs between $(p, q)$, DP budget $(\epsilon, \delta)$, and computational efficiency for exact recovery of community labels. To this end, we present and analyze the associated information-theoretic tradeoffs for three differentially private community recovery mechanisms: a) stability based mechanism; b) sampling based mechanisms; and c) graph perturbation mechanisms. Our main findings are that stability and sampling based mechanisms lead to a superior tradeoff between $(p,q)$ and the privacy budget $(\epsilon, \delta)$; however this comes at the expense of higher computational complexity. On the other hand, albeit low complexity, graph perturbation mechanisms require the privacy budget $\epsilon$ to scale as $\Omega(\log(n))$ for exact recovery.
Mohamed S Mohamed, Dung Nguyen, Anil Vullikanti, Ravi Tandon
null
null
2,022
icml
Universal and data-adaptive algorithms for model selection in linear contextual bandits
null
Model selection in contextual bandits is an important complementary problem to regret minimization with respect to a fixed model class. We consider the simplest non-trivial instance of model-selection: distinguishing a simple multi-armed bandit problem from a linear contextual bandit problem. Even in this instance, current state-of-the-art methods explore in a suboptimal manner and require strong "feature-diversity" conditions. In this paper, we introduce new algorithms that a) explore in a data-adaptive manner, and b) provide model selection guarantees of the form O(d^{\alpha} T^{1 - \alpha}) with no feature diversity conditions whatsoever, where d denotes the dimension of the linear model and T denotes the total number of rounds. The first algorithm enjoys a "best-of-both-worlds" property, recovering two prior results that hold under distinct distributional assumptions, simultaneously. The second removes distributional assumptions altogether, expanding the scope for tractable model selection. Our approach extends to model selection among nested linear contextual bandits under some additional assumptions.
Vidya K Muthukumar, Akshay Krishnamurthy
null
null
2,022
icml
Constants Matter: The Performance Gains of Active Learning
null
Within machine learning, active learning studies the gains in performance made possible by adaptively selecting data points to label. In this work, we show through upper and lower bounds, that for a simple benign setting of well-specified logistic regression on a uniform distribution over a sphere, the expected excess error of both active learning and random sampling have the same inverse proportional dependence on the number of samples. Importantly, due to the nature of lower bounds, any more general setting does not allow a better dependence on the number of samples. Additionally, we show a variant of uncertainty sampling can achieve a faster rate of convergence than random sampling by a factor of the Bayes error, a recent empirical observation made by other work. Qualitatively, this work is pessimistic with respect to the asymptotic dependence on the number of samples, but optimistic with respect to finding performance gains in the constants.
Stephen O Mussmann, Sanjoy Dasgupta
null
null
2,022
icml
The Importance of Non-Markovianity in Maximum State Entropy Exploration
null
In the maximum state entropy exploration framework, an agent interacts with a reward-free environment to learn a policy that maximizes the entropy of the expected state visitations it is inducing. Hazan et al. (2019) noted that the class of Markovian stochastic policies is sufficient for the maximum state entropy objective, and exploiting non-Markovianity is generally considered pointless in this setting. In this paper, we argue that non-Markovianity is instead paramount for maximum state entropy exploration in a finite-sample regime. Especially, we recast the objective to target the expected entropy of the induced state visitations in a single trial. Then, we show that the class of non-Markovian deterministic policies is sufficient for the introduced objective, while Markovian policies suffer non-zero regret in general. However, we prove that the problem of finding an optimal non-Markovian policy is NP-hard. Despite this negative result, we discuss avenues to address the problem in a tractable way and how non-Markovian exploration could benefit the sample efficiency of online reinforcement learning in future works.
Mirco Mutti, Riccardo De Santi, Marcello Restelli
null
null
2,022
icml
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
null
Inductive transfer learning aims to learn from a small amount of training data for the target task by utilizing a pre-trained model from the source task. Most strategies that involve large-scale deep learning models adopt initialization with the pre-trained model and fine-tuning for the target task. However, when using over-parameterized models, we can often prune the model without sacrificing the accuracy of the source task. This motivates us to adopt model pruning for transfer learning with deep learning models. In this paper, we propose PAC-Net, a simple yet effective approach for transfer learning based on pruning. PAC-Net consists of three steps: Prune, Allocate, and Calibrate (PAC). The main idea behind these steps is to identify essential weights for the source task, fine-tune on the source task by updating the essential weights, and then calibrate on the target task by updating the remaining redundant weights. Under the various and extensive set of inductive transfer learning experiments, we show that our method achieves state-of-the-art performance by a large margin.
Sanghoon Myung, In Huh, Wonik Jang, Jae Myung Choe, Jisu Ryu, Daesin Kim, Kee-Eung Kim, Changwook Jeong
null
null
2,022
icml
On the Generalization Analysis of Adversarial Learning
null
Many recent studies have highlighted the susceptibility of virtually all machine-learning models to adversarial attacks. Adversarial attacks are imperceptible changes to an input example of a given prediction model. Such changes are carefully designed to alter the otherwise correct prediction of the model. In this paper, we study the generalization properties of adversarial learning. In particular, we derive high-probability generalization bounds on the adversarial risk in terms of the empirical adversarial risk, the complexity of the function class and the adversarial noise set. Our bounds are generally applicable to many models, losses, and adversaries. We showcase its applicability by deriving adversarial generalization bounds for the multi-class classification setting and various prediction models (including linear models and Deep Neural Networks). We also derive optimistic adversarial generalization bounds for the case of smooth losses. These are the first fast-rate bounds valid for adversarial deep learning to the best of our knowledge.
Waleed Mustafa, Yunwen Lei, Marius Kloft
null
null
2,022
icml
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
null
Ensembles of deep neural networks have demonstrated superior performance, but their heavy computational cost hinders applying them for resource-limited environments. It motivates distilling knowledge from the ensemble teacher into a smaller student network, and there are two important design choices for this ensemble distillation: 1) how to construct the student network, and 2) what data should be shown during training. In this paper, we propose a weight averaging technique where a student with multiple subnetworks is trained to absorb the functional diversity of ensemble teachers, but then those subnetworks are properly averaged for inference, giving a single student network with no additional inference cost. We also propose a perturbation strategy that seeks inputs from which the diversities of teachers can be better transferred to the student. Combining these two, our method significantly improves upon previous methods on various image classification tasks.
Giung Nam, Hyungi Lee, Byeongho Heo, Juho Lee
null
null
2,022
icml
DNNR: Differential Nearest Neighbors Regression
null
K-nearest neighbors (KNN) is one of the earliest and most established algorithms in machine learning. For regression tasks, KNN averages the targets within a neighborhood which poses a number of challenges: the neighborhood definition is crucial for the predictive performance as neighbors might be selected based on uninformative features, and averaging does not account for how the function changes locally. We propose a novel method called Differential Nearest Neighbors Regression (DNNR) that addresses both issues simultaneously: during training, DNNR estimates local gradients to scale the features; during inference, it performs an n-th order Taylor approximation using estimated gradients. In a large-scale evaluation on over 250 datasets, we find that DNNR performs comparably to state-of-the-art gradient boosting methods and MLPs while maintaining the simplicity and transparency of KNN. This allows us to derive theoretical error bounds and inspect failures. In times that call for transparency of ML models, DNNR provides a good balance between performance and interpretability.
Youssef Nader, Leon Sixt, Tim Landgraf
null
null
2,022
icml
Measuring Representational Robustness of Neural Networks Through Shared Invariances
null
A major challenge in studying robustness in deep learning is defining the set of “meaningless” perturbations to which a given Neural Network (NN) should be invariant. Most work on robustness implicitly uses a human as the reference model to define such perturbations. Our work offers a new view on robustness by using another reference NN to define the set of perturbations a given NN should be invariant to, thus generalizing the reliance on a reference “human NN” to any NN. This makes measuring robustness equivalent to measuring the extent to which two NNs share invariances. We propose a measure called \stir, which faithfully captures the extent to which two NNs share invariances. \stir re-purposes existing representation similarity measures to make them suitable for measuring shared invariances. Using our measure, we are able to gain insights about how shared invariances vary with changes in weight initialization, architecture, loss functions, and training dataset. Our implementation is available at: \url{https://github.com/nvedant07/STIR}.
Vedant Nanda, Till Speicher, Camila Kolling, John P Dickerson, Krishna Gummadi, Adrian Weller
null
null
2,022
icml
Invariant Ancestry Search
null
Recently, methods have been proposed that exploit the invariance of prediction models with respect to changing environments to infer subsets of the causal parents of a response variable. If the environments influence only few of the underlying mechanisms, the subset identified by invariant causal prediction (ICP), for example, may be small, or even empty. We introduce the concept of minimal invariance and propose invariant ancestry search (IAS). In its population version, IAS outputs a set which contains only ancestors of the response and is a superset of the output of ICP. When applied to data, corresponding guarantees hold asymptotically if the underlying test for invariance has asymptotic level and power. We develop scalable algorithms and perform experiments on simulated and real data.
Phillip B Mogensen, Nikolaj Thams, Jonas Peters
null
null
2,022
icml
SpeqNets: Sparsity-aware permutation-equivariant graph networks
null
While message-passing graph neural networks have clear limitations in approximating permutation-equivariant functions over graphs or general relational data, more expressive, higher-order graph neural networks do not scale to large graphs. They either operate on $k$-order tensors or consider all $k$-node subgraphs, implying an exponential dependence on $k$ in memory requirements, and do not adapt to the sparsity of the graph. By introducing new heuristics for the graph isomorphism problem, we devise a class of universal, permutation-equivariant graph networks, which, unlike previous architectures, offer a fine-grained control between expressivity and scalability and adapt to the sparsity of the graph. These architectures lead to vastly reduced computation times compared to standard higher-order graph networks in the supervised node- and graph-level classification and regression regime while significantly improving standard graph neural network and graph kernel architectures in terms of predictive performance.
Christopher Morris, Gaurav Rattan, Sandra Kiefer, Siamak Ravanbakhsh
null
null
2,022
icml
Implicit Bias of the Step Size in Linear Diagonal Neural Networks
null
Focusing on diagonal linear networks as a model for understanding the implicit bias in underdetermined models, we show how the gradient descent step size can have a large qualitative effect on the implicit bias, and thus on generalization ability. In particular, we show how using large step size for non-centered data can change the implicit bias from a "kernel" type behavior to a "rich" (sparsity-inducing) regime — even when gradient flow, studied in previous works, would not escape the "kernel" regime. We do so by using dynamic stability, proving that convergence to dynamically stable global minima entails a bound on some weighted $\ell_1$-norm of the linear predictor, i.e. a "rich" regime. We prove this leads to good generalization in a sparse regression setting.
Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, Daniel Soudry
null
null
2,022
icml
AutoSNN: Towards Energy-Efficient Spiking Neural Networks
null
Spiking neural networks (SNNs) that mimic information transmission in the brain can energy-efficiently process spatio-temporal information through discrete and sparse spikes, thereby receiving considerable attention. To improve accuracy and energy efficiency of SNNs, most previous studies have focused solely on training methods, and the effect of architecture has rarely been studied. We investigate the design choices used in the previous studies in terms of the accuracy and number of spikes and figure out that they are not best-suited for SNNs. To further improve the accuracy and reduce the spikes generated by SNNs, we propose a spike-aware neural architecture search framework called AutoSNN. We define a search space consisting of architectures without undesirable design choices. To enable the spike-aware architecture search, we introduce a fitness that considers both the accuracy and number of spikes. AutoSNN successfully searches for SNN architectures that outperform hand-crafted SNNs in accuracy and energy efficiency. We thoroughly demonstrate the effectiveness of AutoSNN on various datasets including neuromorphic datasets.
Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, Sungroh Yoon
null
null
2,022
icml
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!
null
We introduce ProxSkip—a surprisingly simple and provably efficient method for minimizing the sum of a smooth ($f$) and an expensive nonsmooth proximable ($\psi$) function. The canonical approach to solving such problems is via the proximal gradient descent (ProxGD) algorithm, which is based on the evaluation of the gradient of $f$ and the prox operator of $\psi$ in each iteration. In this work we are specifically interested in the regime in which the evaluation of prox is costly relative to the evaluation of the gradient, which is the case in many applications. ProxSkip allows for the expensive prox operator to be skipped in most iterations: while its iteration complexity is $\mathcal{O}(\kappa \log \nicefrac{1}{\varepsilon})$, where $\kappa$ is the condition number of $f$, the number of prox evaluations is $\mathcal{O}(\sqrt{\kappa} \log \nicefrac{1}{\varepsilon})$ only. Our main motivation comes from federated learning, where evaluation of the gradient operator corresponds to taking a local GD step independently on all devices, and evaluation of prox corresponds to (expensive) communication in the form of gradient averaging. In this context, ProxSkip offers an effective acceleration of communication complexity. Unlike other local gradient-type methods, such as FedAvg, SCAFFOLD, S-Local-GD and FedLin, whose theoretical communication complexity is worse than, or at best matching, that of vanilla GD in the heterogeneous data regime, we obtain a provable and large improvement without any heterogeneity-bounding assumptions.
Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, Peter Richtarik
null
null
2,022
icml
Overcoming Oscillations in Quantization-Aware Training
null
When training neural networks with simulated quantization, we observe that quantized weights can, rather unexpectedly, oscillate between two grid-points. The importance of this effect and its impact on quantization-aware training (QAT) are not well-understood or investigated in literature. In this paper, we delve deeper into the phenomenon of weight oscillations and show that it can lead to a significant accuracy degradation due to wrongly estimated batch-normalization statistics during inference and increased noise during training. These effects are particularly pronounced in low-bit ($\leq$ 4-bits) quantization of efficient networks with depth-wise separable layers, such as MobileNets and EfficientNets. In our analysis we investigate several previously proposed QAT algorithms and show that most of these are unable to overcome oscillations. Finally, we propose two novel QAT algorithms to overcome oscillations during training: oscillation dampening and iterative weight freezing. We demonstrate that our algorithms achieve state-of-the-art accuracy for low-bit (3 & 4 bits) weight and activation quantization of efficient architectures, such as MobileNetV2, MobileNetV3, and EfficentNet-lite on ImageNet. Our source code is available at https://github.com/qualcomm-ai-research/oscillations-qat.
Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, Tijmen Blankevoort
null
null
2,022
icml
Memory-Based Model Editing at Scale
null
Even the largest neural networks make errors, and once-correct predictions can become invalid as the world changes. Model editors make local updates to the behavior of base (pre-trained) models to inject updated knowledge or correct undesirable behaviors. Existing model editors have shown promise, but also suffer from insufficient expressiveness: they struggle to accurately model an edit’s intended scope (examples affected by the edit), leading to inaccurate predictions for test inputs loosely related to the edit, and they often fail altogether after many edits. As a higher-capacity alternative, we propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC), which stores edits in an explicit memory and learns to reason over them to modulate the base model’s predictions as needed. To enable more rigorous evaluation of model editors, we introduce three challenging language model editing problems based on question answering, fact-checking, and dialogue generation. We find that only SERAC achieves high performance on all three problems, consistently outperforming existing approaches to model editing by a significant margin. Code, data, and additional project information will be made available at https://sites.google.com/view/serac-editing.
Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, Chelsea Finn
null
null
2,022
icml
Variational Inference for Infinitely Deep Neural Networks
null
We introduce the unbounded depth neural network (UDN), an infinitely deep probabilistic model that adapts its complexity to the training data. The UDN contains an infinite sequence of hidden layers and places an unbounded prior on a truncation L, the layer from which it produces its data. Given a dataset of observations, the posterior UDN provides a conditional distribution of both the parameters of the infinite neural network and its truncation. We develop a novel variational inference algorithm to approximate this posterior, optimizing a distribution of the neural network weights and of the truncation depth L, and without any upper limit on L. To this end, the variational family has a special structure: it models neural network weights of arbitrary depth, and it dynamically creates or removes free variational parameters as its distribution of the truncation is optimized. (Unlike heuristic approaches to model search, it is solely through gradient-based optimization that this algorithm explores the space of truncations.) We study the UDN on real and synthetic data. We find that the UDN adapts its posterior depth to the dataset complexity; it outperforms standard neural networks of similar computational complexity; and it outperforms other approaches to infinite-depth neural networks.
Achille Nazaret, David Blei
null
null
2,022
icml
Multi-Task Learning as a Bargaining Game
null
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks. Joint training reduces computation costs and improves data efficiency; however, since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts. A common method for alleviating this issue is to combine per-task gradients into a joint update direction using a particular heuristic. In this paper, we propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update. Under certain assumptions, the bargaining problem has a unique solution, known as the Nash Bargaining Solution, which we propose to use as a principled approach to multi-task learning. We describe a new MTL optimization procedure, Nash-MTL, and derive theoretical guarantees for its convergence. Empirically, we show that Nash-MTL achieves state-of-the-art results on multiple MTL benchmarks in various domains.
Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya
null
null
2,022
icml
Strategic Representation
null
Humans have come to rely on machines for reducing excessive information to manageable representations. But this reliance can be abused – strategic machines might craft representations that manipulate their users. How can a user make good choices based on strategic representations? We formalize this as a learning problem, and pursue algorithms for decision-making that are robust to manipulation. In our main setting of interest, the system represents attributes of an item to the user, who then decides whether or not to consume. We model this interaction through the lens of strategic classification (Hardt et al. 2016), reversed: the user, who learns, plays first; and the system, which responds, plays second. The system must respond with representations that reveal ‘nothing but the truth’ but need not reveal the entire truth. Thus, the user faces the problem of learning set functions under strategic subset selection, which presents distinct algorithmic and statistical challenges. Our main result is a learning algorithm that minimizes error despite strategic representations, and our theoretical analysis sheds light on the trade-off between learning effort and susceptibility to manipulation.
Vineet Nair, Ganesh Ghalme, Inbal Talgam-Cohen, Nir Rosenfeld
null
null
2,022
icml
Improved Regret for Differentially Private Exploration in Linear MDP
null
We study privacy-preserving exploration in sequential decision-making for environments that rely on sensitive data such as medical records. In particular, we focus on solving the problem of reinforcement learning (RL) subject to the constraint of (joint) differential privacy in the linear MDP setting, where both dynamics and rewards are given by linear functions. Prior work on this problem due to (Luyo et al., 2021) achieves a regret rate that has a dependence of O(K^{3/5}) on the number of episodes K. We provide a private algorithm with an improved regret rate with an optimal dependence of O($\sqrt{}$K) on the number of episodes. The key recipe for our stronger regret guarantee is the adaptivity in the policy update schedule, in which an update only occurs when sufficient changes in the data are detected. As a result, our algorithm benefits from low switching cost and only performs O(log(K)) updates, which greatly reduces the amount of privacy noise. Finally, in the most prevalent privacy regimes where the privacy parameter \epsilon is a constant, our algorithm incurs negligible privacy cost{—}in comparison with the existing non-private regret bounds, the additional regret due to privacy appears in lower-order terms.
Dung Daniel T Ngo, Giuseppe Vietri, Steven Wu
null
null
2,022
icml
Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models
null
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers. Solving the fully coupled FSI equations for incompressible Navier-Stokes and finite elasticity is computationally expensive. Optimizing robotic swimmer design within such a system generally involves cumbersome, gradient-free procedures on top of the already costly simulation. To address this challenge we present a novel, fully differentiable hybrid approach to FSI that combines a 2D direct numerical simulation for the deformable solid structure of the swimmer and a physics-constrained neural network surrogate to capture hydrodynamic effects of the fluid. For the deformable solid simulation of the swimmer’s body, we use state-of-the-art techniques from the field of computer graphics to speed up the finite-element method (FEM). For the fluid simulation, we use a U-Net architecture trained with a physics-based loss function to predict the flow field at each time step. The pressure and velocity field outputs from the neural network are sampled around the boundary of our swimmer using an immersed boundary method (IBM) to compute its swimming motion accurately and efficiently. We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer. Due to differentiability, the simulator can be used for computational design of controls for soft bodies immersed in fluids via direct gradient-based optimization.
Elvis Nava, John Z Zhang, Mike Yan Michelis, Tao Du, Pingchuan Ma, Benjamin F. Grewe, Wojciech Matusik, Robert Kevin Katzschmann
null
null
2,022
icml
The Primacy Bias in Deep Reinforcement Learning
null
This work identifies a common flaw of deep reinforcement learning (RL) algorithms: a tendency to rely on early interactions and ignore useful evidence encountered later. Because of training on progressively growing datasets, deep RL agents incur a risk of overfitting to earlier experiences, negatively affecting the rest of the learning process. Inspired by cognitive science, we refer to this effect as the primacy bias. Through a series of experiments, we dissect the algorithmic aspects of deep RL that exacerbate this bias. We then propose a simple yet generally-applicable mechanism that tackles the primacy bias by periodically resetting a part of the agent. We apply this mechanism to algorithms in both discrete (Atari 100k) and continuous action (DeepMind Control Suite) domains, consistently improving their performance.
Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, Aaron Courville
null
null
2,022
icml
Optimal Estimation of Policy Gradient via Double Fitted Iteration
null
Policy gradient (PG) estimation becomes a challenge when we are not allowed to sample with the target policy but only have access to a dataset generated by some unknown behavior policy. Conventional methods for off-policy PG estimation often suffer from either significant bias or exponentially large variance. In this paper, we propose the double Fitted PG estimation (FPG) algorithm. FPG can work with an arbitrary policy parameterization, assuming access to a Bellman-complete value function class. In the case of linear value function approximation, we provide a tight finite-sample upper bound on policy gradient estimation error, that is governed by the amount of distribution mismatch measured in feature space. We also establish the asymptotic normality of FPG estimation error with a precise covariance characterization, which is further shown to be statistically optimal with a matching Cramer-Rao lower bound. Empirically, we evaluate the performance of FPG on both policy gradient estimation and policy optimization, using either softmax tabular or ReLU policy networks. Under various metrics, our results show that FPG significantly outperforms existing off-policy PG estimation methods based on importance sampling and variance reduction techniques.
Chengzhuo Ni, Ruiqi Zhang, Xiang Ji, Xuezhou Zhang, Mengdi Wang
null
null
2,022
icml
Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning
null
In this work, we consider one-shot imitation learning for object rearrangement tasks, where an AI agent needs to watch a single expert demonstration and learn to perform the same task in different environments. To achieve a strong generalization, the AI agent must infer the spatial goal specification for the task. However, there can be multiple goal specifications that fit the given demonstration. To address this, we propose a reward learning approach, Graph-based Equivalence Mappings (GEM), that can discover spatial goal representations that are aligned with the intended goal specification, enabling successful generalization in unseen environments. Specifically, GEM represents a spatial goal specification by a reward function conditioned on i) a graph indicating important spatial relationships between objects and ii) state equivalence mappings for each edge in the graph indicating invariant properties of the corresponding relationship. GEM combines inverse reinforcement learning and active reward learning to efficiently improve the reward function by utilizing the graph structure and domain randomization enabled by the equivalence mappings. We conducted experiments with simulated oracles and with human subjects. The results show that GEM can drastically improve the generalizability of the learned goal representations over strong baselines.
Aviv Netanyahu, Tianmin Shu, Joshua Tenenbaum, Pulkit Agrawal
null
null
2,022
icml
Diffusion Models for Adversarial Purification
null
Adversarial purification refers to a class of defense methods that remove adversarial perturbations using a generative model. These methods do not make assumptions on the form of attack and the classification model, and thus can defend pre-existing classifiers against unseen threats. However, their performance currently falls behind adversarial training methods. In this work, we propose DiffPure that uses diffusion models for adversarial purification: Given an adversarial example, we first diffuse it with a small amount of noise following a forward diffusion process, and then recover the clean image through a reverse generative process. To evaluate our method against strong adaptive attacks in an efficient and scalable way, we propose to use the adjoint method to compute full gradients of the reverse generative process. Extensive experiments on three image datasets including CIFAR-10, ImageNet and CelebA-HQ with three classifier architectures including ResNet, WideResNet and ViT demonstrate that our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods, often by a large margin.
Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, Animashree Anandkumar
null
null
2,022
icml
Causal Conceptions of Fairness and their Consequences
null
Recent work highlights the role of causality in designing equitable decision-making algorithms. It is not immediately clear, however, how existing causal conceptions of fairness relate to one another, or what the consequences are of using these definitions as design principles. Here, we first assemble and categorize popular causal definitions of algorithmic fairness into two broad families: (1) those that constrain the effects of decisions on counterfactual disparities; and (2) those that constrain the effects of legally protected characteristics, like race and gender, on decisions. We then show, analytically and empirically, that both families of definitions almost always—in a measure theoretic sense—result in strongly Pareto dominated decision policies, meaning there is an alternative, unconstrained policy favored by every stakeholder with preferences drawn from a large, natural class. For example, in the case of college admissions decisions, policies constrained to satisfy causal fairness definitions would be disfavored by every stakeholder with neutral or positive preferences for both academic preparedness and diversity. Indeed, under a prominent definition of causal fairness, we prove the resulting policies require admitting all students with the same probability, regardless of academic qualifications or group membership. Our results highlight formal limitations and potential adverse consequences of common mathematical notions of causal fairness.
Hamed Nilforoshan, Johann D Gaebler, Ravi Shroff, Sharad Goel
null
null
2,022
icml
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
null
Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing. We train a smaller model on a filtered dataset and release the code and weights at https://github.com/openai/glide-text2im.
Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, Mark Chen
null
null
2,022
icml
Sublinear-Time Clustering Oracle for Signed Graphs
null
Social networks are often modeled using signed graphs, where vertices correspond to users and edges have a sign that indicates whether an interaction between users was positive or negative. The arising signed graphs typically contain a clear community structure in the sense that the graph can be partitioned into a small number of polarized communities, each defining a sparse cut and indivisible into smaller polarized sub-communities. We provide a local clustering oracle for signed graphs with such a clear community structure, that can answer membership queries, i.e., “Given a vertex $v$, which community does $v$ belong to?”, in sublinear time by reading only a small portion of the graph. Formally, when the graph has bounded maximum degree and the number of communities is at most $O(\log n)$, then with $\tilde{O}(\sqrt{n}\operatorname{poly}(1/\varepsilon))$ preprocessing time, our oracle can answer each membership query in $\tilde{O}(\sqrt{n}\operatorname{poly}(1/\varepsilon))$ time, and it correctly classifies a $(1-\varepsilon)$-fraction of vertices w.r.t. a set of hidden planted ground-truth communities. Our oracle is desirable in applications where the clustering information is needed for only a small number of vertices. Previously, such local clustering oracles were only known for unsigned graphs; our generalization to signed graphs requires a number of new ideas and gives a novel spectral analysis of the behavior of random walks with signs. We evaluate our algorithm for constructing such an oracle and answering membership queries on both synthetic and real-world datasets, validating its performance in practice.
Stefan Neumann, Pan Peng
null
null
2,022
icml
Fast Finite Width Neural Tangent Kernel
null
The Neural Tangent Kernel (NTK), defined as the outer product of the neural network (NN) Jacobians, has emerged as a central object of study in deep learning. In the infinite width limit, the NTK can sometimes be computed analytically and is useful for understanding training and generalization of NN architectures. At finite widths, the NTK is also used to better initialize NNs, compare the conditioning across models, perform architecture search, and do meta-learning. Unfortunately, the finite width NTK is notoriously expensive to compute, which severely limits its practical utility. We perform the first in-depth analysis of the compute and memory requirements for NTK computation in finite width networks. Leveraging the structure of neural networks, we further propose two novel algorithms that change the exponent of the compute and memory requirements of the finite width NTK, dramatically improving efficiency. Our algorithms can be applied in a black box fashion to any differentiable function, including those implementing neural networks. We open-source our implementations within the Neural Tangents package at https://github.com/google/neural-tangents.
Roman Novak, Jascha Sohl-Dickstein, Samuel S Schoenholz
null
null
2,022
icml
Practical Almost-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering
null
Detecting communities in real-world networks and clustering similarity graphs are major data mining tasks with a wide range of applications in graph mining, collaborative filtering, and bioinformatics. In many such applications, overwhelming empirical evidence suggests that communities and clusters are naturally overlapping, i.e., the boundary of a cluster may contain both edges across clusters and nodes that are shared with other clusters, calling for novel hybrid graph partitioning algorithms (HGP). While almost-linear-time approximation algorithms are known for edge-boundary-based graph partitioning, little progress has been made on fast algorithms for HGP, even in the special case of vertex-boundary-based graph partitioning. In this work, we introduce a frame-work based on two novel clustering objectives, which naturally extend the well-studied notion of conductance to clusters with hybrid vertex-and edge-boundary structure. Our main algorithmic contributions are almost-linear-time algorithms O(log n)-approximation algorithms for both these objectives. To this end, we show that the cut-matching framework of (Khandekar et al., 2014) can be significantly extended to incorporate hybrid partitions. Crucially, we implement our approximation algorithm to produce both hybrid partitions and optimality certificates for large graphs, easily scaling to tens of millions of edges, and test our implementation on real-world datasets against other competitive baselines.
Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, Kunal Talwar
null
null
2,022
icml
A Framework for Learning to Request Rich and Contextually Useful Information from Humans
null
When deployed, AI agents will encounter problems that are beyond their autonomous problem-solving capabilities. Leveraging human assistance can help agents overcome their inherent limitations and robustly cope with unfamiliar situations. We present a general interactive framework that enables an agent to request and interpret rich, contextually useful information from an assistant that has knowledge about the task and the environment. We demonstrate the practicality of our framework on a simulated human-assisted navigation problem. Aided with an assistance-requesting policy learned by our method, a navigation agent achieves up to a 7{\texttimes} improvement in success rate on tasks that take place in previously unseen environments, compared to fully autonomous behavior. We show that the agent can take advantage of different types of information depending on the context, and analyze the benefits and challenges of learning the assistance-requesting policy when the assistant can recursively decompose tasks into subtasks.
Khanh X Nguyen, Yonatan Bisk, Hal Daumé Iii
null
null
2,022
icml
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
null
Neural Processes (NPs) are a popular class of approaches for meta-learning. Similar to Gaussian Processes (GPs), NPs define distributions over functions and can estimate uncertainty in their predictions. However, unlike GPs, NPs and their variants suffer from underfitting and often have intractable likelihoods, which limit their applications in sequential decision making. We propose Transformer Neural Processes (TNPs), a new member of the NP family that casts uncertainty-aware meta learning as a sequence modeling problem. We learn TNPs via an autoregressive likelihood-based objective and instantiate it with a novel transformer-based architecture that respects the inductive biases inherent to the problem structure, such as invariance to the observed data points and equivariance to the unobserved points. We further design knobs within the TNP architecture to tradeoff the increase in expressivity of the decoding distribution with extra computation. Empirically, we show that TNPs achieve state-of-the-art performance on various benchmark problems, outperforming all previous NP variants on meta regression, image completion, contextual multi-armed bandits, and Bayesian optimization.
Tung Nguyen, Aditya Grover
null
null
2,022
icml
Utilizing Expert Features for Contrastive Learning of Time-Series Representations
null
We present an approach that incorporates expert knowledge for time-series representation learning. Our method employs expert features to replace the commonly used data transformations in previous contrastive learning approaches. We do this since time-series data frequently stems from the industrial or medical field where expert features are often available from domain experts, while transformations are generally elusive for time-series data. We start by proposing two properties that useful time-series representations should fulfill and show that current representation learning approaches do not ensure these properties. We therefore devise ExpCLR, a novel contrastive learning approach built on an objective that utilizes expert features to encourage both properties for the learned representation. Finally, we demonstrate on three real-world time-series datasets that ExpCLR surpasses several state-of-the-art methods for both unsupervised and semi-supervised representation learning.
Manuel T Nonnenmacher, Lukas Oldenburg, Ingo Steinwart, David Reeb
null
null
2,022
icml
Multicoated Supermasks Enhance Hidden Networks
null
Hidden Networks (Ramanujan et al., 2020) showed the possibility of finding accurate subnetworks within a randomly weighted neural network by training a connectivity mask, referred to as supermask. We show that the supermask stops improving even though gradients are not zero, thus underutilizing backpropagated information. To address this we propose a method that extends Hidden Networks by training an overlay of multiple hierarchical supermasks{—}a multicoated supermask. This method shows that using multiple supermasks for a single task achieves higher accuracy without additional training cost. Experiments on CIFAR-10 and ImageNet show that Multicoated Supermasks enhance the tradeoff between accuracy and model size. A ResNet-101 using a 7-coated supermask outperforms its Hidden Networks counterpart by 4%, matching the accuracy of a dense ResNet-50 while being an order of magnitude smaller.
Yasuyuki Okoshi, Ángel López Garcı́a-Arias, Kazutoshi Hirose, Kota Ando, Kazushi Kawamura, Thiem Van Chu, Masato Motomura, Jaehoon Yu
null
null
2,022
icml
Path-Aware and Structure-Preserving Generation of Synthetically Accessible Molecules
null
Computational chemistry aims to autonomously design specific molecules with target functionality. Generative frameworks provide useful tools to learn continuous representations of molecules in a latent space. While modelers could optimize chemical properties, many generated molecules are not synthesizable. To design synthetically accessible molecules that preserve main structural motifs of target molecules, we propose a reaction-embedded and structure-conditioned variational autoencoder. As the latent space jointly encodes molecular structures and their reaction routes, our new sampling method that measures the path-informed structural similarity allows us to effectively generate structurally analogous synthesizable molecules. When targeting out-of-domain as well as in-domain seed structures, our model generates structurally and property-wisely similar molecules equipped with well-defined reaction paths. By focusing on the important region in chemical space, we also demonstrate that our model can design new molecules with even higher activity than the seed molecules.
Juhwan Noh, Dae-Woong Jeong, Kiyoung Kim, Sehui Han, Moontae Lee, Honglak Lee, Yousung Jung
null
null
2,022
icml
Anticorrelated Noise Injection for Improved Generalization
null
Injecting artificial noise into gradient descent (GD) is commonly employed to improve the performance of machine learning models. Usually, uncorrelated noise is used in such perturbed gradient descent (PGD) methods. It is, however, not known if this is optimal or whether other types of noise could provide better generalization performance. In this paper, we zoom in on the problem of correlating the perturbations of consecutive PGD steps. We consider a variety of objective functions for which we find that GD with anticorrelated perturbations ("Anti-PGD") generalizes significantly better than GD and standard (uncorrelated) PGD. To support these experimental findings, we also derive a theoretical analysis that demonstrates that Anti-PGD moves to wider minima, while GD and PGD remain stuck in suboptimal regions or even diverge. This new connection between anticorrelated noise and generalization opens the field to novel ways to exploit noise for training machine learning models.
Antonio Orvieto, Hans Kersting, Frank Proske, Francis Bach, Aurelien Lucchi
null
null
2,022
icml
A Study on the Ramanujan Graph Property of Winning Lottery Tickets
null
Winning lottery tickets refer to sparse subgraphs of deep neural networks which have classification accuracy close to the original dense networks. Resilient connectivity properties of such sparse networks play an important role in their performance. The attempt is to identify a sparse and yet well-connected network to guarantee unhindered information flow. Connectivity in a graph is best characterized by its spectral expansion property. Ramanujan graphs are robust expanders which lead to sparse but highly-connected networks, and thus aid in studying the winning tickets. A feedforward neural network consists of a sequence of bipartite graphs representing its layers. We analyze the Ramanujan graph property of such bipartite layers in terms of their spectral characteristics using the Cheeger’s inequality for irregular graphs. It is empirically observed that the winning ticket networks preserve the Ramanujan graph property and achieve a high accuracy even when the layers are sparse. Accuracy and robustness to noise start declining as many of the layers lose the property. Next we find a robust winning lottery ticket by pruning individual layers while retaining their respective Ramanujan graph property. This strategy is observed to improve the performance of existing network pruning algorithms.
Bithika Pal, Arindam Biswas, Sudeshna Kolay, Pabitra Mitra, Biswajit Basu
null
null
2,022
icml
Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval
null
The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym – an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.
Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N Gomez, Debora Marks, Yarin Gal
null
null
2,022
icml
Efficient Test-Time Model Adaptation without Forgetting
null
Test-time adaptation provides an effective means of tackling the potential distribution shift between model training and inference, by dynamically updating the model at test time. This area has seen fast progress recently, at the effectiveness of handling test shifts. Nonetheless, prior methods still suffer two key limitations: 1) these methods rely on performing backward computation for each test sample, which takes a considerable amount of time; and 2) these methods focus on improving the performance on out-of-distribution test samples and ignore that the adaptation on test data may result in a catastrophic forgetting issue, \ie, the performance on in-distribution test samples may degrade. To address these issues, we propose an efficient anti-forgetting test-time adaptation (EATA) method. Specifically, we devise a sample-efficient entropy minimization loss to exclude uninformative samples out of backward computation, which improves the overall efficiency and meanwhile boosts the out-of-distribution accuracy. Afterward, we introduce a regularization loss to ensure that critical model weights tend to be preserved during adaptation, thereby alleviating the forgetting issue. Extensive experiments on CIFAR-10-C, ImageNet-C, and ImageNet-R verify the effectiveness and superiority of our EATA.
Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, Mingkui Tan
null
null
2,022
icml
On Learning Mixture of Linear Regressions in the Non-Realizable Setting
null
While mixture of linear regressions (MLR) is a well-studied topic, prior works usually do not analyze such models for prediction error. In fact, prediction and loss are not well-defined in the context of mixtures. In this paper, first we show that MLR can be used for prediction where instead of predicting a label, the model predicts a list of values (also known as list-decoding). The list size is equal to the number of components in the mixture, and the loss function is defined to be minimum among the losses resulted by all the component models. We show that with this definition, a solution of the empirical risk minimization (ERM) achieves small probability of prediction error. This begs for an algorithm to minimize the empirical risk for MLR, which is known to be computationally hard. Prior algorithmic works in MLR focus on the realizable setting, i.e., recovery of parameters when data is probabilistically generated by a mixed linear (noisy) model. In this paper we show that a version of the popular expectation minimization (EM) algorithm finds out the best fit lines in a dataset even when a realizable model is not assumed, under some regularity conditions on the dataset and the initial points, and thereby provides a solution for the ERM. We further provide an algorithm that runs in polynomial time in the number of datapoints, and recovers a good approximation of the best fit lines. The two algorithms are experimentally compared.
Soumyabrata Pal, Arya Mazumdar, Rajat Sen, Avishek Ghosh
null
null
2,022
icml
A Theoretical Comparison of Graph Neural Network Extensions
null
We study and compare different Graph Neural Network extensions that increase the expressive power of GNNs beyond the Weisfeiler-Leman test. We focus on (i) GNNs based on higher order WL methods, (ii) GNNs that preprocess small substructures in the graph, (iii) GNNs that preprocess the graph up to a small radius, and (iv) GNNs that slightly perturb the graph to compute an embedding. We begin by presenting a simple improvement for this last extension that strictly increases the expressive power of this GNN variant. Then, as our main result, we compare the expressiveness of these extensions to each other through a series of example constructions that can be distinguished by one of the extensions, but not by another one. We also show negative examples that are particularly challenging for each of the extensions, and we prove several claims about the ability of these extensions to count cliques and cycles in the graph.
Pál András Papp, Roger Wattenhofer
null
null
2,022
icml
Generalized Leverage Scores: Geometric Interpretation and Applications
null
In problems involving matrix computations, the concept of leverage has found a large number of applications. In particular, leverage scores, which relate the columns of a matrix to the subspaces spanned by its leading singular vectors, are helpful in revealing column subsets to approximately factorize a matrix with quality guarantees. As such, they provide a solid foundation for a variety of machine-learning methods. In this paper we extend the definition of leverage scores to relate the columns of a matrix to arbitrary subsets of singular vectors. We establish a precise connection between column and singular-vector subsets, by relating the concepts of leverage scores and principal angles between subspaces. We employ this result to design approximation algorithms with provable guarantees for two well-known problems: generalized column subset selection and sparse canonical correlation analysis. We run numerical experiments to provide further insight on the proposed methods. The novel bounds we derive improve our understanding of fundamental concepts in matrix approximations. In addition, our insights may serve as building blocks for further contributions.
Bruno Ordozgoiti, Antonis Matakos, Aristides Gionis
null
null
2,022
icml
Scalable Deep Gaussian Markov Random Fields for General Graphs
null
Machine learning methods on graphs have proven useful in many applications due to their ability to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) provides a principled way to define Gaussian models on graphs by utilizing their sparsity structure. We propose a flexible GMRF model for general graphs built on the multi-layer structure of Deep GMRFs, originally proposed for lattice graphs only. By designing a new type of layer we enable the model to scale to large graphs. The layer is constructed to allow for efficient training using variational inference and existing software frameworks for Graph Neural Networks. For a Gaussian likelihood, close to exact Bayesian inference is available for the latent field. This allows for making predictions with accompanying uncertainty estimates. The usefulness of the proposed model is verified by experiments on a number of synthetic and real world datasets, where it compares favorably to other both Bayesian and deep learning methods.
Joel Oskarsson, Per Sidén, Fredrik Lindsten
null
null
2,022
icml
Generative Trees: Adversarial and Copycat
null
While Generative Adversarial Networks (GANs) achieve spectacular results on unstructured data like images, there is still a gap on tabular data, data for which state of the art supervised learning still favours decision tree (DT)-based models. This paper proposes a new path forward for the generation of tabular data, exploiting decades-old understanding of the supervised task’s best components for DT induction, from losses (properness), models (tree-based) to algorithms (boosting). The properness condition on the supervised loss – which postulates the optimality of Bayes rule – leads us to a variational GAN-style loss formulation which is tight when discriminators meet a calibration property trivially satisfied by DTs, and, under common assumptions about the supervised loss, yields "one loss to train against them all" for the generator: the $\chi^2$. We then introduce tree-based generative models, generative trees (GTs), meant to mirror on the generative side the good properties of DTs for classifying tabular data, with a boosting-compliant adversarial training algorithm for GTs. We also introduce copycat training, in which the generator copies at run time the underlying tree (graph) of the discriminator DT and completes it for the hardest discriminative task, with boosting compliant convergence. We test our algorithms on tasks including fake/real distinction and missing data imputation.
Richard Nock, Mathieu Guillame-Bert
null
null
2,022
icml
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
null
The trade-off between robustness and accuracy has been widely studied in the adversarial literature. Although still controversial, the prevailing view is that this trade-off is inherent, either empirically or theoretically. Thus, we dig for the origin of this trade-off in adversarial training and find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance — an overcorrection towards smoothness. Given this, we advocate employing local equivariance to describe the ideal behavior of a robust model, leading to a self-consistent robust error named SCORE. By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty via robust optimization. By simply substituting KL divergence with variants of distance metrics, SCORE can be efficiently minimized. Empirically, our models achieve top-rank performance on RobustBench under AutoAttack. Besides, SCORE provides instructive insights for explaining the overfitting phenomenon and semantic input gradients observed on robust models.
Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, Shuicheng Yan
null
null
2,022
icml
Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning with Actor Rectification
null
Conservatism has led to significant progress in offline reinforcement learning (RL) where an agent learns from pre-collected datasets. However, as many real-world scenarios involve interaction among multiple agents, it is important to resolve offline RL in the multi-agent setting. Given the recent success of transferring online RL algorithms to the multi-agent setting, one may expect that offline RL algorithms will also transfer to multi-agent settings directly. Surprisingly, we empirically observe that conservative offline RL algorithms do not work well in the multi-agent setting—the performance degrades significantly with an increasing number of agents. Towards mitigating the degradation, we identify a key issue that non-concavity of the value function makes the policy gradient improvements prone to local optima. Multiple agents exacerbate the problem severely, since the suboptimal policy by any agent can lead to uncoordinated global failure. Following this intuition, we propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), which combines the first-order policy gradients and zeroth-order optimization methods to better optimize the conservative value functions over the actor parameters. Despite the simplicity, OMAR achieves state-of-the-art results in a variety of multi-agent control tasks.
Ling Pan, Longbo Huang, Tengyu Ma, Huazhe Xu
null
null
2,022
icml
History Compression via Language Models in Reinforcement Learning
null
In a partially observable Markov decision process (POMDP), an agent typically uses a representation of the past to approximate the underlying MDP. We propose to utilize a frozen Pretrained Language Transformer (PLT) for history representation and compression to improve sample efficiency. To avoid training of the Transformer, we introduce FrozenHopfield, which automatically associates observations with pretrained token embeddings. To form these associations, a modern Hopfield network stores these token embeddings, which are retrieved by queries that are obtained by a random but fixed projection of observations. Our new method, HELM, enables actor-critic network architectures that contain a pretrained language Transformer for history representation as a memory module. Since a representation of the past need not be learned, HELM is much more sample efficient than competitors. On Minigrid and Procgen environments HELM achieves new state-of-the-art results. Our code is available at https://github.com/ml-jku/helm.
Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian Lehner, Hamid Eghbal-Zadeh, Sepp Hochreiter
null
null
2,022
icml
A Unified Weight Initialization Paradigm for Tensorial Convolutional Neural Networks
null
Tensorial Convolutional Neural Networks (TCNNs) have attracted much research attention for their power in reducing model parameters or enhancing the generalization ability. However, exploration of TCNNs is hindered even from weight initialization methods. To be specific, general initialization methods, such as Xavier or Kaiming initialization, usually fail to generate appropriate weights for TCNNs. Meanwhile, although there are ad-hoc approaches for specific architectures (e.g., Tensor Ring Nets), they are not applicable to TCNNs with other tensor decomposition methods (e.g., CP or Tucker decomposition). To address this problem, we propose a universal weight initialization paradigm, which generalizes Xavier and Kaiming methods and can be widely applicable to arbitrary TCNNs. Specifically, we first present the Reproducing Transformation to convert the backward process in TCNNs to an equivalent convolution process. Then, based on the convolution operators in the forward and backward processes, we build a unified paradigm to control the variance of features and gradients in TCNNs. Thus, we can derive fan-in and fan-out initialization for various TCNNs. We demonstrate that our paradigm can stabilize the training of TCNNs, leading to faster convergence and better results.
Yu Pan, Zeyong Su, Ao Liu, Wang Jingquan, Nannan Li, Zenglin Xu
null
null
2,022
icml
Zero-shot AutoML with Pretrained Models
null
Given a new dataset D and a low compute budget, how should we choose a pre-trained model to fine-tune to D, and set the fine-tuning hyperparameters without risking overfitting, particularly if D is small? Here, we extend automated machine learning (AutoML) to best make these choices. Our domain-independent meta-learning approach learns a zero-shot surrogate model which, at test time, allows to select the right deep learning (DL) pipeline (including the pre-trained model and fine-tuning hyperparameters) for a new dataset D given only trivial meta-features describing D such as image resolution or the number of classes. To train this zero-shot model, we collect performance data for many DL pipelines on a large collection of datasets and meta-train on this data to minimize a pairwise ranking objective. We evaluate our approach under the strict time limit of the vision track of the ChaLearn AutoDL challenge benchmark, clearly outperforming all challenge contenders.
Ekrem Öztürk, Fabio Ferreira, Hadi Jomaa, Lars Schmidt-Thieme, Josif Grabocka, Frank Hutter
null
null
2,022
icml
Validating Causal Inference Methods
null
The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no ‘one-size-fits-all’ causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework’s novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence’s ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.
Harsh Parikh, Carlos Varjao, Louise Xu, Eric Tchetgen Tchetgen
null
null
2,022
icml
The Unsurprising Effectiveness of Pre-Trained Vision Models for Control
null
Recent years have seen the emergence of pre-trained representations as a powerful abstraction for AI applications in computer vision, natural language, and speech. However, policy learning for control is still dominated by a tabula-rasa learning paradigm, with visuo-motor policies often trained from scratch using data from deployment environments. In this context, we revisit and study the role of pre-trained visual representations for control, and in particular representations trained on large-scale computer vision datasets. Through extensive empirical evaluation in diverse control domains (Habitat, DeepMind Control, Adroit, Franka Kitchen), we isolate and study the importance of different representation training methods, data augmentations, and feature hierarchies. Overall, we find that pre-trained visual representations can be competitive or even better than ground-truth state representations to train control policies. This is in spite of using only out-of-domain data from standard vision datasets, without any in-domain data from the deployment environments.
Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, Abhinav Gupta
null
null
2,022
icml
Exact Optimal Accelerated Complexity for Fixed-Point Iterations
null
Despite the broad use of fixed-point iterations throughout applied mathematics, the optimal convergence rate of general fixed-point problems with nonexpansive nonlinear operators has not been established. This work presents an acceleration mechanism for fixed-point iterations with nonexpansive operators, contractive operators, and nonexpansive operators satisfying a Hölder-type growth condition. We then provide matching complexity lower bounds to establish the exact optimality of the acceleration mechanisms in the nonexpansive and contractive setups. Finally, we provide experiments with CT imaging, optimal transport, and decentralized optimization to demonstrate the practical effectiveness of the acceleration mechanism.
Jisun Park, Ernest K Ryu
null
null
2,022
icml
Towards Coherent and Consistent Use of Entities in Narrative Generation
null
Large pre-trained language models (LMs) have demonstrated impressive capabilities in generating long, fluent text; however, there is little to no analysis on their ability to maintain entity coherence and consistency. In this work, we focus on the end task of narrative generation and systematically analyse the long-range entity coherence and consistency in generated stories. First, we propose a set of automatic metrics for measuring model performance in terms of entity usage. Given these metrics, we quantify the limitations of current LMs. Next, we propose augmenting a pre-trained LM with a dynamic entity memory in an end-to-end manner by using an auxiliary entity-related loss for guiding the reads and writes to the memory. We demonstrate that the dynamic entity memory increases entity coherence according to both automatic and human judgment and helps preserving entity-related information especially in settings with a limited context window. Finally, we also validate that our automatic metrics are correlated with human ratings and serve as a good indicator of the quality of generated stories.
Pinelopi Papalampidi, Kris Cao, Tomas Kocisky
null
null
2,022
icml
Blurs Behave Like Ensembles: Spatial Smoothings to Improve Accuracy, Uncertainty, and Robustness
null
Neural network ensembles, such as Bayesian neural networks (BNNs), have shown success in the areas of uncertainty estimation and robustness. However, a crucial challenge prohibits their use in practice. BNNs require a large number of predictions to produce reliable results, leading to a significant increase in computational cost. To alleviate this issue, we propose spatial smoothing, a method that ensembles neighboring feature map points of convolutional neural networks. By simply adding a few blur layers to the models, we empirically show that spatial smoothing improves accuracy, uncertainty estimation, and robustness of BNNs across a whole range of ensemble sizes. In particular, BNNs incorporating spatial smoothing achieve high predictive performance merely with a handful of ensembles. Moreover, this method also can be applied to canonical deterministic neural networks to improve the performances. A number of evidences suggest that the improvements can be attributed to the stabilized feature maps and the smoothing of the loss landscape. In addition, we provide a fundamental explanation for prior works {—} namely, global average pooling, pre-activation, and ReLU6 {—} by addressing them as special cases of spatial smoothing. These not only enhance accuracy, but also improve uncertainty estimation and robustness by making the loss landscape smoother in the same manner as spatial smoothing. The code is available at https://github.com/xxxnell/spatial-smoothing.
Namuk Park, Songkuk Kim
null
null
2,022
icml
Constrained Discrete Black-Box Optimization using Mixed-Integer Programming
null
Discrete black-box optimization problems are challenging for model-based optimization (MBO) algorithms, such as Bayesian optimization, due to the size of the search space and the need to satisfy combinatorial constraints. In particular, these methods require repeatedly solving a complex discrete global optimization problem in the inner loop, where popular heuristic inner-loop solvers introduce approximations and are difficult to adapt to combinatorial constraints. In response, we propose NN+MILP, a general discrete MBO framework using piecewise-linear neural networks as surrogate models and mixed-integer linear programming (MILP) to optimize the acquisition function. MILP provides optimality guarantees and a versatile declarative language for domain-specific constraints. We test our approach on a range of unconstrained and constrained problems, including DNA binding, constrained binary quadratic problems from the MINLPLib benchmark, and the NAS-Bench-101 neural architecture search benchmark. NN+MILP surpasses or matches the performance of black-box algorithms tailored to the constraints at hand, with global optimization of the acquisition problem running in a few minutes using only standard software packages and hardware.
Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross Anderson, Juan Pablo Vielma, David Belanger
null
null
2,022
icml
Neural Network Pruning Denoises the Features and Makes Local Connectivity Emerge in Visual Tasks
null
Pruning methods can considerably reduce the size of artificial neural networks without harming their performance and in some cases they can even uncover sub-networks that, when trained in isolation, match or surpass the test accuracy of their dense counterparts. Here, we characterize the inductive bias that pruning imprints in such "winning lottery tickets": focusing on visual tasks, we analyze the architecture resulting from iterative magnitude pruning of a simple fully connected network. We show that the surviving node connectivity is local in input space, and organized in patterns reminiscent of the ones found in convolutional networks. We investigate the role played by data and tasks in shaping the architecture of the pruned sub-network. We find that pruning performances, and the ability to sift out the noise and make local features emerge, improve by increasing the size of the training set, and the semantic value of the data. We also study different pruning procedures, and find that iterative magnitude pruning is particularly effective in distilling meaningful connectivity out of features present in the original task. Our results suggest the possibility to automatically discover new and efficient architectural inductive biases in other datasets and tasks.
Franco Pellegrini, Giulio Biroli
null
null
2,022
icml
Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation Learning
null
Cutting planes are essential for solving mixed-integer linear problems (MILPs), because they facilitate bound improvements on the optimal solution value. For selecting cuts, modern solvers rely on manually designed heuristics that are tuned to gauge the potential effectiveness of cuts. We show that a greedy selection rule explicitly looking ahead to select cuts that yield the best bound improvement delivers strong decisions for cut selection – but is too expensive to be deployed in practice. In response, we propose a new neural architecture (NeuralCut) for imitation learning on the lookahead expert. Our model outperforms standard baselines for cut selection on several synthetic MILP benchmarks. Experiments on a realistic B&C solver further validate our approach, and exhibit the potential of learning methods in this setting.
Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, Chris Maddison
null
null
2,022
icml
Evolving Curricula with Regret-Based Environment Design
null
Training generally-capable agents with reinforcement learning (RL) remains a significant challenge. A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent’s capabilities. These methods benefit from theoretical robustness guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces in practice. By contrast, evolutionary approaches incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. This work proposes harnessing the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent’s capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of this paper is available at https://accelagent.github.io.
Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward Grefenstette, Tim Rocktäschel
null
null
2,022
icml
Learning Symmetric Embeddings for Equivariant World Models
null
Incorporating symmetries can lead to highly data-efficient and generalizable models by defining equivalence classes of data samples related by transformations. However, characterizing how transformations act on input data is often difficult, limiting the applicability of equivariant models. We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images), where we do not know the effect of transformations (e.g. rotations), to a feature space that transforms in a known manner under these operations. This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation. We validate this approach in the context of equivariant transition models with 3 distinct forms of symmetry. Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations. Moreover, doing so can yield improvements in accuracy and generalization relative to both fully-equivariant and non-equivariant baselines.
Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem Van De Meent, Robin Walters
null
null
2,022
icml
A new similarity measure for covariate shift with applications to nonparametric regression
null
We study covariate shift in the context of nonparametric regression. We introduce a new measure of distribution mismatch between the source and target distributions using the integrated ratio of probabilities of balls at a given radius. We use the scaling of this measure with respect to the radius to characterize the minimax rate of estimation over a family of H{ö}lder continuous functions under covariate shift. In comparison to the recently proposed notion of transfer exponent, this measure leads to a sharper rate of convergence and is more fine-grained. We accompany our theory with concrete instances of covariate shift that illustrate this sharp difference.
Reese Pathak, Cong Ma, Martin Wainwright
null
null
2,022
icml
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
null
Deep generative models have achieved tremendous success in designing novel drug molecules in recent years. A new thread of works have shown potential in advancing the specificity and success rate of in silico drug design by considering the structure of protein pockets. This setting posts fundamental computational challenges in sampling new chemical compounds that could satisfy multiple geometrical constraints imposed by pockets. Previous sampling algorithms either sample in the graph space or only consider the 3D coordinates of atoms while ignoring other detailed chemical structures such as bond types and functional groups. To address the challenge, we develop an E(3)-equivariant generative network composed of two modules: 1) a new graph neural network capturing both spatial and bonding relationships between atoms of the binding pockets and 2) a new efficient algorithm which samples new drug candidates conditioned on the pocket representations from a tractable distribution without relying on MCMC. Experimental results demonstrate that molecules sampled from Pocket2Mol achieve significantly better binding affinity and other drug properties such as drug-likeness and synthetic accessibility.
Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, Jianzhu Ma
null
null
2,022
icml
Kernel Methods for Radial Transformed Compositional Data with Many Zeros
null
Compositional data analysis with a high proportion of zeros has gained increasing popularity, especially in chemometrics and human gut microbiomes research. Statistical analyses of this type of data are typically carried out via a log-ratio transformation after replacing zeros with small positive values. We should note, however, that this procedure is geometrically improper, as it causes anomalous distortions through the transformation. We propose a radial transformation that does not require zero substitutions and more importantly results in essential equivalence between domains before and after the transformation. We show that a rich class of kernels on hyperspheres can successfully define a kernel embedding for compositional data based on this equivalence. To the best of our knowledge, this is the first work that theoretically establishes the availability of the extensive library of kernel-based machine learning methods for compositional data. The applicability of the proposed approach is demonstrated with kernel principal component analysis.
Junyoung Park, Changwon Yoon, Cheolwoo Park, Jeongyoun Ahn
null
null
2,022
icml
POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging
null
Fine-tuning models on edge devices like mobile phones would enable privacy-preserving personalization over sensitive data. However, edge training has historically been limited to relatively small models with simple architectures because training is both memory and energy intensive. We present POET, an algorithm to enable training large neural networks on memory-scarce battery-operated edge devices. POET jointly optimizes the integrated search search spaces of rematerialization and paging, two algorithms to reduce the memory consumption of backpropagation. Given a memory budget and a run-time constraint, we formulate a mixed-integer linear program (MILP) for energy-optimal training. Our approach enables training significantly larger models on embedded devices while reducing energy consumption while not modifying mathematical correctness of backpropagation. We demonstrate that it is possible to fine-tune both ResNet-18 and BERT within the memory constraints of a Cortex-M class embedded device while outperforming current edge training methods in energy efficiency. POET is an open-source project available at https://github.com/ShishirPatil/poet
Shishir G. Patil, Paras Jain, Prabal Dutta, Ion Stoica, Joseph Gonzalez
null
null
2,022
icml
Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding
null
Conformer has proven to be effective in many speech processing tasks. It combines the benefits of extracting local dependencies using convolutions and global dependencies using self-attention. Inspired by this, we propose a more flexible, interpretable and customizable encoder alternative, Branchformer, with parallel branches for modeling various ranged dependencies in end-to-end speech processing. In each encoder layer, one branch employs self-attention or its variant to capture long-range dependencies, while the other branch utilizes an MLP module with convolutional gating (cgMLP) to extract local relationships. We conduct experiments on several speech recognition and spoken language understanding benchmarks. Results show that our model outperforms both Transformer and cgMLP. It also matches with or outperforms state-of-the-art results achieved by Conformer. Furthermore, we show various strategies to reduce computation thanks to the two-branch architecture, including the ability to have variable inference complexity in a single trained model. The weights learned for merging branches indicate how local and global dependencies are utilized in different layers, which benefits model designing.
Yifan Peng, Siddharth Dalmia, Ian Lane, Shinji Watanabe
null
null
2,022
icml
Differentiable Top-k Classification Learning
null
The top-k classification accuracy is one of the core metrics in machine learning. Here, k is conventionally a positive integer, such as 1 or 5, leading to top-1 or top-5 training objectives. In this work, we relax this assumption and optimize the model for multiple k simultaneously instead of using a single k. Leveraging recent advances in differentiable sorting and ranking, we propose a family of differentiable top-k cross-entropy classification losses. This allows training while not only considering the top-1 prediction, but also, e.g., the top-2 and top-5 predictions. We evaluate the proposed losses for fine-tuning on state-of-the-art architectures, as well as for training from scratch. We find that relaxing k not only produces better top-5 accuracies, but also leads to top-1 accuracy improvements. When fine-tuning publicly available ImageNet models, we achieve a new state-of-the-art for these models.
Felix Petersen, Hilde Kuehne, Christian Borgelt, Oliver Deussen
null
null
2,022
icml
Neural Language Models are not Born Equal to Fit Brain Data, but Training Helps
null
Neural Language Models (NLMs) have made tremendous advances during the last years, achieving impressive performance on various linguistic tasks. Capitalizing on this, studies in neuroscience have started to use NLMs to study neural activity in the human brain during language processing. However, many questions remain unanswered regarding which factors determine the ability of a neural language model to capture brain activity (aka its ’brain score’). Here, we make first steps in this direction and examine the impact of test loss, training corpus and model architecture (comparing GloVe, LSTM, GPT-2 and BERT), on the prediction of functional Magnetic Resonance Imaging time-courses of participants listening to an audiobook. We find that (1) untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words, with the untrained LSTM outperforming the transformer-based models, being less impacted by the effect of context; (2) that training NLP models improves brain scores in the same brain regions irrespective of the model’s architecture; (3) that Perplexity (test loss) is not a good predictor of brain score; (4) that training data have a strong influence on the outcome and, notably, that off-the-shelf models may lack statistical power to detect brain activations. Overall, we outline the impact of model-training choices, and suggest good practices for future studies aiming at explaining the human language system using neural language models.
Alexandre Pasquiou, Yair Lakretz, John T Hale, Bertrand Thirion, Christophe Pallier
null
null
2,022
icml
On the Practicality of Deterministic Epistemic Uncertainty
null
A set of novel approaches for estimating epistemic uncertainty in deep neural networks with a single forward pass has recently emerged as a valid alternative to Bayesian Neural Networks. On the premise of informative representations, these deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution (OOD) data while adding negligible computational costs at inference time. However, it remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications - both prerequisites for their practical deployment. To this end, we first provide a taxonomy of DUMs, and evaluate their calibration under continuous distributional shifts. Then, we extend them to semantic segmentation. We find that, while DUMs scale to realistic vision tasks and perform well on OOD detection, the practicality of current methods is undermined by poor calibration under distributional shifts.
Janis Postels, Mattia Segù, Tao Sun, Luca Daniel Sieber, Luc Van Gool, Fisher Yu, Federico Tombari
null
null
2,022
icml
Federated Learning with Partial Model Personalization
null
We consider two federated learning algorithms for training partially personalized models, where the shared and personal parameters are updated either simultaneously or alternately on the devices. Both algorithms have been proposed in the literature, but their convergence properties are not fully understood, especially for the alternating variant. We provide convergence analyses of both algorithms in the general nonconvex setting with partial participation and delineate the regime where one dominates the other. Our experiments on real-world image, text, and speech datasets demonstrate that (a) partial personalization can obtain most of the benefits of full model personalization with a small fraction of personal parameters, and, (b) the alternating update algorithm outperforms the simultaneous update algorithm by a small but consistent margin.
Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, Lin Xiao
null
null
2,022
icml
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry
null
We systematize the approach to the investigation of deep neural network landscapes by basing it on the geometry of the space of implemented functions rather than the space of parameters. Grouping classifiers into equivalence classes, we develop a standardized parameterization in which all symmetries are removed, resulting in a toroidal topology. On this space, we explore the error landscape rather than the loss. This lets us derive a meaningful notion of the flatness of minimizers and of the geodesic paths connecting them. Using different optimization algorithms that sample minimizers with different flatness we study the mode connectivity and relative distances. Testing a variety of state-of-the-art architectures and benchmark datasets, we confirm the correlation between flatness and generalization performance; we further show that in function space flatter minima are closer to each other and that the barriers along the geodesics connecting them are small. We also find that minimizers found by variants of gradient descent can be connected by zero-error paths composed of two straight lines in parameter space, i.e. polygonal chains with a single bend. We observe similar qualitative results in neural networks with binary weights and activations, providing one of the first results concerning the connectivity in this setting. Our results hinge on symmetry removal, and are in remarkable agreement with the rich phenomenology described by some recent analytical studies performed on simple shallow models.
Fabrizio Pittorino, Antonio Ferraro, Gabriele Perugini, Christoph Feinauer, Carlo Baldassi, Riccardo Zecchina
null
null
2,022
icml
A Differential Entropy Estimator for Training Neural Networks
null
Mutual Information (MI) has been widely used as a loss regularizer for training neural networks. This has been particularly effective when learn disentangled or compressed representations of high dimensional data. However, differential entropy (DE), another fundamental measure of information, has not found widespread use in neural network training. Although DE offers a potentially wider range of applications than MI, off-the-shelf DE estimators are either non differentiable, computationally intractable or fail to adapt to changes in the underlying distribution. These drawbacks prevent them from being used as regularizers in neural networks training. To address shortcomings in previously proposed estimators for DE, here we introduce KNIFE, a fully parameterized, differentiable kernel-based estimator of DE. The flexibility of our approach also allows us to construct KNIFE-based estimators for conditional (on either discrete or continuous variables) DE, as well as MI. We empirically validate our method on high-dimensional synthetic data and further apply it to guide the training of neural networks for real-world tasks. Our experiments on a large variety of tasks, including visual domain adaptation, textual fair classification, and textual fine-tuning demonstrate the effectiveness of KNIFE-based estimation. Code can be found at https://github.com/g-pichler/knife.
Georg Pichler, Pierre Jean A. Colombo, Malik Boudiaf, Günther Koliander, Pablo Piantanida
null
null
2,022
icml
Geometric Multimodal Contrastive Representation Learning
null
Learning representations of multimodal data that are both informative and robust to missing modalities at test time remains a challenging problem due to the inherent heterogeneity of data obtained from different channels. To address it, we present a novel Geometric Multimodal Contrastive (GMC) representation learning method consisting of two main components: i) a two-level architecture consisting of modality-specific base encoders, allowing to process an arbitrary number of modalities to an intermediate representation of fixed dimensionality, and a shared projection head, mapping the intermediate representations to a latent representation space; ii) a multimodal contrastive loss function that encourages the geometric alignment of the learned representations. We experimentally demonstrate that GMC representations are semantically rich and achieve state-of-the-art performance with missing modality information on three different learning problems including prediction and reinforcement learning tasks.
Petra Poklukar, Miguel Vasco, Hang Yin, Francisco S. Melo, Ana Paiva, Danica Kragic
null
null
2,022
icml