title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
null
In cooperative multi-agent reinforcement learning, the outcomes of agent-wise policies are highly stochastic due to the two sources of risk: (a) random actions taken by teammates and (b) random transition and rewards. Although the two sources have very distinct characteristics, existing frameworks are insufficient to control the risk-sensitivity of agent-wise policies in a disentangled manner. To this end, we propose Disentangled RIsk-sensitive Multi-Agent reinforcement learning (DRIMA) to separately access the risk sources. For example, our framework allows an agent to be optimistic with respect to teammates (who can prosocially adapt) but more risk-neutral with respect to the environment (which does not adapt). Our experiments demonstrate that DRIMA significantly outperforms prior state-of-the-art methods across various scenarios in the StarCraft Multi-agent Challenge environment. Notably, DRIMA shows robust performance where prior methods learn only a highly suboptimal policy, regardless of reward shaping, exploration scheduling, and noisy (random or adversarial) agents.
Kyunghwan Son, Junsu Kim, Sungsoo Ahn, Roben D Delos Reyes, Yung Yi, Jinwoo Shin
null
null
2,022
icml
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
null
Neural network on Riemannian symmetric space such as hyperbolic space and the manifold of symmetric positive definite (SPD) matrices is an emerging subject of research in geometric deep learning. Based on the well-established framework of the Helgason-Fourier transform on the noncompact symmetric space, we present a fully-connected network and its associated ridgelet transform on the noncompact symmetric space, covering the hyperbolic neural network (HNN) and the SPDNet as special cases. The ridgelet transform is an analysis operator of a depth-2 continuous network spanned by neurons, namely, it maps an arbitrary given function to the weights of a network. Thanks to the coordinate-free reformulation, the role of nonlinear activation functions is revealed to be a wavelet function. Moreover, the reconstruction formula is applied to present a constructive proof of the universality of finite networks on symmetric spaces.
Sho Sonoda, Isao Ishikawa, Masahiro Ikeda
null
null
2,022
icml
Saute RL: Almost Surely Safe Reinforcement Learning Using State Augmentation
null
Satisfying safety constraints almost surely (or with probability one) can be critical for the deployment of Reinforcement Learning (RL) in real-life applications. For example, plane landing and take-off should ideally occur with probability one. We address the problem by introducing Safety Augmented (Saute) Markov Decision Processes (MDPs), where the safety constraints are eliminated by augmenting them into the state-space and reshaping the objective. We show that Saute MDP satisfies the Bellman equation and moves us closer to solving Safe RL with constraints satisfied almost surely. We argue that Saute MDP allows viewing the Safe RL problem from a different perspective enabling new features. For instance, our approach has a plug-and-play nature, i.e., any RL algorithm can be "Sauteed”. Additionally, state augmentation allows for policy generalization across safety constraints. We finally show that Saute RL algorithms can outperform their state-of-the-art counterparts when constraint satisfaction is of high importance.
Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun Wang, Haitham Ammar
null
null
2,022
icml
Lightweight Projective Derivative Codes for Compressed Asynchronous Gradient Descent
null
Coded distributed computation has become common practice for performing gradient descent on large datasets to mitigate stragglers and other faults. This paper proposes a novel algorithm that encodes the partial derivatives themselves and furthermore optimizes the codes by performing lossy compression on the derivative codewords by maximizing the information contained in the codewords while minimizing the information between the codewords. The utility of this application of coding theory is a geometrical consequence of the observed fact in optimization research that noise is tolerable, sometimes even helpful, in gradient descent based learning algorithms since it helps avoid overfitting and local minima. This stands in contrast with much current conventional work on distributed coded computation which focuses on recovering all of the data from the workers. A second further contribution is that the low-weight nature of the coding scheme allows for asynchronous gradient updates since the code can be iteratively decoded; i.e., a worker’s task can immediately be updated into the larger gradient. The directional derivative is always a linear function of the direction vectors; thus, our framework is robust since it can apply linear coding techniques to general machine learning frameworks such as deep neural networks.
Pedro J Soto, Ilia Ilmer, Haibin Guan, Jun Li
null
null
2,022
icml
Communicating via Markov Decision Processes
null
We consider the problem of communicating exogenous information by means of Markov decision process trajectories. This setting, which we call a Markov coding game (MCG), generalizes both source coding and a large class of referential games. MCGs also isolate a problem that is important in decentralized control settings in which cheap-talk is not available—namely, they require balancing communication with the associated cost of communicating. We contribute a theoretically grounded approach to MCGs based on maximum entropy reinforcement learning and minimum entropy coupling that we call MEME. Due to recent breakthroughs in approximation algorithms for minimum entropy coupling, MEME is not merely a theoretical algorithm, but can be applied to practical settings. Empirically, we show both that MEME is able to outperform a strong baseline on small MCGs and that MEME is able to achieve strong performance on extremely large MCGs. To the latter point, we demonstrate that MEME is able to losslessly communicate binary images via trajectories of Cartpole and Pong, while simultaneously achieving the maximal or near maximal expected returns, and that it is even capable of performing well in the presence of actuator noise.
Samuel Sokota, Christian A Schroeder De Witt, Maximilian Igl, Luisa M Zintgraf, Philip Torr, Martin Strohmeier, Zico Kolter, Shimon Whiteson, Jakob Foerster
null
null
2,022
icml
Influence-Augmented Local Simulators: a Scalable Solution for Fast Deep RL in Large Networked Systems
null
Learning effective policies for real-world problems is still an open challenge for the field of reinforcement learning (RL). The main limitation being the amount of data needed and the pace at which that data can be obtained. In this paper, we study how to build lightweight simulators of complicated systems that can run sufficiently fast for deep RL to be applicable. We focus on domains where agents interact with a reduced portion of a larger environment while still being affected by the global dynamics. Our method combines the use of local simulators with learned models that mimic the influence of the global system. The experiments reveal that incorporating this idea into the deep RL workflow can considerably accelerate the training process and presents several opportunities for the future.
Miguel Suau, Jinke He, Matthijs T. J. Spaan, Frans Oliehoek
null
null
2,022
icml
Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework
null
Enforcing orthogonality in convolutional neural networks is a remedy for gradient vanishing/exploding problems and sensitivity to perturbation. Many previous approaches for orthogonal convolutions enforce orthogonality on its flattened kernel, which, however, do not lead to the orthogonality of the operation. Some recent approaches consider orthogonality for standard convolutional layers and propose specific classes of their realizations. In this work, we propose a theoretical framework that establishes the equivalence between diverse orthogonal convolutional layers in the spatial domain and the paraunitary systems in the spectral domain. Since 1D paraunitary systems admit a complete factorization, we can parameterize any separable orthogonal convolution as a composition of spatial filters. As a result, our framework endows high expressive power to various convolutional layers while maintaining their exact orthogonality. Furthermore, our layers are memory and computationally efficient for deep networks compared to previous designs. Our versatile framework, for the first time, enables the study of architectural designs for deep orthogonal networks, such as choices of skip connection, initialization, stride, and dilation. Consequently, we scale up orthogonal networks to deep architectures, including ResNet and ShuffleNet, substantially outperforming their shallower counterparts. Finally, we show how to construct residual flows, a flow-based generative model that requires strict Lipschitzness, using our orthogonal networks. Our code will be publicly available at https://github.com/umd-huang-lab/ortho-conv
Jiahao Su, Wonmin Byeon, Furong Huang
null
null
2,022
icml
Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks
null
Model inversion attacks (MIAs) aim to create synthetic images that reflect the class-wise characteristics from a target classifier’s private training data by exploiting the model’s learned knowledge. Previous research has developed generative MIAs that use generative adversarial networks (GANs) as image priors tailored to a specific target model. This makes the attacks time- and resource-consuming, inflexible, and susceptible to distributional shifts between datasets. To overcome these drawbacks, we present Plug & Play Attacks, which relax the dependency between the target model and image prior, and enable the use of a single GAN to attack a wide range of targets, requiring only minor adjustments to the attack. Moreover, we show that powerful MIAs are possible even with publicly available pre-trained GANs and under strong distributional shifts, for which previous approaches fail to produce meaningful results. Our extensive evaluation confirms the improved robustness and flexibility of Plug & Play Attacks and their ability to create high-quality images revealing sensitive class characteristics.
Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correira, Antonia Adler, Kristian Kersting
null
null
2,022
icml
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
null
Bayesian optimization (BayesOpt) is a gold standard for query-efficient continuous optimization. However, its adoption for drug design has been hindered by the discrete, high-dimensional nature of the decision variables. We develop a new approach (LaMBO) which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head, allowing gradient-based optimization of multi-objective acquisition functions in the latent space of the autoencoder. These acquisition functions allow LaMBO to balance the explore-exploit tradeoff over multiple design rounds, and to balance objective tradeoffs by optimizing sequences at many different points on the Pareto frontier. We evaluate LaMBO on two small-molecule design tasks, and introduce new tasks optimizing in silico and in vitro properties of large-molecule fluorescent proteins. In our experiments LaMBO outperforms genetic optimizers and does not require a large pretraining corpus, demonstrating that BayesOpt is practical and effective for biological sequence design.
Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside, Andrew Gordon Wilson
null
null
2,022
icml
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
null
Predicting how a drug-like molecule binds to a specific protein target is a core problem in drug discovery. An extremely fast computational binding method would enable key applications such as fast virtual screening or drug engineering. Existing methods are computationally expensive as they rely on heavy candidate sampling coupled with scoring, ranking, and fine-tuning steps. We challenge this paradigm with EquiBind, an SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand’s bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. Further, we show extra improvements when coupling it with existing fine-tuning techniques at the cost of increased running time. Finally, we propose a novel and fast fine-tuning model that adjusts torsion angles of a ligand’s rotatable bonds based on closed form global minima of the von Mises angular distance to a given input atomic point cloud, avoiding previous expensive differential evolution strategies for energy minimization.
Hannes Stärk, Octavian Ganea, Lagnajit Pattanaik, Dr.Regina Barzilay, Tommi Jaakkola
null
null
2,022
icml
Intriguing Properties of Input-Dependent Randomized Smoothing
null
Randomized smoothing is currently considered the state-of-the-art method to obtain certifiably robust classifiers. Despite its remarkable performance, the method is associated with various serious problems such as “certified accuracy waterfalls”, certification vs. accuracy trade-off, or even fairness issues. Input-dependent smoothing approaches have been proposed with intention of overcoming these flaws. However, we demonstrate that these methods lack formal guarantees and so the resulting certificates are not justified. We show that in general, the input-dependent smoothing suffers from the curse of dimensionality, forcing the variance function to have low semi-elasticity. On the other hand, we provide a theoretical and practical framework that enables the usage of input-dependent smoothing even in the presence of the curse of dimensionality, under strict restrictions. We present one concrete design of the smoothing variance function and test it on CIFAR10 and MNIST. Our design mitigates some of the problems of classical smoothing and is formally underlined, yet further improvement of the design is still necessary.
Peter Súkenı́k, Aleksei Kuvshinov, Stephan Günnemann
null
null
2,022
icml
Improved StyleGAN-v2 based Inversion for Out-of-Distribution Images
null
Inverting an image onto the latent space of pre-trained generators, e.g., StyleGAN-v2, has emerged as a popular strategy to leverage strong image priors for ill-posed restoration. Several studies have showed that this approach is effective at inverting images similar to the data used for training. However, with out-of-distribution (OOD) data that the generator has not been exposed to, existing inversion techniques produce sub-optimal results. In this paper, we propose SPHInX (StyleGAN with Projection Heads for Inverting X), an approach for accurately embedding OOD images onto the StyleGAN latent space. SPHInX optimizes a style projection head using a novel training strategy that imposes a vicinal regularization in the StyleGAN latent space. To further enhance OOD inversion, SPHInX can additionally optimize a content projection head and noise variables in every layer. Our empirical studies on a suite of OOD data show that, in addition to producing higher quality reconstructions over the state-of-the-art inversion techniques, SPHInX is effective for ill-posed restoration tasks while offering semantic editing capabilities.
Rakshith Subramanyam, Vivek Narayanaswamy, Mark Naufel, Andreas Spanias, Jayaraman J. Thiagarajan
null
null
2,022
icml
Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments
null
Visualizing optimization landscapes has resulted in many fundamental insights in numeric optimization, specifically regarding novel improvements to optimization techniques. However, visualizations of the objective that reinforcement learning optimizes (the "reward surface") have only ever been generated for a small number of narrow contexts. This work presents reward surfaces and related visualizations of 27 of the most widely used reinforcement learning environments in Gym for the first time. We also explore reward surfaces in the policy gradient direction and show for the first time that many popular reinforcement learning environments have frequent "cliffs" (sudden large drops in expected reward). We demonstrate that A2C often "dives off" these cliffs into low reward regions of the parameter space while PPO avoids them, confirming a popular intuition for PPO’s improved performance over previous methods. We additionally introduce a highly extensible library that allows researchers to easily generate these visualizations in the future. Our findings provide new intuition to explain the successes and failures of modern RL methods, and our visualizations concretely characterize several failure modes of reinforcement learning agents in novel ways.
Ryan Sullivan, Jordan K Terry, Benjamin Black, John P Dickerson
null
null
2,022
icml
The Multivariate Community Hawkes Model for Dependent Relational Events in Continuous-time Networks
null
The stochastic block model (SBM) is one of the most widely used generative models for network data. Many continuous-time dynamic network models are built upon the same assumption as the SBM: edges or events between all pairs of nodes are conditionally independent given the block or community memberships, which prevents them from reproducing higher-order motifs such as triangles that are commonly observed in real networks. We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks that introduces dependence between node pairs using structured multivariate Hawkes processes. We fit the model using a spectral clustering and likelihood-based local refinement procedure. We find that our proposed MULCH model is far more accurate than existing models both for predictive and generative tasks.
Hadeel Soliman, Lingfei Zhao, Zhipeng Huang, Subhadeep Paul, Kevin S Xu
null
null
2,022
icml
Correlated Quantization for Distributed Mean Estimation and Optimization
null
We study the problem of distributed mean estimation and optimization under communication constraints. We propose a correlated quantization protocol whose error guarantee depends on the deviation of data points instead of their absolute range. The design doesn’t need any prior knowledge on the concentration property of the dataset, which is required to get such dependence in previous works. We show that applying the proposed protocol as a sub-routine in distributed optimization algorithms leads to better convergence rates. We also prove the optimality of our protocol under mild assumptions. Experimental results show that our proposed algorithm outperforms existing mean estimation protocols on a diverse set of tasks.
Ananda Theertha Suresh, Ziteng Sun, Jae Ro, Felix Yu
null
null
2,022
icml
AGNAS: Attention-Guided Micro and Macro-Architecture Search
null
Micro- and macro-architecture search have emerged as two popular NAS paradigms recently. Existing methods leverage different search strategies for searching micro- and macro- architectures. When using architecture parameters to search for micro-structure such as normal cell and reduction cell, the architecture parameters can not fully reflect the corresponding operation importance. When searching for the macro-structure chained by pre-defined blocks, many sub-networks need to be sampled for evaluation, which is very time-consuming. To address the two issues, we propose a new search paradigm, that is, leverage the attention mechanism to guide the micro- and macro-architecture search, namely AGNAS. Specifically, we introduce an attention module and plug it behind each candidate operation or each candidate block. We utilize the attention weights to represent the importance of the relevant operations for the micro search or the importance of the relevant blocks for the macro search. Experimental results show that AGNAS can achieve 2.46% test error on CIFAR-10 in the DARTS search space, and 23.4% test error when directly searching on ImageNet in the ProxylessNAS search space. AGNAS also achieves optimal performance on NAS-Bench-201, outperforming state-of-the-art approaches. The source code can be available at https://github.com/Sunzh1996/AGNAS.
Zihao Sun, Yu Hu, Shun Lu, Longxing Yang, Jilin Mei, Yinhe Han, Xiaowei Li
null
null
2,022
icml
Adaptive Random Walk Gradient Descent for Decentralized Optimization
null
In this paper, we study the adaptive step size random walk gradient descent with momentum for decentralized optimization, in which the training samples are drawn dependently with each other. We establish theoretical convergence rates of the adaptive step size random walk gradient descent with momentum for both convex and nonconvex settings. In particular, we prove that adaptive random walk algorithms perform as well as the non-adaptive method for dependent data in general cases but achieve acceleration when the stochastic gradients are “sparse”. Moreover, we study the zeroth-order version of adaptive random walk gradient descent and provide corresponding convergence results. All assumptions used in this paper are mild and general, making our results applicable to many machine learning problems.
Tao Sun, Dongsheng Li, Bao Wang
null
null
2,022
icml
Do Differentiable Simulators Give Better Policy Gradients?
null
Differentiable simulators promise faster computation time for reinforcement learning by replacing zeroth-order gradient estimates of a stochastic objective with an estimate based on first-order gradients. However, it is yet unclear what factors decide the performance of the two estimators on complex landscapes that involve long-horizon planning and control on physical systems, despite the crucial relevance of this question for the utility of differentiable simulators. We show that characteristics of certain physical systems, such as stiffness or discontinuities, may compromise the efficacy of the first-order estimator, and analyze this phenomenon through the lens of bias and variance. We additionally propose an $\alpha$-order gradient estimator, with $\alpha \in [0,1]$, which correctly utilizes exact gradients to combine the efficiency of first-order estimates with the robustness of zero-order methods. We demonstrate the pitfalls of traditional estimators and the advantages of the $\alpha$-order estimator on some numerical examples.
Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, Russ Tedrake
null
null
2,022
icml
Sequential and Parallel Constrained Max-value Entropy Search via Information Lower Bound
null
Max-value entropy search (MES) is one of the state-of-the-art approaches in Bayesian optimization (BO). In this paper, we propose a novel variant of MES for constrained problems, called Constrained MES via Information lower BOund (CMES-IBO), that is based on a Monte Carlo (MC) estimator of a lower bound of a mutual information (MI). Unlike existing studies, our MI is defined so that uncertainty with respect to feasibility can be incorporated. We derive a lower bound of the MI that guarantees non-negativity, while a constrained counterpart of conventional MES can be negative. We further provide theoretical analysis that assures the low-variability of our estimator which has never been investigated for any existing information-theoretic BO. Moreover, using the conditional MI, we extend CMES-IBO to the parallel setting while maintaining the desirable properties. We demonstrate the effectiveness of CMES-IBO by several benchmark functions and real-world problems.
Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, Masayuki Karasuyama
null
null
2,022
icml
Causal Imitation Learning under Temporally Correlated Noise
null
We develop algorithms for imitation learning from policy data that was corrupted by temporally correlated noise in expert actions. When noise affects multiple timesteps of recorded data, it can manifest as spurious correlations between states and actions that a learner might latch on to, leading to poor policy performance. To break up these spurious correlations, we apply modern variants of the instrumental variable regression (IVR) technique of econometrics, enabling us to recover the underlying policy without requiring access to an interactive expert. In particular, we present two techniques, one of a generative-modeling flavor (DoubIL) that can utilize access to a simulator, and one of a game-theoretic flavor (ResiduIL) that can be run entirely offline. We find both of our algorithms compare favorably to behavioral cloning on simulated control tasks.
Gokul Swamy, Sanjiban Choudhury, Drew Bagnell, Steven Wu
null
null
2,022
icml
Continuous-Time Analysis of Accelerated Gradient Methods via Conservation Laws in Dilated Coordinate Systems
null
We analyze continuous-time models of accelerated gradient methods through deriving conservation laws in dilated coordinate systems. Namely, instead of analyzing the dynamics of $X(t)$, we analyze the dynamics of $W(t)=t^\alpha(X(t)-X_c)$ for some $\alpha$ and $X_c$ and derive a conserved quantity, analogous to physical energy, in this dilated coordinate system. Through this methodology, we recover many known continuous-time analyses in a streamlined manner and obtain novel continuous-time analyses for OGM-G, an acceleration mechanism for efficiently reducing gradient magnitude that is distinct from that of Nesterov. Finally, we show that a semi-second-order symplectic Euler discretization in the dilated coordinate system leads to an $\mathcal{O}(1/k^2)$ rate on the standard setup of smooth convex minimization, without any further assumptions such as infinite differentiability.
Jaewook J Suh, Gyumin Roh, Ernest K Ryu
null
null
2,022
icml
A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources
null
Accurately estimating personalized treatment effects within a study site (e.g., a hospital) has been challenging due to limited sample size. Furthermore, privacy considerations and lack of resources prevent a site from leveraging subject-level data from other sites. We propose a tree-based model averaging approach to improve the estimation accuracy of conditional average treatment effects (CATE) at a target site by leveraging models derived from other potentially heterogeneous sites, without them sharing subject-level data. To our best knowledge, there is no established model averaging approach for distributed data with a focus on improving the estimation of treatment effects. Specifically, under distributed data networks, our framework provides an interpretable tree-based ensemble of CATE estimators that joins models across study sites, while actively modeling the heterogeneity in data sources through site partitioning. The performance of this approach is demonstrated by a real-world study of the causal effects of oxygen therapy on hospital survival rate and backed up by comprehensive simulation results.
Xiaoqing Tan, Chung-Chou H. Chang, Ling Zhou, Lu Tang
null
null
2,022
icml
MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for Efficient Object Detection
null
In object detection, the detection backbone consumes more than half of the overall inference cost. Recent researches attempt to reduce this cost by optimizing the backbone architecture with the help of Neural Architecture Search (NAS). However, existing NAS methods for object detection require hundreds to thousands of GPU hours of searching, making them impractical in fast-paced research and development. In this work, we propose a novel zero-shot NAS method to address this issue. The proposed method, named MAE-DET, automatically designs efficient detection backbones via the Maximum Entropy Principle without training network parameters, reducing the architecture design cost to nearly zero yet delivering the state-of-the-art (SOTA) performance. Under the hood, MAE-DET maximizes the differential entropy of detection backbones, leading to a better feature extractor for object detection under the same computational budgets. After merely one GPU day of fully automatic design, MAE-DET innovates SOTA detection backbones on multiple detection benchmark datasets with little human intervention. Comparing to ResNet-50 backbone, MAE-DET is $+2.0%$ better in mAP when using the same amount of FLOPs/parameters, and is $1.54$ times faster on NVIDIA V100 at the same mAP. Code and pre-trained models are available here (https://github.com/alibaba/lightweight-neural-architecture-search).
Zhenhong Sun, Ming Lin, Xiuyu Sun, Zhiyu Tan, Hao Li, Rong Jin
null
null
2,022
icml
Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning
null
Despite the empirical success of meta reinforcement learning (meta-RL), there are still a number poorly-understood discrepancies between theory and practice. Critically, biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates. In this work, we investigate such a discrepancy. In particular, (1) We show that unbiased gradient estimates have variance $\Theta(N)$ which linearly depends on the sample size $N$ of the inner loop updates; (2) We propose linearized score function (LSF) gradient estimates, which have bias $\mathcal{O}(1/\sqrt{N})$ and variance $\mathcal{O}(1/N)$; (3) We show that most empirical prior work in fact implements variants of the LSF gradient estimates. This implies that practical algorithms "accidentally" introduce bias to achieve better performance; (4) We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.
Yunhao Tang
null
null
2,022
icml
SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization
null
One noted issue of vector-quantized variational autoencoder (VQ-VAE) is that the learned discrete representation uses only a fraction of the full capacity of the codebook, also known as codebook collapse. We hypothesize that the training scheme of VQ-VAE, which involves some carefully designed heuristics, underlies this issue. In this paper, we propose a new training scheme that extends the standard VAE via novel stochastic dequantization and quantization, called stochastically quantized variational autoencoder (SQ-VAE). In SQ-VAE, we observe a trend that the quantization is stochastic at the initial stage of the training but gradually converges toward a deterministic quantization, which we call self-annealing. Our experiments show that SQ-VAE improves codebook utilization without using common heuristics. Furthermore, we empirically show that SQ-VAE is superior to VAE and VQ-VAE in vision- and speech-related tasks.
Yuhta Takida, Takashi Shibuya, Weihsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu Uesaka, Naoki Murata, Shusuke Takahashi, Toshiyuki Kumakura, Yuki Mitsufuji
null
null
2,022
icml
Efficient Distributionally Robust Bayesian Optimization with Worst-case Sensitivity
null
In distributionally robust Bayesian optimization (DRBO), an exact computation of the worst-case expected value requires solving an expensive convex optimization problem. We develop a fast approximation of the worst-case expected value based on the notion of worst-case sensitivity that caters to arbitrary convex distribution distances. We provide a regret bound for our novel DRBO algorithm with the fast approximation, and empirically show it is competitive with that using the exact worst-case expected value while incurring significantly less computation time. In order to guide the choice of distribution distance to be used with DRBO, we show that our approximation implicitly optimizes an objective close to an interpretable risk-sensitive value.
Sebastian Shenghong Tay, Chuan Sheng Foo, Urano Daisuke, Richalynn Leong, Bryan Kian Hsiang Low
null
null
2,022
icml
Rethinking Graph Neural Networks for Anomaly Detection
null
Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As one of the key components for GNN design is to select a tailored spectral filter, we take the first step towards analyzing anomalies via the lens of the graph spectrum. Our crucial observation is the existence of anomalies will lead to the ‘right-shift’ phenomenon, that is, the spectral energy distribution concentrates less on low frequencies and more on high frequencies. This fact motivates us to propose the Beta Wavelet Graph Neural Network (BWGNN). Indeed, BWGNN has spectral and spatial localized band-pass filters to better handle the ‘right-shift’ phenomenon in anomalies. We demonstrate the effectiveness of BWGNN on four large-scale anomaly detection datasets. Our code and data are released at https://github.com/squareRoot3/Rethinking-Anomaly-Detection.
Jianheng Tang, Jiajin Li, Ziqi Gao, Jia Li
null
null
2,022
icml
Out-of-Distribution Detection with Deep Nearest Neighbors
null
Out-of-distribution (OOD) detection is a critical task for deploying machine learning models in the open world. Distance-based methods have demonstrated promise, where testing samples are detected as OOD if they are relatively far away from in-distribution (ID) data. However, prior methods impose a strong distributional assumption of the underlying feature space, which may not always hold. In this paper, we explore the efficacy of non-parametric nearest-neighbor distance for OOD detection, which has been largely overlooked in the literature. Unlike prior works, our method does not impose any distributional assumption, hence providing stronger flexibility and generality. We demonstrate the effectiveness of nearest-neighbor-based OOD detection on several benchmarks and establish superior performance. Under the same model trained on ImageNet-1k, our method substantially reduces the false positive rate (FPR@TPR95) by 24.77% compared to a strong baseline SSD+, which uses a parametric approach Mahalanobis distance in detection. Code is available: https://github.com/deeplearning-wisc/knn-ood.
Yiyou Sun, Yifei Ming, Xiaojin Zhu, Yixuan Li
null
null
2,022
icml
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
null
Standard federated optimization methods successfully apply to stochastic problems with single-level structure. However, many contemporary ML problems - including adversarial robustness, hyperparameter tuning, actor-critic - fall under nested bilevel programming that subsumes minimax and compositional optimization. In this work, we propose FedNest: A federated alternating stochastic gradient method to address general nested problems. We establish provable convergence rates for FedNest in the presence of heterogeneous data and introduce variations for bilevel, minimax, and compositional optimization. FedNest introduces multiple innovations including federated hypergradient computation and variance reduction to address inner-level heterogeneity. We complement our theory with experiments on hyperparameter & hyper-representation learning and minimax optimization that demonstrate the benefits of our method in practice.
Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, Samet Oymak
null
null
2,022
icml
Cross-Space Active Learning on Graph Convolutional Networks
null
This paper formalizes cross-space active learning on a graph convolutional network (GCN). The objective is to attain the most accurate hypothesis available in any of the instance spaces generated by the GCN. Subject to the objective, the challenge is to minimize the label cost, measured in the number of vertices whose labels are requested. Our study covers both budget algorithms which terminate after a designated number of label requests, and verifiable algorithms which terminate only after having found an accurate hypothesis. A new separation in label complexity between the two algorithm types is established. The separation is unique to GCNs.
Yufei Tao, Hao Wu, Shiyuan Deng
null
null
2,022
icml
Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning
null
In federated learning (FL), model performance typically suffers from client drift induced by data heterogeneity, and mainstream works focus on correcting client drift. We propose a different approach named virtual homogeneity learning (VHL) to directly “rectify” the data heterogeneity. In particular, VHL conducts FL with a virtual homogeneous dataset crafted to satisfy two conditions: containing no private information and being separable. The virtual dataset can be generated from pure noise shared across clients, aiming to calibrate the features from the heterogeneous clients. Theoretically, we prove that VHL can achieve provable generalization performance on the natural distribution. Empirically, we demonstrate that VHL endows FL with drastically improved convergence speed and generalization performance. VHL is the first attempt towards using a virtual dataset to address data heterogeneity, offering new and effective means to FL.
Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He, Bo Han, Xiaowen Chu
null
null
2,022
icml
Black-Box Tuning for Language-Model-as-a-Service
null
Extremely large pre-trained language models (PTMs) such as GPT-3 are usually released as a service. It allows users to design task-specific prompts to query the PTMs through some black-box APIs. In such a scenario, which we call Language-Model-as-a-Service (LMaaS), the gradients of PTMs are usually unavailable. Can we optimize the task prompts by only accessing the model inference APIs? This paper proposes the black-box tuning framework to optimize the continuous prompt prepended to the input text via derivative-free optimization. Instead of optimizing in the original high-dimensional prompt space, which is intractable for traditional derivative-free optimization, we perform optimization in a randomly generated subspace due to the low intrinsic dimensionality of large PTMs. The experimental results show that the black-box tuning with RoBERTa on a few labeled samples not only significantly outperforms manual prompt and GPT-3’s in-context learning, but also surpasses the gradient-based counterparts, i.e., prompt tuning and full model tuning.
Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, Xipeng Qiu
null
null
2,022
icml
Deep Safe Incomplete Multi-view Clustering: Theorem and Algorithm
null
Incomplete multi-view clustering is a significant but challenging task. Although jointly imputing incomplete samples and conducting clustering has been shown to achieve promising performance, learning from both complete and incomplete data may be worse than learning only from complete data, particularly when imputed views are semantic inconsistent with missing views. To address this issue, we propose a novel framework to reduce the clustering performance degradation risk from semantic inconsistent imputed views. Concretely, by the proposed bi-level optimization framework, missing views are dynamically imputed from the learned semantic neighbors, and imputed samples are automatically selected for training. In theory, the empirical risk of the model is no higher than learning only from complete data, and the model is never worse than learning only from complete data in terms of expected risk with high probability. Comprehensive experiments demonstrate that the proposed method achieves superior performance and efficient safe incomplete multi-view clustering.
Huayi Tang, Yong Liu
null
null
2,022
icml
Reverse Engineering $\ell_p$ attacks: A block-sparse optimization approach with recovery guarantees
null
Deep neural network-based classifiers have been shown to be vulnerable to imperceptible perturbations to their input, such as $\ell_p$-bounded norm adversarial attacks. This has motivated the development of many defense methods, which are then broken by new attacks, and so on. This paper focuses on a different but related problem of reverse engineering adversarial attacks. Specifically, given an attacked signal, we study conditions under which one can determine the type of attack ($\ell_1$, $\ell_2$ or $\ell_\infty$) and recover the clean signal. We pose this problem as a block-sparse recovery problem, where both the signal and the attack are assumed to lie in a union of subspaces that includes one subspace per class and one subspace per attack type. We derive geometric conditions on the subspaces under which any attacked signal can be decomposed as the sum of a clean signal plus an attack. In addition, by determining the subspaces that contain the signal and the attack, we can also classify the signal and determine the attack type. Experiments on digit and face classification demonstrate the effectiveness of the proposed approach.
Darshan Thaker, Paris Giampouras, Rene Vidal
null
null
2,022
icml
Distributionally-Aware Kernelized Bandit Problems for Risk Aversion
null
The kernelized bandit problem is a theoretically justified framework and has solid applications to various fields. Recently, there is a growing interest in generalizing the problem to the optimization of risk-averse metrics such as Conditional Value-at-Risk (CVaR) or Mean-Variance (MV). However, due to the model assumption, most existing methods need explicit design of environment random variables and can incur large regret because of possible high dimensionality of them. To address the issues, in this paper, we model environments using a family of the output distributions (or more precisely, probability kernel) and Kernel Mean Embeddings (KME), and provide novel UCB-type algorithms for CVaR and MV. Moreover, we provide algorithm-independent lower bounds for CVaR in the case of Matérn kernels, and propose a nearly optimal algorithm. Furthermore, we empirically verify our theoretical result in synthetic environments, and demonstrate that our proposed method significantly outperforms a baseline in many cases.
Sho Takemori
null
null
2,022
icml
N-Penetrate: Active Learning of Neural Collision Handler for Complex 3D Mesh Deformations
null
We present a robust learning algorithm to detect and handle collisions in 3D deforming meshes. We first train a neural network to detect collisions and then use a numerical optimization algorithm to resolve penetrations guided by the network. Our learned collision handler can resolve collisions for unseen, high-dimensional meshes with thousands of vertices. To obtain stable network performance in such large and unseen spaces, we apply active learning by progressively inserting new collision data based on the network inferences. We automatically label these new data using an analytical collision detector and progressively fine-tune our detection networks. We evaluate our method for collision handling of complex, 3D meshes coming from several datasets with different shapes and topologies, including datasets corresponding to dressed and undressed human poses, cloth simulations, and human hand poses acquired using multi-view capture systems.
Qingyang Tan, Zherong Pan, Breannan Smith, Takaaki Shiratori, Dinesh Manocha
null
null
2,022
icml
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
null
Most of the existing methods for estimating the local intrinsic dimension of a data distribution do not scale well to high dimensional data. Many of them rely on a non-parametric nearest neighbours approach which suffers from the curse of dimensionality. We attempt to address that challenge by proposing a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL). Our method relies on an arbitrary density estimation method as its subroutine, and hence tries to sidestep the dimensionality challenge by making use of the recent progress in parametric neural methods for likelihood estimation. We carefully investigate the empirical properties of the proposed method, compare them with our theoretical predictions, show that LIDL yields competitive results on the standard benchmarks for this problem, and that it scales to thousands of dimensions. What is more, we anticipate this approach to improve further with the continuing advances in the density estimation literature.
Piotr Tempczyk, Rafał Michaluk, Lukasz Garncarek, Przemysław Spurek, Jacek Tabor, Adam Golinski
null
null
2,022
icml
LCANets: Lateral Competition Improves Robustness Against Corruption and Attack
null
Although Convolutional Neural Networks (CNNs) achieve high accuracy on image recognition tasks, they lack robustness against realistic corruptions and fail catastrophically when deliberately attacked. Previous CNNs with representations similar to primary visual cortex (V1) were more robust to adversarial attacks on images than current adversarial defense techniques, but they required training on large-scale neural recordings or handcrafting neuroscientific models. Motivated by evidence that neural activity in V1 is sparse, we develop a class of hybrid CNNs, called LCANets, which feature a frontend that performs sparse coding via local lateral competition. We demonstrate that LCANets achieve competitive clean accuracy to standard CNNs on action and image recognition tasks and significantly greater accuracy under various image corruptions. We also perform the first adversarial attacks with full knowledge of a sparse coding CNN layer by attacking LCANets with white-box and black-box attacks, and we show that, contrary to previous hypotheses, sparse coding layers are not very robust to white-box attacks. Finally, we propose a way to use sparse coding layers as a plug-and-play robust frontend by showing that they significantly increase the robustness of adversarially-trained CNNs over corruptions and attacks.
Michael Teti, Garrett Kenyon, Ben Migliori, Juston Moore
null
null
2,022
icml
AnyMorph: Learning Transferable Polices By Inferring Agent Morphology
null
The prototypical approach to reinforcement learning involves training policies tailored to a particular agent from scratch for every new morphology. Recent work aims to eliminate the re-training of policies by investigating whether a morphology-agnostic policy, trained on a diverse set of agents with similar task objectives, can be transferred to new agents with unseen morphologies without re-training. This is a challenging problem that required previous approaches to use hand-designed descriptions of the new agent’s morphology. Instead of hand-designing this description, we propose a data-driven method that learns a representation of morphology directly from the reinforcement learning objective. Ours is the first reinforcement learning algorithm that can train a policy to generalize to new agent morphologies without requiring a description of the agent’s morphology in advance. We evaluate our approach on the standard benchmark for agent-agnostic control, and improve over the current state of the art in zero-shot generalization to new agents. Importantly, our method attains good performance without an explicit description of morphology.
Brandon Trabucco, Mariano Phielipp, Glen Berseth
null
null
2,022
icml
Algorithms for the Communication of Samples
null
The efficient communication of noisy data has applications in several areas of machine learning, such as neural compression or differential privacy, and is also known as reverse channel coding or the channel simulation problem. Here we propose two new coding schemes with practical advantages over existing approaches. First, we introduce ordered random coding (ORC) which uses a simple trick to reduce the coding cost of previous approaches. This scheme further illuminates a connection between schemes based on importance sampling and the so-called Poisson functional representation. Second, we describe a hybrid coding scheme which uses dithered quantization to more efficiently communicate samples from distributions with bounded support.
Lucas Theis, Noureldin Y Ahmed
null
null
2,022
icml
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
null
Black-box model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function, are ubiquitous in a wide range of domains, such as the design of proteins, DNA sequences, aircraft, and robots. Solving model-based optimization problems typically requires actively querying the unknown objective function on design proposals, which means physically building the candidate molecule, aircraft, or robot, testing it, and storing the result. This process can be expensive and time consuming, and one might instead prefer to optimize for the best design using only the data one already has. This setting—called offline MBO—poses substantial and different algorithmic challenges than more commonly studied online techniques. A number of recent works have demonstrated success with offline MBO for high-dimensional optimization problems using high-capacity deep neural networks. However, the lack of standardized benchmarks in this emerging field is making progress difficult to track. To address this, we present Design-Bench, a benchmark for offline MBO with a unified evaluation protocol and reference implementations of recent methods. Our benchmark includes a suite of diverse and realistic tasks derived from real-world optimization problems in biology, materials science, and robotics that present distinct challenges for offline MBO. Our benchmark and reference implementations are released at github.com/rail-berkeley/design-bench and github.com/rail-berkeley/design-baselines.
Brandon Trabucco, Xinyang Geng, Aviral Kumar, Sergey Levine
null
null
2,022
icml
Consistent Polyhedral Surrogates for Top-k Classification and Variants
null
Top-$k$ classification is a generalization of multiclass classification used widely in information retrieval, image classification, and other extreme classification settings. Several hinge-like (piecewise-linear) surrogates have been proposed for the problem, yet all are either non-convex or inconsistent. For the proposed hinge-like surrogates that are convex (i.e., polyhedral), we apply the recent embedding framework of Finocchiaro et al. (2019; 2022) to determine the prediction problem for which the surrogate is consistent. These problems can all be interpreted as variants of top-$k$ classification, which may be better aligned with some applications. We leverage this analysis to derive constraints on the conditional label distributions under which these proposed surrogates become consistent for top-$k$. It has been further suggested that every convex hinge-like surrogate must be inconsistent for top-$k$. Yet, we use the same embedding framework to give the first consistent polyhedral surrogate for this problem.
Anish Thilagar, Rafael Frongillo, Jessica J Finocchiaro, Emma Goodwill
null
null
2,022
icml
Object Permanence Emerges in a Random Walk along Memory
null
This paper proposes a self-supervised objective for learning representations that localize objects under occlusion - a property known as object permanence. A central question is the choice of learning signal in cases of total occlusion. Rather than directly supervising the locations of invisible objects, we propose a self-supervised objective that requires neither human annotation, nor assumptions about object dynamics. We show that object permanence can emerge by optimizing for temporal coherence of memory: we fit a Markov walk along a space-time graph of memories, where the states in each time step are non-Markovian features from a sequence encoder. This leads to a memory representation that stores occluded objects and predicts their motion, to better localize them. The resulting model outperforms existing approaches on several datasets of increasing complexity and realism, despite requiring minimal supervision, and hence being broadly applicable.
Pavel Tokmakov, Allan Jabri, Jie Li, Adrien Gaidon
null
null
2,022
icml
A Temporal-Difference Approach to Policy Gradient Estimation
null
The policy gradient theorem (Sutton et al., 2000) prescribes the usage of a cumulative discounted state distribution under the target policy to approximate the gradient. Most algorithms based on this theorem, in practice, break this assumption, introducing a distribution shift that can cause the convergence to poor solutions. In this paper, we propose a new approach of reconstructing the policy gradient from the start state without requiring a particular sampling strategy. The policy gradient calculation in this form can be simplified in terms of a gradient critic, which can be recursively estimated due to a new Bellman equation of gradients. By using temporal-difference updates of the gradient critic from an off-policy data stream, we develop the first estimator that side-steps the distribution shift issue in a model-free way. We prove that, under certain realizability conditions, our estimator is unbiased regardless of the sampling strategy. We empirically show that our technique achieves a superior bias-variance trade-off and performance in presence of off-policy samples.
Samuele Tosatto, Andrew Patterson, Martha White, Rupam Mahmood
null
null
2,022
icml
Failure and success of the spectral bias prediction for Laplace Kernel Ridge Regression: the case of low-dimensional data
null
Recently, several theories including the replica method made predictions for the generalization error of Kernel Ridge Regression. In some regimes, they predict that the method has a ‘spectral bias’: decomposing the true function $f^*$ on the eigenbasis of the kernel, it fits well the coefficients associated with the O(P) largest eigenvalues, where $P$ is the size of the training set. This prediction works very well on benchmark data sets such as images, yet the assumptions these approaches make on the data are never satisfied in practice. To clarify when the spectral bias prediction holds, we first focus on a one-dimensional model where rigorous results are obtained and then use scaling arguments to generalize and test our findings in higher dimensions. Our predictions include the classification case $f(x)=$sign$(x_1)$ with a data distribution that vanishes at the decision boundary $p(x)\sim x_1^{\chi}$. For $\chi>0$ and a Laplace kernel, we find that (i) there exists a cross-over ridge $\lambda^*_{d,\chi}(P)\sim P^{-\frac{1}{d+\chi}}$ such that for $\lambda\gg \lambda^*_{d,\chi}(P)$, the replica method applies, but not for $\lambda\ll\lambda^*_{d,\chi}(P)$, (ii) in the ridge-less case, spectral bias predicts the correct training curve exponent only in the limit $d\rightarrow\infty$.
Umberto M Tomasini, Antonio Sclocchi, Matthieu Wyart
null
null
2,022
icml
Nonparametric Sparse Tensor Factorization with Hierarchical Gamma Processes
null
We propose a nonparametric factorization approach for sparsely observed tensors. The sparsity does not mean zero-valued entries are massive or dominated. Rather, it implies the observed entries are very few, and even fewer with the growth of the tensor; this is ubiquitous in practice. Compared with the existent works, our model not only leverages the structural information underlying the observed entry indices, but also provides extra interpretability and flexibility {—} it can simultaneously estimate a set of location factors about the intrinsic properties of the tensor nodes, and another set of sociability factors reflecting their extrovert activity in interacting with others; users are free to choose a trade-off between the two types of factors. Specifically, we use hierarchical Gamma processes and Poisson random measures to construct a tensor-valued process, which can freely sample the two types of factors to generate tensors and always guarantees an asymptotic sparsity. We then normalize the tensor process to obtain hierarchical Dirichlet processes to sample each observed entry index, and use a Gaussian process to sample the entry value as a nonlinear function of the factors, so as to capture both the sparse structure properties and complex node relationships. For efficient inference, we use Dirichlet process properties over finite sample partitions, density transformations, and random features to develop a stochastic variational estimation algorithm. We demonstrate the advantage of our method in several benchmark datasets.
Conor Tillinghast, Zheng Wang, Shandian Zhe
null
null
2,022
icml
Generalised Policy Improvement with Geometric Policy Composition
null
We introduce a method for policy improvement that interpolates between the greedy approach of value-based reinforcement learning (RL) and the full planning approach typical of model-based RL. The new method builds on the concept of a geometric horizon model (GHM, also known as a \gamma-model), which models the discounted state-visitation distribution of a given policy. We show that we can evaluate any non-Markov policy that switches between a set of base Markov policies with fixed probability by a careful composition of the base policy GHMs, without any additional learning. We can then apply generalised policy improvement (GPI) to collections of such non-Markov policies to obtain a new Markov policy that will in general outperform its precursors. We provide a thorough theoretical analysis of this approach, develop applications to transfer and standard RL, and empirically demonstrate its effectiveness over standard GPI on a challenging deep RL continuous control task. We also provide an analysis of GHM training methods, proving a novel convergence result regarding previously proposed methods and showing how to train these models stably in deep RL settings.
Shantanu Thakoor, Mark Rowland, Diana Borsa, Will Dabney, Remi Munos, Andre Barreto
null
null
2,022
icml
Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more
null
Coreset (or core-set) is a small weighted subset $Q$ of an input set $P$ with respect to a given monotonic function $f:\mathbb{R}\to\mathbb{R}$ that provably approximates its fitting loss $\sum_{p\in P}f(p\cdot x)$ to any given $x\in\mathbb{R}^d$. Using $Q$ we can obtain an approximation of $x^*$ that minimizes this loss, by running existing optimization algorithms on $Q$. In this work we provide: (i) A lower bound which proves that there are sets with no coresets smaller than $n=|P|$ for general monotonic loss functions. (ii) A proof that, with an additional common regularization term and under a natural assumption that holds e.g. for logistic regression and the sigmoid activation functions, a small coreset exists for any input $P$. (iii) A generic coreset construction algorithm that computes such a small coreset $Q$ in $O(nd+n\log n)$ time, and (iv) Experimental results with open-source code which demonstrate that our coresets are effective and are much smaller in practice than predicted in theory.
Elad Tolochinksy, Ibrahim Jubran, Dan Feldman
null
null
2,022
icml
On the Finite-Time Complexity and Practical Computation of Approximate Stationarity Concepts of Lipschitz Functions
null
We report a practical finite-time algorithmic scheme to compute approximately stationary points for nonconvex nonsmooth Lipschitz functions. In particular, we are interested in two kinds of approximate stationarity notions for nonconvex nonsmooth problems, i.e., Goldstein approximate stationarity (GAS) and near-approximate stationarity (NAS). For GAS, our scheme removes the unrealistic subgradient selection oracle assumption in (Zhang et al., 2020, Assumption 1) and computes GAS with the same finite-time complexity. For NAS, Davis & Drusvyatskiy (2019) showed that $\rho$-weakly convex functions admit finite-time computation, while Tian & So (2021) provided the matching impossibility results of dimension-free finite-time complexity for first-order methods. Complement to these developments, in this paper, we isolate a new class of functions that could be Clarke irregular (and thus not weakly convex anymore) and show that our new algorithmic scheme can compute NAS points for functions in that class within finite time. To demonstrate the wide applicability of our new theoretical framework, we show that $\rho$-margin SVM, $1$-layer, and $2$-layer ReLU neural networks, all being Clarke irregular, satisfy our new conditions.
Lai Tian, Kaiwen Zhou, Anthony Man-Cho So
null
null
2,022
icml
Extended Unconstrained Features Model for Exploring Deep Neural Collapse
null
The modern strategy for training deep neural networks for classification tasks includes optimizing the network’s weights even after the training error vanishes to further push the training loss toward zero. Recently, a phenomenon termed “neural collapse" (NC) has been empirically observed in this training procedure. Specifically, it has been shown that the learned features (the output of the penultimate layer) of within-class samples converge to their mean, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer’s weights. Recent papers have shown that minimizers with this structure emerge when optimizing a simplified “unconstrained features model" (UFM) with a regularized cross-entropy loss. In this paper, we further analyze and extend the UFM. First, we study the UFM for the regularized MSE loss, and show that the minimizers’ features can have a more delicate structure than in the cross-entropy case. This affects also the structure of the weights. Then, we extend the UFM by adding another layer of weights as well as ReLU nonlinearity to the model and generalize our previous results. Finally, we empirically demonstrate the usefulness of our nonlinear extended UFM in modeling the NC phenomenon that occurs with practical networks.
Tom Tirer, Joan Bruna
null
null
2,022
icml
Simple and near-optimal algorithms for hidden stratification and multi-group learning
null
Multi-group agnostic learning is a formal learning criterion that is concerned with the conditional risks of predictors within subgroups of a population. The criterion addresses recent practical concerns such as subgroup fairness and hidden stratification. This paper studies the structure of solutions to the multi-group learning problem, and provides simple and near-optimal algorithms for the learning problem.
Christopher J Tosh, Daniel Hsu
null
null
2,022
icml
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
null
We propose the Bayes-UCBVI algorithm for reinforcement learning in tabular, stage-dependent, episodic Markov decision process: a natural extension of the Bayes-UCB algorithm by Kaufmann et al. 2012 for multi-armed bandits. Our method uses the quantile of a Q-value function posterior as upper confidence bound on the optimal Q-value function. For Bayes-UCBVI, we prove a regret bound of order $\widetilde{\mathcal{O}}(\sqrt{H^3SAT})$ where $H$ is the length of one episode, $S$ is the number of states, $A$ the number of actions, $T$ the number of episodes, that matches the lower-bound of $\Omega(\sqrt{H^3SAT})$ up to poly-$\log$ terms in $H,S,A,T$ for a large enough $T$. To the best of our knowledge, this is the first algorithm that obtains an optimal dependence on the horizon $H$ (and $S$) without the need of an involved Bernstein-like bonus or noise. Crucial to our analysis is a new fine-grained anti-concentration bound for a weighted Dirichlet sum that can be of independent interest. We then explain how Bayes-UCBVI can be easily extended beyond the tabular setting, exhibiting a strong link between our algorithm and Bayesian bootstrap (Rubin,1981).
Daniil Tiapkin, Denis Belomestny, Eric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao Tang, Michal Valko, Pierre Menard
null
null
2,022
icml
Deciphering Lasso-based Classification Through a Large Dimensional Analysis of the Iterative Soft-Thresholding Algorithm
null
This paper proposes a theoretical analysis of a Lasso-based classification algorithm. Leveraging on a realistic regime where the dimension of the data $p$ and their number $n$ are of the same order of magnitude, the theoretical classification error is derived as a function of the data statistics. As a result, insights into the functioning of the Lasso in classification and its differences with competing algorithms are highlighted. Our work is based on an original novel analysis of the Iterative Soft-Thresholding Algorithm (ISTA), which may be of independent interest beyond the particular problem studied here and may be adapted to similar iterative schemes. A theoretical optimization of the model’s hyperparameters is also provided, which allows for the data- and time-consuming cross-validation to be avoided. Finally, several applications on synthetic and real data are provided to validate the theoretical study and justify its impact in the design and understanding of algorithms of practical interest.
Malik Tiomoko, Ekkehard Schnoor, Mohamed El Amine Seddik, Igor Colin, Aladin Virmaux
null
null
2,022
icml
A Completely Tuning-Free and Robust Approach to Sparse Precision Matrix Estimation
null
Despite the vast literature on sparse Gaussian graphical models, current methods either are asymptotically tuning-free (which still require fine-tuning in practice) or hinge on computationally expensive methods (e.g., cross-validation) to determine the proper level of regularization. We propose a completely tuning-free approach for estimating sparse Gaussian graphical models. Our method uses model-agnostic regularization parameters to estimate each column of the target precision matrix and enjoys several desirable properties. Computationally, our estimator can be computed efficiently by linear programming. Theoretically, the proposed estimator achieves minimax optimal convergence rates under various norms. We further propose a second-stage enhancement with non-convex penalties which possesses the strong oracle property. Through comprehensive numerical studies, our methods demonstrate favorable statistical performance. Remarkably, our methods exhibit strong robustness to the violation of the Gaussian assumption and significantly outperform competing methods in the heavy-tailed settings.
Chau Tran, Guo Yu
null
null
2,022
icml
Fenrir: Physics-Enhanced Regression for Initial Value Problems
null
We show how probabilistic numerics can be used to convert an initial value problem into a Gauss–Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyper-parameter estimation in Gauss–Markov regression, which tends to be considerably easier. The method’s relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.
Filip Tronarp, Nathanael Bosch, Philipp Hennig
null
null
2,022
icml
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
null
In this paper, we propose Nesterov Accelerated Shuffling Gradient (NASG), a new algorithm for the convex finite-sum minimization problems. Our method integrates the traditional Nesterov’s acceleration momentum with different shuffling sampling schemes. We show that our algorithm has an improved rate of $\Ocal(1/T)$ using unified shuffling schemes, where $T$ is the number of epochs. This rate is better than that of any other shuffling gradient methods in convex regime. Our convergence analysis does not require an assumption on bounded domain or a bounded gradient condition. For randomized shuffling schemes, we improve the convergence bound further. When employing some initial condition, we show that our method converges faster near the small neighborhood of the solution. Numerical simulations demonstrate the efficiency of our algorithm.
Trang H Tran, Katya Scheinberg, Lam M Nguyen
null
null
2,022
icml
Interpretable Off-Policy Learning via Hyperbox Search
null
Personalized treatment decisions have become an integral part of modern medicine. Thereby, the aim is to make treatment decisions based on individual patient characteristics. Numerous methods have been developed for learning such policies from observational data that achieve the best outcome across a certain policy class. Yet these methods are rarely interpretable. However, interpretability is often a prerequisite for policy learning in clinical practice. In this paper, we propose an algorithm for interpretable off-policy learning via hyperbox search. In particular, our policies can be represented in disjunctive normal form (i.e., OR-of-ANDs) and are thus intelligible. We prove a universal approximation theorem that shows that our policy class is flexible enough to approximate any measurable function arbitrarily well. For optimization, we develop a tailored column generation procedure within a branch-and-bound framework. Using a simulation study, we demonstrate that our algorithm outperforms state-of-the-art methods from interpretable off-policy learning in terms of regret. Using real-word clinical data, we perform a user study with actual clinical experts, who rate our policies as highly interpretable.
Daniel Tschernutter, Tobias Hatt, Stefan Feuerriegel
null
null
2,022
icml
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
null
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications for regression and optimization. It is well known that a major downside for kernel-based models is the high computational cost; given a dataset of $n$ samples, the cost grows as $\mathcal{O}(n^3)$. Existing sparse approximation methods can yield a significant reduction in the computational cost, effectively reducing the actual cost down to as low as $\mathcal{O}(n)$ in certain cases. Despite this remarkable empirical success, significant gaps remain in the existing results for the analytical bounds on the error due to approximation. In this work, we provide novel confidence intervals for the Nyström method and the sparse variational Gaussian process approximation method, which we establish using novel interpretations of the approximate (surrogate) posterior variance of the models. Our confidence intervals lead to improved performance bounds in both regression and optimization problems.
Sattar Vakili, Jonathan Scarlett, Da-Shan Shiu, Alberto Bernacchia
null
null
2,022
icml
Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation
null
We propose an algorithm that uses linear function approximation (LFA) for stochastic shortest path (SSP). Under minimal assumptions, it obtains sublinear regret, is computationally efficient, and uses stationary policies. To our knowledge, this is the first such algorithm in the LFA literature (for SSP or other formulations). Our algorithm is a special case of a more general one, which achieves regret square root in the number of episodes given access to a computation oracle.
Daniel Vial, Advait Parulekar, Sanjay Shakkottai, R Srikant
null
null
2,022
icml
Prototype Based Classification from Hierarchy to Fairness
null
Artificial neural nets can represent and classify many types of high-dimensional data but are often tailored to particular applications – e.g., for “fair” or “hierarchical” classification. Once an architecture has been selected, it is often difficult for humans to adjust models for a new task; for example, a hierarchical classifier cannot be easily transformed into a fair classifier that shields a protected field. Our contribution in this work is a new neural network architecture, the concept subspace network (CSN), which generalizes existing specialized classifiers to produce a unified model capable of learning a spectrum of multi-concept relationships. We demonstrate that CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence, may be transformed into hierarchical classifiers, or may even reconcile fairness and hierarchy within a single classifier. The CSN is inspired by and matches the performance of existing prototype-based classifiers that promote interpretability.
Mycal Tucker, Julie A. Shah
null
null
2,022
icml
Path-Gradient Estimators for Continuous Normalizing Flows
null
Recent work has established a path-gradient estimator for simple variational Gaussian distributions and has argued that the path-gradient is particularly beneficial in the regime in which the variational distribution approaches the exact target distribution. In many applications, this regime can however not be reached by a simple Gaussian variational distribution. In this work, we overcome this crucial limitation by proposing a path-gradient estimator for the considerably more expressive variational family of continuous normalizing flows. We outline an efficient algorithm to calculate this estimator and establish its superior performance empirically.
Lorenz Vaitl, Kim Andrea Nicoli, Shinichi Nakajima, Pan Kessel
null
null
2,022
icml
Self-Supervised Models of Audio Effectively Explain Human Cortical Responses to Speech
null
Self-supervised language models are very effective at predicting high-level cortical responses during language comprehension. However, the best current models of lower-level auditory processing in the human brain rely on either hand-constructed acoustic filters or representations from supervised audio neural networks. In this work, we capitalize on the progress of self-supervised speech representation learning (SSL) to create new state-of-the-art models of the human auditory system. Compared against acoustic baselines, phonemic features, and supervised models, representations from the middle layers of self-supervised models (APC, wav2vec, wav2vec 2.0, and HuBERT) consistently yield the best prediction performance for fMRI recordings within the auditory cortex (AC). Brain areas involved in low-level auditory processing exhibit a preference for earlier SSL model layers, whereas higher-level semantic areas prefer later layers. We show that these trends are due to the models’ ability to encode information at multiple linguistic levels (acoustic, phonetic, and lexical) along their representation depth. Overall, these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
Aditya R Vaidya, Shailee Jain, Alexander Huth
null
null
2,022
icml
Bayesian Optimization under Stochastic Delayed Feedback
null
Bayesian optimization (BO) is a widely-used sequential method for zeroth-order optimization of complex and expensive-to-compute black-box functions. The existing BO methods assume that the function evaluation (feedback) is available to the learner immediately or after a fixed delay. Such assumptions may not be practical in many real-life problems like online recommendations, clinical trials, and hyperparameter tuning where feedback is available after a random delay. To benefit from the experimental parallelization in these problems, the learner needs to start new function evaluations without waiting for delayed feedback. In this paper, we consider the BO under stochastic delayed feedback problem. We propose algorithms with sub-linear regret guarantees that efficiently address the dilemma of selecting new function queries while waiting for randomly delayed feedback. Building on our results, we also make novel contributions to batch BO and contextual Gaussian process bandits. Experiments on synthetic and real-life datasets verify the performance of our algorithms.
Arun Verma, Zhongxiang Dai, Bryan Kian Hsiang Low
null
null
2,022
icml
Tackling covariate shift with node-based Bayesian neural networks
null
Bayesian neural networks (BNNs) promise improved generalization under covariate shift by providing principled probabilistic representations of epistemic uncertainty. However, weight-based BNNs often struggle with high computational complexity of large-scale architectures and datasets. Node-based BNNs have recently been introduced as scalable alternatives, which induce epistemic uncertainty by multiplying each hidden node with latent random variables, while learning a point-estimate of the weights. In this paper, we interpret these latent noise variables as implicit representations of simple and domain-agnostic data perturbations during training, producing BNNs that perform well under covariate shift due to input corruptions. We observe that the diversity of the implicit corruptions depends on the entropy of the latent variables, and propose a straightforward approach to increase the entropy of these variables during training. We evaluate the method on out-of-distribution image classification benchmarks, and show improved uncertainty estimation of node-based BNNs under covariate shift due to input perturbations. As a side effect, the method also provides robustness against noisy training labels.
Trung Q Trinh, Markus Heinonen, Luigi Acerbi, Samuel Kaski
null
null
2,022
icml
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
null
Distributed Mean Estimation (DME) is a central building block in federated learning, where clients send local gradients to a parameter server for averaging and updating the model. Due to communication constraints, clients often use lossy compression techniques to compress the gradients, resulting in estimation inaccuracies. DME is more challenging when clients have diverse network conditions, such as constrained communication budgets and packet losses. In such settings, DME techniques often incur a significant increase in the estimation error leading to degraded learning performance. In this work, we propose a robust DME technique named EDEN that naturally handles heterogeneous communication budgets and packet losses. We derive appealing theoretical guarantees for EDEN and evaluate it empirically. Our results demonstrate that EDEN consistently improves over state-of-the-art DME techniques.
Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben Itzhak, Michael Mitzenmacher
null
null
2,022
icml
Pairwise Conditional Gradients without Swap Steps and Sparser Kernel Herding
null
The Pairwise Conditional Gradients (PCG) algorithm is a powerful extension of the Frank-Wolfe algorithm leading to particularly sparse solutions, which makes PCG very appealing for problems such as sparse signal recovery, sparse regression, and kernel herding. Unfortunately, PCG exhibits so-called swap steps that might not provide sufficient primal progress. The number of these bad steps is bounded by a function in the dimension and as such known guarantees do not generalize to the infinite-dimensional case, which would be needed for kernel herding. We propose a new variant of PCG, the so-called Blended Pairwise Conditional Gradients (BPCG). This new algorithm does not exhibit any swap steps, is very easy to implement, and does not require any internal gradient alignment procedures. The convergence rate of BPCG is basically that of PCG if no drop steps would occur and as such is no worse than PCG but improves and provides new rates in many cases. Moreover, we observe in the numerical experiments that BPCG’s solutions are much sparser than those of PCG. We apply BPCG to the kernel herding setting, where we derive nice quadrature rules and provide numerical results demonstrating the performance of our method.
Kazuma K Tsuji, Ken’Ichiro Tanaka, Sebastian Pokutta
null
null
2,022
icml
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent
null
We aim to make stochastic gradient descent (SGD) adaptive to (i) the noise $\sigma^2$ in the stochastic gradients and (ii) problem-dependent constants. When minimizing smooth, strongly-convex functions with condition number $\kappa$, we prove that $T$ iterations of SGD with exponentially decreasing step-sizes and knowledge of the smoothness can achieve an $\tilde{O} \left(\exp \left( \nicefrac{-T}{\kappa} \right) + \nicefrac{\sigma^2}{T} \right)$ rate, without knowing $\sigma^2$. In order to be adaptive to the smoothness, we use a stochastic line-search (SLS) and show (via upper and lower-bounds) that SGD with SLS converges at the desired rate, but only to a neighbourhood of the solution. On the other hand, we prove that SGD with an offline estimate of the smoothness converges to the minimizer. However, its rate is slowed down proportional to the estimation error. Next, we prove that SGD with Nesterov acceleration and exponential step-sizes (referred to as ASGD) can achieve the near-optimal $\tilde{O} \left(\exp \left( \nicefrac{-T}{\sqrt{\kappa}} \right) + \nicefrac{\sigma^2}{T} \right)$ rate, without knowledge of $\sigma^2$. When used with offline estimates of the smoothness and strong-convexity, ASGD still converges to the solution, albeit at a slower rate. Finally, we empirically demonstrate the effectiveness of exponential step-sizes coupled with a novel variant of SLS.
Sharan Vaswani, Benjamin Dubois-Taine, Reza Babanezhad
null
null
2,022
icml
Multiclass learning with margin: exponential rates with no bias-variance trade-off
null
We study the behavior of error bounds for multiclass classification under suitable margin conditions. For a wide variety of methods we prove that the classification error under a hard-margin condition decreases exponentially fast without any bias-variance trade-off. Different convergence rates can be obtained in correspondence of different margin assumptions. With a self-contained and instructive analysis we are able to generalize known results from the binary to the multiclass setting.
Stefano Vigogna, Giacomo Meanti, Ernesto De Vito, Lorenzo Rosasco
null
null
2,022
icml
Bregman Power k-Means for Clustering Exponential Family Data
null
Recent progress in center-based clustering algorithms combats poor local minima by implicit annealing through a family of generalized means. These methods are variations of Lloyd’s celebrated k-means algorithm, and are most appropriate for spherical clusters such as those arising from Gaussian data. In this paper, we bridge these new algorithmic advances to classical work on hard clustering under Bregman divergences, which enjoy a bijection to exponential family distributions and are thus well-suited for clustering objects arising from a breadth of data generating mechanisms. The elegant properties of Bregman divergences allow us to maintain closed form updates in a simple and transparent algorithm, and moreover lead to new theoretical arguments for establishing finite sample bounds that relax the bounded support assumption made in the existing state of the art. Additionally, we consider thorough empirical analyses on simulated experiments and a case study on rainfall data, finding that the proposed method outperforms existing peer methods in a variety of non-Gaussian data settings.
Adithya Vellal, Saptarshi Chakraborty, Jason Q Xu
null
null
2,022
icml
On Implicit Bias in Overparameterized Bilevel Optimization
null
Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems involve inner and outer parameters, each optimized for its own objective. Often, at least one of the two levels is underspecified and there are multiple ways to choose among equivalent optima. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of different gradient-based algorithms for jointly optimizing the inner and outer parameters. We delineate two standard BLO methods—cold-start and warm-start BLO—and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the solutions from warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer optimization variables are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.
Paul Vicol, Jonathan P Lorraine, Fabian Pedregosa, David Duvenaud, Roger B Grosse
null
null
2,022
icml
Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
null
We consider the problem of signal estimation in generalized linear models defined via rotationally invariant design matrices. Since these matrices can have an arbitrary spectral distribution, this model is well suited for capturing complex correlation structures which often arise in applications. We propose a novel family of approximate message passing (AMP) algorithms for signal estimation, and rigorously characterize their performance in the high-dimensional limit via a state evolution recursion. Our rotationally invariant AMP has complexity of the same order as the existing AMP derived under the restrictive assumption of a Gaussian design; our algorithm also recovers this existing AMP as a special case. Numerical results showcase a performance close to Vector AMP (which is conjectured to be Bayes-optimal in some settings), but obtained with a much lower complexity, as the proposed algorithm does not require a computationally expensive singular value decomposition.
Ramji Venkataramanan, Kevin Kögler, Marco Mondelli
null
null
2,022
icml
Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning
null
Impressive results in natural language processing (NLP) based on the Transformer neural network architecture have inspired researchers to explore viewing offline reinforcement learning (RL) as a generic sequence modeling problem. Recent works based on this paradigm have achieved state-of-the-art results in several of the mostly deterministic offline Atari and D4RL benchmarks. However, because these methods jointly model the states and actions as a single sequencing problem, they struggle to disentangle the effects of the policy and world dynamics on the return. Thus, in adversarial or stochastic environments, these methods lead to overly optimistic behavior that can be dangerous in safety-critical systems like autonomous driving. In this work, we propose a method that addresses this optimism bias by explicitly disentangling the policy and world models, which allows us at test time to search for policies that are robust to multiple possible futures in the environment. We demonstrate our method’s superior performance on a variety of autonomous driving tasks in simulation.
Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, Jeff Schneider
null
null
2,022
icml
The CLRS Algorithmic Reasoning Benchmark
null
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms. Several important works have investigated whether neural networks can effectively reason like algorithms, typically by learning to execute them. The common trend in the area, however, is to generate targeted kinds of algorithmic data to evaluate specific hypotheses, making results hard to transfer across publications, and increasing the barrier of entry. To consolidate progress and work towards unified evaluation, we propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook. Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms. We perform extensive experiments to demonstrate how several popular algorithmic reasoning baselines perform on these tasks, and consequently, highlight links to several open challenges. Our library is readily available at https://github.com/deepmind/clrs.
Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino, Misha Dashevskiy, Raia Hadsell, Charles Blundell
null
null
2,022
icml
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach
null
Obtaining first-order regret bounds—regret bounds scaling not as the worst-case but with some measure of the performance of the optimal policy on a given instance—is a core question in sequential decision-making. While such bounds exist in many settings, they have proven elusive in reinforcement learning with large state spaces. In this work we address this gap, and show that it is possible to obtain regret scaling as $\widetilde{\mathcal{O}}(\sqrt{d^3 H^3 \cdot V_1^\star \cdot K} + d^{3.5}H^3\log K )$ in reinforcement learning with large state spaces, namely the linear MDP setting. Here $V_1^\star$ is the value of the optimal policy and $K$ is the number of episodes. We demonstrate that existing techniques based on least squares estimation are insufficient to obtain this result, and instead develop a novel robust self-normalized concentration bound based on the robust Catoni mean estimator, which may be of independent interest.
Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, Kevin Jamieson
null
null
2,022
icml
Consensus Multiplicative Weights Update: Learning to Learn using Projector-based Game Signatures
null
Cheung and Piliouras (2020) recently showed that two variants of the Multiplicative Weights Update method - OMWU and MWU - display opposite convergence properties depending on whether the game is zero-sum or cooperative. Inspired by this work and the recent literature on learning to optimize for single functions, we introduce a new framework for learning last-iterate convergence to Nash Equilibria in games, where the update rule’s coefficients (learning rates) along a trajectory are learnt by a reinforcement learning policy that is conditioned on the nature of the game: the game signature. We construct the latter using a new decomposition of two-player games into eight components corresponding to commutative projection operators, generalizing and unifying recent game concepts studied in the literature. We compare the performance of various update rules when their coefficients are learnt, and show that the RL policy is able to exploit the game signature across a wide range of game types. In doing so, we introduce CMWU, a new algorithm that extends consensus optimization to the constrained case, has local convergence guarantees for zero-sum bimatrix games, and show that it enjoys competitive performance on both zero-sum games with constant coefficients and across a spectrum of games when its coefficients are learnt.
Nelson Vadori, Rahul Savani, Thomas Spooner, Sumitra Ganesh
null
null
2,022
icml
Calibrated Learning to Defer with One-vs-All Classifiers
null
The learning to defer (L2D) framework has the potential to make AI systems safer. For a given input, the system can defer the decision to a human if the human is more likely than the model to take the correct action. We study the calibration of L2D systems, investigating if the probabilities they output are sound. We find that Mozannar & Sontag’s (2020) multiclass framework is not calibrated with respect to expert correctness. Moreover, it is not even guaranteed to produce valid probabilities due to its parameterization being degenerate for this purpose. We propose an L2D system based on one-vs-all classifiers that is able to produce calibrated probabilities of expert correctness. Furthermore, our loss function is also a consistent surrogate for multiclass L2D, like Mozannar & Sontag’s (2020). Our experiments verify that not only is our system calibrated, but this benefit comes at no cost to accuracy. Our model’s accuracy is always comparable (and often superior) to Mozannar & Sontag’s (2020) model’s in tasks ranging from hate speech detection to galaxy classification to diagnosis of skin lesions.
Rajeev Verma, Eric Nalisnick
null
null
2,022
icml
VarScene: A Deep Generative Model for Realistic Scene Graph Synthesis
null
Scene graphs are powerful abstractions that capture relationships between objects in images by modeling objects as nodes and relationships as edges. Generation of realistic synthetic scene graphs has applications like scene synthesis and data augmentation for supervised learning. Existing graph generative models are predominantly targeted toward molecular graphs, leveraging the limited vocabulary of atoms and bonds and also the well-defined semantics of chemical compounds. In contrast, scene graphs have much larger object and relation vocabularies, and their semantics are latent. To address this challenge, we propose a variational autoencoder for scene graphs, which is optimized for the maximum mean discrepancy (MMD) between the ground truth scene graph distribution and distribution of the generated scene graphs. Our method views a scene graph as a collection of star graphs and encodes it into a latent representation of the underlying stars. The decoder generates scene graphs by learning to sample the component stars and edges between them. Our experiments show that our method is able to mimic the underlying scene graph generative process more accurately than several state-of-the-art baselines.
Tathagat Verma, Abir De, Yateesh Agrawal, Vishwa Vinay, Soumen Chakrabarti
null
null
2,022
icml
Retroformer: Pushing the Limits of End-to-end Retrosynthesis Transformer
null
Retrosynthesis prediction is one of the fundamental challenges in organic synthesis. The task is to predict the reactants given a core product. With the advancement of machine learning, computer-aided synthesis planning has gained increasing interest. Numerous methods were proposed to solve this problem with different levels of dependency on additional chemical knowledge. In this paper, we propose Retroformer, a novel Transformer-based architecture for retrosynthesis prediction without relying on any cheminformatics tools for molecule editing. Via the proposed local attention head, the model can jointly encode the molecular sequence and graph, and efficiently exchange information between the local reactive region and the global reaction context. Retroformer reaches the new state-of-the-art accuracy for the end-to-end template-free retrosynthesis, and improves over many strong baselines on better molecule and reaction validity. In addition, its generative procedure is highly interpretable and controllable. Overall, Retroformer pushes the limits of the reaction reasoning ability of deep generative models.
Yue Wan, Chang-Yu Hsieh, Ben Liao, Shengyu Zhang
null
null
2,022
icml
Correlation Clustering via Strong Triadic Closure Labeling: Fast Approximation Algorithms and Practical Lower Bounds
null
Correlation clustering is a widely studied framework for clustering based on pairwise similarity and dissimilarity scores, but its best approximation algorithms rely on impractical linear programming relaxations. We present faster approximation algorithms that avoid these relaxations, for two well-studied special cases: cluster editing and cluster deletion. We accomplish this by drawing new connections to edge labeling problems related to the principle of strong triadic closure. This leads to faster and more practical linear programming algorithms, as well as extremely scalable combinatorial techniques, including the first combinatorial approximation algorithm for cluster deletion. In practice, our algorithms produce approximate solutions that nearly match the best algorithms in quality, while scaling to problems that are orders of magnitude larger.
Nate Veldt
null
null
2,022
icml
Bayesian Nonparametrics for Offline Skill Discovery
null
Skills or low-level policies in reinforcement learning are temporally extended actions that can speed up learning and enable complex behaviours. Recent work in offline reinforcement learning and imitation learning has proposed several techniques for skill discovery from a set of expert trajectories. While these methods are promising, the number K of skills to discover is always a fixed hyperparameter, which requires either prior knowledge about the environment or an additional parameter search to tune it. We first propose a method for offline learning of options (a particular skill framework) exploiting advances in variational inference and continuous relaxations. We then highlight an unexplored connection between Bayesian nonparametrics and offline skill discovery, and show how to obtain a nonparametric version of our model. This version is tractable thanks to a carefully structured approximate posterior with a dynamically-changing number of options, removing the need to specify K. We also show how our nonparametric extension can be applied in other skill frameworks, and empirically demonstrate that our method can outperform state-of-the-art offline skill learning algorithms across a variety of environments.
Valentin Villecroze, Harry Braviner, Panteha Naderian, Chris Maddison, Gabriel Loaiza-Ganem
null
null
2,022
icml
What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?
null
Studying neural network loss landscapes provides insights into the nature of the underlying optimization problems. Unfortunately, loss landscapes are notoriously difficult to visualize in a human-comprehensible fashion. One common way to address this problem is to plot linear slices of the landscape, for example from the initial state of the network to the final state after optimization. On the basis of this analysis, prior work has drawn broader conclusions about the difficulty of the optimization problem. In this paper, we put inferences of this kind to the test, systematically evaluating how linear interpolation and final performance vary when altering the data, choice of initialization, and other optimizer and architecture design choices. Further, we use linear interpolation to study the role played by individual layers and substructures of the network. We find that certain layers are more sensitive to the choice of initialization, but that the shape of the linear path is not indicative of the changes in test accuracy of the model. Our results cast doubt on the broader intuition that the presence or absence of barriers when interpolating necessarily relates to the success of optimization.
Tiffany J Vlaar, Jonathan Frankle
null
null
2,022
icml
Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes
null
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration, but must propose a near-optimal policy for an arbitrary reward function revealed only after exploring. In the the tabular setting, it is well known that this is a more difficult problem than reward-aware (PAC) RL—where the agent has access to the reward function during exploration—with optimal sample complexities in the two settings differing by a factor of $|\mathcal{S}|$, the size of the state space. We show that this separation does not exist in the setting of linear MDPs. We first develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP with sample complexity scaling as $\widetilde{\mathcal{O}}(d^2 H^5/\epsilon^2)$. We then show a lower bound with matching dimension-dependence of $\Omega(d^2 H^2/\epsilon^2)$, which holds for the reward-aware RL setting. To our knowledge, our approach is the first computationally efficient algorithm to achieve optimal $d$ dependence in linear MDPs, even in the single-reward PAC setting. Our algorithm relies on a novel procedure which efficiently traverses a linear MDP, collecting samples in any given “feature direction”, and enjoys a sample complexity scaling optimally in the (linear MDP equivalent of the) maximal state visitation probability. We show that this exploration procedure can also be applied to solve the problem of obtaining “well-conditioned” covariates in linear MDPs.
Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, Kevin Jamieson
null
null
2,022
icml
Provably Adversarially Robust Nearest Prototype Classifiers
null
Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the exact computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our \textbf{P}rovably adversarially robust \textbf{NPC} (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in \cite{laidlaw2021perceptual}. The code is available in our \href{https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers}{repository}.
Václav Voráček, Matthias Hein
null
null
2,022
icml
Denoised MDPs: Learning World Models Better Than the World Itself
null
The ability to separate signal from noise, and reason with clean abstractions, is critical to intelligence. With this ability, humans can efficiently perform real world tasks without considering all possible nuisance factors. How can artificial agents do the same? What kind of information can agents safely discard as noises? In this work, we categorize information out in the wild into four types based on controllability and relation with reward, and formulate useful information as that which is both controllable and reward-relevant. This framework clarifies the kinds information removed by various prior work on representation learning in reinforcement learning (RL), and leads to our proposed approach of learning a Denoised MDP that explicitly factors out certain noise distractors. Extensive experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone, and over prior works, across policy optimization control tasks as well as the non-control task of joint position regression. Project Page: https://ssnl.github.io/denoised_mdp/ Code: https://github.com/facebookresearch/denoised_mdp/
Tongzhou Wang, Simon Du, Antonio Torralba, Phillip Isola, Amy Zhang, Yuandong Tian
null
null
2,022
icml
Greedy based Value Representation for Optimal Coordination in Multi-agent Reinforcement Learning
null
Due to the representation limitation of the joint Q value function, multi-agent reinforcement learning methods with linear value decomposition (LVD) or monotonic value decomposition (MVD) suffer from relative overgeneralization. As a result, they can not ensure optimal consistency (i.e., the correspondence between individual greedy actions and the best team performance). In this paper, we derive the expression of the joint Q value function of LVD and MVD. According to the expression, we draw a transition diagram, where each self-transition node (STN) is a possible convergence. To ensure the optimal consistency, the optimal node is required to be the unique STN. Therefore, we propose the greedy-based value representation (GVR), which turns the optimal node into an STN via inferior target shaping and eliminates the non-optimal STNs via superior experience replay. Theoretical proofs and empirical results demonstrate that given the true Q values, GVR ensures the optimal consistency under sufficient exploration. Besides, in tasks where the true Q values are unavailable, GVR achieves an adaptive trade-off between optimality and stability. Our method outperforms state-of-the-art baselines in experiments on various benchmarks.
Lipeng Wan, Zeyang Liu, Xingyu Chen, Xuguang Lan, Nanning Zheng
null
null
2,022
icml
Fast Lossless Neural Compression with Integer-Only Discrete Flows
null
By applying entropy codecs with learned data distributions, neural compressors have significantly outperformed traditional codecs in terms of compression ratio. However, the high inference latency of neural networks hinders the deployment of neural compressors in practical applications. In this work, we propose Integer-only Discrete Flows (IODF) an efficient neural compressor with integer-only arithmetic. Our work is built upon integer discrete flows, which consists of invertible transformations between discrete random variables. We propose efficient invertible transformations with integer-only arithmetic based on 8-bit quantization. Our invertible transformation is equipped with learnable binary gates to remove redundant filters during inference. We deploy IODF with TensorRT on GPUs, achieving $10\times$ inference speedup compared to the fastest existing neural compressors, while retaining the high compression rates on ImageNet32 and ImageNet64.
Siyu Wang, Jianfei Chen, Chongxuan Li, Jun Zhu, Bo Zhang
null
null
2,022
icml
Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four
null
Characteristic functions (from cooperative game theory) are able to evaluate partial inputs and form the basis for attribution methods like Shapley values. These attribution methods allow us to measure how important each input component is for the function output—one of the goals of explainable AI (XAI). Given a standard classifier function, it is unclear how partial input should be realised. Instead, most XAI-methods for black-box classifiers like neural networks consider counterfactual inputs that generally lie off-manifold, which makes them hard to evaluate and easy to manipulate. We propose a setup to directly train characteristic functions in the form of neural networks to play simple two-player games. We apply this to the game of Connect Four by randomly hiding colour information from our agents during training. This has three advantages for comparing XAI-methods: It alleviates the ambiguity about how to realise partial input, makes off-manifold evaluation unnecessary and allows us to compare the methods by letting them play against each other.
Stephan Wäldchen, Sebastian Pokutta, Felix Huber
null
null
2,022
icml
Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods
null
In recent years, a growing number of deep model-based reinforcement learning (RL) methods have been introduced. The interest in deep model-based RL is not surprising, given its many potential benefits, such as higher sample efficiency and the potential for fast adaption to changes in the environment. However, we demonstrate, using an improved version of the recently introduced Local Change Adaptation (LoCA) setup, that well-known model-based methods such as PlaNet and DreamerV2 perform poorly in their ability to adapt to local environmental changes. Combined with prior work that made a similar observation about the other popular model-based method, MuZero, a trend appears to emerge, suggesting that current deep model-based methods have serious limitations. We dive deeper into the causes of this poor performance, by identifying elements that hurt adaptive behavior and linking these to underlying techniques frequently used in deep model-based RL. We empirically validate these insights in the case of linear function approximation by demonstrating that a modified version of linear Dyna achieves effective adaptation to local changes. Furthermore, we provide detailed insights into the challenges of building an adaptive nonlinear model-based method, by experimenting with a nonlinear version of Dyna.
Yi Wan, Ali Rahimi-Kalahroudi, Janarthanan Rajendran, Ida Momennejad, Sarath Chandar, Harm H Van Seijen
null
null
2,022
icml
Safe Exploration for Efficient Policy Evaluation and Comparison
null
High-quality data plays a central role in ensuring the accuracy of policy evaluation. This paper initiates the study of efficient and safe data collection for bandit policy evaluation. We formulate the problem and investigate its several representative variants. For each variant, we analyze its statistical properties, derive the corresponding exploration policy, and design an efficient algorithm for computing it. Both theoretical analysis and experiments support the usefulness of the proposed methods.
Runzhe Wan, Branislav Kveton, Rui Song
null
null
2,022
icml
Neural Implicit Dictionary Learning via Mixture-of-Expert Training
null
Representing visual signals by coordinate-based deep fully-connected networks has been shown advantageous in fitting complex details and solving inverse problems than discrete grid-based representation. However, acquiring such a continuous Implicit Neural Representation (INR) requires tedious per-scene training on tons of signal measurements, which limits its practicality. In this paper, we present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID) from a data collection and representing INR as a functional combination of wavelets sampled from the dictionary. Our NID assembles a group of coordinate-based subnetworks which are tuned to span the desired function space. After training, one can instantly and robustly acquire an unseen scene representation by solving the coding coefficients. To parallelly optimize a large group of networks, we borrow the idea from Mixture-of-Expert (MoE) to design and train our network with a sparse gating mechanism. Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data. We further demonstrate various applications of NID in image inpainting and occlusion removal, which are considered to be challenging with vanilla INR. Our codes are available in https://github.com/VITA-Group/Neural-Implicit-Dict.
Peihao Wang, Zhiwen Fan, Tianlong Chen, Zhangyang Wang
null
null
2,022
icml
Solving Stackelberg Prediction Game with Least Squares Loss via Spherically Constrained Least Squares Reformulation
null
The Stackelberg prediction game (SPG) is popular in characterizing strategic interactions between a learner and an attacker. As an important special case, the SPG with least squares loss (SPG-LS) has recently received much research attention. Although initially formulated as a difficult bi-level optimization problem, SPG-LS admits tractable reformulations which can be polynomially globally solved by semidefinite programming or second order cone programming. However, all the available approaches are not well-suited for handling large-scale datasets, especially those with huge numbers of features. In this paper, we explore an alternative reformulation of the SPG-LS. By a novel nonlinear change of variables, we rewrite the SPG-LS as a spherically constrained least squares (SCLS) problem. Theoretically, we show that an $\epsilon$ optimal solutions to the SCLS (and the SPG-LS) can be achieved in $\tilde O(N/\sqrt{\epsilon})$ floating-point operations, where $N$ is the number of nonzero entries in the data matrix. Practically, we apply two well-known methods for solving this new reformulation, i.e., the Krylov subspace method and the Riemannian trust region method. Both algorithms are factorization free so that they are suitable for solving large scale problems. Numerical results on both synthetic and real-world datasets indicate that the SPG-LS, equipped with the SCLS reformulation, can be solved orders of magnitude faster than the state of the art.
Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, Alex L Wang
null
null
2,022
icml
DynaMixer: A Vision MLP Architecture with Dynamic Mixing
null
Recently, MLP-like vision models have achieved promising performances on mainstream visual recognition tasks. In contrast with vision transformers and CNNs, the success of MLP-like models shows that simple information fusion operations among tokens and channels can yield a good representation power for deep recognition models. However, existing MLP-like models fuse tokens through static fusion operations, lacking adaptability to the contents of the tokens to be mixed. Thus, customary information fusion procedures are not effective enough. To this end, this paper presents an efficient MLP-like network architecture, dubbed DynaMixer, resorting to dynamic information fusion. Critically, we propose a procedure, on which the DynaMixer model relies, to dynamically generate mixing matrices by leveraging the contents of all the tokens to be mixed. To reduce the time complexity and improve the robustness, a dimensionality reduction technique and a multi-segment fusion mechanism are adopted. Our proposed DynaMixer model (97M parameters) achieves 84.3% top-1 accuracy on the ImageNet-1K dataset without extra training data, performing favorably against the state-of-the-art vision MLP models. When the number of parameters is reduced to 26M, it still achieves 82.7% top-1 accuracy, surpassing the existing MLP-like models with a similar capacity. The code is available at \url{https://github.com/ziyuwwang/DynaMixer}.
Ziyu Wang, Wenhao Jiang, Yiming M Zhu, Li Yuan, Yibing Song, Wei Liu
null
null
2,022
icml
Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond
null
The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of $(T-1)$ unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of $e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)$ for the target domain error, where $\varepsilon_0$ is the source domain error and $n$ is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when $T$ is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as $\widetilde{O}\left(\varepsilon_0 + T\Delta + T/\sqrt{n} + 1/\sqrt{nT}\right)$, where $\Delta$ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on $T$ as a multiplicative factor, our bound only depends on $T$ linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of $T$ that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length $T\Delta$ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.
Haoxiang Wang, Bo Li, Han Zhao
null
null
2,022
icml
The Geometry of Robust Value Functions
null
The space of value functions is a fundamental concept in reinforcement learning. Characterizing its geometric properties may provide insights for optimization and representation. Existing works mainly focus on the value space for Markov Decision Processes (MDPs). In this paper, we study the geometry of the robust value space for the more general Robust MDPs (RMDPs) setting, where transition uncertainties are considered. Specifically, since we find it hard to directly adapt prior approaches to RMDPs, we start with revisiting the non-robust case, and introduce a new perspective that enables us to characterize both the non-robust and robust value space in a similar fashion. The key of this perspective is to decompose the value space, in a state-wise manner, into unions of hypersurfaces. Through our analysis, we show that the robust value space is determined by a set of conic hypersurfaces, each of which contains the robust values of all policies that agree on one state. Furthermore, we find that taking only extreme points in the uncertainty set is sufficient to determine the robust value space. Finally, we discuss some other aspects about the robust value space, including its non-convexity and policy agreement on multiple states.
Kaixin Wang, Navdeep Kumar, Kuangqi Zhou, Bryan Hooi, Jiashi Feng, Shie Mannor
null
null
2,022
icml
Provable Acceleration of Heavy Ball beyond Quadratics for a Class of Polyak-Lojasiewicz Functions when the Non-Convexity is Averaged-Out
null
Heavy Ball (HB) nowadays is one of the most popular momentum methods in non-convex optimization. It has been widely observed that incorporating the Heavy Ball dynamic in gradient-based methods accelerates the training process of modern machine learning models. However, the progress on establishing its theoretical foundation of acceleration is apparently far behind its empirical success. Existing provable acceleration results are of the quadratic or close-to-quadratic functions, as the current techniques of showing HB’s acceleration are limited to the case when the Hessian is fixed. In this work, we develop some new techniques that help show acceleration beyond quadratics, which is achieved by analyzing how the change of the Hessian at two consecutive time points affects the convergence speed. Based on our technical results, a class of Polyak-Lojasiewicz (PL) optimization problems for which provable acceleration can be achieved via HB is identified. Moreover, our analysis demonstrates a benefit of adaptively setting the momentum parameter.
Jun-Kun Wang, Chi-Heng Lin, Andre Wibisono, Bin Hu
null
null
2,022
icml
Robustness Verification for Contrastive Learning
null
Contrastive adversarial training has successfully improved the robustness of contrastive learning (CL). However, the robustness metric used in these methods is linked to attack algorithms, image labels and downstream tasks, all of which may affect the consistency and reliability of robustness metric for CL. To address these problems, this paper proposes a novel Robustness Verification framework for Contrastive Learning (RVCL). Furthermore, we use extreme value theory to reveal the relationship between the robust radius of the CL encoder and that of the supervised downstream task. Extensive experimental results on various benchmark models and datasets verify our theoretical findings, and further demonstrate that our proposed RVCL is able to evaluate the robustness of both models and images. Our code is available at https://github.com/wzekai99/RVCL.
Zekai Wang, Weiwei Liu
null
null
2,022
icml
What Dense Graph Do You Need for Self-Attention?
null
Transformers have made progress in miscellaneous tasks, but suffer from quadratic computational and memory complexities. Recent works propose sparse transformers with attention on sparse graphs to reduce complexity and remain strong performance. While effective, the crucial parts of how dense a graph needs to be to perform well are not fully explored. In this paper, we propose Normalized Information Payload (NIP), a graph scoring function measuring information transfer on graph, which provides an analysis tool for trade-offs between performance and complexity. Guided by this theoretical analysis, we present Hypercube Transformer, a sparse transformer that models token interactions in a hypercube and shows comparable or even better results with vanilla transformer while yielding $O(N\log N)$ complexity with sequence length $N$. Experiments on tasks requiring various sequence lengths lay validation for our graph function well.
Yuxin Wang, Chu-Tak Lee, Qipeng Guo, Zhangyue Yin, Yunhua Zhou, Xuanjing Huang, Xipeng Qiu
null
null
2,022
icml
NP-Match: When Neural Processes meet Semi-Supervised Learning
null
Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data. In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match implicitly compares data points when making predictions, and as a result, the prediction of each unlabeled data point is affected by the labeled data points that are similar to it, which improves the quality of pseudolabels. Secondly, NP-Match is able to estimate uncertainty that can be used as a tool for selecting unlabeled samples with reliable pseudo-labels. Compared with uncertainty-based SSL methods implemented with Monte Carlo (MC) dropout, NP-Match estimates uncertainty with much less computational overhead, which can save time at both the training and the testing phases. We conducted extensive experiments on four public datasets, and NP-Match outperforms state-of-theart (SOTA) results or achieves competitive results on them, which shows the effectiveness of NPMatch and its potential for SSL.
Jianfeng Wang, Thomas Lukasiewicz, Daniela Massiceti, Xiaolin Hu, Vladimir Pavlovic, Alexandros Neophytou
null
null
2,022
icml
Accelerating Shapley Explanation via Contributive Cooperator Selection
null
Even though Shapley value provides an effective explanation for a DNN model prediction, the computation relies on the enumeration of all possible input feature coalitions, which leads to the exponentially growing complexity. To address this problem, we propose a novel method SHEAR to significantly accelerate the Shapley explanation for DNN models, where only a few coalitions of input features are involved in the computation. The selection of the feature coalitions follows our proposed Shapley chain rule to minimize the absolute error from the ground-truth Shapley values, such that the computation can be both efficient and accurate. To demonstrate the effectiveness, we comprehensively evaluate SHEAR across multiple metrics including the absolute error from the ground-truth Shapley value, the faithfulness of the explanations, and running speed. The experimental results indicate SHEAR consistently outperforms state-of-the-art baseline methods across different evaluation metrics, which demonstrates its potentials in real-world applications where the computational resource is limited.
Guanchu Wang, Yu-Neng Chuang, Mengnan Du, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Hu
null
null
2,022
icml
VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix
null
Existing vision-language pre-training (VLP) methods primarily rely on paired image-text datasets, which are either annotated by enormous human labors or crawled from the internet followed by elaborate data cleaning techniques. To reduce the dependency on well-aligned image-text pairs, it is promising to directly leverage the large-scale text-only and image-only corpora. This paper proposes a data augmentation method, namely cross-modal CutMix (CMC), for implicit cross-modal alignment learning in unpaired VLP. Specifically, CMC transforms natural sentences in the textual view into a multi-modal view, where visually-grounded words in a sentence are randomly replaced by diverse image patches with similar semantics. There are several appealing proprieties of the proposed CMC. First, it enhances the data diversity while keeping the semantic meaning intact for tackling problems where the aligned data are scarce; Second, by attaching cross-modal noise on uni-modal data, it guides models to learn token-level interactions across modalities for better denoising. Furthermore, we present a new unpaired VLP method, dubbed as VLMixer, that integrates CMC with contrastive learning to pull together the uni-modal and multi-modal views for better instance-level alignments among different modalities. Extensive experiments on five downstream tasks show that VLMixer could surpass previous state-of-the-art unpaired VLP methods.
Teng Wang, Wenhao Jiang, Zhichao Lu, Feng Zheng, Ran Cheng, Chengguo Yin, Ping Luo
null
null
2,022
icml