title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Classifiers With a Reject Option for Early Time-Series Classification
cs.CV cs.LG
Early classification of time-series data in a dynamic environment is a challenging problem of great importance in signal processing. This paper proposes a classifier architecture with a reject option capable of online decision making without the need to wait for the entire time series signal to be present. The main idea is to classify an odor/gas signal with an acceptable accuracy as early as possible. Instead of using posterior probability of a classifier, the proposed method uses the "agreement" of an ensemble to decide whether to accept or reject the candidate label. The introduced algorithm is applied to the bio-chemistry problem of odor classification to build a novel Electronic-Nose called Forefront-Nose. Experimental results on wind tunnel test-bed facility confirms the robustness of the forefront-nose compared to the standard classifiers from both earliness and recognition perspectives.
Nima Hatami and Camelia Chira
null
1312.3989
null
null
ECOC-Based Training of Neural Networks for Face Recognition
cs.CV cs.LG
Error Correcting Output Codes, ECOC, is an output representation method capable of discovering some of the errors produced in classification tasks. This paper describes the application of ECOC to the training of feed forward neural networks, FFNN, for improving the overall accuracy of classification systems. Indeed, to improve the generalization of FFNN classifiers, this paper proposes an ECOC-Based training method for Neural Networks that use ECOC as the output representation, and adopts the traditional Back-Propagation algorithm, BP, to adjust weights of the network. Experimental results for face recognition problem on Yale database demonstrate the effectiveness of our method. With a rejection scheme defined by a simple robustness rate, high reliability is achieved in this application.
Nima Hatami, Reza Ebrahimpour, Reza Ghaderi
10.1109/ICCIS.2008.4670763
1312.3990
null
null
Domain adaptation for sequence labeling using hidden Markov models
cs.CL cs.LG
Most natural language processing systems based on machine learning are not robust to domain shift. For example, a state-of-the-art syntactic dependency parser trained on Wall Street Journal sentences has an absolute drop in performance of more than ten points when tested on textual data from the Web. An efficient solution to make these methods more robust to domain shift is to first learn a word representation using large amounts of unlabeled data from both domains, and then use this representation as features in a supervised learning algorithm. In this paper, we propose to use hidden Markov models to learn word representations for part-of-speech tagging. In particular, we study the influence of using data from the source, the target or both domains to learn the representation and the different ways to represent words using an HMM.
Edouard Grave (LIENS, INRIA Paris - Rocquencourt), Guillaume Obozinski (LIGM), Francis Bach (LIENS, INRIA Paris - Rocquencourt)
null
1312.4092
null
null
A MapReduce based distributed SVM algorithm for binary classification
cs.LG cs.DC
Although Support Vector Machine (SVM) algorithm has a high generalization property to classify for unseen examples after training phase and it has small loss value, the algorithm is not suitable for real-life classification and regression problems. SVMs cannot solve hundreds of thousands examples in training dataset. In previous studies on distributed machine learning algorithms, SVM is trained over a costly and preconfigured computer environment. In this research, we present a MapReduce based distributed parallel SVM training algorithm for binary classification problems. This work shows how to distribute optimization problem over cloud computing systems with MapReduce technique. In the second step of this work, we used statistical learning theory to find the predictive hypothesis that minimize our empirical risks from hypothesis spaces that created with reduce function of MapReduce. The results of this research are important for training of big datasets for SVM algorithm based classification problems. We provided that iterative training of split dataset with MapReduce technique; accuracy of the classifier function will converge to global optimal classifier function's accuracy in finite iteration size. The algorithm performance was measured on samples from letter recognition and pen-based recognition of handwritten digits dataset.
Ferhat \"Ozg\"ur \c{C}atak, Mehmet Erdal Balaban
null
1312.4108
null
null
Distributed k-means algorithm
cs.LG cs.DC
In this paper we provide a fully distributed implementation of the k-means clustering algorithm, intended for wireless sensor networks where each agent is endowed with a possibly high-dimensional observation (e.g., position, humidity, temperature, etc.) The proposed algorithm, by means of one-hop communication, partitions the agents into measure-dependent groups that have small in-group and large out-group "distances". Since the partitions may not have a relation with the topology of the network--members of the same clusters may not be spatially close--the algorithm is provided with a mechanism to compute the clusters'centroids even when the clusters are disconnected in several sub-clusters.The results of the proposed distributed algorithm coincide, in terms of minimization of the objective function, with the centralized k-means algorithm. Some numerical examples illustrate the capabilities of the proposed solution.
Gabriele Oliva, Roberto Setola, and Christoforos N. Hadjicostis
null
1312.4176
null
null
Feature Graph Architectures
cs.LG
In this article we propose feature graph architectures (FGA), which are deep learning systems employing a structured initialisation and training method based on a feature graph which facilitates improved generalisation performance compared with a standard shallow architecture. The goal is to explore alternative perspectives on the problem of deep network training. We evaluate FGA performance for deep SVMs on some experimental datasets, and show how generalisation and stability results may be derived for these models. We describe the effect of permutations on the model accuracy, and give a criterion for the optimal permutation in terms of feature correlations. The experimental results show that the algorithm produces robust and significant test set improvements over a standard shallow SVM training method for a range of datasets. These gains are achieved with a moderate increase in time complexity.
Richard Davis, Sanjay Chawla, Philip Leong
null
1312.4209
null
null
Learning Factored Representations in a Deep Mixture of Experts
cs.LG
Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent ("where") experts at the first layer, and class-specific ("what") experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations.
David Eigen, Marc'Aurelio Ranzato, Ilya Sutskever
null
1312.4314
null
null
Rectifying Self Organizing Maps for Automatic Concept Learning from Web Images
cs.CV cs.LG cs.NE
We attack the problem of learning concepts automatically from noisy web image search results. Going beyond low level attributes, such as colour and texture, we explore weakly-labelled datasets for the learning of higher level concepts, such as scene categories. The idea is based on discovering common characteristics shared among subsets of images by posing a method that is able to organise the data while eliminating irrelevant instances. We propose a novel clustering and outlier detection method, namely Rectifying Self Organizing Maps (RSOM). Given an image collection returned for a concept query, RSOM provides clusters pruned from outliers. Each cluster is used to train a model representing a different characteristics of the concept. The proposed method outperforms the state-of-the-art studies on the task of learning low-level concepts, and it is competitive in learning higher level concepts as well. It is capable to work at large scale with no supervision through exploiting the available sources.
Eren Golge and Pinar Duygulu
null
1312.4384
null
null
Network In Network
cs.NE cs.CV cs.LG
We propose a novel deep network structure called "Network In Network" (NIN) to enhance model discriminability for local patches within the receptive field. The conventional convolutional layer uses linear filters followed by a nonlinear activation function to scan the input. Instead, we build micro neural networks with more complex structures to abstract the data within the receptive field. We instantiate the micro neural network with a multilayer perceptron, which is a potent function approximator. The feature maps are obtained by sliding the micro networks over the input in a similar manner as CNN; they are then fed into the next layer. Deep NIN can be implemented by stacking mutiple of the above described structure. With enhanced local modeling via the micro network, we are able to utilize global average pooling over feature maps in the classification layer, which is easier to interpret and less prone to overfitting than traditional fully connected layers. We demonstrated the state-of-the-art classification performances with NIN on CIFAR-10 and CIFAR-100, and reasonable performances on SVHN and MNIST datasets.
Min Lin, Qiang Chen, Shuicheng Yan
null
1312.4400
null
null
Learning Deep Representations By Distributed Random Samplings
cs.LG
In this paper, we propose an extremely simple deep model for the unsupervised nonlinear dimensionality reduction -- deep distributed random samplings, which performs like a stack of unsupervised bootstrap aggregating. First, its network structure is novel: each layer of the network is a group of mutually independent $k$-centers clusterings. Second, its learning method is extremely simple: the $k$ centers of each clustering are only $k$ randomly selected examples from the training data; for small-scale data sets, the $k$ centers are further randomly reconstructed by a simple cyclic-shift operation. Experimental results on nonlinear dimensionality reduction show that the proposed method can learn abstract representations on both large-scale and small-scale problems, and meanwhile is much faster than deep neural networks on large-scale problems.
Xiao-Lei Zhang
null
1312.4405
null
null
Optimization for Compressed Sensing: the Simplex Method and Kronecker Sparsification
stat.ML cs.LG
In this paper we present two new approaches to efficiently solve large-scale compressed sensing problems. These two ideas are independent of each other and can therefore be used either separately or together. We consider all possibilities. For the first approach, we note that the zero vector can be taken as the initial basic (infeasible) solution for the linear programming problem and therefore, if the true signal is very sparse, some variants of the simplex method can be expected to take only a small number of pivots to arrive at a solution. We implemented one such variant and demonstrate a dramatic improvement in computation time on very sparse signals. The second approach requires a redesigned sensing mechanism in which the vector signal is stacked into a matrix. This allows us to exploit the Kronecker compressed sensing (KCS) mechanism. We show that the Kronecker sensing requires stronger conditions for perfect recovery compared to the original vector problem. However, the Kronecker sensing, modeled correctly, is a much sparser linear optimization problem. Hence, algorithms that benefit from sparse problem representation, such as interior-point methods, can solve the Kronecker sensing problems much faster than the corresponding vector problem. In our numerical studies, we demonstrate a ten-fold improvement in the computation time.
Robert Vanderbei and Han Liu and Lie Wang and Kevin Lin
null
1312.4426
null
null
Low-Rank Approximations for Conditional Feedforward Computation in Deep Neural Networks
cs.LG
Scalability properties of deep neural networks raise key research questions, particularly as the problems considered become larger and more challenging. This paper expands on the idea of conditional computation introduced by Bengio, et. al., where the nodes of a deep network are augmented by a set of gating units that determine when a node should be calculated. By factorizing the weight matrix into a low-rank approximation, an estimation of the sign of the pre-nonlinearity activation can be efficiently obtained. For networks using rectified-linear hidden units, this implies that the computation of a hidden unit with an estimated negative pre-nonlinearity can be ommitted altogether, as its value will become zero when nonlinearity is applied. For sparse neural networks, this can result in considerable speed gains. Experimental results using the MNIST and SVHN data sets with a fully-connected deep neural network demonstrate the performance robustness of the proposed scheme with respect to the error introduced by the conditional computation process.
Andrew Davis, Itamar Arel
null
1312.4461
null
null
Parametric Modelling of Multivariate Count Data Using Probabilistic Graphical Models
stat.ML cs.LG stat.ME
Multivariate count data are defined as the number of items of different categories issued from sampling within a population, which individuals are grouped into categories. The analysis of multivariate count data is a recurrent and crucial issue in numerous modelling problems, particularly in the fields of biology and ecology (where the data can represent, for example, children counts associated with multitype branching processes), sociology and econometrics. We focus on I) Identifying categories that appear simultaneously, or on the contrary that are mutually exclusive. This is achieved by identifying conditional independence relationships between the variables; II)Building parsimonious parametric models consistent with these relationships; III) Characterising and testing the effects of covariates on the joint distribution of the counts. To achieve these goals, we propose an approach based on graphical probabilistic models, and more specifically partially directed acyclic graphs.
Pierre Fernique (VP, AGAP), Jean-Baptiste Durand (VP, INRIA Grenoble Rh\^one-Alpes / LJK Laboratoire Jean Kuntzmann), Yann Gu\'edon (VP, AGAP)
null
1312.4479
null
null
Probable convexity and its application to Correlated Topic Models
cs.LG stat.ML
Non-convex optimization problems often arise from probabilistic modeling, such as estimation of posterior distributions. Non-convexity makes the problems intractable, and poses various obstacles for us to design efficient algorithms. In this work, we attack non-convexity by first introducing the concept of \emph{probable convexity} for analyzing convexity of real functions in practice. We then use the new concept to analyze an inference problem in the \emph{Correlated Topic Model} (CTM) and related nonconjugate models. Contrary to the existing belief of intractability, we show that this inference problem is concave under certain conditions. One consequence of our analyses is a novel algorithm for learning CTM which is significantly more scalable and qualitative than existing methods. Finally, we highlight that stochastic gradient algorithms might be a practical choice to resolve efficiently non-convex problems. This finding might find beneficial in many contexts which are beyond probabilistic modeling.
Khoat Than and Tu Bao Ho
null
1312.4527
null
null
Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs
stat.ML cs.LG
We present an asymptotic analysis of Viterbi Training (VT) and contrast it with a more conventional Maximum Likelihood (ML) approach to parameter estimation in Hidden Markov Models. While ML estimator works by (locally) maximizing the likelihood of the observed data, VT seeks to maximize the probability of the most likely hidden state sequence. We develop an analytical framework based on a generating function formalism and illustrate it on an exactly solvable model of HMM with one unambiguous symbol. For this particular model the ML objective function is continuously degenerate. VT objective, in contrast, is shown to have only finite degeneracy. Furthermore, VT converges faster and results in sparser (simpler) models, thus realizing an automatic Occam's razor for HMM learning. For more general scenario VT can be worse compared to ML but still capable of correctly recovering most of the parameters.
Armen E. Allahverdyan and Aram Galstyan
null
1312.4551
null
null
Adaptive Stochastic Alternating Direction Method of Multipliers
stat.ML cs.LG
The Alternating Direction Method of Multipliers (ADMM) has been studied for years. The traditional ADMM algorithm needs to compute, at each iteration, an (empirical) expected loss function on all training examples, resulting in a computational complexity proportional to the number of training examples. To reduce the time complexity, stochastic ADMM algorithms were proposed to replace the expected function with a random loss function associated with one uniformly drawn example plus a Bregman divergence. The Bregman divergence, however, is derived from a simple second order proximal function, the half squared norm, which could be a suboptimal choice. In this paper, we present a new family of stochastic ADMM algorithms with optimal second order proximal functions, which produce a new family of adaptive subgradient methods. We theoretically prove that their regret bounds are as good as the bounds which could be achieved by the best proximal function that can be chosen in hindsight. Encouraging empirical results on a variety of real-world datasets confirm the effectiveness and efficiency of the proposed algorithms.
Peilin Zhao, Jinwei Yang, Tong Zhang, Ping Li
null
1312.4564
null
null
Dropout improves Recurrent Neural Networks for Handwriting Recognition
cs.CV cs.LG cs.NE
Recurrent neural networks (RNNs) with Long Short-Term memory cells currently hold the best known results in unconstrained handwriting recognition. We show that their performance can be greatly improved using dropout - a recently proposed regularization method for deep architectures. While previous works showed that dropout gave superior performance in the context of convolutional networks, it had never been applied to RNNs. In our approach, dropout is carefully used in the network so that it does not affect the recurrent connections, hence the power of RNNs in modeling sequence is preserved. Extensive experiments on a broad range of handwritten databases confirm the effectiveness of dropout on deep architectures even when the network mainly consists of recurrent and shared connections.
Vu Pham, Th\'eodore Bluche, Christopher Kermorvant, J\'er\^ome Louradour
null
1312.4569
null
null
Evolution and Computational Learning Theory: A survey on Valiant's paper
cs.LG
Darwin's theory of evolution is considered to be one of the greatest scientific gems in modern science. It not only gives us a description of how living things evolve, but also shows how a population evolves through time and also, why only the fittest individuals continue the generation forward. The paper basically gives a high level analysis of the works of Valiant[1]. Though, we know the mechanisms of evolution, but it seems that there does not exist any strong quantitative and mathematical theory of the evolution of certain mechanisms. What is defined exactly as the fitness of an individual, why is that only certain individuals in a population tend to mutate, how computation is done in finite time when we have exponentially many examples: there seems to be a lot of questions which need to be answered. [1] basically treats Darwinian theory as a form of computational learning theory, which calculates the net fitness of the hypotheses and thus distinguishes functions and their classes which could be evolvable using polynomial amount of resources. Evolution is considered as a function of the environment and the previous evolutionary stages that chooses the best hypothesis using learning techniques that makes mutation possible and hence, gives a quantitative idea that why only the fittest individuals tend to survive and have the power to mutate.
Arka Bhattacharya
null
1312.4599
null
null
Compact Random Feature Maps
stat.ML cs.LG
Kernel approximation using randomized feature maps has recently gained a lot of interest. In this work, we identify that previous approaches for polynomial kernel approximation create maps that are rank deficient, and therefore do not utilize the capacity of the projected feature space effectively. To address this challenge, we propose compact random feature maps (CRAFTMaps) to approximate polynomial kernels more concisely and accurately. We prove the error bounds of CRAFTMaps demonstrating their superior kernel reconstruction performance compared to the previous approximation schemes. We show how structured random matrices can be used to efficiently generate CRAFTMaps, and present a single-pass algorithm using CRAFTMaps to learn non-linear multi-class classifiers. We present experiments on multiple standard data-sets with performance competitive with state-of-the-art results.
Raffay Hamid and Ying Xiao and Alex Gittens and Dennis DeCoste
null
1312.4626
null
null
Sparse, complex-valued representations of natural sounds learned with phase and amplitude continuity priors
cs.LG cs.SD q-bio.NC
Complex-valued sparse coding is a data representation which employs a dictionary of two-dimensional subspaces, while imposing a sparse, factorial prior on complex amplitudes. When trained on a dataset of natural image patches, it learns phase invariant features which closely resemble receptive fields of complex cells in the visual cortex. Features trained on natural sounds however, rarely reveal phase invariance and capture other aspects of the data. This observation is a starting point of the present work. As its first contribution, it provides an analysis of natural sound statistics by means of learning sparse, complex representations of short speech intervals. Secondly, it proposes priors over the basis function set, which bias them towards phase-invariant solutions. In this way, a dictionary of complex basis functions can be learned from the data statistics, while preserving the phase invariance property. Finally, representations trained on speech sounds with and without priors are compared. Prior-based basis functions reveal performance comparable to unconstrained sparse coding, while explicitely representing phase as a temporal shift. Such representations can find applications in many perceptual and machine learning tasks.
Wiktor Mlynarski
null
1312.4695
null
null
A Comparative Evaluation of Curriculum Learning with Filtering and Boosting
cs.LG
Not all instances in a data set are equally beneficial for inferring a model of the data. Some instances (such as outliers) are detrimental to inferring a model of the data. Several machine learning techniques treat instances in a data set differently during training such as curriculum learning, filtering, and boosting. However, an automated method for determining how beneficial an instance is for inferring a model of the data does not exist. In this paper, we present an automated method that orders the instances in a data set by complexity based on the their likelihood of being misclassified (instance hardness). The underlying assumption of this method is that instances with a high likelihood of being misclassified represent more complex concepts in a data set. Ordering the instances in a data set allows a learning algorithm to focus on the most beneficial instances and ignore the detrimental ones. We compare ordering the instances in a data set in curriculum learning, filtering and boosting. We find that ordering the instances significantly increases classification accuracy and that filtering has the largest impact on classification accuracy. On a set of 52 data sets, ordering the instances increases the average accuracy from 81% to 84%.
Michael R. Smith and Tony Martinez
null
1312.4986
null
null
Efficient Online Bootstrapping for Large Scale Learning
cs.LG
Bootstrapping is a useful technique for estimating the uncertainty of a predictor, for example, confidence intervals for prediction. It is typically used on small to moderate sized datasets, due to its high computation cost. This work describes a highly scalable online bootstrapping strategy, implemented inside Vowpal Wabbit, that is several times faster than traditional strategies. Our experiments indicate that, in addition to providing a black box-like method for estimating uncertainty, our implementation of online bootstrapping may also help to train models with better prediction performance due to model averaging.
Zhen Qin, Vaclav Petricek, Nikos Karampatziakis, Lihong Li, John Langford
null
1312.5021
null
null
Contextually Supervised Source Separation with Application to Energy Disaggregation
stat.ML cs.LG math.OC
We propose a new framework for single-channel source separation that lies between the fully supervised and unsupervised setting. Instead of supervision, we provide input features for each source signal and use convex methods to estimate the correlations between these features and the unobserved signal decomposition. We analyze the case of $\ell_2$ loss theoretically and show that recovery of the signal components depends only on cross-correlation between features for different signals, not on correlations between features for the same signal. Contextually supervised source separation is a natural fit for domains with large amounts of data but no explicit supervision; our motivating application is energy disaggregation of hourly smart meter data (the separation of whole-home power signals into different energy uses). Here we apply contextual supervision to disaggregate the energy usage of thousands homes over four years, a significantly larger scale than previously published efforts, and demonstrate on synthetic data that our method outperforms the unsupervised approach.
Matt Wytock and J. Zico Kolter
null
1312.5023
null
null
Permuted NMF: A Simple Algorithm Intended to Minimize the Volume of the Score Matrix
stat.AP cs.LG stat.ML
Non-Negative Matrix Factorization, NMF, attempts to find a number of archetypal response profiles, or parts, such that any sample profile in the dataset can be approximated by a close profile among these archetypes or a linear combination of these profiles. The non-negativity constraint is imposed while estimating archetypal profiles, due to the non-negative nature of the observed signal. Apart from non negativity, a volume constraint can be applied on the Score matrix W to enhance the ability of learning parts of NMF. In this report, we describe a very simple algorithm, which in effect achieves volume minimization, although indirectly.
Paul Fogel
null
1312.5124
null
null
The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited
stat.ML cs.LG math.OC
Hypergraphs allow one to encode higher-order relationships in data and are thus a very flexible modeling tool. Current learning methods are either based on approximations of the hypergraphs via graphs or on tensor methods which are only applicable under special conditions. In this paper, we present a new learning framework on hypergraphs which fully uses the hypergraph structure. The key element is a family of regularization functionals based on the total variation on hypergraphs.
Matthias Hein, Simon Setzer, Leonardo Jost, Syama Sundar Rangapuram
null
1312.5179
null
null
Nonlinear Eigenproblems in Data Analysis - Balanced Graph Cuts and the RatioDCA-Prox
stat.ML cs.LG math.OC
It has been recently shown that a large class of balanced graph cuts allows for an exact relaxation into a nonlinear eigenproblem. We review briefly some of these results and propose a family of algorithms to compute nonlinear eigenvectors which encompasses previous work as special cases. We provide a detailed analysis of the properties and the convergence behavior of these algorithms and then discuss their application in the area of balanced graph cuts.
Leonardo Jost, Simon Setzer, Matthias Hein
null
1312.5192
null
null
Learning Semantic Script Knowledge with Event Embeddings
cs.LG cs.AI cs.CL stat.ML
Induction of common sense knowledge about prototypical sequences of events has recently received much attention. Instead of inducing this knowledge in the form of graphs, as in much of the previous work, in our method, distributed representations of event realizations are computed based on distributed representations of predicates and their arguments, and then these representations are used to predict prototypical event orderings. The parameters of the compositional process for computing the event representations and the ranking component of the model are jointly estimated from texts. We show that this approach results in a substantial boost in ordering performance with respect to previous methods.
Ashutosh Modi and Ivan Titov
null
1312.5198
null
null
Unsupervised feature learning by augmenting single images
cs.CV cs.LG cs.NE
When deep learning is applied to visual object recognition, data augmentation is often used to generate additional training data without extra labeling cost. It helps to reduce overfitting and increase the performance of the algorithm. In this paper we investigate if it is possible to use data augmentation as the main component of an unsupervised feature learning architecture. To that end we sample a set of random image patches and declare each of them to be a separate single-image surrogate class. We then extend these trivial one-element classes by applying a variety of transformations to the initial 'seed' patches. Finally we train a convolutional neural network to discriminate between these surrogate classes. The feature representation learned by the network can then be used in various vision tasks. We find that this simple feature learning algorithm is surprisingly successful, achieving competitive classification results on several popular vision datasets (STL-10, CIFAR-10, Caltech-101).
Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox
null
1312.5242
null
null
On the Challenges of Physical Implementations of RBMs
stat.ML cs.LG
Restricted Boltzmann machines (RBMs) are powerful machine learning models, but learning and some kinds of inference in the model require sampling-based approximations, which, in classical digital computers, are implemented using expensive MCMC. Physical computation offers the opportunity to reduce the cost of sampling by building physical systems whose natural dynamics correspond to drawing samples from the desired RBM distribution. Such a system avoids the burn-in and mixing cost of a Markov chain. However, hardware implementations of this variety usually entail limitations such as low-precision and limited range of the parameters and restrictions on the size and topology of the RBM. We conduct software simulations to determine how harmful each of these restrictions is. Our simulations are designed to reproduce aspects of the D-Wave quantum computer, but the issues we investigate arise in most forms of physical computation.
Vincent Dumoulin, Ian J. Goodfellow, Aaron Courville, Yoshua Bengio
null
1312.5258
null
null
Classification of Human Ventricular Arrhythmia in High Dimensional Representation Spaces
cs.CE cs.LG
We studied classification of human ECGs labelled as normal sinus rhythm, ventricular fibrillation and ventricular tachycardia by means of support vector machines in different representation spaces, using different observation lengths. ECG waveform segments of duration 0.5-4 s, their Fourier magnitude spectra, and lower dimensional projections of Fourier magnitude spectra were used for classification. All considered representations were of much higher dimension than in published studies. Classification accuracy improved with segment duration up to 2 s, with 4 s providing little improvement. We found that it is possible to discriminate between ventricular tachycardia and ventricular fibrillation by the present approach with much shorter runs of ECG (2 s, minimum 86% sensitivity per class) than previously imagined. Ensembles of classifiers acting on 1 s segments taken over 5 s observation windows gave best results, with sensitivities of detection for all classes exceeding 93%.
Yaqub Alwan, Zoran Cvetkovic, Michael Curtis
null
1312.5354
null
null
Missing Value Imputation With Unsupervised Backpropagation
cs.NE cs.LG stat.ML
Many data mining and data analysis techniques operate on dense matrices or complete tables of data. Real-world data sets, however, often contain unknown values. Even many classification algorithms that are designed to operate with missing values still exhibit deteriorated accuracy. One approach to handling missing values is to fill in (impute) the missing values. In this paper, we present a technique for unsupervised learning called Unsupervised Backpropagation (UBP), which trains a multi-layer perceptron to fit to the manifold sampled by a set of observed point-vectors. We evaluate UBP with the task of imputing missing values in datasets, and show that UBP is able to predict missing values with significantly lower sum-squared error than other collaborative filtering and imputation techniques. We also demonstrate with 24 datasets and 9 supervised learning algorithms that classification accuracy is usually higher when randomly-withheld values are imputed using UBP, rather than with other methods.
Michael S. Gashler, Michael R. Smith, Richard Morris, Tony Martinez
null
1312.5394
null
null
Continuous Learning: Engineering Super Features With Feature Algebras
cs.LG stat.ML
In this paper we consider a problem of searching a space of predictive models for a given training data set. We propose an iterative procedure for deriving a sequence of improving models and a corresponding sequence of sets of non-linear features on the original input space. After a finite number of iterations N, the non-linear features become 2^N -degree polynomials on the original space. We show that in a limit of an infinite number of iterations derived non-linear features must form an associative algebra: a product of two features is equal to a linear combination of features from the same feature space for any given input point. Because each iteration consists of solving a series of convex problems that contain all previous solutions, the likelihood of the models in the sequence is increasing with each iteration while the dimension of the model parameter space is set to a limited controlled value.
Michael Tetelman
null
1312.5398
null
null
Approximated Infomax Early Stopping: Revisiting Gaussian RBMs on Natural Images
stat.ML cs.LG
We pursue an early stopping technique that helps Gaussian Restricted Boltzmann Machines (GRBMs) to gain good natural image representations in terms of overcompleteness and data fitting. GRBMs are widely considered as an unsuitable model for natural images because they gain non-overcomplete representations which include uniform filters that do not represent useful image features. We have recently found that GRBMs once gain and subsequently lose useful filters during their training, contrary to this common perspective. We attribute this phenomenon to a tradeoff between overcompleteness of GRBM representations and data fitting. To gain GRBM representations that are overcomplete and fit data well, we propose a measure for GRBM representation quality, approximated mutual information, and an early stopping technique based on this measure. The proposed method boosts performance of classifiers trained on GRBM representations.
Taichi Kiwaki, Takaki Makino, Kazuyuki Aihara
null
1312.5412
null
null
Large-scale Multi-label Text Classification - Revisiting Neural Networks
cs.LG
Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques for large-scale multi-label text classification tasks. In particular, we show that BP-MLL's ranking loss minimization can be efficiently and effectively replaced with the commonly used cross entropy error function, and demonstrate that several advances in neural network training that have been developed in the realm of deep learning can be effectively employed in this setting. Our experimental results show that simple NN models equipped with advanced techniques such as rectified linear units, dropout, and AdaGrad perform as well as or even outperform state-of-the-art approaches on six large-scale textual datasets with diverse characteristics.
Jinseok Nam, Jungi Kim, Eneldo Loza Menc\'ia, Iryna Gurevych, Johannes F\"urnkranz
10.1007/978-3-662-44851-9_28
1312.5419
null
null
Asynchronous Adaptation and Learning over Networks --- Part I: Modeling and Stability Analysis
cs.SY cs.IT cs.LG math.IT math.OC
In this work and the supporting Parts II [2] and III [3], we provide a rather detailed analysis of the stability and performance of asynchronous strategies for solving distributed optimization and adaptation problems over networks. We examine asynchronous networks that are subject to fairly general sources of uncertainties, such as changing topologies, random link failures, random data arrival times, and agents turning on and off randomly. Under this model, agents in the network may stop updating their solutions or may stop sending or receiving information in a random manner and without coordination with other agents. We establish in Part I conditions on the first and second-order moments of the relevant parameter distributions to ensure mean-square stable behavior. We derive in Part II expressions that reveal how the various parameters of the asynchronous behavior influence network performance. We compare in Part III the performance of asynchronous networks to the performance of both centralized solutions and synchronous networks. One notable conclusion is that the mean-square-error performance of asynchronous networks shows a degradation only of the order of $O(\nu)$, where $\nu$ is a small step-size parameter, while the convergence rate remains largely unaltered. The results provide a solid justification for the remarkable resilience of cooperative networks in the face of random failures at multiple levels: agents, links, data arrivals, and topology.
Xiaochuan Zhao and Ali H. Sayed
null
1312.5434
null
null
Asynchronous Adaptation and Learning over Networks - Part II: Performance Analysis
cs.SY cs.IT cs.LG math.IT math.OC
In Part I \cite{Zhao13TSPasync1}, we introduced a fairly general model for asynchronous events over adaptive networks including random topologies, random link failures, random data arrival times, and agents turning on and off randomly. We performed a stability analysis and established the notable fact that the network is still able to converge in the mean-square-error sense to the desired solution. Once stable behavior is guaranteed, it becomes important to evaluate how fast the iterates converge and how close they get to the optimal solution. This is a demanding task due to the various asynchronous events and due to the fact that agents influence each other. In this Part II, we carry out a detailed analysis of the mean-square-error performance of asynchronous strategies for solving distributed optimization and adaptation problems over networks. We derive analytical expressions for the mean-square convergence rate and the steady-state mean-square-deviation. The expressions reveal how the various parameters of the asynchronous behavior influence network performance. In the process, we establish the interesting conclusion that even under the influence of asynchronous events, all agents in the adaptive network can still reach an $O(\nu^{1 + \gamma_o'})$ near-agreement with some $\gamma_o' > 0$ while approaching the desired solution within $O(\nu)$ accuracy, where $\nu$ is proportional to the small step-size parameter for adaptation.
Xiaochuan Zhao and Ali H. Sayed
null
1312.5438
null
null
Asynchronous Adaptation and Learning over Networks - Part III: Comparison Analysis
cs.SY cs.IT cs.LG math.IT math.OC
In Part II [3] we carried out a detailed mean-square-error analysis of the performance of asynchronous adaptation and learning over networks under a fairly general model for asynchronous events including random topologies, random link failures, random data arrival times, and agents turning on and off randomly. In this Part III, we compare the performance of synchronous and asynchronous networks. We also compare the performance of decentralized adaptation against centralized stochastic-gradient (batch) solutions. Two interesting conclusions stand out. First, the results establish that the performance of adaptive networks is largely immune to the effect of asynchronous events: the mean and mean-square convergence rates and the asymptotic bias values are not degraded relative to synchronous or centralized implementations. Only the steady-state mean-square-deviation suffers a degradation in the order of $\nu$, which represents the small step-size parameters used for adaptation. Second, the results show that the adaptive distributed network matches the performance of the centralized solution. These conclusions highlight another critical benefit of cooperation by networked agents: cooperation does not only enhance performance in comparison to stand-alone single-agent processing, but it also endows the network with remarkable resilience to various forms of random failure events and is able to deliver performance that is as powerful as batch solutions.
Xiaochuan Zhao and Ali H. Sayed
null
1312.5439
null
null
Codebook based Audio Feature Representation for Music Information Retrieval
cs.IR cs.LG cs.MM
Digital music has become prolific in the web in recent decades. Automated recommendation systems are essential for users to discover music they love and for artists to reach appropriate audience. When manual annotations and user preference data is lacking (e.g. for new artists) these systems must rely on \emph{content based} methods. Besides powerful machine learning tools for classification and retrieval, a key component for successful recommendation is the \emph{audio content representation}. Good representations should capture informative musical patterns in the audio signal of songs. These representations should be concise, to enable efficient (low storage, easy indexing, fast search) management of huge music repositories, and should also be easy and fast to compute, to enable real-time interaction with a user supplying new songs to the system. Before designing new audio features, we explore the usage of traditional local features, while adding a stage of encoding with a pre-computed \emph{codebook} and a stage of pooling to get compact vectorial representations. We experiment with different encoding methods, namely \emph{the LASSO}, \emph{vector quantization (VQ)} and \emph{cosine similarity (CS)}. We evaluate the representations' quality in two music information retrieval applications: query-by-tag and query-by-example. Our results show that concise representations can be used for successful performance in both applications. We recommend using top-$\tau$ VQ encoding, which consistently performs well in both applications, and requires much less computation time than the LASSO.
Yonatan Vaizman, Brian McFee and Gert Lanckriet
10.1109/TASLP.2014.2337842
1312.5457
null
null
Learning rates of $l^q$ coefficient regularization learning with Gaussian kernel
cs.LG stat.ML
Regularization is a well recognized powerful strategy to improve the performance of a learning machine and $l^q$ regularization schemes with $0<q<\infty$ are central in use. It is known that different $q$ leads to different properties of the deduced estimators, say, $l^2$ regularization leads to smooth estimators while $l^1$ regularization leads to sparse estimators. Then, how does the generalization capabilities of $l^q$ regularization learning vary with $q$? In this paper, we study this problem in the framework of statistical learning theory and show that implementing $l^q$ coefficient regularization schemes in the sample dependent hypothesis space associated with Gaussian kernel can attain the same almost optimal learning rates for all $0<q<\infty$. That is, the upper and lower bounds of learning rates for $l^q$ regularization learning are asymptotically identical for all $0<q<\infty$. Our finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact with respect to the generalization capability. From this perspective, $q$ can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..
Shaobo Lin, Jinshan Zeng, Jian Fang and Zongben Xu
null
1312.5465
null
null
Word Emdeddings through Hellinger PCA
cs.CL cs.LG
Word embeddings resulting from neural language models have been shown to be successful for a large variety of NLP tasks. However, such architecture might be difficult to train and time-consuming. Instead, we propose to drastically simplify the word embeddings computation through a Hellinger PCA of the word co-occurence matrix. We compare those new word embeddings with some well-known embeddings on NER and movie review tasks and show that we can reach similar or even better performance. Although deep learning is not really necessary for generating good word embeddings, we show that it can provide an easy way to adapt embeddings to specific tasks.
R\'emi Lebret and Ronan Collobert
null
1312.5542
null
null
Multimodal Transitions for Generative Stochastic Networks
cs.LG stat.ML
Generative Stochastic Networks (GSNs) have been recently introduced as an alternative to traditional probabilistic modeling: instead of parametrizing the data distribution directly, one parametrizes a transition operator for a Markov chain whose stationary distribution is an estimator of the data generating distribution. The result of training is therefore a machine that generates samples through this Markov chain. However, the previously introduced GSN consistency theorems suggest that in order to capture a wide class of distributions, the transition operator in general should be multimodal, something that has not been done before this paper. We introduce for the first time multimodal transition distributions for GSNs, in particular using models in the NADE family (Neural Autoregressive Density Estimator) as output distributions of the transition operator. A NADE model is related to an RBM (and can thus model multimodal distributions) but its likelihood (and likelihood gradient) can be computed easily. The parameters of the NADE are obtained as a learned function of the previous state of the learned Markov chain. Experiments clearly illustrate the advantage of such multimodal transition distributions over unimodal GSNs.
Sherjil Ozair, Li Yao and Yoshua Bengio
null
1312.5578
null
null
Playing Atari with Deep Reinforcement Learning
cs.LG
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller
null
1312.5602
null
null
Learning Transformations for Classification Forests
cs.CV cs.LG stat.ML
This work introduces a transformation-based learner model for classification forests. The weak learner at each split node plays a crucial role in a classification tree. We propose to optimize the splitting objective by learning a linear transformation on subspaces using nuclear norm as the optimization criteria. The learned linear transformation restores a low-rank structure for data from the same class, and, at the same time, maximizes the separation between different classes, thereby improving the performance of the split function. Theoretical and experimental results support the proposed framework.
Qiang Qiu, Guillermo Sapiro
null
1312.5604
null
null
Zero-Shot Learning by Convex Combination of Semantic Embeddings
cs.LG
Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents of these image embedding systems have stressed their advantages over the traditional \nway{} classification framing of image understanding, particularly in terms of the promise for zero-shot learning -- the ability to correctly annotate images of previously unseen object categories. In this paper, we propose a simple method for constructing an image embedding system from any existing \nway{} image classifier and a semantic word embedding model, which contains the $\n$ class labels in its vocabulary. Our method maps images into the semantic embedding space via convex combination of the class label embedding vectors, and requires no additional training. We show that this simple and direct method confers many of the advantages associated with more complex image embedding schemes, and indeed outperforms state of the art methods on the ImageNet zero-shot learning task.
Mohammad Norouzi and Tomas Mikolov and Samy Bengio and Yoram Singer and Jonathon Shlens and Andrea Frome and Greg S. Corrado and Jeffrey Dean
null
1312.5650
null
null
k-Sparse Autoencoders
cs.LG
Recently, it has been observed that when representations are learnt in a way that encourages sparsity, improved performance is obtained on classification tasks. These methods involve combinations of activation functions, sampling steps and different kinds of penalties. To investigate the effectiveness of sparsity by itself, we propose the k-sparse autoencoder, which is an autoencoder with linear activation function, where in hidden layers only the k highest activities are kept. When applied to the MNIST and NORB datasets, we find that this method achieves better classification results than denoising autoencoders, networks trained with dropout, and RBMs. k-sparse autoencoders are simple to train and the encoding stage is very fast, making them well-suited to large problem sizes, where conventional sparse coding algorithms cannot be applied.
Alireza Makhzani, Brendan Frey
null
1312.5663
null
null
Using Web Co-occurrence Statistics for Improving Image Categorization
cs.CV cs.LG
Object recognition and localization are important tasks in computer vision. The focus of this work is the incorporation of contextual information in order to improve object recognition and localization. For instance, it is natural to expect not to see an elephant to appear in the middle of an ocean. We consider a simple approach to encapsulate such common sense knowledge using co-occurrence statistics from web documents. By merely counting the number of times nouns (such as elephants, sharks, oceans, etc.) co-occur in web documents, we obtain a good estimate of expected co-occurrences in visual data. We then cast the problem of combining textual co-occurrence statistics with the predictions of image-based classifiers as an optimization problem. The resulting optimization problem serves as a surrogate for our inference procedure. Albeit the simplicity of the resulting optimization problem, it is effective in improving both recognition and localization accuracy. Concretely, we observe significant improvements in recognition and localization rates for both ImageNet Detection 2012 and Sun 2012 datasets.
Samy Bengio, Jeff Dean, Dumitru Erhan, Eugene Ie, Quoc Le, Andrew Rabinovich, Jonathon Shlens, Yoram Singer
null
1312.5697
null
null
Time-varying Learning and Content Analytics via Sparse Factor Analysis
stat.ML cs.LG math.OC stat.AP
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learner's concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education.
Andrew S. Lan, Christoph Studer and Richard G. Baraniuk
null
1312.5734
null
null
SOMz: photometric redshift PDFs with self organizing maps and random atlas
astro-ph.IM astro-ph.CO cs.LG stat.ML
In this paper we explore the applicability of the unsupervised machine learning technique of Self Organizing Maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts, to a two dimensional surface by using a process of competitive learning where neurons compete to more closely resemble the training data multidimensional space. The key feature of a SOM is that it retains the topology of the input set, revealing correlations between the attributes that are not easily identified. We test three different 2D topological mapping: rectangular, hexagonal, and spherical, by using data from the DEEP2 survey. We also explore different implementations and boundary conditions on the map and also introduce the idea of a random atlas where a large number of different maps are created and their individual predictions are aggregated to produce a more robust photometric redshift PDF. We also introduced a new metric, the $I$-score, which efficiently incorporates different metrics, making it easier to compare different results (from different parameters or different photometric redshift codes). We find that by using a spherical topology mapping we obtain a better representation of the underlying multidimensional topology, which provides more accurate results that are comparable to other, state-of-the-art machine learning algorithms. Our results illustrate that unsupervised approaches have great potential for many astronomical problems, and in particular for the computation of photometric redshifts.
M. Carrasco Kind and R. J. Brunner (Department of Astronomy, University of Illinois at Urbana-Champaign)
10.1093/mnras/stt2456
1312.5753
null
null
Structure-Aware Dynamic Scheduler for Parallel Machine Learning
stat.ML cs.LG
Training large machine learning (ML) models with many variables or parameters can take a long time if one employs sequential procedures even with stochastic updates. A natural solution is to turn to distributed computing on a cluster; however, naive, unstructured parallelization of ML algorithms does not usually lead to a proportional speedup and can even result in divergence, because dependencies between model elements can attenuate the computational gains from parallelization and compromise correctness of inference. Recent efforts toward this issue have benefited from exploiting the static, a priori block structures residing in ML algorithms. In this paper, we take this path further by exploring the dynamic block structures and workloads therein present during ML program execution, which offers new opportunities for improving convergence, correctness, and load balancing in distributed ML. We propose and showcase a general-purpose scheduler, STRADS, for coordinating distributed updates in ML algorithms, which harnesses the aforementioned opportunities in a systematic way. We provide theoretical guarantees for our scheduler, and demonstrate its efficacy versus static block structures on Lasso and Matrix Factorization.
Seunghak Lee, Jin Kyu Kim, Qirong Ho, Garth A. Gibson, Eric P. Xing
null
1312.5766
null
null
Consistency of Causal Inference under the Additive Noise Model
cs.LG stat.ML
We analyze a family of methods for statistical causal inference from sample under the so-called Additive Noise Model. While most work on the subject has concentrated on establishing the soundness of the Additive Noise Model, the statistical consistency of the resulting inference methods has received little attention. We derive general conditions under which the given family of inference methods consistently infers the causal direction in a nonparametric setting.
Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, and Bernhard Sch\"olkopf
null
1312.5770
null
null
Unsupervised Feature Learning by Deep Sparse Coding
cs.LG cs.CV cs.NE
In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks. The main innovation of the framework is that it connects the sparse-encoders from different layers by a sparse-to-dense module. The sparse-to-dense module is a composition of a local spatial pooling step and a low-dimensional embedding process, which takes advantage of the spatial smoothness information in the image. As a result, the new method is able to learn several levels of sparse representation of the image which capture features at a variety of abstraction levels and simultaneously preserve the spatial smoothness between the neighboring image patches. Combining the feature representations from multiple layers, DeepSC achieves the state-of-the-art performance on multiple object recognition tasks.
Yunlong He, Koray Kavukcuoglu, Yun Wang, Arthur Szlam, Yanjun Qi
null
1312.5783
null
null
Unsupervised Pretraining Encourages Moderate-Sparseness
cs.LG cs.NE
It is well known that direct training of deep neural networks will generally lead to poor results. A major progress in recent years is the invention of various pretraining methods to initialize network parameters and it was shown that such methods lead to good prediction performance. However, the reason for the success of pretraining has not been fully understood, although it was argued that regularization and better optimization play certain roles. This paper provides another explanation for the effectiveness of pretraining, where we show pretraining leads to a sparseness of hidden unit activation in the resulting neural networks. The main reason is that the pretraining models can be interpreted as an adaptive sparse coding. Compared to deep neural network with sigmoid function, our experimental results on MNIST and Birdsong further support this sparseness observation.
Jun Li, Wei Luo, Jian Yang, Xiaotong Yuan
null
1312.5813
null
null
Competitive Learning with Feedforward Supervisory Signal for Pre-trained Multilayered Networks
cs.NE cs.CV cs.LG stat.ML
We propose a novel learning method for multilayered neural networks which uses feedforward supervisory signal and associates classification of a new input with that of pre-trained input. The proposed method effectively uses rich input information in the earlier layer for robust leaning and revising internal representation in a multilayer neural network.
Takashi Shinozaki and Yasushi Naruse
null
1312.5845
null
null
Deep learning for neuroimaging: a validation study
cs.NE cs.LG stat.ML
Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.
Sergey M. Plis and Devon R. Hjelm and Ruslan Salakhutdinov and Vince D. Calhoun
null
1312.5847
null
null
Fast Training of Convolutional Networks through FFTs
cs.CV cs.LG cs.NE
Convolutional networks are one of the most widely employed architectures in computer vision and machine learning. In order to leverage their ability to learn complex functions, large amounts of data are required for training. Training a large convolutional network to produce state-of-the-art results can take weeks, even when using modern GPUs. Producing labels using a trained network can also be costly when dealing with web-scale datasets. In this work, we present a simple algorithm which accelerates training and inference by a significant factor, and can yield improvements of over an order of magnitude compared to existing state-of-the-art implementations. This is done by computing convolutions as pointwise products in the Fourier domain while reusing the same transformed feature map many times. The algorithm is implemented on a GPU architecture and addresses a number of related challenges.
Michael Mathieu, Mikael Henaff, Yann LeCun
null
1312.5851
null
null
Multi-GPU Training of ConvNets
cs.LG cs.NE
In this work we evaluate different approaches to parallelize computation of convolutional neural networks across several GPUs.
Omry Yadan, Keith Adams, Yaniv Taigman, Marc'Aurelio Ranzato
null
1312.5853
null
null
A Generative Product-of-Filters Model of Audio
stat.ML cs.LG
We propose the product-of-filters (PoF) model, a generative model that decomposes audio spectra as sparse linear combinations of "filters" in the log-spectral domain. PoF makes similar assumptions to those used in the classic homomorphic filtering approach to signal processing, but replaces hand-designed decompositions built of basic signal processing operations with a learned decomposition based on statistical inference. This paper formulates the PoF model and derives a mean-field method for posterior inference and a variational EM algorithm to estimate the model's free parameters. We demonstrate PoF's potential for audio processing on a bandwidth expansion task, and show that PoF can serve as an effective unsupervised feature extractor for a speaker identification task.
Dawen Liang, Matthew D. Hoffman, Gautham J. Mysore
null
1312.5857
null
null
Principled Non-Linear Feature Selection
cs.LG
Recent non-linear feature selection approaches employing greedy optimisation of Centred Kernel Target Alignment(KTA) exhibit strong results in terms of generalisation accuracy and sparsity. However, they are computationally prohibitive for large datasets. We propose randSel, a randomised feature selection algorithm, with attractive scaling properties. Our theoretical analysis of randSel provides strong probabilistic guarantees for correct identification of relevant features. RandSel's characteristics make it an ideal candidate for identifying informative learned representations. We've conducted experimentation to establish the performance of this approach, and present encouraging results, including a 3rd position result in the recent ICML black box learning challenge as well as competitive results for signal peptide prediction, an important problem in bioinformatics.
Dimitrios Athanasakis, John Shawe-Taylor, Delmiro Fernandez-Reyes
null
1312.5869
null
null
Group-sparse Embeddings in Collective Matrix Factorization
stat.ML cs.LG
CMF is a technique for simultaneously learning low-rank representations based on a collection of matrices with shared entities. A typical example is the joint modeling of user-item, item-property, and user-feature matrices in a recommender system. The key idea in CMF is that the embeddings are shared across the matrices, which enables transferring information between them. The existing solutions, however, break down when the individual matrices have low-rank structure not shared with others. In this work we present a novel CMF solution that allows each of the matrices to have a separate low-rank structure that is independent of the other matrices, as well as structures that are shared only by a subset of them. We compare MAP and variational Bayesian solutions based on alternating optimization algorithms and show that the model automatically infers the nature of each factor using group-wise sparsity. Our approach supports in a principled way continuous, binary and count observations and is efficient for sparse matrices involving missing data. We illustrate the solution on a number of examples, focusing in particular on an interesting use-case of augmented multi-view learning.
Arto Klami, Guillaume Bouchard and Abhishek Tripathi
null
1312.5921
null
null
Adaptive Seeding for Gaussian Mixture Models
cs.LG
We present new initialization methods for the expectation-maximization algorithm for multivariate Gaussian mixture models. Our methods are adaptions of the well-known $K$-means++ initialization and the Gonzalez algorithm. Thereby we aim to close the gap between simple random, e.g. uniform, and complex methods, that crucially depend on the right choice of hyperparameters. Our extensive experiments indicate the usefulness of our methods compared to common techniques and methods, which e.g. apply the original $K$-means++ and Gonzalez directly, with respect to artificial as well as real-world data sets.
Johannes Bl\"omer and Kathrin Bujna
10.1007/978-3-319-31750-2_24
1312.5946
null
null
Learning Type-Driven Tensor-Based Meaning Representations
cs.CL cs.LG
This paper investigates the learning of 3rd-order tensors representing the semantics of transitive verbs. The meaning representations are part of a type-driven tensor-based semantic framework, from the newly emerging field of compositional distributional semantics. Standard techniques from the neural networks literature are used to learn the tensors, which are tested on a selectional preference-style task with a simple 2-dimensional sentence space. Promising results are obtained against a competitive corpus-based baseline. We argue that extending this work beyond transitive verbs, and to higher-dimensional sentence spaces, is an interesting and challenging problem for the machine learning community to consider.
Tamara Polajnar and Luana Fagarasan and Stephen Clark
null
1312.5985
null
null
Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence
cs.NE cs.LG stat.ML
Contrastive Divergence (CD) and Persistent Contrastive Divergence (PCD) are popular methods for training the weights of Restricted Boltzmann Machines. However, both methods use an approximate method for sampling from the model distribution. As a side effect, these approximations yield significantly different biases and variances for stochastic gradient estimates of individual data points. It is well known that CD yields a biased gradient estimate. In this paper we however show empirically that CD has a lower stochastic gradient estimate variance than exact sampling, while the mean of subsequent PCD estimates has a higher variance than exact sampling. The results give one explanation to the finding that CD can be used with smaller minibatches or higher learning rates than PCD.
Mathias Berglund, Tapani Raiko
null
1312.6002
null
null
How to Construct Deep Recurrent Neural Networks
cs.NE cs.LG stat.ML
In this paper, we explore different ways to extend a recurrent neural network (RNN) to a \textit{deep} RNN. We start by arguing that the concept of depth in an RNN is not as clear as it is in feedforward neural networks. By carefully analyzing and understanding the architecture of an RNN, however, we find three points of an RNN which may be made deeper; (1) input-to-hidden function, (2) hidden-to-hidden transition and (3) hidden-to-output function. Based on this observation, we propose two novel architectures of a deep RNN which are orthogonal to an earlier attempt of stacking multiple recurrent layers to build a deep RNN (Schmidhuber, 1992; El Hihi and Bengio, 1996). We provide an alternative interpretation of these deep RNNs using a novel framework based on neural operators. The proposed deep RNNs are empirically evaluated on the tasks of polyphonic music prediction and language modeling. The experimental result supports our claim that the proposed deep RNNs benefit from the depth and outperform the conventional, shallow RNNs.
Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio
null
1312.6026
null
null
Learning States Representations in POMDP
cs.LG
We propose to deal with sequential processes where only partial observations are available by learning a latent representation space on which policies may be accurately learned.
Gabriella Contardo and Ludovic Denoyer and Thierry Artieres and Patrick Gallinari
null
1312.6042
null
null
Unit Tests for Stochastic Optimization
cs.LG
Optimization by stochastic gradient descent is an important component of many large-scale machine learning algorithms. A wide variety of such optimization algorithms have been devised; however, it is unclear whether these algorithms are robust and widely applicable across many different optimization landscapes. In this paper we develop a collection of unit tests for stochastic optimization. Each unit test rapidly evaluates an optimization algorithm on a small-scale, isolated, and well-understood difficulty, rather than in real-world scenarios where many such issues are entangled. Passing these unit tests is not sufficient, but absolutely necessary for any algorithms with claims to generality or robustness. We give initial quantitative and qualitative results on numerous established algorithms. The testing framework is open-source, extensible, and easy to apply to new algorithms.
Tom Schaul, Ioannis Antonoglou, David Silver
null
1312.6055
null
null
Stopping Criteria in Contrastive Divergence: Alternatives to the Reconstruction Error
cs.LG
Restricted Boltzmann Machines (RBMs) are general unsupervised learning devices to ascertain generative models of data distributions. RBMs are often trained using the Contrastive Divergence learning algorithm (CD), an approximation to the gradient of the data log-likelihood. A simple reconstruction error is often used to decide whether the approximation provided by the CD algorithm is good enough, though several authors (Schulz et al., 2010; Fischer & Igel, 2010) have raised doubts concerning the feasibility of this procedure. However, not many alternatives to the reconstruction error have been used in the literature. In this manuscript we investigate simple alternatives to the reconstruction error in order to detect as soon as possible the decrease in the log-likelihood during learning.
David Buchaca, Enrique Romero, Ferran Mazzanti, Jordi Delgado
null
1312.6062
null
null
The return of AdaBoost.MH: multi-class Hamming trees
cs.LG
Within the framework of AdaBoost.MH, we propose to train vector-valued decision trees to optimize the multi-class edge without reducing the multi-class problem to $K$ binary one-against-all classifications. The key element of the method is a vector-valued decision stump, factorized into an input-independent vector of length $K$ and label-independent scalar classifier. At inner tree nodes, the label-dependent vector is discarded and the binary classifier can be used for partitioning the input space into two regions. The algorithm retains the conceptual elegance, power, and computational efficiency of binary AdaBoost. In experiments it is on par with support vector machines and with the best existing multi-class boosting algorithm AOSOLogitBoost, and it is significantly better than other known implementations of AdaBoost.MH.
Bal\'azs K\'egl
null
1312.6086
null
null
On the number of response regions of deep feed forward networks with piece-wise linear activations
cs.LG cs.NE
This paper explores the complexity of deep feedforward networks with linear pre-synaptic couplings and rectified linear activations. This is a contribution to the growing body of work contrasting the representational power of deep and shallow network architectures. In particular, we offer a framework for comparing deep and shallow models that belong to the family of piecewise linear functions based on computational geometry. We look at a deep rectifier multi-layer perceptron (MLP) with linear outputs units and compare it with a single layer version of the model. In the asymptotic regime, when the number of inputs stays constant, if the shallow model has $kn$ hidden units and $n_0$ inputs, then the number of linear regions is $O(k^{n_0}n^{n_0})$. For a $k$ layer model with $n$ hidden units on each layer it is $\Omega(\left\lfloor {n}/{n_0}\right\rfloor^{k-1}n^{n_0})$. The number $\left\lfloor{n}/{n_0}\right\rfloor^{k-1}$ grows faster than $k^{n_0}$ when $n$ tends to infinity or when $k$ tends to infinity and $n \geq 2n_0$. Additionally, even when $k$ is small, if we restrict $n$ to be $2n_0$, we can show that a deep model has considerably more linear regions that a shallow one. We consider this as a first step towards understanding the complexity of these models and specifically towards providing suitable mathematical tools for future analysis.
Razvan Pascanu and Guido Montufar and Yoshua Bengio
null
1312.6098
null
null
Modeling correlations in spontaneous activity of visual cortex with centered Gaussian-binary deep Boltzmann machines
cs.NE cs.LG q-bio.NC
Spontaneous cortical activity -- the ongoing cortical activities in absence of intentional sensory input -- is considered to play a vital role in many aspects of both normal brain functions and mental dysfunctions. We present a centered Gaussian-binary Deep Boltzmann Machine (GDBM) for modeling the activity in early cortical visual areas and relate the random sampling in GDBMs to the spontaneous cortical activity. After training the proposed model on natural image patches, we show that the samples collected from the model's probability distribution encompass similar activity patterns as found in the spontaneous activity. Specifically, filters having the same orientation preference tend to be active together during random sampling. Our work demonstrates the centered GDBM is a meaningful model approach for basic receptive field properties and the emergence of spontaneous activity patterns in early cortical visual areas. Besides, we show empirically that centered GDBMs do not suffer from the difficulties during training as GDBMs do and can be properly trained without the layer-wise pretraining.
Nan Wang, Dirk Jancke, Laurenz Wiskott
null
1312.6108
null
null
Auto-Encoding Variational Bayes
stat.ML cs.LG
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions are two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.
Diederik P Kingma, Max Welling
null
1312.6114
null
null
Neuronal Synchrony in Complex-Valued Deep Networks
stat.ML cs.LG cs.NE q-bio.NC
Deep learning has recently led to great successes in tasks such as image recognition (e.g Krizhevsky et al., 2012). However, deep networks are still outmatched by the power and versatility of the brain, perhaps in part due to the richer neuronal computations available to cortical circuits. The challenge is to identify which neuronal mechanisms are relevant, and to find suitable abstractions to model them. Here, we show how aspects of spike timing, long hypothesized to play a crucial role in cortical information processing, could be incorporated into deep networks to build richer, versatile representations. We introduce a neural network formulation based on complex-valued neuronal units that is not only biologically meaningful but also amenable to a variety of deep learning frameworks. Here, units are attributed both a firing rate and a phase, the latter indicating properties of spike timing. We show how this formulation qualitatively captures several aspects thought to be related to neuronal synchrony, including gating of information processing and dynamic binding of distributed object representations. Focusing on the latter, we demonstrate the potential of the approach in several simple experiments. Thus, neuronal synchrony could be a flexible mechanism that fulfills multiple functional roles in deep networks.
David P. Reichert, Thomas Serre
null
1312.6115
null
null
Improving Deep Neural Networks with Probabilistic Maxout Units
stat.ML cs.LG cs.NE
We present a probabilistic variant of the recently introduced maxout unit. The success of deep neural networks utilizing maxout can partly be attributed to favorable performance under dropout, when compared to rectified linear units. It however also depends on the fact that each maxout unit performs a pooling operation over a group of linear transformations and is thus partially invariant to changes in its input. Starting from this observation we ask the question: Can the desirable properties of maxout units be preserved while improving their invariance properties ? We argue that our probabilistic maxout (probout) units successfully achieve this balance. We quantitatively verify this claim and report classification performance matching or exceeding the current state of the art on three challenging image classification benchmarks (CIFAR-10, CIFAR-100 and SVHN).
Jost Tobias Springenberg, Martin Riedmiller
null
1312.6116
null
null
Comparison three methods of clustering: k-means, spectral clustering and hierarchical clustering
cs.LG
Comparison of three kind of the clustering and find cost function and loss function and calculate them. Error rate of the clustering methods and how to calculate the error percentage always be one on the important factor for evaluating the clustering methods, so this paper introduce one way to calculate the error rate of clustering methods. Clustering algorithms can be divided into several categories including partitioning clustering algorithms, hierarchical algorithms and density based algorithms. Generally speaking we should compare clustering algorithms by Scalability, Ability to work with different attribute, Clusters formed by conventional, Having minimal knowledge of the computer to recognize the input parameters, Classes for dealing with noise and extra deposition that same error rate for clustering a new data, Thus, there is no effect on the input data, different dimensions of high levels, K-means is one of the simplest approach to clustering that clustering is an unsupervised problem.
Kamran Kowsari
null
1312.6117
null
null
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
cs.NE cond-mat.dis-nn cs.CV cs.LG q-bio.NC stat.ML
Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We show that deep linear networks exhibit nonlinear learning phenomena similar to those seen in simulations of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions, and faster convergence from greedy unsupervised pretraining initial conditions than from random initial conditions. We provide an analytical description of these phenomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our theoretical analysis also reveals the surprising finding that as the depth of a network approaches infinity, learning speed can nevertheless remain finite: for a special class of initial conditions on the weights, very deep networks incur only a finite, depth independent, delay in learning speed relative to shallow networks. We show that, under certain conditions on the training data, unsupervised pretraining can find this special class of initial conditions, while scaled random Gaussian initializations cannot. We further exhibit a new class of random orthogonal initial conditions on weights that, like unsupervised pre-training, enjoys depth independent learning times. We further show that these initial conditions also lead to faithful propagation of gradients even in deep nonlinear networks, as long as they operate in a special regime known as the edge of chaos.
Andrew M. Saxe, James L. McClelland, Surya Ganguli
null
1312.6120
null
null
Distinction between features extracted using deep belief networks
cs.LG cs.NE
Data representation is an important pre-processing step in many machine learning algorithms. There are a number of methods used for this task such as Deep Belief Networks (DBNs) and Discrete Fourier Transforms (DFTs). Since some of the features extracted using automated feature extraction methods may not always be related to a specific machine learning task, in this paper we propose two methods in order to make a distinction between extracted features based on their relevancy to the task. We applied these two methods to a Deep Belief Network trained for a face recognition task.
Mohammad Pezeshki, Sajjad Gholami, Ahmad Nickabadi
null
1312.6157
null
null
Deep Belief Networks for Image Denoising
cs.LG cs.CV cs.NE
Deep Belief Networks which are hierarchical generative models are effective tools for feature representation and extraction. Furthermore, DBNs can be used in numerous aspects of Machine Learning such as image denoising. In this paper, we propose a novel method for image denoising which relies on the DBNs' ability in feature representation. This work is based upon learning of the noise behavior. Generally, features which are extracted using DBNs are presented as the values of the last layer nodes. We train a DBN a way that the network totally distinguishes between nodes presenting noise and nodes presenting image content in the last later of DBN, i.e. the nodes in the last layer of trained DBN are divided into two distinct groups of nodes. After detecting the nodes which are presenting the noise, we are able to make the noise nodes inactive and reconstruct a noiseless image. In section 4 we explore the results of applying this method on the MNIST dataset of handwritten digits which is corrupted with additive white Gaussian noise (AWGN). A reduction of 65.9% in average mean square error (MSE) was achieved when the proposed method was used for the reconstruction of the noisy images.
Mohammad Ali Keyvanrad, Mohammad Pezeshki, and Mohammad Ali Homayounpour
null
1312.6158
null
null
Factorial Hidden Markov Models for Learning Representations of Natural Language
cs.LG cs.CL
Most representation learning algorithms for language and image processing are local, in that they identify features for a data point based on surrounding points. Yet in language processing, the correct meaning of a word often depends on its global context. As a step toward incorporating global context into representation learning, we develop a representation learning algorithm that incorporates joint prediction into its technique for producing features for a word. We develop efficient variational methods for learning Factorial Hidden Markov Models from large texts, and use variational distributions to produce features for each word that are sensitive to the entire input sequence, not just to a local context window. Experiments on part-of-speech tagging and chunking indicate that the features are competitive with or better than existing state-of-the-art representation learning methods.
Anjan Nepal and Alexander Yates
null
1312.6168
null
null
Learning Information Spread in Content Networks
cs.LG cs.SI physics.soc-ph
We introduce a model for predicting the diffusion of content information on social media. When propagation is usually modeled on discrete graph structures, we introduce here a continuous diffusion model, where nodes in a diffusion cascade are projected onto a latent space with the property that their proximity in this space reflects the temporal diffusion process. We focus on the task of predicting contaminated users for an initial initial information source and provide preliminary results on differents datasets.
C\'edric Lagnier, Simon Bourigault, Sylvain Lamprier, Ludovic Denoyer and Patrick Gallinari
null
1312.6169
null
null
Learning Paired-associate Images with An Unsupervised Deep Learning Architecture
cs.NE cs.CV cs.LG
This paper presents an unsupervised multi-modal learning system that learns associative representation from two input modalities, or channels, such that input on one channel will correctly generate the associated response at the other and vice versa. In this way, the system develops a kind of supervised classification model meant to simulate aspects of human associative memory. The system uses a deep learning architecture (DLA) composed of two input/output channels formed from stacked Restricted Boltzmann Machines (RBM) and an associative memory network that combines the two channels. The DLA is trained on pairs of MNIST handwritten digit images to develop hierarchical features and associative representations that are able to reconstruct one image given its paired-associate. Experiments show that the multi-modal learning system generates models that are as accurate as back-propagation networks but with the advantage of a bi-directional network and unsupervised learning from either paired or non-paired training examples.
Ti Wang and Daniel L. Silver
null
1312.6171
null
null
Manifold regularized kernel logistic regression for web image annotation
cs.LG cs.MM
With the rapid advance of Internet technology and smart devices, users often need to manage large amounts of multimedia information using smart devices, such as personal image and video accessing and browsing. These requirements heavily rely on the success of image (video) annotation, and thus large scale image annotation through innovative machine learning methods has attracted intensive attention in recent years. One representative work is support vector machine (SVM). Although it works well in binary classification, SVM has a non-smooth loss function and can not naturally cover multi-class case. In this paper, we propose manifold regularized kernel logistic regression (KLR) for web image annotation. Compared to SVM, KLR has the following advantages: (1) the KLR has a smooth loss function; (2) the KLR produces an explicit estimate of the probability instead of class label; and (3) the KLR can naturally be generalized to the multi-class case. We carefully conduct experiments on MIR FLICKR dataset and demonstrate the effectiveness of manifold regularized kernel logistic regression for image annotation.
W. Liu, H. Liu, D.Tao, Y. Wang, K. Lu
null
1312.6180
null
null
Large-Scale Paralleled Sparse Principal Component Analysis
cs.MS cs.LG cs.NA stat.ML
Principal component analysis (PCA) is a statistical technique commonly used in multivariate data analysis. However, PCA can be difficult to interpret and explain since the principal components (PCs) are linear combinations of the original variables. Sparse PCA (SPCA) aims to balance statistical fidelity and interpretability by approximating sparse PCs whose projections capture the maximal variance of original data. In this paper we present an efficient and paralleled method of SPCA using graphics processing units (GPUs), which can process large blocks of data in parallel. Specifically, we construct parallel implementations of the four optimization formulations of the generalized power method of SPCA (GP-SPCA), one of the most efficient and effective SPCA approaches, on a GPU. The parallel GPU implementation of GP-SPCA (using CUBLAS) is up to eleven times faster than the corresponding CPU implementation (using CBLAS), and up to 107 times faster than a MatLab implementation. Extensive comparative experiments in several real-world datasets confirm that SPCA offers a practical advantage.
W. Liu, H. Zhang, D. Tao, Y. Wang, K. Lu
null
1312.6182
null
null
Do Deep Nets Really Need to be Deep?
cs.LG cs.NE
Currently, deep neural networks are the state of the art on problems such as speech recognition and computer vision. In this extended abstract, we show that shallow feed-forward networks can learn the complex functions previously learned by deep nets and achieve accuracies previously only achievable with deep models. Moreover, in some cases the shallow neural nets can learn these deep functions using a total number of parameters similar to the original deep model. We evaluate our method on the TIMIT phoneme recognition task and are able to train shallow fully-connected nets that perform similarly to complex, well-engineered, deep convolutional architectures. Our success in training shallow neural nets to mimic deeper models suggests that there probably exist better algorithms for training shallow feed-forward nets than those currently available.
Lei Jimmy Ba, Rich Caruana
null
1312.6184
null
null
GPU Asynchronous Stochastic Gradient Descent to Speed Up Neural Network Training
cs.CV cs.DC cs.LG cs.NE
The ability to train large-scale neural networks has resulted in state-of-the-art performance in many areas of computer vision. These results have largely come from computational break throughs of two forms: model parallelism, e.g. GPU accelerated training, which has seen quick adoption in computer vision circles, and data parallelism, e.g. A-SGD, whose large scale has been used mostly in industry. We report early experiments with a system that makes use of both model parallelism and data parallelism, we call GPU A-SGD. We show using GPU A-SGD it is possible to speed up training of large convolutional neural networks useful for computer vision. We believe GPU A-SGD will make it possible to train larger networks on larger training sets in a reasonable amount of time.
Thomas Paine, Hailin Jin, Jianchao Yang, Zhe Lin, Thomas Huang
null
1312.6186
null
null
Adaptive Feature Ranking for Unsupervised Transfer Learning
cs.LG
Transfer Learning is concerned with the application of knowledge gained from solving a problem to a different but related problem domain. In this paper, we propose a method and efficient algorithm for ranking and selecting representations from a Restricted Boltzmann Machine trained on a source domain to be transferred onto a target domain. Experiments carried out using the MNIST, ICDAR and TiCC image datasets show that the proposed adaptive feature ranking and transfer learning method offers statistically significant improvements on the training of RBMs. Our method is general in that the knowledge chosen by the ranking function does not depend on its relation to any specific target domain, and it works with unsupervised learning and knowledge-based transfer.
Son N. Tran, Artur d'Avila Garcez
null
1312.6190
null
null
Can recursive neural tensor networks learn logical reasoning?
cs.CL cs.LG
Recursive neural network models and their accompanying vector representations for words have seen success in an array of increasingly semantically sophisticated tasks, but almost nothing is known about their ability to accurately capture the aspects of linguistic meaning that are necessary for interpretation or reasoning. To evaluate this, I train a recursive model on a new corpus of constructed examples of logical reasoning in short sentences, like the inference of "some animal walks" from "some dog walks" or "some cat walks," given that dogs and cats are animals. This model learns representations that generalize well to new types of reasoning pattern in all but a few cases, a result which is promising for the ability of learned representation models to capture logical reasoning.
Samuel R. Bowman
null
1312.6192
null
null
An empirical analysis of dropout in piecewise linear networks
stat.ML cs.LG cs.NE
The recently introduced dropout training criterion for neural networks has been the subject of much attention due to its simplicity and remarkable effectiveness as a regularizer, as well as its interpretation as a training procedure for an exponentially large ensemble of networks that share parameters. In this work we empirically investigate several questions related to the efficacy of dropout, specifically as it concerns networks employing the popular rectified linear activation function. We investigate the quality of the test time weight-scaling inference procedure by evaluating the geometric average exactly in small models, as well as compare the performance of the geometric mean to the arithmetic mean more commonly employed by ensemble techniques. We explore the effect of tied weights on the ensemble interpretation by training ensembles of masked networks without tied weights. Finally, we investigate an alternative criterion based on a biased estimator of the maximum likelihood ensemble gradient.
David Warde-Farley, Ian J. Goodfellow, Aaron Courville and Yoshua Bengio
null
1312.6197
null
null
Intriguing properties of neural networks
cs.CV cs.LG cs.NE
Deep neural networks are highly expressive models that have recently achieved state of the art performance on speech and visual recognition tasks. While their expressiveness is the reason they succeed, it also causes them to learn uninterpretable solutions that could have counter-intuitive properties. In this paper we report two such properties. First, we find that there is no distinction between individual high level units and random linear combinations of high level units, according to various methods of unit analysis. It suggests that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks. Second, we find that deep neural networks learn input-output mappings that are fairly discontinuous to a significant extend. We can cause the network to misclassify an image by applying a certain imperceptible perturbation, which is found by maximizing the network's prediction error. In addition, the specific nature of these perturbations is not a random artifact of learning: the same perturbation can cause a different network, that was trained on a different subset of the dataset, to misclassify the same input.
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus
null
1312.6199
null
null
Spectral Networks and Locally Connected Networks on Graphs
cs.LG cs.CV cs.NE
Convolutional Neural Networks are extremely efficient architectures in image and audio recognition tasks, thanks to their ability to exploit the local translational invariance of signal classes over their domain. In this paper we consider possible generalizations of CNNs to signals defined on more general domains without the action of a translation group. In particular, we propose two constructions, one based upon a hierarchical clustering of the domain, and another based on the spectrum of the graph Laplacian. We show through experiments that for low-dimensional graphs it is possible to learn convolutional layers with a number of parameters independent of the input size, resulting in efficient deep architectures.
Joan Bruna, Wojciech Zaremba, Arthur Szlam and Yann LeCun
null
1312.6203
null
null
One-Shot Adaptation of Supervised Deep Convolutional Models
cs.CV cs.LG cs.NE
Dataset bias remains a significant barrier towards solving real world computer vision tasks. Though deep convolutional networks have proven to be a competitive approach for image classification, a question remains: have these models have solved the dataset bias problem? In general, training or fine-tuning a state-of-the-art deep model on a new domain requires a significant amount of data, which for many applications is simply not available. Transfer of models directly to new domains without adaptation has historically led to poor recognition performance. In this paper, we pose the following question: is a single image dataset, much larger than previously explored for adaptation, comprehensive enough to learn general deep models that may be effectively applied to new image domains? In other words, are deep CNNs trained on large amounts of labeled data as susceptible to dataset bias as previous methods have been shown to be? We show that a generic supervised deep CNN model trained on a large dataset reduces, but does not remove, dataset bias. Furthermore, we propose several methods for adaptation with deep models that are able to operate with little (one example per category) or no labeled domain specific data. Our experiments show that adaptation of deep models on benchmark visual domain adaptation datasets can provide a significant performance boost.
Judy Hoffman, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, Trevor Darrell
null
1312.6204
null
null
Relaxations for inference in restricted Boltzmann machines
stat.ML cs.LG
We propose a relaxation-based approximate inference algorithm that samples near-MAP configurations of a binary pairwise Markov random field. We experiment on MAP inference tasks in several restricted Boltzmann machines. We also use our underlying sampler to estimate the log-partition function of restricted Boltzmann machines and compare against other sampling-based methods.
Sida I. Wang, Roy Frostig, Percy Liang, Christopher D. Manning
null
1312.6205
null
null
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
stat.ML cs.LG cs.NE
Catastrophic forgetting is a problem faced by many machine learning models and algorithms. When trained on one task, then trained on a second task, many machine learning models "forget" how to perform the first task. This is widely believed to be a serious problem for neural networks. Here, we investigate the extent to which the catastrophic forgetting problem occurs for modern neural networks, comparing both established and recent gradient-based training algorithms and activation functions. We also examine the effect of the relationship between the first task and the second task on catastrophic forgetting. We find that it is always best to train using the dropout algorithm--the dropout algorithm is consistently best at adapting to the new task, remembering the old task, and has the best tradeoff curve between these two extremes. We find that different tasks and relationships between tasks result in very different rankings of activation function performance. This suggests the choice of activation function should always be cross-validated.
Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, Yoshua Bengio
null
1312.6211
null
null
Volumetric Spanners: an Efficient Exploration Basis for Learning
cs.LG cs.AI cs.DS
Numerous machine learning problems require an exploration basis - a mechanism to explore the action space. We define a novel geometric notion of exploration basis with low variance, called volumetric spanners, and give efficient algorithms to construct such a basis. We show how efficient volumetric spanners give rise to the first efficient and optimal regret algorithm for bandit linear optimization over general convex sets. Previously such results were known only for specific convex sets, or under special conditions such as the existence of an efficient self-concordant barrier for the underlying set.
Elad Hazan and Zohar Karnin and Raghu Mehka
null
1312.6214
null
null
Parallel architectures for fuzzy triadic similarity learning
cs.DC cs.LG stat.ML
In a context of document co-clustering, we define a new similarity measure which iteratively computes similarity while combining fuzzy sets in a three-partite graph. The fuzzy triadic similarity (FT-Sim) model can deal with uncertainty offers by the fuzzy sets. Moreover, with the development of the Web and the high availability of storage spaces, more and more documents become accessible. Documents can be provided from multiple sites and make similarity computation an expensive processing. This problem motivated us to use parallel computing. In this paper, we introduce parallel architectures which are able to treat large and multi-source data sets by a sequential, a merging or a splitting-based process. Then, we proceed to a local and a central (or global) computing using the basic FT-Sim measure. The idea behind these architectures is to reduce both time and space complexities thanks to parallel computation.
Sonia Alouane-Ksouri, Minyar Sassi-Hidri, Kamel Barkaoui
null
1312.6273
null
null
Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning
cs.LG
Learning probabilistic models over strings is an important issue for many applications. Spectral methods propose elegant solutions to the problem of inferring weighted automata from finite samples of variable-length strings drawn from an unknown target distribution. These methods rely on a singular value decomposition of a matrix $H_S$, called the Hankel matrix, that records the frequencies of (some of) the observed strings. The accuracy of the learned distribution depends both on the quantity of information embedded in $H_S$ and on the distance between $H_S$ and its mean $H_r$. Existing concentration bounds seem to indicate that the concentration over $H_r$ gets looser with the size of $H_r$, suggesting to make a trade-off between the quantity of used information and the size of $H_r$. We propose new dimension-free concentration bounds for several variants of Hankel matrices. Experiments demonstrate that these bounds are tight and that they significantly improve existing bounds. These results suggest that the concentration rate of the Hankel matrix around its mean does not constitute an argument for limiting its size.
Fran\c{c}ois Denis, Mattias Gybels and Amaury Habrard
null
1312.6282
null
null
Growing Regression Forests by Classification: Applications to Object Pose Estimation
cs.CV cs.LG stat.ML
In this work, we propose a novel node splitting method for regression trees and incorporate it into the regression forest framework. Unlike traditional binary splitting, where the splitting rule is selected from a predefined set of binary splitting rules via trial-and-error, the proposed node splitting method first finds clusters of the training data which at least locally minimize the empirical loss without considering the input space. Then splitting rules which preserve the found clusters as much as possible are determined by casting the problem into a classification problem. Consequently, our new node splitting method enjoys more freedom in choosing the splitting rules, resulting in more efficient tree structures. In addition to the Euclidean target space, we present a variant which can naturally deal with a circular target space by the proper use of circular statistics. We apply the regression forest employing our node splitting to head pose estimation (Euclidean target space) and car direction estimation (circular target space) and demonstrate that the proposed method significantly outperforms state-of-the-art methods (38.5% and 22.5% error reduction respectively).
Kota Hara and Rama Chellappa
null
1312.6430
null
null
Nonparametric Weight Initialization of Neural Networks via Integral Representation
cs.LG cs.NE
A new initialization method for hidden parameters in a neural network is proposed. Derived from the integral representation of the neural network, a nonparametric probability distribution of hidden parameters is introduced. In this proposal, hidden parameters are initialized by samples drawn from this distribution, and output parameters are fitted by ordinary linear regression. Numerical experiments show that backpropagation with proposed initialization converges faster than uniformly random initialization. Also it is shown that the proposed method achieves enough accuracy by itself without backpropagation in some cases.
Sho Sonoda, Noboru Murata
null
1312.6461
null
null
Sequentially Generated Instance-Dependent Image Representations for Classification
cs.CV cs.LG
In this paper, we investigate a new framework for image classification that adaptively generates spatial representations. Our strategy is based on a sequential process that learns to explore the different regions of any image in order to infer its category. In particular, the choice of regions is specific to each image, directed by the actual content of previously selected regions.The capacity of the system to handle incomplete image information as well as its adaptive region selection allow the system to perform well in budgeted classification tasks by exploiting a dynamicly generated representation of each image. We demonstrate the system's abilities in a series of image-based exploration and classification tasks that highlight its learned exploration and inference abilities.
Gabriel Dulac-Arnold and Ludovic Denoyer and Nicolas Thome and Matthieu Cord and Patrick Gallinari
null
1312.6594
null
null
Co-Multistage of Multiple Classifiers for Imbalanced Multiclass Learning
cs.LG cs.IR
In this work, we propose two stochastic architectural models (CMC and CMC-M) with two layers of classifiers applicable to datasets with one and multiple skewed classes. This distinction becomes important when the datasets have a large number of classes. Therefore, we present a novel solution to imbalanced multiclass learning with several skewed majority classes, which improves minority classes identification. This fact is particularly important for text classification tasks, such as event detection. Our models combined with pre-processing sampling techniques improved the classification results on six well-known datasets. Finally, we have also introduced a new metric SG-Mean to overcome the multiplication by zero limitation of G-Mean.
Luis Marujo, Anatole Gershman, Jaime Carbonell, David Martins de Matos, Jo\~ao P. Neto
null
1312.6597
null
null
Using Latent Binary Variables for Online Reconstruction of Large Scale Systems
math.PR cs.LG stat.ML
We propose a probabilistic graphical model realizing a minimal encoding of real variables dependencies based on possibly incomplete observation and an empirical cumulative distribution function per variable. The target application is a large scale partially observed system, like e.g. a traffic network, where a small proportion of real valued variables are observed, and the other variables have to be predicted. Our design objective is therefore to have good scalability in a real-time setting. Instead of attempting to encode the dependencies of the system directly in the description space, we propose a way to encode them in a latent space of binary variables, reflecting a rough perception of the observable (congested/non-congested for a traffic road). The method relies in part on message passing algorithms, i.e. belief propagation, but the core of the work concerns the definition of meaningful latent variables associated to the variables of interest and their pairwise dependencies. Numerical experiments demonstrate the applicability of the method in practice.
Victorin Martin, Jean-Marc Lasgouttes, Cyril Furtlehner
10.1007/s10472-015-9470-x
1312.6607
null
null
Rounding Sum-of-Squares Relaxations
cs.DS cs.LG quant-ph
We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem. Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems: 1) We give a quasipolynomial-time algorithm that approximates the maximum of a low degree multivariate polynomial with non-negative coefficients over the Euclidean unit sphere. Beyond being of interest in its own right, this is related to an open question in quantum information theory, and our techniques have already led to improved results in this area (Brand\~{a}o and Harrow, STOC '13). 2) We give a polynomial-time algorithm that, given a d dimensional subspace of R^n that (almost) contains the characteristic function of a set of size n/k, finds a vector $v$ in the subspace satisfying $|v|_4^4 > c(k/d^{1/3}) |v|_2^2$, where $|v|_p = (E_i v_i^p)^{1/p}$. Aside from being a natural relaxation, this is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012) and our results yield a certain improvement for that problem. 3) We use this notion of L_4 vs. L_2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted $\mu$-sparse vector v in a random d-dimensional subspace of R^n. If v has mu n nonzero coordinates, we can recover it with high probability whenever $\mu < O(\min(1,n/d^2))$, improving for $d < n^{2/3}$ prior methods which intrinsically required $\mu < O(1/\sqrt(d))$.
Boaz Barak, Jonathan Kelner, David Steurer
null
1312.6652
null
null