title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Rapid and deterministic estimation of probability densities using scale-free field theories
physics.data-an cs.LG math.ST q-bio.QM stat.ML stat.TH
The question of how best to estimate a continuous probability density from finite data is an intriguing open problem at the interface of statistics and physics. Previous work has argued that this problem can be addressed in a natural way using methods from statistical field theory. Here I describe new results that allow this field-theoretic approach to be rapidly and deterministically computed in low dimensions, making it practical for use in day-to-day data analysis. Importantly, this approach does not impose a privileged length scale for smoothness of the inferred probability density, but rather learns a natural length scale from the data due to the tradeoff between goodness-of-fit and an Occam factor. Open source software implementing this method in one and two dimensions is provided.
Justin B. Kinney
10.1103/PhysRevE.90.011301
1312.6661
null
null
Invariant Factorization Of Time-Series
cs.LG
Time-series classification is an important domain of machine learning and a plethora of methods have been developed for the task. In comparison to existing approaches, this study presents a novel method which decomposes a time-series dataset into latent patterns and membership weights of local segments to those patterns. The process is formalized as a constrained objective function and a tailored stochastic coordinate descent optimization is applied. The time-series are projected to a new feature representation consisting of the sums of the membership weights, which captures frequencies of local patterns. Features from various sliding window sizes are concatenated in order to encapsulate the interaction of patterns from different sizes. Finally, a large-scale experimental comparison against 6 state of the art baselines and 43 real life datasets is conducted. The proposed method outperforms all the baselines with statistically significant margins in terms of prediction accuracy.
Josif Grabocka, Lars Schmidt-Thieme
10.1007/s10618-014-0364-z
1312.6712
null
null
Local algorithms for interactive clustering
cs.DS cs.LG
We study the design of interactive clustering algorithms for data sets satisfying natural stability assumptions. Our algorithms start with any initial clustering and only make local changes in each step; both are desirable features in many applications. We show that in this constrained setting one can still design provably efficient algorithms that produce accurate clusterings. We also show that our algorithms perform well on real-world data.
Pranjal Awasthi and Maria-Florina Balcan and Konstantin Voevodski
null
1312.6724
null
null
Iterative Nearest Neighborhood Oversampling in Semisupervised Learning from Imbalanced Data
cs.LG
Transductive graph-based semi-supervised learning methods usually build an undirected graph utilizing both labeled and unlabeled samples as vertices. Those methods propagate label information of labeled samples to neighbors through their edges in order to get the predicted labels of unlabeled samples. Most popular semi-supervised learning approaches are sensitive to initial label distribution happened in imbalanced labeled datasets. The class boundary will be severely skewed by the majority classes in an imbalanced classification. In this paper, we proposed a simple and effective approach to alleviate the unfavorable influence of imbalance problem by iteratively selecting a few unlabeled samples and adding them into the minority classes to form a balanced labeled dataset for the learning methods afterwards. The experiments on UCI datasets and MNIST handwritten digits dataset showed that the proposed approach outperforms other existing state-of-art methods.
Fengqi Li, Chuang Yu, Nanhai Yang, Feng Xia, Guangming Li, Fatemeh Kaveh-Yazdy
null
1312.6807
null
null
A Fast Greedy Algorithm for Generalized Column Subset Selection
cs.DS cs.LG stat.ML
This paper defines a generalized column subset selection problem which is concerned with the selection of a few columns from a source matrix A that best approximate the span of a target matrix B. The paper then proposes a fast greedy algorithm for solving this problem and draws connections to different problems that can be efficiently solved using the proposed algorithm.
Ahmed K. Farahat, Ali Ghodsi, Mohamed S. Kamel
null
1312.6820
null
null
Greedy Column Subset Selection for Large-scale Data Sets
cs.DS cs.LG
In today's information systems, the availability of massive amounts of data necessitates the development of fast and accurate algorithms to summarize these data and represent them in a succinct format. One crucial problem in big data analytics is the selection of representative instances from large and massively-distributed data, which is formally known as the Column Subset Selection (CSS) problem. The solution to this problem enables data analysts to understand the insights of the data and explore its hidden structure. The selected instances can also be used for data preprocessing tasks such as learning a low-dimensional embedding of the data points or computing a low-rank approximation of the corresponding matrix. This paper presents a fast and accurate greedy algorithm for large-scale column subset selection. The algorithm minimizes an objective function which measures the reconstruction error of the data matrix based on the subset of selected columns. The paper first presents a centralized greedy algorithm for column subset selection which depends on a novel recursive formula for calculating the reconstruction error of the data matrix. The paper then presents a MapReduce algorithm which selects a few representative columns from a matrix whose columns are massively distributed across several commodity machines. The algorithm first learns a concise representation of all columns using random projection, and it then solves a generalized column subset selection problem at each machine in which a subset of columns are selected from the sub-matrix on that machine such that the reconstruction error of the concise representation is minimized. The paper demonstrates the effectiveness and efficiency of the proposed algorithm through an empirical evaluation on benchmark data sets.
Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, Mohamed S. Kamel
null
1312.6838
null
null
Speech Recognition Front End Without Information Loss
cs.CL cs.CV cs.LG
Speech representation and modelling in high-dimensional spaces of acoustic waveforms, or a linear transformation thereof, is investigated with the aim of improving the robustness of automatic speech recognition to additive noise. The motivation behind this approach is twofold: (i) the information in acoustic waveforms that is usually removed in the process of extracting low-dimensional features might aid robust recognition by virtue of structured redundancy analogous to channel coding, (ii) linear feature domains allow for exact noise adaptation, as opposed to representations that involve non-linear processing which makes noise adaptation challenging. Thus, we develop a generative framework for phoneme modelling in high-dimensional linear feature domains, and use it in phoneme classification and recognition tasks. Results show that classification and recognition in this framework perform better than analogous PLP and MFCC classifiers below 18 dB SNR. A combination of the high-dimensional and MFCC features at the likelihood level performs uniformly better than either of the individual representations across all noise levels.
Matthew Ager and Zoran Cvetkovic and Peter Sollich
null
1312.6849
null
null
Matrix recovery using Split Bregman
cs.NA cs.LG
In this paper we address the problem of recovering a matrix, with inherent low rank structure, from its lower dimensional projections. This problem is frequently encountered in wide range of areas including pattern recognition, wireless sensor networks, control systems, recommender systems, image/video reconstruction etc. Both in theory and practice, the most optimal way to solve the low rank matrix recovery problem is via nuclear norm minimization. In this paper, we propose a Split Bregman algorithm for nuclear norm minimization. The use of Bregman technique improves the convergence speed of our algorithm and gives a higher success rate. Also, the accuracy of reconstruction is much better even for cases where small number of linear measurements are available. Our claim is supported by empirical results obtained using our algorithm and its comparison to other existing methods for matrix recovery. The algorithms are compared on the basis of NMSE, execution time and success rate for varying ranks and sampling ratios.
Anupriya Gogna, Ankita Shukla and Angshul Majumdar
null
1312.6872
null
null
Deep learning for class-generic object detection
cs.CV cs.LG cs.NE
We investigate the use of deep neural networks for the novel task of class generic object detection. We show that neural networks originally designed for image recognition can be trained to detect objects within images, regardless of their class, including objects for which no bounding box labels have been provided. In addition, we show that bounding box labels yield a 1% performance increase on the ImageNet recognition challenge.
Brody Huval, Adam Coates, Andrew Ng
null
1312.6885
null
null
Joint segmentation of multivariate time series with hidden process regression for human activity recognition
stat.ML cs.LG
The problem of human activity recognition is central for understanding and predicting the human behavior, in particular in a prospective of assistive services to humans, such as health monitoring, well being, security, etc. There is therefore a growing need to build accurate models which can take into account the variability of the human activities over time (dynamic models) rather than static ones which can have some limitations in such a dynamic context. In this paper, the problem of activity recognition is analyzed through the segmentation of the multidimensional time series of the acceleration data measured in the 3-d space using body-worn accelerometers. The proposed model for automatic temporal segmentation is a specific statistical latent process model which assumes that the observed acceleration sequence is governed by sequence of hidden (unobserved) activities. More specifically, the proposed approach is based on a specific multiple regression model incorporating a hidden discrete logistic process which governs the switching from one activity to another over time. The model is learned in an unsupervised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization (EM) algorithm. We applied it on a real-world automatic human activity recognition problem and its performance was assessed by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard hidden Markov model (HMM). The obtained results are very encouraging and show that the proposed approach is quite competitive even it works in an entirely unsupervised way and does not requires a feature extraction preprocessing step.
Faicel Chamroukhi, Samer Mohammed, Dorra Trabelsi, Latifa Oukhellou, Yacine Amirat
10.1016/j.neucom.2013.04.003
1312.6956
null
null
Subjectivity Classification using Machine Learning Techniques for Mining Feature-Opinion Pairs from Web Opinion Sources
cs.IR cs.CL cs.LG
Due to flourish of the Web 2.0, web opinion sources are rapidly emerging containing precious information useful for both customers and manufactures. Recently, feature based opinion mining techniques are gaining momentum in which customer reviews are processed automatically for mining product features and user opinions expressed over them. However, customer reviews may contain both opinionated and factual sentences. Distillations of factual contents improve mining performance by preventing noisy and irrelevant extraction. In this paper, combination of both supervised machine learning and rule-based approaches are proposed for mining feasible feature-opinion pairs from subjective review sentences. In the first phase of the proposed approach, a supervised machine learning technique is applied for classifying subjective and objective sentences from customer reviews. In the next phase, a rule based method is implemented which applies linguistic and semantic analysis of texts to mine feasible feature-opinion pairs from subjective sentences retained after the first phase. The effectiveness of the proposed methods is established through experimentation over customer reviews on different electronic products.
Ahmad Kamal
null
1312.6962
null
null
An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression
stat.ML cs.CV cs.LG
Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approaches
Dorra Trabelsi, Samer Mohammed, Faicel Chamroukhi, Latifa Oukhellou, Yacine Amirat
10.1109/TASE.2013.2256349
1312.6965
null
null
Model-based functional mixture discriminant analysis with hidden process regression for curve classification
stat.ME cs.LG math.ST stat.ML stat.TH
In this paper, we study the modeling and the classification of functional data presenting regime changes over time. We propose a new model-based functional mixture discriminant analysis approach based on a specific hidden process regression model that governs the regime changes over time. Our approach is particularly adapted to handle the problem of complex-shaped classes of curves, where each class is potentially composed of several sub-classes, and to deal with the regime changes within each homogeneous sub-class. The proposed model explicitly integrates the heterogeneity of each class of curves via a mixture model formulation, and the regime changes within each sub-class through a hidden logistic process. Each class of complex-shaped curves is modeled by a finite number of homogeneous clusters, each of them being decomposed into several regimes. The model parameters of each class are learned by maximizing the observed-data log-likelihood by using a dedicated expectation-maximization (EM) algorithm. Comparisons are performed with alternative curve classification approaches, including functional linear discriminant analysis and functional mixture discriminant analysis with polynomial regression mixtures and spline regression mixtures. Results obtained on simulated data and real data show that the proposed approach outperforms the alternative approaches in terms of discrimination, and significantly improves the curves approximation.
Faicel Chamroukhi, Herv\'e Glotin, Allou Sam\'e
10.1016/j.neucom.2012.10.030
1312.6966
null
null
Model-based clustering and segmentation of time series with changes in regime
stat.ME cs.LG math.ST stat.ML stat.TH
Mixture model-based clustering, usually applied to multidimensional data, has become a popular approach in many data analysis problems, both for its good statistical properties and for the simplicity of implementation of the Expectation-Maximization (EM) algorithm. Within the context of a railway application, this paper introduces a novel mixture model for dealing with time series that are subject to changes in regime. The proposed approach consists in modeling each cluster by a regression model in which the polynomial coefficients vary according to a discrete hidden process. In particular, this approach makes use of logistic functions to model the (smooth or abrupt) transitions between regimes. The model parameters are estimated by the maximum likelihood method solved by an Expectation-Maximization algorithm. The proposed approach can also be regarded as a clustering approach which operates by finding groups of time series having common changes in regime. In addition to providing a time series partition, it therefore provides a time series segmentation. The problem of selecting the optimal numbers of clusters and segments is solved by means of the Bayesian Information Criterion (BIC). The proposed approach is shown to be efficient using a variety of simulated time series and real-world time series of electrical power consumption from rail switching operations.
Allou Sam\'e, Faicel Chamroukhi, G\'erard Govaert, Patrice Aknin
10.1007/s11634-011-0096-5
1312.6967
null
null
A hidden process regression model for functional data description. Application to curve discrimination
stat.ME cs.LG stat.ML
A new approach for functional data description is proposed in this paper. It consists of a regression model with a discrete hidden logistic process which is adapted for modeling curves with abrupt or smooth regime changes. The model parameters are estimated in a maximum likelihood framework through a dedicated Expectation Maximization (EM) algorithm. From the proposed generative model, a curve discrimination rule is derived using the Maximum A Posteriori rule. The proposed model is evaluated using simulated curves and real world curves acquired during railway switch operations, by performing comparisons with the piecewise regression approach in terms of curve modeling and classification.
Faicel Chamroukhi, Allou Sam\'e, G\'erard Govaert, Patrice Aknin
10.1016/j.neucom.2009.12.023
1312.6968
null
null
Time series modeling by a regression approach based on a latent process
stat.ME cs.LG math.ST stat.ML stat.TH
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
Faicel Chamroukhi, Allou Sam\'e, G\'erard Govaert, Patrice Aknin
10.1016/j.neunet.2009.06.040
1312.6969
null
null
Piecewise regression mixture for simultaneous functional data clustering and optimal segmentation
stat.ME cs.LG math.ST stat.ML stat.TH
This paper introduces a novel mixture model-based approach for simultaneous clustering and optimal segmentation of functional data which are curves presenting regime changes. The proposed model consists in a finite mixture of piecewise polynomial regression models. Each piecewise polynomial regression model is associated with a cluster, and within each cluster, each piecewise polynomial component is associated with a regime (i.e., a segment). We derive two approaches for learning the model parameters. The former is an estimation approach and consists in maximizing the observed-data likelihood via a dedicated expectation-maximization (EM) algorithm. A fuzzy partition of the curves in K clusters is then obtained at convergence by maximizing the posterior cluster probabilities. The latter however is a classification approach and optimizes a specific classification likelihood criterion through a dedicated classification expectation-maximization (CEM) algorithm. The optimal curve segmentation is performed by using dynamic programming. In the classification approach, both the curve clustering and the optimal segmentation are performed simultaneously as the CEM learning proceeds. We show that the classification approach is the probabilistic version that generalizes the deterministic K-means-like algorithm proposed in H\'ebrail et al. (2010). The proposed approach is evaluated using simulated curves and real-world curves. Comparisons with alternatives including regression mixture models and the K-means like algorithm for piecewise regression demonstrate the effectiveness of the proposed approach.
Faicel Chamroukhi
null
1312.6974
null
null
Mod\`ele \`a processus latent et algorithme EM pour la r\'egression non lin\'eaire
math.ST cs.LG stat.ME stat.ML stat.TH
A non linear regression approach which consists of a specific regression model incorporating a latent process, allowing various polynomial regression models to be activated preferentially and smoothly, is introduced in this paper. The model parameters are estimated by maximum likelihood performed via a dedicated expecation-maximization (EM) algorithm. An experimental study using simulated and real data sets reveals good performances of the proposed approach.
Faicel Chamroukhi, Allou Sam\'e, G\'erard Govaert, Patrice Aknin
null
1312.6978
null
null
A regression model with a hidden logistic process for signal parametrization
stat.ME cs.LG stat.ML
A new approach for signal parametrization, which consists of a specific regression model incorporating a discrete hidden logistic process, is proposed. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The parameters of the hidden logistic process, in the inner loop of the EM algorithm, are estimated using a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm. An experimental study using simulated and real data reveals good performances of the proposed approach.
Faicel Chamroukhi, Allou Sam\'e, G\'erard Govaert, Patrice Aknin
null
1312.6994
null
null
Towards Using Unlabeled Data in a Sparse-coding Framework for Human Activity Recognition
cs.LG cs.AI stat.ML
We propose a sparse-coding framework for activity recognition in ubiquitous and mobile computing that alleviates two fundamental problems of current supervised learning approaches. (i) It automatically derives a compact, sparse and meaningful feature representation of sensor data that does not rely on prior expert knowledge and generalizes extremely well across domain boundaries. (ii) It exploits unlabeled sample data for bootstrapping effective activity recognizers, i.e., substantially reduces the amount of ground truth annotation required for model estimation. Such unlabeled data is trivial to obtain, e.g., through contemporary smartphones carried by users as they go about their everyday activities. Based on the self-taught learning paradigm we automatically derive an over-complete set of basis vectors from unlabeled data that captures inherent patterns present within activity data. Through projecting raw sensor data onto the feature space defined by such over-complete sets of basis vectors effective feature extraction is pursued. Given these learned feature representations, classification backends are then trained using small amounts of labeled training data. We study the new approach in detail using two datasets which differ in terms of the recognition tasks and sensor modalities. Primarily we focus on transportation mode analysis task, a popular task in mobile-phone based sensing. The sparse-coding framework significantly outperforms the state-of-the-art in supervised learning approaches. Furthermore, we demonstrate the great practical potential of the new approach by successfully evaluating its generalization capabilities across both domain and sensor modalities by considering the popular Opportunity dataset. Our feature learning approach outperforms state-of-the-art approaches to analyzing activities in daily living.
Sourav Bhattacharya and Petteri Nurmi and Nils Hammerla and Thomas Pl\"otz
10.1016/j.pmcj.2014.05.006
1312.6995
null
null
A regression model with a hidden logistic process for feature extraction from time series
stat.ME cs.LG math.ST stat.ML stat.TH
A new approach for feature extraction from time series is proposed in this paper. This approach consists of a specific regression model incorporating a discrete hidden logistic process. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The parameters of the hidden logistic process, in the inner loop of the EM algorithm, are estimated using a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm. A piecewise regression algorithm and its iterative variant have also been considered for comparisons. An experimental study using simulated and real data reveals good performances of the proposed approach.
Faicel Chamroukhi, Allou Sam\'e, G\'erard Govaert and Patrice Aknin
null
1312.7001
null
null
Supervised learning of a regression model based on latent process. Application to the estimation of fuel cell life time
stat.ML cs.LG stat.AP
This paper describes a pattern recognition approach aiming to estimate fuel cell duration time from electrochemical impedance spectroscopy measurements. It consists in first extracting features from both real and imaginary parts of the impedance spectrum. A parametric model is considered in the case of the real part, whereas regression model with latent variables is used in the latter case. Then, a linear regression model using different subsets of extracted features is used fo r the estimation of fuel cell time duration. The performances of the proposed approach are evaluated on experimental data set to show its feasibility. This could lead to interesting perspectives for predictive maintenance policy of fuel cell.
Ra\"issa Onanena, Faicel Chamroukhi, Latifa Oukhellou, Denis Candusso, Patrice Aknin, Daniel Hissel
null
1312.7003
null
null
A Convex Formulation for Mixed Regression with Two Components: Minimax Optimal Rates
stat.ML cs.IT cs.LG math.IT
We consider the mixed regression problem with two components, under adversarial and stochastic noise. We give a convex optimization formulation that provably recovers the true solution, and provide upper bounds on the recovery errors for both arbitrary noise and stochastic noise settings. We also give matching minimax lower bounds (up to log factors), showing that under certain assumptions, our algorithm is information-theoretically optimal. Our results represent the first tractable algorithm guaranteeing successful recovery with tight bounds on recovery errors and sample complexity.
Yudong Chen, Xinyang Yi, Constantine Caramanis
null
1312.7006
null
null
Functional Mixture Discriminant Analysis with hidden process regression for curve classification
stat.ME cs.LG stat.ML
We present a new mixture model-based discriminant analysis approach for functional data using a specific hidden process regression model. The approach allows for fitting flexible curve-models to each class of complex-shaped curves presenting regime changes. The model parameters are learned by maximizing the observed-data log-likelihood for each class by using a dedicated expectation-maximization (EM) algorithm. Comparisons on simulated data with alternative approaches show that the proposed approach provides better results.
Faicel Chamroukhi, Her\'e Glotin, C\'eline Rabouy
null
1312.7007
null
null
Mixture model-based functional discriminant analysis for curve classification
stat.ME cs.LG stat.ML
Statistical approaches for Functional Data Analysis concern the paradigm for which the individuals are functions or curves rather than finite dimensional vectors. In this paper, we particularly focus on the modeling and the classification of functional data which are temporal curves presenting regime changes over time. More specifically, we propose a new mixture model-based discriminant analysis approach for functional data using a specific hidden process regression model. Our approach is particularly adapted to both handle the problem of complex-shaped classes of curves, where each class is composed of several sub-classes, and to deal with the regime changes within each homogeneous sub-class. The model explicitly integrates the heterogeneity of each class of curves via a mixture model formulation, and the regime changes within each sub-class through a hidden logistic process. The approach allows therefore for fitting flexible curve-models to each class of complex-shaped curves presenting regime changes through an unsupervised learning scheme, to automatically summarize it into a finite number of homogeneous clusters, each of them is decomposed into several regimes. The model parameters are learned by maximizing the observed-data log-likelihood for each class by using a dedicated expectation-maximization (EM) algorithm. Comparisons on simulated data and real data with alternative approaches, including functional linear discriminant analysis and functional mixture discriminant analysis with polynomial regression mixtures and spline regression mixtures, show that the proposed approach provides better results regarding the discrimination results and significantly improves the curves approximation.
Faicel Chamroukhi, Herv\'e Glotin
10.1109/IJCNN.2012.6252818
1312.7018
null
null
Robust EM algorithm for model-based curve clustering
stat.ME cs.LG stat.ML
Model-based clustering approaches concern the paradigm of exploratory data analysis relying on the finite mixture model to automatically find a latent structure governing observed data. They are one of the most popular and successful approaches in cluster analysis. The mixture density estimation is generally performed by maximizing the observed-data log-likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the EM algorithm initialization is crucial. In addition, the standard EM algorithm requires the number of clusters to be known a priori. Some solutions have been provided in [31, 12] for model-based clustering with Gaussian mixture models for multivariate data. In this paper we focus on model-based curve clustering approaches, when the data are curves rather than vectorial data, based on regression mixtures. We propose a new robust EM algorithm for clustering curves. We extend the model-based clustering approach presented in [31] for Gaussian mixture models, to the case of curve clustering by regression mixtures, including polynomial regression mixtures as well as spline or B-spline regressions mixtures. Our approach both handles the problem of initialization and the one of choosing the optimal number of clusters as the EM learning proceeds, rather than in a two-fold scheme. This is achieved by optimizing a penalized log-likelihood criterion. A simulation study confirms the potential benefit of the proposed algorithm in terms of robustness regarding initialization and funding the actual number of clusters.
Faicel Chamroukhi
null
1312.7022
null
null
Model-based clustering with Hidden Markov Model regression for time series with regime changes
stat.ML cs.LG stat.ME
This paper introduces a novel model-based clustering approach for clustering time series which present changes in regime. It consists of a mixture of polynomial regressions governed by hidden Markov chains. The underlying hidden process for each cluster activates successively several polynomial regimes during time. The parameter estimation is performed by the maximum likelihood method through a dedicated Expectation-Maximization (EM) algorithm. The proposed approach is evaluated using simulated time series and real-world time series issued from a railway diagnosis application. Comparisons with existing approaches for time series clustering, including the stand EM for Gaussian mixtures, $K$-means clustering, the standard mixture of regression models and mixture of Hidden Markov Models, demonstrate the effectiveness of the proposed approach.
Faicel Chamroukhi, Allou Sam\'e, Patrice Aknin, G\'erard Govaert
10.1109/IJCNN.2011.6033590
1312.7024
null
null
Language Modeling with Power Low Rank Ensembles
cs.CL cs.LG stat.ML
We present power low rank ensembles (PLRE), a flexible framework for n-gram language modeling where ensembles of low rank matrices and tensors are used to obtain smoothed probability estimates of words in context. Our method can be understood as a generalization of n-gram modeling to non-integer n, and includes standard techniques such as absolute discounting and Kneser-Ney smoothing as special cases. PLRE training is efficient and our approach outperforms state-of-the-art modified Kneser Ney baselines in terms of perplexity on large corpora as well as on BLEU score in a downstream machine translation task.
Ankur P. Parikh, Avneesh Saluja, Chris Dyer, Eric P. Xing
null
1312.7077
null
null
Near-separable Non-negative Matrix Factorization with $\ell_1$- and Bregman Loss Functions
stat.ML cs.CV cs.LG
Recently, a family of tractable NMF algorithms have been proposed under the assumption that the data matrix satisfies a separability condition Donoho & Stodden (2003); Arora et al. (2012). Geometrically, this condition reformulates the NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. In this paper, we develop several extensions of the conical hull procedures of Kumar et al. (2013) for robust ($\ell_1$) approximations and Bregman divergences. Our methods inherit all the advantages of Kumar et al. (2013) including scalability and noise-tolerance. We show that on foreground-background separation problems in computer vision, robust near-separable NMFs match the performance of Robust PCA, considered state of the art on these problems, with an order of magnitude faster training time. We also demonstrate applications in exemplar selection settings.
Abhishek Kumar, Vikas Sindhwani
null
1312.7167
null
null
Sub-Classifier Construction for Error Correcting Output Code Using Minimum Weight Perfect Matching
cs.LG cs.IT math.IT
Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including the dense random code and the sparse random code both in terms of accuracy and classification times. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to the One-Versus-One.
Patoomsiri Songsiri, Thimaporn Phetkaew, Ryutaro Ichise and Boonserm Kijsirikul
null
1312.7179
null
null
Active Discovery of Network Roles for Predicting the Classes of Network Nodes
cs.LG cs.SI stat.ML
Nodes in real world networks often have class labels, or underlying attributes, that are related to the way in which they connect to other nodes. Sometimes this relationship is simple, for instance nodes of the same class are may be more likely to be connected. In other cases, however, this is not true, and the way that nodes link in a network exhibits a different, more complex relationship to their attributes. Here, we consider networks in which we know how the nodes are connected, but we do not know the class labels of the nodes or how class labels relate to the network links. We wish to identify the best subset of nodes to label in order to learn this relationship between node attributes and network links. We can then use this discovered relationship to accurately predict the class labels of the rest of the network nodes. We present a model that identifies groups of nodes with similar link patterns, which we call network roles, using a generative blockmodel. The model then predicts labels by learning the mapping from network roles to class labels using a maximum margin classifier. We choose a subset of nodes to label according to an iterative margin-based active learning strategy. By integrating the discovery of network roles with the classifier optimisation, the active learning process can adapt the network roles to better represent the network for node classification. We demonstrate the model by exploring a selection of real world networks, including a marine food web and a network of English words. We show that, in contrast to other network classifiers, this model achieves good classification accuracy for a range of networks with different relationships between class labels and network links.
Leto Peel
null
1312.7258
null
null
Two Timescale Convergent Q-learning for Sleep--Scheduling in Wireless Sensor Networks
cs.SY cs.LG
In this paper, we consider an intrusion detection application for Wireless Sensor Networks (WSNs). We study the problem of scheduling the sleep times of the individual sensors to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous state-action spaces, in a manner similar to (Fuemmeler and Veeravalli [2008]). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation (SPSA) estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation for the Q-values) is updated in an on-policy temporal difference (TD) algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model. Our simulation results on a 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.
Prashanth L.A., Abhranil Chatterjee and Shalabh Bhatnagar
null
1312.7292
null
null
Learning Human Pose Estimation Features with Convolutional Networks
cs.CV cs.LG cs.NE
This paper introduces a new architecture for human pose estimation using a multi- layer convolutional network architecture and a modified learning technique that learns low-level features and higher-level weak spatial models. Unconstrained human pose estimation is one of the hardest problems in computer vision, and our new architecture and learning schema shows significant improvement over the current state-of-the-art results. The main contribution of this paper is showing, for the first time, that a specific variation of deep learning is able to outperform all existing traditional architectures on this task. The paper also discusses several lessons learned while researching alternatives, most notably, that it is possible to learn strong low-level feature detectors on features that might even just cover a few pixels in the image. Higher-level spatial models improve somewhat the overall result, but to a much lesser extent then expected. Many researchers previously argued that the kinematic structure and top-down information is crucial for this domain, but with our purely bottom up, and weak spatial model, we could improve other more complicated architectures that currently produce the best results. This mirrors what many other researchers, like those in the speech recognition, object recognition, and other domains have experienced.
Arjun Jain, Jonathan Tompson, Mykhaylo Andriluka, Graham W. Taylor, Christoph Bregler
null
1312.7302
null
null
lil' UCB : An Optimal Exploration Algorithm for Multi-Armed Bandits
stat.ML cs.LG
The paper proposes a novel upper confidence bound (UCB) procedure for identifying the arm with the largest mean in a multi-armed bandit game in the fixed confidence setting using a small number of total samples. The procedure cannot be improved in the sense that the number of samples required to identify the best arm is within a constant factor of a lower bound based on the law of the iterated logarithm (LIL). Inspired by the LIL, we construct our confidence bounds to explicitly account for the infinite time horizon of the algorithm. In addition, by using a novel stopping time for the algorithm we avoid a union bound over the arms that has been observed in other UCB-type algorithms. We prove that the algorithm is optimal up to constants and also show through simulations that it provides superior performance with respect to the state-of-the-art.
Kevin Jamieson, Matthew Malloy, Robert Nowak, S\'ebastien Bubeck
null
1312.7308
null
null
Correlation-based construction of neighborhood and edge features
cs.CV cs.LG stat.ML
Motivated by an abstract notion of low-level edge detector filters, we propose a simple method of unsupervised feature construction based on pairwise statistics of features. In the first step, we construct neighborhoods of features by regrouping features that correlate. Then we use these subsets as filters to produce new neighborhood features. Next, we connect neighborhood features that correlate, and construct edge features by subtracting the correlated neighborhood features of each other. To validate the usefulness of the constructed features, we ran AdaBoost.MH on four multi-class classification problems. Our most significant result is a test error of 0.94% on MNIST with an algorithm which is essentially free of any image-specific priors. On CIFAR-10 our method is suboptimal compared to today's best deep learning techniques, nevertheless, we show that the proposed method outperforms not only boosting on the raw pixels, but also boosting on Haar filters.
Bal\'azs K\'egl
null
1312.7335
null
null
Rate-Distortion Auto-Encoders
cs.LG
A rekindled the interest in auto-encoder algorithms has been spurred by recent work on deep learning. Current efforts have been directed towards effective training of auto-encoder architectures with a large number of coding units. Here, we propose a learning algorithm for auto-encoders based on a rate-distortion objective that minimizes the mutual information between the inputs and the outputs of the auto-encoder subject to a fidelity constraint. The goal is to learn a representation that is minimally committed to the input data, but that is rich enough to reconstruct the inputs up to certain level of distortion. Minimizing the mutual information acts as a regularization term whereas the fidelity constraint can be understood as a risk functional in the conventional statistical learning setting. The proposed algorithm uses a recently introduced measure of entropy based on infinitely divisible matrices that avoids the plug in estimation of densities. Experiments using over-complete bases show that the rate-distortion auto-encoders can learn a regularized input-output mapping in an implicit manner.
Luis G. Sanchez Giraldo and Jose C. Principe
null
1312.7381
null
null
Generalized Ambiguity Decomposition for Understanding Ensemble Diversity
stat.ML cs.CV cs.LG
Diversity or complementarity of experts in ensemble pattern recognition and information processing systems is widely-observed by researchers to be crucial for achieving performance improvement upon fusion. Understanding this link between ensemble diversity and fusion performance is thus an important research question. However, prior works have theoretically characterized ensemble diversity and have linked it with ensemble performance in very restricted settings. We present a generalized ambiguity decomposition (GAD) theorem as a broad framework for answering these questions. The GAD theorem applies to a generic convex ensemble of experts for any arbitrary twice-differentiable loss function. It shows that the ensemble performance approximately decomposes into a difference of the average expert performance and the diversity of the ensemble. It thus provides a theoretical explanation for the empirically-observed benefit of fusing outputs from diverse classifiers and regressors. It also provides a loss function-dependent, ensemble-dependent, and data-dependent definition of diversity. We present extensions of this decomposition to common regression and classification loss functions, and report a simulation-based analysis of the diversity term and the accuracy of the decomposition. We finally present experiments on standard pattern recognition data sets which indicate the accuracy of the decomposition for real-world classification and regression problems.
Kartik Audhkhasi, Abhinav Sethy, Bhuvana Ramabhadran and Shrikanth S. Narayanan
null
1312.7463
null
null
Nonparametric Inference For Density Modes
stat.ME cs.LG
We derive nonparametric confidence intervals for the eigenvalues of the Hessian at modes of a density estimate. This provides information about the strength and shape of modes and can also be used as a significance test. We use a data-splitting approach in which potential modes are identified using the first half of the data and inference is done with the second half of the data. To get valid confidence sets for the eigenvalues, we use a bootstrap based on an elementary-symmetric-polynomial (ESP) transformation. This leads to valid bootstrap confidence sets regardless of any multiplicities in the eigenvalues. We also suggest a new method for bandwidth selection, namely, choosing the bandwidth to maximize the number of significant modes. We show by example that this method works well. Even when the true distribution is singular, and hence does not have a density, (in which case cross validation chooses a zero bandwidth), our method chooses a reasonable bandwidth.
Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli and Larry Wasserman
null
1312.7567
null
null
Distributed Policy Evaluation Under Multiple Behavior Strategies
cs.MA cs.AI cs.DC cs.LG
We apply diffusion strategies to develop a fully-distributed cooperative reinforcement learning algorithm in which agents in a network communicate only with their immediate neighbors to improve predictions about their environment. The algorithm can also be applied to off-policy learning, meaning that the agents can predict the response to a behavior different from the actual policies they are following. The proposed distributed strategy is efficient, with linear complexity in both computation time and memory footprint. We provide a mean-square-error performance analysis and establish convergence under constant step-size updates, which endow the network with continuous learning capabilities. The results show a clear gain from cooperation: when the individual agents can estimate the solution, cooperation increases stability and reduces bias and variance of the prediction error; but, more importantly, the network is able to approach the optimal solution even when none of the individual agents can (e.g., when the individual behavior policies restrict each agent to sample a small portion of the state space).
Sergio Valcarcel Macua, Jianshu Chen, Santiago Zazo, Ali H. Sayed
null
1312.7606
null
null
Petuum: A New Platform for Distributed Machine Learning on Big Data
stat.ML cs.LG cs.SY
What is a systematic way to efficiently apply a wide spectrum of advanced ML programs to industrial scale problems, using Big Models (up to 100s of billions of parameters) on Big Data (up to terabytes or petabytes)? Modern parallelization strategies employ fine-grained operations and scheduling beyond the classic bulk-synchronous processing paradigm popularized by MapReduce, or even specialized graph-based execution that relies on graph representations of ML programs. The variety of approaches tends to pull systems and algorithms design in different directions, and it remains difficult to find a universal platform applicable to a wide range of ML programs at scale. We propose a general-purpose framework that systematically addresses data- and model-parallel challenges in large-scale ML, by observing that many ML programs are fundamentally optimization-centric and admit error-tolerant, iterative-convergent algorithmic solutions. This presents unique opportunities for an integrative system design, such as bounded-error network synchronization and dynamic scheduling based on ML program structure. We demonstrate the efficacy of these system designs versus well-known implementations of modern ML algorithms, allowing ML programs to run in much less time and at considerably larger model sizes, even on modestly-sized compute clusters.
Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, Yaoliang Yu
null
1312.7651
null
null
Response-Based Approachability and its Application to Generalized No-Regret Algorithms
cs.LG cs.GT
Approachability theory, introduced by Blackwell (1956), provides fundamental results on repeated games with vector-valued payoffs, and has been usefully applied since in the theory of learning in games and to learning algorithms in the online adversarial setup. Given a repeated game with vector payoffs, a target set $S$ is approachable by a certain player (the agent) if he can ensure that the average payoff vector converges to that set no matter what his adversary opponent does. Blackwell provided two equivalent sets of conditions for a convex set to be approachable. The first (primary) condition is a geometric separation condition, while the second (dual) condition requires that the set be {\em non-excludable}, namely that for every mixed action of the opponent there exists a mixed action of the agent (a {\em response}) such that the resulting payoff vector belongs to $S$. Existing approachability algorithms rely on the primal condition and essentially require to compute at each stage a projection direction from a given point to $S$. In this paper, we introduce an approachability algorithm that relies on Blackwell's {\em dual} condition. Thus, rather than projection, the algorithm relies on computation of the response to a certain action of the opponent at each stage. The utility of the proposed algorithm is demonstrated by applying it to certain generalizations of the classical regret minimization problem, which include regret minimization with side constraints and regret minimization for global cost functions. In these problems, computation of the required projections is generally complex but a response is readily obtainable.
Andrey Bernstein and Nahum Shimkin
null
1312.7658
null
null
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
cs.LG math.OC stat.ML
We present a novel Newton-type method for distributed optimization, which is particularly well suited for stochastic optimization and learning problems. For quadratic objectives, the method enjoys a linear rate of convergence which provably \emph{improves} with the data size, requiring an essentially constant number of iterations under reasonable assumptions. We provide theoretical and empirical evidence of the advantages of our method compared to other approaches, such as one-shot parameter averaging and ADMM.
Ohad Shamir, Nathan Srebro, Tong Zhang
null
1312.7853
null
null
Consistent Bounded-Asynchronous Parameter Servers for Distributed ML
stat.ML cs.DC cs.LG
In distributed ML applications, shared parameters are usually replicated among computing nodes to minimize network overhead. Therefore, proper consistency model must be carefully chosen to ensure algorithm's correctness and provide high throughput. Existing consistency models used in general-purpose databases and modern distributed ML systems are either too loose to guarantee correctness of the ML algorithms or too strict and thus fail to fully exploit the computing power of the underlying distributed system. Many ML algorithms fall into the category of \emph{iterative convergent algorithms} which start from a randomly chosen initial point and converge to optima by repeating iteratively a set of procedures. We've found that many such algorithms are to a bounded amount of inconsistency and still converge correctly. This property allows distributed ML to relax strict consistency models to improve system performance while theoretically guarantees algorithmic correctness. In this paper, we present several relaxed consistency models for asynchronous parallel computation and theoretically prove their algorithmic correctness. The proposed consistency models are implemented in a distributed parameter server and evaluated in the context of a popular ML application: topic modeling.
Jinliang Wei, Wei Dai, Abhimanu Kumar, Xun Zheng, Qirong Ho and Eric P. Xing
null
1312.7869
null
null
Approximating the Bethe partition function
cs.LG
When belief propagation (BP) converges, it does so to a stationary point of the Bethe free energy $F$, and is often strikingly accurate. However, it may converge only to a local optimum or may not converge at all. An algorithm was recently introduced for attractive binary pairwise MRFs which is guaranteed to return an $\epsilon$-approximation to the global minimum of $F$ in polynomial time provided the maximum degree $\Delta=O(\log n)$, where $n$ is the number of variables. Here we significantly improve this algorithm and derive several results including a new approach based on analyzing first derivatives of $F$, which leads to performance that is typically far superior and yields a fully polynomial-time approximation scheme (FPTAS) for attractive models without any degree restriction. Further, the method applies to general (non-attractive) models, though with no polynomial time guarantee in this case, leading to the important result that approximating $\log$ of the Bethe partition function, $\log Z_B=-\min F$, for a general model to additive $\epsilon$-accuracy may be reduced to a discrete MAP inference problem. We explore an application to predicting equipment failure on an urban power network and demonstrate that the Bethe approximation can perform well even when BP fails to converge.
Adrian Weller, Tony Jebara
null
1401.0044
null
null
PSO-MISMO Modeling Strategy for Multi-Step-Ahead Time Series Prediction
cs.AI cs.LG cs.NE stat.ML
Multi-step-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multi-step-ahead time series prediction, exhibiting advantages compared with the two currently dominating strategies, the iterated and the direct strategies. Built on the established MISMO strategy, this study proposes a particle swarm optimization (PSO)-based MISMO modeling strategy, which is capable of determining the number of sub-models in a self-adaptive mode, with varying prediction horizons. Rather than deriving crisp divides with equal-size s prediction horizons from the established MISMO, the proposed PSO-MISMO strategy, implemented with neural networks, employs a heuristic to create flexible divides with varying sizes of prediction horizons and to generate corresponding sub-models, providing considerable flexibility in model construction, which has been validated with simulated and real datasets.
Yukun Bao, Tao Xiong, Zhongyi Hu
10.1109/TCYB.2013.2265084
1401.0104
null
null
Controlled Sparsity Kernel Learning
cs.LG
Multiple Kernel Learning(MKL) on Support Vector Machines(SVMs) has been a popular front of research in recent times due to its success in application problems like Object Categorization. This success is due to the fact that MKL has the ability to choose from a variety of feature kernels to identify the optimal kernel combination. But the initial formulation of MKL was only able to select the best of the features and misses out many other informative kernels presented. To overcome this, the Lp norm based formulation was proposed by Kloft et. al. This formulation is capable of choosing a non-sparse set of kernels through a control parameter p. Unfortunately, the parameter p does not have a direct meaning to the number of kernels selected. We have observed that stricter control over the number of kernels selected gives us an edge over these techniques in terms of accuracy of classification and also helps us to fine tune the algorithms to the time requirements at hand. In this work, we propose a Controlled Sparsity Kernel Learning (CSKL) formulation that can strictly control the number of kernels which we wish to select. The CSKL formulation introduces a parameter t which directly corresponds to the number of kernels selected. It is important to note that a search in t space is finite and fast as compared to p. We have also provided an efficient Reduced Gradient Descent based algorithm to solve the CSKL formulation, which is proven to converge. Through our experiments on the Caltech101 Object Categorization dataset, we have also shown that one can achieve better accuracies than the previous formulations through the right choice of t.
Dinesh Govindaraj, Raman Sankaran, Sreedal Menon, Chiranjib Bhattacharyya
null
1401.0116
null
null
Black Box Variational Inference
stat.ML cs.LG stat.CO stat.ME
Variational inference has become a widely used method to approximate posteriors in complex latent variables models. However, deriving a variational inference algorithm generally requires significant model-specific analysis, and these efforts can hinder and deter us from quickly developing and exploring a variety of models for a problem at hand. In this paper, we present a "black box" variational inference algorithm, one that can be quickly applied to many models with little additional derivation. Our method is based on a stochastic optimization of the variational objective where the noisy gradient is computed from Monte Carlo samples from the variational distribution. We develop a number of methods to reduce the variance of the gradient, always maintaining the criterion that we want to avoid difficult model-based derivations. We evaluate our method against the corresponding black box sampling based methods. We find that our method reaches better predictive likelihoods much faster than sampling methods. Finally, we demonstrate that Black Box Variational Inference lets us easily explore a wide space of models by quickly constructing and evaluating several models of longitudinal healthcare data.
Rajesh Ranganath and Sean Gerrish and David M. Blei
null
1401.0118
null
null
Speeding-Up Convergence via Sequential Subspace Optimization: Current State and Future Directions
cs.NA cs.LG
This is an overview paper written in style of research proposal. In recent years we introduced a general framework for large-scale unconstrained optimization -- Sequential Subspace Optimization (SESOP) and demonstrated its usefulness for sparsity-based signal/image denoising, deconvolution, compressive sensing, computed tomography, diffraction imaging, support vector machines. We explored its combination with Parallel Coordinate Descent and Separable Surrogate Function methods, obtaining state of the art results in above-mentioned areas. There are several methods, that are faster than plain SESOP under specific conditions: Trust region Newton method - for problems with easily invertible Hessian matrix; Truncated Newton method - when fast multiplication by Hessian is available; Stochastic optimization methods - for problems with large stochastic-type data; Multigrid methods - for problems with nested multilevel structure. Each of these methods can be further improved by merge with SESOP. One can also accelerate Augmented Lagrangian method for constrained optimization problems and Alternating Direction Method of Multipliers for problems with separable objective function and non-separable constraints.
Michael Zibulevsky
null
1401.0159
null
null
Sparse Recovery with Very Sparse Compressed Counting
stat.ME cs.DS cs.IT cs.LG math.IT
Compressed sensing (sparse signal recovery) often encounters nonnegative data (e.g., images). Recently we developed the methodology of using (dense) Compressed Counting for recovering nonnegative K-sparse signals. In this paper, we adopt very sparse Compressed Counting for nonnegative signal recovery. Our design matrix is sampled from a maximally-skewed p-stable distribution (0<p<1), and we sparsify the design matrix so that on average (1-g)-fraction of the entries become zero. The idea is related to very sparse stable random projections (Li et al 2006 and Li 2007), the prior work for estimating summary statistics of the data. In our theoretical analysis, we show that, when p->0, it suffices to use M= K/(1-exp(-gK) log N measurements, so that all coordinates can be recovered in one scan of the coordinates. If g = 1 (i.e., dense design), then M = K log N. If g= 1/K or 2/K (i.e., very sparse design), then M = 1.58K log N or M = 1.16K log N. This means the design matrix can be indeed very sparse at only a minor inflation of the sample complexity. Interestingly, as p->1, the required number of measurements is essentially M = 2.7K log N, provided g= 1/K. It turns out that this result is a general worst-case bound.
Ping Li, Cun-Hui Zhang, Tong Zhang
null
1401.0201
null
null
Robust Hierarchical Clustering
cs.LG cs.DS
One of the most widely used techniques for data clustering is agglomerative clustering. Such algorithms have been long used across many different fields ranging from computational biology to social sciences to computer vision in part because their output is easy to interpret. Unfortunately, it is well known, however, that many of the classic agglomerative clustering algorithms are not robust to noise. In this paper we propose and analyze a new robust algorithm for bottom-up agglomerative clustering. We show that our algorithm can be used to cluster accurately in cases where the data satisfies a number of natural properties and where the traditional agglomerative algorithms fail. We also show how to adapt our algorithm to the inductive setting where our given data is only a small random sample of the entire data set. Experimental evaluations on synthetic and real world data sets show that our algorithm achieves better performance than other hierarchical algorithms in the presence of noise.
Maria-Florina Balcan, Yingyu Liang, Pramod Gupta
null
1401.0247
null
null
Modeling Attractiveness and Multiple Clicks in Sponsored Search Results
cs.IR cs.LG
Click models are an important tool for leveraging user feedback, and are used by commercial search engines for surfacing relevant search results. However, existing click models are lacking in two aspects. First, they do not share information across search results when computing attractiveness. Second, they assume that users interact with the search results sequentially. Based on our analysis of the click logs of a commercial search engine, we observe that the sequential scan assumption does not always hold, especially for sponsored search results. To overcome the above two limitations, we propose a new click model. Our key insight is that sharing information across search results helps in identifying important words or key-phrases which can then be used to accurately compute attractiveness of a search result. Furthermore, we argue that the click probability of a position as well as its attractiveness changes during a user session and depends on the user's past click experience. Our model seamlessly incorporates the effect of externalities (quality of other search results displayed in response to a user query), user fatigue, as well as pre and post-click relevance of a sponsored search result. We propose an efficient one-pass inference scheme and empirically evaluate the performance of our model via extensive experiments using the click logs of a large commercial search engine.
Dinesh Govindaraj, Tao Wang, S.V.N. Vishwanathan
null
1401.0255
null
null
Learning without Concentration
cs.LG stat.ML
We obtain sharp bounds on the performance of Empirical Risk Minimization performed in a convex class and with respect to the squared loss, without assuming that class members and the target are bounded functions or have rapidly decaying tails. Rather than resorting to a concentration-based argument, the method used here relies on a `small-ball' assumption and thus holds for classes consisting of heavy-tailed functions and for heavy-tailed targets. The resulting estimates scale correctly with the `noise level' of the problem, and when applied to the classical, bounded scenario, always improve the known bounds.
Shahar Mendelson
null
1401.0304
null
null
EigenGP: Gaussian Process Models with Adaptive Eigenfunctions
cs.LG
Gaussian processes (GPs) provide a nonparametric representation of functions. However, classical GP inference suffers from high computational cost for big data. In this paper, we propose a new Bayesian approach, EigenGP, that learns both basis dictionary elements--eigenfunctions of a GP prior--and prior precisions in a sparse finite model. It is well known that, among all orthogonal basis functions, eigenfunctions can provide the most compact representation. Unlike other sparse Bayesian finite models where the basis function has a fixed form, our eigenfunctions live in a reproducing kernel Hilbert space as a finite linear combination of kernel functions. We learn the dictionary elements--eigenfunctions--and the prior precisions over these elements as well as all the other hyperparameters from data by maximizing the model marginal likelihood. We explore computational linear algebra to simplify the gradient computation significantly. Our experimental results demonstrate improved predictive performance of EigenGP over alternative sparse GP methods as well as relevance vector machine.
Hao Peng and Yuan Qi
null
1401.0362
null
null
Generalization Bounds for Representative Domain Adaptation
cs.LG stat.ML
In this paper, we propose a novel framework to analyze the theoretical properties of the learning process for a representative type of domain adaptation, which combines data from multiple sources and one target (or briefly called representative domain adaptation). In particular, we use the integral probability metric to measure the difference between the distributions of two domains and meanwhile compare it with the H-divergence and the discrepancy distance. We develop the Hoeffding-type, the Bennett-type and the McDiarmid-type deviation inequalities for multiple domains respectively, and then present the symmetrization inequality for representative domain adaptation. Next, we use the derived inequalities to obtain the Hoeffding-type and the Bennett-type generalization bounds respectively, both of which are based on the uniform entropy number. Moreover, we present the generalization bounds based on the Rademacher complexity. Finally, we analyze the asymptotic convergence and the rate of convergence of the learning process for representative domain adaptation. We discuss the factors that affect the asymptotic behavior of the learning process and the numerical experiments support our theoretical findings as well. Meanwhile, we give a comparison with the existing results of domain adaptation and the classical results under the same-distribution assumption.
Chao Zhang, Lei Zhang, Wei Fan, Jieping Ye
null
1401.0376
null
null
Zero-Shot Learning for Semantic Utterance Classification
cs.CL cs.LG
We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier $f: X \to Y$ for problems where none of the semantic categories $Y$ are present in the training set. The framework uncovers the link between categories and utterances using a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts of search engine query log data. More precisely, we propose a novel method that can learn discriminative semantic features without supervision. It uses the zero-shot learning framework to guide the learning of the semantic features. We demonstrate the effectiveness of the zero-shot semantic learning algorithm on the SUC dataset collected by (Tur, 2012). Furthermore, we achieve state-of-the-art results by combining the semantic features with a supervised method.
Yann N. Dauphin, Gokhan Tur, Dilek Hakkani-Tur, Larry Heck
null
1401.0509
null
null
Structured Generative Models of Natural Source Code
cs.PL cs.LG stat.ML
We study the problem of building generative models of natural source code (NSC); that is, source code written and understood by humans. Our primary contribution is to describe a family of generative models for NSC that have three key properties: First, they incorporate both sequential and hierarchical structure. Second, we learn a distributed representation of source code elements. Finally, they integrate closely with a compiler, which allows leveraging compiler logic and abstractions when building structure into the model. We also develop an extension that includes more complex structure, refining how the model generates identifier tokens based on what variables are currently in scope. Our models can be learned efficiently, and we show empirically that including appropriate structure greatly improves the models, measured by the probability of generating test programs.
Chris J. Maddison and Daniel Tarlow
null
1401.0514
null
null
More Algorithms for Provable Dictionary Learning
cs.DS cs.LG stat.ML
In dictionary learning, also known as sparse coding, the algorithm is given samples of the form $y = Ax$ where $x\in \mathbb{R}^m$ is an unknown random sparse vector and $A$ is an unknown dictionary matrix in $\mathbb{R}^{n\times m}$ (usually $m > n$, which is the overcomplete case). The goal is to learn $A$ and $x$. This problem has been studied in neuroscience, machine learning, visions, and image processing. In practice it is solved by heuristic algorithms and provable algorithms seemed hard to find. Recently, provable algorithms were found that work if the unknown feature vector $x$ is $\sqrt{n}$-sparse or even sparser. Spielman et al. \cite{DBLP:journals/jmlr/SpielmanWW12} did this for dictionaries where $m=n$; Arora et al. \cite{AGM} gave an algorithm for overcomplete ($m >n$) and incoherent matrices $A$; and Agarwal et al. \cite{DBLP:journals/corr/AgarwalAN13} handled a similar case but with weaker guarantees. This raised the problem of designing provable algorithms that allow sparsity $\gg \sqrt{n}$ in the hidden vector $x$. The current paper designs algorithms that allow sparsity up to $n/poly(\log n)$. It works for a class of matrices where features are individually recoverable, a new notion identified in this paper that may motivate further work. The algorithm runs in quasipolynomial time because they use limited enumeration.
Sanjeev Arora, Aditya Bhaskara, Rong Ge, Tengyu Ma
null
1401.0579
null
null
Computing Entropy Rate Of Symbol Sources & A Distribution-free Limit Theorem
cs.IT cs.LG math.IT math.PR stat.CO stat.ML
Entropy rate of sequential data-streams naturally quantifies the complexity of the generative process. Thus entropy rate fluctuations could be used as a tool to recognize dynamical perturbations in signal sources, and could potentially be carried out without explicit background noise characterization. However, state of the art algorithms to estimate the entropy rate have markedly slow convergence; making such entropic approaches non-viable in practice. We present here a fundamentally new approach to estimate entropy rates, which is demonstrated to converge significantly faster in terms of input data lengths, and is shown to be effective in diverse applications ranging from the estimation of the entropy rate of English texts to the estimation of complexity of chaotic dynamical systems. Additionally, the convergence rate of entropy estimates do not follow from any standard limit theorem, and reported algorithms fail to provide any confidence bounds on the computed values. Exploiting a connection to the theory of probabilistic automata, we establish a convergence rate of $O(\log \vert s \vert/\sqrt[3]{\vert s \vert})$ as a function of the input length $\vert s \vert$, which then yields explicit uncertainty estimates, as well as required data lengths to satisfy pre-specified confidence bounds.
Ishanu Chattopadhyay and Hod Lipson
null
1401.0711
null
null
Data Smashing
cs.LG cs.AI cs.CE cs.IT math.IT stat.ML
Investigation of the underlying physics or biology from empirical data requires a quantifiable notion of similarity - when do two observed data sets indicate nearly identical generating processes, and when they do not. The discriminating characteristics to look for in data is often determined by heuristics designed by experts, $e.g.$, distinct shapes of "folded" lightcurves may be used as "features" to classify variable stars, while determination of pathological brain states might require a Fourier analysis of brainwave activity. Finding good features is non-trivial. Here, we propose a universal solution to this problem: we delineate a principle for quantifying similarity between sources of arbitrary data streams, without a priori knowledge, features or training. We uncover an algebraic structure on a space of symbolic models for quantized data, and show that such stochastic generators may be added and uniquely inverted; and that a model and its inverse always sum to the generator of flat white noise. Therefore, every data stream has an anti-stream: data generated by the inverse model. Similarity between two streams, then, is the degree to which one, when summed to the other's anti-stream, mutually annihilates all statistical structure to noise. We call this data smashing. We present diverse applications, including disambiguation of brainwaves pertaining to epileptic seizures, detection of anomalous cardiac rhythms, and classification of astronomical objects from raw photometry. In our examples, the data smashing principle, without access to any domain knowledge, meets or exceeds the performance of specialized algorithms tuned by domain experts.
Ishanu Chattopadhyay and Hod Lipson
null
1401.0742
null
null
Context-Aware Hypergraph Construction for Robust Spectral Clustering
cs.CV cs.LG
Spectral clustering is a powerful tool for unsupervised data analysis. In this paper, we propose a context-aware hypergraph similarity measure (CAHSM), which leads to robust spectral clustering in the case of noisy data. We construct three types of hypergraph---the pairwise hypergraph, the k-nearest-neighbor (kNN) hypergraph, and the high-order over-clustering hypergraph. The pairwise hypergraph captures the pairwise similarity of data points; the kNN hypergraph captures the neighborhood of each point; and the clustering hypergraph encodes high-order contexts within the dataset. By combining the affinity information from these three hypergraphs, the CAHSM algorithm is able to explore the intrinsic topological information of the dataset. Therefore, data clustering using CAHSM tends to be more robust. Considering the intra-cluster compactness and the inter-cluster separability of vertices, we further design a discriminative hypergraph partitioning criterion (DHPC). Using both CAHSM and DHPC, a robust spectral clustering algorithm is developed. Theoretical analysis and experimental evaluation demonstrate the effectiveness and robustness of the proposed algorithm.
Xi Li, Weiming Hu, Chunhua Shen, Anthony Dick, Zhongfei Zhang
10.1109/TKDE.2013.126
1401.0764
null
null
From Kernel Machines to Ensemble Learning
cs.LG cs.CV
Ensemble methods such as boosting combine multiple learners to obtain better prediction than could be obtained from any individual learner. Here we propose a principled framework for directly constructing ensemble learning methods from kernel methods. Unlike previous studies showing the equivalence between boosting and support vector machines (SVMs), which needs a translation procedure, we show that it is possible to design boosting-like procedure to solve the SVM optimization problems. In other words, it is possible to design ensemble methods directly from SVM without any middle procedure. This finding not only enables us to design new ensemble learning methods directly from kernel methods, but also makes it possible to take advantage of those highly-optimized fast linear SVM solvers for ensemble learning. We exemplify this framework for designing binary ensemble learning as well as a new multi-class ensemble learning methods. Experimental results demonstrate the flexibility and usefulness of the proposed framework.
Chunhua Shen, Fayao Liu
null
1401.0767
null
null
Least Squares Policy Iteration with Instrumental Variables vs. Direct Policy Search: Comparison Against Optimal Benchmarks Using Energy Storage
math.OC cs.LG
This paper studies approximate policy iteration (API) methods which use least-squares Bellman error minimization for policy evaluation. We address several of its enhancements, namely, Bellman error minimization using instrumental variables, least-squares projected Bellman error minimization, and projected Bellman error minimization using instrumental variables. We prove that for a general discrete-time stochastic control problem, Bellman error minimization using instrumental variables is equivalent to both variants of projected Bellman error minimization. An alternative to these API methods is direct policy search based on knowledge gradient. The practical performance of these three approximate dynamic programming methods are then investigated in the context of an application in energy storage, integrated with an intermittent wind energy supply to fully serve a stochastic time-varying electricity demand. We create a library of test problems using real-world data and apply value iteration to find their optimal policies. These benchmarks are then used to compare the developed policies. Our analysis indicates that API with instrumental variables Bellman error minimization prominently outperforms API with least-squares Bellman error minimization. However, these approaches underperform our direct policy search implementation.
Warren R. Scott, Warren B. Powell, Somayeh Moazehi
null
1401.0843
null
null
Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
stat.ME cs.LG stat.ML
We develop a penalized likelihood estimation framework to estimate the structure of Gaussian Bayesian networks from observational data. In contrast to recent methods which accelerate the learning problem by restricting the search space, our main contribution is a fast algorithm for score-based structure learning which does not restrict the search space in any way and works on high-dimensional datasets with thousands of variables. Our use of concave regularization, as opposed to the more popular $\ell_0$ (e.g. BIC) penalty, is new. Moreover, we provide theoretical guarantees which generalize existing asymptotic results when the underlying distribution is Gaussian. Most notably, our framework does not require the existence of a so-called faithful DAG representation, and as a result the theory must handle the inherent nonidentifiability of the estimation problem in a novel way. Finally, as a matter of independent interest, we provide a comprehensive comparison of our approach to several standard structure learning methods using open-source packages developed for the R language. Based on these experiments, we show that our algorithm is significantly faster than other competing methods while obtaining higher sensitivity with comparable false discovery rates for high-dimensional data. In particular, the total runtime for our method to generate a solution path of 20 estimates for DAGs with 8000 nodes is around one hour.
Bryon Aragam and Qing Zhou
null
1401.0852
null
null
Schatten-$p$ Quasi-Norm Regularized Matrix Optimization via Iterative Reweighted Singular Value Minimization
math.OC cs.LG math.NA stat.CO stat.ML
In this paper we study general Schatten-$p$ quasi-norm (SPQN) regularized matrix minimization problems. In particular, we first introduce a class of first-order stationary points for them, and show that the first-order stationary points introduced in [11] for an SPQN regularized $vector$ minimization problem are equivalent to those of an SPQN regularized $matrix$ minimization reformulation. We also show that any local minimizer of the SPQN regularized matrix minimization problems must be a first-order stationary point. Moreover, we derive lower bounds for nonzero singular values of the first-order stationary points and hence also of the local minimizers of the SPQN regularized matrix minimization problems. The iterative reweighted singular value minimization (IRSVM) methods are then proposed to solve these problems, whose subproblems are shown to have a closed-form solution. In contrast to the analogous methods for the SPQN regularized $vector$ minimization problems, the convergence analysis of these methods is significantly more challenging. We develop a novel approach to establishing the convergence of these methods, which makes use of the expression of a specific solution of their subproblems and avoids the intricate issue of finding the explicit expression for the Clarke subdifferential of the objective of their subproblems. In particular, we show that any accumulation point of the sequence generated by the IRSVM methods is a first-order stationary point of the problems. Our computational results demonstrate that the IRSVM methods generally outperform some recently developed state-of-the-art methods in terms of solution quality and/or speed.
Zhaosong Lu and Yong Zhang
null
1401.0869
null
null
Learning parametric dictionaries for graph signals
cs.LG cs.SI stat.ML
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties -- the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on weighted graphs, an additional design challenge is to incorporate the intrinsic geometric structure of the irregular data domain into the atoms of the dictionary. In this work, we propose a parametric dictionary learning algorithm to design data-adapted, structured dictionaries that sparsely represent graph signals. In particular, we model graph signals as combinations of overlapping local patterns. We impose the constraint that each dictionary is a concatenation of subdictionaries, with each subdictionary being a polynomial of the graph Laplacian matrix, representing a single pattern translated to different areas of the graph. The learning algorithm adapts the patterns to a training set of graph signals. Experimental results on both synthetic and real datasets demonstrate that the dictionaries learned by the proposed algorithm are competitive with and often better than unstructured dictionaries learned by state-of-the-art numerical learning algorithms in terms of sparse approximation of graph signals. In contrast to the unstructured dictionaries, however, the dictionaries learned by the proposed algorithm feature localized atoms and can be implemented in a computationally efficient manner in signal processing tasks such as compression, denoising, and classification.
Dorina Thanou, David I Shuman, Pascal Frossard
10.1109/TSP.2014.2332441
1401.0887
null
null
Feature Selection Using Classifier in High Dimensional Data
cs.CV cs.LG stat.ML
Feature selection is frequently used as a pre-processing step to machine learning. It is a process of choosing a subset of original features so that the feature space is optimally reduced according to a certain evaluation criterion. The central objective of this paper is to reduce the dimension of the data by finding a small set of important features which can give good classification performance. We have applied filter and wrapper approach with different classifiers QDA and LDA respectively. A widely-used filter method is used for bioinformatics data i.e. a univariate criterion separately on each feature, assuming that there is no interaction between features and then applied Sequential Feature Selection method. Experimental results show that filter approach gives better performance in respect of Misclassification Error Rate.
Vijendra Singh and Shivani Pathak
null
1401.0898
null
null
Exploration vs Exploitation vs Safety: Risk-averse Multi-Armed Bandits
cs.LG
Motivated by applications in energy management, this paper presents the Multi-Armed Risk-Aware Bandit (MARAB) algorithm. With the goal of limiting the exploration of risky arms, MARAB takes as arm quality its conditional value at risk. When the user-supplied risk level goes to 0, the arm quality tends toward the essential infimum of the arm distribution density, and MARAB tends toward the MIN multi-armed bandit algorithm, aimed at the arm with maximal minimal value. As a first contribution, this paper presents a theoretical analysis of the MIN algorithm under mild assumptions, establishing its robustness comparatively to UCB. The analysis is supported by extensive experimental validation of MIN and MARAB compared to UCB and state-of-art risk-aware MAB algorithms on artificial and real-world problems.
Nicolas Galichet (LRI, INRIA Saclay - Ile de France), Mich\`ele Sebag (LRI, INRIA Saclay - Ile de France), Olivier Teytaud (LRI, INRIA Saclay - Ile de France)
null
1401.1123
null
null
Cortical prediction markets
cs.AI cs.GT cs.LG cs.MA q-bio.NC
We investigate cortical learning from the perspective of mechanism design. First, we show that discretizing standard models of neurons and synaptic plasticity leads to rational agents maximizing simple scoring rules. Second, our main result is that the scoring rules are proper, implying that neurons faithfully encode expected utilities in their synaptic weights and encode high-scoring outcomes in their spikes. Third, with this foundation in hand, we propose a biologically plausible mechanism whereby neurons backpropagate incentives which allows them to optimize their usefulness to the rest of cortex. Finally, experiments show that networks that backpropagate incentives can learn simple tasks.
David Balduzzi
null
1401.1465
null
null
Key point selection and clustering of swimmer coordination through Sparse Fisher-EM
stat.ML cs.CV cs.LG physics.data-an stat.AP
To answer the existence of optimal swimmer learning/teaching strategies, this work introduces a two-level clustering in order to analyze temporal dynamics of motor learning in breaststroke swimming. Each level have been performed through Sparse Fisher-EM, a unsupervised framework which can be applied efficiently on large and correlated datasets. The induced sparsity selects key points of the coordination phase without any prior knowledge.
John Komar and Romain H\'erault and Ludovic Seifert
null
1401.1489
null
null
Optimal Demand Response Using Device Based Reinforcement Learning
cs.LG cs.AI cs.SY
Demand response (DR) for residential and small commercial buildings is estimated to account for as much as 65% of the total energy savings potential of DR, and previous work shows that a fully automated Energy Management System (EMS) is a necessary prerequisite to DR in these areas. In this paper, we propose a novel EMS formulation for DR problems in these sectors. Specifically, we formulate a fully automated EMS's rescheduling problem as a reinforcement learning (RL) problem, and argue that this RL problem can be approximately solved by decomposing it over device clusters. Compared with existing formulations, our new formulation (1) does not require explicitly modeling the user's dissatisfaction on job rescheduling, (2) enables the EMS to self-initiate jobs, (3) allows the user to initiate more flexible requests and (4) has a computational complexity linear in the number of devices. We also demonstrate the simulation results of applying Q-learning, one of the most popular and classical RL algorithms, to a representative example.
Zheng Wen, Daniel O'Neill and Hamid Reza Maei
null
1401.1549
null
null
Beyond One-Step-Ahead Forecasting: Evaluation of Alternative Multi-Step-Ahead Forecasting Models for Crude Oil Prices
cs.LG cs.AI
An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD-SBM-FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD-SBM-FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load.
Tao Xiong, Yukun Bao, Zhongyi Hu
10.1016/j.eneco.2013.07.028
1401.1560
null
null
Fast nonparametric clustering of structured time-series
cs.LG cs.CV stat.ML
In this publication, we combine two Bayesian non-parametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e. data containing groups where we wish to model inter- and intra-group variability. Our innovation in the DP model is an implementation of a new fast collapsed variational inference procedure which enables us to optimize our variationala pproximation significantly faster than standard VB approaches. In a biological time series application we show how our model better captures salient features of the data, leading to better consistency with existing biological classifications, while the associated inference algorithm provides a twofold speed-up over EM-based variational inference.
James Hensman and Magnus Rattray and Neil D. Lawrence
null
1401.1605
null
null
Learning Multilingual Word Representations using a Bag-of-Words Autoencoder
cs.CL cs.LG stat.ML
Recent work on learning multilingual word representations usually relies on the use of word-level alignements (e.g. infered with the help of GIZA++) between translated sentences, in order to align the word embeddings in different languages. In this workshop paper, we investigate an autoencoder model for learning multilingual word representations that does without such word-level alignements. The autoencoder is trained to reconstruct the bag-of-word representation of given sentence from an encoded representation extracted from its translation. We evaluate our approach on a multilingual document classification task, where labeled data is available only for one language (e.g. English) while classification must be performed in a different language (e.g. French). In our experiments, we observe that our method compares favorably with a previously proposed method that exploits word-level alignments to learn word representations.
Stanislas Lauly, Alex Boulanger, Hugo Larochelle
null
1401.1803
null
null
Robust Large Scale Non-negative Matrix Factorization using Proximal Point Algorithm
stat.ML cs.IT cs.LG cs.NA math.IT
A robust algorithm for non-negative matrix factorization (NMF) is presented in this paper with the purpose of dealing with large-scale data, where the separability assumption is satisfied. In particular, we modify the Linear Programming (LP) algorithm of [9] by introducing a reduced set of constraints for exact NMF. In contrast to the previous approaches, the proposed algorithm does not require the knowledge of factorization rank (extreme rays [3] or topics [7]). Furthermore, motivated by a similar problem arising in the context of metabolic network analysis [13], we consider an entirely different regime where the number of extreme rays or topics can be much larger than the dimension of the data vectors. The performance of the algorithm for different synthetic data sets are provided.
Jason Gejie Liu and Shuchin Aeron
null
1401.1842
null
null
DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation
cs.LG
In recent years, there has been growing focus on the study of automated recommender systems. Music recommendation systems serve as a prominent domain for such works, both from an academic and a commercial perspective. A fundamental aspect of music perception is that music is experienced in temporal context and in sequence. In this work we present DJ-MC, a novel reinforcement-learning framework for music recommendation that does not recommend songs individually but rather song sequences, or playlists, based on a model of preferences for both songs and song transitions. The model is learned online and is uniquely adapted for each listener. To reduce exploration time, DJ-MC exploits user feedback to initialize a model, which it subsequently updates by reinforcement. We evaluate our framework with human participants using both real song and playlist data. Our results indicate that DJ-MC's ability to recommend sequences of songs provides a significant improvement over more straightforward approaches, which do not take transitions into account.
Elad Liebman, Maytal Saar-Tsechansky and Peter Stone
null
1401.1880
null
null
Efficient unimodality test in clustering by signature testing
cs.LG stat.ML
This paper provides a new unimodality test with application in hierarchical clustering methods. The proposed method denoted by signature test (Sigtest), transforms the data based on its statistics. The transformed data has much smaller variation compared to the original data and can be evaluated in a simple proposed unimodality test. Compared with the existing unimodality tests, Sigtest is more accurate in detecting the overlapped clusters and has a much less computational complexity. Simulation results demonstrate the efficiency of this statistic test for both real and synthetic data sets.
Mahdi Shahbaba and Soosan Beheshti
null
1401.1895
null
null
Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
cs.CE cs.LG q-fin.ST
Highly accurate interval forecasting of a stock price index is fundamental to successfully making a profit when making investment decisions, by providing a range of values rather than a point estimate. In this study, we investigate the possibility of forecasting an interval-valued stock price index series over short and long horizons using multi-output support vector regression (MSVR). Furthermore, this study proposes a firefly algorithm (FA)-based approach, built on the established MSVR, for determining the parameters of MSVR (abbreviated as FA-MSVR). Three globally traded broad market indices are used to compare the performance of the proposed FA-MSVR method with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of statistical criteria, economic criteria, and computational cost. In terms of statistical criteria, we compare the out-of-sample forecasting using goodness-of-forecast measures and testing approaches. In terms of economic criteria, we assess the relative forecast performance with a simple trading strategy. The results obtained in this study indicate that the proposed FA-MSVR method is a promising alternative for forecasting interval-valued financial time series.
Tao Xiong, Yukun Bao, Zhongyi Hu
10.1016/j.knosys.2013.10.012
1401.1916
null
null
A PSO and Pattern Search based Memetic Algorithm for SVMs Parameters Optimization
cs.LG cs.AI cs.NE stat.ML
Addressing the issue of SVMs parameters optimization, this study proposes an efficient memetic algorithm based on Particle Swarm Optimization algorithm (PSO) and Pattern Search (PS). In the proposed memetic algorithm, PSO is responsible for exploration of the search space and the detection of the potential regions with optimum solutions, while pattern search (PS) is used to produce an effective exploitation on the potential regions obtained by PSO. Moreover, a novel probabilistic selection strategy is proposed to select the appropriate individuals among the current population to undergo local refinement, keeping a well balance between exploration and exploitation. Experimental results confirm that the local refinement with PS and our proposed selection strategy are effective, and finally demonstrate effectiveness and robustness of the proposed PSO-PS based MA for SVMs parameters optimization.
Yukun Bao, Zhongyi Hu, Tao Xiong
10.1016/j.neucom.2013.01.027
1401.1926
null
null
Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts
cs.LG stat.ML
We present a Bayesian nonparametric framework for multilevel clustering which utilizes group-level context information to simultaneously discover low-dimensional structures of the group contents and partitions groups into clusters. Using the Dirichlet process as the building block, our model constructs a product base-measure with a nested structure to accommodate content and context observations at multiple levels. The proposed model possesses properties that link the nested Dirichlet processes (nDP) and the Dirichlet process mixture models (DPM) in an interesting way: integrating out all contents results in the DPM over contexts, whereas integrating out group-specific contexts results in the nDP mixture over content variables. We provide a Polya-urn view of the model and an efficient collapsed Gibbs inference procedure. Extensive experiments on real-world datasets demonstrate the advantage of utilizing context information via our model in both text and image domains.
Vu Nguyen, Dinh Phung, XuanLong Nguyen, Svetha Venkatesh, Hung Hai Bui
null
1401.1974
null
null
Actor-Critic Algorithms for Learning Nash Equilibria in N-player General-Sum Games
cs.GT cs.LG stat.ML
We consider the problem of finding stationary Nash equilibria (NE) in a finite discounted general-sum stochastic game. We first generalize a non-linear optimization problem from Filar and Vrieze [2004] to a $N$-player setting and break down this problem into simpler sub-problems that ensure there is no Bellman error for a given state and an agent. We then provide a characterization of solution points of these sub-problems that correspond to Nash equilibria of the underlying game and for this purpose, we derive a set of necessary and sufficient SG-SP (Stochastic Game - Sub-Problem) conditions. Using these conditions, we develop two actor-critic algorithms: OFF-SGSP (model-based) and ON-SGSP (model-free). Both algorithms use a critic that estimates the value function for a fixed policy and an actor that performs descent in the policy space using a descent direction that avoids local minima. We establish that both algorithms converge, in self-play, to the equilibria of a certain ordinary differential equation (ODE), whose stable limit points coincide with stationary NE of the underlying general-sum stochastic game. On a single state non-generic game (see Hart and Mas-Colell [2005]) as well as on a synthetic two-player game setup with $810,000$ states, we establish that ON-SGSP consistently outperforms NashQ ([Hu and Wellman, 2003] and FFQ [Littman, 2001] algorithms.
H.L Prasad, L.A.Prashanth and Shalabh Bhatnagar
null
1401.2086
null
null
A Comparative Study of Reservoir Computing for Temporal Signal Processing
cs.NE cs.LG
Reservoir computing (RC) is a novel approach to time series prediction using recurrent neural networks. In RC, an input signal perturbs the intrinsic dynamics of a medium called a reservoir. A readout layer is then trained to reconstruct a target output from the reservoir's state. The multitude of RC architectures and evaluation metrics poses a challenge to both practitioners and theorists who study the task-solving performance and computational power of RC. In addition, in contrast to traditional computation models, the reservoir is a dynamical system in which computation and memory are inseparable, and therefore hard to analyze. Here, we compare echo state networks (ESN), a popular RC architecture, with tapped-delay lines (DL) and nonlinear autoregressive exogenous (NARX) networks, which we use to model systems with limited computation and limited memory respectively. We compare the performance of the three systems while computing three common benchmark time series: H{\'e}non Map, NARMA10, and NARMA20. We find that the role of the reservoir in the reservoir computing paradigm goes beyond providing a memory of the past inputs. The DL and the NARX network have higher memorization capability, but fall short of the generalization power of the ESN.
Alireza Goudarzi, Peter Banda, Matthew R. Lakin, Christof Teuscher, Darko Stefanovic
null
1401.2224
null
null
Extension of Sparse Randomized Kaczmarz Algorithm for Multiple Measurement Vectors
cs.NA cs.LG stat.ML
The Kaczmarz algorithm is popular for iteratively solving an overdetermined system of linear equations. The traditional Kaczmarz algorithm can approximate the solution in few sweeps through the equations but a randomized version of the Kaczmarz algorithm was shown to converge exponentially and independent of number of equations. Recently an algorithm for finding sparse solution to a linear system of equations has been proposed based on weighted randomized Kaczmarz algorithm. These algorithms solves single measurement vector problem; however there are applications were multiple-measurements are available. In this work, the objective is to solve a multiple measurement vector problem with common sparse support by modifying the randomized Kaczmarz algorithm. We have also modeled the problem of face recognition from video as the multiple measurement vector problem and solved using our proposed technique. We have compared the proposed algorithm with state-of-art spectral projected gradient algorithm for multiple measurement vectors on both real and synthetic datasets. The Monte Carlo simulations confirms that our proposed algorithm have better recovery and convergence rate than the MMV version of spectral projected gradient algorithm under fairness constraints.
Hemant Kumar Aggarwal and Angshul Majumdar
null
1401.2288
null
null
Lasso and equivalent quadratic penalized models
stat.ML cs.LG
The least absolute shrinkage and selection operator (lasso) and ridge regression produce usually different estimates although input, loss function and parameterization of the penalty are identical. In this paper we look for ridge and lasso models with identical solution set. It turns out, that the lasso model with shrink vector $\lambda$ and a quadratic penalized model with shrink matrix as outer product of $\lambda$ with itself are equivalent, in the sense that they have equal solutions. To achieve this, we have to restrict the estimates to be positive. This doesn't limit the area of application since we can easily decompose every estimate in a positive and negative part. The resulting problem can be solved with a non negative least square algorithm. Beside this quadratic penalized model, an augmented regression model with positive bounded estimates is developed which is also equivalent to the lasso model, but is probably faster to solve.
Stefan Hummelsheim
null
1401.2304
null
null
Clustering, Coding, and the Concept of Similarity
cs.LG
This paper develops a theory of clustering and coding which combines a geometric model with a probabilistic model in a principled way. The geometric model is a Riemannian manifold with a Riemannian metric, ${g}_{ij}({\bf x})$, which we interpret as a measure of dissimilarity. The probabilistic model consists of a stochastic process with an invariant probability measure which matches the density of the sample input data. The link between the two models is a potential function, $U({\bf x})$, and its gradient, $\nabla U({\bf x})$. We use the gradient to define the dissimilarity metric, which guarantees that our measure of dissimilarity will depend on the probability measure. Finally, we use the dissimilarity metric to define a coordinate system on the embedded Riemannian manifold, which gives us a low-dimensional encoding of our original data.
L. Thorne McCarty
null
1401.2411
null
null
An Online Expectation-Maximisation Algorithm for Nonnegative Matrix Factorisation Models
cs.LG stat.CO stat.ML
In this paper we formulate the nonnegative matrix factorisation (NMF) problem as a maximum likelihood estimation problem for hidden Markov models and propose online expectation-maximisation (EM) algorithms to estimate the NMF and the other unknown static parameters. We also propose a sequential Monte Carlo approximation of our online EM algorithm. We show the performance of the proposed method with two numerical examples.
Sinan Yildirim, A. Taylan Cemgil, Sumeetpal S. Singh
10.3182/20120711-3-BE-2027.00312
1401.2490
null
null
Multi-Step-Ahead Time Series Prediction using Multiple-Output Support Vector Regression
cs.LG stat.ML
Accurate time series prediction over long future horizons is challenging and of great interest to both practitioners and academics. As a well-known intelligent algorithm, the standard formulation of Support Vector Regression (SVR) could be taken for multi-step-ahead time series prediction, only relying either on iterated strategy or direct strategy. This study proposes a novel multiple-step-ahead time series prediction approach which employs multiple-output support vector regression (M-SVR) with multiple-input multiple-output (MIMO) prediction strategy. In addition, the rank of three leading prediction strategies with SVR is comparatively examined, providing practical implications on the selection of the prediction strategy for multi-step-ahead forecasting while taking SVR as modeling technique. The proposed approach is validated with the simulated and real datasets. The quantitative and comprehensive assessments are performed on the basis of the prediction accuracy and computational cost. The results indicate that: 1) the M-SVR using MIMO strategy achieves the best accurate forecasts with accredited computational load, 2) the standard SVR using direct strategy achieves the second best accurate forecasts, but with the most expensive computational cost, and 3) the standard SVR using iterated strategy is the worst in terms of prediction accuracy, but with the least computational cost.
Yukun Bao, Tao Xiong, Zhongyi Hu
10.1016/j.neucom.2013.09.010
1401.2504
null
null
MRFalign: Protein Homology Detection through Alignment of Markov Random Fields
q-bio.QM cs.CE cs.LG
Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/.
Jianzhu Ma, Sheng Wang, Zhiyong Wang and Jinbo Xu
10.1371/journal.pcbi.1003500
1401.2668
null
null
PSMACA: An Automated Protein Structure Prediction Using MACA (Multiple Attractor Cellular Automata)
cs.CE cs.LG
Protein Structure Predication from sequences of amino acid has gained a remarkable attention in recent years. Even though there are some prediction techniques addressing this problem, the approximate accuracy in predicting the protein structure is closely 75%. An automated procedure was evolved with MACA (Multiple Attractor Cellular Automata) for predicting the structure of the protein. Most of the existing approaches are sequential which will classify the input into four major classes and these are designed for similar sequences. PSMACA is designed to identify ten classes from the sequences that share twilight zone similarity and identity with the training sequences. This method also predicts three states (helix, strand, and coil) for the structure. Our comprehensive design considers 10 feature selection methods and 4 classifiers to develop MACA (Multiple Attractor Cellular Automata) based classifiers that are build for each of the ten classes. We have tested the proposed classifier with twilight-zone and 1-high-similarity benchmark datasets with over three dozens of modern competing predictors shows that PSMACA provides the best overall accuracy that ranges between 77% and 88.7% depending on the dataset.
Pokkuluri Kiran Sree, Inamupudi Ramesh Babu, SSSN Usha Devi N
10.1166/jbic.2013.1052
1401.2688
null
null
Stochastic Optimization with Importance Sampling
stat.ML cs.LG
Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Gradient Descent (prox-SGD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a rather high variance, which negatively affects the convergence of the underlying optimization procedure. In this paper we study stochastic optimization with importance sampling, which improves the convergence rate by reducing the stochastic variance. Specifically, we study prox-SGD (actually, stochastic mirror descent) with importance sampling and prox-SDCA with importance sampling. For prox-SGD, instead of adopting uniform sampling throughout the training process, the proposed algorithm employs importance sampling to minimize the variance of the stochastic gradient. For prox-SDCA, the proposed importance sampling scheme aims to achieve higher expected dual value at each dual coordinate ascent step. We provide extensive theoretical analysis to show that the convergence rates with the proposed importance sampling methods can be significantly improved under suitable conditions both for prox-SGD and for prox-SDCA. Experiments are provided to verify the theoretical analysis.
Peilin Zhao, Tong Zhang
null
1401.2753
null
null
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
cs.LG q-bio.QM stat.ML
Scientists often express their understanding of the world through a computationally demanding simulation program. Analyzing the posterior distribution of the parameters given observations (the inverse problem) can be extremely challenging. The Approximate Bayesian Computation (ABC) framework is the standard statistical tool to handle these likelihood free problems, but they require a very large number of simulations. In this work we develop two new ABC sampling algorithms that significantly reduce the number of simulations necessary for posterior inference. Both algorithms use confidence estimates for the accept probability in the Metropolis Hastings step to adaptively choose the number of necessary simulations. Our GPS-ABC algorithm stores the information obtained from every simulation in a Gaussian process which acts as a surrogate function for the simulated statistics. Experiments on a challenging realistic biological problem illustrate the potential of these algorithms.
Edward Meeds and Max Welling
null
1401.2838
null
null
Exploiting generalisation symmetries in accuracy-based learning classifier systems: An initial study
cs.NE cs.LG
Modern learning classifier systems typically exploit a niched genetic algorithm to facilitate rule discovery. When used for reinforcement learning, such rules represent generalisations over the state-action-reward space. Whilst encouraging maximal generality, the niching can potentially hinder the formation of generalisations in the state space which are symmetrical, or very similar, over different actions. This paper introduces the use of rules which contain multiple actions, maintaining accuracy and reward metrics for each action. It is shown that problem symmetries can be exploited, improving performance, whilst not degrading performance when symmetries are reduced.
Larry Bull
null
1401.2949
null
null
Binary Classifier Calibration: Bayesian Non-Parametric Approach
stat.ML cs.LG
A set of probabilistic predictions is well calibrated if the events that are predicted to occur with probability p do in fact occur about p fraction of the time. Well calibrated predictions are particularly important when machine learning models are used in decision analysis. This paper presents two new non-parametric methods for calibrating outputs of binary classification models: a method based on the Bayes optimal selection and a method based on the Bayesian model averaging. The advantage of these methods is that they are independent of the algorithm used to learn a predictive model, and they can be applied in a post-processing step, after the model is learned. This makes them applicable to a wide variety of machine learning models and methods. These calibration methods, as well as other methods, are tested on a variety of datasets in terms of both discrimination and calibration performance. The results show the methods either outperform or are comparable in performance to the state-of-the-art calibration methods.
Mahdi Pakdaman Naeini, Gregory F. Cooper, Milos Hauskrecht
null
1401.2955
null
null
Use Case Point Approach Based Software Effort Estimation using Various Support Vector Regression Kernel Methods
cs.SE cs.LG
The job of software effort estimation is a critical one in the early stages of the software development life cycle when the details of requirements are usually not clearly identified. Various optimization techniques help in improving the accuracy of effort estimation. The Support Vector Regression (SVR) is one of several different soft-computing techniques that help in getting optimal estimated values. The idea of SVR is based upon the computation of a linear regression function in a high dimensional feature space where the input data are mapped via a nonlinear function. Further, the SVR kernel methods can be applied in transforming the input data and then based on these transformations, an optimal boundary between the possible outputs can be obtained. The main objective of the research work carried out in this paper is to estimate the software effort using use case point approach. The use case point approach relies on the use case diagram to estimate the size and effort of software projects. Then, an attempt has been made to optimize the results obtained from use case point analysis using various SVR kernel methods to achieve better prediction accuracy.
Shashank Mouli Satapathy, Santanu Kumar Rath
null
1401.3069
null
null
Dynamic Topology Adaptation and Distributed Estimation for Smart Grids
cs.IT cs.LG math.IT
This paper presents new dynamic topology adaptation strategies for distributed estimation in smart grids systems. We propose a dynamic exhaustive search--based topology adaptation algorithm and a dynamic sparsity--inspired topology adaptation algorithm, which can exploit the topology of smart grids with poor--quality links and obtain performance gains. We incorporate an optimized combining rule, named Hastings rule into our proposed dynamic topology adaptation algorithms. Compared with the existing works in the literature on distributed estimation, the proposed algorithms have a better convergence rate and significantly improve the system performance. The performance of the proposed algorithms is compared with that of existing algorithms in the IEEE 14--bus system.
S. Xu, R. C. de Lamare and H. V. Poor
null
1401.3148
null
null
Online Markov decision processes with Kullback-Leibler control cost
math.OC cs.LG cs.SY
This paper considers an online (real-time) control problem that involves an agent performing a discrete-time random walk over a finite state space. The agent's action at each time step is to specify the probability distribution for the next state given the current state. Following the set-up of Todorov, the state-action cost at each time step is a sum of a state cost and a control cost given by the Kullback-Leibler (KL) divergence between the agent's next-state distribution and that determined by some fixed passive dynamics. The online aspect of the problem is due to the fact that the state cost functions are generated by a dynamic environment, and the agent learns the current state cost only after selecting an action. An explicit construction of a computationally efficient strategy with small regret (i.e., expected difference between its actual total cost and the smallest cost attainable using noncausal knowledge of the state costs) under mild regularity conditions is presented, along with a demonstration of the performance of the proposed strategy on a simulated target tracking problem. A number of new results on Markov decision processes with KL control cost are also obtained.
Peng Guan and Maxim Raginsky and Rebecca Willett
null
1401.3198
null
null
A Boosting Approach to Learning Graph Representations
cs.LG cs.SI stat.ML
Learning the right graph representation from noisy, multisource data has garnered significant interest in recent years. A central tenet of this problem is relational learning. Here the objective is to incorporate the partial information each data source gives us in a way that captures the true underlying relationships. To address this challenge, we present a general, boosting-inspired framework for combining weak evidence of entity associations into a robust similarity metric. We explore the extent to which different quality measurements yield graph representations that are suitable for community detection. We then present empirical results on both synthetic and real datasets demonstrating the utility of this framework. Our framework leads to suitable global graph representations from quality measurements local to each edge. Finally, we discuss future extensions and theoretical considerations of learning useful graph representations from weak feedback in general application settings.
Rajmonda Caceres, Kevin Carter, Jeremy Kun
null
1401.3258
null
null
A Subband-Based SVM Front-End for Robust ASR
cs.CL cs.LG cs.SD
This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels.
Jibran Yousafzai and Zoran Cvetkovic and Peter Sollich and Matthew Ager
null
1401.3322
null
null
Learning Language from a Large (Unannotated) Corpus
cs.CL cs.LG
A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.
Linas Vepstas and Ben Goertzel
null
1401.3372
null
null
Binary Classifier Calibration: Non-parametric approach
stat.ML cs.LG
Accurate calibration of probabilistic predictive models learned is critical for many practical prediction and decision-making tasks. There are two main categories of methods for building calibrated classifiers. One approach is to develop methods for learning probabilistic models that are well-calibrated, ab initio. The other approach is to use some post-processing methods for transforming the output of a classifier to be well calibrated, as for example histogram binning, Platt scaling, and isotonic regression. One advantage of the post-processing approach is that it can be applied to any existing probabilistic classification model that was constructed using any machine-learning method. In this paper, we first introduce two measures for evaluating how well a classifier is calibrated. We prove three theorems showing that using a simple histogram binning post-processing method, it is possible to make a classifier be well calibrated while retaining its discrimination capability. Also, by casting the histogram binning method as a density-based non-parametric binary classifier, we can extend it using two simple non-parametric density estimation methods. We demonstrate the performance of the proposed calibration methods on synthetic and real datasets. Experimental results show that the proposed methods either outperform or are comparable to existing calibration methods.
Mahdi Pakdaman Naeini, Gregory F. Cooper, Milos Hauskrecht
null
1401.3390
null
null
Low-Rank Modeling and Its Applications in Image Analysis
cs.CV cs.LG stat.ML
Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.
Xiaowei Zhou, Can Yang, Hongyu Zhao, Weichuan Yu
null
1401.3409
null
null