title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Towards stability and optimality in stochastic gradient descent
stat.ME cs.LG stat.CO stat.ML
Iterative procedures for parameter estimation based on stochastic gradient descent allow the estimation to scale to massive data sets. However, in both theory and practice, they suffer from numerical instability. Moreover, they are statistically inefficient as estimators of the true parameter value. To address these two issues, we propose a new iterative procedure termed averaged implicit SGD (AI-SGD). For statistical efficiency, AI-SGD employs averaging of the iterates, which achieves the optimal Cram\'{e}r-Rao bound under strong convexity, i.e., it is an optimal unbiased estimator of the true parameter value. For numerical stability, AI-SGD employs an implicit update at each iteration, which is related to proximal operators in optimization. In practice, AI-SGD achieves competitive performance with other state-of-the-art procedures. Furthermore, it is more stable than averaging procedures that do not employ proximal updates, and is simple to implement as it requires fewer tunable hyperparameters than procedures that do employ proximal updates.
Panos Toulis, Dustin Tran, Edoardo M. Airoldi
null
1505.02417
null
null
Improved Relation Extraction with Feature-Rich Compositional Embedding Models
cs.CL cs.AI cs.LG
Compositional embedding models build a representation (or embedding) for a linguistic structure based on its component word embeddings. We propose a Feature-rich Compositional Embedding Model (FCM) for relation extraction that is expressive, generalizes to new domains, and is easy-to-implement. The key idea is to combine both (unlexicalized) hand-crafted features with learned word embeddings. The model is able to directly tackle the difficulties met by traditional compositional embeddings models, such as handling arbitrary types of sentence annotations and utilizing global information for composition. We test the proposed model on two relation extraction tasks, and demonstrate that our model outperforms both previous compositional models and traditional feature rich models on the ACE 2005 relation extraction task, and the SemEval 2010 relation classification task. The combination of our model and a log-linear classifier with hand-crafted features gives state-of-the-art results.
Matthew R. Gormley and Mo Yu and Mark Dredze
null
1505.02419
null
null
Spike and Slab Gaussian Process Latent Variable Models
stat.ML cs.LG
The Gaussian process latent variable model (GP-LVM) is a popular approach to non-linear probabilistic dimensionality reduction. One design choice for the model is the number of latent variables. We present a spike and slab prior for the GP-LVM and propose an efficient variational inference procedure that gives a lower bound of the log marginal likelihood. The new model provides a more principled approach for selecting latent dimensions than the standard way of thresholding the length-scale parameters. The effectiveness of our approach is demonstrated through experiments on real and simulated data. Further, we extend multi-view Gaussian processes that rely on sharing latent dimensions (known as manifold relevance determination) with spike and slab priors. This allows a more principled approach for selecting a subset of the latent space for each view of data. The extended model outperforms the previous state-of-the-art when applied to a cross-modal multimedia retrieval task.
Zhenwen Dai and James Hensman and Neil Lawrence
null
1505.02434
null
null
Soft-Deep Boltzmann Machines
cs.NE cs.LG stat.ML
We present a layered Boltzmann machine (BM) that can better exploit the advantages of a distributed representation. It is widely believed that deep BMs (DBMs) have far greater representational power than its shallow counterpart, restricted Boltzmann machines (RBMs). However, this expectation on the supremacy of DBMs over RBMs has not ever been validated in a theoretical fashion. In this paper, we provide both theoretical and empirical evidences that the representational power of DBMs can be actually rather limited in taking advantages of distributed representations. We propose an approximate measure for the representational power of a BM regarding to the efficiency of a distributed representation. With this measure, we show a surprising fact that DBMs can make inefficient use of distributed representations. Based on these observations, we propose an alternative BM architecture, which we dub soft-deep BMs (sDBMs). We show that sDBMs can more efficiently exploit the distributed representations in terms of the measure. Experiments demonstrate that sDBMs outperform several state-of-the-art models, including DBMs, in generative tasks on binarized MNIST and Caltech-101 silhouettes.
Taichi Kiwaki
null
1505.02462
null
null
Improving neural networks with bunches of neurons modeled by Kumaraswamy units: Preliminary study
cs.LG cs.NE
Deep neural networks have recently achieved state-of-the-art results in many machine learning problems, e.g., speech recognition or object recognition. Hitherto, work on rectified linear units (ReLU) provides empirical and theoretical evidence on performance increase of neural networks comparing to typically used sigmoid activation function. In this paper, we investigate a new manner of improving neural networks by introducing a bunch of copies of the same neuron modeled by the generalized Kumaraswamy distribution. As a result, we propose novel non-linear activation function which we refer to as Kumaraswamy unit which is closely related to ReLU. In the experimental study with MNIST image corpora we evaluate the Kumaraswamy unit applied to single-layer (shallow) neural network and report a significant drop in test classification error and test cross-entropy in comparison to sigmoid unit, ReLU and Noisy ReLU.
Jakub Mikolaj Tomczak
null
1505.02581
null
null
Sample complexity of learning Mahalanobis distance metrics
cs.LG cs.AI stat.ML
Metric learning seeks a transformation of the feature space that enhances prediction quality for the given task at hand. In this work we provide PAC-style sample complexity rates for supervised metric learning. We give matching lower- and upper-bounds showing that the sample complexity scales with the representation dimension when no assumptions are made about the underlying data distribution. However, by leveraging the structure of the data distribution, we show that one can achieve rates that are fine-tuned to a specific notion of intrinsic complexity for a given dataset. Our analysis reveals that augmenting the metric learning optimization criterion with a simple norm-based regularization can help adapt to a dataset's intrinsic complexity, yielding better generalization. Experiments on benchmark datasets validate our analysis and show that regularizing the metric can help discern the signal even when the data contains high amounts of noise.
Nakul Verma and Kristin Branson
null
1505.02729
null
null
Asymptotic Behavior of Minimal-Exploration Allocation Policies: Almost Sure, Arbitrarily Slow Growing Regret
stat.ML cs.LG
The purpose of this paper is to provide further understanding into the structure of the sequential allocation ("stochastic multi-armed bandit", or MAB) problem by establishing probability one finite horizon bounds and convergence rates for the sample (or "pseudo") regret associated with two simple classes of allocation policies $\pi$. For any slowly increasing function $g$, subject to mild regularity constraints, we construct two policies (the $g$-Forcing, and the $g$-Inflated Sample Mean) that achieve a measure of regret of order $ O(g(n))$ almost surely as $n \to \infty$, bound from above and below. Additionally, almost sure upper and lower bounds on the remainder term are established. In the constructions herein, the function $g$ effectively controls the "exploration" of the classical "exploration/exploitation" tradeoff.
Wesley Cowan and Michael N. Katehakis
null
1505.02865
null
null
The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning
cs.LG cs.DS cs.IR stat.ML
We describe a new instance-based learning algorithm called the Boundary Forest (BF) algorithm, that can be used for supervised and unsupervised learning. The algorithm builds a forest of trees whose nodes store previously seen examples. It can be shown data points one at a time and updates itself incrementally, hence it is naturally online. Few instance-based algorithms have this property while being simultaneously fast, which the BF is. This is crucial for applications where one needs to respond to input data in real time. The number of children of each node is not set beforehand but obtained from the training procedure, which makes the algorithm very flexible with regards to what data manifolds it can learn. We test its generalization performance and speed on a range of benchmark datasets and detail in which settings it outperforms the state of the art. Empirically we find that training time scales as O(DNlog(N)) and testing as O(Dlog(N)), where D is the dimensionality and N the amount of data,
Charles Mathy, Nate Derbinsky, Jos\'e Bento, Jonathan Rosenthal and Jonathan Yedidia
null
1505.02867
null
null
Incorporating Type II Error Probabilities from Independence Tests into Score-Based Learning of Bayesian Network Structure
cs.LG stat.ML
We give a new consistent scoring function for structure learning of Bayesian networks. In contrast to traditional approaches to score-based structure learning, such as BDeu or MDL, the complexity penalty that we propose is data-dependent and is given by the probability that a conditional independence test correctly shows that an edge cannot exist. What really distinguishes this new scoring function from earlier work is that it has the property of becoming computationally easier to maximize as the amount of data increases. We prove a polynomial sample complexity result, showing that maximizing this score is guaranteed to correctly learn a structure with no false edges and a distribution close to the generating distribution, whenever there exists a Bayesian network which is a perfect map for the data generating distribution. Although the new score can be used with any search algorithm, in our related UAI 2013 paper [BS13], we have given empirical results showing that it is particularly effective when used together with a linear programming relaxation approach to Bayesian network structure learning. The present paper contains all details of the proofs of the finite-sample complexity results in [BS13] as well as detailed explanation of the computation of the certain error probabilities called beta-values, whose precomputation and tabulation is necessary for the implementation of the algorithm in [BS13].
Eliot Brenner, David Sontag
null
1505.02870
null
null
Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning
stat.ML cs.LG
Transductive learning considers situations when a learner observes $m$ labelled training points and $u$ unlabelled test points with the final goal of giving correct answers for the test points. This paper introduces a new complexity measure for transductive learning called Permutational Rademacher Complexity (PRC) and studies its properties. A novel symmetrization inequality is proved, which shows that PRC provides a tighter control over expected suprema of empirical processes compared to what happens in the standard i.i.d. setting. A number of comparison results are also provided, which show the relation between PRC and other popular complexity measures used in statistical learning theory, including Rademacher complexity and Transductive Rademacher Complexity (TRC). We argue that PRC is a more suitable complexity measure for transductive learning. Finally, these results are combined with a standard concentration argument to provide novel data-dependent risk bounds for transductive learning.
Ilya Tolstikhin, Nikita Zhivotovskiy, Gilles Blanchard
null
1505.02910
null
null
Detecting the large entries of a sparse covariance matrix in sub-quadratic time
stat.CO cs.LG stat.ML
The covariance matrix of a $p$-dimensional random variable is a fundamental quantity in data analysis. Given $n$ i.i.d. observations, it is typically estimated by the sample covariance matrix, at a computational cost of $O(np^{2})$ operations. When $n,p$ are large, this computation may be prohibitively slow. Moreover, in several contemporary applications, the population matrix is approximately sparse, and only its few large entries are of interest. This raises the following question, at the focus of our work: Assuming approximate sparsity of the covariance matrix, can its large entries be detected much faster, say in sub-quadratic time, without explicitly computing all its $p^{2}$ entries? In this paper, we present and theoretically analyze two randomized algorithms that detect the large entries of an approximately sparse sample covariance matrix using only $O(np\text{ poly log } p)$ operations. Furthermore, assuming sparsity of the population matrix, we derive sufficient conditions on the underlying random variable and on the number of samples $n$, for the sample covariance matrix to satisfy our approximate sparsity requirements. Finally, we illustrate the performance of our algorithms via several simulations.
Ofer Shwartz and Boaz Nadler
10.1093/imaiai/iaw004
1505.03001
null
null
Removing systematic errors for exoplanet search via latent causes
stat.ML astro-ph.EP astro-ph.IM cs.LG
We describe a method for removing the effect of confounders in order to reconstruct a latent quantity of interest. The method, referred to as half-sibling regression, is inspired by recent work in causal inference using additive noise models. We provide a theoretical justification and illustrate the potential of the method in a challenging astronomy application.
Bernhard Sch\"olkopf, David W. Hogg, Dun Wang, Daniel Foreman-Mackey, Dominik Janzing, Carl-Johann Simon-Gabriel, Jonas Peters
null
1505.03036
null
null
Hybrid data clustering approach using K-Means and Flower Pollination Algorithm
cs.LG cs.IR cs.NE
Data clustering is a technique for clustering set of objects into known number of groups. Several approaches are widely applied to data clustering so that objects within the clusters are similar and objects in different clusters are far away from each other. K-Means, is one of the familiar center based clustering algorithms since implementation is very easy and fast convergence. However, K-Means algorithm suffers from initialization, hence trapped in local optima. Flower Pollination Algorithm (FPA) is the global optimization technique, which avoids trapping in local optimum solution. In this paper, a novel hybrid data clustering approach using Flower Pollination Algorithm and K-Means (FPAKM) is proposed. The proposed algorithm results are compared with K-Means and FPA on eight datasets. From the experimental results, FPAKM is better than FPA and K-Means.
R. Jensi and G. Wiselin Jiji
null
1505.03236
null
null
Mind the duality gap: safer rules for the Lasso
stat.ML cs.LG math.OC stat.CO
Screening rules allow to early discard irrelevant variables from the optimization in Lasso problems, or its derivatives, making solvers faster. In this paper, we propose new versions of the so-called $\textit{safe rules}$ for the Lasso. Based on duality gap considerations, our new rules create safe test regions whose diameters converge to zero, provided that one relies on a converging solver. This property helps screening out more variables, for a wider range of regularization parameter values. In addition to faster convergence, we prove that we correctly identify the active sets (supports) of the solutions in finite time. While our proposed strategy can cope with any solver, its performance is demonstrated using a coordinate descent algorithm particularly adapted to machine learning use cases. Significant computing time reductions are obtained with respect to previous safe rules.
Olivier Fercoq, Alexandre Gramfort, Joseph Salmon
null
1505.03410
null
null
Neural Network with Unbounded Activation Functions is Universal Approximator
cs.NE cs.LG math.FA
This paper presents an investigation of the approximation property of neural networks with unbounded activation functions, such as the rectified linear unit (ReLU), which is the new de-facto standard of deep learning. The ReLU network can be analyzed by the ridgelet transform with respect to Lizorkin distributions. By showing three reconstruction formulas by using the Fourier slice theorem, the Radon transform, and Parseval's relation, it is shown that a neural network with unbounded activation functions still satisfies the universal approximation property. As an additional consequence, the ridgelet transform, or the backprojection filter in the Radon domain, is what the network learns after backpropagation. Subject to a constructive admissibility condition, the trained network can be obtained by simply discretizing the ridgelet transform, without backpropagation. Numerical examples not only support the consistency of the admissibility condition but also imply that some non-admissible cases result in low-pass filtering.
Sho Sonoda and Noboru Murata
10.1016/j.acha.2015.12.005
1505.03654
null
null
A PCA-Based Convolutional Network
cs.LG cs.CV cs.NE
In this paper, we propose a novel unsupervised deep learning model, called PCA-based Convolutional Network (PCN). The architecture of PCN is composed of several feature extraction stages and a nonlinear output stage. Particularly, each feature extraction stage includes two layers: a convolutional layer and a feature pooling layer. In the convolutional layer, the filter banks are simply learned by PCA. In the nonlinear output stage, binary hashing is applied. For the higher convolutional layers, the filter banks are learned from the feature maps that were obtained in the previous stage. To test PCN, we conducted extensive experiments on some challenging tasks, including handwritten digits recognition, face recognition and texture classification. The results show that PCN performs competitive with or even better than state-of-the-art deep learning models. More importantly, since there is no back propagation for supervised finetuning, PCN is much more efficient than existing deep networks.
Yanhai Gan, Jun Liu, Junyu Dong, Guoqiang Zhong
null
1505.03703
null
null
Training generative neural networks via Maximum Mean Discrepancy optimization
stat.ML cs.LG
We consider training a deep neural network to generate samples from an unknown distribution given i.i.d. data. We frame learning as an optimization minimizing a two-sample test statistic---informally speaking, a good generator network produces samples that cause a two-sample test to fail to reject the null hypothesis. As our two-sample test statistic, we use an unbiased estimate of the maximum mean discrepancy, which is the centerpiece of the nonparametric kernel two-sample test proposed by Gretton et al. (2012). We compare to the adversarial nets framework introduced by Goodfellow et al. (2014), in which learning is a two-player game between a generator network and an adversarial discriminator network, both trained to outwit the other. From this perspective, the MMD statistic plays the role of the discriminator. In addition to empirical comparisons, we prove bounds on the generalization error incurred by optimizing the empirical MMD.
Gintare Karolina Dziugaite and Daniel M. Roy and Zoubin Ghahramani
null
1505.03906
null
null
$k$-center Clustering under Perturbation Resilience
cs.DS cs.LG
The $k$-center problem is a canonical and long-studied facility location and clustering problem with many applications in both its symmetric and asymmetric forms. Both versions of the problem have tight approximation factors on worst case instances. Therefore to improve on these ratios, one must go beyond the worst case. In this work, we take this approach and provide strong positive results both for the asymmetric and symmetric $k$-center problems under a natural input stability (promise) condition called $\alpha$-perturbation resilience [Bilu and Linia 2012], which states that the optimal solution does not change under any alpha-factor perturbation to the input distances. We provide algorithms that give strong guarantees simultaneously for stable and non-stable instances: our algorithms always inherit the worst-case guarantees of clustering approximation algorithms, and output the optimal solution if the input is $2$-perturbation resilient. Furthermore, we prove our result is tight by showing symmetric $k$-center under $(2-\epsilon)$-perturbation resilience is hard unless $NP=RP$. The impact of our results are multifaceted. This is the first tight result for any problem under perturbation resilience. Furthermore, our results illustrate a surprising relationship between symmetric and asymmetric $k$-center instances under perturbation resilience. Unlike approximation ratio, for which symmetric $k$-center is easily solved to a factor of 2 but asymmetric $k$-center cannot be approximated to any constant factor, both symmetric and asymmetric $k$-center can be solved optimally under resilience to 2-perturbations. Finally, our guarantees in the setting where only part of the data satisfies perturbation resilience makes these algorithms more applicable to real-life instances.
Maria-Florina Balcan, Nika Haghtalab, Colin White
null
1505.03924
null
null
Using Ensemble Models in the Histological Examination of Tissue Abnormalities
cs.CV cs.CE cs.LG
Classification models for the automatic detection of abnormalities on histological samples do exists, with an active debate on the cost associated with false negative diagnosis (underdiagnosis) and false positive diagnosis (overdiagnosis). Current models tend to underdiagnose, failing to recognize a potentially fatal disease. The objective of this study is to investigate the possibility of automatically identifying abnormalities in tissue samples through the use of an ensemble model on data generated by histological examination and to minimize the number of false negative cases.
Giancarlo Crocetti, Michael Coakley, Phil Dressner, Wanda Kellum, Tamba Lamin
null
1505.03932
null
null
Safe Screening for Multi-Task Feature Learning with Multiple Data Matrices
cs.LG
Multi-task feature learning (MTFL) is a powerful technique in boosting the predictive performance by learning multiple related classification/regression/clustering tasks simultaneously. However, solving the MTFL problem remains challenging when the feature dimension is extremely large. In this paper, we propose a novel screening rule---that is based on the dual projection onto convex sets (DPC)---to quickly identify the inactive features---that have zero coefficients in the solution vectors across all tasks. One of the appealing features of DPC is that: it is safe in the sense that the detected inactive features are guaranteed to have zero coefficients in the solution vectors across all tasks. Thus, by removing the inactive features from the training phase, we may have substantial savings in the computational cost and memory usage without sacrificing accuracy. To the best of our knowledge, it is the first screening rule that is applicable to sparse models with multiple data matrices. A key challenge in deriving DPC is to solve a nonconvex problem. We show that we can solve for the global optimum efficiently via a properly chosen parametrization of the constraint set. Moreover, DPC has very low computational cost and can be integrated with any existing solvers. We have evaluated the proposed DPC rule on both synthetic and real data sets. The experiments indicate that DPC is very effective in identifying the inactive features---especially for high dimensional data---which leads to a speedup up to several orders of magnitude.
Jie Wang and Jieping Ye
null
1505.04073
null
null
Optimal Low-Rank Tensor Recovery from Separable Measurements: Four Contractions Suffice
stat.ML cs.IT cs.LG math.IT math.OC
Tensors play a central role in many modern machine learning and signal processing applications. In such applications, the target tensor is usually of low rank, i.e., can be expressed as a sum of a small number of rank one tensors. This motivates us to consider the problem of low rank tensor recovery from a class of linear measurements called separable measurements. As specific examples, we focus on two distinct types of separable measurement mechanisms (a) Random projections, where each measurement corresponds to an inner product of the tensor with a suitable random tensor, and (b) the completion problem where measurements constitute revelation of a random set of entries. We present a computationally efficient algorithm, with rigorous and order-optimal sample complexity results (upto logarithmic factors) for tensor recovery. Our method is based on reduction to matrix completion sub-problems and adaptation of Leurgans' method for tensor decomposition. We extend the methodology and sample complexity results to higher order tensors, and experimentally validate our theoretical results.
Parikshit Shah, Nikhil Rao, Gongguo Tang
null
1505.04085
null
null
MCODE: Multivariate Conditional Outlier Detection
cs.AI cs.LG stat.ML
Outlier detection aims to identify unusual data instances that deviate from expected patterns. The outlier detection is particularly challenging when outliers are context dependent and when they are defined by unusual combinations of multiple outcome variable values. In this paper, we develop and study a new conditional outlier detection approach for multivariate outcome spaces that works by (1) transforming the conditional detection to the outlier detection problem in a new (unconditional) space and (2) defining outlier scores by analyzing the data in the new space. Our approach relies on the classifier chain decomposition of the multi-dimensional classification problem that lets us transform the output space into a probability vector, one probability for each dimension of the output space. Outlier scores applied to these transformed vectors are then used to detect the outliers. Experiments on multiple multi-dimensional classification problems with the different outlier injection rates show that our methodology is robust and able to successfully identify outliers when outliers are either sparse (manifested in one or very few dimensions) or dense (affecting multiple dimensions).
Charmgil Hong, Milos Hauskrecht
null
1505.04097
null
null
Margins, Kernels and Non-linear Smoothed Perceptrons
cs.LG cs.AI cs.NA math.OC
We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin ($\rho$) in an RKHS and %use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel's (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of $\tfrac{\sqrt {\log n}}{\rho}$ given $n$ separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is $\tfrac1{\rho^2}$. When no such classifier exists, we prove a version of Gordan's separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in $\min\{\tfrac{\sqrt n}{|\rho|}, \tfrac{\sqrt n}{\epsilon}\}$ iterations with a perfect separator in the RKHS if the primal is feasible or a dual $\epsilon$-certificate of near-infeasibility.
Aaditya Ramdas, Javier Pe\~na
null
1505.04123
null
null
Consistent Algorithms for Multiclass Classification with a Reject Option
cs.LG stat.ML
We consider the problem of $n$-class classification ($n\geq 2$), where the classifier can choose to abstain from making predictions at a given cost, say, a factor $\alpha$ of the cost of misclassification. Designing consistent algorithms for such $n$-class classification problems with a `reject option' is the main goal of this paper, thereby extending and generalizing previously known results for $n=2$. We show that the Crammer-Singer surrogate and the one vs all hinge loss, albeit with a different predictor than the standard argmax, yield consistent algorithms for this problem when $\alpha=\frac{1}{2}$. More interestingly, we design a new convex surrogate that is also consistent for this problem when $\alpha=\frac{1}{2}$ and operates on a much lower dimensional space ($\log(n)$ as opposed to $n$). We also generalize all three surrogates to be consistent for any $\alpha\in[0, \frac{1}{2}]$.
Harish G. Ramaswamy and Ambuj Tewari and Shivani Agarwal
null
1505.04137
null
null
Algorithmic Connections Between Active Learning and Stochastic Convex Optimization
cs.LG cs.AI math.OC stat.ML
Interesting theoretical associations have been established by recent papers between the fields of active learning and stochastic convex optimization due to the common role of feedback in sequential querying mechanisms. In this paper, we continue this thread in two parts by exploiting these relations for the first time to yield novel algorithms in both fields, further motivating the study of their intersection. First, inspired by a recent optimization algorithm that was adaptive to unknown uniform convexity parameters, we present a new active learning algorithm for one-dimensional thresholds that can yield minimax rates by adapting to unknown noise parameters. Next, we show that one can perform $d$-dimensional stochastic minimization of smooth uniformly convex functions when only granted oracle access to noisy gradient signs along any coordinate instead of real-valued gradients, by using a simple randomized coordinate descent procedure where each line search can be solved by $1$-dimensional active learning, provably achieving the same error convergence rate as having the entire real-valued gradient. Combining these two parts yields an algorithm that solves stochastic convex optimization of uniformly convex and smooth functions using only noisy gradient signs by repeatedly performing active learning, achieves optimal rates and is adaptive to all unknown convexity and smoothness parameters.
Aaditya Ramdas, Aarti Singh
null
1505.04214
null
null
An Analysis of Active Learning With Uniform Feature Noise
stat.ML cs.AI cs.LG math.ST stat.TH
In active learning, the user sequentially chooses values for feature $X$ and an oracle returns the corresponding label $Y$. In this paper, we consider the effect of feature noise in active learning, which could arise either because $X$ itself is being measured, or it is corrupted in transmission to the oracle, or the oracle returns the label of a noisy version of the query point. In statistics, feature noise is known as "errors in variables" and has been studied extensively in non-active settings. However, the effect of feature noise in active learning has not been studied before. We consider the well-known Berkson errors-in-variables model with additive uniform noise of width $\sigma$. Our simple but revealing setting is that of one-dimensional binary classification setting where the goal is to learn a threshold (point where the probability of a $+$ label crosses half). We deal with regression functions that are antisymmetric in a region of size $\sigma$ around the threshold and also satisfy Tsybakov's margin condition around the threshold. We prove minimax lower and upper bounds which demonstrate that when $\sigma$ is smaller than the minimiax active/passive noiseless error derived in \cite{CN07}, then noise has no effect on the rates and one achieves the same noiseless rates. For larger $\sigma$, the \textit{unflattening} of the regression function on convolution with uniform noise, along with its local antisymmetry around the threshold, together yield a behaviour where noise \textit{appears} to be beneficial. Our key result is that active learning can buy significant improvement over a passive strategy even in the presence of feature noise.
Aaditya Ramdas, Barnabas Poczos, Aarti Singh, Larry Wasserman
null
1505.04215
null
null
A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives
math.ST cs.LG math.OC stat.ML stat.TH
In this paper we analyze boosting algorithms in linear regression from a new perspective: that of modern first-order methods in convex optimization. We show that classic boosting algorithms in linear regression, namely the incremental forward stagewise algorithm (FS$_\varepsilon$) and least squares boosting (LS-Boost($\varepsilon$)), can be viewed as subgradient descent to minimize the loss function defined as the maximum absolute correlation between the features and residuals. We also propose a modification of FS$_\varepsilon$ that yields an algorithm for the Lasso, and that may be easily extended to an algorithm that computes the Lasso path for different values of the regularization parameter. Furthermore, we show that these new algorithms for the Lasso may also be interpreted as the same master algorithm (subgradient descent), applied to a regularized version of the maximum absolute correlation loss function. We derive novel, comprehensive computational guarantees for several boosting algorithms in linear regression (including LS-Boost($\varepsilon$) and FS$_\varepsilon$) by using techniques of modern first-order methods in convex optimization. Our computational guarantees inform us about the statistical properties of boosting algorithms. In particular they provide, for the first time, a precise theoretical description of the amount of data-fidelity and regularization imparted by running a boosting algorithm with a prespecified learning rate for a fixed but arbitrary number of iterations, for any dataset.
Robert M. Freund, Paul Grigas, Rahul Mazumder
null
1505.04243
null
null
Global Convergence of Unmodified 3-Block ADMM for a Class of Convex Minimization Problems
math.OC cs.LG stat.ML
The alternating direction method of multipliers (ADMM) has been successfully applied to solve structured convex optimization problems due to its superior practical performance. The convergence properties of the 2-block ADMM have been studied extensively in the literature. Specifically, it has been proven that the 2-block ADMM globally converges for any penalty parameter $\gamma>0$. In this sense, the 2-block ADMM allows the parameter to be free, i.e., there is no need to restrict the value for the parameter when implementing this algorithm in order to ensure convergence. However, for the 3-block ADMM, Chen \etal \cite{Chen-admm-failure-2013} recently constructed a counter-example showing that it can diverge if no further condition is imposed. The existing results on studying further sufficient conditions on guaranteeing the convergence of the 3-block ADMM usually require $\gamma$ to be smaller than a certain bound, which is usually either difficult to compute or too small to make it a practical algorithm. In this paper, we show that the 3-block ADMM still globally converges with any penalty parameter $\gamma>0$ if the third function $f_3$ in the objective is smooth and strongly convex, and its condition number is in $[1,1.0798)$, besides some other mild conditions. This requirement covers an important class of problems to be called regularized least squares decomposition (RLSD) in this paper.
Tianyi Lin, Shiqian Ma, Shuzhong Zhang
null
1505.04252
null
null
Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data
stat.ML cs.LG
We consider the problem of matrix column subset selection, which selects a subset of columns from an input matrix such that the input can be well approximated by the span of the selected columns. Column subset selection has been applied to numerous real-world data applications such as population genetics summarization, electronic circuits testing and recommendation systems. In many applications the complete data matrix is unavailable and one needs to select representative columns by inspecting only a small portion of the input matrix. In this paper we propose the first provably correct column subset selection algorithms for partially observed data matrices. Our proposed algorithms exhibit different merits and limitations in terms of statistical accuracy, computational efficiency, sample complexity and sampling schemes, which provides a nice exploration of the tradeoff between these desired properties for column subset selection. The proposed methods employ the idea of feedback driven sampling and are inspired by several sampling schemes previously introduced for low-rank matrix approximation tasks (Drineas et al., 2008; Frieze et al., 2004; Deshpande and Vempala, 2006; Krishnamurthy and Singh, 2014). Our analysis shows that, under the assumption that the input data matrix has incoherent rows but possibly coherent columns, all algorithms provably converge to the best low-rank approximation of the original data as number of selected columns increases. Furthermore, two of the proposed algorithms enjoy a relative error bound, which is preferred for column subset selection and matrix approximation purposes. We also demonstrate through both theoretical and empirical analysis the power of feedback driven sampling compared to uniform random sampling on input matrices with highly correlated columns.
Yining Wang, Aarti Singh
null
1505.04343
null
null
Shrinkage degree in $L_2$-re-scale boosting for regression
cs.LG
Re-scale boosting (RBoosting) is a variant of boosting which can essentially improve the generalization performance of boosting learning. The key feature of RBoosting lies in introducing a shrinkage degree to re-scale the ensemble estimate in each gradient-descent step. Thus, the shrinkage degree determines the performance of RBoosting. The aim of this paper is to develop a concrete analysis concerning how to determine the shrinkage degree in $L_2$-RBoosting. We propose two feasible ways to select the shrinkage degree. The first one is to parameterize the shrinkage degree and the other one is to develope a data-driven approach of it. After rigorously analyzing the importance of the shrinkage degree in $L_2$-RBoosting learning, we compare the pros and cons of the proposed methods. We find that although these approaches can reach the same learning rates, the structure of the final estimate of the parameterized approach is better, which sometimes yields a better generalization capability when the number of sample is finite. With this, we recommend to parameterize the shrinkage degree of $L_2$-RBoosting. To this end, we present an adaptive parameter-selection strategy for shrinkage degree and verify its feasibility through both theoretical analysis and numerical verification. The obtained results enhance the understanding of RBoosting and further give guidance on how to use $L_2$-RBoosting for regression tasks.
Lin Xu, Shaobo Lin, Yao Wang and Zongben Xu
null
1505.04369
null
null
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
cs.LG cs.AI stat.ML
A fundamental challenge in developing high-impact machine learning technologies is balancing the need to model rich, structured domains with the ability to scale to big data. Many important problem areas are both richly structured and large scale, from social and biological networks, to knowledge graphs and the Web, to images, video, and natural language. In this paper, we introduce two new formalisms for modeling structured data, and show that they can both capture rich structure and scale to big data. The first, hinge-loss Markov random fields (HL-MRFs), is a new kind of probabilistic graphical model that generalizes different approaches to convex inference. We unite three approaches from the randomized algorithms, probabilistic graphical models, and fuzzy logic communities, showing that all three lead to the same inference objective. We then define HL-MRFs by generalizing this unified objective. The second new formalism, probabilistic soft logic (PSL), is a probabilistic programming language that makes HL-MRFs easy to define using a syntax based on first-order logic. We introduce an algorithm for inferring most-probable variable assignments (MAP inference) that is much more scalable than general-purpose convex optimization methods, because it uses message passing to take advantage of sparse dependency structures. We then show how to learn the parameters of HL-MRFs. The learned HL-MRFs are as accurate as analogous discrete models, but much more scalable. Together, these algorithms enable HL-MRFs and PSL to model rich, structured data at scales not previously possible.
Stephen H. Bach, Matthias Broecheler, Bert Huang, Lise Getoor
null
1505.04406
null
null
Simple regret for infinitely many armed bandits
cs.LG stat.ML
We consider a stochastic bandit problem with infinitely many arms. In this setting, the learner has no chance of trying all the arms even once and has to dedicate its limited number of samples only to a certain number of arms. All previous algorithms for this setting were designed for minimizing the cumulative regret of the learner. In this paper, we propose an algorithm aiming at minimizing the simple regret. As in the cumulative regret setting of infinitely many armed bandits, the rate of the simple regret will depend on a parameter $\beta$ characterizing the distribution of the near-optimal arms. We prove that depending on $\beta$, our algorithm is minimax optimal either up to a multiplicative constant or up to a $\log(n)$ factor. We also provide extensions to several important cases: when $\beta$ is unknown, in a natural setting where the near-optimal arms have a small variance, and in the case of unknown time horizon.
Alexandra Carpentier, Michal Valko
null
1505.04627
null
null
Recurrent Neural Network Training with Dark Knowledge Transfer
stat.ML cs.CL cs.LG cs.NE
Recurrent neural networks (RNNs), particularly long short-term memory (LSTM), have gained much attention in automatic speech recognition (ASR). Although some successful stories have been reported, training RNNs remains highly challenging, especially with limited training data. Recent research found that a well-trained model can be used as a teacher to train other child models, by using the predictions generated by the teacher model as supervision. This knowledge transfer learning has been employed to train simple neural nets with a complex one, so that the final performance can reach a level that is infeasible to obtain by regular training. In this paper, we employ the knowledge transfer learning approach to train RNNs (precisely LSTM) using a deep neural network (DNN) model as the teacher. This is different from most of the existing research on knowledge transfer learning, since the teacher (DNN) is assumed to be weaker than the child (RNN); however, our experiments on an ASR task showed that it works fairly well: without applying any tricks on the learning scheme, this approach can train RNNs successfully even with limited training data.
Zhiyuan Tang, Dong Wang and Zhiyong Zhang
10.1109/ICASSP.2016.7472809
1505.04630
null
null
Graph Partitioning via Parallel Submodular Approximation to Accelerate Distributed Machine Learning
cs.DC cs.AI cs.LG
Distributed computing excels at processing large scale data, but the communication cost for synchronizing the shared parameters may slow down the overall performance. Fortunately, the interactions between parameter and data in many problems are sparse, which admits efficient partition in order to reduce the communication overhead. In this paper, we formulate data placement as a graph partitioning problem. We propose a distributed partitioning algorithm. We give both theoretical guarantees and a highly efficient implementation. We also provide a highly efficient implementation of the algorithm and demonstrate its promising results on both text datasets and social networks. We show that the proposed algorithm leads to 1.6x speedup of a state-of-the-start distributed machine learning system by eliminating 90\% of the network communication.
Mu Li, Dave G. Andersen, Alexander J. Smola
null
1505.04636
null
null
Ensemble of Example-Dependent Cost-Sensitive Decision Trees
cs.LG
Several real-world classification problems are example-dependent cost-sensitive in nature, where the costs due to misclassification vary between examples and not only within classes. However, standard classification methods do not take these costs into account, and assume a constant cost of misclassification errors. In previous works, some methods that take into account the financial costs into the training of different algorithms have been proposed, with the example-dependent cost-sensitive decision tree algorithm being the one that gives the highest savings. In this paper we propose a new framework of ensembles of example-dependent cost-sensitive decision-trees. The framework consists in creating different example-dependent cost-sensitive decision trees on random subsamples of the training set, and then combining them using three different combination approaches. Moreover, we propose two new cost-sensitive combination approaches; cost-sensitive weighted voting and cost-sensitive stacking, the latter being based on the cost-sensitive logistic regression method. Finally, using five different databases, from four real-world applications: credit card fraud detection, churn modeling, credit scoring and direct marketing, we evaluate the proposed method against state-of-the-art example-dependent cost-sensitive techniques, namely, cost-proportionate sampling, Bayes minimum risk and cost-sensitive decision trees. The results show that the proposed algorithms have better results for all databases, in the sense of higher savings.
Alejandro Correa Bahnsen, Djamila Aouada, Bjorn Ottersten
null
1505.04637
null
null
Compressed Nonnegative Matrix Factorization is Fast and Accurate
cs.LG stat.ML
Nonnegative matrix factorization (NMF) has an established reputation as a useful data analysis technique in numerous applications. However, its usage in practical situations is undergoing challenges in recent years. The fundamental factor to this is the increasingly growing size of the datasets available and needed in the information sciences. To address this, in this work we propose to use structured random compression, that is, random projections that exploit the data structure, for two NMF variants: classical and separable. In separable NMF (SNMF) the left factors are a subset of the columns of the input matrix. We present suitable formulations for each problem, dealing with different representative algorithms within each one. We show that the resulting compressed techniques are faster than their uncompressed variants, vastly reduce memory demands, and do not encompass any significant deterioration in performance. The proposed structured random projections for SNMF allow to deal with arbitrarily shaped large matrices, beyond the standard limit of tall-and-skinny matrices, granting access to very efficient computations in this general setting. We accompany the algorithmic presentation with theoretical foundations and numerous and diverse examples, showing the suitability of the proposed approaches.
Mariano Tepper and Guillermo Sapiro
10.1109/TSP.2016.2516971
1505.04650
null
null
Layered Adaptive Importance Sampling
stat.CO cs.LG stat.ML
Monte Carlo methods represent the "de facto" standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.
L. Martino, V. Elvira, D. Luengo, J. Corander
10.1007/s11222-016-9642-5
1505.04732
null
null
DopeLearning: A Computational Approach to Rap Lyrics Generation
cs.LG cs.AI cs.CL cs.NE
Writing rap lyrics requires both creativity to construct a meaningful, interesting story and lyrical skills to produce complex rhyme patterns, which form the cornerstone of good flow. We present a rap lyrics generation method that captures both of these aspects. First, we develop a prediction model to identify the next line of existing lyrics from a set of candidate next lines. This model is based on two machine-learning techniques: the RankSVM algorithm and a deep neural network model with a novel structure. Results show that the prediction model can identify the true next line among 299 randomly selected lines with an accuracy of 17%, i.e., over 50 times more likely than by random. Second, we employ the prediction model to combine lines from existing songs, producing lyrics with rhyme and a meaning. An evaluation of the produced lyrics shows that in terms of quantitative rhyme density, the method outperforms the best human rappers by 21%. The rap lyrics generator has been deployed as an online tool called DeepBeat, and the performance of the tool has been assessed by analyzing its usage logs. This analysis shows that machine-learned rankings correlate with user preferences.
Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani Raiko, Aristides Gionis
10.1145/2939672.2939679
1505.04771
null
null
On the tightness of an SDP relaxation of k-means
cs.IT cs.DS cs.LG math.IT math.ST stat.ML stat.TH
Recently, Awasthi et al. introduced an SDP relaxation of the $k$-means problem in $\mathbb R^m$. In this work, we consider a random model for the data points in which $k$ balls of unit radius are deterministically distributed throughout $\mathbb R^m$, and then in each ball, $n$ points are drawn according to a common rotationally invariant probability distribution. For any fixed ball configuration and probability distribution, we prove that the SDP relaxation of the $k$-means problem exactly recovers these planted clusters with probability $1-e^{-\Omega(n)}$ provided the distance between any two of the ball centers is $>2+\epsilon$, where $\epsilon$ is an explicit function of the configuration of the ball centers, and can be arbitrarily small when $m$ is large.
Takayuki Iguchi, Dustin G. Mixon, Jesse Peterson, Soledad Villar
null
1505.04778
null
null
Multi-task additive models with shared transfer functions based on dictionary learning
stat.ML cs.LG
Additive models form a widely popular class of regression models which represent the relation between covariates and response variables as the sum of low-dimensional transfer functions. Besides flexibility and accuracy, a key benefit of these models is their interpretability: the transfer functions provide visual means for inspecting the models and identifying domain-specific relations between inputs and outputs. However, in large-scale problems involving the prediction of many related tasks, learning independently additive models results in a loss of model interpretability, and can cause overfitting when training data is scarce. We introduce a novel multi-task learning approach which provides a corpus of accurate and interpretable additive models for a large number of related forecasting tasks. Our key idea is to share transfer functions across models in order to reduce the model complexity and ease the exploration of the corpus. We establish a connection with sparse dictionary learning and propose a new efficient fitting algorithm which alternates between sparse coding and transfer function updates. The former step is solved via an extension of Orthogonal Matching Pursuit, whose properties are analyzed using a novel recovery condition which extends existing results in the literature. The latter step is addressed using a traditional dictionary update rule. Experiments on real-world data demonstrate that our approach compares favorably to baseline methods while yielding an interpretable corpus of models, revealing structure among the individual tasks and being more robust when training data is scarce. Our framework therefore extends the well-known benefits of additive models to common regression settings possibly involving thousands of tasks.
Alhussein Fawzi, Mathieu Sinn, Pascal Frossard
null
1505.04966
null
null
Risk and Regret of Hierarchical Bayesian Learners
cs.LG stat.ML
Common statistical practice has shown that the full power of Bayesian methods is not realized until hierarchical priors are used, as these allow for greater "robustness" and the ability to "share statistical strength." Yet it is an ongoing challenge to provide a learning-theoretically sound formalism of such notions that: offers practical guidance concerning when and how best to utilize hierarchical models; provides insights into what makes for a good hierarchical prior; and, when the form of the prior has been chosen, can guide the choice of hyperparameter settings. We present a set of analytical tools for understanding hierarchical priors in both the online and batch learning settings. We provide regret bounds under log-loss, which show how certain hierarchical models compare, in retrospect, to the best single model in the model class. We also show how to convert a Bayesian log-loss regret bound into a Bayesian risk bound for any bounded loss, a result which may be of independent interest. Risk and regret bounds for Student's $t$ and hierarchical Gaussian priors allow us to formalize the concepts of "robustness" and "sharing statistical strength." Priors for feature selection are investigated as well. Our results suggest that the learning-theoretic benefits of using hierarchical priors can often come at little cost on practical problems.
Jonathan H. Huggins and Joshua B. Tenenbaum
null
1505.04984
null
null
An Experimental Comparison of Hybrid Algorithms for Bayesian Network Structure Learning
stat.ML cs.AI cs.LG
We present a novel hybrid algorithm for Bayesian network structure learning, called Hybrid HPC (H2PC). It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. It is based on a subroutine called HPC, that combines ideas from incremental and divide-and-conquer constraint-based methods to learn the parents and children of a target variable. We conduct an experimental comparison of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning, on several benchmarks with various data sizes. Our extensive experiments show that H2PC outperforms MMHC both in terms of goodness of fit to new data and in terms of the quality of the network structure itself, which is closer to the true dependence structure of the data. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.
Maxime Gasse (DM2L), Alex Aussem (DM2L), Haytham Elghazel (DM2L)
10.1007/978-3-642-33460-3_9
1505.05004
null
null
Modelling-based experiment retrieval: A case study with gene expression clustering
stat.ML cs.IR cs.LG
Motivation: Public and private repositories of experimental data are growing to sizes that require dedicated methods for finding relevant data. To improve on the state of the art of keyword searches from annotations, methods for content-based retrieval have been proposed. In the context of gene expression experiments, most methods retrieve gene expression profiles, requiring each experiment to be expressed as a single profile, typically of case vs. control. A more general, recently suggested alternative is to retrieve experiments whose models are good for modelling the query dataset. However, for very noisy and high-dimensional query data, this retrieval criterion turns out to be very noisy as well. Results: We propose doing retrieval using a denoised model of the query dataset, instead of the original noisy dataset itself. To this end, we introduce a general probabilistic framework, where each experiment is modelled separately and the retrieval is done by finding related models. For retrieval of gene expression experiments, we use a probabilistic model called product partition model, which induces a clustering of genes that show similar expression patterns across a number of samples. The suggested metric for retrieval using clusterings is the normalized information distance. Empirical results finally suggest that inference for the full probabilistic model can be approximated with good performance using computationally faster heuristic clustering approaches (e.g. $k$-means). The method is highly scalable and straightforward to apply to construct a general-purpose gene expression experiment retrieval method. Availability: The method can be implemented using standard clustering algorithms and normalized information distance, available in many statistical software packages.
Paul Blomstedt, Ritabrata Dutta, Sohan Seth, Alvis Brazma and Samuel Kaski
10.1093/bioinformatics/btv762
1505.05007
null
null
Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems
cs.IT cs.LG math.IT math.NA math.ST stat.ML stat.TH
We consider the fundamental problem of solving quadratic systems of equations in $n$ variables, where $y_i = |\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle|^2$, $i = 1, \ldots, m$ and $\boldsymbol{x} \in \mathbb{R}^n$ is unknown. We propose a novel method, which starting with an initial guess computed by means of a spectral method, proceeds by minimizing a nonconvex functional as in the Wirtinger flow approach. There are several key distinguishing features, most notably, a distinct objective functional and novel update rules, which operate in an adaptive fashion and drop terms bearing too much influence on the search direction. These careful selection rules provide a tighter initial guess, better descent directions, and thus enhanced practical performance. On the theoretical side, we prove that for certain unstructured models of quadratic systems, our algorithms return the correct solution in linear time, i.e. in time proportional to reading the data $\{\boldsymbol{a}_i\}$ and $\{y_i\}$ as soon as the ratio $m/n$ between the number of equations and unknowns exceeds a fixed numerical constant. We extend the theory to deal with noisy systems in which we only have $y_i \approx |\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle|^2$ and prove that our algorithms achieve a statistical accuracy, which is nearly un-improvable. We complement our theoretical study with numerical examples showing that solving random quadratic systems is both computationally and statistically not much harder than solving linear systems of the same size---hence the title of this paper. For instance, we demonstrate empirically that the computational cost of our algorithm is about four times that of solving a least-squares problem of the same size.
Yuxin Chen, Emmanuel J. Candes
null
1505.05114
null
null
oASIS: Adaptive Column Sampling for Kernel Matrix Approximation
stat.ML cs.LG
Kernel matrices (e.g. Gram or similarity matrices) are essential for many state-of-the-art approaches to classification, clustering, and dimensionality reduction. For large datasets, the cost of forming and factoring such kernel matrices becomes intractable. To address this challenge, we introduce a new adaptive sampling algorithm called Accelerated Sequential Incoherence Selection (oASIS) that samples columns without explicitly computing the entire kernel matrix. We provide conditions under which oASIS is guaranteed to exactly recover the kernel matrix with an optimal number of columns selected. Numerical experiments on both synthetic and real-world datasets demonstrate that oASIS achieves performance comparable to state-of-the-art adaptive sampling methods at a fraction of the computational cost. The low runtime complexity of oASIS and its low memory footprint enable the solution of large problems that are simply intractable using other adaptive methods.
Raajen Patel, Thomas A. Goldstein, Eva L. Dyer, Azalia Mirhoseini, and Richard G. Baraniuk
null
1505.05208
null
null
Learning with a Drifting Target Concept
cs.LG
We study the problem of learning in the presence of a drifting target concept. Specifically, we provide bounds on the error rate at a given time, given a learner with access to a history of independent samples labeled according to a target concept that can change on each round. One of our main contributions is a refinement of the best previous results for polynomial-time algorithms for the space of linear separators under a uniform distribution. We also provide general results for an algorithm capable of adapting to a variable rate of drift of the target concept. Some of the results also describe an active learning variant of this setting, and provide bounds on the number of queries for the labels of points in the sequence sufficient to obtain the stated bounds on the error rates.
Steve Hanneke, Varun Kanade, Liu Yang
null
1505.05215
null
null
Bounds on the Minimax Rate for Estimating a Prior over a VC Class from Independent Learning Tasks
cs.LG
We study the optimal rates of convergence for estimating a prior distribution over a VC class from a sequence of independent data sets respectively labeled by independent target functions sampled from the prior. We specifically derive upper and lower bounds on the optimal rates under a smoothness condition on the correct prior, with the number of samples per data set equal the VC dimension. These results have implications for the improvements achievable via transfer learning. We additionally extend this setting to real-valued function, where we establish consistency of an estimator for the prior, and discuss an additional application to a preference elicitation problem in algorithmic economics.
Liu Yang, Steve Hanneke, Jaime Carbonell
null
1505.05231
null
null
Visual Understanding via Multi-Feature Shared Learning with Global Consistency
cs.CV cs.LG
Image/video data is usually represented with multiple visual features. Fusion of multi-source information for establishing the attributes has been widely recognized. Multi-feature visual recognition has recently received much attention in multimedia applications. This paper studies visual understanding via a newly proposed l_2-norm based multi-feature shared learning framework, which can simultaneously learn a global label matrix and multiple sub-classifiers with the labeled multi-feature data. Additionally, a group graph manifold regularizer composed of the Laplacian and Hessian graph is proposed for better preserving the manifold structure of each feature, such that the label prediction power is much improved through the semi-supervised learning with global label consistency. For convenience, we call the proposed approach Global-Label-Consistent Classifier (GLCC). The merits of the proposed method include: 1) the manifold structure information of each feature is exploited in learning, resulting in a more faithful classification owing to the global label consistency; 2) a group graph manifold regularizer based on the Laplacian and Hessian regularization is constructed; 3) an efficient alternative optimization method is introduced as a fast solver owing to the convex sub-problems. Experiments on several benchmark visual datasets for multimedia understanding, such as the 17-category Oxford Flower dataset, the challenging 101-category Caltech dataset, the YouTube & Consumer Videos dataset and the large-scale NUS-WIDE dataset, demonstrate that the proposed approach compares favorably with the state-of-the-art algorithms. An extensive experiment on the deep convolutional activation features also show the effectiveness of the proposed approach. The code is available on http://www.escience.cn/people/lei/index.html
Lei Zhang and David Zhang
10.1109/TMM.2015.2510509
1505.05233
null
null
Supervised Learning for Dynamical System Learning
stat.ML cs.LG
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.
Ahmed Hefny, Carlton Downey and Geoffrey Gordon
null
1505.05310
null
null
A Max-Sum algorithm for training discrete neural networks
cond-mat.dis-nn cs.LG cs.NE
We present an efficient learning algorithm for the problem of training neural networks with discrete synapses, a well-known hard (NP-complete) discrete optimization problem. The algorithm is a variant of the so-called Max-Sum (MS) algorithm. In particular, we show how, for bounded integer weights with $q$ distinct states and independent concave a priori distribution (e.g. $l_{1}$ regularization), the algorithm's time complexity can be made to scale as $O\left(N\log N\right)$ per node update, thus putting it on par with alternative schemes, such as Belief Propagation (BP), without resorting to approximations. Two special cases are of particular interest: binary synapses $W\in\{-1,1\}$ and ternary synapses $W\in\{-1,0,1\}$ with $l_{0}$ regularization. The algorithm we present performs as well as BP on binary perceptron learning problems, and may be better suited to address the problem on fully-connected two-layer networks, since inherent symmetries in two layer networks are naturally broken using the MS approach.
Carlo Baldassi and Alfredo Braunstein
10.1088/1742-5468/2015/08/P08008
1505.05401
null
null
Weight Uncertainty in Neural Networks
stat.ML cs.LG
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
Charles Blundell and Julien Cornebise and Koray Kavukcuoglu and Daan Wierstra
null
1505.05424
null
null
Fuzzy Least Squares Twin Support Vector Machines
cs.AI cs.LG
Least Squares Twin Support Vector Machine (LST-SVM) has been shown to be an efficient and fast algorithm for binary classification. It combines the operating principles of Least Squares SVM (LS-SVM) and Twin SVM (T-SVM); it constructs two non-parallel hyperplanes (as in T-SVM) by solving two systems of linear equations (as in LS-SVM). Despite its efficiency, LST-SVM is still unable to cope with two features of real-world problems. First, in many real-world applications, labels of samples are not deterministic; they come naturally with their associated membership degrees. Second, samples in real-world applications may not be equally important and their importance degrees affect the classification. In this paper, we propose Fuzzy LST-SVM (FLST-SVM) to deal with these two characteristics of real-world data. Two models are introduced for FLST-SVM: the first model builds up crisp hyperplanes using training samples and their corresponding membership degrees. The second model, on the other hand, constructs fuzzy hyperplanes using training samples and their membership degrees. Numerical evaluation of the proposed method with synthetic and real datasets demonstrate significant improvement in the classification accuracy of FLST-SVM when compared to well-known existing versions of SVM.
Javad Salimi Sartakhti, Homayun Afrabandpey, Nasser Ghadiri
null
1505.05451
null
null
Why Regularized Auto-Encoders learn Sparse Representation?
stat.ML cs.CV cs.LG
While the authors of Batch Normalization (BN) identify and address an important problem involved in training deep networks-- \textit{Internal Covariate Shift}-- the current solution has certain drawbacks. For instance, BN depends on batch statistics for layerwise input normalization during training which makes the estimates of mean and standard deviation of input (distribution) to hidden layers inaccurate due to shifting parameter values (especially during initial training epochs). Another fundamental problem with BN is that it cannot be used with batch-size $ 1 $ during training. We address these drawbacks of BN by proposing a non-adaptive normalization technique for removing covariate shift, that we call \textit{Normalization Propagation}. Our approach does not depend on batch statistics, but rather uses a data-independent parametric estimate of mean and standard-deviation in every layer thus being computationally faster compared with BN. We exploit the observation that the pre-activation before Rectified Linear Units follow Gaussian distribution in deep networks, and that once the first and second order statistics of any given dataset are normalized, we can forward propagate this normalization without the need for recalculating the approximate statistics for hidden layers.
Devansh Arpit, Yingbo Zhou, Hung Ngo, Venu Govindaraju
null
1505.05561
null
null
The development of an information criterion for Change-Point Analysis
physics.data-an cs.LG stat.ML
Change-point analysis is a flexible and computationally tractable tool for the analysis of times series data from systems that transition between discrete states and whose observables are corrupted by noise. The change-point algorithm is used to identify the time indices (change points) at which the system transitions between these discrete states. We present a unified information-based approach to testing for the existence of change points. This new approach reconciles two previously disparate approaches to Change-Point Analysis (frequentist and information-based) for testing transitions between states. The resulting method is statistically principled, parameter and prior free and widely applicable to a wide range of change-point problems.
Paul A. Wiggins, Colin H. LaMont
null
1505.05572
null
null
Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering
cs.CV cs.CL cs.LG
In this paper, we present the mQA model, which is able to answer questions about the content of an image. The answer can be a sentence, a phrase or a single word. Our model contains four components: a Long Short-Term Memory (LSTM) to extract the question representation, a Convolutional Neural Network (CNN) to extract the visual representation, an LSTM for storing the linguistic context in an answer, and a fusing component to combine the information from the first three components and generate the answer. We construct a Freestyle Multilingual Image Question Answering (FM-IQA) dataset to train and evaluate our mQA model. It contains over 150,000 images and 310,000 freestyle Chinese question-answer pairs and their English translations. The quality of the generated answers of our mQA model on this dataset is evaluated by human judges through a Turing Test. Specifically, we mix the answers provided by humans and our model. The human judges need to distinguish our model from the human. They will also provide a score (i.e. 0, 1, 2, the larger the better) indicating the quality of the answer. We propose strategies to monitor the quality of this evaluation process. The experiments show that in 64.7% of cases, the human judges cannot distinguish our model from humans. The average score is 1.454 (1.918 for human). The details of this work, including the FM-IQA dataset, can be found on the project page: http://idl.baidu.com/FM-IQA.html
Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, Wei Xu
null
1505.05612
null
null
Regulating Greed Over Time in Multi-Armed Bandits
stat.ML cs.LG
In retail, there are predictable yet dramatic time-dependent patterns in customer behavior, such as periodic changes in the number of visitors, or increases in customers just before major holidays. The current paradigm of multi-armed bandit analysis does not take these known patterns into account. This means that for applications in retail, where prices are fixed for periods of time, current bandit algorithms will not suffice. This work provides a remedy that takes the time-dependent patterns into account, and we show how this remedy is implemented for the UCB, $\varepsilon$-greedy, and UCB-L algorithms, and also through a new policy called the variable arm pool algorithm. In the corrected methods, exploitation (greed) is regulated over time, so that more exploitation occurs during higher reward periods, and more exploration occurs in periods of low reward. In order to understand why regret is reduced with the corrected methods, we present a set of bounds that provide insight into why we would want to exploit during periods of high reward, and discuss the impact on regret. Our proposed methods perform well in experiments, and were inspired by a high-scoring entry in the Exploration and Exploitation 3 contest using data from Yahoo$!$ Front Page. That entry heavily used time-series methods to regulate greed over time, which was substantially more effective than other contextual bandit methods.
Stefano Trac\`a, Cynthia Rudin, and Weiyu Yan
null
1505.05629
null
null
Inferring Graphs from Cascades: A Sparse Recovery Framework
cs.SI cs.LG stat.ML
In the Network Inference problem, one seeks to recover the edges of an unknown graph from the observations of cascades propagating over this graph. In this paper, we approach this problem from the sparse recovery perspective. We introduce a general model of cascades, including the voter model and the independent cascade model, for which we provide the first algorithm which recovers the graph's edges with high probability and $O(s\log m)$ measurements where $s$ is the maximum degree of the graph and $m$ is the number of nodes. Furthermore, we show that our algorithm also recovers the edge weights (the parameters of the diffusion process) and is robust in the context of approximate sparsity. Finally we prove an almost matching lower bound of $\Omega(s\log\frac{m}{s})$ and validate our approach empirically on synthetic graphs.
Jean Pouget-Abadie, Thibaut Horel
null
1505.05663
null
null
A Re-ranking Model for Dependency Parser with Recursive Convolutional Neural Network
cs.CL cs.LG cs.NE
In this work, we address the problem to model all the nodes (words or phrases) in a dependency tree with the dense representations. We propose a recursive convolutional neural network (RCNN) architecture to capture syntactic and compositional-semantic representations of phrases and words in a dependency tree. Different with the original recursive neural network, we introduce the convolution and pooling layers, which can model a variety of compositions by the feature maps and choose the most informative compositions by the pooling layers. Based on RCNN, we use a discriminative model to re-rank a $k$-best list of candidate dependency parsing trees. The experiments show that RCNN is very effective to improve the state-of-the-art dependency parsing on both English and Chinese datasets.
Chenxi Zhu, Xipeng Qiu, Xinchi Chen, Xuanjing Huang
null
1505.05667
null
null
On the relation between accuracy and fairness in binary classification
cs.LG cs.AI
Our study revisits the problem of accuracy-fairness tradeoff in binary classification. We argue that comparison of non-discriminatory classifiers needs to account for different rates of positive predictions, otherwise conclusions about performance may be misleading, because accuracy and discrimination of naive baselines on the same dataset vary with different rates of positive predictions. We provide methodological recommendations for sound comparison of non-discriminatory classifiers, and present a brief theoretical and empirical analysis of tradeoffs between accuracy and non-discrimination.
Indre Zliobaite
null
1505.05723
null
null
Variational Inference with Normalizing Flows
stat.ML cs.AI cs.LG stat.CO stat.ME
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
Danilo Jimenez Rezende and Shakir Mohamed
null
1505.05770
null
null
Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret
cs.LG
Lifelong reinforcement learning provides a promising framework for developing versatile agents that can accumulate knowledge over a lifetime of experience and rapidly learn new tasks by building upon prior knowledge. However, current lifelong learning methods exhibit non-vanishing regret as the amount of experience increases and include limitations that can lead to suboptimal or unsafe control policies. To address these issues, we develop a lifelong policy gradient learner that operates in an adversarial set- ting to learn multiple tasks online while enforcing safety constraints on the learned policies. We demonstrate, for the first time, sublinear regret for lifelong policy search, and validate our algorithm on several benchmark dynamical systems and an application to quadrotor control.
Haitham Bou Ammar, Rasul Tutunov, Eric Eaton
null
1505.05798
null
null
Complexity Theoretic Limitations on Learning Halfspaces
cs.CC cs.LG
We study the problem of agnostically learning halfspaces which is defined by a fixed but unknown distribution $\mathcal{D}$ on $\mathbb{Q}^n\times \{\pm 1\}$. We define $\mathrm{Err}_{\mathrm{HALF}}(\mathcal{D})$ as the least error of a halfspace classifier for $\mathcal{D}$. A learner who can access $\mathcal{D}$ has to return a hypothesis whose error is small compared to $\mathrm{Err}_{\mathrm{HALF}}(\mathcal{D})$. Using the recently developed method of the author, Linial and Shalev-Shwartz we prove hardness of learning results under a natural assumption on the complexity of refuting random $K$-$\mathrm{XOR}$ formulas. We show that no efficient learning algorithm has non-trivial worst-case performance even under the guarantees that $\mathrm{Err}_{\mathrm{HALF}}(\mathcal{D}) \le \eta$ for arbitrarily small constant $\eta>0$, and that $\mathcal{D}$ is supported in $\{\pm 1\}^n\times \{\pm 1\}$. Namely, even under these favorable conditions its error must be $\ge \frac{1}{2}-\frac{1}{n^c}$ for every $c>0$. In particular, no efficient algorithm can achieve a constant approximation ratio. Under a stronger version of the assumption (where $K$ can be poly-logarithmic in $n$), we can take $\eta = 2^{-\log^{1-\nu}(n)}$ for arbitrarily small $\nu>0$. Interestingly, this is even stronger than the best known lower bounds (Arora et. al. 1993, Feldamn et. al. 2006, Guruswami and Raghavendra 2006) for the case that the learner is restricted to return a halfspace classifier (i.e. proper learning).
Amit Daniely
null
1505.05800
null
null
Learning Program Embeddings to Propagate Feedback on Student Code
cs.LG cs.NE cs.SE
Providing feedback, both assessing final work and giving hints to stuck students, is difficult for open-ended assignments in massive online classes which can range from thousands to millions of students. We introduce a neural network method to encode programs as a linear mapping from an embedded precondition space to an embedded postcondition space and propose an algorithm for feedback at scale using these linear maps as features. We apply our algorithm to assessments from the Code.org Hour of Code and Stanford University's CS1 course, where we propagate human comments on student assignments to orders of magnitude more submissions.
Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, Leonidas Guibas
null
1505.05969
null
null
Instant Learning: Parallel Deep Neural Networks and Convolutional Bootstrapping
cs.LG
Although deep neural networks (DNN) are able to scale with direct advances in computational power (e.g., memory and processing speed), they are not well suited to exploit the recent trends for parallel architectures. In particular, gradient descent is a sequential process and the resulting serial dependencies mean that DNN training cannot be parallelized effectively. Here, we show that a DNN may be replicated over a massive parallel architecture and used to provide a cumulative sampling of local solution space which results in rapid and robust learning. We introduce a complimentary convolutional bootstrapping approach that enhances performance of the parallel architecture further. Our parallelized convolutional bootstrapping DNN out-performs an identical fully-trained traditional DNN after only a single iteration of training.
Andrew J.R. Simpson
null
1505.05972
null
null
Machine Learning for Indoor Localization Using Mobile Phone-Based Sensors
cs.LG cs.NI
In this paper we investigate the problem of localizing a mobile device based on readings from its embedded sensors utilizing machine learning methodologies. We consider a real-world environment, collect a large dataset of 3110 datapoints, and examine the performance of a substantial number of machine learning algorithms in localizing a mobile device. We have found algorithms that give a mean error as accurate as 0.76 meters, outperforming other indoor localization systems reported in the literature. We also propose a hybrid instance-based approach that results in a speed increase by a factor of ten with no loss of accuracy in a live deployment over standard instance-based methods, allowing for fast and accurate localization. Further, we determine how smaller datasets collected with less density affect accuracy of localization, important for use in real-world environments. Finally, we demonstrate that these approaches are appropriate for real-world deployment by evaluating their performance in an online, in-motion experiment.
David Mascharka and Eric Manley
10.1109/CCNC.2016.7444919
1505.06125
null
null
Learning Dynamic Feature Selection for Fast Sequential Prediction
cs.CL cs.LG
We present paired learning and inference algorithms for significantly reducing computation and increasing speed of the vector dot products in the classifiers that are at the heart of many NLP components. This is accomplished by partitioning the features into a sequence of templates which are ordered such that high confidence can often be reached using only a small fraction of all features. Parameter estimation is arranged to maximize accuracy and early confidence in this sequence. Our approach is simpler and better suited to NLP than other related cascade methods. We present experiments in left-to-right part-of-speech tagging, named entity recognition, and transition-based dependency parsing. On the typical benchmarking datasets we can preserve POS tagging accuracy above 97% and parsing LAS above 88.5% both with over a five-fold reduction in run-time, and NER F1 above 88 with more than 2x increase in speed.
Emma Strubell, Luke Vilnis, Kate Silverstein, Andrew McCallum
null
1505.06169
null
null
Greedy Biomarker Discovery in the Genome with Applications to Antimicrobial Resistance
q-bio.GN cs.LG stat.ML
The Set Covering Machine (SCM) is a greedy learning algorithm that produces sparse classifiers. We extend the SCM for datasets that contain a huge number of features. The whole genetic material of living organisms is an example of such a case, where the number of feature exceeds 10^7. Three human pathogens were used to evaluate the performance of the SCM at predicting antimicrobial resistance. Our results show that the SCM compares favorably in terms of sparsity and accuracy against L1 and L2 regularized Support Vector Machines and CART decision trees. Moreover, the SCM was the only algorithm that could consider the full feature space. For all other algorithms, the latter had to be filtered as a preprocessing step.
Alexandre Drouin, S\'ebastien Gigu\`ere, Maxime D\'eraspe, Fran\c{c}ois Laviolette, Mario Marchand, Jacques Corbeil
null
1505.06249
null
null
The Benefit of Multitask Representation Learning
stat.ML cs.LG
We discuss a general method to learn data representations from multiple tasks. We provide a justification for this method in both settings of multitask learning and learning-to-learn. The method is illustrated in detail in the special case of linear feature learning. Conditions on the theoretical advantage offered by multitask representation learning over independent task learning are established. In particular, focusing on the important example of half-space learning, we derive the regime in which multitask representation learning is beneficial over independent task learning, as a function of the sample size, the number of tasks and the intrinsic data dimensionality. Other potential applications of our results include multitask feature learning in reproducing kernel Hilbert spaces and multilayer, deep networks.
Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes
null
1505.06279
null
null
Low-Rank Matrix Recovery from Row-and-Column Affine Measurements
cs.LG cs.IT math.IT math.ST stat.CO stat.ML stat.TH
We propose and study a row-and-column affine measurement scheme for low-rank matrix recovery. Each measurement is a linear combination of elements in one row or one column of a matrix $X$. This setting arises naturally in applications from different domains. However, current algorithms developed for standard matrix recovery problems do not perform well in our case, hence the need for developing new algorithms and theory for our problem. We propose a simple algorithm for the problem based on Singular Value Decomposition ($SVD$) and least-squares ($LS$), which we term \alg. We prove that (a simplified version of) our algorithm can recover $X$ exactly with the minimum possible number of measurements in the noiseless case. In the general noisy case, we prove performance guarantees on the reconstruction accuracy under the Frobenius norm. In simulations, our row-and-column design and \alg algorithm show improved speed, and comparable and in some cases better accuracy compared to standard measurements designs and algorithms. Our theoretical and experimental results suggest that the proposed row-and-column affine measurements scheme, together with our recovery algorithm, may provide a powerful framework for affine matrix reconstruction.
Avishai Wagner and Or Zuk
null
1505.06292
null
null
Monotonic Calibrated Interpolated Look-Up Tables
cs.LG
Real-world machine learning applications may require functions that are fast-to-evaluate and interpretable. In particular, guaranteed monotonicity of the learned function can be critical to user trust. We propose meeting these goals for low-dimensional machine learning problems by learning flexible, monotonic functions using calibrated interpolated look-up tables. We extend the structural risk minimization framework of lattice regression to train monotonic look-up tables by solving a convex problem with appropriate linear inequality constraints. In addition, we propose jointly learning interpretable calibrations of each feature to normalize continuous features and handle categorical or missing data, at the cost of making the objective non-convex. We address large-scale learning through parallelization, mini-batching, and propose random sampling of additive regularizer terms. Case studies with real-world problems with five to sixteen features and thousands to millions of training samples demonstrate the proposed monotonic functions can achieve state-of-the-art accuracy on practical problems while providing greater transparency to users.
Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov, Wojtek Moczydlowski and Alex van Esbroeck
null
1505.06378
null
null
Domain Adaptation Extreme Learning Machines for Drift Compensation in E-nose Systems
cs.LG
This paper addresses an important issue, known as sensor drift that behaves a nonlinear dynamic property in electronic nose (E-nose), from the viewpoint of machine learning. Traditional methods for drift compensation are laborious and costly due to the frequent acquisition and labeling process for gases samples recalibration. Extreme learning machines (ELMs) have been confirmed to be efficient and effective learning techniques for pattern recognition and regression. However, ELMs primarily focus on the supervised, semi-supervised and unsupervised learning problems in single domain (i.e. source domain). To our best knowledge, ELM with cross-domain learning capability has never been studied. This paper proposes a unified framework, referred to as Domain Adaptation Extreme Learning Machine (DAELM), which learns a robust classifier by leveraging a limited number of labeled data from target domain for drift compensation as well as gases recognition in E-nose systems, without loss of the computational efficiency and learning ability of traditional ELM. In the unified framework, two algorithms called DAELM-S and DAELM-T are proposed for the purpose of this paper, respectively. In order to percept the differences among ELM, DAELM-S and DAELM-T, two remarks are provided. Experiments on the popular sensor drift data with multiple batches collected by E-nose system clearly demonstrate that the proposed DAELM significantly outperforms existing drift compensation methods without cumbersome measures, and also bring new perspectives for ELM.
Lei Zhang and David Zhang
10.1109/TIM.2014.2367775
1505.06405
null
null
Deep Speaker Vectors for Semi Text-independent Speaker Verification
cs.CL cs.LG cs.NE
Recent research shows that deep neural networks (DNNs) can be used to extract deep speaker vectors (d-vectors) that preserve speaker characteristics and can be used in speaker verification. This new method has been tested on text-dependent speaker verification tasks, and improvement was reported when combined with the conventional i-vector method. This paper extends the d-vector approach to semi text-independent speaker verification tasks, i.e., the text of the speech is in a limited set of short phrases. We explore various settings of the DNN structure used for d-vector extraction, and present a phone-dependent training which employs the posterior features obtained from an ASR system. The experimental results show that it is possible to apply d-vectors on semi text-independent speaker recognition, and the phone-dependent training improves system performance.
Lantian Li and Dong Wang and Zhiyong Zhang and Thomas Fang Zheng
null
1505.06427
null
null
Detecting bird sound in unknown acoustic background using crowdsourced training data
stat.ML cs.LG cs.SD
Biodiversity monitoring using audio recordings is achievable at a truly global scale via large-scale deployment of inexpensive, unattended recording stations or by large-scale crowdsourcing using recording and species recognition on mobile devices. The ability, however, to reliably identify vocalising animal species is limited by the fact that acoustic signatures of interest in such recordings are typically embedded in a diverse and complex acoustic background. To avoid the problems associated with modelling such backgrounds, we build generative models of bird sounds and use the concept of novelty detection to screen recordings to detect sections of data which are likely bird vocalisations. We present detection results against various acoustic environments and different signal-to-noise ratios. We discuss the issues related to selecting the cost function and setting detection thresholds in such algorithms. Our methods are designed to be scalable and automatically applicable to arbitrary selections of species depending on the specific geographic region and time period of deployment.
Timos Papadopoulos, Stephen Roberts and Kathy Willis
null
1505.06443
null
null
Tight Continuous Relaxation of the Balanced $k$-Cut Problem
stat.ML cs.LG
Spectral Clustering as a relaxation of the normalized/ratio cut has become one of the standard graph-based clustering methods. Existing methods for the computation of multiple clusters, corresponding to a balanced $k$-cut of the graph, are either based on greedy techniques or heuristics which have weak connection to the original motivation of minimizing the normalized cut. In this paper we propose a new tight continuous relaxation for any balanced $k$-cut problem and show that a related recently proposed relaxation is in most cases loose leading to poor performance in practice. For the optimization of our tight continuous relaxation we propose a new algorithm for the difficult sum-of-ratios minimization problem which achieves monotonic descent. Extensive comparisons show that our method outperforms all existing approaches for ratio cut and other balanced $k$-cut criteria.
Syama Sundar Rangapuram, Pramod Kaushik Mudrakarta and Matthias Hein
null
1505.06478
null
null
Constrained 1-Spectral Clustering
stat.ML cs.LG
An important form of prior information in clustering comes in form of cannot-link and must-link constraints. We present a generalization of the popular spectral clustering technique which integrates such constraints. Motivated by the recently proposed $1$-spectral clustering for the unconstrained problem, our method is based on a tight relaxation of the constrained normalized cut into a continuous optimization problem. Opposite to all other methods which have been suggested for constrained spectral clustering, we can always guarantee to satisfy all constraints. Moreover, our soft formulation allows to optimize a trade-off between normalized cut and the number of violated constraints. An efficient implementation is provided which scales to large datasets. We outperform consistently all other proposed methods in the experiments.
Syama Sundar Rangapuram and Matthias Hein
null
1505.06485
null
null
Affine and Regional Dynamic Time Warpng
cs.CV cs.CE cs.LG
Pointwise matches between two time series are of great importance in time series analysis, and dynamic time warping (DTW) is known to provide generally reasonable matches. There are situations where time series alignment should be invariant to scaling and offset in amplitude or where local regions of the considered time series should be strongly reflected in pointwise matches. Two different variants of DTW, affine DTW (ADTW) and regional DTW (RDTW), are proposed to handle scaling and offset in amplitude and provide regional emphasis respectively. Furthermore, ADTW and RDTW can be combined in two different ways to generate alignments that incorporate advantages from both methods, where the affine model can be applied either globally to the entire time series or locally to each region. The proposed alignment methods outperform DTW on specific simulated datasets, and one-nearest-neighbor classifiers using their associated difference measures are competitive with the difference measures associated with state-of-the-art alignment methods on real datasets.
Tsu-Wei Chen, Meena Abdelmaseeh, Daniel Stashuk
null
1505.06531
null
null
Clustering via Content-Augmented Stochastic Blockmodels
stat.ML cs.LG cs.SI
Much of the data being created on the web contains interactions between users and items. Stochastic blockmodels, and other methods for community detection and clustering of bipartite graphs, can infer latent user communities and latent item clusters from this interaction data. These methods, however, typically ignore the items' contents and the information they provide about item clusters, despite the tendency of items in the same latent cluster to share commonalities in content. We introduce content-augmented stochastic blockmodels (CASB), which use item content together with user-item interaction data to enhance the user communities and item clusters learned. Comparisons to several state-of-the-art benchmark methods, on datasets arising from scientists interacting with scientific articles, show that content-augmented stochastic blockmodels provide highly accurate clusters with respect to metrics representative of the underlying community structure.
J. Massey Cashore, Xiaoting Zhao, Alexander A. Alemi, Yujia Liu, Peter I. Frazier
null
1505.06538
null
null
Differentially Private Distributed Online Learning
cs.LG
Online learning has been in the spotlight from the machine learning society for a long time. To handle massive data in Big Data era, one single learner could never efficiently finish this heavy task. Hence, in this paper, we propose a novel distributed online learning algorithm to solve the problem. Comparing to typical centralized online learner, the distributed learners optimize their own learning parameters based on local data sources and timely communicate with neighbors. However, communication may lead to a privacy breach. Thus, we use differential privacy to preserve the privacy of learners, and study the influence of guaranteeing differential privacy on the utility of the distributed online learning algorithm. Furthermore, by using the results from Kakade and Tewari (2009), we use the regret bounds of online learning to achieve fast convergence rates for offline learning algorithms in distributed scenarios, which provides tighter utility performance than the existing state-of-the-art results. In simulation, we demonstrate that the differentially private offline learning algorithm has high variance, but we can use mini-batch to improve the performance. Finally, the simulations show that the analytical results of our proposed theorems are right and our private distributed online learning algorithm is a general framework.
Chencheng Li and Pan Zhou
null
1505.06556
null
null
Electre Tri-Machine Learning Approach to the Record Linkage Problem
stat.ML cs.LG
In this short paper, the Electre Tri-Machine Learning Method, generally used to solve ordinal classification problems, is proposed for solving the Record Linkage problem. Preliminary experimental results show that, using the Electre Tri method, high accuracy can be achieved and more than 99% of the matches and nonmatches were correctly identified by the procedure.
Renato De Leone, Valentina Minnetti
null
1505.06614
null
null
Sketching for Sequential Change-Point Detection
cs.LG stat.ML
We study sequential change-point detection procedures based on linear sketches of high-dimensional signal vectors using generalized likelihood ratio (GLR) statistics. The GLR statistics allow for an unknown post-change mean that represents an anomaly or novelty. We consider both fixed and time-varying projections, derive theoretical approximations to two fundamental performance metrics: the average run length (ARL) and the expected detection delay (EDD); these approximations are shown to be highly accurate by numerical simulations. We further characterize the relative performance measure of the sketching procedure compared to that without sketching and show that there can be little performance loss when the signal strength is sufficiently large, and enough number of sketches are used. Finally, we demonstrate the good performance of sketching procedures using simulation and real-data examples on solar flare detection and failure detection in power networks.
Yang Cao, Andrew Thompson, Meng Wang, Yao Xie
null
1505.06770
null
null
An Empirical Evaluation of Current Convolutional Architectures' Ability to Manage Nuisance Location and Scale Variability
cs.CV cs.LG cs.NE
We conduct an empirical study to test the ability of Convolutional Neural Networks (CNNs) to reduce the effects of nuisance transformations of the input data, such as location, scale and aspect ratio. We isolate factors by adopting a common convolutional architecture either deployed globally on the image to compute class posterior distributions, or restricted locally to compute class conditional distributions given location, scale and aspect ratios of bounding boxes determined by proposal heuristics. In theory, averaging the latter should yield inferior performance compared to proper marginalization. Yet empirical evidence suggests the converse, leading us to conclude that - at the current level of complexity of convolutional architectures and scale of the data sets used to train them - CNNs are not very effective at marginalizing nuisance variability. We also quantify the effects of context on the overall classification task and its impact on the performance of CNNs, and propose improved sampling techniques for heuristic proposal schemes that improve end-to-end performance to state-of-the-art levels. We test our hypothesis on a classification task using the ImageNet Challenge benchmark and on a wide-baseline matching task using the Oxford and Fischer's datasets.
Nikolaos Karianakis, Jingming Dong and Stefano Soatto
null
1505.06795
null
null
Accelerating Very Deep Convolutional Networks for Classification and Detection
cs.CV cs.LG cs.NE
This paper aims to accelerate the test-time computation of convolutional neural networks (CNNs), especially very deep CNNs that have substantially impacted the computer vision community. Unlike previous methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We develop an effective solution to the resulting nonlinear optimization problem without the need of stochastic gradient descent (SGD). More importantly, while previous methods mainly focus on optimizing one or two layers, our nonlinear method enables an asymmetric reconstruction that reduces the rapidly accumulated error when multiple (e.g., >=10) layers are approximated. For the widely used very deep VGG-16 model, our method achieves a whole-model speedup of 4x with merely a 0.3% increase of top-5 error in ImageNet classification. Our 4x accelerated VGG-16 model also shows a graceful accuracy degradation for object detection when plugged into the Fast R-CNN detector.
Xiangyu Zhang, Jianhua Zou, Kaiming He, Jian Sun
null
1505.06798
null
null
Boosting-like Deep Learning For Pedestrian Detection
cs.CV cs.LG cs.NE
This paper proposes boosting-like deep learning (BDL) framework for pedestrian detection. Due to overtraining on the limited training samples, overfitting is a major problem of deep learning. We incorporate a boosting-like technique into deep learning to weigh the training samples, and thus prevent overtraining in the iterative process. We theoretically give the details of derivation of our algorithm, and report the experimental results on open data sets showing that BDL achieves a better stable performance than the state-of-the-arts. Our approach achieves 15.85% and 3.81% reduction in the average miss rate compared with ACF and JointDeep on the largest Caltech benchmark dataset, respectively.
Lei Wang, Baochang Zhang
null
1505.06800
null
null
MLlib: Machine Learning in Apache Spark
cs.LG cs.DC cs.MS stat.ML
Apache Spark is a popular open-source platform for large-scale data processing that is well-suited for iterative machine learning tasks. In this paper we present MLlib, Spark's open-source distributed machine learning library. MLlib provides efficient functionality for a wide range of learning settings and includes several underlying statistical, optimization, and linear algebra primitives. Shipped with Spark, MLlib supports several languages and provides a high-level API that leverages Spark's rich ecosystem to simplify the development of end-to-end machine learning pipelines. MLlib has experienced a rapid growth due to its vibrant open-source community of over 140 contributors, and includes extensive documentation to support further growth and to let users quickly get up to speed.
Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, Ameet Talwalkar
null
1505.06807
null
null
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
stat.ML cs.LG
Modern classification problems frequently present mild to severe label imbalance as well as specific requirements on classification characteristics, and require optimizing performance measures that are non-decomposable over the dataset, such as F-measure. Such measures have spurred much interest and pose specific challenges to learning algorithms since their non-additive nature precludes a direct application of well-studied large scale optimization methods such as stochastic gradient descent. In this paper we reveal that for two large families of performance measures that can be expressed as functions of true positive/negative rates, it is indeed possible to implement point stochastic updates. The families we consider are concave and pseudo-linear functions of TPR, TNR which cover several popularly used performance measures such as F-measure, G-mean and H-mean. Our core contribution is an adaptive linearization scheme for these families, using which we develop optimization techniques that enable truly point-based stochastic updates. For concave performance measures we propose SPADE, a stochastic primal dual solver; for pseudo-linear measures we propose STAMP, a stochastic alternate maximization procedure. Both methods have crisp convergence guarantees, demonstrate significant speedups over existing methods - often by an order of magnitude or more, and give similar or more accurate predictions on test data.
Harikrishna Narasimhan and Purushottam Kar and Prateek Jain
null
1505.06812
null
null
Surrogate Functions for Maximizing Precision at the Top
stat.ML cs.LG
The problem of maximizing precision at the top of a ranked list, often dubbed Precision@k (prec@k), finds relevance in myriad learning applications such as ranking, multi-label classification, and learning with severe label imbalance. However, despite its popularity, there exist significant gaps in our understanding of this problem and its associated performance measure. The most notable of these is the lack of a convex upper bounding surrogate for prec@k. We also lack scalable perceptron and stochastic gradient descent algorithms for optimizing this performance measure. In this paper we make key contributions in these directions. At the heart of our results is a family of truly upper bounding surrogates for prec@k. These surrogates are motivated in a principled manner and enjoy attractive properties such as consistency to prec@k under various natural margin/noise conditions. These surrogates are then used to design a class of novel perceptron algorithms for optimizing prec@k with provable mistake bounds. We also devise scalable stochastic gradient descent style methods for this problem with provable convergence bounds. Our proofs rely on novel uniform convergence bounds which require an in-depth analysis of the structural properties of prec@k and its surrogates. We conclude with experimental results comparing our algorithms with state-of-the-art cutting plane and stochastic gradient algorithms for maximizing prec@k.
Purushottam Kar and Harikrishna Narasimhan and Prateek Jain
null
1505.06813
null
null
Discrete Independent Component Analysis (DICA) with Belief Propagation
cs.CV cs.LG stat.ML
We apply belief propagation to a Bayesian bipartite graph composed of discrete independent hidden variables and discrete visible variables. The network is the Discrete counterpart of Independent Component Analysis (DICA) and it is manipulated in a factor graph form for inference and learning. A full set of simulations is reported for character images from the MNIST dataset. The results show that the factorial code implemented by the sources contributes to build a good generative model for the data that can be used in various inference modes.
Francesco A. N. Palmieri and Amedeo Buonanno
null
1505.06814
null
null
Times series averaging from a probabilistic interpretation of time-elastic kernel
cs.LG cs.DS
At the light of regularized dynamic time warping kernels, this paper reconsider the concept of time elastic centroid (TEC) for a set of time series. From this perspective, we show first how TEC can easily be addressed as a preimage problem. Unfortunately this preimage problem is ill-posed, may suffer from over-fitting especially for long time series and getting a sub-optimal solution involves heavy computational costs. We then derive two new algorithms based on a probabilistic interpretation of kernel alignment matrices that expresses in terms of probabilistic distributions over sets of alignment paths. The first algorithm is an iterative agglomerative heuristics inspired from the state of the art DTW barycenter averaging (DBA) algorithm proposed specifically for the Dynamic Time Warping measure. The second proposed algorithm achieves a classical averaging of the aligned samples but also implements an averaging of the time of occurrences of the aligned samples. It exploits a straightforward progressive agglomerative heuristics. An experimentation that compares for 45 time series datasets classification error rates obtained by first near neighbors classifiers exploiting a single medoid or centroid estimate to represent each categories show that: i) centroids based approaches significantly outperform medoids based approaches, ii) on the considered experience, the two proposed algorithms outperform the state of the art DBA algorithm, and iii) the second proposed algorithm that implements an averaging jointly in the sample space and along the time axes emerges as the most significantly robust time elastic averaging heuristic with an interesting noise reduction capability. Index Terms-Time series averaging Time elastic kernel Dynamic Time Warping Time series clustering and classification.
Pierre-Fran\c{c}ois Marteau (IRISA)
10.2478/amcs-2019-0028
1505.06897
null
null
Using Dimension Reduction to Improve the Classification of High-dimensional Data
cs.LG cs.CV
In this work we show that the classification performance of high-dimensional structural MRI data with only a small set of training examples is improved by the usage of dimension reduction methods. We assessed two different dimension reduction variants: feature selection by ANOVA F-test and feature transformation by PCA. On the reduced datasets, we applied common learning algorithms using 5-fold cross-validation. Training, tuning of the hyperparameters, as well as the performance evaluation of the classifiers was conducted using two different performance measures: Accuracy, and Receiver Operating Characteristic curve (AUC). Our hypothesis is supported by experimental results.
Andreas Gr\"unauer and Markus Vincze
null
1505.06907
null
null
Large-scale Machine Learning for Metagenomics Sequence Classification
q-bio.QM cs.CE cs.LG q-bio.GN stat.ML
Metagenomics characterizes the taxonomic diversity of microbial communities by sequencing DNA directly from an environmental sample. One of the main challenges in metagenomics data analysis is the binning step, where each sequenced read is assigned to a taxonomic clade. Due to the large volume of metagenomics datasets, binning methods need fast and accurate algorithms that can operate with reasonable computing requirements. While standard alignment-based methods provide state-of-the-art performance, compositional approaches that assign a taxonomic class to a DNA read based on the k-mers it contains have the potential to provide faster solutions. In this work, we investigate the potential of modern, large-scale machine learning implementations for taxonomic affectation of next-generation sequencing reads based on their k-mers profile. We show that machine learning-based compositional approaches benefit from increasing the number of fragments sampled from reference genome to tune their parameters, up to a coverage of about 10, and from increasing the k-mer size to about 12. Tuning these models involves training a machine learning model on about 10 8 samples in 10 7 dimensions, which is out of reach of standard soft-wares but can be done efficiently with modern implementations for large-scale machine learning. The resulting models are competitive in terms of accuracy with well-established alignment tools for problems involving a small to moderate number of candidate species, and for reasonable amounts of sequencing errors. We show, however, that compositional approaches are still limited in their ability to deal with problems involving a greater number of species, and more sensitive to sequencing errors. We finally confirm that compositional approach achieve faster prediction times, with a gain of 3 to 15 times with respect to the BWA-MEM short read mapper, depending on the number of candidate species and the level of sequencing noise.
K\'evin Vervier (CBIO), Pierre Mah\'e, Maud Tournoud, Jean-Baptiste Veyrieras, Jean-Philippe Vert (CBIO)
null
1505.06915
null
null
Fantasy Football Prediction
cs.LG
The ubiquity of professional sports and specifically the NFL have lead to an increase in popularity for Fantasy Football. Users have many tools at their disposal: statistics, predictions, rankings of experts and even recommendations of peers. There are issues with all of these, though. Especially since many people pay money to play, the prediction tools should be enhanced as they provide unbiased and easy-to-use assistance for users. This paper provides and discusses approaches to predict Fantasy Football scores of Quarterbacks with relatively limited data. In addition to that, it includes several suggestions on how the data could be enhanced to achieve better results. The dataset consists only of game data from the last six NFL seasons. I used two different methods to predict the Fantasy Football scores of NFL players: Support Vector Regression (SVR) and Neural Networks. The results of both are promising given the limited data that was used.
Roman Lutz
null
1505.06918
null
null
Sequential Dimensionality Reduction for Extracting Localized Features
cs.CV cs.LG cs.NA math.NA stat.ML
Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the identification of important features in a data set. In particular, nonnegative matrix factorization (NMF) has become very popular as it is able to extract sparse, localized and easily interpretable features by imposing an additive combination of nonnegative basis elements. Nonnegative matrix underapproximation (NMU) is a closely related technique that has the advantage to identify features sequentially. In this paper, we propose a variant of NMU that is particularly well suited for image analysis as it incorporates the spatial information, that is, it takes into account the fact that neighboring pixels are more likely to be contained in the same features, and favors the extraction of localized features by looking for sparse basis elements. We show that our new approach competes favorably with comparable state-of-the-art techniques on synthetic, facial and hyperspectral image data sets.
Gabriella Casalino, Nicolas Gillis
10.1016/j.patcog.2016.09.006
1505.06957
null
null
Some Open Problems in Optimal AdaBoost and Decision Stumps
cs.LG stat.ML
The significance of the study of the theoretical and practical properties of AdaBoost is unquestionable, given its simplicity, wide practical use, and effectiveness on real-world datasets. Here we present a few open problems regarding the behavior of "Optimal AdaBoost," a term coined by Rudin, Daubechies, and Schapire in 2004 to label the simple version of the standard AdaBoost algorithm in which the weak learner that AdaBoost uses always outputs the weak classifier with lowest weighted error among the respective hypothesis class of weak classifiers implicit in the weak learner. We concentrate on the standard, "vanilla" version of Optimal AdaBoost for binary classification that results from using an exponential-loss upper bound on the misclassification training error. We present two types of open problems. One deals with general weak hypotheses. The other deals with the particular case of decision stumps, as often and commonly used in practice. Answers to the open problems can have immediate significant impact to (1) cementing previously established results on asymptotic convergence properties of Optimal AdaBoost, for finite datasets, which in turn can be the start to any convergence-rate analysis; (2) understanding the weak-hypotheses class of effective decision stumps generated from data, which we have empirically observed to be significantly smaller than the typically obtained class, as well as the effect on the weak learner's running time and previously established improved bounds on the generalization performance of Optimal AdaBoost classifiers; and (3) shedding some light on the "self control" that AdaBoost tends to exhibit in practice.
Joshua Belanich and Luis E. Ortiz
null
1505.06999
null
null
An Overview of the Asymptotic Performance of the Family of the FastICA Algorithms
stat.ML cs.LG
This contribution summarizes the results on the asymptotic performance of several variants of the FastICA algorithm. A number of new closed-form expressions are presented.
Tianwen Wei
null
1505.07008
null
null
Belief Flows of Robust Online Learning
stat.ML cs.LG
This paper introduces a new probabilistic model for online learning which dynamically incorporates information from stochastic gradients of an arbitrary loss function. Similar to probabilistic filtering, the model maintains a Gaussian belief over the optimal weight parameters. Unlike traditional Bayesian updates, the model incorporates a small number of gradient evaluations at locations chosen using Thompson sampling, making it computationally tractable. The belief is then transformed via a linear flow field which optimally updates the belief distribution using rules derived from information theoretic principles. Several versions of the algorithm are shown using different constraints on the flow field and compared with conventional online learning algorithms. Results are given for several classification tasks including logistic regression and multilayer neural networks.
Pedro A. Ortega and Koby Crammer and Daniel D. Lee
null
1505.07067
null
null
Training a Convolutional Neural Network for Appearance-Invariant Place Recognition
cs.CV cs.LG cs.RO
Place recognition is one of the most challenging problems in computer vision, and has become a key part in mobile robotics and autonomous driving applications for performing loop closure in visual SLAM systems. Moreover, the difficulty of recognizing a revisited location increases with appearance changes caused, for instance, by weather or illumination variations, which hinders the long-term application of such algorithms in real environments. In this paper we present a convolutional neural network (CNN), trained for the first time with the purpose of recognizing revisited locations under severe appearance changes, which maps images to a low dimensional space where Euclidean distances represent place dissimilarity. In order for the network to learn the desired invariances, we train it with triplets of images selected from datasets which present a challenging variability in visual appearance. The triplets are selected in such way that two samples are from the same location and the third one is taken from a different place. We validate our system through extensive experimentation, where we demonstrate better performance than state-of-art algorithms in a number of popular datasets.
Ruben Gomez-Ojeda, Manuel Lopez-Antequera, Nicolai Petkov, Javier Gonzalez-Jimenez
null
1505.07428
null
null
A Practical Guide to Randomized Matrix Computations with MATLAB Implementations
cs.MS cs.LG
Matrix operations such as matrix inversion, eigenvalue decomposition, singular value decomposition are ubiquitous in real-world applications. Unfortunately, many of these matrix operations so time and memory expensive that they are prohibitive when the scale of data is large. In real-world applications, since the data themselves are noisy, machine-precision matrix operations are not necessary at all, and one can sacrifice a reasonable amount of accuracy for computational efficiency. In recent years, a bunch of randomized algorithms have been devised to make matrix computations more scalable. Mahoney (2011) and Woodruff (2014) have written excellent but very technical reviews of the randomized algorithms. Differently, the focus of this manuscript is on intuition, algorithm derivation, and implementation. This manuscript should be accessible to people with knowledge in elementary matrix algebra but unfamiliar with randomized matrix computations. The algorithms introduced in this manuscript are all summarized in a user-friendly way, and they can be implemented in lines of MATLAB code. The readers can easily follow the implementations even if they do not understand the maths and algorithms.
Shusen Wang
null
1505.07570
null
null
Learning with Symmetric Label Noise: The Importance of Being Unhinged
cs.LG
Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2010] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2010] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the SLN-robustness of the unhinged loss.
Brendan van Rooyen and Aditya Krishna Menon and Robert C. Williamson
null
1505.07634
null
null
Domain-Adversarial Training of Neural Networks
stat.ML cs.LG cs.NE
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Fran\c{c}ois Laviolette, Mario Marchand, Victor Lempitsky
null
1505.07818
null
null
Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding
cs.CL cs.IR cs.LG
Intelligence Quotient (IQ) Test is a set of standardized questions designed to evaluate human intelligence. Verbal comprehension questions appear very frequently in IQ tests, which measure human's verbal ability including the understanding of the words with multiple senses, the synonyms and antonyms, and the analogies among words. In this work, we explore whether such tests can be solved automatically by artificial intelligence technologies, especially the deep learning technologies that are recently developed and successfully applied in a number of fields. However, we found that the task was quite challenging, and simply applying existing technologies (e.g., word embedding) could not achieve a good performance, mainly due to the multiple senses of words and the complex relations among words. To tackle these challenges, we propose a novel framework consisting of three components. First, we build a classifier to recognize the specific type of a verbal question (e.g., analogy, classification, synonym, or antonym). Second, we obtain distributed representations of words and relations by leveraging a novel word embedding method that considers the multi-sense nature of words and the relational knowledge among words (or their senses) contained in dictionaries. Third, for each type of questions, we propose a specific solver based on the obtained distributed word representations and relation representations. Experimental results have shown that the proposed framework can not only outperform existing methods for solving verbal comprehension questions but also exceed the average performance of the Amazon Mechanical Turk workers involved in the study. The results indicate that with appropriate uses of the deep learning technologies we might be a further step closer to the human intelligence.
Huazheng Wang, Fei Tian, Bin Gao, Jiang Bian, Tie-Yan Liu
null
1505.07909
null
null