title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Empirical Studies on Symbolic Aggregation Approximation Under Statistical Perspectives for Knowledge Discovery in Time Series
cs.LG cs.IT math.IT
Symbolic Aggregation approXimation (SAX) has been the de facto standard representation methods for knowledge discovery in time series on a number of tasks and applications. So far, very little work has been done in empirically investigating the intrinsic properties and statistical mechanics in SAX words. In this paper, we applied several statistical measurements and proposed a new statistical measurement, i.e. information embedding cost (IEC) to analyze the statistical behaviors of the symbolic dynamics. Our experiments on the benchmark datasets and the clinical signals demonstrate that SAX can always reduce the complexity while preserving the core information embedded in the original time series with significant embedding efficiency. Our proposed IEC score provide a priori to determine if SAX is adequate for specific dataset, which can be generalized to evaluate other symbolic representations. Our work provides an analytical framework with several statistical tools to analyze, evaluate and further improve the symbolic dynamics for knowledge discovery in time series.
Wei Song, Zhiguang Wang, Yangdong Ye, Ming Fan
null
1506.02732
null
null
Inverting Visual Representations with Convolutional Networks
cs.NE cs.CV cs.LG
Feature representations, both hand-designed and learned ones, are often hard to analyze and interpret, even when they are extracted from visual data. We propose a new approach to study image representations by inverting them with an up-convolutional neural network. We apply the method to shallow representations (HOG, SIFT, LBP), as well as to deep networks. For shallow representations our approach provides significantly better reconstructions than existing methods, revealing that there is surprisingly rich information contained in these features. Inverting a deep network trained on ImageNet provides several insights into the properties of the feature representation learned by the network. Most strikingly, the colors and the rough contours of an image can be reconstructed from activations in higher network layers and even from the predicted class probabilities.
Alexey Dosovitskiy and Thomas Brox
null
1506.02753
null
null
WordRank: Learning Word Embeddings via Robust Ranking
cs.CL cs.LG stat.ML
Embedding words in a vector space has gained a lot of attention in recent years. While state-of-the-art methods provide efficient computation of word similarities via a low-dimensional matrix embedding, their motivation is often left unclear. In this paper, we argue that word embedding can be naturally viewed as a ranking problem due to the ranking nature of the evaluation metrics. Then, based on this insight, we propose a novel framework WordRank that efficiently estimates word representations via robust ranking, in which the attention mechanism and robustness to noise are readily achieved via the DCG-like ranking losses. The performance of WordRank is measured in word similarity and word analogy benchmarks, and the results are compared to the state-of-the-art word embedding techniques. Our algorithm is very competitive to the state-of-the- arts on large corpora, while outperforms them by a significant margin when the training set is limited (i.e., sparse and noisy). With 17 million tokens, WordRank performs almost as well as existing methods using 7.2 billion tokens on a popular word similarity benchmark. Our multi-node distributed implementation of WordRank is publicly available for general usage.
Shihao Ji, Hyokun Yun, Pinar Yanardag, Shin Matsushima, and S. V. N. Vishwanathan
null
1506.02761
null
null
Estimating Posterior Ratio for Classification: Transfer Learning from Probabilistic Perspective
stat.ML cs.LG
Transfer learning assumes classifiers of similar tasks share certain parameter structures. Unfortunately, modern classifiers uses sophisticated feature representations with huge parameter spaces which lead to costly transfer. Under the impression that changes from one classifier to another should be ``simple'', an efficient transfer learning criteria that only learns the ``differences'' is proposed in this paper. We train a \emph{posterior ratio} which turns out to minimizes the upper-bound of the target learning risk. The model of posterior ratio does not have to share the same parameter space with the source classifier at all so it can be easily modelled and efficiently trained. The resulting classifier therefore is obtained by simply multiplying the existing probabilistic-classifier with the learned posterior ratio.
Song Liu, Kenji Fukumizu
null
1506.02784
null
null
On the Error of Random Fourier Features
cs.LG stat.ML
Kernel methods give powerful, flexible, and theoretically grounded approaches to solving many problems in machine learning. The standard approach, however, requires pairwise evaluations of a kernel function, which can lead to scalability issues for very large datasets. Rahimi and Recht (2007) suggested a popular approach to handling this problem, known as random Fourier features. The quality of this approximation, however, is not well understood. We improve the uniform error bound of that paper, as well as giving novel understandings of the embedding's variance, approximation error, and use in some machine learning methods. We also point out that surprisingly, of the two main variants of those features, the more widely used is strictly higher-variance for the Gaussian kernel and has worse bounds.
Danica J. Sutherland and Jeff Schneider
null
1506.02785
null
null
Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path
cs.LG stat.ML
This article provides the first procedure for computing a fully data-dependent interval that traps the mixing time $t_{\text{mix}}$ of a finite reversible ergodic Markov chain at a prescribed confidence level. The interval is computed from a single finite-length sample path from the Markov chain, and does not require the knowledge of any parameters of the chain. This stands in contrast to previous approaches, which either only provide point estimates, or require a reset mechanism, or additional prior knowledge. The interval is constructed around the relaxation time $t_{\text{relax}}$, which is strongly related to the mixing time, and the width of the interval converges to zero roughly at a $\sqrt{n}$ rate, where $n$ is the length of the sample path. Upper and lower bounds are given on the number of samples required to achieve constant-factor multiplicative accuracy. The lower bounds indicate that, unless further restrictions are placed on the chain, no procedure can achieve this accuracy level before seeing each state at least $\Omega(t_{\text{relax}})$ times on the average. Finally, future directions of research are identified.
Daniel Hsu, Aryeh Kontorovich, Csaba Szepesv\'ari
null
1506.02903
null
null
Training Restricted Boltzmann Machines via the Thouless-Anderson-Palmer Free Energy
cond-mat.dis-nn cs.LG cs.NE stat.ML
Restricted Boltzmann machines are undirected neural networks which have been shown to be effective in many applications, including serving as initializations for training deep multi-layer neural networks. One of the main reasons for their success is the existence of efficient and practical stochastic algorithms, such as contrastive divergence, for unsupervised training. We propose an alternative deterministic iterative procedure based on an improved mean field method from statistical physics known as the Thouless-Anderson-Palmer approach. We demonstrate that our algorithm provides performance equal to, and sometimes superior to, persistent contrastive divergence, while also providing a clear and easy to evaluate objective function. We believe that this strategy can be easily generalized to other models as well as to more accurate higher-order approximations, paving the way for systematic improvements in training Boltzmann machines with hidden units.
Marylou Gabri\'e and Eric W. Tramel and Florent Krzakala
null
1506.02914
null
null
Stagewise Learning for Sparse Clustering of Discretely-Valued Data
stat.ML cs.LG q-bio.QM
The performance of EM in learning mixtures of product distributions often depends on the initialization. This can be problematic in crowdsourcing and other applications, e.g. when a small number of 'experts' are diluted by a large number of noisy, unreliable participants. We develop a new EM algorithm that is driven by these experts. In a manner that differs from other approaches, we start from a single mixture class. The algorithm then develops the set of 'experts' in a stagewise fashion based on a mutual information criterion. At each stage EM operates on this subset of the players, effectively regularizing the E rather than the M step. Experiments show that stagewise EM outperforms other initialization techniques for crowdsourcing and neurosciences applications, and can guide a full EM to results comparable to those obtained knowing the exact distribution.
Vincent Zhao, Steven W. Zucker
null
1506.02975
null
null
Accelerated Stochastic Gradient Descent for Minimizing Finite Sums
stat.ML cs.LG
We propose an optimization method for minimizing the finite sums of smooth convex functions. Our method incorporates an accelerated gradient descent (AGD) and a stochastic variance reduction gradient (SVRG) in a mini-batch setting. Unlike SVRG, our method can be directly applied to non-strongly and strongly convex problems. We show that our method achieves a lower overall complexity than the recently proposed methods that supports non-strongly convex problems. Moreover, this method has a fast rate of convergence for strongly convex problems. Our experiments show the effectiveness of our method.
Atsushi Nitanda
null
1506.03016
null
null
On the Interpretability of Conditional Probability Estimates in the Agnostic Setting
cs.LG
We study the interpretability of conditional probability estimates for binary classification under the agnostic setting or scenario. Under the agnostic setting, conditional probability estimates do not necessarily reflect the true conditional probabilities. Instead, they have a certain calibration property: among all data points that the classifier has predicted P(Y = 1|X) = p, p portion of them actually have label Y = 1. For cost-sensitive decision problems, this calibration property provides adequate support for us to use Bayes Decision Theory. In this paper, we define a novel measure for the calibration property together with its empirical counterpart, and prove an uniform convergence result between them. This new measure enables us to formally justify the calibration property of conditional probability estimations, and provides new insights on the problem of estimating and calibrating conditional probabilities.
Yihan Gao, Aditya Parameswaran, Jian Peng
null
1506.03018
null
null
Measuring Sample Quality with Stein's Method
stat.ML cs.LG math.PR stat.ME
To improve the efficiency of Monte Carlo estimation, practitioners are turning to biased Markov chain Monte Carlo procedures that trade off asymptotic exactness for computational speed. The reasoning is sound: a reduction in variance due to more rapid sampling can outweigh the bias introduced. However, the inexactness creates new challenges for sampler and parameter selection, since standard measures of sample quality like effective sample size do not account for asymptotic bias. To address these challenges, we introduce a new computable quality measure based on Stein's method that quantifies the maximum discrepancy between sample and target expectations over a large class of test functions. We use our tool to compare exact, biased, and deterministic sample sequences and illustrate applications to hyperparameter selection, convergence rate assessment, and quantifying bias-variance tradeoffs in posterior inference.
Jackson Gorham and Lester Mackey
null
1506.03039
null
null
Deep SimNets
cs.NE cs.LG
We present a deep layered architecture that generalizes convolutional neural networks (ConvNets). The architecture, called SimNets, is driven by two operators: (i) a similarity function that generalizes inner-product, and (ii) a log-mean-exp function called MEX that generalizes maximum and average. The two operators applied in succession give rise to a standard neuron but in "feature space". The feature spaces realized by SimNets depend on the choice of the similarity operator. The simplest setting, which corresponds to a convolution, realizes the feature space of the Exponential kernel, while other settings realize feature spaces of more powerful kernels (Generalized Gaussian, which includes as special cases RBF and Laplacian), or even dynamically learned feature spaces (Generalized Multiple Kernel Learning). As a result, the SimNet contains a higher abstraction level compared to a traditional ConvNet. We argue that enhanced expressiveness is important when the networks are small due to run-time constraints (such as those imposed by mobile applications). Empirical evaluation validates the superior expressiveness of SimNets, showing a significant gain in accuracy over ConvNets when computational resources at run-time are limited. We also show that in large-scale settings, where computational complexity is less of a concern, the additional capacity of SimNets can be controlled with proper regularization, yielding accuracies comparable to state of the art ConvNets.
Nadav Cohen, Or Sharir and Amnon Shashua
null
1506.03059
null
null
Clustering by transitive propagation
cs.LG cond-mat.stat-mech stat.ML
We present a global optimization algorithm for clustering data given the ratio of likelihoods that each pair of data points is in the same cluster or in different clusters. To define a clustering solution in terms of pairwise relationships, a necessary and sufficient condition is that belonging to the same cluster satisfies transitivity. We define a global objective function based on pairwise likelihood ratios and a transitivity constraint over all triples, assigning an equal prior probability to all clustering solutions. We maximize the objective function by implementing max-sum message passing on the corresponding factor graph to arrive at an O(N^3) algorithm. Lastly, we demonstrate an application inspired by mutational sequencing for decoding random binary words transmitted through a noisy channel.
Vijay Kumar and Dan Levy
null
1506.03072
null
null
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
cs.LG cs.CL cs.CV
Recurrent Neural Networks can be trained to produce sequences of tokens given some input, as exemplified by recent results in machine translation and image captioning. The current approach to training them consists of maximizing the likelihood of each token in the sequence given the current (recurrent) state and the previous token. At inference, the unknown previous token is then replaced by a token generated by the model itself. This discrepancy between training and inference can yield errors that can accumulate quickly along the generated sequence. We propose a curriculum learning strategy to gently change the training process from a fully guided scheme using the true previous token, towards a less guided scheme which mostly uses the generated token instead. Experiments on several sequence prediction tasks show that this approach yields significant improvements. Moreover, it was used successfully in our winning entry to the MSCOCO image captioning challenge, 2015.
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer
null
1506.03099
null
null
Provable Bayesian Inference via Particle Mirror Descent
cs.LG stat.CO stat.ML
Bayesian methods are appealing in their flexibility in modeling complex data and ability in capturing uncertainty in parameters. However, when Bayes' rule does not result in tractable closed-form, most approximate inference algorithms lack either scalability or rigorous guarantees. To tackle this challenge, we propose a simple yet provable algorithm, \emph{Particle Mirror Descent} (PMD), to iteratively approximate the posterior density. PMD is inspired by stochastic functional mirror descent where one descends in the density space using a small batch of data points at each iteration, and by particle filtering where one uses samples to approximate a function. We prove result of the first kind that, with $m$ particles, PMD provides a posterior density estimator that converges in terms of $KL$-divergence to the true posterior in rate $O(1/\sqrt{m})$. We demonstrate competitive empirical performances of PMD compared to several approximate inference algorithms in mixture models, logistic regression, sparse Gaussian processes and latent Dirichlet allocation on large scale datasets.
Bo Dai, Niao He, Hanjun Dai, Le Song
null
1506.03101
null
null
Pointer Networks
stat.ML cs.CG cs.LG cs.NE
We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.
Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
null
1506.03134
null
null
Symmetric Tensor Completion from Multilinear Entries and Learning Product Mixtures over the Hypercube
cs.DS cs.LG stat.ML
We give an algorithm for completing an order-$m$ symmetric low-rank tensor from its multilinear entries in time roughly proportional to the number of tensor entries. We apply our tensor completion algorithm to the problem of learning mixtures of product distributions over the hypercube, obtaining new algorithmic results. If the centers of the product distribution are linearly independent, then we recover distributions with as many as $\Omega(n)$ centers in polynomial time and sample complexity. In the general case, we recover distributions with as many as $\tilde\Omega(n)$ centers in quasi-polynomial time, answering an open problem of Feldman et al. (SIAM J. Comp.) for the special case of distributions with incoherent bias vectors. Our main algorithmic tool is the iterated application of a low-rank matrix completion algorithm for matrices with adversarially missing entries.
Tselil Schramm and Benjamin Weitz
null
1506.03137
null
null
Copula variational inference
stat.ML cs.LG stat.CO stat.ME
We develop a general variational inference method that preserves dependency among the latent variables. Our method uses copulas to augment the families of distributions used in mean-field and structured approximations. Copulas model the dependency that is not captured by the original variational distribution, and thus the augmented variational family guarantees better approximations to the posterior. With stochastic optimization, inference on the augmented distribution is scalable. Furthermore, our strategy is generic: it can be applied to any inference procedure that currently uses the mean-field or structured approach. Copula variational inference has many advantages: it reduces bias; it is less sensitive to local optima; it is less sensitive to hyperparameters; and it helps characterize and interpret the dependency among the latent variables.
Dustin Tran, David M. Blei, Edoardo M. Airoldi
null
1506.03159
null
null
Permutation Search Methods are Efficient, Yet Faster Search is Possible
cs.LG cs.DB cs.DS
We survey permutation-based methods for approximate k-nearest neighbor search. In these methods, every data point is represented by a ranked list of pivots sorted by the distance to this point. Such ranked lists are called permutations. The underpinning assumption is that, for both metric and non-metric spaces, the distance between permutations is a good proxy for the distance between original points. Thus, it should be possible to efficiently retrieve most true nearest neighbors by examining only a tiny subset of data points whose permutations are similar to the permutation of a query. We further test this assumption by carrying out an extensive experimental evaluation where permutation methods are pitted against state-of-the art benchmarks (the multi-probe LSH, the VP-tree, and proximity-graph based retrieval) on a variety of realistically large data set from the image and textual domain. The focus is on the high-accuracy retrieval methods for generic spaces. Additionally, we assume that both data and indices are stored in main memory. We find permutation methods to be reasonably efficient and describe a setup where these methods are most useful. To ease reproducibility, we make our software and data sets publicly available.
Bilegsaikhan Naidan, Leonid Boytsov, Eric Nyberg
null
1506.03163
null
null
Explore no more: Improved high-probability regret bounds for non-stochastic bandits
cs.LG stat.ML
This work addresses the problem of regret minimization in non-stochastic multi-armed bandit problems, focusing on performance guarantees that hold with high probability. Such results are rather scarce in the literature since proving them requires a large deal of technical effort and significant modifications to the standard, more intuitive algorithms that come only with guarantees that hold on expectation. One of these modifications is forcing the learner to sample arms from the uniform distribution at least $\Omega(\sqrt{T})$ times over $T$ rounds, which can adversely affect performance if many of the arms are suboptimal. While it is widely conjectured that this property is essential for proving high-probability regret bounds, we show in this paper that it is possible to achieve such strong results without this undesirable exploration component. Our result relies on a simple and intuitive loss-estimation strategy called Implicit eXploration (IX) that allows a remarkably clean analysis. To demonstrate the flexibility of our technique, we derive several improved high-probability bounds for various extensions of the standard multi-armed bandit framework. Finally, we conduct a simple experiment that illustrates the robustness of our implicit exploration technique.
Gergely Neu
null
1506.03271
null
null
Neural Adaptive Sequential Monte Carlo
cs.LG stat.ML
Sequential Monte Carlo (SMC), or particle filtering, is a popular class of methods for sampling from an intractable target distribution using a sequence of simpler intermediate distributions. Like other importance sampling-based methods, performance is critically dependent on the proposal distribution: a bad proposal can lead to arbitrarily inaccurate estimates of the target distribution. This paper presents a new method for automatically adapting the proposal using an approximation of the Kullback-Leibler divergence between the true posterior and the proposal distribution. The method is very flexible, applicable to any parameterized proposal distribution and it supports online and batch variants. We use the new framework to adapt powerful proposal distributions with rich parameterizations based upon neural networks leading to Neural Adaptive Sequential Monte Carlo (NASMC). Experiments indicate that NASMC significantly improves inference in a non-linear state space model outperforming adaptive proposal methods including the Extended Kalman and Unscented Particle Filters. Experiments also indicate that improved inference translates into improved parameter learning when NASMC is used as a subroutine of Particle Marginal Metropolis Hastings. Finally we show that NASMC is able to train a latent variable recurrent neural network (LV-RNN) achieving results that compete with the state-of-the-art for polymorphic music modelling. NASMC can be seen as bridging the gap between adaptive SMC methods and the recent work in scalable, black-box variational inference.
Shixiang Gu and Zoubin Ghahramani and Richard E. Turner
null
1506.03338
null
null
An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives
cs.LG cs.AI stat.ML
We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.
Shipra Agrawal and Nikhil R. Devanur and Lihong Li
null
1506.03374
null
null
On the Prior Sensitivity of Thompson Sampling
cs.LG cs.AI stat.ML
The empirically successful Thompson Sampling algorithm for stochastic bandits has drawn much interest in understanding its theoretical properties. One important benefit of the algorithm is that it allows domain knowledge to be conveniently encoded as a prior distribution to balance exploration and exploitation more effectively. While it is generally believed that the algorithm's regret is low (high) when the prior is good (bad), little is known about the exact dependence. In this paper, we fully characterize the algorithm's worst-case dependence of regret on the choice of prior, focusing on a special yet representative case. These results also provide insights into the general sensitivity of the algorithm to the choice of priors. In particular, with $p$ being the prior probability mass of the true reward-generating model, we prove $O(\sqrt{T/p})$ and $O(\sqrt{(1-p)T})$ regret upper bounds for the bad- and good-prior cases, respectively, as well as \emph{matching} lower bounds. Our proofs rely on the discovery of a fundamental property of Thompson Sampling and make heavy use of martingale theory, both of which appear novel in the literature, to the best of our knowledge.
Che-Yu Liu and Lihong Li
null
1506.03378
null
null
The Online Coupon-Collector Problem and Its Application to Lifelong Reinforcement Learning
cs.LG cs.AI
Transferring knowledge across a sequence of related tasks is an important challenge in reinforcement learning (RL). Despite much encouraging empirical evidence, there has been little theoretical analysis. In this paper, we study a class of lifelong RL problems: the agent solves a sequence of tasks modeled as finite Markov decision processes (MDPs), each of which is from a finite set of MDPs with the same state/action sets and different transition/reward functions. Motivated by the need for cross-task exploration in lifelong learning, we formulate a novel online coupon-collector problem and give an optimal algorithm. This allows us to develop a new lifelong RL algorithm, whose overall sample complexity in a sequence of tasks is much smaller than single-task learning, even if the sequence of tasks is generated by an adversary. Benefits of the algorithm are demonstrated in simulated problems, including a recently introduced human-robot interaction problem.
Emma Brunskill and Lihong Li
null
1506.03379
null
null
Sparse Projection Oblique Randomer Forests
stat.ML cs.LG
Decision forests, including Random Forests and Gradient Boosting Trees, have recently demonstrated state-of-the-art performance in a variety of machine learning settings. Decision forests are typically ensembles of axis-aligned decision trees; that is, trees that split only along feature dimensions. In contrast, many recent extensions to decision forests are based on axis-oblique splits. Unfortunately, these extensions forfeit one or more of the favorable properties of decision forests based on axis-aligned splits, such as robustness to many noise dimensions, interpretability, or computational efficiency. We introduce yet another decision forest, called "Sparse Projection Oblique Randomer Forests" (SPORF). SPORF uses very sparse random projections, i.e., linear combinations of a small subset of features. SPORF significantly improves accuracy over existing state-of-the-art algorithms on a standard benchmark suite for classification with >100 problems of varying dimension, sample size, and number of classes. To illustrate how SPORF addresses the limitations of both axis-aligned and existing oblique decision forest methods, we conduct extensive simulated experiments. SPORF typically yields improved performance over existing decision forests, while mitigating computational efficiency and scalability and maintaining interpretability. SPORF can easily be incorporated into other ensemble methods such as boosting to obtain potentially similar gains.
Tyler M. Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse L. Patsolic, Benjamin Falk, Jason Yim, Carey E. Priebe, Randal Burns, Mauro Maggioni, Joshua T. Vogelstein
null
1506.03410
null
null
Convergence rates for pretraining and dropout: Guiding learning parameters using network structure
cs.LG cs.CV cs.NE math.OC stat.ML
Unsupervised pretraining and dropout have been well studied, especially with respect to regularization and output consistency. However, our understanding about the explicit convergence rates of the parameter estimates, and their dependence on the learning (like denoising and dropout rate) and structural (like depth and layer lengths) aspects of the network is less mature. An interesting question in this context is to ask if the network structure could "guide" the choices of such learning parameters. In this work, we explore these gaps between network structure, the learning mechanisms and their interaction with parameter convergence rates. We present a way to address these issues based on the backpropagation convergence rates for general nonconvex objectives using first-order information. We then incorporate two learning mechanisms into this general framework -- denoising autoencoder and dropout, and subsequently derive the convergence rates of deep networks. Building upon these bounds, we provide insights into the choices of learning parameters and network sizes that achieve certain levels of convergence accuracy. The results derived here support existing empirical observations, and we also conduct a set of experiments to evaluate them.
Vamsi K. Ithapu, Sathya Ravi, Vikas Singh
null
1506.03412
null
null
Fast Online Clustering with Randomized Skeleton Sets
cs.AI cs.LG
We present a new fast online clustering algorithm that reliably recovers arbitrary-shaped data clusters in high throughout data streams. Unlike the existing state-of-the-art online clustering methods based on k-means or k-medoid, it does not make any restrictive generative assumptions. In addition, in contrast to existing nonparametric clustering techniques such as DBScan or DenStream, it gives provable theoretical guarantees. To achieve fast clustering, we propose to represent each cluster by a skeleton set which is updated continuously as new data is seen. A skeleton set consists of weighted samples from the data where weights encode local densities. The size of each skeleton set is adapted according to the cluster geometry. The proposed technique automatically detects the number of clusters and is robust to outliers. The algorithm works for the infinite data stream where more than one pass over the data is not feasible. We provide theoretical guarantees on the quality of the clustering and also demonstrate its advantage over the existing state-of-the-art on several datasets.
Krzysztof Choromanski and Sanjiv Kumar and Xiaofeng Liu
null
1506.03425
null
null
Generative Image Modeling Using Spatial LSTMs
stat.ML cs.CV cs.LG
Modeling the distribution of natural images is challenging, partly because of strong statistical dependencies which can extend over hundreds of pixels. Recurrent neural networks have been successful in capturing long-range dependencies in a number of problems but only recently have found their way into generative image models. We here introduce a recurrent image model based on multi-dimensional long short-term memory units which are particularly suited for image modeling due to their spatial structure. Our model scales to images of arbitrary size and its likelihood is computationally tractable. We find that it outperforms the state of the art in quantitative comparisons on several image datasets and produces promising results when used for texture synthesis and inpainting.
Lucas Theis and Matthias Bethge
null
1506.03478
null
null
Sequential Nonparametric Testing with the Law of the Iterated Logarithm
stat.ML cs.LG math.ST stat.ME stat.TH
We propose a new algorithmic framework for sequential hypothesis testing with i.i.d. data, which includes A/B testing, nonparametric two-sample testing, and independence testing as special cases. It is novel in several ways: (a) it takes linear time and constant space to compute on the fly, (b) it has the same power guarantee as a non-sequential version of the test with the same computational constraints up to a small factor, and (c) it accesses only as many samples as are required - its stopping time adapts to the unknown difficulty of the problem. All our test statistics are constructed to be zero-mean martingales under the null hypothesis, and the rejection threshold is governed by a uniform non-asymptotic law of the iterated logarithm (LIL). For the case of nonparametric two-sample mean testing, we also provide a finite sample power analysis, and the first non-asymptotic stopping time calculations for this class of problems. We verify our predictions for type I and II errors and stopping times using simulations.
Akshay Balsubramani, Aaditya Ramdas
null
1506.03486
null
null
Bayesian Poisson Tensor Factorization for Inferring Multilateral Relations from Sparse Dyadic Event Counts
stat.ML cs.AI cs.LG cs.SI stat.AP
We present a Bayesian tensor factorization model for inferring latent group structures from dynamic pairwise interaction patterns. For decades, political scientists have collected and analyzed records of the form "country $i$ took action $a$ toward country $j$ at time $t$"---known as dyadic events---in order to form and test theories of international relations. We represent these event data as a tensor of counts and develop Bayesian Poisson tensor factorization to infer a low-dimensional, interpretable representation of their salient patterns. We demonstrate that our model's predictive performance is better than that of standard non-negative tensor factorization methods. We also provide a comparison of our variational updates to their maximum likelihood counterparts. In doing so, we identify a better way to form point estimates of the latent factors than that typically used in Bayesian Poisson matrix factorization. Finally, we showcase our model as an exploratory analysis tool for political scientists. We show that the inferred latent factor matrices capture interpretable multilateral relations that both conform to and inform our knowledge of international affairs.
Aaron Schein, John Paisley, David M. Blei, Hanna Wallach
null
1506.03493
null
null
Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation
cond-mat.dis-nn cs.LG stat.ML
The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank $r$ reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion with the Bethe Hessian). The rank is estimated as the number of negative eigenvalues of the Bethe Hessian matrix, and the corresponding eigenvectors are used as initial condition for the minimization of the discrepancy between the estimated matrix and the revealed entries. We analyze the performance in a random matrix setting using results from the statistical mechanics of the Hopfield neural network, and show in particular that MaCBetH efficiently detects the rank $r$ of a large $n\times m$ matrix from $C(r)r\sqrt{nm}$ entries, where $C(r)$ is a constant close to $1$. We also evaluate the corresponding root-mean-square error empirically and show that MaCBetH compares favorably to other existing approaches.
Alaa Saade, Florent Krzakala and Lenka Zdeborov\'a
null
1506.03498
null
null
Data Generation as Sequential Decision Making
cs.LG stat.ML
We connect a broad class of generative models through their shared reliance on sequential decision making. Motivated by this view, we develop extensions to an existing model, and then explore the idea further in the context of data imputation -- perhaps the simplest setting in which to investigate the relation between unconditional and conditional generative modelling. We formulate data imputation as an MDP and develop models capable of representing effective policies for it. We construct the models using neural networks and train them using a form of guided policy search. Our models generate predictions through an iterative process of feedback and refinement. We show that this approach can learn effective policies for imputation problems of varying difficulty and across multiple datasets.
Philip Bachman and Doina Precup
null
1506.03504
null
null
Convolutional Dictionary Learning through Tensor Factorization
cs.LG stat.ML
Tensor methods have emerged as a powerful paradigm for consistent learning of many latent variable models such as topic models, independent component analysis and dictionary learning. Model parameters are estimated via CP decomposition of the observed higher order input moments. However, in many domains, additional invariances such as shift invariances exist, enforced via models such as convolutional dictionary learning. In this paper, we develop novel tensor decomposition algorithms for parameter estimation of convolutional models. Our algorithm is based on the popular alternating least squares method, but with efficient projections onto the space of stacked circulant matrices. Our method is embarrassingly parallel and consists of simple operations such as fast Fourier transforms and matrix multiplications. Our algorithm converges to the dictionary much faster and more accurately compared to the alternating minimization over filters and activation maps.
Furong Huang, Animashree Anandkumar
null
1506.03509
null
null
Max-Entropy Feed-Forward Clustering Neural Network
cs.LG
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI datasets, comparing with a few baselines and applied purity as the measurement . The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.
Han Xiao, Xiaoyan Zhu
null
1506.03623
null
null
Margin-Based Feed-Forward Neural Network Classifiers
cs.LG
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.
Han Xiao, Xiaoyan Zhu
null
1506.03626
null
null
Constrained Convolutional Neural Networks for Weakly Supervised Segmentation
cs.CV cs.LG
We present an approach to learn a dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a Convolutional Neural Network (CNN) classifier. We propose Constrained CNN (CCNN), a method which uses a novel loss function to optimize for any set of linear constraints on the output space (i.e. predicted label distribution) of a CNN. Our loss formulation is easy to optimize and can be incorporated directly into standard stochastic gradient descent optimization. The key idea is to phrase the training objective as a biconvex optimization for linear models, which we then relax to nonlinear deep networks. Extensive experiments demonstrate the generality of our new learning framework. The constrained loss yields state-of-the-art results on weakly supervised semantic image segmentation. We further demonstrate that adding slightly more supervision can greatly improve the performance of the learning algorithm.
Deepak Pathak, Philipp Kr\"ahenb\"uhl and Trevor Darrell
null
1506.03648
null
null
Variance Reduced Stochastic Gradient Descent with Neighbors
cs.LG math.OC stat.ML
Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its slow convergence can be a computational bottleneck. Variance reduction techniques such as SAG, SVRG and SAGA have been proposed to overcome this weakness, achieving linear convergence. However, these methods are either based on computations of full gradients at pivot points, or on keeping per data point corrections in memory. Therefore speed-ups relative to SGD may need a minimal number of epochs in order to materialize. This paper investigates algorithms that can exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase. As a side-product we provide a unified convergence analysis for a family of variance reduction algorithms, which we call memorization algorithms. We provide experimental results supporting our theory.
Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, Brian McWilliams
null
1506.03662
null
null
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
cs.LG stat.ML
We describe an embarrassingly parallel, anytime Monte Carlo method for likelihood-free models. The algorithm starts with the view that the stochasticity of the pseudo-samples generated by the simulator can be controlled externally by a vector of random numbers u, in such a way that the outcome, knowing u, is deterministic. For each instantiation of u we run an optimization procedure to minimize the distance between summary statistics of the simulator and the data. After reweighing these samples using the prior and the Jacobian (accounting for the change of volume in transforming from the space of summary statistics to the space of parameters) we show that this weighted ensemble represents a Monte Carlo estimate of the posterior distribution. The procedure can be run embarrassingly parallel (each node handling one sample) and anytime (by allocating resources to the worst performing sample). The procedure is validated on six experiments.
Edward Meeds and Max Welling
null
1506.03693
null
null
Random Maxout Features
cs.LG stat.ML
In this paper, we propose and study random maxout features, which are constructed by first projecting the input data onto sets of randomly generated vectors with Gaussian elements, and then outputing the maximum projection value for each set. We show that the resulting random feature map, when used in conjunction with linear models, allows for the locally linear estimation of the function of interest in classification tasks, and for the locally linear embedding of points when used for dimensionality reduction or data visualization. We derive generalization bounds for learning that assess the error in approximating locally linear functions by linear functions in the maxout feature space, and empirically evaluate the efficacy of the approach on the MNIST and TIMIT classification tasks.
Youssef Mroueh, Steven Rennie, Vaibhava Goel
null
1506.03705
null
null
Recovering communities in the general stochastic block model without knowing the parameters
math.PR cs.IT cs.LG cs.SI math.IT
Most recent developments on the stochastic block model (SBM) rely on the knowledge of the model parameters, or at least on the number of communities. This paper introduces efficient algorithms that do not require such knowledge and yet achieve the optimal information-theoretic tradeoffs identified in [AS15] for linear size communities. The results are three-fold: (i) in the constant degree regime, an algorithm is developed that requires only a lower-bound on the relative sizes of the communities and detects communities with an optimal accuracy scaling for large degrees; (ii) in the regime where degrees are scaled by $\omega(1)$ (diverging degrees), this is enhanced into a fully agnostic algorithm that only takes the graph in question and simultaneously learns the model parameters (including the number of communities) and detects communities with accuracy $1-o(1)$, with an overall quasi-linear complexity; (iii) in the logarithmic degree regime, an agnostic algorithm is developed that learns the parameters and achieves the optimal CH-limit for exact recovery, in quasi-linear time. These provide the first algorithms affording efficiency, universality and information-theoretic optimality for strong and weak consistency in the general SBM with linear size communities.
Emmanuel Abbe and Colin Sandon
null
1506.03729
null
null
GAP Safe screening rules for sparse multi-task and multi-class models
stat.ML cs.LG math.OC stat.CO
High dimensional regression benefits from sparsity promoting regularizations. Screening rules leverage the known sparsity of the solution by ignoring some variables in the optimization, hence speeding up solvers. When the procedure is proven not to discard features wrongly the rules are said to be \emph{safe}. In this paper we derive new safe rules for generalized linear models regularized with $\ell_1$ and $\ell_1/\ell_2$ norms. The rules are based on duality gap computations and spherical safe regions whose diameters converge to zero. This allows to discard safely more variables, in particular for low regularization parameters. The GAP Safe rule can cope with any iterative solver and we illustrate its performance on coordinate descent for multi-task Lasso, binary and multinomial logistic regression, demonstrating significant speed ups on all tested datasets with respect to previous safe rules.
Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon
null
1506.03736
null
null
Spectral Representations for Convolutional Neural Networks
stat.ML cs.LG
Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representation in which to model and train convolutional neural networks (CNNs). We employ spectral representations to introduce a number of innovations to CNN design. First, we propose spectral pooling, which performs dimensionality reduction by truncating the representation in the frequency domain. This approach preserves considerably more information per parameter than other pooling strategies and enables flexibility in the choice of pooling output dimensionality. This representation also enables a new form of stochastic regularization by randomized modification of resolution. We show that these methods achieve competitive results on classification and approximation tasks, without using any dropout or max-pooling. Finally, we demonstrate the effectiveness of complex-coefficient spectral parameterization of convolutional filters. While this leaves the underlying model unchanged, it results in a representation that greatly facilitates optimization. We observe on a variety of popular CNN configurations that this leads to significantly faster convergence during training.
Oren Rippel, Jasper Snoek and Ryan P. Adams
null
1506.03767
null
null
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
stat.ML cs.LG
Many real-world regression problems demand a measure of the uncertainty associated with each prediction. Standard decision forests deliver efficient state-of-the-art predictive performance, but high-quality uncertainty estimates are lacking. Gaussian processes (GPs) deliver uncertainty estimates, but scaling GPs to large-scale data sets comes at the cost of approximating the uncertainty estimates. We extend Mondrian forests, first proposed by Lakshminarayanan et al. (2014) for classification problems, to the large-scale non-parametric regression setting. Using a novel hierarchical Gaussian prior that dovetails with the Mondrian forest framework, we obtain principled uncertainty estimates, while still retaining the computational advantages of decision forests. Through a combination of illustrative examples, real-world large-scale datasets, and Bayesian optimization benchmarks, we demonstrate that Mondrian forests outperform approximate GPs on large-scale regression tasks and deliver better-calibrated uncertainty assessments than decision-forest-based methods.
Balaji Lakshminarayanan, Daniel M. Roy and Yee Whye Teh
null
1506.03805
null
null
Bidirectional Helmholtz Machines
cs.LG stat.ML
Efficient unsupervised training and inference in deep generative models remains a challenging problem. One basic approach, called Helmholtz machine, involves training a top-down directed generative model together with a bottom-up auxiliary model used for approximate inference. Recent results indicate that better generative models can be obtained with better approximate inference procedures. Instead of improving the inference procedure, we here propose a new model which guarantees that the top-down and bottom-up distributions can efficiently invert each other. We achieve this by interpreting both the top-down and the bottom-up directed models as approximate inference distributions and by defining the model distribution to be the geometric mean of these two. We present a lower-bound for the likelihood of this model and we show that optimizing this bound regularizes the model so that the Bhattacharyya distance between the bottom-up and top-down approximate distributions is minimized. This approach results in state of the art generative models which prefer significantly deeper architectures while it allows for orders of magnitude more efficient approximate inference.
Jorg Bornschein and Samira Shabanian and Asja Fischer and Yoshua Bengio
null
1506.03877
null
null
Place classification with a graph regularized deep neural network model
cs.RO cs.CV cs.LG cs.NE
Place classification is a fundamental ability that a robot should possess to carry out effective human-robot interactions. It is a nontrivial classification problem which has attracted many research. In recent years, there is a high exploitation of Artificial Intelligent algorithms in robotics applications. Inspired by the recent successes of deep learning methods, we propose an end-to-end learning approach for the place classification problem. With the deep architectures, this methodology automatically discovers features and contributes in general to higher classification accuracies. The pipeline of our approach is composed of three parts. Firstly, we construct multiple layers of laser range data to represent the environment information in different levels of granularity. Secondly, each layer of data is fed into a deep neural network model for classification, where a graph regularization is imposed to the deep architecture for keeping local consistency between adjacent samples. Finally, the predicted labels obtained from all the layers are fused based on confidence trees to maximize the overall confidence. Experimental results validate the effective- ness of our end-to-end place classification framework in which both the multi-layer structure and the graph regularization promote the classification performance. Furthermore, results show that the features automatically learned from the raw input range data can achieve competitive results to the features constructed based on statistical and geometrical information.
Yiyi Liao, Sarath Kodagoda, Yue Wang, Lei Shi, Yong Liu
null
1506.03899
null
null
Optimal $\gamma$ and $C$ for $\epsilon$-Support Vector Regression with RBF Kernels
cs.LG stat.ML
The objective of this study is to investigate the efficient determination of $C$ and $\gamma$ for Support Vector Regression with RBF or mahalanobis kernel based on numerical and statistician considerations, which indicates the connection between $C$ and kernels and demonstrates that the deviation of geometric distance of neighbour observation in mapped space effects the predict accuracy of $\epsilon$-SVR. We determinate the arrange of $\gamma$ & $C$ and propose our method to choose their best values.
Longfei Lu
null
1506.03942
null
null
Knowledge Representation in Learning Classifier Systems: A Review
cs.NE cs.LG
Knowledge representation is a key component to the success of all rule based systems including learning classifier systems (LCSs). This component brings insight into how to partition the problem space what in turn seeks prominent role in generalization capacity of the system as a whole. Recently, knowledge representation component has received great deal of attention within data mining communities due to its impacts on rule based systems in terms of efficiency and efficacy. The current work is an attempt to find a comprehensive and yet elaborate view into the existing knowledge representation techniques in LCS domain in general and XCS in specific. To achieve the objectives, knowledge representation techniques are grouped into different categories based on the classification approach in which they are incorporated. In each category, the underlying rule representation schema and the format of classifier condition to support the corresponding representation are presented. Furthermore, a precise explanation on the way that each technique partitions the problem space along with the extensive experimental results is provided. To have an elaborated view on the functionality of each technique, a comparative analysis of existing techniques on some conventional problems is provided. We expect this survey to be of interest to the LCS researchers and practitioners since it provides a guideline for choosing a proper knowledge representation technique for a given problem and also opens up new streams of research on this topic.
Farzaneh Shoeleh, Mahshid Majd, Ali Hamzeh, Sattar Hashemi
null
1506.04002
null
null
Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences
cs.CL cs.AI cs.LG cs.NE cs.RO
We propose a neural sequence-to-sequence model for direction following, a task that is essential to realizing effective autonomous agents. Our alignment-based encoder-decoder model with long short-term memory recurrent neural networks (LSTM-RNN) translates natural language instructions to action sequences based upon a representation of the observable world state. We introduce a multi-level aligner that empowers our model to focus on sentence "regions" salient to the current world state by using multiple abstractions of the input sentence. In contrast to existing methods, our model uses no specialized linguistic resources (e.g., parsers) or task-specific annotations (e.g., seed lexicons). It is therefore generalizable, yet still achieves the best results reported to-date on a benchmark single-sentence dataset and competitive results for the limited-training multi-sentence setting. We analyze our model through a series of ablations that elucidate the contributions of the primary components of our model.
Hongyuan Mei, Mohit Bansal, Matthew R. Walter
null
1506.04089
null
null
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
stat.ML cs.LG
We consider a generic convex-concave saddle point problem with separable structure, a form that covers a wide-ranged machine learning applications. Under this problem structure, we follow the framework of primal-dual updates for saddle point problems, and incorporate stochastic block coordinate descent with adaptive stepsize into this framework. We theoretically show that our proposal of adaptive stepsize potentially achieves a sharper linear convergence rate compared with the existing methods. Additionally, since we can select "mini-batch" of block coordinates to update, our method is also amenable to parallel processing for large-scale data. We apply the proposed method to regularized empirical risk minimization and show that it performs comparably or, more often, better than state-of-the-art methods on both synthetic and real-world data sets.
Zhanxing Zhu and Amos J. Storkey
null
1506.04093
null
null
Stochastic Expectation Propagation
stat.ML cs.LG
Expectation propagation (EP) is a deterministic approximation algorithm that is often used to perform approximate Bayesian parameter learning. EP approximates the full intractable posterior distribution through a set of local approximations that are iteratively refined for each datapoint. EP can offer analytic and computational advantages over other approximations, such as Variational Inference (VI), and is the method of choice for a number of models. The local nature of EP appears to make it an ideal candidate for performing Bayesian learning on large models in large-scale dataset settings. However, EP has a crucial limitation in this context: the number of approximating factors needs to increase with the number of data-points, N, which often entails a prohibitively large memory overhead. This paper presents an extension to EP, called stochastic expectation propagation (SEP), that maintains a global posterior approximation (like VI) but updates it in a local way (like EP). Experiments on a number of canonical learning problems using synthetic and real-world datasets indicate that SEP performs almost as well as full EP, but reduces the memory consumption by a factor of $N$. SEP is therefore ideally suited to performing approximate Bayesian learning in the large model, large dataset setting.
Yingzhen Li, Jose Miguel Hernandez-Lobato, Richard E. Turner
null
1506.04132
null
null
Reducing offline evaluation bias of collaborative filtering algorithms
cs.IR cs.LG stat.ML
Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper presents a new application of a weighted offline evaluation to reduce this bias for collaborative filtering algorithms.
Arnaud De Myttenaere (SAMM, Viadeo), Boris Golden (Viadeo), B\'en\'edicte Le Grand (CRI), Fabrice Rossi (SAMM)
null
1506.04135
null
null
On the accuracy of self-normalized log-linear models
stat.ML cs.CL cs.LG stat.ME
Calculation of the log-normalizer is a major computational obstacle in applications of log-linear models with large output spaces. The problem of fast normalizer computation has therefore attracted significant attention in the theoretical and applied machine learning literature. In this paper, we analyze a recently proposed technique known as "self-normalization", which introduces a regularization term in training to penalize log normalizers for deviating from zero. This makes it possible to use unnormalized model scores as approximate probabilities. Empirical evidence suggests that self-normalization is extremely effective, but a theoretical understanding of why it should work, and how generally it can be applied, is largely lacking. We prove generalization bounds on the estimated variance of normalizers and upper bounds on the loss in accuracy due to self-normalization, describe classes of input distributions that self-normalize easily, and construct explicit examples of high-variance input distributions. Our theoretical results make predictions about the difficulty of fitting self-normalized models to several classes of distributions, and we conclude with empirical validation of these predictions.
Jacob Andreas, Maxim Rabinovich, Dan Klein, Michael I. Jordan
null
1506.04147
null
null
Using the Mean Absolute Percentage Error for Regression Models
stat.ML cs.LG
We study in this paper the consequences of using the Mean Absolute Percentage Error (MAPE) as a measure of quality for regression models. We show that finding the best model under the MAPE is equivalent to doing weighted Mean Absolute Error (MAE) regression. We show that universal consistency of Empirical Risk Minimization remains possible using the MAPE instead of the MAE.
Arnaud De Myttenaere (SAMM), Boris Golden (Viadeo), B\'en\'edicte Le Grand (CRI), Fabrice Rossi (SAMM)
null
1506.04176
null
null
Search Strategies for Binary Feature Selection for a Naive Bayes Classifier
stat.ML cs.LG
We compare in this paper several feature selection methods for the Naive Bayes Classifier (NBC) when the data under study are described by a large number of redundant binary indicators. Wrapper approaches guided by the NBC estimation of the classification error probability out-perform filter approaches while retaining a reasonable computational cost.
Tsirizo Rabenoro (SAMM), J\'er\^ome Lacaille, Marie Cottrell (SAMM), Fabrice Rossi (SAMM)
null
1506.04177
null
null
A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
stat.ML cs.LG math.OC stat.CO
We propose a general algorithmic framework for constrained matrix and tensor factorization, which is widely used in signal processing and machine learning. The new framework is a hybrid between alternating optimization (AO) and the alternating direction method of multipliers (ADMM): each matrix factor is updated in turn, using ADMM, hence the name AO-ADMM. This combination can naturally accommodate a great variety of constraints on the factor matrices, and almost all possible loss measures for the fitting. Computation caching and warm start strategies are used to ensure that each update is evaluated efficiently, while the outer AO framework exploits recent developments in block coordinate descent (BCD)-type methods which help ensure that every limit point is a stationary point, as well as faster and more robust convergence in practice. Three special cases are studied in detail: non-negative matrix/tensor factorization, constrained matrix/tensor completion, and dictionary learning. Extensive simulations and experiments with real data are used to showcase the effectiveness and broad applicability of the proposed framework.
Kejun Huang, Nicholas D. Sidiropoulos, Athanasios P. Liavas
10.1109/TSP.2016.2576427
1506.04209
null
null
On the Equivalence of CoCoA+ and DisDCA
cs.LG
In this document, we show that the algorithm CoCoA+ (Ma et al., ICML, 2015) under the setting used in their experiments, which is also the best setting suggested by the authors that proposed this algorithm, is equivalent to the practical variant of DisDCA (Yang, NIPS, 2013).
Ching-pei Lee
null
1506.04217
null
null
Contamination Estimation via Convex Relaxations
cs.IT cs.LG math.IT math.OC
Identifying anomalies and contamination in datasets is important in a wide variety of settings. In this paper, we describe a new technique for estimating contamination in large, discrete valued datasets. Our approach considers the normal condition of the data to be specified by a model consisting of a set of distributions. Our key contribution is in our approach to contamination estimation. Specifically, we develop a technique that identifies the minimum number of data points that must be discarded (i.e., the level of contamination) from an empirical data set in order to match the model to within a specified goodness-of-fit, controlled by a p-value. Appealing to results from large deviations theory, we show a lower bound on the level of contamination is obtained by solving a series of convex programs. Theoretical results guarantee the bound converges at a rate of $O(\sqrt{\log(p)/p})$, where p is the size of the empirical data set.
Matthew L. Malloy, Scott Alfeld, Paul Barford
null
1506.04257
null
null
Generating and Exploring S-Box Multivariate Quadratic Equation Systems with SageMath
cs.CR cs.AI cs.LG
A new method to derive Multivariate Quadratic equation systems (MQ) for the input and output bit variables of a cryptographic S-box from its algebraic expressions with the aid of the computer mathematics software system SageMath is presented. We consolidate the deficiency of previously presented MQ metrics, supposed to quantify the resistance of S-boxes against algebraic attacks.
A.-M. Leventi-Peetz and J.-V. Peetz
10.1109/DESEC.2017.8073822
1506.04319
null
null
Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms
cs.LG
This paper studies the generalization performance of multi-class classification algorithms, for which we obtain, for the first time, a data-dependent generalization error bound with a logarithmic dependence on the class size, substantially improving the state-of-the-art linear dependence in the existing data-dependent generalization analysis. The theoretical analysis motivates us to introduce a new multi-class classification machine based on $\ell_p$-norm regularization, where the parameter $p$ controls the complexity of the corresponding bounds. We derive an efficient optimization algorithm based on Fenchel duality theory. Benchmarks on several real-world datasets show that the proposed algorithm can achieve significant accuracy gains over the state of the art.
Yunwen Lei and \"Ur\"un Dogan and Alexander Binder and Marius Kloft
null
1506.04359
null
null
Localized Multiple Kernel Learning---A Convex Approach
cs.LG
We propose a localized approach to multiple kernel learning that can be formulated as a convex optimization problem over a given cluster structure. For which we obtain generalization error guarantees and derive an optimization algorithm based on the Fenchel dual representation. Experiments on real-world datasets from the application domains of computational biology and computer vision show that convex localized multiple kernel learning can achieve higher prediction accuracies than its global and non-convex local counterparts.
Yunwen Lei and Alexander Binder and \"Ur\"un Dogan and Marius Kloft
null
1506.04364
null
null
Bayesian Dark Knowledge
cs.LG stat.ML
We consider the problem of Bayesian parameter estimation for deep neural networks, which is important in problem settings where we may have little data, and/ or where we need accurate posterior predictive densities, e.g., for applications involving bandits or active learning. One simple approach to this is to use online Monte Carlo methods, such as SGLD (stochastic gradient Langevin dynamics). Unfortunately, such a method needs to store many copies of the parameters (which wastes memory), and needs to make predictions using many versions of the model (which wastes time). We describe a method for "distilling" a Monte Carlo approximation to the posterior predictive density into a more compact form, namely a single deep neural network. We compare to two very recent approaches to Bayesian neural networks, namely an approach based on expectation propagation [Hernandez-Lobato and Adams, 2015] and an approach based on variational Bayes [Blundell et al., 2015]. Our method performs better than both of these, is much simpler to implement, and uses less computation at test time.
Anoop Korattikara, Vivek Rathod, Kevin Murphy, Max Welling
null
1506.04416
null
null
A Fast Incremental Gaussian Mixture Model
cs.LG
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of $\operatorname{O}\bigl(NKD^3\bigr)$ for $N$ data points, $K$ Gaussian components and $D$ dimensions, rendering it inadequate for high-dimensional data. In this paper, we manage to reduce this complexity to $\operatorname{O}\bigl(NKD^2\bigr)$ by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets.
Rafael Pinto and Paulo Engel
10.1371/journal.pone.0139931
1506.04422
null
null
Fast and Guaranteed Tensor Decomposition via Sketching
stat.ML cs.LG
Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as tensor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iterative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic modeling and obtain competitive results.
Yining Wang, Hsiao-Yu Tung, Alexander Smola and Animashree Anandkumar
null
1506.04448
null
null
Compressing Convolutional Neural Networks
cs.LG cs.CV cs.NE
Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected layers of a deep learning model, leading to dramatic savings in memory and storage consumption. Based on the key observation that the weights of learned convolutional filters are typically smooth and low-frequency, we first convert filter weights to the frequency domain with a discrete cosine transform (DCT) and use a low-cost hash function to randomly group frequency parameters into hash buckets. All parameters assigned the same hash bucket share a single value learned with standard back-propagation. To further reduce model size we allocate fewer hash buckets to high-frequency components, which are generally less important. We evaluate FreshNets on eight data sets, and show that it leads to drastically better compressed performance than several relevant baselines.
Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, Yixin Chen
null
1506.04449
null
null
Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy
cs.LG
The online learning of deep neural networks is an interesting problem of machine learning because, for example, major IT companies want to manage the information of the massive data uploaded on the web daily, and this technology can contribute to the next generation of lifelong learning. We aim to train deep models from new data that consists of new classes, distributions, and tasks at minimal computational cost, which we call online deep learning. Unfortunately, deep neural network learning through classical online and incremental methods does not work well in both theory and practice. In this paper, we introduce dual memory architectures for online incremental deep learning. The proposed architecture consists of deep representation learners and fast learnable shallow kernel networks, both of which synergize to track the information of new data. During the training phase, we use various online, incremental ensemble, and transfer learning techniques in order to achieve lower error of the architecture. On the MNIST, CIFAR-10, and ImageNet image recognition tasks, the proposed dual memory architectures performs much better than the classical online and incremental ensemble algorithm, and their accuracies are similar to that of the batch learner.
Sang-Woo Lee, Min-Oh Heo, Jiwon Kim, Jeonghee Kim, Byoung-Tak Zhang
null
1506.04477
null
null
Distilling Word Embeddings: An Encoding Approach
cs.CL cs.LG
Distilling knowledge from a well-trained cumbersome network to a small one has recently become a new research topic, as lightweight neural networks with high performance are particularly in need in various resource-restricted systems. This paper addresses the problem of distilling word embeddings for NLP tasks. We propose an encoding approach to distill task-specific knowledge from a set of high-dimensional embeddings, which can reduce model complexity by a large margin as well as retain high accuracy, showing a good compromise between efficiency and performance. Experiments in two tasks reveal the phenomenon that distilling knowledge from cumbersome embeddings is better than directly training neural networks with small embeddings.
Lili Mou, Ran Jia, Yan Xu, Ge Li, Lu Zhang, Zhi Jin
null
1506.04488
null
null
Convex Risk Minimization and Conditional Probability Estimation
cs.LG stat.ML
This paper proves, in very general settings, that convex risk minimization is a procedure to select a unique conditional probability model determined by the classification problem. Unlike most previous work, we give results that are general enough to include cases in which no minimum exists, as occurs typically, for instance, with standard boosting algorithms. Concretely, we first show that any sequence of predictors minimizing convex risk over the source distribution will converge to this unique model when the class of predictors is linear (but potentially of infinite dimension). Secondly, we show the same result holds for \emph{empirical} risk minimization whenever this class of predictors is finite dimensional, where the essential technical contribution is a norm-free generalization bound.
Matus Telgarsky and Miroslav Dud\'ik and Robert Schapire
null
1506.04513
null
null
Learning Deep Generative Models with Doubly Stochastic MCMC
cs.LG
We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models (DGMs) in a collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a mini-batch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over hidden variables via a neural adaptive importance sampler, where the proposal distribution is parameterized by a deep neural network and learnt jointly. We demonstrate the effectiveness on learning various DGMs in a wide range of tasks, including density estimation, data generation and missing data imputation. Our method outperforms many state-of-the-art competitors.
Chao Du, Jun Zhu and Bo Zhang
null
1506.04557
null
null
A New PAC-Bayesian Perspective on Domain Adaptation
stat.ML cs.LG
We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where the distributions' divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters' disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.
Pascal Germain (SIERRA), Amaury Habrard (LaHC), Fran\c{c}ois Laviolette, Emilie Morvant (LaHC)
null
1506.04573
null
null
Re-scale AdaBoost for Attack Detection in Collaborative Filtering Recommender Systems
cs.IR cs.CR cs.LG
Collaborative filtering recommender systems (CFRSs) are the key components of successful e-commerce systems. Actually, CFRSs are highly vulnerable to attacks since its openness. However, since attack size is far smaller than that of genuine users, conventional supervised learning based detection methods could be too "dull" to handle such imbalanced classification. In this paper, we improve detection performance from following two aspects. First, we extract well-designed features from user profiles based on the statistical properties of the diverse attack models, making hard classification task becomes easier to perform. Then, refer to the general idea of re-scale Boosting (RBoosting) and AdaBoost, we apply a variant of AdaBoost, called the re-scale AdaBoost (RAdaBoost) as our detection method based on extracted features. RAdaBoost is comparable to the optimal Boosting-type algorithm and can effectively improve the performance in some hard scenarios. Finally, a series of experiments on the MovieLens-100K data set are conducted to demonstrate the outperformance of RAdaBoost comparing with some classical techniques such as SVM, kNN and AdaBoost.
Zhihai Yang, Lin Xu, Zhongmin Cai
null
1506.04584
null
null
Latent Regression Bayesian Network for Data Representation
cs.LG
Deep directed generative models have attracted much attention recently due to their expressive representation power and the ability of ancestral sampling. One major difficulty of learning directed models with many latent variables is the intractable inference. To address this problem, most existing algorithms make assumptions to render the latent variables independent of each other, either by designing specific priors, or by approximating the true posterior using a factorized distribution. We believe the correlations among latent variables are crucial for faithful data representation. Driven by this idea, we propose an inference method based on the conditional pseudo-likelihood that preserves the dependencies among the latent variables. For learning, we propose to employ the hard Expectation Maximization (EM) algorithm, which avoids the intractability of the traditional EM by max-out instead of sum-out to compute the data likelihood. Qualitative and quantitative evaluations of our model against state of the art deep models on benchmark datasets demonstrate the effectiveness of the proposed algorithm in data representation and reconstruction.
Siqi Nie, Qiang Ji
null
1506.04720
null
null
Encog: Library of Interchangeable Machine Learning Models for Java and C#
cs.MS cs.LG
This paper introduces the Encog library for Java and C#, a scalable, adaptable, multiplatform machine learning framework that was 1st released in 2008. Encog allows a variety of machine learning models to be applied to datasets using regression, classification, and clustering. Various supported machine learning models can be used interchangeably with minimal recoding. Encog uses efficient multithreaded code to reduce training time by exploiting modern multicore processors. The current version of Encog can be downloaded from http://www.encog.org.
Jeff Heaton
null
1506.04776
null
null
Cheap Bandits
cs.LG
We consider stochastic sequential learning problems where the learner can observe the \textit{average reward of several actions}. Such a setting is interesting in many applications involving monitoring and surveillance, where the set of the actions to observe represent some (geographical) area. The importance of this setting is that in these applications, it is actually \textit{cheaper} to observe average reward of a group of actions rather than the reward of a single action. We show that when the reward is \textit{smooth} over a given graph representing the neighboring actions, we can maximize the cumulative reward of learning while \textit{minimizing the sensing cost}. In this paper we propose CheapUCB, an algorithm that matches the regret guarantees of the known algorithms for this setting and at the same time guarantees a linear cost again over them. As a by-product of our analysis, we establish a $\Omega(\sqrt{dT})$ lower bound on the cumulative regret of spectral bandits for a class of graphs with effective dimension $d$.
Manjesh Kumar Hanawal and Venkatesh Saligrama and Michal Valko and R\' emi Munos
null
1506.04782
null
null
Online Gradient Boosting
cs.LG
We extend the theory of boosting for regression problems to the online learning setting. Generalizing from the batch setting for boosting, the notion of a weak learning algorithm is modeled as an online learning algorithm with linear loss functions that competes with a base class of regression functions, while a strong learning algorithm is an online learning algorithm with convex loss functions that competes with a larger class of regression functions. Our main result is an online gradient boosting algorithm which converts a weak online learning algorithm into a strong one where the larger class of functions is the linear span of the base class. We also give a simpler boosting algorithm that converts a weak online learning algorithm into a strong one where the larger class of functions is the convex hull of the base class, and prove its optimality.
Alina Beygelzimer, Elad Hazan, Satyen Kale and Haipeng Luo
null
1506.04820
null
null
Tree-structured composition in neural networks without tree-structured architectures
cs.CL cs.LG
Tree-structured neural networks encode a particular tree geometry for a sentence in the network design. However, these models have at best only slightly outperformed simpler sequence-based models. We hypothesize that neural sequence models like LSTMs are in fact able to discover and implicitly use recursive compositional structure, at least for tasks with clear cues to that structure in the data. We demonstrate this possibility using an artificial data task for which recursive compositional structure is crucial, and find an LSTM-based sequence model can indeed learn to exploit the underlying tree structure. However, its performance consistently lags behind that of tree models, even on large training sets, suggesting that tree-structured models are more effective at exploiting recursive structure.
Samuel R. Bowman, Christopher D. Manning, and Christopher Potts
null
1506.04834
null
null
Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates
cs.LG cs.DS math.OC stat.ML
In this paper, we provide a novel construction of the linear-sized spectral sparsifiers of Batson, Spielman and Srivastava [BSS14]. While previous constructions required $\Omega(n^4)$ running time [BSS14, Zou12], our sparsification routine can be implemented in almost-quadratic running time $O(n^{2+\varepsilon})$. The fundamental conceptual novelty of our work is the leveraging of a strong connection between sparsification and a regret minimization problem over density matrices. This connection was known to provide an interpretation of the randomized sparsifiers of Spielman and Srivastava [SS11] via the application of matrix multiplicative weight updates (MWU) [CHS11, Vis14]. In this paper, we explain how matrix MWU naturally arises as an instance of the Follow-the-Regularized-Leader framework and generalize this approach to yield a larger class of updates. This new class allows us to accelerate the construction of linear-sized spectral sparsifiers, and give novel insights on the motivation behind Batson, Spielman and Srivastava [BSS14].
Zeyuan Allen-Zhu and Zhenyu Liao and Lorenzo Orecchia
null
1506.04838
null
null
PCA with Gaussian perturbations
cs.LG stat.ML
Most of machine learning deals with vector parameters. Ideally we would like to take higher order information into account and make use of matrix or even tensor parameters. However the resulting algorithms are usually inefficient. Here we address on-line learning with matrix parameters. It is often easy to obtain online algorithm with good generalization performance if you eigendecompose the current parameter matrix in each trial (at a cost of $O(n^3)$ per trial). Ideally we want to avoid the decompositions and spend $O(n^2)$ per trial, i.e. linear time in the size of the matrix data. There is a core trade-off between the running time and the generalization performance, here measured by the regret of the on-line algorithm (total gain of the best off-line predictor minus the total gain of the on-line algorithm). We focus on the key matrix problem of rank $k$ Principal Component Analysis in $\mathbb{R}^n$ where $k \ll n$. There are $O(n^3)$ algorithms that achieve the optimum regret but require eigendecompositions. We develop a simple algorithm that needs $O(kn^2)$ per trial whose regret is off by a small factor of $O(n^{1/4})$. The algorithm is based on the Follow the Perturbed Leader paradigm. It replaces full eigendecompositions at each trial by the problem finding $k$ principal components of the current covariance matrix that is perturbed by Gaussian noise.
Wojciech Kot{\l}owski, Manfred K. Warmuth
null
1506.04855
null
null
Author Identification using Multi-headed Recurrent Neural Networks
cs.CL cs.LG cs.NE
Recurrent neural networks (RNNs) are very good at modelling the flow of text, but typically need to be trained on a far larger corpus than is available for the PAN 2015 Author Identification task. This paper describes a novel approach where the output layer of a character-level RNN language model is split into several independent predictive sub-models, each representing an author, while the recurrent layer is shared by all. This allows the recurrent layer to model the language as a whole without over-fitting, while the outputs select aspects of the underlying model that reflect their author's style. The method proves competitive, ranking first in two of the four languages.
Douglas Bagnall
null
1506.04891
null
null
Learning with Clustering Structure
cs.LG
We study supervised learning problems using clustering constraints to impose structure on either features or samples, seeking to help both prediction and interpretation. The problem of clustering features arises naturally in text classification for instance, to reduce dimensionality by grouping words together and identify synonyms. The sample clustering problem on the other hand, applies to multiclass problems where we are allowed to make multiple predictions and the performance of the best answer is recorded. We derive a unified optimization formulation highlighting the common structure of these problems and produce algorithms whose core iteration complexity amounts to a k-means clustering step, which can be approximated efficiently. We extend these results to combine sparsity and clustering constraints, and develop a new projection algorithm on the set of clustered sparse vectors. We prove convergence of our algorithms on random instances, based on a union of subspaces interpretation of the clustering structure. Finally, we test the robustness of our methods on artificial data sets as well as real data extracted from movie reviews.
Vincent Roulet, Fajwel Fogel, Alexandre d'Aspremont, Francis Bach
null
1506.04908
null
null
Bayesian representation learning with oracle constraints
stat.ML cs.CV cs.LG
Representation learning systems typically rely on massive amounts of labeled data in order to be trained to high accuracy. Recently, high-dimensional parametric models like neural networks have succeeded in building rich representations using either compressive, reconstructive or supervised criteria. However, the semantic structure inherent in observations is oftentimes lost in the process. Human perception excels at understanding semantics but cannot always be expressed in terms of labels. Thus, \emph{oracles} or \emph{human-in-the-loop systems}, for example crowdsourcing, are often employed to generate similarity constraints using an implicit similarity function encoded in human perception. In this work we propose to combine \emph{generative unsupervised feature learning} with a \emph{probabilistic treatment of oracle information like triplets} in order to transfer implicit privileged oracle knowledge into explicit nonlinear Bayesian latent factor models of the observations. We use a fast variational algorithm to learn the joint model and demonstrate applicability to a well-known image dataset. We show how implicit triplet information can provide rich information to learn representations that outperform previous metric learning approaches as well as generative models without this side-information in a variety of predictive tasks. In addition, we illustrate that the proposed approach compartmentalizes the latent spaces semantically which allows interpretation of the latent variables.
Theofanis Karaletsos, Serge Belongie, Gunnar R\"atsch
null
1506.05011
null
null
Numeric Input Relations for Relational Learning with Applications to Community Structure Analysis
cs.LG
Most work in the area of statistical relational learning (SRL) is focussed on discrete data, even though a few approaches for hybrid SRL models have been proposed that combine numerical and discrete variables. In this paper we distinguish numerical random variables for which a probability distribution is defined by the model from numerical input variables that are only used for conditioning the distribution of discrete response variables. We show how numerical input relations can very easily be used in the Relational Bayesian Network framework, and that existing inference and learning methods need only minor adjustments to be applied in this generalized setting. The resulting framework provides natural relational extensions of classical probabilistic models for categorical data. We demonstrate the usefulness of RBN models with numeric input relations by several examples. In particular, we use the augmented RBN framework to define probabilistic models for multi-relational (social) networks in which the probability of a link between two nodes depends on numeric latent feature vectors associated with the nodes. A generic learning procedure can be used to obtain a maximum-likelihood fit of model parameters and latent feature values for a variety of models that can be expressed in the high-level RBN representation. Specifically, we propose a model that allows us to interpret learned latent feature values as community centrality degrees by which we can identify nodes that are central for one community, that are hubs between communities, or that are isolated nodes. In a multi-relational setting, the model also provides a characterization of how different relations are associated with each community.
Jiuchuan Jiang and Manfred Jaeger
null
1506.05055
null
null
Reservoir Characterization: A Machine Learning Approach
cs.CE cs.LG
Reservoir Characterization (RC) can be defined as the act of building a reservoir model that incorporates all the characteristics of the reservoir that are pertinent to its ability to store hydrocarbons and also to produce them.It is a difficult problem due to non-linear and heterogeneous subsurface properties and associated with a number of complex tasks such as data fusion, data mining, formulation of the knowledge base, and handling of the uncertainty.This present work describes the development of algorithms to obtain the functional relationships between predictor seismic attributes and target lithological properties. Seismic attributes are available over a study area with lower vertical resolution. Conversely, well logs and lithological properties are available only at specific well locations in a study area with high vertical resolution.Sand fraction, which represents per unit sand volume within the rock, has a balanced distribution between zero to unity.The thesis addresses the issues of handling the information content mismatch between predictor and target variables and proposes regularization of target property prior to building a prediction model.In this thesis, two Artificial Neural Network (ANN) based frameworks are proposed to model sand fraction from multiple seismic attributes without and with well tops information respectively. The performances of the frameworks are quantified in terms of Correlation Coefficient, Root Mean Square Error, Absolute Error Mean, etc.
Soumi Chaki
null
1506.05070
null
null
Time Series Classification using the Hidden-Unit Logistic Model
cs.LG cs.CV
We present a new model for time series classification, called the hidden-unit logistic model, that uses binary stochastic hidden units to model latent structure in the data. The hidden units are connected in a chain structure that models temporal dependencies in the data. Compared to the prior models for time series classification such as the hidden conditional random field, our model can model very complex decision boundaries because the number of latent states grows exponentially with the number of hidden units. We demonstrate the strong performance of our model in experiments on a variety of (computer vision) tasks, including handwritten character recognition, speech recognition, facial expression, and action recognition. We also present a state-of-the-art system for facial action unit detection based on the hidden-unit logistic model.
Wenjie Pei, Hamdi Dibeklio\u{g}lu, David M.J. Tax, Laurens van der Maaten
null
1506.05085
null
null
Big Data Analytics in Bioinformatics: A Machine Learning Perspective
cs.CE cs.LG
Bioinformatics research is characterized by voluminous and incremental datasets and complex data analytics methods. The machine learning methods used in bioinformatics are iterative and parallel. These methods can be scaled to handle big data using the distributed and parallel computing technologies. Usually big data tools perform computation in batch-mode and are not optimized for iterative processing and high data dependency among operations. In the recent years, parallel, incremental, and multi-view machine learning algorithms have been proposed. Similarly, graph-based architectures and in-memory big data tools have been developed to minimize I/O cost and optimize iterative processing. However, there lack standard big data architectures and tools for many important bioinformatics problems, such as fast construction of co-expression and regulatory networks and salient module identification, detection of complexes over growing protein-protein interaction data, fast analysis of massive DNA, RNA, and protein sequence data, and fast querying on incremental and heterogeneous disease networks. This paper addresses the issues and challenges posed by several big data problems in bioinformatics, and gives an overview of the state of the art and the future research opportunities.
Hirak Kashyap, Hasin Afzal Ahmed, Nazrul Hoque, Swarup Roy and Dhruba Kumar Bhattacharyya
null
1506.05101
null
null
Deep Convolutional Networks on Graph-Structured Data
cs.LG cs.CV cs.NE
Deep Learning's recent successes have mostly relied on Convolutional Networks, which exploit fundamental statistical properties of images, sounds and video data: the local stationarity and multi-scale compositional structure, that allows expressing long range interactions in terms of shorter, localized interactions. However, there exist other important examples, such as text documents or bioinformatic data, that may lack some or all of these strong statistical regularities. In this paper we consider the general question of how to construct deep architectures with small learning complexity on general non-Euclidean domains, which are typically unknown and need to be estimated from the data. In particular, we develop an extension of Spectral Networks which incorporates a Graph Estimation procedure, that we test on large-scale classification problems, matching or improving over Dropout Networks with far less parameters to estimate.
Mikael Henaff, Joan Bruna, Yann LeCun
null
1506.05163
null
null
Feature Selection for Ridge Regression with Provable Guarantees
stat.ML cs.IT cs.LG math.IT
We introduce single-set spectral sparsification as a deterministic sampling based feature selection technique for regularized least squares classification, which is the classification analogue to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We also introduce leverage-score sampling as an unsupervised randomized feature selection method for ridge regression. We provide risk bounds for both single-set spectral sparsification and leverage-score sampling on ridge regression in the fixed design setting and show that the risk in the sampled space is comparable to the risk in the full-feature space. We perform experiments on synthetic and real-world datasets, namely a subset of TechTC-300 datasets, to support our theory. Experimental results indicate that the proposed methods perform better than the existing feature selection methods.
Saurabh Paul, Petros Drineas
null
1506.05173
null
null
On the Depth of Deep Neural Networks: A Theoretical View
cs.LG
People believe that depth plays an important role in success of deep neural networks (DNN). However, this belief lacks solid theoretical justifications as far as we know. We investigate role of depth from perspective of margin bound. In margin bound, expected error is upper bounded by empirical margin error plus Rademacher Average (RA) based capacity term. First, we derive an upper bound for RA of DNN, and show that it increases with increasing depth. This indicates negative impact of depth on test performance. Second, we show that deeper networks tend to have larger representation power (measured by Betti numbers based complexity) than shallower networks in multi-class setting, and thus can lead to smaller empirical margin error. This implies positive impact of depth. The combination of these two results shows that for DNN with restricted number of hidden units, increasing depth is not always good since there is a tradeoff between positive and negative impacts. These results inspire us to seek alternative ways to achieve positive impact of depth, e.g., imposing margin-based penalty terms to cross entropy loss so as to reduce empirical margin error without increasing depth. Our experiments show that in this way, we achieve significantly better test performance.
Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, Tie-Yan Liu
null
1506.05232
null
null
Gradient Estimation Using Stochastic Computation Graphs
cs.LG
In a variety of problems originating in supervised, unsupervised, and reinforcement learning, the loss function is defined by an expectation over a collection of random variables, which might be part of a probabilistic model or the external world. Estimating the gradient of this loss function, using samples, lies at the core of gradient-based learning algorithms for these problems. We introduce the formalism of stochastic computation graphs---directed acyclic graphs that include both deterministic functions and conditional probability distributions---and describe how to easily and automatically derive an unbiased estimator of the loss function's gradient. The resulting algorithm for computing the gradient estimator is a simple modification of the standard backpropagation algorithm. The generic scheme we propose unifies estimators derived in variety of prior work, along with variance-reduction techniques therein. It could assist researchers in developing intricate models involving a combination of stochastic and deterministic operations, enabling, for example, attention, memory, and control actions.
John Schulman, Nicolas Heess, Theophane Weber, Pieter Abbeel
null
1506.05254
null
null
Deep Denoising Auto-encoder for Statistical Speech Synthesis
cs.SD cs.LG
This paper proposes a deep denoising auto-encoder technique to extract better acoustic features for speech synthesis. The technique allows us to automatically extract low-dimensional features from high dimensional spectral features in a non-linear, data-driven, unsupervised way. We compared the new stochastic feature extractor with conventional mel-cepstral analysis in analysis-by-synthesis and text-to-speech experiments. Our results confirm that the proposed method increases the quality of synthetic speech in both experiments.
Zhenzhou Wu, Shinji Takaki, Junichi Yamagishi
null
1506.05268
null
null
Learning with a Wasserstein Loss
cs.LG cs.CV stat.ML
Learning to predict multi-label outputs is challenging, but in many problems there is a natural metric on the outputs that can be used to improve predictions. In this paper we develop a loss function for multi-label learning, based on the Wasserstein distance. The Wasserstein distance provides a natural notion of dissimilarity for probability measures. Although optimizing with respect to the exact Wasserstein distance is costly, recent work has described a regularized approximation that is efficiently computed. We describe an efficient learning algorithm based on this regularization, as well as a novel extension of the Wasserstein distance from probability measures to unnormalized measures. We also describe a statistical learning bound for the loss. The Wasserstein loss can encourage smoothness of the predictions with respect to a chosen metric on the output space. We demonstrate this property on a real-data tag prediction problem, using the Yahoo Flickr Creative Commons dataset, outperforming a baseline that doesn't use the metric.
Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya-Polo, Tomaso Poggio
null
1506.05439
null
null
Learning Contextualized Semantics from Co-occurring Terms via a Siamese Architecture
cs.IR cs.CL cs.LG
One of the biggest challenges in Multimedia information retrieval and understanding is to bridge the semantic gap by properly modeling concept semantics in context. The presence of out of vocabulary (OOV) concepts exacerbates this difficulty. To address the semantic gap issues, we formulate a problem on learning contextualized semantics from descriptive terms and propose a novel Siamese architecture to model the contextualized semantics from descriptive terms. By means of pattern aggregation and probabilistic topic models, our Siamese architecture captures contextualized semantics from the co-occurring descriptive terms via unsupervised learning, which leads to a concept embedding space of the terms in context. Furthermore, the co-occurring OOV concepts can be easily represented in the learnt concept embedding space. The main properties of the concept embedding space are demonstrated via visualization. Using various settings in semantic priming, we have carried out a thorough evaluation by comparing our approach to a number of state-of-the-art methods on six annotation corpora in different domains, i.e., MagTag5K, CAL500 and Million Song Dataset in the music domain as well as Corel5K, LabelMe and SUNDatabase in the image domain. Experimental results on semantic priming suggest that our approach outperforms those state-of-the-art methods considerably in various aspects.
Ubai Sandouk, Ke Chen
null
1506.05514
null
null
Causality on Cross-Sectional Data: Stable Specification Search in Constrained Structural Equation Modeling
stat.ML cs.LG
Causal modeling has long been an attractive topic for many researchers and in recent decades there has seen a surge in theoretical development and discovery algorithms. Generally discovery algorithms can be divided into two approaches: constraint-based and score-based. The constraint-based approach is able to detect common causes of the observed variables but the use of independence tests makes it less reliable. The score-based approach produces a result that is easier to interpret as it also measures the reliability of the inferred causal relationships, but it is unable to detect common confounders of the observed variables. A drawback of both score-based and constrained-based approaches is the inherent instability in structure estimation. With finite samples small changes in the data can lead to completely different optimal structures. The present work introduces a new hypothesis-free score-based causal discovery algorithm, called stable specification search, that is robust for finite samples based on recent advances in stability selection using subsampling and selection algorithms. Structure search is performed over Structural Equation Models. Our approach uses exploratory search but allows incorporation of prior background knowledge. We validated our approach on one simulated data set, which we compare to the known ground truth, and two real-world data sets for Chronic Fatigue Syndrome and Attention Deficit Hyperactivity Disorder, which we compare to earlier medical studies. The results on the simulated data set show significant improvement over alternative approaches and the results on the real-word data sets show consistency with the hypothesis driven models constructed by medical experts.
Ridho Rahmadi, Perry Groot, Marianne Heins, Hans Knoop, Tom Heskes (The OPTIMISTIC consortium)
10.1016/j.asoc.2016.10.003
1506.05600
null
null
A hybrid algorithm for Bayesian network structure learning with application to multi-label learning
stat.ML cs.AI cs.LG
We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.
Maxime Gasse (DM2L), Alex Aussem (DM2L), Haytham Elghazel (DM2L)
10.1016/j.eswa.2014.04.032
1506.05692
null
null
Scalable Semi-Supervised Aggregation of Classifiers
cs.LG
We present and empirically evaluate an efficient algorithm that learns to aggregate the predictions of an ensemble of binary classifiers. The algorithm uses the structure of the ensemble predictions on unlabeled data to yield significant performance improvements. It does this without making assumptions on the structure or origin of the ensemble, without parameters, and as scalably as linear learning. We empirically demonstrate these performance gains with random forests.
Akshay Balsubramani, Yoav Freund
null
1506.05790
null
null
An Iterative Convolutional Neural Network Algorithm Improves Electron Microscopy Image Segmentation
cs.NE cs.LG
To build the connectomics map of the brain, we developed a new algorithm that can automatically refine the Membrane Detection Probability Maps (MDPM) generated to perform automatic segmentation of electron microscopy (EM) images. To achieve this, we executed supervised training of a convolutional neural network to recover the removed center pixel label of patches sampled from a MDPM. MDPM can be generated from other machine learning based algorithms recognizing whether a pixel in an image corresponds to the cell membrane. By iteratively applying this network over MDPM for multiple rounds, we were able to significantly improve membrane segmentation results.
Xundong Wu
null
1506.05849
null
null
Information-based inference for singular models and finite sample sizes: A frequentist information criterion
stat.ML cs.LG physics.data-an
In the information-based paradigm of inference, model selection is performed by selecting the candidate model with the best estimated predictive performance. The success of this approach depends on the accuracy of the estimate of the predictive complexity. In the large-sample-size limit of a regular model, the predictive performance is well estimated by the Akaike Information Criterion (AIC). However, this approximation can either significantly under or over-estimating the complexity in a wide range of important applications where models are either non-regular or finite-sample-size corrections are significant. We introduce an improved approximation for the complexity that is used to define a new information criterion: the Frequentist Information Criterion (QIC). QIC extends the applicability of information-based inference to the finite-sample-size regime of regular models and to singular models. We demonstrate the power and the comparative advantage of QIC in a number of example analyses.
Colin H. LaMont and Paul A. Wiggins
null
1506.05855
null
null
Variational Gaussian Copula Inference
stat.ML cs.LG stat.CO
We utilize copulas to constitute a unified framework for constructing and optimizing variational proposals in hierarchical Bayesian models. For models with continuous and non-Gaussian hidden variables, we propose a semiparametric and automated variational Gaussian copula approach, in which the parametric Gaussian copula family is able to preserve multivariate posterior dependence, and the nonparametric transformations based on Bernstein polynomials provide ample flexibility in characterizing the univariate marginal posteriors.
Shaobo Han, Xuejun Liao, David B. Dunson, Lawrence Carin
null
1506.05860
null
null
LCSTS: A Large Scale Chinese Short Text Summarization Dataset
cs.CL cs.IR cs.LG
Automatic text summarization is widely regarded as the highly difficult problem, partially because of the lack of large text summarization data set. Due to the great challenge of constructing the large scale summaries for full text, in this paper, we introduce a large corpus of Chinese short text summarization dataset constructed from the Chinese microblogging website Sina Weibo, which is released to the public {http://icrc.hitsz.edu.cn/Article/show/139.html}. This corpus consists of over 2 million real Chinese short texts with short summaries given by the author of each text. We also manually tagged the relevance of 10,666 short summaries with their corresponding short texts. Based on the corpus, we introduce recurrent neural network for the summary generation and achieve promising results, which not only shows the usefulness of the proposed corpus for short text summarization research, but also provides a baseline for further research on this topic.
Baotian Hu, Qingcai Chen, Fangze Zhu
null
1506.05865
null
null
Representation Learning for Clustering: A Statistical Framework
stat.ML cs.LG
We address the problem of communicating domain knowledge from a user to the designer of a clustering algorithm. We propose a protocol in which the user provides a clustering of a relatively small random sample of a data set. The algorithm designer then uses that sample to come up with a data representation under which $k$-means clustering results in a clustering (of the full data set) that is aligned with the user's clustering. We provide a formal statistical model for analyzing the sample complexity of learning a clustering representation with this paradigm. We then introduce a notion of capacity of a class of possible representations, in the spirit of the VC-dimension, showing that classes of representations that have finite such dimension can be successfully learned with sample size error bounds, and end our discussion with an analysis of that dimension for classes of representations induced by linear embeddings.
Hassan Ashtiani, Shai Ben-David
null
1506.05900
null
null
Deep Knowledge Tracing
cs.AI cs.CY cs.LG
Knowledge tracing---where a machine models the knowledge of a student as they interact with coursework---is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RNN family of models have important advantages over previous methods in that they do not require the explicit encoding of human domain knowledge, and can capture more complex representations of student knowledge. Using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets. Moreover the learned model can be used for intelligent curriculum design and allows straightforward interpretation and discovery of structure in student tasks. These results suggest a promising new line of research for knowledge tracing and an exemplary application task for RNNs.
Chris Piech, Jonathan Spencer, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas Guibas, Jascha Sohl-Dickstein
null
1506.05908
null
null