title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Spectral Analysis of Symmetric and Anti-Symmetric Pairwise Kernels
cs.LG stat.ML
We consider the problem of learning regression functions from pairwise data when there exists prior knowledge that the relation to be learned is symmetric or anti-symmetric. Such prior knowledge is commonly enforced by symmetrizing or anti-symmetrizing pairwise kernel functions. Through spectral analysis, we show that these transformations reduce the kernel's effective dimension. Further, we provide an analysis of the approximation properties of the resulting kernels, and bound the regularization bias of the kernels in terms of the corresponding bias of the original kernel.
Tapio Pahikkala, Markus Viljanen, Antti Airola, Willem Waegeman
null
1506.05950
null
null
Enhanced Lasso Recovery on Graph
cs.LG stat.ML
This work aims at recovering signals that are sparse on graphs. Compressed sensing offers techniques for signal recovery from a few linear measurements and graph Fourier analysis provides a signal representation on graph. In this paper, we leverage these two frameworks to introduce a new Lasso recovery algorithm on graphs. More precisely, we present a non-convex, non-smooth algorithm that outperforms the standard convex Lasso technique. We carry out numerical experiments on three benchmark graph datasets.
Xavier Bresson and Thomas Laurent and James von Brecht
null
1506.05985
null
null
Measuring Emotional Contagion in Social Media
cs.SI cs.LG physics.soc-ph
Social media are used as main discussion channels by millions of individuals every day. The content individuals produce in daily social-media-based micro-communications, and the emotions therein expressed, may impact the emotional states of others. A recent experiment performed on Facebook hypothesized that emotions spread online, even in absence of non-verbal cues typical of in-person interactions, and that individuals are more likely to adopt positive or negative emotions if these are over-expressed in their social network. Experiments of this type, however, raise ethical concerns, as they require massive-scale content manipulation with unknown consequences for the individuals therein involved. Here, we study the dynamics of emotional contagion using Twitter. Rather than manipulating content, we devise a null model that discounts some confounding factors (including the effect of emotional contagion). We measure the emotional valence of content the users are exposed to before posting their own tweets. We determine that on average a negative post follows an over-exposure to 4.34% more negative content than baseline, while positive posts occur after an average over-exposure to 4.50% more positive contents. We highlight the presence of a linear relationship between the average emotional valence of the stimuli users are exposed to, and that of the responses they produce. We also identify two different classes of individuals: highly and scarcely susceptible to emotional contagion. Highly susceptible users are significantly less inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to adopt positive emotions. In general, the likelihood of adopting positive emotions is much greater than that of negative emotions.
Emilio Ferrara, Zeyao Yang
10.1371/journal.pone.0142390
1506.06021
null
null
A general framework for the IT-based clustering methods
cs.CV cs.LG stat.ML
Previously, we proposed a physically inspired rule to organize the data points in a sparse yet effective structure, called the in-tree (IT) graph, which is able to capture a wide class of underlying cluster structures in the datasets, especially for the density-based datasets. Although there are some redundant edges or lines between clusters requiring to be removed by computer, this IT graph has a big advantage compared with the k-nearest-neighborhood (k-NN) or the minimal spanning tree (MST) graph, in that the redundant edges in the IT graph are much more distinguishable and thus can be easily determined by several methods previously proposed by us. In this paper, we propose a general framework to re-construct the IT graph, based on an initial neighborhood graph, such as the k-NN or MST, etc, and the corresponding graph distances. For this general framework, our previous way of constructing the IT graph turns out to be a special case of it. This general framework 1) can make the IT graph capture a wider class of underlying cluster structures in the datasets, especially for the manifolds, and 2) should be more effective to cluster the sparse or graph-based datasets.
Teng Qiu, Yongjie Li
null
1506.06068
null
null
Quantifying the Effect of Sentiment on Information Diffusion in Social Media
cs.SI cs.LG physics.soc-ph
Social media have become the main vehicle of information production and consumption online. Millions of users every day log on their Facebook or Twitter accounts to get updates and news, read about their topics of interest, and become exposed to new opportunities and interactions. Although recent studies suggest that the contents users produce will affect the emotions of their readers, we still lack a rigorous understanding of the role and effects of contents sentiment on the dynamics of information diffusion. This work aims at quantifying the effect of sentiment on information diffusion, to understand: (i) whether positive conversations spread faster and/or broader than negative ones (or vice-versa); (ii) what kind of emotions are more typical of popular conversations on social media; and, (iii) what type of sentiment is expressed in conversations characterized by different temporal dynamics. Our findings show that, at the level of contents, negative messages spread faster than positive ones, but positive ones reach larger audiences, suggesting that people are more inclined to share and favorite positive contents, the so-called positive bias. As for the entire conversations, we highlight how different temporal dynamics exhibit different sentiment patterns: for example, positive sentiment builds up for highly-anticipated events, while unexpected events are mainly characterized by negative sentiment. Our contribution is a milestone to understand how the emotions expressed in short texts affect their spreading in online social ecosystems, and may help to craft effective policies and strategies for content generation and diffusion.
Emilio Ferrara, Zeyao Yang
10.7717/peerj-cs.26
1506.06072
null
null
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements
stat.ML cs.LG
We propose a simple, scalable, and fast gradient descent algorithm to optimize a nonconvex objective for the rank minimization problem and a closely related family of semidefinite programs. With $O(r^3 \kappa^2 n \log n)$ random measurements of a positive semidefinite $n \times n$ matrix of rank $r$ and condition number $\kappa$, our method is guaranteed to converge linearly to the global optimum.
Qinqing Zheng, John Lafferty
null
1506.06081
null
null
Approximate Inference with the Variational Holder Bound
stat.ML cs.LG math.FA
We introduce the Variational Holder (VH) bound as an alternative to Variational Bayes (VB) for approximate Bayesian inference. Unlike VB which typically involves maximization of a non-convex lower bound with respect to the variational parameters, the VH bound involves minimization of a convex upper bound to the intractable integral with respect to the variational parameters. Minimization of the VH bound is a convex optimization problem; hence the VH method can be applied using off-the-shelf convex optimization algorithms and the approximation error of the VH bound can also be analyzed using tools from convex optimization literature. We present experiments on the task of integrating a truncated multivariate Gaussian distribution and compare our method to VB, EP and a state-of-the-art numerical integration method for this problem.
Guillaume Bouchard, Balaji Lakshminarayanan
null
1506.06100
null
null
The Extreme Value Machine
cs.LG
It is often desirable to be able to recognize when inputs to a recognition function learned in a supervised manner correspond to classes unseen at training time. With this ability, new class labels could be assigned to these inputs by a human operator, allowing them to be incorporated into the recognition function --- ideally under an efficient incremental update mechanism. While good algorithms that assume inputs from a fixed set of classes exist, e.g., artificial neural networks and kernel machines, it is not immediately obvious how to extend them to perform incremental learning in the presence of unknown query classes. Existing algorithms take little to no distributional information into account when learning recognition functions and lack a strong theoretical foundation. We address this gap by formulating a novel, theoretically sound classifier --- the Extreme Value Machine (EVM). The EVM has a well-grounded interpretation derived from statistical Extreme Value Theory (EVT), and is the first classifier to be able to perform nonlinear kernel-free variable bandwidth incremental learning. Compared to other classifiers in the same deep network derived feature space, the EVM is accurate and efficient on an established benchmark partition of the ImageNet dataset.
Ethan M. Rudd, Lalit P. Jain, Walter J. Scheirer, Terrance E. Boult
10.1109/TPAMI.2017.2707495
1506.06112
null
null
A simple application of FIC to model selection
physics.data-an cs.LG stat.ML
We have recently proposed a new information-based approach to model selection, the Frequentist Information Criterion (FIC), that reconciles information-based and frequentist inference. The purpose of this current paper is to provide a simple example of the application of this criterion and a demonstration of the natural emergence of model complexities with both AIC-like ($N^0$) and BIC-like ($\log N$) scaling with observation number $N$. The application developed is deliberately simplified to make the analysis analytically tractable.
Paul A. Wiggins
null
1506.06129
null
null
CO2 Forest: Improved Random Forest by Continuous Optimization of Oblique Splits
cs.LG cs.CV
We propose a novel algorithm for optimizing multivariate linear threshold functions as split functions of decision trees to create improved Random Forest classifiers. Standard tree induction methods resort to sampling and exhaustive search to find good univariate split functions. In contrast, our method computes a linear combination of the features at each node, and optimizes the parameters of the linear combination (oblique) split functions by adopting a variant of latent variable SVM formulation. We develop a convex-concave upper bound on the classification loss for a one-level decision tree, and optimize the bound by stochastic gradient descent at each internal node of the tree. Forests of up to 1000 Continuously Optimized Oblique (CO2) decision trees are created, which significantly outperform Random Forest with univariate splits and previous techniques for constructing oblique trees. Experimental results are reported on multi-class classification benchmarks and on Labeled Faces in the Wild (LFW) dataset.
Mohammad Norouzi, Maxwell D. Collins, David J. Fleet, Pushmeet Kohli
null
1506.06155
null
null
Detectability thresholds and optimal algorithms for community structure in dynamic networks
stat.ML cond-mat.dis-nn cs.LG cs.SI physics.data-an
We study the fundamental limits on learning latent community structure in dynamic networks. Specifically, we study dynamic stochastic block models where nodes change their community membership over time, but where edges are generated independently at each time step. In this setting (which is a special case of several existing models), we are able to derive the detectability threshold exactly, as a function of the rate of change and the strength of the communities. Below this threshold, we claim that no algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this limit. The first uses belief propagation (BP), which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the BP equations. We verify our analytic and algorithmic results via numerical simulation, and close with a brief discussion of extensions and open questions.
Amir Ghasemian and Pan Zhang and Aaron Clauset and Cristopher Moore and Leto Peel
10.1103/PhysRevX.6.031005
1506.06179
null
null
Collective Mind, Part II: Towards Performance- and Cost-Aware Software Engineering as a Natural Science
cs.SE cs.LG cs.PF
Nowadays, engineers have to develop software often without even knowing which hardware it will eventually run on in numerous mobile phones, tablets, desktops, laptops, data centers, supercomputers and cloud services. Unfortunately, optimizing compilers are not keeping pace with ever increasing complexity of computer systems anymore and may produce severely underperforming executable codes while wasting expensive resources and energy. We present our practical and collaborative solution to this problem via light-weight wrappers around any software piece when more than one implementation or optimization choice available. These wrappers are connected with a public Collective Mind autotuning infrastructure and repository of knowledge (c-mind.org/repo) to continuously monitor various important characteristics of these pieces (computational species) across numerous existing hardware configurations together with randomly selected optimizations. Similar to natural sciences, we can now continuously track winning solutions (optimizations for a given hardware) that minimize all costs of a computation (execution time, energy spent, code size, failures, memory and storage footprint, optimization time, faults, contentions, inaccuracy and so on) of a given species on a Pareto frontier along with any unexpected behavior. The community can then collaboratively classify solutions, prune redundant ones, and correlate them with various features of software, its inputs (data sets) and used hardware either manually or using powerful predictive analytics techniques. Our approach can then help create a large, realistic, diverse, representative, and continuously evolving benchmark with related optimization knowledge while gradually covering all possible software and hardware to be able to predict best optimizations and improve compilers and hardware depending on usage scenarios and requirements.
Grigori Fursin and Abdul Memon and Christophe Guillon and Anton Lokhmotov
null
1506.06256
null
null
Aligning where to see and what to tell: image caption with region-based attention and scene factorization
cs.CV cs.LG stat.ML
Recent progress on automatic generation of image captions has shown that it is possible to describe the most salient information conveyed by images with accurate and meaningful sentences. In this paper, we propose an image caption system that exploits the parallel structures between images and sentences. In our model, the process of generating the next word, given the previously generated ones, is aligned with the visual perception experience where the attention shifting among the visual regions imposes a thread of visual ordering. This alignment characterizes the flow of "abstract meaning", encoding what is semantically shared by both the visual scene and the text description. Our system also makes another novel modeling contribution by introducing scene-specific contexts that capture higher-level semantic information encoded in an image. The contexts adapt language models for word generation to specific scene types. We benchmark our system and contrast to published results on several popular datasets. We show that using either region-based attention or scene-specific contexts improves systems without those components. Furthermore, combining these two modeling ingredients attains the state-of-the-art performance.
Junqi Jin, Kun Fu, Runpeng Cui, Fei Sha and Changshui Zhang
null
1506.06272
null
null
Pose Estimation Based on 3D Models
cs.CV cs.LG cs.RO
In this paper, we proposed a pose estimation system based on rendered image training set, which predicts the pose of objects in real image, with knowledge of object category and tight bounding box. We developed a patch-based multi-class classification algorithm, and an iterative approach to improve the accuracy. We achieved state-of-the-art performance on pose estimation task.
Chuiwen Ma, Hao Su, Liang Shi
null
1506.06274
null
null
Communication Efficient Distributed Agnostic Boosting
cs.LG stat.ML
We consider the problem of learning from distributed data in the agnostic setting, i.e., in the presence of arbitrary forms of noise. Our main contribution is a general distributed boosting-based procedure for learning an arbitrary concept space, that is simultaneously noise tolerant, communication efficient, and computationally efficient. This improves significantly over prior works that were either communication efficient only in noise-free scenarios or computationally prohibitive. Empirical results on large synthetic and real-world datasets demonstrate the effectiveness and scalability of the proposed approach.
Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau
null
1506.06318
null
null
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
cs.LG math.OC stat.ML
Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.
Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher R\'e
null
1506.06438
null
null
A Deep Memory-based Architecture for Sequence-to-Sequence Learning
cs.CL cs.LG cs.NE
We propose DEEPMEMORY, a novel deep architecture for sequence-to-sequence learning, which performs the task through a series of nonlinear transformations from the representation of the input sequence (e.g., a Chinese sentence) to the final output sequence (e.g., translation to English). Inspired by the recently proposed Neural Turing Machine (Graves et al., 2014), we store the intermediate representations in stacked layers of memories, and use read-write operations on the memories to realize the nonlinear transformations between the representations. The types of transformations are designed in advance but the parameters are learned from data. Through layer-by-layer transformations, DEEPMEMORY can model complicated relations between sequences necessary for applications such as machine translation between distant languages. The architecture can be trained with normal back-propagation on sequenceto-sequence data, and the learning can be easily scaled up to a large corpus. DEEPMEMORY is broad enough to subsume the state-of-the-art neural translation model in (Bahdanau et al., 2015) as its special case, while significantly improving upon the model with its deeper architecture. Remarkably, DEEPMEMORY, being purely neural network-based, can achieve performance comparable to the traditional phrase-based machine translation system Moses with a small vocabulary and a modest parameter size.
Fandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li, and Qun Liu
null
1506.06442
null
null
A Theory of Local Learning, the Learning Channel, and the Optimality of Backpropagation
cs.LG cs.NE stat.ML
In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. We estimate the learning channel capacity associated with several algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost, even in recurrent networks. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules, introduces the learning channel which enables a formal analysis of the optimality of backpropagation, and explains the sparsity of the space of learning rules discovered so far.
Pierre Baldi and Peter Sadowski
10.1016/j.neunet.2016.07.006
1506.06472
null
null
Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
cs.CL cs.IR cs.LG
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.
Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, Buzhou Tang, Xiaolong Wang
null
1506.06490
null
null
PAC-Bayes Iterated Logarithm Bounds for Martingale Mixtures
cs.LG math.PR stat.ML
We give tight concentration bounds for mixtures of martingales that are simultaneously uniform over (a) mixture distributions, in a PAC-Bayes sense; and (b) all finite times. These bounds are proved in terms of the martingale variance, extending classical Bernstein inequalities, and sharpening and simplifying prior work.
Akshay Balsubramani
null
1506.06573
null
null
Understanding Neural Networks Through Deep Visualization
cs.CV cs.LG cs.NE
Recent years have produced great advances in training large, deep neural networks (DNNs), including notable successes in training convolutional neural networks (convnets) to recognize natural images. However, our understanding of how these models work, especially what computations they perform at intermediate layers, has lagged behind. Progress in the field will be further accelerated by the development of better tools for visualizing and interpreting neural nets. We introduce two such tools here. The first is a tool that visualizes the activations produced on each layer of a trained convnet as it processes an image or video (e.g. a live webcam stream). We have found that looking at live activations that change in response to user input helps build valuable intuitions about how convnets work. The second tool enables visualizing features at each layer of a DNN via regularized optimization in image space. Because previous versions of this idea produced less recognizable images, here we introduce several new regularization methods that combine to produce qualitatively clearer, more interpretable visualizations. Both tools are open source and work on a pre-trained convnet with minimal setup.
Jason Yosinski and Jeff Clune and Anh Nguyen and Thomas Fuchs and Hod Lipson
null
1506.06579
null
null
Modality-dependent Cross-media Retrieval
cs.CV cs.IR cs.LG
In this paper, we investigate the cross-media retrieval between images and text, i.e., using image to search text (I2T) and using text to search images (T2I). Existing cross-media retrieval methods usually learn one couple of projections, by which the original features of images and text can be projected into a common latent space to measure the content similarity. However, using the same projections for the two different retrieval tasks (I2T and T2I) may lead to a tradeoff between their respective performances, rather than their best performances. Different from previous works, we propose a modality-dependent cross-media retrieval (MDCR) model, where two couples of projections are learned for different cross-media retrieval tasks instead of one couple of projections. Specifically, by jointly optimizing the correlation between images and text and the linear regression from one modal space (image or text) to the semantic space, two couples of mappings are learned to project images and text from their original feature spaces into two common latent subspaces (one for I2T and the other for T2I). Extensive experiments show the superiority of the proposed MDCR compared with other methods. In particular, based the 4,096 dimensional convolutional neural network (CNN) visual feature and 100 dimensional LDA textual feature, the mAP of the proposed method achieves 41.5\%, which is a new state-of-the-art performance on the Wikipedia dataset.
Yunchao Wei, Yao Zhao, Zhenfeng Zhu, Shikui Wei, Yanhui Xiao, Jiashi Feng and Shuicheng Yan
null
1506.06628
null
null
Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition from Continuous Speech Signals
cs.AI cs.CL cs.LG stat.ML
Human infants can discover words directly from unsegmented speech signals without any explicitly labeled data. In this paper, we develop a novel machine learning method called nonparametric Bayesian double articulation analyzer (NPB-DAA) that can directly acquire language and acoustic models from observed continuous speech signals. For this purpose, we propose an integrative generative model that combines a language model and an acoustic model into a single generative model called the "hierarchical Dirichlet process hidden language model" (HDP-HLM). The HDP-HLM is obtained by extending the hierarchical Dirichlet process hidden semi-Markov model (HDP-HSMM) proposed by Johnson et al. An inference procedure for the HDP-HLM is derived using the blocked Gibbs sampler originally proposed for the HDP-HSMM. This procedure enables the simultaneous and direct inference of language and acoustic models from continuous speech signals. Based on the HDP-HLM and its inference procedure, we developed a novel double articulation analyzer. By assuming HDP-HLM as a generative model of observed time series data, and by inferring latent variables of the model, the method can analyze latent double articulation structure, i.e., hierarchically organized latent words and phonemes, of the data in an unsupervised manner. The novel unsupervised double articulation analyzer is called NPB-DAA. The NPB-DAA can automatically estimate double articulation structure embedded in speech signals. We also carried out two evaluation experiments using synthetic data and actual human continuous speech signals representing Japanese vowel sequences. In the word acquisition and phoneme categorization tasks, the NPB-DAA outperformed a conventional double articulation analyzer (DAA) and baseline automatic speech recognition system whose acoustic model was trained in a supervised manner.
Tadahiro Taniguchi, Ryo Nakashima, and Shogo Nagasaka
10.1109/TCDS.2016.2550591
1506.06646
null
null
Non-Normal Mixtures of Experts
stat.ME cs.LG stat.ML
Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression, classification and clustering. For continuous data which we consider here in the context of regression and cluster analysis, MoE usually use normal experts, that is, expert components following the Gaussian distribution. However, for a set of data containing a group or groups of observations with asymmetric behavior, heavy tails or atypical observations, the use of normal experts may be unsuitable and can unduly affect the fit of the MoE model. In this paper, we introduce new non-normal mixture of experts (NNMoE) which can deal with these issues regarding possibly skewed, heavy-tailed data and with outliers. The proposed models are the skew-normal MoE and the robust $t$ MoE and skew $t$ MoE, respectively named SNMoE, TMoE and STMoE. We develop dedicated expectation-maximization (EM) and expectation conditional maximization (ECM) algorithms to estimate the parameters of the proposed models by monotonically maximizing the observed data log-likelihood. We describe how the presented models can be used in prediction and in model-based clustering of regression data. Numerical experiments carried out on simulated data show the effectiveness and the robustness of the proposed models in terms modeling non-linear regression functions as well as in model-based clustering. Then, to show their usefulness for practical applications, the proposed models are applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data.
Faicel Chamroukhi
null
1506.06707
null
null
A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
cs.CL cs.AI cs.LG cs.NE
We present a novel response generation system that can be trained end to end on large quantities of unstructured Twitter conversations. A neural network architecture is used to address sparsity issues that arise when integrating contextual information into classic statistical models, allowing the system to take into account previous dialog utterances. Our dynamic-context generative models show consistent gains over both context-sensitive and non-context-sensitive Machine Translation and Information Retrieval baselines.
Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, Bill Dolan
null
1506.06714
null
null
Skip-Thought Vectors
cs.CL cs.LG
We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice. We will make our encoder publicly available.
Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler
null
1506.06726
null
null
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
cs.LG stat.ML
We study optimization algorithms based on variance reduction for stochastic gradient descent (SGD). Remarkable recent progress has been made in this direction through development of algorithms like SAG, SVRG, SAGA. These algorithms have been shown to outperform SGD, both theoretically and empirically. However, asynchronous versions of these algorithms---a crucial requirement for modern large-scale applications---have not been studied. We bridge this gap by presenting a unifying framework for many variance reduction techniques. Subsequently, we propose an asynchronous algorithm grounded in our framework, and prove its fast convergence. An important consequence of our general approach is that it yields asynchronous versions of variance reduction algorithms such as SVRG and SAGA as a byproduct. Our method achieves near linear speedup in sparse settings common to machine learning. We demonstrate the empirical performance of our method through a concrete realization of asynchronous SVRG.
Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnab\'as P\'oczos, Alex Smola
null
1506.06840
null
null
Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data
cs.CV cs.LG
Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.
Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, Dinggang Shen
null
1506.06868
null
null
Graphs in machine learning: an introduction
stat.ML cs.LG cs.SI physics.soc-ph
Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network is
Pierre Latouche (SAMM), Fabrice Rossi (SAMM)
null
1506.06962
null
null
GEFCOM 2014 - Probabilistic Electricity Price Forecasting
stat.ML cs.CE cs.LG stat.AP
Energy price forecasting is a relevant yet hard task in the field of multi-step time series forecasting. In this paper we compare a well-known and established method, ARMA with exogenous variables with a relatively new technique Gradient Boosting Regression. The method was tested on data from Global Energy Forecasting Competition 2014 with a year long rolling window forecast. The results from the experiment reveal that a multi-model approach is significantly better performing in terms of error metrics. Gradient Boosting can deal with seasonality and auto-correlation out-of-the box and achieve lower rate of normalized mean absolute error on real-world data.
Gergo Barta, Gyula Borbely, Gabor Nagy, Sandor Kazi, Tamas Henk
10.1007/978-3-319-19857-6_7
1506.06972
null
null
Strategic Classification
cs.LG
Machine learning relies on the assumption that unseen test instances of a classification problem follow the same distribution as observed training data. However, this principle can break down when machine learning is used to make important decisions about the welfare (employment, education, health) of strategic individuals. Knowing information about the classifier, such individuals may manipulate their attributes in order to obtain a better classification outcome. As a result of this behavior---often referred to as gaming---the performance of the classifier may deteriorate sharply. Indeed, gaming is a well-known obstacle for using machine learning methods in practice; in financial policy-making, the problem is widely known as Goodhart's law. In this paper, we formalize the problem, and pursue algorithms for learning classifiers that are robust to gaming. We model classification as a sequential game between a player named "Jury" and a player named "Contestant." Jury designs a classifier, and Contestant receives an input to the classifier, which he may change at some cost. Jury's goal is to achieve high classification accuracy with respect to Contestant's original input and some underlying target classification function. Contestant's goal is to achieve a favorable classification outcome while taking into account the cost of achieving it. For a natural class of cost functions, we obtain computationally efficient learning algorithms which are near-optimal. Surprisingly, our algorithms are efficient even on concept classes that are computationally hard to learn. For general cost functions, designing an approximately optimal strategy-proof classifier, for inverse-polynomial approximation, is NP-hard.
Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, Mary Wootters
null
1506.06980
null
null
Multi-domain Dialog State Tracking using Recurrent Neural Networks
cs.CL cs.LG
Dialog state tracking is a key component of many modern dialog systems, most of which are designed with a single, well-defined domain in mind. This paper shows that dialog data drawn from different dialog domains can be used to train a general belief tracking model which can operate across all of these domains, exhibiting superior performance to each of the domain-specific models. We propose a training procedure which uses out-of-domain data to initialise belief tracking models for entirely new domains. This procedure leads to improvements in belief tracking performance regardless of the amount of in-domain data available for training the model.
Nikola Mrk\v{s}i\'c, Diarmuid \'O S\'eaghdha, Blaise Thomson, Milica Ga\v{s}i\'c, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen and Steve Young
null
1506.07190
null
null
Elicitation Complexity of Statistical Properties
cs.LG math.OC math.ST q-fin.MF stat.TH
A property, or statistical functional, is said to be elicitable if it minimizes expected loss for some loss function. The study of which properties are elicitable sheds light on the capabilities and limitations of point estimation and empirical risk minimization. While recent work asks which properties are elicitable, we instead advocate for a more nuanced question: how many dimensions are required to indirectly elicit a given property? This number is called the elicitation complexity of the property. We lay the foundation for a general theory of elicitation complexity, including several basic results about how elicitation complexity behaves, and the complexity of standard properties of interest. Building on this foundation, our main result gives tight complexity bounds for the broad class of Bayes risks. We apply these results to several properties of interest, including variance, entropy, norms, and several classes of financial risk measures. We conclude with discussion and open directions.
Rafael Frongillo, Ian A. Kash
null
1506.07212
null
null
Communication Lower Bounds for Statistical Estimation Problems via a Distributed Data Processing Inequality
cs.LG cs.CC cs.IT math.IT stat.ML
We study the tradeoff between the statistical error and communication cost of distributed statistical estimation problems in high dimensions. In the distributed sparse Gaussian mean estimation problem, each of the $m$ machines receives $n$ data points from a $d$-dimensional Gaussian distribution with unknown mean $\theta$ which is promised to be $k$-sparse. The machines communicate by message passing and aim to estimate the mean $\theta$. We provide a tight (up to logarithmic factors) tradeoff between the estimation error and the number of bits communicated between the machines. This directly leads to a lower bound for the distributed \textit{sparse linear regression} problem: to achieve the statistical minimax error, the total communication is at least $\Omega(\min\{n,d\}m)$, where $n$ is the number of observations that each machine receives and $d$ is the ambient dimension. These lower results improve upon [Sha14,SD'14] by allowing multi-round iterative communication model. We also give the first optimal simultaneous protocol in the dense case for mean estimation. As our main technique, we prove a \textit{distributed data processing inequality}, as a generalization of usual data processing inequalities, which might be of independent interest and useful for other problems.
Mark Braverman, Ankit Garg, Tengyu Ma, Huy L. Nguyen, and David P. Woodruff
null
1506.07216
null
null
Benchmark of structured machine learning methods for microbial identification from mass-spectrometry data
stat.ML cs.LG q-bio.QM
Microbial identification is a central issue in microbiology, in particular in the fields of infectious diseases diagnosis and industrial quality control. The concept of species is tightly linked to the concept of biological and clinical classification where the proximity between species is generally measured in terms of evolutionary distances and/or clinical phenotypes. Surprisingly, the information provided by this well-known hierarchical structure is rarely used by machine learning-based automatic microbial identification systems. Structured machine learning methods were recently proposed for taking into account the structure embedded in a hierarchy and using it as additional a priori information, and could therefore allow to improve microbial identification systems. We test and compare several state-of-the-art machine learning methods for microbial identification on a new Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS) dataset. We include in the benchmark standard and structured methods, that leverage the knowledge of the underlying hierarchical structure in the learning process. Our results show that although some methods perform better than others, structured methods do not consistently perform better than their "flat" counterparts. We postulate that this is partly due to the fact that standard methods already reach a high level of accuracy in this context, and that they mainly confuse species close to each other in the tree, a case where using the known hierarchy is not helpful.
K\'evin Vervier (CBIO), Pierre Mah\'e, Jean-Baptiste Veyrieras, Jean-Philippe Vert (CBIO)
null
1506.07251
null
null
Unconfused ultraconservative multiclass algorithms
cs.LG
We tackle the problem of learning linear classifiers from noisy datasets in a multiclass setting. The two-class version of this problem was studied a few years ago where the proposed approaches to combat the noise revolve around a Per-ceptron learning scheme fed with peculiar examples computed through a weighted average of points from the noisy training set. We propose to build upon these approaches and we introduce a new algorithm called UMA (for Unconfused Multiclass additive Algorithm) which may be seen as a generalization to the multiclass setting of the previous approaches. In order to characterize the noise we use the confusion matrix as a multiclass extension of the classification noise studied in the aforemen-tioned literature. Theoretically well-founded, UMA furthermore displays very good empirical noise robustness, as evidenced by numerical simulations conducted on both synthetic and real data.
Ugo Louche, Liva Ralaivola
10.1007/s10994-015-5490-3
1506.07254
null
null
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
cs.CL cs.LG cs.NE
Most tasks in natural language processing can be cast into question answering (QA) problems over language input. We introduce the dynamic memory network (DMN), a neural network architecture which processes input sequences and questions, forms episodic memories, and generates relevant answers. Questions trigger an iterative attention process which allows the model to condition its attention on the inputs and the result of previous iterations. These results are then reasoned over in a hierarchical recurrent sequence model to generate answers. The DMN can be trained end-to-end and obtains state-of-the-art results on several types of tasks and datasets: question answering (Facebook's bAbI dataset), text classification for sentiment analysis (Stanford Sentiment Treebank) and sequence modeling for part-of-speech tagging (WSJ-PTB). The training for these different tasks relies exclusively on trained word vector representations and input-question-answer triplets.
Ankit Kumar and Ozan Irsoy and Peter Ondruska and Mohit Iyyer and James Bradbury and Ishaan Gulrajani and Victor Zhong and Romain Paulus and Richard Socher
null
1506.07285
null
null
Flexible Multi-layer Sparse Approximations of Matrices and Applications
cs.LG
The computational cost of many signal processing and machine learning techniques is often dominated by the cost of applying certain linear operators to high-dimensional vectors. This paper introduces an algorithm aimed at reducing the complexity of applying linear operators in high dimension by approximately factorizing the corresponding matrix into few sparse factors. The approach relies on recent advances in non-convex optimization. It is first explained and analyzed in details and then demonstrated experimentally on various problems including dictionary learning for image denoising, and the approximation of large matrices arising in inverse problems.
Luc Le Magoarou and R\'emi Gribonval
10.1109/JSTSP.2016.2543461
1506.07300
null
null
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
cs.LG cs.CV stat.ML
We introduce Embed to Control (E2C), a method for model learning and control of non-linear dynamical systems from raw pixel images. E2C consists of a deep generative model, belonging to the family of variational autoencoders, that learns to generate image trajectories from a latent space in which the dynamics is constrained to be locally linear. Our model is derived directly from an optimal control formulation in latent space, supports long-term prediction of image sequences and exhibits strong performance on a variety of complex control problems.
Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller
null
1506.07365
null
null
Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation
cs.CV cs.LG
Convolutional Neural Networks (CNNs) can be shifted across 2D images or 3D videos to segment them. They have a fixed input size and typically perceive only small local contexts of the pixels to be classified as foreground or background. In contrast, Multi-Dimensional Recurrent NNs (MD-RNNs) can perceive the entire spatio-temporal context of each pixel in a few sweeps through all pixels, especially when the RNN is a Long Short-Term Memory (LSTM). Despite these theoretical advantages, however, unlike CNNs, previous MD-LSTM variants were hard to parallelize on GPUs. Here we re-arrange the traditional cuboid order of computations in MD-LSTM in pyramidal fashion. The resulting PyraMiD-LSTM is easy to parallelize, especially for 3D data such as stacks of brain slice images. PyraMiD-LSTM achieved best known pixel-wise brain image segmentation results on MRBrainS13 (and competitive results on EM-ISBI12).
Marijn F. Stollenga, Wonmin Byeon, Marcus Liwicki, Juergen Schmidhuber
null
1506.07452
null
null
Efficient Learning for Undirected Topic Models
cs.LG cs.CL cs.IR stat.ML
Replicated Softmax model, a well-known undirected topic model, is powerful in extracting semantic representations of documents. Traditional learning strategies such as Contrastive Divergence are very inefficient. This paper provides a novel estimator to speed up the learning based on Noise Contrastive Estimate, extended for documents of variant lengths and weighted inputs. Experiments on two benchmarks show that the new estimator achieves great learning efficiency and high accuracy on document retrieval and classification.
Jiatao Gu and Victor O.K. Li
null
1506.07477
null
null
Attention-Based Models for Speech Recognition
cs.CL cs.LG cs.NE stat.ML
Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in- cluding machine translation, handwriting synthesis and image caption gen- eration. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in reaches a competitive 18.7% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18% PER in single utterances and 20% in 10-times longer (repeated) utterances. Finally, we propose a change to the at- tention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6% level.
Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio
null
1506.07503
null
null
Objective Variables for Probabilistic Revenue Maximization in Second-Price Auctions with Reserve
stat.ML cs.AI cs.GT cs.LG stat.AP
Many online companies sell advertisement space in second-price auctions with reserve. In this paper, we develop a probabilistic method to learn a profitable strategy to set the reserve price. We use historical auction data with features to fit a predictor of the best reserve price. This problem is delicate - the structure of the auction is such that a reserve price set too high is much worse than a reserve price set too low. To address this we develop objective variables, a new framework for combining probabilistic modeling with optimal decision-making. Objective variables are "hallucinated observations" that transform the revenue maximization task into a regularized maximum likelihood estimation problem, which we solve with an EM algorithm. This framework enables a variety of prediction mechanisms to set the reserve price. As examples, we study objective variable methods with regression, kernelized regression, and neural networks on simulated and real data. Our methods outperform previous approaches both in terms of scalability and profit.
Maja R. Rudolph, Joseph G. Ellis, and David M. Blei
null
1506.07504
null
null
Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization
stat.ML cs.DS cs.LG
We develop a family of accelerated stochastic algorithms that minimize sums of convex functions. Our algorithms improve upon the fastest running time for empirical risk minimization (ERM), and in particular linear least-squares regression, across a wide range of problem settings. To achieve this, we establish a framework based on the classical proximal point algorithm. Namely, we provide several algorithms that reduce the minimization of a strongly convex function to approximate minimizations of regularizations of the function. Using these results, we accelerate recent fast stochastic algorithms in a black-box fashion. Empirically, we demonstrate that the resulting algorithms exhibit notions of stability that are advantageous in practice. Both in theory and in practice, the provided algorithms reap the computational benefits of adding a large strongly convex regularization term, without incurring a corresponding bias to the original problem.
Roy Frostig, Rong Ge, Sham M. Kakade, Aaron Sidford
null
1506.07512
null
null
Global Optimality in Tensor Factorization, Deep Learning, and Beyond
cs.NA cs.LG stat.ML
Techniques involving factorization are found in a wide range of applications and have enjoyed significant empirical success in many fields. However, common to a vast majority of these problems is the significant disadvantage that the associated optimization problems are typically non-convex due to a multilinear form or other convexity destroying transformation. Here we build on ideas from convex relaxations of matrix factorizations and present a very general framework which allows for the analysis of a wide range of non-convex factorization problems - including matrix factorization, tensor factorization, and deep neural network training formulations. We derive sufficient conditions to guarantee that a local minimum of the non-convex optimization problem is a global minimum and show that if the size of the factorized variables is large enough then from any initialization it is possible to find a global minimizer using a purely local descent algorithm. Our framework also provides a partial theoretical justification for the increasingly common use of Rectified Linear Units (ReLUs) in deep neural networks and offers guidance on deep network architectures and regularization strategies to facilitate efficient optimization.
Benjamin D. Haeffele and Rene Vidal
null
1506.07540
null
null
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
cs.LG
Stochastic algorithms are efficient approaches to solving machine learning and optimization problems. In this paper, we propose a general framework called Splash for parallelizing stochastic algorithms on multi-node distributed systems. Splash consists of a programming interface and an execution engine. Using the programming interface, the user develops sequential stochastic algorithms without concerning any detail about distributed computing. The algorithm is then automatically parallelized by a communication-efficient execution engine. We provide theoretical justifications on the optimal rate of convergence for parallelizing stochastic gradient descent. Splash is built on top of Apache Spark. The real-data experiments on logistic regression, collaborative filtering and topic modeling verify that Splash yields order-of-magnitude speedup over single-thread stochastic algorithms and over state-of-the-art implementations on Spark.
Yuchen Zhang and Michael I. Jordan
null
1506.07552
null
null
CRAFT: ClusteR-specific Assorted Feature selecTion
cs.LG stat.ML
We present a framework for clustering with cluster-specific feature selection. The framework, CRAFT, is derived from asymptotic log posterior formulations of nonparametric MAP-based clustering models. CRAFT handles assorted data, i.e., both numeric and categorical data, and the underlying objective functions are intuitively appealing. The resulting algorithm is simple to implement and scales nicely, requires minimal parameter tuning, obviates the need to specify the number of clusters a priori, and compares favorably with other methods on real datasets.
Vikas K. Garg, Cynthia Rudin, and Tommi Jaakkola
null
1506.07609
null
null
Generalized Majorization-Minimization
cs.CV cs.IT cs.LG math.IT stat.ML
Non-convex optimization is ubiquitous in machine learning. Majorization-Minimization (MM) is a powerful iterative procedure for optimizing non-convex functions that works by optimizing a sequence of bounds on the function. In MM, the bound at each iteration is required to \emph{touch} the objective function at the optimizer of the previous bound. We show that this touching constraint is unnecessary and overly restrictive. We generalize MM by relaxing this constraint, and propose a new optimization framework, named Generalized Majorization-Minimization (G-MM), that is more flexible. For instance, G-MM can incorporate application-specific biases into the optimization procedure without changing the objective function. We derive G-MM algorithms for several latent variable models and show empirically that they consistently outperform their MM counterparts in optimizing non-convex objectives. In particular, G-MM algorithms appear to be less sensitive to initialization.
Sobhan Naderi Parizi, Kun He, Reza Aghajani, Stan Sclaroff, Pedro Felzenszwalb
null
1506.07613
null
null
Completing Low-Rank Matrices with Corrupted Samples from Few Coefficients in General Basis
cs.IT cs.LG cs.NA math.IT math.NA stat.ML
Subspace recovery from corrupted and missing data is crucial for various applications in signal processing and information theory. To complete missing values and detect column corruptions, existing robust Matrix Completion (MC) methods mostly concentrate on recovering a low-rank matrix from few corrupted coefficients w.r.t. standard basis, which, however, does not apply to more general basis, e.g., Fourier basis. In this paper, we prove that the range space of an $m\times n$ matrix with rank $r$ can be exactly recovered from few coefficients w.r.t. general basis, though $r$ and the number of corrupted samples are both as high as $O(\min\{m,n\}/\log^3 (m+n))$. Our model covers previous ones as special cases, and robust MC can recover the intrinsic matrix with a higher rank. Moreover, we suggest a universal choice of the regularization parameter, which is $\lambda=1/\sqrt{\log n}$. By our $\ell_{2,1}$ filtering algorithm, which has theoretical guarantees, we can further reduce the computational cost of our model. As an application, we also find that the solutions to extended robust Low-Rank Representation and to our extended robust MC are mutually expressible, so both our theory and algorithm can be applied to the subspace clustering problem with missing values under certain conditions. Experiments verify our theories.
Hongyang Zhang, Zhouchen Lin, Chao Zhang
10.1109/TIT.2016.2573311
1506.07615
null
null
Conservativeness of untied auto-encoders
cs.LG
We discuss necessary and sufficient conditions for an auto-encoder to define a conservative vector field, in which case it is associated with an energy function akin to the unnormalized log-probability of the data. We show that the conditions for conservativeness are more general than for encoder and decoder weights to be the same ("tied weights"), and that they also depend on the form of the hidden unit activation function, but that contractive training criteria, such as denoising, will enforce these conditions locally. Based on these observations, we show how we can use auto-encoders to extract the conservative component of a vector field.
Daniel Jiwoong Im, Mohamed Ishmael Diwan Belghazi, Roland Memisevic
null
1506.07643
null
null
Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling
cs.CL cs.LG
Syntactic features play an essential role in identifying relationship in a sentence. Previous neural network models often suffer from irrelevant information introduced when subjects and objects are in a long distance. In this paper, we propose to learn more robust relation representations from the shortest dependency path through a convolution neural network. We further propose a straightforward negative sampling strategy to improve the assignment of subjects and objects. Experimental results show that our method outperforms the state-of-the-art methods on the SemEval-2010 Task 8 dataset.
Kun Xu, Yansong Feng, Songfang Huang, Dongyan Zhao
null
1506.07650
null
null
Manifold Optimization for Gaussian Mixture Models
stat.ML cs.LG math.OC
We take a new look at parameter estimation for Gaussian Mixture Models (GMMs). In particular, we propose using \emph{Riemannian manifold optimization} as a powerful counterpart to Expectation Maximization (EM). An out-of-the-box invocation of manifold optimization, however, fails spectacularly: it converges to the same solution but vastly slower. Driven by intuition from manifold convexity, we then propose a reparamerization that has remarkable empirical consequences. It makes manifold optimization not only match EM---a highly encouraging result in itself given the poor record nonlinear programming methods have had against EM so far---but also outperform EM in many practical settings, while displaying much less variability in running times. We further highlight the strengths of manifold optimization by developing a somewhat tuned manifold LBFGS method that proves even more competitive and reliable than existing manifold optimization tools. We hope that our results encourage a wider consideration of manifold optimization for parameter estimation problems.
Reshad Hosseini and Suvrit Sra
null
1506.07677
null
null
AttentionNet: Aggregating Weak Directions for Accurate Object Detection
cs.CV cs.LG
We present a novel detection method using a deep convolutional neural network (CNN), named AttentionNet. We cast an object detection problem as an iterative classification problem, which is the most suitable form of a CNN. AttentionNet provides quantized weak directions pointing a target object and the ensemble of iterative predictions from AttentionNet converges to an accurate object boundary box. Since AttentionNet is a unified network for object detection, it detects objects without any separated models from the object proposal to the post bounding-box regression. We evaluate AttentionNet by a human detection task and achieve the state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 with an 8-layered architecture only.
Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony S. Paek, In So Kweon
null
1506.07704
null
null
Fairness-Aware Learning with Restriction of Universal Dependency using f-Divergences
stat.ML cs.LG
Fairness-aware learning is a novel framework for classification tasks. Like regular empirical risk minimization (ERM), it aims to learn a classifier with a low error rate, and at the same time, for the predictions of the classifier to be independent of sensitive features, such as gender, religion, race, and ethnicity. Existing methods can achieve low dependencies on given samples, but this is not guaranteed on unseen samples. The existing fairness-aware learning algorithms employ different dependency measures, and each algorithm is specifically designed for a particular one. Such diversity makes it difficult to theoretically analyze and compare them. In this paper, we propose a general framework for fairness-aware learning that uses f-divergences and that covers most of the dependency measures employed in the existing methods. We introduce a way to estimate the f-divergences that allows us to give a unified analysis for the upper bound of the estimation error; this bound is tighter than that of the existing convergence rate analysis of the divergence estimation. With our divergence estimate, we propose a fairness-aware learning algorithm, and perform a theoretical analysis of its generalization error. Our analysis reveals that, under mild assumptions and even with enforcement of fairness, the generalization error of our method is $O(\sqrt{1/n})$, which is the same as that of the regular ERM. In addition, and more importantly, we show that, for any f-divergence, the upper bound of the estimation error of the divergence is $O(\sqrt{1/n})$. This indicates that our fairness-aware learning algorithm guarantees low dependencies on unseen samples for any dependency measure represented by an f-divergence.
Kazuto Fukuchi and Jun Sakuma
null
1506.07721
null
null
Diffusion Nets
stat.ML cs.LG math.CA
Non-linear manifold learning enables high-dimensional data analysis, but requires out-of-sample-extension methods to process new data points. In this paper, we propose a manifold learning algorithm based on deep learning to create an encoder, which maps a high-dimensional dataset and its low-dimensional embedding, and a decoder, which takes the embedded data back to the high-dimensional space. Stacking the encoder and decoder together constructs an autoencoder, which we term a diffusion net, that performs out-of-sample-extension as well as outlier detection. We introduce new neural net constraints for the encoder, which preserves the local geometry of the points, and we prove rates of convergence for the encoder. Also, our approach is efficient in both computational complexity and memory requirements, as opposed to previous methods that require storage of all training points in both the high-dimensional and the low-dimensional spaces to calculate the out-of-sample-extension and the pre-image.
Gal Mishne, Uri Shaham, Alexander Cloninger and Israel Cohen
null
1506.07840
null
null
Decentralized Q-Learning for Stochastic Teams and Games
math.OC cs.GT cs.LG
There are only a few learning algorithms applicable to stochastic dynamic teams and games which generalize Markov decision processes to decentralized stochastic control problems involving possibly self-interested decision makers. Learning in games is generally difficult because of the non-stationary environment in which each decision maker aims to learn its optimal decisions with minimal information in the presence of the other decision makers who are also learning. In stochastic dynamic games, learning is more challenging because, while learning, the decision makers alter the state of the system and hence the future cost. In this paper, we present decentralized Q-learning algorithms for stochastic games, and study their convergence for the weakly acyclic case which includes team problems as an important special case. The algorithm is decentralized in that each decision maker has access to only its local information, the state information, and the local cost realizations; furthermore, it is completely oblivious to the presence of other decision makers. We show that these algorithms converge to equilibrium policies almost surely in large classes of stochastic games.
G\"urdal Arslan and Serdar Y\"uksel
null
1506.07924
null
null
Collaboratively Learning Preferences from Ordinal Data
cs.LG cs.IT math.IT stat.ML
In applications such as recommendation systems and revenue management, it is important to predict preferences on items that have not been seen by a user or predict outcomes of comparisons among those that have never been compared. A popular discrete choice model of multinomial logit model captures the structure of the hidden preferences with a low-rank matrix. In order to predict the preferences, we want to learn the underlying model from noisy observations of the low-rank matrix, collected as revealed preferences in various forms of ordinal data. A natural approach to learn such a model is to solve a convex relaxation of nuclear norm minimization. We present the convex relaxation approach in two contexts of interest: collaborative ranking and bundled choice modeling. In both cases, we show that the convex relaxation is minimax optimal. We prove an upper bound on the resulting error with finite samples, and provide a matching information-theoretic lower bound.
Sewoong Oh, Kiran K. Thekumparampil, and Jiaming Xu
null
1506.07947
null
null
Skopus: Mining top-k sequential patterns under leverage
cs.AI cs.LG stat.ML
This paper presents a framework for exact discovery of the top-k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern - a concept on which most interestingness measures directly rely - with (2) SkOPUS: a new branch-and-bound algorithm for the exact discovery of top-k sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the k sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art. This article was published in Data Mining and Knowledge Discovery and is accessible at http://dx.doi.org/10.1007/s10618-016-0467-9.
Francois Petitjean, Tao Li, Nikolaj Tatti, Geoffrey I. Webb
10.1007/s10618-016-0467-9
1506.08009
null
null
Modelling of directional data using Kent distributions
cs.LG stat.ML
The modelling of data on a spherical surface requires the consideration of directional probability distributions. To model asymmetrically distributed data on a three-dimensional sphere, Kent distributions are often used. The moment estimates of the parameters are typically used in modelling tasks involving Kent distributions. However, these lack a rigorous statistical treatment. The focus of the paper is to introduce a Bayesian estimation of the parameters of the Kent distribution which has not been carried out in the literature, partly because of its complex mathematical form. We employ the Bayesian information-theoretic paradigm of Minimum Message Length (MML) to bridge this gap and derive reliable estimators. The inferred parameters are subsequently used in mixture modelling of Kent distributions. The problem of inferring the suitable number of mixture components is also addressed using the MML criterion. We demonstrate the superior performance of the derived MML-based parameter estimates against the traditional estimators. We apply the MML principle to infer mixtures of Kent distributions to model empirical data corresponding to protein conformations. We demonstrate the effectiveness of Kent models to act as improved descriptors of protein structural data as compared to commonly used von Mises-Fisher distributions.
Parthan Kasarapu
null
1506.08105
null
null
An Empirical Study of Stochastic Variational Algorithms for the Beta Bernoulli Process
stat.ML cs.LG stat.AP stat.CO stat.ME
Stochastic variational inference (SVI) is emerging as the most promising candidate for scaling inference in Bayesian probabilistic models to large datasets. However, the performance of these methods has been assessed primarily in the context of Bayesian topic models, particularly latent Dirichlet allocation (LDA). Deriving several new algorithms, and using synthetic, image and genomic datasets, we investigate whether the understanding gleaned from LDA applies in the setting of sparse latent factor models, specifically beta process factor analysis (BPFA). We demonstrate that the big picture is consistent: using Gibbs sampling within SVI to maintain certain posterior dependencies is extremely effective. However, we find that different posterior dependencies are important in BPFA relative to LDA. Particularly, approximations able to model intra-local variable dependence perform best.
Amar Shah and David A. Knowles and Zoubin Ghahramani
null
1506.08180
null
null
A geometric alternative to Nesterov's accelerated gradient descent
math.OC cs.DS cs.LG cs.NA
We propose a new method for unconstrained optimization of a smooth and strongly convex function, which attains the optimal rate of convergence of Nesterov's accelerated gradient descent. The new algorithm has a simple geometric interpretation, loosely inspired by the ellipsoid method. We provide some numerical evidence that the new method can be superior to Nesterov's accelerated gradient descent.
S\'ebastien Bubeck, Yin Tat Lee, Mohit Singh
null
1506.08187
null
null
Correlation Clustering and Biclustering with Locally Bounded Errors
cs.DS cs.LG
We consider a generalized version of the correlation clustering problem, defined as follows. Given a complete graph $G$ whose edges are labeled with $+$ or $-$, we wish to partition the graph into clusters while trying to avoid errors: $+$ edges between clusters or $-$ edges within clusters. Classically, one seeks to minimize the total number of such errors. We introduce a new framework that allows the objective to be a more general function of the number of errors at each vertex (for example, we may wish to minimize the number of errors at the worst vertex) and provide a rounding algorithm which converts "fractional clusterings" into discrete clusterings while causing only a constant-factor blowup in the number of errors at each vertex. This rounding algorithm yields constant-factor approximation algorithms for the discrete problem under a wide variety of objective functions.
Gregory J. Puleo, Olgica Milenkovic
null
1506.08189
null
null
Convolutional networks and learning invariant to homogeneous multiplicative scalings
cs.LG cs.NE
The conventional classification schemes -- notably multinomial logistic regression -- used in conjunction with convolutional networks (convnets) are classical in statistics, designed without consideration for the usual coupling with convnets, stochastic gradient descent, and backpropagation. In the specific application to supervised learning for convnets, a simple scale-invariant classification stage turns out to be more robust than multinomial logistic regression, appears to result in slightly lower errors on several standard test sets, has similar computational costs, and features precise control over the actual rate of learning. "Scale-invariant" means that multiplying the input values by any nonzero scalar leaves the output unchanged.
Mark Tygert, Arthur Szlam, Soumith Chintala, Marc'Aurelio Ranzato, Yuandong Tian, and Wojciech Zaremba
null
1506.08230
null
null
Occam's Gates
cs.LG
We present a complimentary objective for training recurrent neural networks (RNN) with gating units that helps with regularization and interpretability of the trained model. Attention-based RNN models have shown success in many difficult sequence to sequence classification problems with long and short term dependencies, however these models are prone to overfitting. In this paper, we describe how to regularize these models through an L1 penalty on the activation of the gating units, and show that this technique reduces overfitting on a variety of tasks while also providing to us a human-interpretable visualization of the inputs used by the network. These tasks include sentiment analysis, paraphrase recognition, and question answering.
Jonathan Raiman and Szymon Sidor
null
1506.08251
null
null
A Novel Approach for Stable Selection of Informative Redundant Features from High Dimensional fMRI Data
cs.CV cs.LG stat.ML
Feature selection is among the most important components because it not only helps enhance the classification accuracy, but also or even more important provides potential biomarker discovery. However, traditional multivariate methods is likely to obtain unstable and unreliable results in case of an extremely high dimensional feature space and very limited training samples, where the features are often correlated or redundant. In order to improve the stability, generalization and interpretations of the discovered potential biomarker and enhance the robustness of the resultant classifier, the redundant but informative features need to be also selected. Therefore we introduced a novel feature selection method which combines a recent implementation of the stability selection approach and the elastic net approach. The advantage in terms of better control of false discoveries and missed discoveries of our approach, and the resulted better interpretability of the obtained potential biomarker is verified in both synthetic and real fMRI experiments. In addition, we are among the first to demonstrate the robustness of feature selection benefiting from the incorporation of stability selection and also among the first to demonstrate the possible unrobustness of the classical univariate two-sample t-test method. Specifically, we show the robustness of our feature selection results in existence of noisy (wrong) training labels, as well as the robustness of the resulted classifier based on our feature selection results in the existence of data variation, demonstrated by a multi-center attention-deficit/hyperactivity disorder (ADHD) fMRI data.
Yilun Wang, Zhiqiang Li, Yifeng Wang, Xiaona Wang, Junjie Zheng, Xujuan Duan, Huafu Chen
null
1506.08301
null
null
Improved Deep Speaker Feature Learning for Text-Dependent Speaker Recognition
cs.CL cs.LG cs.NE
A deep learning approach has been proposed recently to derive speaker identifies (d-vector) by a deep neural network (DNN). This approach has been applied to text-dependent speaker recognition tasks and shows reasonable performance gains when combined with the conventional i-vector approach. Although promising, the existing d-vector implementation still can not compete with the i-vector baseline. This paper presents two improvements for the deep learning approach: a phonedependent DNN structure to normalize phone variation, and a new scoring approach based on dynamic time warping (DTW). Experiments on a text-dependent speaker recognition task demonstrated that the proposed methods can provide considerable performance improvement over the existing d-vector implementation.
Lantian Li and Yiye Lin and Zhiyong Zhang and Dong Wang
null
1506.08349
null
null
Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization
cs.LG cs.NA
Stochastic gradient descent (SGD) holds as a classical method to build large scale machine learning models over big data. A stochastic gradient is typically calculated from a limited number of samples (known as mini-batch), so it potentially incurs a high variance and causes the estimated parameters bounce around the optimal solution. To improve the stability of stochastic gradient, recent years have witnessed the proposal of several semi-stochastic gradient descent algorithms, which distinguish themselves from standard SGD by incorporating global information into gradient computation. In this paper we contribute a novel stratified semi-stochastic gradient descent (S3GD) algorithm to this nascent research area, accelerating the optimization of a large family of composite convex functions. Though theoretically converging faster, prior semi-stochastic algorithms are found to suffer from high iteration complexity, which makes them even slower than SGD in practice on many datasets. In our proposed S3GD, the semi-stochastic gradient is calculated based on efficient manifold propagation, which can be numerically accomplished by sparse matrix multiplications. This way S3GD is able to generate a highly-accurate estimate of the exact gradient from each mini-batch with largely-reduced computational complexity. Theoretic analysis reveals that the proposed S3GD elegantly balances the geometric algorithmic convergence rate against the space and time complexities during the optimization. The efficacy of S3GD is also experimentally corroborated on several large-scale benchmark datasets.
Yadong Mu and Wei Liu and Wei Fan
null
1506.08350
null
null
Topic2Vec: Learning Distributed Representations of Topics
cs.CL cs.LG
Latent Dirichlet Allocation (LDA) mining thematic structure of documents plays an important role in nature language processing and machine learning areas. However, the probability distribution from LDA only describes the statistical relationship of occurrences in the corpus and usually in practice, probability is not the best choice for feature representations. Recently, embedding methods have been proposed to represent words and documents by learning essential concepts and representations, such as Word2Vec and Doc2Vec. The embedded representations have shown more effectiveness than LDA-style representations in many tasks. In this paper, we propose the Topic2Vec approach which can learn topic representations in the same semantic vector space with words, as an alternative to probability. The experimental results show that Topic2Vec achieves interesting and meaningful results.
Li-Qiang Niu and Xin-Yu Dai
null
1506.08422
null
null
Neural Simpletrons - Minimalistic Directed Generative Networks for Learning with Few Labels
stat.ML cs.LG
Classifiers for the semi-supervised setting often combine strong supervised models with additional learning objectives to make use of unlabeled data. This results in powerful though very complex models that are hard to train and that demand additional labels for optimal parameter tuning, which are often not given when labeled data is very sparse. We here study a minimalistic multi-layer generative neural network for semi-supervised learning in a form and setting as similar to standard discriminative networks as possible. Based on normalized Poisson mixtures, we derive compact and local learning and neural activation rules. Learning and inference in the network can be scaled using standard deep learning tools for parallelized GPU implementation. With the single objective of likelihood optimization, both labeled and unlabeled data are naturally incorporated into learning. Empirical evaluations on standard benchmarks show, that for datasets with few labels the derived minimalistic network improves on all classical deep learning approaches and is competitive with their recent variants without the need of additional labels for parameter tuning. Furthermore, we find that the studied network is the best performing monolithic (`non-hybrid') system for few labels, and that it can be applied in the limit of very few labels, where no other system has been reported to operate so far.
Dennis Forster, Abdul-Saboor Sheikh and J\"org L\"ucke
10.1162/neco_a_01100
1506.08448
null
null
Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods
cs.LG cs.NE stat.ML
Training neural networks is a challenging non-convex optimization problem, and backpropagation or gradient descent can get stuck in spurious local optima. We propose a novel algorithm based on tensor decomposition for guaranteed training of two-layer neural networks. We provide risk bounds for our proposed method, with a polynomial sample complexity in the relevant parameters, such as input dimension and number of neurons. While learning arbitrary target functions is NP-hard, we provide transparent conditions on the function and the input for learnability. Our training method is based on tensor decomposition, which provably converges to the global optimum, under a set of mild non-degeneracy conditions. It consists of simple embarrassingly parallel linear and multi-linear operations, and is competitive with standard stochastic gradient descent (SGD), in terms of computational complexity. Thus, we propose a computationally efficient method with guaranteed risk bounds for training neural networks with one hidden layer.
Majid Janzamin and Hanie Sedghi and Anima Anandkumar
null
1506.08473
null
null
A simple yet efficient algorithm for multiple kernel learning under elastic-net constraints
stat.ML cs.LG
This papers introduces an algorithm for the solution of multiple kernel learning (MKL) problems with elastic-net constraints on the kernel weights. The algorithm compares very favourably in terms of time and space complexity to existing approaches and can be implemented with simple code that does not rely on external libraries (except a conventional SVM solver).
Luca Citi
null
1506.08536
null
null
Exact and approximate inference in graphical models: variable elimination and beyond
stat.ML cs.AI cs.LG
Probabilistic graphical models offer a powerful framework to account for the dependence structure between variables, which is represented as a graph. However, the dependence between variables may render inference tasks intractable. In this paper we review techniques exploiting the graph structure for exact inference, borrowed from optimisation and computer science. They are built on the principle of variable elimination whose complexity is dictated in an intricate way by the order in which variables are eliminated. The so-called treewidth of the graph characterises this algorithmic complexity: low-treewidth graphs can be processed efficiently. The first message that we illustrate is therefore the idea that for inference in graphical model, the number of variables is not the limiting factor, and it is worth checking for the treewidth before turning to approximate methods. We show how algorithms providing an upper bound of the treewidth can be exploited to derive a 'good' elimination order enabling to perform exact inference. The second message is that when the treewidth is too large, algorithms for approximate inference linked to the principle of variable elimination, such as loopy belief propagation and variational approaches, can lead to accurate results while being much less time consuming than Monte-Carlo approaches. We illustrate the techniques reviewed in this article on benchmarks of inference problems in genetic linkage analysis and computer vision, as well as on hidden variables restoration in coupled Hidden Markov Models.
Nathalie Peyrard and Marie-Jos\'ee Cros and Simon de Givry and Alain Franc and St\'ephane Robin and R\'egis Sabbadin and Thomas Schiex and Matthieu Vignes
null
1506.08544
null
null
Variational Inference for Background Subtraction in Infrared Imagery
cs.CV cs.LG
We propose a Gaussian mixture model for background subtraction in infrared imagery. Following a Bayesian approach, our method automatically estimates the number of Gaussian components as well as their parameters, while simultaneously it avoids over/under fitting. The equations for estimating model parameters are analytically derived and thus our method does not require any sampling algorithm that is computationally and memory inefficient. The pixel density estimate is followed by an efficient and highly accurate updating mechanism, which permits our system to be automatically adapted to dynamically changing operation conditions. Experimental results and comparisons with other methods show that our method outperforms, in terms of precision and recall, while at the same time it keeps computational cost suitable for real-time applications.
Konstantinos Makantasis, Anastasios Doulamis, Nikolaos Doulamis
null
1506.08581
null
null
A spectral method for community detection in moderately-sparse degree-corrected stochastic block models
math.PR cs.LG cs.SI stat.ML
We consider community detection in Degree-Corrected Stochastic Block Models (DC-SBM). We propose a spectral clustering algorithm based on a suitably normalized adjacency matrix. We show that this algorithm consistently recovers the block-membership of all but a vanishing fraction of nodes, in the regime where the lowest degree is of order log$(n)$ or higher. Recovery succeeds even for very heterogeneous degree-distributions. The used algorithm does not rely on parameters as input. In particular, it does not need to know the number of communities.
Lennart Gulikers, Marc Lelarge, Laurent Massouli\'e
null
1506.08621
null
null
Efficient and Parsimonious Agnostic Active Learning
cs.LG stat.ML
We develop a new active learning algorithm for the streaming setting satisfying three important properties: 1) It provably works for any classifier representation and classification problem including those with severe noise. 2) It is efficiently implementable with an ERM oracle. 3) It is more aggressive than all previous approaches satisfying 1 and 2. To do this we create an algorithm based on a newly defined optimization problem and analyze it. We also conduct the first experimental analysis of all efficient agnostic active learning algorithms, evaluating their strengths and weaknesses in different settings.
Tzu-Kuo Huang, Alekh Agarwal, Daniel J. Hsu, John Langford, Robert E. Schapire
null
1506.08669
null
null
Portfolio optimization using local linear regression ensembles in RapidMiner
q-fin.PM cs.LG stat.ML
In this paper we implement a Local Linear Regression Ensemble Committee (LOLREC) to predict 1-day-ahead returns of 453 assets form the S&P500. The estimates and the historical returns of the committees are used to compute the weights of the portfolio from the 453 stock. The proposed method outperforms benchmark portfolio selection strategies that optimize the growth rate of the capital. We investigate the effect of algorithm parameter m: the number of selected stocks on achieved average annual yields. Results suggest the algorithm's practical usefulness in everyday trading.
Gabor Nagy and Gergo Barta and Tamas Henk
null
1506.08690
null
null
Dropout as data augmentation
stat.ML cs.LG
Dropout is typically interpreted as bagging a large number of models sharing parameters. We show that using dropout in a network can also be interpreted as a kind of data augmentation in the input space without domain knowledge. We present an approach to projecting the dropout noise within a network back into the input space, thereby generating augmented versions of the training data, and we show that training a deterministic network on the augmented samples yields similar results. Finally, we propose a new dropout noise scheme based on our observations and show that it improves dropout results without adding significant computational cost.
Xavier Bouthillier, Kishore Konda, Pascal Vincent, Roland Memisevic
null
1506.08700
null
null
S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification
cs.LG stat.ML
This paper investigates the problem of active learning for binary label prediction on a graph. We introduce a simple and label-efficient algorithm called S2 for this task. At each step, S2 selects the vertex to be labeled based on the structure of the graph and all previously gathered labels. Specifically, S2 queries for the label of the vertex that bisects the *shortest shortest* path between any pair of oppositely labeled vertices. We present a theoretical estimate of the number of queries S2 needs in terms of a novel parametrization of the complexity of binary functions on graphs. We also present experimental results demonstrating the performance of S2 on both real and synthetic data. While other graph-based active learning algorithms have shown promise in practice, our algorithm is the first with both good performance and theoretical guarantees. Finally, we demonstrate the implications of the S2 algorithm to the theory of nonparametric active learning. In particular, we show that S2 achieves near minimax optimal excess risk for an important class of nonparametric classification problems.
Gautam Dasarathy, Robert Nowak, Xiaojin Zhu
null
1506.08760
null
null
On Design Mining: Coevolution and Surrogate Models
cs.NE cs.AI cs.CE cs.LG
Design mining is the use of computational intelligence techniques to iteratively search and model the attribute space of physical objects evaluated directly through rapid prototyping to meet given objectives. It enables the exploitation of novel materials and processes without formal models or complex simulation. In this paper, we focus upon the coevolutionary nature of the design process when it is decomposed into concurrent sub-design threads due to the overall complexity of the task. Using an abstract, tuneable model of coevolution we consider strategies to sample sub-thread designs for whole system testing and how best to construct and use surrogate models within the coevolutionary scenario. Drawing on our findings, the paper then describes the effective design of an array of six heterogeneous vertical-axis wind turbines.
Richard J. Preen and Larry Bull
10.1162/ARTL_a_00225
1506.08781
null
null
The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems
cs.CL cs.AI cs.LG cs.NE
This paper introduces the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This provides a unique resource for research into building dialogue managers based on neural language models that can make use of large amounts of unlabeled data. The dataset has both the multi-turn property of conversations in the Dialog State Tracking Challenge datasets, and the unstructured nature of interactions from microblog services such as Twitter. We also describe two neural learning architectures suitable for analyzing this dataset, and provide benchmark performance on the task of selecting the best next response.
Ryan Lowe, Nissan Pow, Iulian Serban, Joelle Pineau
null
1506.08909
null
null
Learning Single Index Models in High Dimensions
stat.ML cs.LG stat.ME
Single Index Models (SIMs) are simple yet flexible semi-parametric models for classification and regression. Response variables are modeled as a nonlinear, monotonic function of a linear combination of features. Estimation in this context requires learning both the feature weights, and the nonlinear function. While methods have been described to learn SIMs in the low dimensional regime, a method that can efficiently learn SIMs in high dimensions has not been forthcoming. We propose three variants of a computationally and statistically efficient algorithm for SIM inference in high dimensions. We establish excess risk bounds for the proposed algorithms and experimentally validate the advantages that our SIM learning methods provide relative to Generalized Linear Model (GLM) and low dimensional SIM based learning methods.
Ravi Ganti, Nikhil Rao, Rebecca M. Willett and Robert Nowak
null
1506.08910
null
null
Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty
cs.LG cs.CV math.OC
We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the method that adaptively determines the maximum number of iterations to update the penalty. We show that this approach effectively leads to an adaptive, dynamic network topology underlying the distributed optimization. The utility of the new penalty update schemes is demonstrated on both synthetic and real data, including a computer vision application of distributed structure from motion.
Changkyu Song and Sejong Yoon and Vladimir Pavlovic
null
1506.08928
null
null
Online Learning to Sample
cs.LG cs.CV cs.NA math.OC stat.ML
Stochastic Gradient Descent (SGD) is one of the most widely used techniques for online optimization in machine learning. In this work, we accelerate SGD by adaptively learning how to sample the most useful training examples at each time step. First, we show that SGD can be used to learn the best possible sampling distribution of an importance sampling estimator. Second, we show that the sampling distribution of an SGD algorithm can be estimated online by incrementally minimizing the variance of the gradient. The resulting algorithm - called Adaptive Weighted SGD (AW-SGD) - maintains a set of parameters to optimize, as well as a set of parameters to sample learning examples. We show that AWSGD yields faster convergence in three different applications: (i) image classification with deep features, where the sampling of images depends on their labels, (ii) matrix factorization, where rows and columns are not sampled uniformly, and (iii) reinforcement learning, where the optimized and exploration policies are estimated at the same time, where our approach corresponds to an off-policy gradient algorithm.
Guillaume Bouchard, Th\'eo Trouillon, Julien Perez, Adrien Gaidon
null
1506.09016
null
null
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
stat.ML cs.LG
Drawing a sample from a discrete distribution is one of the building components for Monte Carlo methods. Like other sampling algorithms, discrete sampling suffers from the high computational burden in large-scale inference problems. We study the problem of sampling a discrete random variable with a high degree of dependency that is typical in large-scale Bayesian inference and graphical models, and propose an efficient approximate solution with a subsampling approach. We make a novel connection between the discrete sampling and Multi-Armed Bandits problems with a finite reward population and provide three algorithms with theoretical guarantees. Empirical evaluations show the robustness and efficiency of the approximate algorithms in both synthetic and real-world large-scale problems.
Yutian Chen, Zoubin Ghahramani
null
1506.09039
null
null
Framework for Multi-task Multiple Kernel Learning and Applications in Genome Analysis
stat.ML cs.CE cs.LG
We present a general regularization-based framework for Multi-task learning (MTL), in which the similarity between tasks can be learned or refined using $\ell_p$-norm Multiple Kernel learning (MKL). Based on this very general formulation (including a general loss function), we derive the corresponding dual formulation using Fenchel duality applied to Hermitian matrices. We show that numerous established MTL methods can be derived as special cases from both, the primal and dual of our formulation. Furthermore, we derive a modern dual-coordinate descend optimization strategy for the hinge-loss variant of our formulation and provide convergence bounds for our algorithm. As a special case, we implement in C++ a fast LibLinear-style solver for $\ell_p$-norm MKL. In the experimental section, we analyze various aspects of our algorithm such as predictive performance and ability to reconstruct task relationships on biologically inspired synthetic data, where we have full control over the underlying ground truth. We also experiment on a new dataset from the domain of computational biology that we collected for the purpose of this paper. It concerns the prediction of transcription start sites (TSS) over nine organisms, which is a crucial task in gene finding. Our solvers including all discussed special cases are made available as open-source software as part of the SHOGUN machine learning toolbox (available at \url{http://shogun.ml}).
Christian Widmer, Marius Kloft, Vipin T Sreedharan, Gunnar R\"atsch
null
1506.09153
null
null
Unsupervised Learning from Narrated Instruction Videos
cs.CV cs.LG
We address the problem of automatically learning the main steps to complete a certain task, such as changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold. First, we develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method solves two clustering problems, one in text and one in video, applied one after each other and linked by joint constraints to obtain a single coherent sequence of steps in both modalities. Second, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains about 800,000 frames for five different tasks that include complex interactions between people and objects, and are captured in a variety of indoor and outdoor settings. Third, we experimentally demonstrate that the proposed method can automatically discover, in an unsupervised manner, the main steps to achieve the task and locate the steps in the input videos.
Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien
null
1506.09215
null
null
Selective Inference and Learning Mixed Graphical Models
stat.ML cs.LG
This thesis studies two problems in modern statistics. First, we study selective inference, or inference for hypothesis that are chosen after looking at the data. The motiving application is inference for regression coefficients selected by the lasso. We present the Condition-on-Selection method that allows for valid selective inference, and study its application to the lasso, and several other selection algorithms. In the second part, we consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. We provide conditions under which our estimator is model selection consistent in the high-dimensional regime.
Jason D. Lee
null
1507.00039
null
null
Fast Cross-Validation for Incremental Learning
stat.ML cs.AI cs.LG
Cross-validation (CV) is one of the main tools for performance estimation and parameter tuning in machine learning. The general recipe for computing CV estimate is to run a learning algorithm separately for each CV fold, a computationally expensive process. In this paper, we propose a new approach to reduce the computational burden of CV-based performance estimation. As opposed to all previous attempts, which are specific to a particular learning model or problem domain, we propose a general method applicable to a large class of incremental learning algorithms, which are uniquely fitted to big data problems. In particular, our method applies to a wide range of supervised and unsupervised learning tasks with different performance criteria, as long as the base learning algorithm is incremental. We show that the running time of the algorithm scales logarithmically, rather than linearly, in the number of CV folds. Furthermore, the algorithm has favorable properties for parallel and distributed implementation. Experiments with state-of-the-art incremental learning algorithms confirm the practicality of the proposed method.
Pooria Joulani, Andr\'as Gy\"orgy, Csaba Szepesv\'ari
null
1507.00066
null
null
A Study of Gradient Descent Schemes for General-Sum Stochastic Games
cs.LG cs.GT
Zero-sum stochastic games are easy to solve as they can be cast as simple Markov decision processes. This is however not the case with general-sum stochastic games. A fairly general optimization problem formulation is available for general-sum stochastic games by Filar and Vrieze [2004]. However, the optimization problem there has a non-linear objective and non-linear constraints with special structure. Since gradients of both the objective as well as constraints of this optimization problem are well defined, gradient based schemes seem to be a natural choice. We discuss a gradient scheme tuned for two-player stochastic games. We show in simulations that this scheme indeed converges to a Nash equilibrium, for a simple terrain exploration problem modelled as a general-sum stochastic game. However, it turns out that only global minima of the optimization problem correspond to Nash equilibria of the underlying general-sum stochastic game, while gradient schemes only guarantee convergence to local minima. We then provide important necessary conditions for gradient schemes to converge to Nash equilibria in general-sum stochastic games.
H. L. Prasad and Shalabh Bhatnagar
null
1507.00093
null
null
Natural Neural Networks
stat.ML cs.LG cs.NE
We introduce Natural Neural Networks, a novel family of algorithms that speed up convergence by adapting their internal representation during training to improve conditioning of the Fisher matrix. In particular, we show a specific example that employs a simple and efficient reparametrization of the neural network weights by implicitly whitening the representation obtained at each layer, while preserving the feed-forward computation of the network. Such networks can be trained efficiently via the proposed Projected Natural Gradient Descent algorithm (PRONG), which amortizes the cost of these reparametrizations over many parameter updates and is closely related to the Mirror Descent online learning algorithm. We highlight the benefits of our method on both unsupervised and supervised learning tasks, and showcase its scalability by training on the large-scale ImageNet Challenge dataset.
Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, Koray Kavukcuoglu
null
1507.00210
null
null
Bigeometric Organization of Deep Nets
stat.ML cs.LG
In this paper, we build an organization of high-dimensional datasets that cannot be cleanly embedded into a low-dimensional representation due to missing entries and a subset of the features being irrelevant to modeling functions of interest. Our algorithm begins by defining coarse neighborhoods of the points and defining an expected empirical function value on these neighborhoods. We then generate new non-linear features with deep net representations tuned to model the approximate function, and re-organize the geometry of the points with respect to the new representation. Finally, the points are locally z-scored to create an intrinsic geometric organization which is independent of the parameters of the deep net, a geometry designed to assure smoothness with respect to the empirical function. We examine this approach on data from the Center for Medicare and Medicaid Services Hospital Quality Initiative, and generate an intrinsic low-dimensional organization of the hospitals that is smooth with respect to an expert driven function of quality.
Alexander Cloninger, Ronald R. Coifman, Nicholas Downing, Harlan M. Krumholz
null
1507.00220
null
null
Bootstrapped Thompson Sampling and Deep Exploration
stat.ML cs.LG
This technical note presents a new approach to carrying out the kind of exploration achieved by Thompson sampling, but without explicitly maintaining or sampling from posterior distributions. The approach is based on a bootstrap technique that uses a combination of observed and artificially generated data. The latter serves to induce a prior distribution which, as we will demonstrate, is critical to effective exploration. We explain how the approach can be applied to multi-armed bandit and reinforcement learning problems and how it relates to Thompson sampling. The approach is particularly well-suited for contexts in which exploration is coupled with deep learning, since in these settings, maintaining or generating samples from a posterior distribution becomes computationally infeasible.
Ian Osband and Benjamin Van Roy
null
1507.00300
null
null
Notes on Low-rank Matrix Factorization
cs.NA cs.IR cs.LG
Low-rank matrix factorization (MF) is an important technique in data science. The key idea of MF is that there exists latent structures in the data, by uncovering which we could obtain a compressed representation of the data. By factorizing an original matrix to low-rank matrices, MF provides a unified method for dimension reduction, clustering, and matrix completion. In this article we review several important variants of MF, including: Basic MF, Non-negative MF, Orthogonal non-negative MF. As can be told from their names, non-negative MF and orthogonal non-negative MF are variants of basic MF with non-negativity and/or orthogonality constraints. Such constraints are useful in specific senarios. In the first part of this article, we introduce, for each of these models, the application scenarios, the distinctive properties, and the optimizing method. By properly adapting MF, we can go beyond the problem of clustering and matrix completion. In the second part of this article, we will extend MF to sparse matrix compeletion, enhance matrix compeletion using various regularization methods, and make use of MF for (semi-)supervised learning by introducing latent space reinforcement and transformation. We will see that MF is not only a useful model but also as a flexible framework that is applicable for various prediction problems.
Yuan Lu and Jie Yang
null
1507.00333
null
null
An Empirical Evaluation of True Online TD({\lambda})
cs.AI cs.LG stat.ML
The true online TD({\lambda}) algorithm has recently been proposed (van Seijen and Sutton, 2014) as a universal replacement for the popular TD({\lambda}) algorithm, in temporal-difference learning and reinforcement learning. True online TD({\lambda}) has better theoretical properties than conventional TD({\lambda}), and the expectation is that it also results in faster learning. In this paper, we put this hypothesis to the test. Specifically, we compare the performance of true online TD({\lambda}) with that of TD({\lambda}) on challenging examples, random Markov reward processes, and a real-world myoelectric prosthetic arm. We use linear function approximation with tabular, binary, and non-binary features. We assess the algorithms along three dimensions: computational cost, learning speed, and ease of use. Our results confirm the strength of true online TD({\lambda}): 1) for sparse feature vectors, the computational overhead with respect to TD({\lambda}) is minimal; for non-sparse features the computation time is at most twice that of TD({\lambda}), 2) across all domains/representations the learning speed of true online TD({\lambda}) is often better, but never worse than that of TD({\lambda}), and 3) true online TD({\lambda}) is easier to use, because it does not require choosing between trace types, and it is generally more stable with respect to the step-size. Overall, our results suggest that true online TD({\lambda}) should be the first choice when looking for an efficient, general-purpose TD method.
Harm van Seijen, A. Rupam Mahmood, Patrick M. Pilarski, Richard S. Sutton
null
1507.00353
null
null
Fast Convergence of Regularized Learning in Games
cs.GT cs.AI cs.LG
We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at $O(T^{-3/4})$, while the sum of utilities converges to an approximate optimum at $O(T^{-1})$--an improvement upon the worst case $O(T^{-1/2})$ rates. We show a black-box reduction for any algorithm in the class to achieve $\tilde{O}(T^{-1/2})$ rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of [Rakhlin and Shridharan 2013] and [Daskalakis et al. 2014], who only analyzed two-player zero-sum games for specific algorithms.
Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire
null
1507.00407
null
null
No-Regret Learning in Bayesian Games
cs.GT cs.LG
Recent price-of-anarchy analyses of games of complete information suggest that coarse correlated equilibria, which characterize outcomes resulting from no-regret learning dynamics, have near-optimal welfare. This work provides two main technical results that lift this conclusion to games of incomplete information, a.k.a., Bayesian games. First, near-optimal welfare in Bayesian games follows directly from the smoothness-based proof of near-optimal welfare in the same game when the private information is public. Second, no-regret learning dynamics converge to Bayesian coarse correlated equilibrium in these incomplete information games. These results are enabled by interpretation of a Bayesian game as a stochastic game of complete information.
Jason Hartline, Vasilis Syrgkanis, Eva Tardos
null
1507.00418
null
null
Categorical Matrix Completion
cs.NA cs.LG math.ST stat.ML stat.TH
We consider the problem of completing a matrix with categorical-valued entries from partial observations. This is achieved by extending the formulation and theory of one-bit matrix completion. We recover a low-rank matrix $X$ by maximizing the likelihood ratio with a constraint on the nuclear norm of $X$, and the observations are mapped from entries of $X$ through multiple link functions. We establish theoretical upper and lower bounds on the recovery error, which meet up to a constant factor $\mathcal{O}(K^{3/2})$ where $K$ is the fixed number of categories. The upper bound in our case depends on the number of categories implicitly through a maximization of terms that involve the smoothness of the link functions. In contrast to one-bit matrix completion, our bounds for categorical matrix completion are optimal up to a factor on the order of the square root of the number of categories, which is consistent with an intuition that the problem becomes harder when the number of categories increases. By comparing the performance of our method with the conventional matrix completion method on the MovieLens dataset, we demonstrate the advantage of our method.
Yang Cao, Yao Xie
null
1507.00421
null
null
Online Transfer Learning in Reinforcement Learning Domains
cs.AI cs.LG
This paper proposes an online transfer framework to capture the interaction among agents and shows that current transfer learning in reinforcement learning is a special case of online transfer. Furthermore, this paper re-characterizes existing agents-teaching-agents methods as online transfer and analyze one such teaching method in three ways. First, the convergence of Q-learning and Sarsa with tabular representation with a finite budget is proven. Second, the convergence of Q-learning and Sarsa with linear function approximation is established. Third, the we show the asymptotic performance cannot be hurt through teaching. Additionally, all theoretical results are empirically validated.
Yusen Zhan and Matthew E. Taylor
null
1507.00436
null
null
DC Proximal Newton for Non-Convex Optimization Problems
cs.LG cs.NA stat.ML
We introduce a novel algorithm for solving learning problems where both the loss function and the regularizer are non-convex but belong to the class of difference of convex (DC) functions. Our contribution is a new general purpose proximal Newton algorithm that is able to deal with such a situation. The algorithm consists in obtaining a descent direction from an approximation of the loss function and then in performing a line search to ensure sufficient descent. A theoretical analysis is provided showing that the iterates of the proposed algorithm {admit} as limit points stationary points of the DC objective function. Numerical experiments show that our approach is more efficient than current state of the art for a problem with a convex loss functions and non-convex regularizer. We have also illustrated the benefit of our algorithm in high-dimensional transductive learning problem where both loss function and regularizers are non-convex.
Alain Rakotomamonjy (LITIS), Remi Flamary (LAGRANGE, OCA), Gilles Gasso (LITIS)
null
1507.00438
null
null
The Optimal Sample Complexity of PAC Learning
cs.LG stat.ML
This work establishes a new upper bound on the number of samples sufficient for PAC learning in the realizable case. The bound matches known lower bounds up to numerical constant factors. This solves a long-standing open problem on the sample complexity of PAC learning. The technique and analysis build on a recent breakthrough by Hans Simon.
Steve Hanneke
null
1507.00473
null
null