title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
MultiView Diffusion Maps
cs.LG stat.ML
In this paper, we address the challenging task of achieving multi-view dimensionality reduction. The goal is to effectively use the availability of multiple views for extracting a coherent low-dimensional representation of the data. The proposed method exploits the intrinsic relation within each view, as well as the mutual relations between views. The multi-view dimensionality reduction is achieved by defining a cross-view model in which an implied random walk process is restrained to hop between objects in the different views. The method is robust to scaling and insensitive to small structural changes in the data. We define new diffusion distances and analyze the spectra of the proposed kernel. We show that the proposed framework is useful for various machine learning applications such as clustering, classification, and manifold learning. Finally, by fusing multi-sensor seismic data we present a method for automatic identification of seismic events.
Ofir Lindenbaum, Arie Yeredor, Moshe Salhov, Amir Averbuch
null
1508.05550
null
null
Necessary and Sufficient Conditions and a Provably Efficient Algorithm for Separable Topic Discovery
cs.LG cs.CL cs.IR stat.ML
We develop necessary and sufficient conditions and a novel provably consistent and efficient algorithm for discovering topics (latent factors) from observations (documents) that are realized from a probabilistic mixture of shared latent factors that have certain properties. Our focus is on the class of topic models in which each shared latent factor contains a novel word that is unique to that factor, a property that has come to be known as separability. Our algorithm is based on the key insight that the novel words correspond to the extreme points of the convex hull formed by the row-vectors of a suitably normalized word co-occurrence matrix. We leverage this geometric insight to establish polynomial computation and sample complexity bounds based on a few isotropic random projections of the rows of the normalized word co-occurrence matrix. Our proposed random-projections-based algorithm is naturally amenable to an efficient distributed implementation and is attractive for modern web-scale distributed data mining applications.
Weicong Ding, Prakash Ishwar, Venkatesh Saligrama
null
1508.05565
null
null
Learning Sampling Distributions for Efficient Object Detection
cs.CV cs.LG
Object detection is an important task in computer vision and learning systems. Multistage particle windows (MPW), proposed by Gualdi et al., is an algorithm of fast and accurate object detection. By sampling particle windows from a proposal distribution (PD), MPW avoids exhaustively scanning the image. Despite its success, it is unknown how to determine the number of stages and the number of particle windows in each stage. Moreover, it has to generate too many particle windows in the initialization step and it redraws unnecessary too many particle windows around object-like regions. In this paper, we attempt to solve the problems of MPW. An important fact we used is that there is large probability for a randomly generated particle window not to contain the object because the object is a sparse event relevant to the huge number of candidate windows. Therefore, we design the proposal distribution so as to efficiently reject the huge number of non-object windows. Specifically, we propose the concepts of rejection, acceptance, and ambiguity windows and regions. This contrasts to MPW which utilizes only on region of support. The PD of MPW is acceptance-oriented whereas the PD of our method (called iPW) is rejection-oriented. Experimental results on human and face detection demonstrate the efficiency and effectiveness of the iPW algorithm. The source code is publicly accessible.
Yanwei Pang, Jiale Cao, and Xuelong Li
10.1109/TCYB.2015.2508603
1508.05581
null
null
The Max $K$-Armed Bandit: A PAC Lower Bound and tighter Algorithms
stat.ML cs.AI cs.LG
We consider the Max $K$-Armed Bandit problem, where a learning agent is faced with several sources (arms) of items (rewards), and interested in finding the best item overall. At each time step the agent chooses an arm, and obtains a random real valued reward. The rewards of each arm are assumed to be i.i.d., with an unknown probability distribution that generally differs among the arms. Under the PAC framework, we provide lower bounds on the sample complexity of any $(\epsilon,\delta)$-correct algorithm, and propose algorithms that attain this bound up to logarithmic factors. We compare the performance of this multi-arm algorithms to the variant in which the arms are not distinguishable by the agent and are chosen randomly at each stage. Interestingly, when the maximal rewards of the arms happen to be similar, the latter approach may provide better performance.
Yahel David and Nahum Shimkin
null
1508.05608
null
null
Fast Asynchronous Parallel Stochastic Gradient Decent
stat.ML cs.LG
Stochastic gradient descent~(SGD) and its variants have become more and more popular in machine learning due to their efficiency and effectiveness. To handle large-scale problems, researchers have recently proposed several parallel SGD methods for multicore systems. However, existing parallel SGD methods cannot achieve satisfactory performance in real applications. In this paper, we propose a fast asynchronous parallel SGD method, called AsySVRG, by designing an asynchronous strategy to parallelize the recently proposed SGD variant called stochastic variance reduced gradient~(SVRG). Both theoretical and empirical results show that AsySVRG can outperform existing state-of-the-art parallel SGD methods like Hogwild! in terms of convergence rate and computation cost.
Shen-Yi Zhao and Wu-Jun Li
null
1508.05711
null
null
Searching for significant patterns in stratified data
stat.ML cs.LG
Significant pattern mining, the problem of finding itemsets that are significantly enriched in one class of objects, is statistically challenging, as the large space of candidate patterns leads to an enormous multiple testing problem. Recently, the concept of testability was proposed as one approach to correct for multiple testing in pattern mining while retaining statistical power. Still, these strategies based on testability do not allow one to condition the test of significance on the observed covariates, which severely limits its utility in biomedical applications. Here we propose a strategy and an efficient algorithm to perform significant pattern mining in the presence of categorical covariates with K states.
Felipe Llinares-Lopez, Laetitia Papaxanthos, Dean Bodenham, Karsten Borgwardt
null
1508.05803
null
null
Stochastic Behavior of the Nonnegative Least Mean Fourth Algorithm for Stationary Gaussian Inputs and Slow Learning
cs.NA cs.LG
Some system identification problems impose nonnegativity constraints on the parameters to estimate due to inherent physical characteristics of the unknown system. The nonnegative least-mean-square (NNLMS) algorithm and its variants allow to address this problem in an online manner. A nonnegative least mean fourth (NNLMF) algorithm has been recently proposed to improve the performance of these algorithms in cases where the measurement noise is not Gaussian. This paper provides a first theoretical analysis of the stochastic behavior of the NNLMF algorithm for stationary Gaussian inputs and slow learning. Simulation results illustrate the accuracy of the proposed analysis.
Jingen Ni, Jian Yang, Jie Chen, C\'edric Richard, Jos\'e Carlos M. Bermudez
null
1508.05873
null
null
ERBlox: Combining Matching Dependencies with Machine Learning for Entity Resolution
cs.DB cs.AI cs.LG
Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for data processing, and the specification and enforcement of MDs.
Zeinab Bahmani, Leopoldo Bertossi and Nikolaos Vasiloglou
null
1508.06013
null
null
AUC Optimisation and Collaborative Filtering
stat.ML cs.LG
In recommendation systems, one is interested in the ranking of the predicted items as opposed to other losses such as the mean squared error. Although a variety of ways to evaluate rankings exist in the literature, here we focus on the Area Under the ROC Curve (AUC) as it widely used and has a strong theoretical underpinning. In practical recommendation, only items at the top of the ranked list are presented to the users. With this in mind, we propose a class of objective functions over matrix factorisations which primarily represent a smooth surrogate for the real AUC, and in a special case we show how to prioritise the top of the list. The objectives are differentiable and optimised through a carefully designed stochastic gradient-descent-based algorithm which scales linearly with the size of the data. In the special case of square loss we show how to improve computational complexity by leveraging previously computed measures. To understand theoretically the underlying matrix factorisation approaches we study both the consistency of the loss functions with respect to AUC, and generalisation using Rademacher theory. The resulting generalisation analysis gives strong motivation for the optimisation under study. Finally, we provide computation results as to the efficacy of the proposed method using synthetic and real data.
Charanpal Dhanjal (LTCI), Romaric Gaudel (SEQUEL), Stephan Clemencon (LTCI)
null
1508.06091
null
null
An analysis of numerical issues in neural training by pseudoinversion
cs.LG cs.NE
Some novel strategies have recently been proposed for single hidden layer neural network training that set randomly the weights from input to hidden layer, while weights from hidden to output layer are analytically determined by pseudoinversion. These techniques are gaining popularity in spite of their known numerical issues when singular and/or almost singular matrices are involved. In this paper we discuss a critical use of Singular Value Analysis for identification of these drawbacks and we propose an original use of regularisation to determine the output weights, based on the concept of critical hidden layer size. This approach also allows to limit the training computational effort. Besides, we introduce a novel technique which relies an effective determination of input weights to the hidden layer dimension. This approach is tested for both regression and classification tasks, resulting in a significant performance improvement with respect to alternative methods.
R. Cancelliere and R. Deluca and M. Gai and P. Gallinari and L. Rubini
null
1508.06092
null
null
OCReP: An Optimally Conditioned Regularization for Pseudoinversion Based Neural Training
cs.NE cs.LG stat.ML
In this paper we consider the training of single hidden layer neural networks by pseudoinversion, which, in spite of its popularity, is sometimes affected by numerical instability issues. Regularization is known to be effective in such cases, so that we introduce, in the framework of Tikhonov regularization, a matricial reformulation of the problem which allows us to use the condition number as a diagnostic tool for identification of instability. By imposing well-conditioning requirements on the relevant matrices, our theoretical analysis allows the identification of an optimal value for the regularization parameter from the standpoint of stability. We compare with the value derived by cross-validation for overfitting control and optimisation of the generalization performance. We test our method for both regression and classification tasks. The proposed method is quite effective in terms of predictivity, often with some improvement on performance with respect to the reference cases considered. This approach, due to analytical determination of the regularization parameter, dramatically reduces the computational load required by many other techniques.
Rossella Cancelliere, Mario Gai, Patrick Gallinari, Luca Rubini
10.1016/j.neunet.2015.07.015
1508.06095
null
null
Robot Language Learning, Generation, and Comprehension
cs.RO cs.AI cs.CL cs.HC cs.LG
We present a unified framework which supports grounding natural-language semantics in robotic driving. This framework supports acquisition (learning grounded meanings of nouns and prepositions from human annotation of robotic driving paths), generation (using such acquired meanings to generate sentential description of new robotic driving paths), and comprehension (using such acquired meanings to support automated driving to accomplish navigational goals specified in natural language). We evaluate the performance of these three tasks by having independent human judges rate the semantic fidelity of the sentences associated with paths, achieving overall average correctness of 94.6% and overall average completeness of 85.6%.
Daniel Paul Barrett, Scott Alan Bronikowski, Haonan Yu, and Jeffrey Mark Siskind
null
1508.06161
null
null
Clustering With Side Information: From a Probabilistic Model to a Deterministic Algorithm
stat.ML cs.AI cs.LG stat.CO
In this paper, we propose a model-based clustering method (TVClust) that robustly incorporates noisy side information as soft-constraints and aims to seek a consensus between side information and the observed data. Our method is based on a nonparametric Bayesian hierarchical model that combines the probabilistic model for the data instance and the one for the side-information. An efficient Gibbs sampling algorithm is proposed for posterior inference. Using the small-variance asymptotics of our probabilistic model, we then derive a new deterministic clustering algorithm (RDP-means). It can be viewed as an extension of K-means that allows for the inclusion of side information and has the additional property that the number of clusters does not need to be specified a priori. Empirical studies have been carried out to compare our work with many constrained clustering algorithms from the literature on both a variety of data sets and under a variety of conditions such as using noisy side information and erroneous k values. The results of our experiments show strong results for our probabilistic and deterministic approaches under these conditions when compared to other algorithms in the literature.
Daniel Khashabi, John Wieting, Jeffrey Yufei Liu, Feng Liang
null
1508.06235
null
null
Multiple kernel multivariate performance learning using cutting plane algorithm
cs.LG cs.CV
In this paper, we propose a multi-kernel classifier learning algorithm to optimize a given nonlinear and nonsmoonth multivariate classifier performance measure. Moreover, to solve the problem of kernel function selection and kernel parameter tuning, we proposed to construct an optimal kernel by weighted linear combination of some candidate kernels. The learning of the classifier parameter and the kernel weight are unified in a single objective function considering to minimize the upper boundary of the given multivariate performance measure. The objective function is optimized with regard to classifier parameter and kernel weight alternately in an iterative algorithm by using cutting plane algorithm. The developed algorithm is evaluated on two different pattern classification methods with regard to various multivariate performance measure optimization problems. The experiment results show the proposed algorithm outperforms the competing methods.
Jingbin Wang, Haoxiang Wang, Yihua Zhou, Nancy McDonald
null
1508.06264
null
null
SPRIGHT: A Fast and Robust Framework for Sparse Walsh-Hadamard Transform
cs.IT cs.LG math.IT
We consider the problem of computing the Walsh-Hadamard Transform (WHT) of some $N$-length input vector in the presence of noise, where the $N$-point Walsh spectrum is $K$-sparse with $K = {O}(N^{\delta})$ scaling sub-linearly in the input dimension $N$ for some $0<\delta<1$. Over the past decade, there has been a resurgence in research related to the computation of Discrete Fourier Transform (DFT) for some length-$N$ input signal that has a $K$-sparse Fourier spectrum. In particular, through a sparse-graph code design, our earlier work on the Fast Fourier Aliasing-based Sparse Transform (FFAST) algorithm computes the $K$-sparse DFT in time ${O}(K\log K)$ by taking ${O}(K)$ noiseless samples. Inspired by the coding-theoretic design framework, Scheibler et al. proposed the Sparse Fast Hadamard Transform (SparseFHT) algorithm that elegantly computes the $K$-sparse WHT in the absence of noise using ${O}(K\log N)$ samples in time ${O}(K\log^2 N)$. However, the SparseFHT algorithm explicitly exploits the noiseless nature of the problem, and is not equipped to deal with scenarios where the observations are corrupted by noise. Therefore, a question of critical interest is whether this coding-theoretic framework can be made robust to noise. Further, if the answer is yes, what is the extra price that needs to be paid for being robust to noise? In this paper, we show, quite interestingly, that there is {\it no extra price} that needs to be paid for being robust to noise other than a constant factor. In other words, we can maintain the same sample complexity ${O}(K\log N)$ and the computational complexity ${O}(K\log^2 N)$ as those of the noiseless case, using our SParse Robust Iterative Graph-based Hadamard Transform (SPRIGHT) algorithm.
Xiao Li, Joseph K. Bradley, Sameer Pawar, Kannan Ramchandran
null
1508.06336
null
null
Gaussian Mixture Models with Component Means Constrained in Pre-selected Subspaces
stat.ML cs.LG
We investigate a Gaussian mixture model (GMM) with component means constrained in a pre-selected subspace. Applications to classification and clustering are explored. An EM-type estimation algorithm is derived. We prove that the subspace containing the component means of a GMM with a common covariance matrix also contains the modes of the density and the class means. This motivates us to find a subspace by applying weighted principal component analysis to the modes of a kernel density and the class means. To circumvent the difficulty of deciding the kernel bandwidth, we acquire multiple subspaces from the kernel densities based on a sequence of bandwidths. The GMM constrained by each subspace is estimated; and the model yielding the maximum likelihood is chosen. A dimension reduction property is proved in the sense of being informative for classification or clustering. Experiments on real and simulated data sets are conducted to examine several ways of determining the subspace and to compare with the reduced rank mixture discriminant analysis (MDA). Our new method with the simple technique of spanning the subspace only by class means often outperforms the reduced rank MDA when the subspace dimension is very low, making it particularly appealing for visualization.
Mu Qiao and Jia Li
null
1508.06388
null
null
Nested Hierarchical Dirichlet Processes for Multi-Level Non-Parametric Admixture Modeling
stat.ML cs.LG
Dirichlet Process(DP) is a Bayesian non-parametric prior for infinite mixture modeling, where the number of mixture components grows with the number of data items. The Hierarchical Dirichlet Process (HDP), is an extension of DP for grouped data, often used for non-parametric topic modeling, where each group is a mixture over shared mixture densities. The Nested Dirichlet Process (nDP), on the other hand, is an extension of the DP for learning group level distributions from data, simultaneously clustering the groups. It allows group level distributions to be shared across groups in a non-parametric setting, leading to a non-parametric mixture of mixtures. The nCRF extends the nDP for multilevel non-parametric mixture modeling, enabling modeling topic hierarchies. However, the nDP and nCRF do not allow sharing of distributions as required in many applications, motivating the need for multi-level non-parametric admixture modeling. We address this gap by proposing multi-level nested HDPs (nHDP) where the base distribution of the HDP is itself a HDP at each level thereby leading to admixtures of admixtures at each level. Because of couplings between various HDP levels, scaling up is naturally a challenge during inference. We propose a multi-level nested Chinese Restaurant Franchise (nCRF) representation for the nested HDP, with which we outline an inference algorithm based on Gibbs Sampling. We evaluate our model with the two level nHDP for non-parametric entity topic modeling where an inner HDP creates a countably infinite set of topic mixtures and associates them with author entities, while an outer HDP associates documents with these author entities. In our experiments on two real world research corpora, the nHDP is able to generalize significantly better than existing models and detect missing author entities with a reasonable level of accuracy.
Lavanya Sita Tekumalla, Priyanka Agrawal, Indrajit Bhattacharya
null
1508.06446
null
null
Greedy methods, randomization approaches and multi-arm bandit algorithms for efficient sparsity-constrained optimization
cs.LG
Several sparsity-constrained algorithms such as Orthogonal Matching Pursuit or the Frank-Wolfe algorithm with sparsity constraints work by iteratively selecting a novel atom to add to the current non-zero set of variables. This selection step is usually performed by computing the gradient and then by looking for the gradient component with maximal absolute entry. This step can be computationally expensive especially for large-scale and high-dimensional data. In this work, we aim at accelerating these sparsity-constrained optimization algorithms by exploiting the key observation that, for these algorithms to work, one only needs the coordinate of the gradient's top entry. Hence, we introduce algorithms based on greedy methods and randomization approaches that aim at cheaply estimating the gradient and its top entry. Another of our contribution is to cast the problem of finding the best gradient entry as a best arm identification in a multi-armed bandit problem. Owing to this novel insight, we are able to provide a bandit-based algorithm that directly estimates the top entry in a very efficient way. Theoretical observations stating that the resulting inexact Frank-Wolfe or Orthogonal Matching Pursuit algorithms act, with high probability, similarly to their exact versions are also given. We have carried out several experiments showing that the greedy deterministic and the bandit approaches we propose can achieve an acceleration of an order of magnitude while being as efficient as the exact gradient when used in algorithms such as OMP, Frank-Wolfe or CoSaMP.
A Rakotomamonjy (LITIS), S Ko\c{c}o (QARMA), Liva Ralaivola (QARMA)
null
1508.06477
null
null
Deep Convolutional Neural Networks for Smile Recognition
cs.CV cs.LG cs.NE
This thesis describes the design and implementation of a smile detector based on deep convolutional neural networks. It starts with a summary of neural networks, the difficulties of training them and new training methods, such as Restricted Boltzmann Machines or autoencoders. It then provides a literature review of convolutional neural networks and recurrent neural networks. In order to select databases for smile recognition, comprehensive statistics of databases popular in the field of facial expression recognition were generated and are summarized in this thesis. It then proposes a model for smile detection, of which the main part is implemented. The experimental results are discussed in this thesis and justified based on a comprehensive model selection performed. All experiments were run on a Tesla K40c GPU benefiting from a speedup of up to factor 10 over the computations on a CPU. A smile detection test accuracy of 99.45% is achieved for the Denver Intensity of Spontaneous Facial Action (DISFA) database, significantly outperforming existing approaches with accuracies ranging from 65.55% to 79.67%. This experiment is re-run under various variations, such as retaining less neutral images or only the low or high intensities, of which the results are extensively compared.
Patrick O. Glauner
null
1508.06535
null
null
A review of homomorphic encryption and software tools for encrypted statistical machine learning
stat.ML cs.CR cs.LG
Recent advances in cryptography promise to enable secure statistical computation on encrypted data, whereby a limited set of operations can be carried out without the need to first decrypt. We review these homomorphic encryption schemes in a manner accessible to statisticians and machine learners, focusing on pertinent limitations inherent in the current state of the art. These limitations restrict the kind of statistics and machine learning algorithms which can be implemented and we review those which have been successfully applied in the literature. Finally, we document a high performance R package implementing a recent homomorphic scheme in a general framework.
Louis J. M. Aslett, Pedro M. Esperan\c{c}a, Chris C. Holmes
null
1508.06574
null
null
Towards universal neural nets: Gibbs machines and ACE
cs.CV cs.LG cs.NE
We study from a physics viewpoint a class of generative neural nets, Gibbs machines, designed for gradual learning. While including variational auto-encoders, they offer a broader universal platform for incrementally adding newly learned features, including physical symmetries. Their direct connection to statistical physics and information geometry is established. A variational Pythagorean theorem justifies invoking the exponential/Gibbs class of probabilities for creating brand new objects. Combining these nets with classifiers, gives rise to a brand of universal generative neural nets - stochastic auto-classifier-encoders (ACE). ACE have state-of-the-art performance in their class, both for classification and density estimation for the MNIST data set.
Galin Georgiev
null
1508.06585
null
null
Online Anomaly Detection via Class-Imbalance Learning
cs.LG
Anomaly detection is an important task in many real world applications such as fraud detection, suspicious activity detection, health care monitoring etc. In this paper, we tackle this problem from supervised learning perspective in online learning setting. We maximize well known \emph{Gmean} metric for class-imbalance learning in online learning framework. Specifically, we show that maximizing \emph{Gmean} is equivalent to minimizing a convex surrogate loss function and based on that we propose novel online learning algorithm for anomaly detection. We then show, by extensive experiments, that the performance of the proposed algorithm with respect to $sum$ metric is as good as a recently proposed Cost-Sensitive Online Classification(CSOC) algorithm for class-imbalance learning over various benchmarked data sets while keeping running time close to the perception algorithm. Our another conclusion is that other competitive online algorithms do not perform consistently over data sets of varying size. This shows the potential applicability of our proposed approach.
Chandresh Kumar Maurya, Durga Toshniwal, Gopalan Vijendran Venkoparao
null
1508.06717
null
null
Encrypted statistical machine learning: new privacy preserving methods
stat.ML cs.CR cs.LG stat.ME
We present two new statistical machine learning methods designed to learn on fully homomorphic encrypted (FHE) data. The introduction of FHE schemes following Gentry (2009) opens up the prospect of privacy preserving statistical machine learning analysis and modelling of encrypted data without compromising security constraints. We propose tailored algorithms for applying extremely random forests, involving a new cryptographic stochastic fraction estimator, and na\"{i}ve Bayes, involving a semi-parametric model for the class decision boundary, and show how they can be used to learn and predict from encrypted data. We demonstrate that these techniques perform competitively on a variety of classification data sets and provide detailed information about the computational practicalities of these and other FHE methods.
Louis J. M. Aslett, Pedro M. Esperan\c{c}a, Chris C. Holmes
null
1508.06845
null
null
Compressive Sensing via Low-Rank Gaussian Mixture Models
stat.ML cs.LG stat.AP
We develop a new compressive sensing (CS) inversion algorithm by utilizing the Gaussian mixture model (GMM). While the compressive sensing is performed globally on the entire image as implemented in our lensless camera, a low-rank GMM is imposed on the local image patches. This low-rank GMM is derived via eigenvalue thresholding of the GMM trained on the projection of the measurement data, thus learned {\em in situ}. The GMM and the projection of the measurement data are updated iteratively during the reconstruction. Our GMM algorithm degrades to the piecewise linear estimator (PLE) if each patch is represented by a single Gaussian model. Inspired by this, a low-rank PLE algorithm is also developed for CS inversion, constituting an additional contribution of this paper. Extensive results on both simulation data and real data captured by the lensless camera demonstrate the efficacy of the proposed algorithm. Furthermore, we compare the CS reconstruction results using our algorithm with the JPEG compression. Simulation results demonstrate that when limited bandwidth is available (a small number of measurements), our algorithm can achieve comparable results as JPEG.
Xin Yuan, Hong Jiang, Gang Huang, Paul A. Wilford
null
1508.06901
null
null
Rapid Exact Signal Scanning with Deep Convolutional Neural Networks
cs.LG cs.CV cs.NE
A rigorous formulation of the dynamics of a signal processing scheme aimed at dense signal scanning without any loss in accuracy is introduced and analyzed. Related methods proposed in the recent past lack a satisfactory analysis of whether they actually fulfill any exactness constraints. This is improved through an exact characterization of the requirements for a sound sliding window approach. The tools developed in this paper are especially beneficial if Convolutional Neural Networks are employed, but can also be used as a more general framework to validate related approaches to signal scanning. The proposed theory helps to eliminate redundant computations and renders special case treatment unnecessary, resulting in a dramatic boost in efficiency particularly on massively parallel processors. This is demonstrated both theoretically in a computational complexity analysis and empirically on modern parallel processors.
Markus Thom and Franz Gritschneder
10.1109/TSP.2016.2631454
1508.06904
null
null
Multi-armed Bandit Problem with Known Trend
cs.LG
We consider a variant of the multi-armed bandit model, which we call multi-armed bandit problem with known trend, where the gambler knows the shape of the reward function of each arm but not its distribution. This new problem is motivated by different online problems like active learning, music and interface recommendation applications, where when an arm is sampled by the model the received reward change according to a known trend. By adapting the standard multi-armed bandit algorithm UCB1 to take advantage of this setting, we propose the new algorithm named A-UCB that assumes a stochastic model. We provide upper bounds of the regret which compare favourably with the ones of UCB1. We also confirm that experimentally with different simulations
Djallel Bouneffouf and Rapha\"el Feraud
null
1508.07091
null
null
Partitioning Large Scale Deep Belief Networks Using Dropout
stat.ML cs.LG cs.NE
Deep learning methods have shown great promise in many practical applications, ranging from speech recognition, visual object recognition, to text processing. However, most of the current deep learning methods suffer from scalability problems for large-scale applications, forcing researchers or users to focus on small-scale problems with fewer parameters. In this paper, we consider a well-known machine learning model, deep belief networks (DBNs) that have yielded impressive classification performance on a large number of benchmark machine learning tasks. To scale up DBN, we propose an approach that can use the computing clusters in a distributed environment to train large models, while the dense matrix computations within a single machine are sped up using graphics processors (GPU). When training a DBN, each machine randomly drops out a portion of neurons in each hidden layer, for each training case, making the remaining neurons only learn to detect features that are generally helpful for producing the correct answer. Within our approach, we have developed four methods to combine outcomes from each machine to form a unified model. Our preliminary experiment on the mnst handwritten digit database demonstrates that our approach outperforms the state of the art test error rate.
Yanping Huang, Sai Zhang
null
1508.07096
null
null
Regularized Kernel Recursive Least Square Algoirthm
cs.LG stat.ML
In most adaptive signal processing applications, system linearity is assumed and adaptive linear filters are thus used. The traditional class of supervised adaptive filters rely on error-correction learning for their adaptive capability. The kernel method is a powerful nonparametric modeling tool for pattern analysis and statistical signal processing. Through a nonlinear mapping, kernel methods transform the data into a set of points in a Reproducing Kernel Hilbert Space. KRLS achieves high accuracy and has fast convergence rate in stationary scenario. However the good performance is obtained at a cost of high computation complexity. Sparsification in kernel methods is know to related to less computational complexity and memory consumption.
Songlin Zhao
null
1508.07103
null
null
Parallel Dither and Dropout for Regularising Deep Neural Networks
cs.LG cs.NE
Effective regularisation during training can mean the difference between success and failure for deep neural networks. Recently, dither has been suggested as alternative to dropout for regularisation during batch-averaged stochastic gradient descent (SGD). In this article, we show that these methods fail without batch averaging and we introduce a new, parallel regularisation method that may be used without batch averaging. Our results for parallel-regularised non-batch-SGD are substantially better than what is possible with batch-SGD. Furthermore, our results demonstrate that dither and dropout are complimentary.
Andrew J.R. Simpson
null
1508.07130
null
null
Competitive and Penalized Clustering Auto-encoder
cs.LG
The paper has been withdrawn since more effective experiments should be completed. Auto-encoders (AE) has been widely applied in different fields of machine learning. However, as a deep model, there are a large amount of learnable parameters in the AE, which would cause over-fitting and slow learning speed in practice. Many researchers have been study the intrinsic structure of AE and showed different useful methods to regularize those parameters. In this paper, we present a novel regularization method based on a clustering algorithm which is able to classify the parameters into different groups. With this regularization, parameters in a given group have approximate equivalent values and over-fitting problem could be alleviated. Moreover, due to the competitive behavior of clustering algorithm, this model also overcomes some intrinsic problems of clustering algorithms like the determination of number of clusters. Experiments on handwritten digits recognition verify the effectiveness of our novel model.
Zihao Wang, Yiuming Cheung
null
1508.07175
null
null
Varying-coefficient models with isotropic Gaussian process priors
cs.LG stat.ML
We study learning problems in which the conditional distribution of the output given the input varies as a function of additional task variables. In varying-coefficient models with Gaussian process priors, a Gaussian process generates the functional relationship between the task variables and the parameters of this conditional. Varying-coefficient models subsume hierarchical Bayesian multitask models, but also generalizations in which the conditional varies continuously, for instance, in time or space. However, Bayesian inference in varying-coefficient models is generally intractable. We show that inference for varying-coefficient models with isotropic Gaussian process priors resolves to standard inference for a Gaussian process that can be solved efficiently. MAP inference in this model resolves to multitask learning using task and instance kernels, and inference for hierarchical Bayesian multitask models can be carried out efficiently using graph-Laplacian kernels. We report on experiments for geospatial prediction.
Matthias Bussas, Christoph Sawade, Tobias Scheffer and Niels Landwehr
null
1508.07192
null
null
Linked Component Analysis from Matrices to High Order Tensors: Applications to Biomedical Data
cs.CE cs.LG cs.NA
With the increasing availability of various sensor technologies, we now have access to large amounts of multi-block (also called multi-set, multi-relational, or multi-view) data that need to be jointly analyzed to explore their latent connections. Various component analysis methods have played an increasingly important role for the analysis of such coupled data. In this paper, we first provide a brief review of existing matrix-based (two-way) component analysis methods for the joint analysis of such data with a focus on biomedical applications. Then, we discuss their important extensions and generalization to multi-block multiway (tensor) data. We show how constrained multi-block tensor decomposition methods are able to extract similar or statistically dependent common features that are shared by all blocks, by incorporating the multiway nature of data. Special emphasis is given to the flexible common and individual feature analysis of multi-block data with the aim to simultaneously extract common and individual latent components with desired properties and types of diversity. Illustrative examples are given to demonstrate their effectiveness for biomedical data analysis.
Guoxu Zhou, Qibin Zhao, Yu Zhang, T\"ulay Adal{\i}, Shengli Xie, Andrzej Cichocki
10.1109/JPROC.2015.2474704
1508.07416
null
null
X-TREPAN: a multi class regression and adapted extraction of comprehensible decision tree in artificial neural networks
cs.LG cs.NE
In this work, the TREPAN algorithm is enhanced and extended for extracting decision trees from neural networks. We empirically evaluated the performance of the algorithm on a set of databases from real world events. This benchmark enhancement was achieved by adapting Single-test TREPAN and C4.5 decision tree induction algorithms to analyze the datasets. The models are then compared with X-TREPAN for comprehensibility and classification accuracy. Furthermore, we validate the experimentations by applying statistical methods. Finally, the modified algorithm is extended to work with multi-class regression problems and the ability to comprehend generalized feed forward networks is achieved.
Awudu Karim and Shangbo Zhou
null
1508.07551
null
null
Feature Selection via Binary Simultaneous Perturbation Stochastic Approximation
stat.ML cs.LG
Feature selection (FS) has become an indispensable task in dealing with today's highly complex pattern recognition problems with massive number of features. In this study, we propose a new wrapper approach for FS based on binary simultaneous perturbation stochastic approximation (BSPSA). This pseudo-gradient descent stochastic algorithm starts with an initial feature vector and moves toward the optimal feature vector via successive iterations. In each iteration, the current feature vector's individual components are perturbed simultaneously by random offsets from a qualified probability distribution. We present computational experiments on datasets with numbers of features ranging from a few dozens to thousands using three widely-used classifiers as wrappers: nearest neighbor, decision tree, and linear support vector machine. We compare our methodology against the full set of features as well as a binary genetic algorithm and sequential FS methods using cross-validated classification error rate and AUC as the performance criteria. Our results indicate that features selected by BSPSA compare favorably to alternative methods in general and BSPSA can yield superior feature sets for datasets with tens of thousands of features by examining an extremely small fraction of the solution space. We are not aware of any other wrapper FS methods that are computationally feasible with good convergence properties for such large datasets.
Vural Aksakalli and Milad Malekipirbazari
null
1508.07630
null
null
Directional Decision Lists
stat.ML cs.LG stat.CO
In this paper we introduce a novel family of decision lists consisting of highly interpretable models which can be learned efficiently in a greedy manner. The defining property is that all rules are oriented in the same direction. Particular examples of this family are decision lists with monotonically decreasing (or increasing) probabilities. On simulated data we empirically confirm that the proposed model family is easier to train than general decision lists. We exemplify the practical usability of our approach by identifying problem symptoms in a manufacturing process.
Marc Goessling and Shan Kang
null
1508.07643
null
null
Domain Generalization for Object Recognition with Multi-task Autoencoders
cs.CV cs.AI cs.LG stat.ML
The problem of domain generalization is to take knowledge acquired from a number of related domains where training data is available, and to then successfully apply it to previously unseen domains. We propose a new feature learning algorithm, Multi-Task Autoencoder (MTAE), that provides good generalization performance for cross-domain object recognition. Our algorithm extends the standard denoising autoencoder framework by substituting artificially induced corruption with naturally occurring inter-domain variability in the appearance of objects. Instead of reconstructing images from noisy versions, MTAE learns to transform the original image into analogs in multiple related domains. It thereby learns features that are robust to variations across domains. The learnt features are then used as inputs to a classifier. We evaluated the performance of the algorithm on benchmark image recognition datasets, where the task is to learn features from multiple datasets and to then predict the image label from unseen datasets. We found that (denoising) MTAE outperforms alternative autoencoder-based models as well as the current state-of-the-art algorithms for domain generalization.
Muhammad Ghifary and W. Bastiaan Kleijn and Mengjie Zhang and David Balduzzi
null
1508.07680
null
null
Word Representations, Tree Models and Syntactic Functions
cs.CL cs.LG stat.ML
Word representations induced from models with discrete latent variables (e.g.\ HMMs) have been shown to be beneficial in many NLP applications. In this work, we exploit labeled syntactic dependency trees and formalize the induction problem as unsupervised learning of tree-structured hidden Markov models. Syntactic functions are used as additional observed variables in the model, influencing both transition and emission components. Such syntactic information can potentially lead to capturing more fine-grain and functional distinctions between words, which, in turn, may be desirable in many NLP applications. We evaluate the word representations on two tasks -- named entity recognition and semantic frame identification. We observe improvements from exploiting syntactic function information in both cases, and the results rivaling those of state-of-the-art representation learning methods. Additionally, we revisit the relationship between sequential and unlabeled-tree models and find that the advantage of the latter is not self-evident.
Simon \v{S}uster and Gertjan van Noord and Ivan Titov
null
1508.07709
null
null
Coordinate Dual Averaging for Decentralized Online Optimization with Nonseparable Global Objectives
math.OC cs.LG cs.SY
We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized variants (ODA-C and ODA-PS) of Nesterov's primal-dual algorithm with dual averaging. In ODA-C, to mitigate the disagreements on the primal-vector updates, the agents implement a generalization of the local information-exchange dynamics recently proposed by Li and Marden over a static undirected graph. In ODA-PS, the agents implement the broadcast-based push-sum dynamics over a time-varying sequence of uniformly connected digraphs. We show that the regret bounds in both cases have sublinear growth of $O(\sqrt{T})$, with the time horizon $T$, when the stepsize is of the form $1/\sqrt{t}$ and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients. We also implement the proposed algorithms on a sensor network to complement our theoretical analysis.
Soomin Lee, Angelia Nedi\'c, Maxim Raginsky
10.1109/TCNS.2016.2573639
1508.07933
null
null
Wald-Kernel: Learning to Aggregate Information for Sequential Inference
stat.ML cs.LG
Sequential hypothesis testing is a desirable decision making strategy in any time sensitive scenario. Compared with fixed sample-size testing, sequential testing is capable of achieving identical probability of error requirements using less samples in average. For a binary detection problem, it is well known that for known density functions accumulating the likelihood ratio statistics is time optimal under a fixed error rate constraint. This paper considers the problem of learning a binary sequential detector from training samples when density functions are unavailable. We formulate the problem as a constrained likelihood ratio estimation which can be solved efficiently through convex optimization by imposing Reproducing Kernel Hilbert Space (RKHS) structure on the log-likelihood ratio function. In addition, we provide a computationally efficient approximated solution for large scale data set. The proposed algorithm, namely Wald-Kernel, is tested on a synthetic data set and two real world data sets, together with previous approaches for likelihood ratio estimation. Our empirical results show that the classifier trained through the proposed technique achieves smaller average sampling cost than previous approaches proposed in the literature for the same error rate.
Diyan Teng and Emre Ertin
null
1508.07964
null
null
Value function approximation via low-rank models
cs.LG cs.AI
We propose a novel value function approximation technique for Markov decision processes. We consider the problem of compactly representing the state-action value function using a low-rank and sparse matrix model. The problem is to decompose a matrix that encodes the true value function into low-rank and sparse components, and we achieve this using Robust Principal Component Analysis (PCA). Under minimal assumptions, this Robust PCA problem can be solved exactly via the Principal Component Pursuit convex optimization problem. We experiment the procedure on several examples and demonstrate that our method yields approximations essentially identical to the true function.
Hao Yi Ong
null
1509.00061
null
null
Metastatic liver tumour segmentation from discriminant Grassmannian manifolds
cs.LG cs.CV
The early detection, diagnosis and monitoring of liver cancer progression can be achieved with the precise delineation of metastatic tumours. However, accurate automated segmentation remains challenging due to the presence of noise, inhomogeneity and the high appearance variability of malignant tissue. In this paper, we propose an unsupervised metastatic liver tumour segmentation framework using a machine learning approach based on discriminant Grassmannian manifolds which learns the appearance of tumours with respect to normal tissue. First, the framework learns within-class and between-class similarity distributions from a training set of images to discover the optimal manifold discrimination between normal and pathological tissue in the liver. Second, a conditional optimisation scheme computes nonlocal pairwise as well as pattern-based clique potentials from the manifold subspace to recognise regions with similar labelings and to incorporate global consistency in the segmentation process. The proposed framework was validated on a clinical database of 43 CT images from patients with metastatic liver cancer. Compared to state-of-the-art methods, our method achieves a better performance on two separate datasets of metastatic liver tumours from different clinical sites, yielding an overall mean Dice similarity coefficient of 90.7 +/- 2.4 in over 50 tumours with an average volume of 27.3 mm3.
Samuel Kadoury, Eugene Vorontsov, An Tang
10.1088/0031-9155/60/16/6459
1509.00083
null
null
Multi-Sensor Slope Change Detection
stat.ML cs.LG math.ST stat.TH
We develop a mixture procedure for multi-sensor systems to monitor data streams for a change-point that causes a gradual degradation to a subset of the streams. Observations are assumed to be initially normal random variables with known constant means and variances. After the change-point, observations in the subset will have increasing or decreasing means. The subset and the rate-of-changes are unknown. Our procedure uses a mixture statistics, which assumes that each sensor is affected by the change-point with probability $p_0$. Analytic expressions are obtained for the average run length (ARL) and the expected detection delay (EDD) of the mixture procedure, which are demonstrated to be quite accurate numerically. We establish the asymptotic optimality of the mixture procedure. Numerical examples demonstrate the good performance of the proposed procedure. We also discuss an adaptive mixture procedure using empirical Bayes. This paper extends our earlier work on detecting an abrupt change-point that causes a mean-shift, by tackling the challenges posed by the non-stationarity of the slope-change problem.
Yang Cao, Yao Xie, and Nagi Gebraeel
null
1509.00114
null
null
Online Supervised Subspace Tracking
cs.LG math.ST stat.ML stat.TH
We present a framework for supervised subspace tracking, when there are two time series $x_t$ and $y_t$, one being the high-dimensional predictors and the other being the response variables and the subspace tracking needs to take into consideration of both sequences. It extends the classic online subspace tracking work which can be viewed as tracking of $x_t$ only. Our online sufficient dimensionality reduction (OSDR) is a meta-algorithm that can be applied to various cases including linear regression, logistic regression, multiple linear regression, multinomial logistic regression, support vector machine, the random dot product model and the multi-scale union-of-subspace model. OSDR reduces data-dimensionality on-the-fly with low-computational complexity and it can also handle missing data and dynamic data. OSDR uses an alternating minimization scheme and updates the subspace via gradient descent on the Grassmannian manifold. The subspace update can be performed efficiently utilizing the fact that the Grassmannian gradient with respect to the subspace in many settings is rank-one (or low-rank in certain cases). The optimization problem for OSDR is non-convex and hard to analyze in general; we provide convergence analysis of OSDR in a simple linear regression setting. The good performance of OSDR compared with the conventional unsupervised subspace tracking are demonstrated via numerical examples on simulated and real data.
Yao Xie, Ruiyang Song, Hanjun Dai, Qingbin Li, Le Song
null
1509.00137
null
null
Learning A Task-Specific Deep Architecture For Clustering
cs.LG cs.CV stat.ML
While sparse coding-based clustering methods have shown to be successful, their bottlenecks in both efficiency and scalability limit the practical usage. In recent years, deep learning has been proved to be a highly effective, efficient and scalable feature learning tool. In this paper, we propose to emulate the sparse coding-based clustering pipeline in the context of deep learning, leading to a carefully crafted deep model benefiting from both. A feed-forward network structure, named TAGnet, is constructed based on a graph-regularized sparse coding algorithm. It is then trained with task-specific loss functions from end to end. We discover that connecting deep learning to sparse coding benefits not only the model performance, but also its initialization and interpretation. Moreover, by introducing auxiliary clustering tasks to the intermediate feature hierarchy, we formulate DTAGnet and obtain a further performance boost. Extensive experiments demonstrate that the proposed model gains remarkable margins over several state-of-the-art methods.
Zhangyang Wang, Shiyu Chang, Jiayu Zhou, Meng Wang, Thomas S. Huang
null
1509.00151
null
null
Learning Deep $\ell_0$ Encoders
cs.LG stat.ML
Despite its nonconvex nature, $\ell_0$ sparse approximation is desirable in many theoretical and application cases. We study the $\ell_0$ sparse approximation problem with the tool of deep learning, by proposing Deep $\ell_0$ Encoders. Two typical forms, the $\ell_0$ regularized problem and the $M$-sparse problem, are investigated. Based on solid iterative algorithms, we model them as feed-forward neural networks, through introducing novel neurons and pooling functions. Enforcing such structural priors acts as an effective network regularization. The deep encoders also enjoy faster inference, larger learning capacity, and better scalability compared to conventional sparse coding solutions. Furthermore, under task-driven losses, the models can be conveniently optimized from end to end. Numerical results demonstrate the impressive performances of the proposed encoders.
Zhangyang Wang, Qing Ling, Thomas S. Huang
null
1509.00153
null
null
Differentially Private Online Learning for Cloud-Based Video Recommendation with Multimedia Big Data in Social Networks
cs.LG
With the rapid growth in multimedia services and the enormous offers of video contents in online social networks, users have difficulty in obtaining their interests. Therefore, various personalized recommendation systems have been proposed. However, they ignore that the accelerated proliferation of social media data has led to the big data era, which has greatly impeded the process of video recommendation. In addition, none of them has considered both the privacy of users' contexts (e,g., social status, ages and hobbies) and video service vendors' repositories, which are extremely sensitive and of significant commercial value. To handle the problems, we propose a cloud-assisted differentially private video recommendation system based on distributed online learning. In our framework, service vendors are modeled as distributed cooperative learners, recommending videos according to user's context, while simultaneously adapting the video-selection strategy based on user-click feedback to maximize total user clicks (reward). Considering the sparsity and heterogeneity of big social media data, we also propose a novel geometric differentially private model, which can greatly reduce the performance (recommendation accuracy) loss. Our simulation shows the proposed algorithms outperform other existing methods and keep a delicate balance between computing accuracy and privacy preserving level.
Pan Zhou, Yingxue Zhou, Dapeng Wu and Hai Jin
null
1509.00181
null
null
Fingerprinting-Based Positioning in Distributed Massive MIMO Systems
cs.IT cs.LG math.IT
Location awareness in wireless networks may enable many applications such as emergency services, autonomous driving and geographic routing. Although there are many available positioning techniques, none of them is adapted to work with massive multiple-in-multiple-out (MIMO) systems, which represent a leading 5G technology candidate. In this paper, we discuss possible solutions for positioning of mobile stations using a vector of signals at the base station, equipped with many antennas distributed over deployment area. Our main proposal is to use fingerprinting techniques based on a vector of received signal strengths. This kind of methods are able to work in highly-cluttered multipath environments, and require just one base station, in contrast to standard range-based and angle-based techniques. We also provide a solution for fingerprinting-based positioning based on Gaussian process regression, and discuss main applications and challenges.
Vladimir Savic and Erik G. Larsson
null
1509.00202
null
null
Fast Randomized Singular Value Thresholding for Low-rank Optimization
cs.CV cs.LG
Rank minimization can be converted into tractable surrogate problems, such as Nuclear Norm Minimization (NNM) and Weighted NNM (WNNM). The problems related to NNM, or WNNM, can be solved iteratively by applying a closed-form proximal operator, called Singular Value Thresholding (SVT), or Weighted SVT, but they suffer from high computational cost of Singular Value Decomposition (SVD) at each iteration. We propose a fast and accurate approximation method for SVT, that we call fast randomized SVT (FRSVT), with which we avoid direct computation of SVD. The key idea is to extract an approximate basis for the range of the matrix from its compressed matrix. Given the basis, we compute partial singular values of the original matrix from the small factored matrix. In addition, by developping a range propagation method, our method further speeds up the extraction of approximate basis at each iteration. Our theoretical analysis shows the relationship between the approximation bound of SVD and its effect to NNM via SVT. Along with the analysis, our empirical results quantitatively and qualitatively show that our approximation rarely harms the convergence of the host algorithms. We assess the efficiency and accuracy of the proposed method on various computer vision problems, e.g., subspace clustering, weather artifact removal, and simultaneous multi-image alignment and rectification.
Tae-Hyun Oh, Yasuyuki Matsushita, Yu-Wing Tai, In So Kweon
null
1509.00296
null
null
Sensor-Type Classification in Buildings
cs.LG
Many sensors/meters are deployed in commercial buildings to monitor and optimize their performance. However, because sensor metadata is inconsistent across buildings, software-based solutions are tightly coupled to the sensor metadata conventions (i.e. schemas and naming) for each building. Running the same software across buildings requires significant integration effort. Metadata normalization is critical for scaling the deployment process and allows us to decouple building-specific conventions from the code written for building applications. It also allows us to deal with missing metadata. One important aspect of normalization is to differentiate sensors by the typeof phenomena being observed. In this paper, we propose a general, simple, yet effective classification scheme to differentiate sensors in buildings by type. We perform ensemble learning on data collected from over 2000 sensor streams in two buildings. Our approach is able to achieve more than 92% accuracy for classification within buildings and more than 82% accuracy for across buildings. We also introduce a method for identifying potential misclassified streams. This is important because it allows us to identify opportunities to attain more input from experts -- input that could help improve classification accuracy when ground truth is unavailable. We show that by adjusting a threshold value we are able to identify at least 30% of the misclassified instances.
Dezhi Hong, Jorge Ortiz, Arka Bhattacharya, Kamin Whitehouse
null
1509.00498
null
null
Importance Weighted Autoencoders
cs.LG stat.ML
The variational autoencoder (VAE; Kingma, Welling (2014)) is a recently proposed generative model pairing a top-down generative network with a bottom-up recognition network which approximates posterior inference. It typically makes strong assumptions about posterior inference, for instance that the posterior distribution is approximately factorial, and that its parameters can be approximated with nonlinear regression from the observations. As we show empirically, the VAE objective can lead to overly simplified representations which fail to use the network's entire modeling capacity. We present the importance weighted autoencoder (IWAE), a generative model with the same architecture as the VAE, but which uses a strictly tighter log-likelihood lower bound derived from importance weighting. In the IWAE, the recognition network uses multiple samples to approximate the posterior, giving it increased flexibility to model complex posteriors which do not fit the VAE modeling assumptions. We show empirically that IWAEs learn richer latent space representations than VAEs, leading to improved test log-likelihood on density estimation benchmarks.
Yuri Burda, Roger Grosse, Ruslan Salakhutdinov
null
1509.00519
null
null
Discovery of Web Usage Profiles Using Various Clustering Techniques
cs.DB cs.IR cs.LG
The explosive growth of World Wide Web (WWW) has necessitated the development of Web personalization systems in order to understand the user preferences to dynamically serve customized content to individual users. To reveal information about user preferences from Web usage data, Web Usage Mining (WUM) techniques are extensively being applied to the Web log data. Clustering techniques are widely used in WUM to capture similar interests and trends among users accessing a Web site. Clustering aims to divide a data set into groups or clusters where inter-cluster similarities are minimized while the intra cluster similarities are maximized. This paper reviews four of the popularly used clustering techniques: k-Means, k-Medoids, Leader and DBSCAN. These techniques are implemented and tested against the Web user navigational data. Performance and validity results of each technique are presented and compared.
Zahid Ansari, Waseem Ahmed, M.F. Azeem and A.Vinaya Babu
null
1509.00692
null
null
Heavy-tailed Independent Component Analysis
cs.LG math.ST stat.CO stat.ML stat.TH
Independent component analysis (ICA) is the problem of efficiently recovering a matrix $A \in \mathbb{R}^{n\times n}$ from i.i.d. observations of $X=AS$ where $S \in \mathbb{R}^n$ is a random vector with mutually independent coordinates. This problem has been intensively studied, but all existing efficient algorithms with provable guarantees require that the coordinates $S_i$ have finite fourth moments. We consider the heavy-tailed ICA problem where we do not make this assumption, about the second moment. This problem also has received considerable attention in the applied literature. In the present work, we first give a provably efficient algorithm that works under the assumption that for constant $\gamma > 0$, each $S_i$ has finite $(1+\gamma)$-moment, thus substantially weakening the moment requirement condition for the ICA problem to be solvable. We then give an algorithm that works under the assumption that matrix $A$ has orthogonal columns but requires no moment assumptions. Our techniques draw ideas from convex geometry and exploit standard properties of the multivariate spherical Gaussian distribution in a novel way.
Joseph Anderson, Navin Goyal, Anupama Nandi, Luis Rademacher
null
1509.00727
null
null
A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers
cs.LG stat.ML
Dynamic ensemble selection (DES) techniques work by estimating the level of competence of each classifier from a pool of classifiers. Only the most competent ones are selected to classify a given test sample. Hence, the key issue in DES is the criterion used to estimate the level of competence of the classifiers in predicting the label of a given test sample. In order to perform a more robust ensemble selection, we proposed the META-DES framework using meta-learning, where multiple criteria are encoded as meta-features and are passed down to a meta-classifier that is trained to estimate the competence level of a given classifier. In this technical report, we present a step-by-step analysis of each phase of the framework during training and test. We show how each set of meta-features is extracted as well as their impact on the estimation of the competence level of the base classifier. Moreover, an analysis of the impact of several factors in the system performance, such as the number of classifiers in the pool, the use of different linear base classifiers, as well as the size of the validation data. We show that using the dynamic selection of linear classifiers through the META-DES framework, we can solve complex non-linear classification problems where other combination techniques such as AdaBoost cannot.
Rafael M. O. Cruz, Robert Sabourin, George D. C. Cavalcanti
null
1509.00825
null
null
What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment
cs.CL cs.AI cs.LG cs.NE
We propose an end-to-end, domain-independent neural encoder-aligner-decoder model for selective generation, i.e., the joint task of content selection and surface realization. Our model first encodes a full set of over-determined database event records via an LSTM-based recurrent neural network, then utilizes a novel coarse-to-fine aligner to identify the small subset of salient records to talk about, and finally employs a decoder to generate free-form descriptions of the aligned, selected records. Our model achieves the best selection and generation results reported to-date (with 59% relative improvement in generation) on the benchmark WeatherGov dataset, despite using no specialized features or linguistic resources. Using an improved k-nearest neighbor beam filter helps further. We also perform a series of ablations and visualizations to elucidate the contributions of our key model components. Lastly, we evaluate the generalizability of our model on the RoboCup dataset, and get results that are competitive with or better than the state-of-the-art, despite being severely data-starved.
Hongyuan Mei and Mohit Bansal and Matthew R. Walter
null
1509.00838
null
null
On-the-Fly Learning in a Perpetual Learning Machine
cs.LG
Despite the promise of brain-inspired machine learning, deep neural networks (DNN) have frustratingly failed to bridge the deceptively large gap between learning and memory. Here, we introduce a Perpetual Learning Machine; a new type of DNN that is capable of brain-like dynamic 'on the fly' learning because it exists in a self-supervised state of Perpetual Stochastic Gradient Descent. Thus, we provide the means to unify learning and memory within a machine learning framework. We also explore the elegant duality of abstraction and synthesis: the Yin and Yang of deep learning.
Andrew J.R. Simpson
null
1509.00913
null
null
Bayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias
stat.ML cs.LG
A common strategy for sparse linear regression is to introduce regularization, which eliminates irrelevant features by letting the corresponding weights be zeros. However, regularization often shrinks the estimator for relevant features, which leads to incorrect feature selection. Motivated by the above-mentioned issue, we propose Bayesian masking (BM), a sparse estimation method which imposes no regularization on the weights. The key concept of BM is to introduce binary latent variables that randomly mask features. Estimating the masking rates determines the relevance of the features automatically. We derive a variational Bayesian inference algorithm that maximizes the lower bound of the factorized information criterion (FIC), which is a recently developed asymptotic criterion for evaluating the marginal log-likelihood. In addition, we propose reparametrization to accelerate the convergence of the derived algorithm. Finally, we show that BM outperforms Lasso and automatic relevance determination (ARD) in terms of the sparsity-shrinkage trade-off.
Yohei Kondo, Kohei Hayashi, Shin-ichi Maeda
null
1509.01004
null
null
Training a Restricted Boltzmann Machine for Classification by Labeling Model Samples
cs.LG
We propose an alternative method for training a classification model. Using the MNIST set of handwritten digits and Restricted Boltzmann Machines, it is possible to reach a classification performance competitive to semi-supervised learning if we first train a model in an unsupervised fashion on unlabeled data only, and then manually add labels to model samples instead of training data samples with the help of a GUI. This approach can benefit from the fact that model samples can be presented to the human labeler in a video-like fashion, resulting in a higher number of labeled examples. Also, after some initial training, hard-to-classify examples can be distinguished from easy ones automatically, saving manual work.
Malte Probst and Franz Rothlauf
null
1509.01053
null
null
A tree-based kernel for graphs with continuous attributes
cs.LG
The availability of graph data with node attributes that can be either discrete or real-valued is constantly increasing. While existing kernel methods are effective techniques for dealing with graphs having discrete node labels, their adaptation to non-discrete or continuous node attributes has been limited, mainly for computational issues. Recently, a few kernels especially tailored for this domain, and that trade predictive performance for computational efficiency, have been proposed. In this paper, we propose a graph kernel for complex and continuous nodes' attributes, whose features are tree structures extracted from specific graph visits. The kernel manages to keep the same complexity of state-of-the-art kernels while implicitly using a larger feature space. We further present an approximated variant of the kernel which reduces its complexity significantly. Experimental results obtained on six real-world datasets show that the kernel is the best performing one on most of them. Moreover, in most cases the approximated version reaches comparable performances to current state-of-the-art kernels in terms of classification accuracy while greatly shortening the running times.
Giovanni Da San Martino, Nicol\`o Navarin and Alessandro Sperduti
10.1109/TNNLS.2017.2705694
1509.01116
null
null
Semi-described and semi-supervised learning with Gaussian processes
stat.ML cs.AI cs.LG math.PR
Propagating input uncertainty through non-linear Gaussian process (GP) mappings is intractable. This hinders the task of training GPs using uncertain and partially observed inputs. In this paper we refer to this task as "semi-described learning". We then introduce a GP framework that solves both, the semi-described and the semi-supervised learning problems (where missing values occur in the outputs). Auto-regressive state space simulation is also recognised as a special case of semi-described learning. To achieve our goal we develop variational methods for handling semi-described inputs in GPs, and couple them with algorithms that allow for imputing the missing values while treating the uncertainty in a principled, Bayesian manner. Extensive experiments on simulated and real-world data study the problems of iterative forecasting and regression/classification with missing values. The results suggest that the principled propagation of uncertainty stemming from our framework can significantly improve performance in these tasks.
Andreas Damianou, Neil D. Lawrence
null
1509.01168
null
null
Fast Clustering and Topic Modeling Based on Rank-2 Nonnegative Matrix Factorization
cs.LG cs.IR cs.NA
The importance of unsupervised clustering and topic modeling is well recognized with ever-increasing volumes of text data. In this paper, we propose a fast method for hierarchical clustering and topic modeling called HierNMF2. Our method is based on fast Rank-2 nonnegative matrix factorization (NMF) that performs binary clustering and an efficient node splitting rule. Further utilizing the final leaf nodes generated in HierNMF2 and the idea of nonnegative least squares fitting, we propose a new clustering/topic modeling method called FlatNMF2 that recovers a flat clustering/topic modeling result in a very simple yet significantly more effective way than any other existing methods. We implement highly optimized open source software in C++ for both HierNMF2 and FlatNMF2 for hierarchical and partitional clustering/topic modeling of document data sets. Substantial experimental tests are presented that illustrate significant improvements both in computational time as well as quality of solutions. We compare our methods to other clustering methods including K-means, standard NMF, and CLUTO, and also topic modeling methods including latent Dirichlet allocation (LDA) and recently proposed algorithms for NMF with separability constraints. Overall, we present efficient tools for analyzing large-scale data sets, and techniques that can be generalized to many other data analytics problem domains.
Da Kuang, Barry Drake, Haesun Park
null
1509.01208
null
null
Train faster, generalize better: Stability of stochastic gradient descent
cs.LG math.OC stat.ML
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions. Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
Moritz Hardt and Benjamin Recht and Yoram Singer
null
1509.01240
null
null
Machine Learning Methods to Analyze Arabidopsis Thaliana Plant Root Growth
cs.LG
One of the challenging problems in biology is to classify plants based on their reaction on genetic mutation. Arabidopsis Thaliana is a plant that is so interesting, because its genetic structure has some similarities with that of human beings. Biologists classify the type of this plant to mutated and not mutated (wild) types. Phenotypic analysis of these types is a time-consuming and costly effort by individuals. In this paper, we propose a modified feature extraction step by using velocity and acceleration of root growth. In the second step, for plant classification, we employed different Support Vector Machine (SVM) kernels and two hybrid systems of neural networks. Gated Negative Correlation Learning (GNCL) and Mixture of Negatively Correlated Experts (MNCE) are two ensemble methods based on complementary feature of classical classifiers; Mixture of Expert (ME) and Negative Correlation Learning (NCL). The hybrid systems conserve of advantages and decrease the effects of disadvantages of NCL and ME. Our Experimental shows that MNCE and GNCL improve the efficiency of classical classifiers, however, some SVM kernels function has better performance than classifiers based on neural network ensemble method. Moreover, kernels consume less time to obtain a classification rate.
Hamidreza Farhidzadeh
null
1509.01270
null
null
Probabilistic Neural Network Training for Semi-Supervised Classifiers
cs.LG
In this paper, we propose another version of help-training approach by employing a Probabilistic Neural Network (PNN) that improves the performance of the main discriminative classifier in the semi-supervised strategy. We introduce the PNN-training algorithm and use it for training the support vector machine (SVM) with a few numbers of labeled data and a large number of unlabeled data. We try to find the best labels for unlabeled data and then use SVM to enhance the classification rate. We test our method on two famous benchmarks and show the efficiency of our method in comparison with pervious methods.
Hamidreza Farhidzadeh
null
1509.01271
null
null
Incremental Active Opinion Learning Over a Stream of Opinionated Documents
cs.IR cs.CL cs.LG
Applications that learn from opinionated documents, like tweets or product reviews, face two challenges. First, the opinionated documents constitute an evolving stream, where both the author's attitude and the vocabulary itself may change. Second, labels of documents are scarce and labels of words are unreliable, because the sentiment of a word depends on the (unknown) context in the author's mind. Most of the research on mining over opinionated streams focuses on the first aspect of the problem, whereas for the second a continuous supply of labels from the stream is assumed. Such an assumption though is utopian as the stream is infinite and the labeling cost is prohibitive. To this end, we investigate the potential of active stream learning algorithms that ask for labels on demand. Our proposed ACOSTREAM 1 approach works with limited labels: it uses an initial seed of labeled documents, occasionally requests additional labels for documents from the human expert and incrementally adapts to the underlying stream while exploiting the available labeled documents. In its core, ACOSTREAM consists of a MNB classifier coupled with "sampling" strategies for requesting class labels for new unlabeled documents. In the experiments, we evaluate the classifier performance over time by varying: (a) the class distribution of the opinionated stream, while assuming that the set of the words in the vocabulary is fixed but their polarities may change with the class distribution; and (b) the number of unknown words arriving at each moment, while the class polarity may also change. Our results show that active learning on a stream of opinionated documents, delivers good performance while requiring a small selection of labels
Max Zimmermann, Eirini Ntoutsi, Myra Spiliopoulou
null
1509.01288
null
null
l1-norm Penalized Orthogonal Forward Regression
cs.LG stat.ML
A l1-norm penalized orthogonal forward regression (l1-POFR) algorithm is proposed based on the concept of leaveone- out mean square error (LOOMSE). Firstly, a new l1-norm penalized cost function is defined in the constructed orthogonal space, and each orthogonal basis is associated with an individually tunable regularization parameter. Secondly, due to orthogonal computation, the LOOMSE can be analytically computed without actually splitting the data set, and moreover a closed form of the optimal regularization parameter in terms of minimal LOOMSE is derived. Thirdly, a lower bound for regularization parameters is proposed, which can be used for robust LOOMSE estimation by adaptively detecting and removing regressors to an inactive set so that the computational cost of the algorithm is significantly reduced. Illustrative examples are included to demonstrate the effectiveness of this new l1-POFR approach.
Xia Hong, Sheng Chen, Yi Guo, Junbin Gao
null
1509.01323
null
null
Deep Broad Learning - Big Models for Big Data
cs.LG
Deep learning has demonstrated the power of detailed modeling of complex high-order (multivariate) interactions in data. For some learning tasks there is power in learning models that are not only Deep but also Broad. By Broad, we mean models that incorporate evidence from large numbers of features. This is of especial value in applications where many different features and combinations of features all carry small amounts of information about the class. The most accurate models will integrate all that information. In this paper, we propose an algorithm for Deep Broad Learning called DBL. The proposed algorithm has a tunable parameter $n$, that specifies the depth of the model. It provides straightforward paths towards out-of-core learning for large data. We demonstrate that DBL learns models from large quantities of data with accuracy that is highly competitive with the state-of-the-art.
Nayyar A. Zaidi, Geoffrey I. Webb, Mark J. Carman, Francois Petitjean
null
1509.01346
null
null
Parallel and Distributed Approaches for Graph Based Semi-supervised Learning
cs.LG
Two approaches for graph based semi-supervised learning are proposed. The firstapproach is based on iteration of an affine map. A key element of the affine map iteration is sparsematrix-vector multiplication, which has several very efficient parallel implementations. The secondapproach belongs to the class of Markov Chain Monte Carlo (MCMC) algorithms. It is based onsampling of nodes by performing a random walk on the graph. The latter approach is distributedby its nature and can be easily implemented on several processors or over the network. Boththeoretical and practical evaluations are provided. It is found that the nodes are classified intotheir class with very small error. The sampling algorithm's ability to track new incoming nodesand to classify them is also demonstrated.
Konstantin Avrachenkov (MAESTRO), Vivek Borkar, Krishnakant Saboo
null
1509.01349
null
null
Diffusion-KLMS Algorithm and its Performance Analysis for Non-Linear Distributed Networks
cs.LG cs.DC cs.IT cs.SY math.IT
In a distributed network environment, the diffusion-least mean squares (LMS) algorithm gives faster convergence than the original LMS algorithm. It has also been observed that, the diffusion-LMS generally outperforms other distributed LMS algorithms like spatial LMS and incremental LMS. However, both the original LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable. A variant of LMS called kernel-LMS (KLMS) has been proposed in the literature for such non-linearities. In this paper, we propose kernelised version of diffusion-LMS for non-linear distributed environments. Simulations show that the proposed approach has superior convergence as compared to algorithms of the same genre. We also introduce a technique to predict the transient and steady-state behaviour of the proposed algorithm. The techniques proposed in this work (or algorithms of same genre) can be easily extended to distributed parameter estimation applications like cooperative spectrum sensing and massive multiple input multiple output (MIMO) receiver design which are potential components for 5G communication systems.
Rangeet Mitra and Vimal Bhatia
null
1509.01352
null
null
CNN Based Hashing for Image Retrieval
cs.CV cs.LG
Along with data on the web increasing dramatically, hashing is becoming more and more popular as a method of approximate nearest neighbor search. Previous supervised hashing methods utilized similarity/dissimilarity matrix to get semantic information. But the matrix is not easy to construct for a new dataset. Rather than to reconstruct the matrix, we proposed a straightforward CNN-based hashing method, i.e. binarilizing the activations of a fully connected layer with threshold 0 and taking the binary result as hash codes. This method achieved the best performance on CIFAR-10 and was comparable with the state-of-the-art on MNIST. And our experiments on CIFAR-10 suggested that the signs of activations may carry more information than the relative values of activations between samples, and that the co-adaption between feature extractor and hash functions is important for hashing.
Jinma Guo and Jianmin Li
null
1509.01354
null
null
Predicting SLA Violations in Real Time using Online Machine Learning
cs.NI cs.LG cs.SE stat.ML
Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (>90% classification accuracy and < 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.
Jawwad Ahmed, Andreas Johnsson, Rerngvit Yanggratoke, John Ardelius, Christofer Flinta, Rolf Stadler
null
1509.01386
null
null
Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization
cs.NA cs.CV cs.LG math.OC stat.ML
Given a symmetric nonnegative matrix $A$, symmetric nonnegative matrix factorization (symNMF) is the problem of finding a nonnegative matrix $H$, usually with much fewer columns than $A$, such that $A \approx HH^T$. SymNMF can be used for data analysis and in particular for various clustering tasks. In this paper, we propose simple and very efficient coordinate descent schemes to solve this problem, and that can handle large and sparse input matrices. The effectiveness of our methods is illustrated on synthetic and real-world data sets, and we show that they perform favorably compared to recent state-of-the-art methods.
Arnaud Vandaele, Nicolas Gillis, Qi Lei, Kai Zhong, Inderjit Dhillon
10.1109/TSP.2016.2591510
1509.01404
null
null
Quantization based Fast Inner Product Search
cs.AI cs.LG stat.ML
We propose a quantization based approach for fast approximate Maximum Inner Product Search (MIPS). Each database vector is quantized in multiple subspaces via a set of codebooks, learned directly by minimizing the inner product quantization error. Then, the inner product of a query to a database vector is approximated as the sum of inner products with the subspace quantizers. Different from recently proposed LSH approaches to MIPS, the database vectors and queries do not need to be augmented in a higher dimensional feature space. We also provide a theoretical analysis of the proposed approach, consisting of the concentration results under mild assumptions. Furthermore, if a small sample of example queries is given at the training time, we propose a modified codebook learning procedure which further improves the accuracy. Experimental results on a variety of datasets including those arising from deep neural networks show that the proposed approach significantly outperforms the existing state-of-the-art.
Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski and David Simcha
null
1509.01469
null
null
EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis
cs.CV cs.LG stat.ML
Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and non-parametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.
Israel D. Gebru, Xavier Alameda-Pineda, Florence Forbes and Radu Horaud
10.1109/TPAMI.2016.2522425
1509.01509
null
null
Minimum Spectral Connectivity Projection Pursuit
stat.ML cs.LG
We study the problem of determining the optimal low dimensional projection for maximising the separability of a binary partition of an unlabelled dataset, as measured by spectral graph theory. This is achieved by finding projections which minimise the second eigenvalue of the graph Laplacian of the projected data, which corresponds to a non-convex, non-smooth optimisation problem. We show that the optimal univariate projection based on spectral connectivity converges to the vector normal to the maximum margin hyperplane through the data, as the scaling parameter is reduced to zero. This establishes a connection between connectivity as measured by spectral graph theory and maximal Euclidean separation. The computational cost associated with each eigen-problem is quadratic in the number of data. To mitigate this issue, we propose an approximation method using microclusters with provable approximation error bounds. Combining multiple binary partitions within a divisive hierarchical model allows us to construct clustering solutions admitting clusters with varying scales and lying within different subspaces. We evaluate the performance of the proposed method on a large collection of benchmark datasets and find that it compares favourably with existing methods for projection pursuit and dimension reduction for data clustering.
David P. Hofmeyr and Nicos G. Pavlidis and Idris A. Eckley
10.1007/s11222-018-9814-6
1509.01546
null
null
Giraffe: Using Deep Reinforcement Learning to Play Chess
cs.AI cs.LG cs.NE
This report presents Giraffe, a chess engine that uses self-play to discover all its domain-specific knowledge, with minimal hand-crafted knowledge given by the programmer. Unlike previous attempts using machine learning only to perform parameter-tuning on hand-crafted evaluation functions, Giraffe's learning system also performs automatic feature extraction and pattern recognition. The trained evaluation function performs comparably to the evaluation functions of state-of-the-art chess engines - all of which containing thousands of lines of carefully hand-crafted pattern recognizers, tuned over many years by both computer chess experts and human chess masters. Giraffe is the most successful attempt thus far at using end-to-end machine learning to play chess.
Matthew Lai
null
1509.01549
null
null
Efficient Sampling for k-Determinantal Point Processes
cs.LG
Determinantal Point Processes (DPPs) are elegant probabilistic models of repulsion and diversity over discrete sets of items. But their applicability to large sets is hindered by expensive cubic-complexity matrix operations for basic tasks such as sampling. In light of this, we propose a new method for approximate sampling from discrete $k$-DPPs. Our method takes advantage of the diversity property of subsets sampled from a DPP, and proceeds in two stages: first it constructs coresets for the ground set of items; thereafter, it efficiently samples subsets based on the constructed coresets. As opposed to previous approaches, our algorithm aims to minimize the total variation distance to the original distribution. Experiments on both synthetic and real datasets indicate that our sampling algorithm works efficiently on large data sets, and yields more accurate samples than previous approaches.
Chengtao Li, Stefanie Jegelka and Suvrit Sra
null
1509.01618
null
null
Character-level Convolutional Networks for Text Classification
cs.LG cs.CL
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.
Xiang Zhang, Junbo Zhao, Yann LeCun
null
1509.01626
null
null
Reinforcement Learning with Parameterized Actions
cs.AI cs.LG
We introduce a model-free algorithm for learning in Markov decision processes with parameterized actions-discrete actions with continuous parameters. At each step the agent must select both which action to use and which parameters to use with that action. We introduce the Q-PAMDP algorithm for learning in these domains, show that it converges to a local optimum, and compare it to direct policy search in the goal-scoring and Platform domains.
Warwick Masson, Pravesh Ranchod, George Konidaris
null
1509.01644
null
null
Gravitational Clustering
cs.LG
The downfall of many supervised learning algorithms, such as neural networks, is the inherent need for a large amount of training data. Although there is a lot of buzz about big data, there is still the problem of doing classification from a small dataset. Other methods such as support vector machines, although capable of dealing with few samples, are inherently binary classifiers, and are in need of learning strategies such as One vs All in the case of multi-classification. In the presence of a large number of classes this can become problematic. In this paper we present, a novel approach to supervised learning through the method of clustering. Unlike traditional methods such as K-Means, Gravitational Clustering does not require the initial number of clusters, and automatically builds the clusters, individual samples can be arbitrarily weighted and it requires only few samples while staying resilient to over-fitting.
Armen Aghajanyan
null
1509.01659
null
null
HAMSI: A Parallel Incremental Optimization Algorithm Using Quadratic Approximations for Solving Partially Separable Problems
stat.ML cs.LG
We propose HAMSI (Hessian Approximated Multiple Subsets Iteration), which is a provably convergent, second order incremental algorithm for solving large-scale partially separable optimization problems. The algorithm is based on a local quadratic approximation, and hence, allows incorporating curvature information to speed-up the convergence. HAMSI is inherently parallel and it scales nicely with the number of processors. Combined with techniques for effectively utilizing modern parallel computer architectures, we illustrate that the proposed method converges more rapidly than a parallel stochastic gradient descent when both methods are used to solve large-scale matrix factorization problems. This performance gain comes only at the expense of using memory that scales linearly with the total size of the optimization variables. We conclude that HAMSI may be considered as a viable alternative in many large scale problems, where first order methods based on variants of stochastic gradient descent are applicable.
Kamer Kaya, Figen \"Oztoprak, \c{S}. \.Ilker Birbil, A. Taylan Cemgil, Umut \c{S}im\c{s}ekli, Nurdan Kuru, Hazal Koptagel, M. Kaan \"Ozt\"urk
null
1509.01698
null
null
Theoretic Analysis and Extremely Easy Algorithms for Domain Adaptive Feature Learning
cs.LG
Domain adaptation problems arise in a variety of applications, where a training dataset from the \textit{source} domain and a test dataset from the \textit{target} domain typically follow different distributions. The primary difficulty in designing effective learning models to solve such problems lies in how to bridge the gap between the source and target distributions. In this paper, we provide comprehensive analysis of feature learning algorithms used in conjunction with linear classifiers for domain adaptation. Our analysis shows that in order to achieve good adaptation performance, the second moments of the source domain distribution and target domain distribution should be similar. Based on our new analysis, a novel extremely easy feature learning algorithm for domain adaptation is proposed. Furthermore, our algorithm is extended by leveraging multiple layers, leading to a deep linear model. We evaluate the effectiveness of the proposed algorithms in terms of domain adaptation tasks on the Amazon review dataset and the spam dataset from the ECML/PKDD 2006 discovery challenge.
Wenhao Jiang, Cheng Deng, Wei Liu, Feiping Nie, Fu-lai Chung, Heng Huang
null
1509.01710
null
null
Theoretical and Experimental Analyses of Tensor-Based Regression and Classification
cs.LG stat.ML
We theoretically and experimentally investigate tensor-based regression and classification. Our focus is regularization with various tensor norms, including the overlapped trace norm, the latent trace norm, and the scaled latent trace norm. We first give dual optimization methods using the alternating direction method of multipliers, which is computationally efficient when the number of training samples is moderate. We then theoretically derive an excess risk bound for each tensor norm and clarify their behavior. Finally, we perform extensive experiments using simulated and real data and demonstrate the superiority of tensor-based learning methods over vector- and matrix-based learning methods.
Kishan Wimalawarne, Ryota Tomioka and Masashi Sugiyama
null
1509.01770
null
null
Sampled Weighted Min-Hashing for Large-Scale Topic Mining
cs.LG cs.CL cs.IR
We present Sampled Weighted Min-Hashing (SWMH), a randomized approach to automatically mine topics from large-scale corpora. SWMH generates multiple random partitions of the corpus vocabulary based on term co-occurrence and agglomerates highly overlapping inter-partition cells to produce the mined topics. While other approaches define a topic as a probabilistic distribution over a vocabulary, SWMH topics are ordered subsets of such vocabulary. Interestingly, the topics mined by SWMH underlie themes from the corpus at different levels of granularity. We extensively evaluate the meaningfulness of the mined topics both qualitatively and quantitatively on the NIPS (1.7 K documents), 20 Newsgroups (20 K), Reuters (800 K) and Wikipedia (4 M) corpora. Additionally, we compare the quality of SWMH with Online LDA topics for document representation in classification.
Gibran Fuentes-Pineda and Ivan Vladimir Meza-Ruiz
10.1007/978-3-319-19264-2_20
1509.01771
null
null
Research: Analysis of Transport Model that Approximates Decision Taker's Preferences
cs.LG cs.AI math.OC stat.AP
Paper provides a method for solving the reverse Monge-Kantorovich transport problem (TP). It allows to accumulate positive decision-taking experience made by decision-taker in situations that can be presented in the form of TP. The initial data for the solution of the inverse TP is the information on orders, inventories and effective decisions take by decision-taker. The result of solving the inverse TP contains evaluations of the TPs payoff matrix elements. It can be used in new situations to select the solution corresponding to the preferences of the decision-taker. The method allows to gain decision-taker experience, so it can be used by others. The method allows to build the model of decision-taker preferences in a specific application area. The model can be updated regularly to ensure its relevance and adequacy to the decision-taker system of preferences. This model is adaptive to the current preferences of the decision taker.
Valery Vilisov
10.13140/RG.2.1.5085.6166
1509.01815
null
null
On collapsed representation of hierarchical Completely Random Measures
math.ST cs.LG stat.TH
The aim of the paper is to provide an exact approach for generating a Poisson process sampled from a hierarchical CRM, without having to instantiate the infinitely many atoms of the random measures. We use completely random measures~(CRM) and hierarchical CRM to define a prior for Poisson processes. We derive the marginal distribution of the resultant point process, when the underlying CRM is marginalized out. Using well known properties unique to Poisson processes, we were able to derive an exact approach for instantiating a Poisson process with a hierarchical CRM prior. Furthermore, we derive Gibbs sampling strategies for hierarchical CRM models based on Chinese restaurant franchise sampling scheme. As an example, we present the sum of generalized gamma process (SGGP), and show its application in topic-modelling. We show that one can determine the power-law behaviour of the topics and words in a Bayesian fashion, by defining a prior on the parameters of SGGP.
Gaurav Pandey and Ambedkar Dukkipati
null
1509.01817
null
null
Deep Online Convex Optimization by Putting Forecaster to Sleep
cs.LG cs.GT cs.NE
Methods from convex optimization such as accelerated gradient descent are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since neural networks are not convex and standard guarantees do not apply. This paper develops the first rigorous link between online convex optimization and error backpropagation on convolutional networks. The first step is to introduce circadian games, a mild generalization of convex games with similar convergence properties. The main result is that error backpropagation on a convolutional network is equivalent to playing out a circadian game. It follows immediately that the waking-regret of players in the game (the units in the neural network) controls the overall rate of convergence of the network. Finally, we explore some implications of the results: (i) we describe the representations learned by a neural network game-theoretically, (ii) propose a learning setting at the level of individual units that can be plugged into deep architectures, and (iii) propose a new approach to adaptive model selection by applying bandit algorithms to choose which players to wake on each round.
David Balduzzi
null
1509.01851
null
null
Hierarchical Deep Learning Architecture For 10K Objects Classification
cs.CV cs.LG cs.NE
Evolution of visual object recognition architectures based on Convolutional Neural Networks & Convolutional Deep Belief Networks paradigms has revolutionized artificial Vision Science. These architectures extract & learn the real world hierarchical visual features utilizing supervised & unsupervised learning approaches respectively. Both the approaches yet cannot scale up realistically to provide recognition for a very large number of objects as high as 10K. We propose a two level hierarchical deep learning architecture inspired by divide & conquer principle that decomposes the large scale recognition architecture into root & leaf level model architectures. Each of the root & leaf level models is trained exclusively to provide superior results than possible by any 1-level deep learning architecture prevalent today. The proposed architecture classifies objects in two steps. In the first step the root level model classifies the object in a high level category. In the second step, the leaf level recognition model for the recognized high level category is selected among all the leaf models. This leaf level model is presented with the same input object image which classifies it in a specific category. Also we propose a blend of leaf level models trained with either supervised or unsupervised learning approaches. Unsupervised learning is suitable whenever labelled data is scarce for the specific leaf level models. Currently the training of leaf level models is in progress; where we have trained 25 out of the total 47 leaf level models as of now. We have trained the leaf models with the best case top-5 error rate of 3.2% on the validation data set for the particular leaf models. Also we demonstrate that the validation error of the leaf level models saturates towards the above mentioned accuracy as the number of epochs are increased to more than sixty.
Atul Laxman Katole, Krishna Prasad Yellapragada, Amish Kumar Bedi, Sehaj Singh Kalra and Mynepalli Siva Chaitanya
10.5121/csit.2015.51408
1509.01951
null
null
Automated Analysis of Behavioural Variability and Filial Imprinting of Chicks (G. gallus), using Autonomous Robots
q-bio.QM cs.LG cs.RO physics.bio-ph
Inter-individual variability has various impacts in animal social behaviour. This implies that not only collective behaviours have to be studied but also the behavioural variability of each member composing the groups. To understand those effects on group behaviour, we develop a quantitative methodology based on automated ethograms and autonomous robots to study the inter-individual variability among social animals. We choose chicks of \textit{Gallus gallus domesticus} as a classic social animal model system for their suitability in laboratory and controlled experimentation. Moreover, even domesticated chicken present social structures implying forms or leadership and filial imprinting. We develop an imprinting methodology on autonomous robots to study individual and social behaviour of free moving animals. This allows to quantify the behaviours of large number of animals. We develop an automated experimental methodology that allows to make relatively fast controlled experiments and efficient data analysis. Our analysis are based on high-throughput data allowing a fine quantification of individual behavioural traits. We quantify the efficiency of various state-of-the-art algorithms to automate data analysis and produce automated ethograms. We show that the use of robots allows to provide controlled and quantified stimuli to the animals in absence of human intervention. We quantify the individual behaviour of 205 chicks obtained from hatching after synchronized fecundation. Our results show a high variability of individual behaviours and of imprinting quality and success. Three classes of chicks are observed with various level of imprinting. Our study shows that the concomitant use of autonomous robots and automated ethograms allows detailed and quantitative analysis of behavioural patterns of animals in controlled laboratory experiments.
A. Gribovskiy, F. Mondada, J.L. Deneubourg, L. Cazenille, N. Bredeche, J. Halloy
null
1509.01957
null
null
Data-selective Transfer Learning for Multi-Domain Speech Recognition
cs.LG cs.CL cs.SD
Negative transfer in training of acoustic models for automatic speech recognition has been reported in several contexts such as domain change or speaker characteristics. This paper proposes a novel technique to overcome negative transfer by efficient selection of speech data for acoustic model training. Here data is chosen on relevance for a specific target. A submodular function based on likelihood ratios is used to determine how acoustically similar each training utterance is to a target test set. The approach is evaluated on a wide-domain data set, covering speech from radio and TV broadcasts, telephone conversations, meetings, lectures and read speech. Experiments demonstrate that the proposed technique both finds relevant data and limits negative transfer. Results on a 6--hour test set show a relative improvement of 4% with data selection over using all data in PLP based models, and 2% with DNN features.
Mortaza Doulaty, Oscar Saz, Thomas Hain
null
1509.02409
null
null
Improved Twitter Sentiment Prediction through Cluster-then-Predict Model
cs.IR cs.CL cs.LG cs.SI
Over the past decade humans have experienced exponential growth in the use of online resources, in particular social media and microblogging websites such as Facebook, Twitter, YouTube and also mobile applications such as WhatsApp, Line, etc. Many companies have identified these resources as a rich mine of marketing knowledge. This knowledge provides valuable feedback which allows them to further develop the next generation of their product. In this paper, sentiment analysis of a product is performed by extracting tweets about that product and classifying the tweets showing it as positive and negative sentiment. The authors propose a hybrid approach which combines unsupervised learning in the form of K-means clustering to cluster the tweets and then performing supervised learning methods such as Decision Trees and Support Vector Machines for classification.
Rishabh Soni, K. James Mathai
null
1509.02437
null
null
A Behavior Analysis-Based Game Bot Detection Approach Considering Various Play Styles
cs.LG cs.AI
An approach for game bot detection in MMORPGs is proposed based on the analysis of game playing behavior. Since MMORPGs are large scale games, users can play in various ways. This variety in playing behavior makes it hard to detect game bots based on play behaviors. In order to cope with this problem, the proposed approach observes game playing behaviors of users and groups them by their behavioral similarities. Then, it develops a local bot detection model for each player group. Since the locally optimized models can more accurately detect game bots within each player group, the combination of those models brings about overall improvement. For a practical purpose of reducing the workloads of the game servers in service, the game data is collected at a low resolution in time. Behavioral features are selected and developed to accurately detect game bots with the low resolution data, considering common aspects of MMORPG playing. Through the experiment with the real data from a game currently in service, it is shown that the proposed local model approach yields more accurate results.
Yeounoh Chung, Chang-yong Park, Noo-ri Kim, Hana Cho, Taebok Yoon, Hunjoo Lee and Jee-Hyong Lee
10.4218/etrij.13.2013.0049
1509.02458
null
null
Deep Attributes from Context-Aware Regional Neural Codes
cs.CV cs.LG cs.NE
Recently, many researches employ middle-layer output of convolutional neural network models (CNN) as features for different visual recognition tasks. Although promising results have been achieved in some empirical studies, such type of representations still suffer from the well-known issue of semantic gap. This paper proposes so-called deep attribute framework to alleviate this issue from three aspects. First, we introduce object region proposals as intermedia to represent target images, and extract features from region proposals. Second, we study aggregating features from different CNN layers for all region proposals. The aggregation yields a holistic yet compact representation of input images. Results show that cross-region max-pooling of soft-max layer output outperform all other layers. As soft-max layer directly corresponds to semantic concepts, this representation is named "deep attributes". Third, we observe that only a small portion of generated regions by object proposals algorithm are correlated to classification target. Therefore, we introduce context-aware region refining algorithm to pick out contextual regions and build context-aware classifiers. We apply the proposed deep attributes framework for various vision tasks. Extensive experiments are conducted on standard benchmarks for three visual recognition tasks, i.e., image classification, fine-grained recognition and visual instance retrieval. Results show that deep attribute approaches achieve state-of-the-art results, and outperforms existing peer methods with a significant margin, even though some benchmarks have little overlap of concepts with the pre-trained CNN models.
Jianwei Luo and Jianguo Li and Jun Wang and Zhiguo Jiang and Yurong Chen
null
1509.02470
null
null
Optimizing Static and Adaptive Probing Schedules for Rapid Event Detection
cs.DS cs.LG
We formulate and study a fundamental search and detection problem, Schedule Optimization, motivated by a variety of real-world applications, ranging from monitoring content changes on the web, social networks, and user activities to detecting failure on large systems with many individual machines. We consider a large system consists of many nodes, where each node has its own rate of generating new events, or items. A monitoring application can probe a small number of nodes at each step, and our goal is to compute a probing schedule that minimizes the expected number of undiscovered items at the system, or equivalently, minimizes the expected time to discover a new item in the system. We study the Schedule Optimization problem both for deterministic and randomized memoryless algorithms. We provide lower bounds on the cost of an optimal schedule and construct close to optimal schedules with rigorous mathematical guarantees. Finally, we present an adaptive algorithm that starts with no prior information on the system and converges to the optimal memoryless algorithms by adapting to observed data.
Ahmad Mahmoody, Evgenios M. Kornaropoulos, and Eli Upfal
null
1509.02487
null
null
DeepCough: A Deep Convolutional Neural Network in A Wearable Cough Detection System
cs.NE cs.LG
In this paper, we present a system that employs a wearable acoustic sensor and a deep convolutional neural network for detecting coughs. We evaluate the performance of our system on 14 healthy volunteers and compare it to that of other cough detection systems that have been reported in the literature. Experimental results show that our system achieves a classification sensitivity of 95.1% and a specificity of 99.5%.
Justice Amoh and Kofi Odame
null
1509.02512
null
null
Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis
cs.DC cs.LG cs.SY
Aiming at solving large-scale learning problems, this paper studies distributed optimization methods based on the alternating direction method of multipliers (ADMM). By formulating the learning problem as a consensus problem, the ADMM can be used to solve the consensus problem in a fully parallel fashion over a computer network with a star topology. However, traditional synchronized computation does not scale well with the problem size, as the speed of the algorithm is limited by the slowest workers. This is particularly true in a heterogeneous network where the computing nodes experience different computation and communication delays. In this paper, we propose an asynchronous distributed ADMM (AD-AMM) which can effectively improve the time efficiency of distributed optimization. Our main interest lies in analyzing the convergence conditions of the AD-ADMM, under the popular partially asynchronous model, which is defined based on a maximum tolerable delay of the network. Specifically, by considering general and possibly non-convex cost functions, we show that the AD-ADMM is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points as long as the algorithm parameters are chosen appropriately according to the network delay. We further illustrate that the asynchrony of the ADMM has to be handled with care, as slightly modifying the implementation of the AD-ADMM can jeopardize the algorithm convergence, even under a standard convex setting.
Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao and Xiangfeng Wang
10.1109/TSP.2016.2537271
1509.02597
null
null
Asynchronous Distributed ADMM for Large-Scale Optimization- Part II: Linear Convergence Analysis and Numerical Performance
cs.DC cs.LG cs.SY
The alternating direction method of multipliers (ADMM) has been recognized as a versatile approach for solving modern large-scale machine learning and signal processing problems efficiently. When the data size and/or the problem dimension is large, a distributed version of ADMM can be used, which is capable of distributing the computation load and the data set to a network of computing nodes. Unfortunately, a direct synchronous implementation of such algorithm does not scale well with the problem size, as the algorithm speed is limited by the slowest computing nodes. To address this issue, in a companion paper, we have proposed an asynchronous distributed ADMM (AD-ADMM) and studied its worst-case convergence conditions. In this paper, we further the study by characterizing the conditions under which the AD-ADMM achieves linear convergence. Our conditions as well as the resulting linear rates reveal the impact that various algorithm parameters, network delay and network size have on the algorithm performance. To demonstrate the superior time efficiency of the proposed AD-ADMM, we test the AD-ADMM on a high-performance computer cluster by solving a large-scale logistic regression problem.
Tsung-Hui Chang, Wei-Cheng Liao, Mingyi Hong and Xiangfeng Wang
10.1109/TSP.2016.2537261
1509.02604
null
null
Finite Dictionary Variants of the Diffusion KLMS Algorithm
cs.SY cs.DC cs.IT cs.LG math.IT
The diffusion based distributed learning approaches have been found to be a viable solution for learning over linearly separable datasets over a network. However, approaches till date are suitable for linearly separable datasets and need to be extended to scenarios in which we need to learn a non-linearity. In such scenarios, the recently proposed diffusion kernel least mean squares (KLMS) has been found to be performing better than diffusion least mean squares (LMS). The drawback of diffusion KLMS is that it requires infinite storage for observations (also called dictionary). This paper formulates the diffusion KLMS in a fixed budget setting such that the storage requirement is curtailed while maintaining appreciable performance in terms of convergence. Simulations have been carried out to validate the two newly proposed algorithms named as quantised diffusion KLMS (QDKLMS) and fixed budget diffusion KLMS (FBDKLMS) against KLMS, which indicate that both the proposed algorithms deliver better performance as compared to the KLMS while reducing the dictionary size storage requirement.
Rangeet Mitra and Vimal Bhatia
null
1509.02730
null
null
Clustering by Hierarchical Nearest Neighbor Descent (H-NND)
stat.ML cs.CV cs.LG stat.ME
Previously in 2014, we proposed the Nearest Descent (ND) method, capable of generating an efficient Graph, called the in-tree (IT). Due to some beautiful and effective features, this IT structure proves well suited for data clustering. Although there exist some redundant edges in IT, they usually have salient features and thus it is not hard to remove them. Subsequently, in order to prevent the seemingly redundant edges from occurring, we proposed the Nearest Neighbor Descent (NND) by adding the "Neighborhood" constraint on ND. Consequently, clusters automatically emerged, without the additional requirement of removing the redundant edges. However, NND proved still not perfect, since it brought in a new yet worse problem, the "over-partitioning" problem. Now, in this paper, we propose a method, called the Hierarchical Nearest Neighbor Descent (H-NND), which overcomes the over-partitioning problem of NND via using the hierarchical strategy. Specifically, H-NND uses ND to effectively merge the over-segmented sub-graphs or clusters that NND produces. Like ND, H-NND also generates the IT structure, in which the redundant edges once again appear. This seemingly comes back to the situation that ND faces. However, compared with ND, the redundant edges in the IT structure generated by H-NND generally become more salient, thus being much easier and more reliable to be identified even by the simplest edge-removing method which takes the edge length as the only measure. In other words, the IT structure constructed by H-NND becomes more fitted for data clustering. We prove this on several clustering datasets of varying shapes, dimensions and attributes. Besides, compared with ND, H-NND generally takes less computation time to construct the IT data structure for the input data.
Teng Qiu, Yongjie Li
null
1509.02805
null
null
Statistical Inference, Learning and Models in Big Data
stat.ML cs.LG
The need for new methods to deal with big data is a common theme in most scientific fields, although its definition tends to vary with the context. Statistical ideas are an essential part of this, and as a partial response, a thematic program on statistical inference, learning, and models in big data was held in 2015 in Canada, under the general direction of the Canadian Statistical Sciences Institute, with major funding from, and most activities located at, the Fields Institute for Research in Mathematical Sciences. This paper gives an overview of the topics covered, describing challenges and strategies that seem common to many different areas of application, and including some examples of applications to make these challenges and strategies more concrete.
Beate Franke and Jean-Fran\c{c}ois Plante and Ribana Roscher and Annie Lee and Cathal Smyth and Armin Hatefi and Fuqi Chen and Einat Gil and Alexander Schwing and Alessandro Selvitella and Michael M. Hoffman and Roger Grosse and Dieter Hendricks and Nancy Reid
10.1111/insr.12176
1509.02900
null
null
Sensor Selection by Linear Programming
stat.ML cs.LG
We learn sensor trees from training data to minimize sensor acquisition costs during test time. Our system adaptively selects sensors at each stage if necessary to make a confident classification. We pose the problem as empirical risk minimization over the choice of trees and node decision rules. We decompose the problem, which is known to be intractable, into combinatorial (tree structures) and continuous parts (node decision rules) and propose to solve them separately. Using training data we greedily solve for the combinatorial tree structures and for the continuous part, which is a non-convex multilinear objective function, we derive convex surrogate loss functions that are piecewise linear. The resulting problem can be cast as a linear program and has the advantage of guaranteed convergence, global optimality, repeatability and computational efficiency. We show that our proposed approach outperforms the state-of-art on a number of benchmark datasets.
Joseph Wang, Kirill Trapeznikov, Venkatesh Saligrama
null
1509.02954
null
null