title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Continuous control with deep reinforcement learning
cs.LG stat.ML
We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies end-to-end: directly from raw pixel inputs.
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra
null
1509.02971
null
null
Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies
cs.LG cs.AI cs.NE stat.ML
This paper proposes GProp, a deep reinforcement learning algorithm for continuous policies with compatible function approximation. The algorithm is based on two innovations. Firstly, we present a temporal-difference based method for learning the gradient of the value-function. Secondly, we present the deviator-actor-critic (DAC) model, which comprises three neural networks that estimate the value function, its gradient, and determine the actor's policy respectively. We evaluate GProp on two challenging tasks: a contextual bandit problem constructed from nonparametric regression datasets that is designed to probe the ability of reinforcement learning algorithms to accurately estimate gradients; and the octopus arm, a challenging reinforcement learning benchmark. GProp is competitive with fully supervised methods on the bandit task and achieves the best performance to date on the octopus arm.
David Balduzzi, Muhammad Ghifary
null
1509.03005
null
null
Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
math.ST cs.LG stat.ML stat.TH
Optimization problems with rank constraints arise in many applications, including matrix regression, structured PCA, matrix completion and matrix decomposition problems. An attractive heuristic for solving such problems is to factorize the low-rank matrix, and to run projected gradient descent on the nonconvex factorized optimization problem. The goal of this problem is to provide a general theoretical framework for understanding when such methods work well, and to characterize the nature of the resulting fixed point. We provide a simple set of conditions under which projected gradient descent, when given a suitable initialization, converges geometrically to a statistically useful solution. Our results are applicable even when the initial solution is outside any region of local convexity, and even when the problem is globally concave. Working in a non-asymptotic framework, we show that our conditions are satisfied for a wide range of concrete models, including matrix regression, structured PCA, matrix completion with real and quantized observations, matrix decomposition, and graph clustering problems. Simulation results show excellent agreement with the theoretical predictions.
Yudong Chen, Martin J. Wainwright
null
1509.03025
null
null
Recurrent Reinforcement Learning: A Hybrid Approach
cs.LG cs.AI cs.SY
Successful applications of reinforcement learning in real-world problems often require dealing with partially observable states. It is in general very challenging to construct and infer hidden states as they often depend on the agent's entire interaction history and may require substantial domain knowledge. In this work, we investigate a deep-learning approach to learning the representation of states in partially observable tasks, with minimal prior knowledge of the domain. In particular, we propose a new family of hybrid models that combines the strength of both supervised learning (SL) and reinforcement learning (RL), trained in a joint fashion: The SL component can be a recurrent neural networks (RNN) or its long short-term memory (LSTM) version, which is equipped with the desired property of being able to capture long-term dependency on history, thus providing an effective way of learning the representation of hidden states. The RL component is a deep Q-network (DQN) that learns to optimize the control for maximizing long-term rewards. Extensive experiments in a direct mailing campaign problem demonstrate the effectiveness and advantages of the proposed approach, which performs the best among a set of previous state-of-the-art methods.
Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, Ji He
null
1509.03044
null
null
Use it or Lose it: Selective Memory and Forgetting in a Perpetual Learning Machine
cs.LG
In a recent article we described a new type of deep neural network - a Perpetual Learning Machine (PLM) - which is capable of learning 'on the fly' like a brain by existing in a state of Perpetual Stochastic Gradient Descent (PSGD). Here, by simulating the process of practice, we demonstrate both selective memory and selective forgetting when we introduce statistical recall biases during PSGD. Frequently recalled memories are remembered, whilst memories recalled rarely are forgotten. This results in a 'use it or lose it' stimulus driven memory process that is similar to human memory.
Andrew J.R. Simpson
null
1509.03185
null
null
A new Initial Centroid finding Method based on Dissimilarity Tree for K-means Algorithm
cs.LG
Cluster analysis is one of the primary data analysis technique in data mining and K-means is one of the commonly used partitioning clustering algorithm. In K-means algorithm, resulting set of clusters depend on the choice of initial centroids. If we can find initial centroids which are coherent with the arrangement of data, the better set of clusters can be obtained. This paper proposes a method based on the Dissimilarity Tree to find, the better initial centroid as well as every bit more accurate cluster with less computational time. Theory analysis and experimental results indicate that the proposed method can effectively improve the accuracy of clusters and reduce the computational complexity of the K-means algorithm.
Abhishek Kumar and Suresh Chandra Gupta
null
1509.03200
null
null
Gibbs Sampling Strategies for Semantic Perception of Streaming Video Data
cs.RO cs.LG
Topic modeling of streaming sensor data can be used for high level perception of the environment by a mobile robot. In this paper we compare various Gibbs sampling strategies for topic modeling of streaming spatiotemporal data, such as video captured by a mobile robot. Compared to previous work on online topic modeling, such as o-LDA and incremental LDA, we show that the proposed technique results in lower online and final perplexity, given the realtime constraints.
Yogesh Girdhar and Gregory Dudek
null
1509.03242
null
null
A deep matrix factorization method for learning attribute representations
cs.CV cs.LG stat.ML
Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.
George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, Bjoern W.Schuller
null
1509.03248
null
null
Performance Bounds for Pairwise Entity Resolution
stat.ML cs.CY cs.DB cs.LG
One significant challenge to scaling entity resolution algorithms to massive datasets is understanding how performance changes after moving beyond the realm of small, manually labeled reference datasets. Unlike traditional machine learning tasks, when an entity resolution algorithm performs well on small hold-out datasets, there is no guarantee this performance holds on larger hold-out datasets. We prove simple bounding properties between the performance of a match function on a small validation set and the performance of a pairwise entity resolution algorithm on arbitrarily sized datasets. Thus, our approach enables optimization of pairwise entity resolution algorithms for large datasets, using a small set of labeled data.
Matt Barnes, Kyle Miller, Artur Dubrawski
null
1509.03302
null
null
Hessian-free Optimization for Learning Deep Multidimensional Recurrent Neural Networks
cs.LG cs.NE stat.ML
Multidimensional recurrent neural networks (MDRNNs) have shown a remarkable performance in the area of speech and handwriting recognition. The performance of an MDRNN is improved by further increasing its depth, and the difficulty of learning the deeper network is overcome by using Hessian-free (HF) optimization. Given that connectionist temporal classification (CTC) is utilized as an objective of learning an MDRNN for sequence labeling, the non-convexity of CTC poses a problem when applying HF to the network. As a solution, a convex approximation of CTC is formulated and its relationship with the EM algorithm and the Fisher information matrix is discussed. An MDRNN up to a depth of 15 layers is successfully trained using HF, resulting in an improved performance for sequence labeling.
Minhyung Cho, Chandra Shekhar Dhir, Jaehyung Lee
null
1509.03475
null
null
Hardness of Online Sleeping Combinatorial Optimization Problems
cs.LG cs.DS
We show that several online combinatorial optimization problems that admit efficient no-regret algorithms become computationally hard in the sleeping setting where a subset of actions becomes unavailable in each round. Specifically, we show that the sleeping versions of these problems are at least as hard as PAC learning DNF expressions, a long standing open problem. We show hardness for the sleeping versions of Online Shortest Paths, Online Minimum Spanning Tree, Online $k$-Subsets, Online $k$-Truncated Permutations, Online Minimum Cut, and Online Bipartite Matching. The hardness result for the sleeping version of the Online Shortest Paths problem resolves an open problem presented at COLT 2015 (Koolen et al., 2015).
Satyen Kale and Chansoo Lee and D\'avid P\'al
null
1509.03600
null
null
Toward better feature weighting algorithms: a focus on Relief
cs.LG
Feature weighting algorithms try to solve a problem of great importance nowadays in machine learning: The search of a relevance measure for the features of a given domain. This relevance is primarily used for feature selection as feature weighting can be seen as a generalization of it, but it is also useful to better understand a problem's domain or to guide an inductor in its learning process. Relief family of algorithms are proven to be very effective in this task. Some other feature weighting methods are reviewed in order to give some context and then the different existing extensions to the original algorithm are explained. One of Relief's known issues is the performance degradation of its estimates when redundant features are present. A novel theoretical definition of redundancy level is given in order to guide the work towards an extension of the algorithm that is more robust against redundancy. A new extension is presented that aims for improving the algorithms performance. Some experiments were driven to test this new extension against the existing ones with a set of artificial and real datasets and denoted that in certain cases it improves the weight's estimation accuracy.
Gabriel Prat Masramon and Llu\'is A. Belanche Mu\~noz
null
1509.03755
null
null
Dropping Convexity for Faster Semi-definite Optimization
stat.ML cs.DS cs.IT cs.LG cs.NA math.IT math.OC
We study the minimization of a convex function $f(X)$ over the set of $n\times n$ positive semi-definite matrices, but when the problem is recast as $\min_U g(U) := f(UU^\top)$, with $U \in \mathbb{R}^{n \times r}$ and $r \leq n$. We study the performance of gradient descent on $g$---which we refer to as Factored Gradient Descent (FGD)---under standard assumptions on the original function $f$. We provide a rule for selecting the step size and, with this choice, show that the local convergence rate of FGD mirrors that of standard gradient descent on the original $f$: i.e., after $k$ steps, the error is $O(1/k)$ for smooth $f$, and exponentially small in $k$ when $f$ is (restricted) strongly convex. In addition, we provide a procedure to initialize FGD for (restricted) strongly convex objectives and when one only has access to $f$ via a first-order oracle; for several problem instances, such proper initialization leads to global convergence guarantees. FGD and similar procedures are widely used in practice for problems that can be posed as matrix factorization. To the best of our knowledge, this is the first paper to provide precise convergence rate guarantees for general convex functions under standard convex assumptions.
Srinadh Bhojanapalli, Anastasios Kyrillidis, Sujay Sanghavi
null
1509.03917
null
null
Parametric Maxflows for Structured Sparse Learning with Convex Relaxations of Submodular Functions
cs.LG cs.NA
The proximal problem for structured penalties obtained via convex relaxations of submodular functions is known to be equivalent to minimizing separable convex functions over the corresponding submodular polyhedra. In this paper, we reveal a comprehensive class of structured penalties for which penalties this problem can be solved via an efficiently solvable class of parametric maxflow optimization. We then show that the parametric maxflow algorithm proposed by Gallo et al. and its variants, which runs, in the worst-case, at the cost of only a constant factor of a single computation of the corresponding maxflow optimization, can be adapted to solve the proximal problems for those penalties. Several existing structured penalties satisfy these conditions; thus, regularized learning with these penalties is solvable quickly using the parametric maxflow algorithm. We also investigate the empirical runtime performance of the proposed framework.
Yoshinobu Kawahara and Yutaro Yamaguchi
null
1509.03946
null
null
Optimization of anemia treatment in hemodialysis patients via reinforcement learning
stat.ML cs.AI cs.LG
Objective: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. Methods: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDPs). Computing optimal drug administration strategies for chronic diseases is a sequential decision-making problem in which the goal is to find the best sequence of drug doses. MDPs are particularly suitable for modeling these problems due to their ability to capture the uncertainty associated with the outcome of the treatment and the stochastic nature of the underlying process. The RL algorithm employed in the proposed methodology is fitted Q iteration, which stands out for its ability to make an efficient use of data. Results: The experiments reported here are based on a computational model that describes the effect of ESAs on the hemoglobin level. The performance of the proposed method is evaluated and compared with the well-known Q-learning algorithm and with a standard protocol. Simulation results show that the performance of Q-learning is substantially lower than FQI and the protocol. Conclusion: Although prospective validation is required, promising results demonstrate the potential of RL to become an alternative to current protocols.
Pablo Escandell-Montero, Milena Chermisi, Jos\'e M. Mart\'inez-Mart\'inez, Juan G\'omez-Sanchis, Carlo Barbieri, Emilio Soria-Olivas, Flavio Mari, Joan Vila-Franc\'es, Andrea Stopper, Emanuele Gatti and Jos\'e D. Mart\'in-Guerrero
10.1016/j.artmed.2014.07.004
1509.03977
null
null
Fame for sale: efficient detection of fake Twitter followers
cs.SI cs.CR cs.LG
$\textit{Fake followers}$ are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel $\textit{Class A}$ classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers.
Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, Maurizio Tesconi
10.1016/j.dss.2015.09.003
1509.04098
null
null
Model Accuracy and Runtime Tradeoff in Distributed Deep Learning:A Systematic Study
stat.ML cs.DC cs.LG cs.NE
This paper presents Rudra, a parameter server based distributed computing framework tuned for training large-scale deep neural networks. Using variants of the asynchronous stochastic gradient descent algorithm we study the impact of synchronization protocol, stale gradient updates, minibatch size, learning rates, and number of learners on runtime performance and model accuracy. We introduce a new learning rate modulation strategy to counter the effect of stale gradients and propose a new synchronization protocol that can effectively bound the staleness in gradients, improve runtime performance and achieve good model accuracy. Our empirical investigation reveals a principled approach for distributed training of neural networks: the mini-batch size per learner should be reduced as more learners are added to the system to preserve the model accuracy. We validate this approach using commonly-used image classification benchmarks: CIFAR10 and ImageNet.
Suyog Gupta, Wei Zhang, Fei Wang
null
1509.04210
null
null
Double Relief with progressive weighting function
cs.LG cs.AI
Feature weighting algorithms try to solve a problem of great importance nowadays in machine learning: The search of a relevance measure for the features of a given domain. This relevance is primarily used for feature selection as feature weighting can be seen as a generalization of it, but it is also useful to better understand a problem's domain or to guide an inductor in its learning process. Relief family of algorithms are proven to be very effective in this task. On previous work, a new extension was proposed that aimed for improving the algorithm's performance and it was shown that in certain cases it improved the weights' estimation accuracy. However, it also seemed to be sensible to some characteristics of the data. An improvement of that previously presented extension is presented in this work that aims to make it more robust to problem specific characteristics. An experimental design is proposed to test its performance. Results of the tests prove that it indeed increase the robustness of the previously proposed extension.
Gabriel Prat Masramon and Llu\'is A. Belanche Mu\~noz
null
1509.04265
null
null
Voted Kernel Regularization
cs.LG
This paper presents an algorithm, Voted Kernel Regularization , that provides the flexibility of using potentially very complex kernel functions such as predictors based on much higher-degree polynomial kernels, while benefitting from strong learning guarantees. The success of our algorithm arises from derived bounds that suggest a new regularization penalty in terms of the Rademacher complexities of the corresponding families of kernel maps. In a series of experiments we demonstrate the improved performance of our algorithm as compared to baselines. Furthermore, the algorithm enjoys several favorable properties. The optimization problem is convex, it allows for learning with non-PDS kernels, and the solutions are highly sparse, resulting in improved classification speed and memory requirements.
Corinna Cortes, Prasoon Goyal, Vitaly Kuznetsov, Mehryar Mohri
null
1509.04340
null
null
Towards Making High Dimensional Distance Metric Learning Practical
cs.LG
In this work, we study distance metric learning (DML) for high dimensional data. A typical approach for DML with high dimensional data is to perform the dimensionality reduction first before learning the distance metric. The main shortcoming of this approach is that it may result in a suboptimal solution due to the subspace removed by the dimensionality reduction method. In this work, we present a dual random projection frame for DML with high dimensional data that explicitly addresses the limitation of dimensionality reduction for DML. The key idea is to first project all the data points into a low dimensional space by random projection, and compute the dual variables using the projected vectors. It then reconstructs the distance metric in the original space using the estimated dual variables. The proposed method, on one hand, enjoys the light computation of random projection, and on the other hand, alleviates the limitation of most dimensionality reduction methods. We verify both empirically and theoretically the effectiveness of the proposed algorithm for high dimensional DML.
Qi Qian, Rong Jin, Lijun Zhang and Shenghuo Zhu
null
1509.04355
null
null
Precise Phase Transition of Total Variation Minimization
cs.IT cs.LG math.IT math.OC stat.ML
Characterizing the phase transitions of convex optimizations in recovering structured signals or data is of central importance in compressed sensing, machine learning and statistics. The phase transitions of many convex optimization signal recovery methods such as $\ell_1$ minimization and nuclear norm minimization are well understood through recent years' research. However, rigorously characterizing the phase transition of total variation (TV) minimization in recovering sparse-gradient signal is still open. In this paper, we fully characterize the phase transition curve of the TV minimization. Our proof builds on Donoho, Johnstone and Montanari's conjectured phase transition curve for the TV approximate message passing algorithm (AMP), together with the linkage between the minmax Mean Square Error of a denoising problem and the high-dimensional convex geometry for TV minimization.
Bingwen Zhang, Weiyu Xu, Jian-Feng Cai and Lifeng Lai
null
1509.04376
null
null
Exponential Family Matrix Completion under Structural Constraints
stat.ML cs.LG
We consider the matrix completion problem of recovering a structured matrix from noisy and partial measurements. Recent works have proposed tractable estimators with strong statistical guarantees for the case where the underlying matrix is low--rank, and the measurements consist of a subset, either of the exact individual entries, or of the entries perturbed by additive Gaussian noise, which is thus implicitly suited for thin--tailed continuous data. Arguably, common applications of matrix completion require estimators for (a) heterogeneous data--types, such as skewed--continuous, count, binary, etc., (b) for heterogeneous noise models (beyond Gaussian), which capture varied uncertainty in the measurements, and (c) heterogeneous structural constraints beyond low--rank, such as block--sparsity, or a superposition structure of low--rank plus elementwise sparseness, among others. In this paper, we provide a vastly unified framework for generalized matrix completion by considering a matrix completion setting wherein the matrix entries are sampled from any member of the rich family of exponential family distributions; and impose general structural constraints on the underlying matrix, as captured by a general regularizer $\mathcal{R}(.)$. We propose a simple convex regularized $M$--estimator for the generalized framework, and provide a unified and novel statistical analysis for this general class of estimators. We finally corroborate our theoretical results on simulated datasets.
Suriya Gunasekar, Pradeep Ravikumar, Joydeep Ghosh
null
1509.04397
null
null
Adapting Resilient Propagation for Deep Learning
cs.NE cs.CV cs.LG stat.ML
The Resilient Propagation (Rprop) algorithm has been very popular for backpropagation training of multilayer feed-forward neural networks in various applications. The standard Rprop however encounters difficulties in the context of deep neural networks as typically happens with gradient-based learning algorithms. In this paper, we propose a modification of the Rprop that combines standard Rprop steps with a special drop out technique. We apply the method for training Deep Neural Networks as standalone components and in ensemble formulations. Results on the MNIST dataset show that the proposed modification alleviates standard Rprop's problems demonstrating improved learning speed and accuracy.
Alan Mosca and George D. Magoulas
null
1509.04612
null
null
Dynamic Poisson Factorization
cs.LG cs.IR stat.ML
Models for recommender systems use latent factors to explain the preferences and behaviors of users with respect to a set of items (e.g., movies, books, academic papers). Typically, the latent factors are assumed to be static and, given these factors, the observed preferences and behaviors of users are assumed to be generated without order. These assumptions limit the explorative and predictive capabilities of such models, since users' interests and item popularity may evolve over time. To address this, we propose dPF, a dynamic matrix factorization model based on the recent Poisson factorization model for recommendations. dPF models the time evolving latent factors with a Kalman filter and the actions with Poisson distributions. We derive a scalable variational inference algorithm to infer the latent factors. Finally, we demonstrate dPF on 10 years of user click data from arXiv.org, one of the largest repository of scientific papers and a formidable source of information about the behavior of scientists. Empirically we show performance improvement over both static and, more recently proposed, dynamic recommendation models. We also provide a thorough exploration of the inferred posteriors over the latent variables.
Laurent Charlin and Rajesh Ranganath and James McInerney and David M. Blei
10.1145/2792838.2800174
1509.04640
null
null
Forecasting Method for Grouped Time Series with the Use of k-Means Algorithm
cs.LG
The paper is focused on the forecasting method for time series groups with the use of algorithms for cluster analysis. $K$-means algorithm is suggested to be a basic one for clustering. The coordinates of the centers of clusters have been put in correspondence with summarizing time series data the centroids of the clusters. A description of time series, the centroids of the clusters, is implemented with the use of forecasting models. They are based on strict binary trees and a modified clonal selection algorithm. With the help of such forecasting models, the possibility of forming analytic dependences is shown. It is suggested to use a common forecasting model, which is constructed for time series the centroid of the cluster, in forecasting the private (individual) time series in the cluster. The promising application of the suggested method for grouped time series forecasting is demonstrated.
N.N. Astakhova, L.A. Demidova, E.V. Nikulchev
10.12988/ams.2015.55391
1509.04705
null
null
On the Expressive Power of Deep Learning: A Tensor Analysis
cs.NE cs.LG cs.NA stat.ML
It has long been conjectured that hypotheses spaces suitable for data that is compositional in nature, such as text or images, may be more efficiently represented with deep hierarchical networks than with shallow ones. Despite the vast empirical evidence supporting this belief, theoretical justifications to date are limited. In particular, they do not account for the locality, sharing and pooling constructs of convolutional networks, the most successful deep learning architecture to date. In this work we derive a deep network architecture based on arithmetic circuits that inherently employs locality, sharing and pooling. An equivalence between the networks and hierarchical tensor factorizations is established. We show that a shallow network corresponds to CP (rank-1) decomposition, whereas a deep network corresponds to Hierarchical Tucker decomposition. Using tools from measure theory and matrix algebra, we prove that besides a negligible set, all functions that can be implemented by a deep network of polynomial size, require exponential size in order to be realized (or even approximated) by a shallow network. Since log-space computation transforms our networks into SimNets, the result applies directly to a deep learning architecture demonstrating promising empirical performance. The construction and theory developed in this paper shed new light on various practices and ideas employed by the deep learning community.
Nadav Cohen, Or Sharir, Amnon Shashua
null
1509.05009
null
null
Fast Sequence Component Analysis for Attack Detection in Synchrophasor Networks
cs.LG cs.CR
Modern power systems have begun integrating synchrophasor technologies into part of daily operations. Given the amount of solutions offered and the maturity rate of application development it is not a matter of "if" but a matter of "when" in regards to these technologies becoming ubiquitous in control centers around the world. While the benefits are numerous, the functionality of operator-level applications can easily be nullified by injection of deceptive data signals disguised as genuine measurements. Such deceptive action is a common precursor to nefarious, often malicious activity. A correlation coefficient characterization and machine learning methodology are proposed to detect and identify injection of spoofed data signals. The proposed method utilizes statistical relationships intrinsic to power system parameters, which are quantified and presented. Several spoofing schemes have been developed to qualitatively and quantitatively demonstrate detection capabilities.
Jordan Landford, Rich Meier, Richard Barella, Xinghui Zhao, Eduardo Cotilla-Sanchez, Robert B. Bass, Scott Wallace
null
1509.05086
null
null
Revealed Preference at Scale: Learning Personalized Preferences from Assortment Choices
stat.ML cs.LG math.OC
We consider the problem of learning the preferences of a heterogeneous population by observing choices from an assortment of products, ads, or other offerings. Our observation model takes a form common in assortment planning applications: each arriving customer is offered an assortment consisting of a subset of all possible offerings; we observe only the assortment and the customer's single choice. In this paper we propose a mixture choice model with a natural underlying low-dimensional structure, and show how to estimate its parameters. In our model, the preferences of each customer or segment follow a separate parametric choice model, but the underlying structure of these parameters over all the models has low dimension. We show that a nuclear-norm regularized maximum likelihood estimator can learn the preferences of all customers using a number of observations much smaller than the number of item-customer combinations. This result shows the potential for structural assumptions to speed up learning and improve revenues in assortment planning and customization. We provide a specialized factored gradient descent algorithm and study the success of the approach empirically.
Nathan Kallus, Madeleine Udell
null
1509.05113
null
null
Fast Gaussian Process Regression for Big Data
cs.LG stat.ML
Gaussian Processes are widely used for regression tasks. A known limitation in the application of Gaussian Processes to regression tasks is that the computation of the solution requires performing a matrix inversion. The solution also requires the storage of a large matrix in memory. These factors restrict the application of Gaussian Process regression to small and moderate size data sets. We present an algorithm that combines estimates from models developed using subsets of the data obtained in a manner similar to the bootstrap. The sample size is a critical parameter for this algorithm. Guidelines for reasonable choices of algorithm parameters, based on detailed experimental study, are provided. Various techniques have been proposed to scale Gaussian Processes to large scale regression tasks. The most appropriate choice depends on the problem context. The proposed method is most appropriate for problems where an additive model works well and the response depends on a small number of features. The minimax rate of convergence for such problems is attractive and we can build effective models with a small subset of the data. The Stochastic Variational Gaussian Process and the Sparse Gaussian Process are also appropriate choices for such problems. These methods pick a subset of data based on theoretical considerations. The proposed algorithm uses bagging and random sampling. Results from experiments conducted as part of this study indicate that the algorithm presented in this work can be as effective as these methods. Model stacking can be used to combine the model developed with the proposed method with models from other methods for large scale regression such as Gradient Boosted Trees. This can yield performance gains.
Sourish Das, Sasanka Roy, Rajiv Sambasivan
null
1509.05142
null
null
Generalized Emphatic Temporal Difference Learning: Bias-Variance Analysis
stat.ML cs.LG
We consider the off-policy evaluation problem in Markov decision processes with function approximation. We propose a generalization of the recently introduced \emph{emphatic temporal differences} (ETD) algorithm \citep{SuttonMW15}, which encompasses the original ETD($\lambda$), as well as several other off-policy evaluation algorithms as special cases. We call this framework \ETD, where our introduced parameter $\beta$ controls the decay rate of an importance-sampling term. We study conditions under which the projected fixed-point equation underlying \ETD\ involves a contraction operator, allowing us to present the first asymptotic error bounds (bias) for \ETD. Our results show that the original ETD algorithm always involves a contraction operator, and its bias is bounded. Moreover, by controlling $\beta$, our proposed generalization allows trading-off bias for variance reduction, thereby achieving a lower total error.
Assaf Hallak, Aviv Tamar, Remi Munos, Shie Mannor
null
1509.05172
null
null
Taming the ReLU with Parallel Dither in a Deep Neural Network
cs.LG
Rectified Linear Units (ReLU) seem to have displaced traditional 'smooth' nonlinearities as activation-function-du-jour in many - but not all - deep neural network (DNN) applications. However, nobody seems to know why. In this article, we argue that ReLU are useful because they are ideal demodulators - this helps them perform fast abstract learning. However, this fast learning comes at the expense of serious nonlinear distortion products - decoy features. We show that Parallel Dither acts to suppress the decoy features, preventing overfitting and leaving the true features cleanly demodulated for rapid, reliable learning.
Andrew J.R. Simpson
null
1509.05173
null
null
(Blue) Taxi Destination and Trip Time Prediction from Partial Trajectories
stat.ML cs.AI cs.CY cs.LG
Real-time estimation of destination and travel time for taxis is of great importance for existing electronic dispatch systems. We present an approach based on trip matching and ensemble learning, in which we leverage the patterns observed in a dataset of roughly 1.7 million taxi journeys to predict the corresponding final destination and travel time for ongoing taxi trips, as a solution for the ECML/PKDD Discovery Challenge 2015 competition. The results of our empirical evaluation show that our approach is effective and very robust, which led our team -- BlueTaxi -- to the 3rd and 7th position of the final rankings for the trip time and destination prediction tasks, respectively. Given the fact that the final rankings were computed using a very small test set (with only 320 trips) we believe that our approach is one of the most robust solutions for the challenge based on the consistency of our good results across the test sets.
Hoang Thanh Lam and Ernesto Diaz-Aviles and Alessandra Pascale and Yiannis Gkoufas and Bei Chen
null
1509.05257
null
null
DeXpression: Deep Convolutional Neural Network for Expression Recognition
cs.CV cs.LG
We propose a convolutional neural network (CNN) architecture for facial expression recognition. The proposed architecture is independent of any hand-crafted feature extraction and performs better than the earlier proposed convolutional neural network based approaches. We visualize the automatically extracted features which have been learned by the network in order to provide a better understanding. The standard datasets, i.e. Extended Cohn-Kanade (CKP) and MMI Facial Expression Databse are used for the quantitative evaluation. On the CKP set the current state of the art approach, using CNNs, achieves an accuracy of 99.2%. For the MMI dataset, currently the best accuracy for emotion recognition is 93.33%. The proposed architecture achieves 99.6% for CKP and 98.63% for MMI, therefore performing better than the state of the art using CNNs. Automatic facial expression recognition has a broad spectrum of applications such as human-computer interaction and safety systems. This is due to the fact that non-verbal cues are important forms of communication and play a pivotal role in interpersonal communication. The performance of the proposed architecture endorses the efficacy and reliable usage of the proposed work for real world applications.
Peter Burkert, Felix Trier, Muhammad Zeshan Afzal, Andreas Dengel, Marcus Liwicki
null
1509.05371
null
null
Learning to Hash for Indexing Big Data - A Survey
cs.LG
The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the straightforward solution using exhaustive comparison is infeasible due to the prohibitive computational complexity and memory requirement. In response, Approximate Nearest Neighbor (ANN) search based on hashing techniques has become popular due to its promising performance in both efficiency and accuracy. Prior randomized hashing methods, e.g., Locality-Sensitive Hashing (LSH), explore data-independent hash functions with random projections or permutations. Although having elegant theoretic guarantees on the search quality in certain metric spaces, performance of randomized hashing has been shown insufficient in many real-world applications. As a remedy, new approaches incorporating data-driven learning methods in development of advanced hash functions have emerged. Such learning to hash methods exploit information such as data distributions or class labels when optimizing the hash codes or functions. Importantly, the learned hash codes are able to preserve the proximity of neighboring data in the original feature spaces in the hash code spaces. The goal of this paper is to provide readers with systematic understanding of insights, pros and cons of the emerging techniques. We provide a comprehensive survey of the learning to hash framework and representative techniques of various types, including unsupervised, semi-supervised, and supervised. In addition, we also summarize recent hashing approaches utilizing the deep learning models. Finally, we discuss the future direction and trends of research in this area.
Jun Wang, Wei Liu, Sanjiv Kumar, Shih-Fu Chang
null
1509.05472
null
null
Algorithmic statistics, prediction and machine learning
cs.LG cs.IT math.IT
Algorithmic statistics considers the following problem: given a binary string $x$ (e.g., some experimental data), find a "good" explanation of this data. It uses algorithmic information theory to define formally what is a good explanation. In this paper we extend this framework in two directions. First, the explanations are not only interesting in themselves but also used for prediction: we want to know what kind of data we may reasonably expect in similar situations (repeating the same experiment). We show that some kind of hierarchy can be constructed both in terms of algorithmic statistics and using the notion of a priori probability, and these two approaches turn out to be equivalent. Second, a more realistic approach that goes back to machine learning theory, assumes that we have not a single data string $x$ but some set of "positive examples" $x_1,\ldots,x_l$ that all belong to some unknown set $A$, a property that we want to learn. We want this set $A$ to contain all positive examples and to be as small and simple as possible. We show how algorithmic statistic can be extended to cover this situation.
Alexey Milovanov
null
1509.05473
null
null
Fast and Simple PCA via Convex Optimization
math.OC cs.LG cs.NA math.NA
The problem of principle component analysis (PCA) is traditionally solved by spectral or algebraic methods. We show how computing the leading principal component could be reduced to solving a \textit{small} number of well-conditioned {\it convex} optimization problems. This gives rise to a new efficient method for PCA based on recent advances in stochastic methods for convex optimization. In particular we show that given a $d\times d$ matrix $\X = \frac{1}{n}\sum_{i=1}^n\x_i\x_i^{\top}$ with top eigenvector $\u$ and top eigenvalue $\lambda_1$ it is possible to: \begin{itemize} \item compute a unit vector $\w$ such that $(\w^{\top}\u)^2 \geq 1-\epsilon$ in $\tilde{O}\left({\frac{d}{\delta^2}+N}\right)$ time, where $\delta = \lambda_1 - \lambda_2$ and $N$ is the total number of non-zero entries in $\x_1,...,\x_n$, \item compute a unit vector $\w$ such that $\w^{\top}\X\w \geq \lambda_1-\epsilon$ in $\tilde{O}(d/\epsilon^2)$ time. \end{itemize} To the best of our knowledge, these bounds are the fastest to date for a wide regime of parameters. These results could be further accelerated when $\delta$ (in the first case) and $\epsilon$ (in the second case) are smaller than $\sqrt{d/N}$.
Dan Garber and Elad Hazan
null
1509.05647
null
null
Accelerating Optimization via Adaptive Prediction
stat.ML cs.LG
We present a powerful general framework for designing data-dependent optimization algorithms, building upon and unifying recent techniques in adaptive regularization, optimistic gradient predictions, and problem-dependent randomization. We first present a series of new regret guarantees that hold at any time and under very minimal assumptions, and then show how different relaxations recover existing algorithms, both basic as well as more recent sophisticated ones. Finally, we show how combining adaptivity, optimism, and problem-dependent randomization can guide the design of algorithms that benefit from more favorable guarantees than recent state-of-the-art methods.
Mehryar Mohri, Scott Yang
null
1509.05760
null
null
"Oddball SGD": Novelty Driven Stochastic Gradient Descent for Training Deep Neural Networks
cs.LG
Stochastic Gradient Descent (SGD) is arguably the most popular of the machine learning methods applied to training deep neural networks (DNN) today. It has recently been demonstrated that SGD can be statistically biased so that certain elements of the training set are learned more rapidly than others. In this article, we place SGD into a feedback loop whereby the probability of selection is proportional to error magnitude. This provides a novelty-driven oddball SGD process that learns more rapidly than traditional SGD by prioritising those elements of the training set with the largest novelty (error). In our DNN example, oddball SGD trains some 50x faster than regular SGD.
Andrew J.R. Simpson
null
1509.05765
null
null
BLC: Private Matrix Factorization Recommenders via Automatic Group Learning
cs.LG stat.ML
We propose a privacy-enhanced matrix factorization recommender that exploits the fact that users can often be grouped together by interest. This allows a form of "hiding in the crowd" privacy. We introduce a novel matrix factorization approach suited to making recommendations in a shared group (or nym) setting and the BLC algorithm for carrying out this matrix factorization in a privacy-enhanced manner. We demonstrate that the increased privacy does not come at the cost of reduced recommendation accuracy.
Alessandro Checco, Giuseppe Bianchi, Doug Leith
null
1509.05789
null
null
Word, graph and manifold embedding from Markov processes
cs.CL cs.LG stat.ML
Continuous vector representations of words and objects appear to carry surprisingly rich semantic content. In this paper, we advance both the conceptual and theoretical understanding of word embeddings in three ways. First, we ground embeddings in semantic spaces studied in cognitive-psychometric literature and introduce new evaluation tasks. Second, in contrast to prior work, we take metric recovery as the key object of study, unify existing algorithms as consistent metric recovery methods based on co-occurrence counts from simple Markov random walks, and propose a new recovery algorithm. Third, we generalize metric recovery to graphs and manifolds, relating co-occurence counts on random walks in graphs and random processes on manifolds to the underlying metric to be recovered, thereby reconciling manifold estimation and embedding algorithms. We compare embedding algorithms across a range of tasks, from nonlinear dimensionality reduction to three semantic language tasks, including analogies, sequence completion, and classification.
Tatsunori B. Hashimoto, David Alvarez-Melis, Tommi S. Jaakkola
null
1509.05808
null
null
STDP as presynaptic activity times rate of change of postsynaptic activity
cs.NE cs.LG q-bio.NC
We introduce a weight update formula that is expressed only in terms of firing rates and their derivatives and that results in changes consistent with those associated with spike-timing dependent plasticity (STDP) rules and biological observations, even though the explicit timing of spikes is not needed. The new rule changes a synaptic weight in proportion to the product of the presynaptic firing rate and the temporal rate of change of activity on the postsynaptic side. These quantities are interesting for studying theoretical explanation for synaptic changes from a machine learning perspective. In particular, if neural dynamics moved neural activity towards reducing some objective function, then this STDP rule would correspond to stochastic gradient descent on that objective function.
Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang and Yuhuai Wu
null
1509.05936
null
null
Telugu OCR Framework using Deep Learning
stat.ML cs.AI cs.CV cs.LG cs.NE
In this paper, we address the task of Optical Character Recognition(OCR) for the Telugu script. We present an end-to-end framework that segments the text image, classifies the characters and extracts lines using a language model. The segmentation is based on mathematical morphology. The classification module, which is the most challenging task of the three, is a deep convolutional neural network. The language is modelled as a third degree markov chain at the glyph level. Telugu script is a complex alphasyllabary and the language is agglutinative, making the problem hard. In this paper we apply the latest advances in neural networks to achieve state-of-the-art error rates. We also review convolutional neural networks in great detail and expound the statistical justification behind the many tricks needed to make Deep Learning work.
Rakesh Achanta, Trevor Hastie
null
1509.05962
null
null
Denoising without access to clean data using a partitioned autoencoder
cs.NE cs.LG
Training a denoising autoencoder neural network requires access to truly clean data, a requirement which is often impractical. To remedy this, we introduce a method to train an autoencoder using only noisy data, having examples with and without the signal class of interest. The autoencoder learns a partitioned representation of signal and noise, learning to reconstruct each separately. We illustrate the method by denoising birdsong audio (available abundantly in uncontrolled noisy datasets) using a convolutional autoencoder.
Dan Stowell and Richard E. Turner
null
1509.05982
null
null
Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks
cs.CV cs.IR cs.LG
Sentiment analysis of online user generated content is important for many social media analytics tasks. Researchers have largely relied on textual sentiment analysis to develop systems to predict political elections, measure economic indicators, and so on. Recently, social media users are increasingly using images and videos to express their opinions and share their experiences. Sentiment analysis of such large scale visual content can help better extract user sentiments toward events or topics, such as those in image tweets, so that prediction of sentiment from visual content is complementary to textual sentiment analysis. Motivated by the needs in leveraging large scale yet noisy training data to solve the extremely challenging problem of image sentiment analysis, we employ Convolutional Neural Networks (CNN). We first design a suitable CNN architecture for image sentiment analysis. We obtain half a million training samples by using a baseline sentiment algorithm to label Flickr images. To make use of such noisy machine labeled data, we employ a progressive strategy to fine-tune the deep network. Furthermore, we improve the performance on Twitter images by inducing domain transfer with a small number of manually labeled Twitter images. We have conducted extensive experiments on manually labeled Twitter images. The results show that the proposed CNN can achieve better performance in image sentiment analysis than competing algorithms.
Quanzeng You, Jiebo Luo, Hailin Jin, Jianchao Yang
null
1509.06041
null
null
Significance Analysis of High-Dimensional, Low-Sample Size Partially Labeled Data
stat.ML cs.LG stat.ME
Classification and clustering are both important topics in statistical learning. A natural question herein is whether predefined classes are really different from one another, or whether clusters are really there. Specifically, we may be interested in knowing whether the two classes defined by some class labels (when they are provided), or the two clusters tagged by a clustering algorithm (where class labels are not provided), are from the same underlying distribution. Although both are challenging questions for the high-dimensional, low-sample size data, there has been some recent development for both. However, when it is costly to manually place labels on observations, it is often that only a small portion of the class labels is available. In this article, we propose a significance analysis approach for such type of data, namely partially labeled data. Our method makes use of the whole data and tries to test the class difference as if all the labels were observed. Compared to a testing method that ignores the label information, our method provides a greater power, meanwhile, maintaining the size, illustrated by a comprehensive simulation study. Theoretical properties of the proposed method are studied with emphasis on the high-dimensional, low-sample size setting. Our simulated examples help to understand when and how the information extracted from the labeled data can be effective. A real data example further illustrates the usefulness of the proposed method.
Qiyi Lu, Xingye Qiao
null
1509.06088
null
null
Multilayer bootstrap network for unsupervised speaker recognition
cs.LG cs.SD
We apply multilayer bootstrap network (MBN), a recent proposed unsupervised learning method, to unsupervised speaker recognition. The proposed method first extracts supervectors from an unsupervised universal background model, then reduces the dimension of the high-dimensional supervectors by multilayer bootstrap network, and finally conducts unsupervised speaker recognition by clustering the low-dimensional data. The comparison results with 2 unsupervised and 1 supervised speaker recognition techniques demonstrate the effectiveness and robustness of the proposed method.
Xiao-Lei Zhang
null
1509.06095
null
null
Deep Spatial Autoencoders for Visuomotor Learning
cs.LG cs.CV cs.RO
Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera images. Our method uses a deep spatial autoencoder to acquire a set of feature points that describe the environment for the current task, such as the positions of objects, and then learns a motion skill with these feature points using an efficient reinforcement learning method based on local linear models. The resulting controller reacts continuously to the learned feature points, allowing the robot to dynamically manipulate objects in the world with closed-loop control. We demonstrate our method with a PR2 robot on tasks that include pushing a free-standing toy block, picking up a bag of rice using a spatula, and hanging a loop of rope on a hook at various positions. In each task, our method automatically learns to track task-relevant objects and manipulate their configuration with the robot's arm.
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
null
1509.06113
null
null
The Utility of Clustering in Prediction Tasks
cs.LG
We explore the utility of clustering in reducing error in various prediction tasks. Previous work has hinted at the improvement in prediction accuracy attributed to clustering algorithms if used to pre-process the data. In this work we more deeply investigate the direct utility of using clustering to improve prediction accuracy and provide explanations for why this may be so. We look at a number of datasets, run k-means at different scales and for each scale we train predictors. This produces k sets of predictions. These predictions are then combined by a na\"ive ensemble. We observed that this use of a predictor in conjunction with clustering improved the prediction accuracy in most datasets. We believe this indicates the predictive utility of exploiting structure in the data and the data compression handed over by clustering. We also found that using this method improves upon the prediction of even a Random Forests predictor which suggests this method is providing a novel, and useful source of variance in the prediction process.
Shubhendu Trivedi, Zachary A. Pardos, Neil T. Heffernan
null
1509.06163
null
null
Sports highlights generation based on acoustic events detection: A rugby case study
cs.SD cs.AI cs.LG
We approach the challenging problem of generating highlights from sports broadcasts utilizing audio information only. A language-independent, multi-stage classification approach is employed for detection of key acoustic events which then act as a platform for summarization of highlight scenes. Objective results and human experience indicate that our system is highly efficient.
Anant Baijal, Jaeyoun Cho, Woojung Lee and Byeong-Seob Ko
10.1109/ICCE.2015.7066303
1509.06279
null
null
Efficient Neighborhood Selection for Gaussian Graphical Models
stat.ML cs.IT cs.LG math.IT
This paper addresses the problem of neighborhood selection for Gaussian graphical models. We present two heuristic algorithms: a forward-backward greedy algorithm for general Gaussian graphical models based on mutual information test, and a threshold-based algorithm for walk summable Gaussian graphical models. Both algorithms are shown to be structurally consistent, and efficient. Numerical results show that both algorithms work very well.
Yingxiang Yang, Jalal Etesami, Negar Kiyavash
null
1509.06449
null
null
Harmonic Extension
cs.LG math.NA
In this paper, we consider the harmonic extension problem, which is widely used in many applications of machine learning. We find that the transitional method of graph Laplacian fails to produce a good approximation of the classical harmonic function. To tackle this problem, we propose a new method called the point integral method (PIM). We consider the harmonic extension problem from the point of view of solving PDEs on manifolds. The basic idea of the PIM method is to approximate the harmonicity using an integral equation, which is easy to be discretized from points. Based on the integral equation, we explain the reason why the transitional graph Laplacian may fail to approximate the harmonicity in the classical sense and propose a different approach which we call the volume constraint method (VCM). Theoretically, both the PIM and the VCM computes a harmonic function with convergence guarantees, and practically, they are both simple, which amount to solve a linear system. One important application of the harmonic extension in machine learning is semi-supervised learning. We run a popular semi-supervised learning algorithm by Zhu et al. over a couple of well-known datasets and compare the performance of the aforementioned approaches. Our experiments show the PIM performs the best.
Zuoqiang Shi and Jian Sun and Minghao Tian
null
1509.06458
null
null
Deep Reinforcement Learning with Double Q-learning
cs.LG
The popular Q-learning algorithm is known to overestimate action values under certain conditions. It was not previously known whether, in practice, such overestimations are common, whether they harm performance, and whether they can generally be prevented. In this paper, we answer all these questions affirmatively. In particular, we first show that the recent DQN algorithm, which combines Q-learning with a deep neural network, suffers from substantial overestimations in some games in the Atari 2600 domain. We then show that the idea behind the Double Q-learning algorithm, which was introduced in a tabular setting, can be generalized to work with large-scale function approximation. We propose a specific adaptation to the DQN algorithm and show that the resulting algorithm not only reduces the observed overestimations, as hypothesized, but that this also leads to much better performance on several games.
Hado van Hasselt, Arthur Guez, David Silver
null
1509.06461
null
null
Tensorizing Neural Networks
cs.LG cs.NE
Deep neural networks currently demonstrate state-of-the-art performance in several domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times.
Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov
null
1509.06569
null
null
Graph Kernels exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions
cs.LG cs.AI
In this paper we present a novel graph kernel framework inspired the by the Weisfeiler-Lehman (WL) isomorphism tests. Any WL test comprises a relabelling phase of the nodes based on test-specific information extracted from the graph, for example the set of neighbours of a node. We defined a novel relabelling and derived two kernels of the framework from it. The novel kernels are very fast to compute and achieve state-of-the-art results on five real-world datasets.
Giovanni Da San Martino, Nicol\`o Navarin, and Alessandro Sperduti
10.1007/978-3-319-12640-1_12
1509.06589
null
null
Reasoning about Entailment with Neural Attention
cs.CL cs.AI cs.LG cs.NE
While most approaches to automatically recognizing entailment relations have used classifiers employing hand engineered features derived from complex natural language processing pipelines, in practice their performance has been only slightly better than bag-of-word pair classifiers using only lexical similarity. The only attempt so far to build an end-to-end differentiable neural network for entailment failed to outperform such a simple similarity classifier. In this paper, we propose a neural model that reads two sentences to determine entailment using long short-term memory units. We extend this model with a word-by-word neural attention mechanism that encourages reasoning over entailments of pairs of words and phrases. Furthermore, we present a qualitative analysis of attention weights produced by this model, demonstrating such reasoning capabilities. On a large entailment dataset this model outperforms the previous best neural model and a classifier with engineered features by a substantial margin. It is the first generic end-to-end differentiable system that achieves state-of-the-art accuracy on a textual entailment dataset.
Tim Rockt\"aschel, Edward Grefenstette, Karl Moritz Hermann, Tom\'a\v{s} Ko\v{c}isk\'y, Phil Blunsom
null
1509.06664
null
null
Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search
cs.LG cs.RO
Model predictive control (MPC) is an effective method for controlling robotic systems, particularly autonomous aerial vehicles such as quadcopters. However, application of MPC can be computationally demanding, and typically requires estimating the state of the system, which can be challenging in complex, unstructured environments. Reinforcement learning can in principle forego the need for explicit state estimation and acquire a policy that directly maps sensor readings to actions, but is difficult to apply to unstable systems that are liable to fail catastrophically during training before an effective policy has been found. We propose to combine MPC with reinforcement learning in the framework of guided policy search, where MPC is used to generate data at training time, under full state observations provided by an instrumented training environment. This data is used to train a deep neural network policy, which is allowed to access only the raw observations from the vehicle's onboard sensors. After training, the neural network policy can successfully control the robot without knowledge of the full state, and at a fraction of the computational cost of MPC. We evaluate our method by learning obstacle avoidance policies for a simulated quadrotor, using simulated onboard sensors and no explicit state estimation at test time.
Tianhao Zhang, Gregory Kahn, Sergey Levine, Pieter Abbeel
null
1509.06791
null
null
Bandit Label Inference for Weakly Supervised Learning
cs.LG stat.ML
The scarcity of data annotated at the desired level of granularity is a recurring issue in many applications. Significant amounts of effort have been devoted to developing weakly supervised methods tailored to each individual setting, which are often carefully designed to take advantage of the particular properties of weak supervision regimes, form of available data and prior knowledge of the task at hand. Unfortunately, it is difficult to adapt these methods to new tasks and/or forms of data, which often require different weak supervision regimes or models. We present a general-purpose method that can solve any weakly supervised learning problem irrespective of the weak supervision regime or the model. The proposed method turns any off-the-shelf strongly supervised classifier into a weakly supervised classifier and allows the user to specify any arbitrary weakly supervision regime via a loss function. We apply the method to several different weak supervision regimes and demonstrate competitive results compared to methods specifically engineered for those settings.
Ke Li and Jitendra Malik
null
1509.06807
null
null
Learning Wake-Sleep Recurrent Attention Models
cs.LG
Despite their success, convolutional neural networks are computationally expensive because they must examine all image locations. Stochastic attention-based models have been shown to improve computational efficiency at test time, but they remain difficult to train because of intractable posterior inference and high variance in the stochastic gradient estimates. Borrowing techniques from the literature on training deep generative models, we present the Wake-Sleep Recurrent Attention Model, a method for training stochastic attention networks which improves posterior inference and which reduces the variability in the stochastic gradients. We show that our method can greatly speed up the training time for stochastic attention networks in the domains of image classification and caption generation.
Jimmy Ba, Roger Grosse, Ruslan Salakhutdinov, Brendan Frey
null
1509.06812
null
null
Model-based Reinforcement Learning with Parametrized Physical Models and Optimism-Driven Exploration
cs.LG cs.RO
In this paper, we present a robotic model-based reinforcement learning method that combines ideas from model identification and model predictive control. We use a feature-based representation of the dynamics that allows the dynamics model to be fitted with a simple least squares procedure, and the features are identified from a high-level specification of the robot's morphology, consisting of the number and connectivity structure of its links. Model predictive control is then used to choose the actions under an optimistic model of the dynamics, which produces an efficient and goal-directed exploration strategy. We present real time experimental results on standard benchmark problems involving the pendulum, cartpole, and double pendulum systems. Experiments indicate that our method is able to learn a range of benchmark tasks substantially faster than the previous best methods. To evaluate our approach on a realistic robotic control task, we also demonstrate real time control of a simulated 7 degree of freedom arm.
Christopher Xie, Sachin Patil, Teodor Moldovan, Sergey Levine, Pieter Abbeel
null
1509.06824
null
null
Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours
cs.LG cs.CV cs.RO
Current learning-based robot grasping approaches exploit human-labeled datasets for training the models. However, there are two problems with such a methodology: (a) since each object can be grasped in multiple ways, manually labeling grasp locations is not a trivial task; (b) human labeling is biased by semantics. While there have been attempts to train robots using trial-and-error experiments, the amount of data used in such experiments remains substantially low and hence makes the learner prone to over-fitting. In this paper, we take the leap of increasing the available training data to 40 times more than prior work, leading to a dataset size of 50K data points collected over 700 hours of robot grasping attempts. This allows us to train a Convolutional Neural Network (CNN) for the task of predicting grasp locations without severe overfitting. In our formulation, we recast the regression problem to an 18-way binary classification over image patches. We also present a multi-stage learning approach where a CNN trained in one stage is used to collect hard negatives in subsequent stages. Our experiments clearly show the benefit of using large-scale datasets (and multi-stage training) for the task of grasping. We also compare to several baselines and show state-of-the-art performance on generalization to unseen objects for grasping.
Lerrel Pinto and Abhinav Gupta
null
1509.06825
null
null
One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors
cs.LG cs.RO
One of the key challenges in applying reinforcement learning to complex robotic control tasks is the need to gather large amounts of experience in order to find an effective policy for the task at hand. Model-based reinforcement learning can achieve good sample efficiency, but requires the ability to learn a model of the dynamics that is good enough to learn an effective policy. In this work, we develop a model-based reinforcement learning algorithm that combines prior knowledge from previous tasks with online adaptation of the dynamics model. These two ingredients enable highly sample-efficient learning even in regimes where estimating the true dynamics is very difficult, since the online model adaptation allows the method to locally compensate for unmodeled variation in the dynamics. We encode the prior experience into a neural network dynamics model, adapt it online by progressively refitting a local linear model of the dynamics, and use model predictive control to plan under these dynamics. Our experimental results show that this approach can be used to solve a variety of complex robotic manipulation tasks in just a single attempt, using prior data from other manipulation behaviors.
Justin Fu, Sergey Levine, Pieter Abbeel
null
1509.06841
null
null
Efficient reconstruction of transmission probabilities in a spreading process from partial observations
physics.soc-ph cond-mat.stat-mech cs.LG cs.SI stat.ML
An important problem of reconstruction of diffusion network and transmission probabilities from the data has attracted a considerable attention in the past several years. A number of recent papers introduced efficient algorithms for the estimation of spreading parameters, based on the maximization of the likelihood of observed cascades, assuming that the full information for all the nodes in the network is available. In this work, we focus on a more realistic and restricted scenario, in which only a partial information on the cascades is available: either the set of activation times for a limited number of nodes, or the states of nodes for a subset of observation times. To tackle this problem, we first introduce a framework based on the maximization of the likelihood of the incomplete diffusion trace. However, we argue that the computation of this incomplete likelihood is a computationally hard problem, and show that a fast and robust reconstruction of transmission probabilities in sparse networks can be achieved with a new algorithm based on recently introduced dynamic message-passing equations for the spreading processes. The suggested approach can be easily generalized to a large class of discrete and continuous dynamic models, as well as to the cases of dynamically-changing networks and noisy information.
Andrey Y. Lokhov, Theodor Misiakiewicz
null
1509.06893
null
null
Fast k-NN search
stat.ML cs.DS cs.LG
Efficient index structures for fast approximate nearest neighbor queries are required in many applications such as recommendation systems. In high-dimensional spaces, many conventional methods suffer from excessive usage of memory and slow response times. We propose a method where multiple random projection trees are combined by a novel voting scheme. The key idea is to exploit the redundancy in a large number of candidate sets obtained by independently generated random projections in order to reduce the number of expensive exact distance evaluations. The method is straightforward to implement using sparse projections which leads to a reduced memory footprint and fast index construction. Furthermore, it enables grouping of the required computations into big matrix multiplications, which leads to additional savings due to cache effects and low-level parallelization. We demonstrate by extensive experiments on a wide variety of data sets that the method is faster than existing partitioning tree or hashing based approaches, making it the fastest available technique on high accuracy levels.
Ville Hyv\"onen, Teemu Pitk\"anen, Sotiris Tasoulis, Elias J\"a\"asaari, Risto Tuomainen, Liang Wang, Jukka Corander, Teemu Roos
10.1109/BigData.2016.7840682
1509.06957
null
null
A Novel Pre-processing Scheme to Improve the Prediction of Sand Fraction from Seismic Attributes using Neural Networks
cs.CE cs.LG
This paper presents a novel pre-processing scheme to improve the prediction of sand fraction from multiple seismic attributes such as seismic impedance, amplitude and frequency using machine learning and information filtering. The available well logs along with the 3-D seismic data have been used to benchmark the proposed pre-processing stage using a methodology which primarily consists of three steps: pre-processing, training and post-processing. An Artificial Neural Network (ANN) with conjugate-gradient learning algorithm has been used to model the sand fraction. The available sand fraction data from the high resolution well logs has far more information content than the low resolution seismic attributes. Therefore, regularization schemes based on Fourier Transform (FT), Wavelet Decomposition (WD) and Empirical Mode Decomposition (EMD) have been proposed to shape the high resolution sand fraction data for effective machine learning. The input data sets have been segregated into training, testing and validation sets. The test results are primarily used to check different network structures and activation function performances. Once the network passes the testing phase with an acceptable performance in terms of the selected evaluators, the validation phase follows. In the validation stage, the prediction model is tested against unseen data. The network yielding satisfactory performance in the validation stage is used to predict lithological properties from seismic attributes throughout a given volume. Finally, a post-processing scheme using 3-D spatial filtering is implemented for smoothing the sand fraction in the volume. Prediction of lithological properties using this framework is helpful for Reservoir Characterization.
Soumi Chaki, Aurobinda Routray and William K. Mohanty
10.1109/JSTARS.2015.2404808
1509.07065
null
null
Detecting phase transitions in collective behavior using manifold's curvature
math.DS cs.LG cs.MA math.GT stat.ML
If a given behavior of a multi-agent system restricts the phase variable to a invariant manifold, then we define a phase transition as change of physical characteristics such as speed, coordination, and structure. We define such a phase transition as splitting an underlying manifold into two sub-manifolds with distinct dimensionalities around the singularity where the phase transition physically exists. Here, we propose a method of detecting phase transitions and splitting the manifold into phase transitions free sub-manifolds. Therein, we utilize a relationship between curvature and singular value ratio of points sampled in a curve, and then extend the assertion into higher-dimensions using the shape operator. Then we attest that the same phase transition can also be approximated by singular value ratios computed locally over the data in a neighborhood on the manifold. We validate the phase transitions detection method using one particle simulation and three real world examples.
Kelum Gajamannage, Erik M. Bollt
10.3934/mbe.2017027
1509.07078
null
null
Deep Temporal Sigmoid Belief Networks for Sequence Modeling
stat.ML cs.LG
Deep dynamic generative models are developed to learn sequential dependencies in time-series data. The multi-layered model is designed by constructing a hierarchy of temporal sigmoid belief networks (TSBNs), defined as a sequential stack of sigmoid belief networks (SBNs). Each SBN has a contextual hidden state, inherited from the previous SBNs in the sequence, and is used to regulate its hidden bias. Scalable learning and inference algorithms are derived by introducing a recognition model that yields fast sampling from the variational posterior. This recognition model is trained jointly with the generative model, by maximizing its variational lower bound on the log-likelihood. Experimental results on bouncing balls, polyphonic music, motion capture, and text streams show that the proposed approach achieves state-of-the-art predictive performance, and has the capacity to synthesize various sequences.
Zhe Gan, Chunyuan Li, Ricardo Henao, David Carlson and Lawrence Carin
null
1509.07087
null
null
A review of learning vector quantization classifiers
cs.LG astro-ph.IM cs.NE stat.ML
In this work we present a review of the state of the art of Learning Vector Quantization (LVQ) classifiers. A taxonomy is proposed which integrates the most relevant LVQ approaches to date. The main concepts associated with modern LVQ approaches are defined. A comparison is made among eleven LVQ classifiers using one real-world and two artificial datasets.
David Nova and Pablo A. Estevez
10.1007/s00521-013-1535-3
1509.07093
null
null
On The Direct Maximization of Quadratic Weighted Kappa
cs.LG
In recent years, quadratic weighted kappa has been growing in popularity in the machine learning community as an evaluation metric in domains where the target labels to be predicted are drawn from integer ratings, usually obtained from human experts. For example, it was the metric of choice in several recent, high profile machine learning contests hosted on Kaggle : https://www.kaggle.com/c/asap-aes , https://www.kaggle.com/c/asap-sas , https://www.kaggle.com/c/diabetic-retinopathy-detection . Yet, little is understood about the nature of this metric, its underlying mathematical properties, where it fits among other common evaluation metrics such as mean squared error (MSE) and correlation, or if it can be optimized analytically, and if so, how. Much of this is due to the cumbersome way that this metric is commonly defined. In this paper we first derive an equivalent but much simpler, and more useful, definition for quadratic weighted kappa, and then employ this alternate form to address the above issues.
David Vaughn, Derek Justice
null
1509.07107
null
null
IllinoisSL: A JAVA Library for Structured Prediction
cs.LG cs.CL stat.ML
IllinoisSL is a Java library for learning structured prediction models. It supports structured Support Vector Machines and structured Perceptron. The library consists of a core learning module and several applications, which can be executed from command-lines. Documentation is provided to guide users. In Comparison to other structured learning libraries, IllinoisSL is efficient, general, and easy to use.
Kai-Wei Chang and Shyam Upadhyay and Ming-Wei Chang and Vivek Srikumar and Dan Roth
null
1509.07179
null
null
Sparsity-based Correction of Exponential Artifacts
cs.LG
This paper describes an exponential transient excision algorithm (ETEA). In biomedical time series analysis, e.g., in vivo neural recording and electrocorticography (ECoG), some measurement artifacts take the form of piecewise exponential transients. The proposed method is formulated as an unconstrained convex optimization problem, regularized by smoothed l1-norm penalty function, which can be solved by majorization-minimization (MM) method. With a slight modification of the regularizer, ETEA can also suppress more irregular piecewise smooth artifacts, especially, ocular artifacts (OA) in electroencephalog- raphy (EEG) data. Examples of synthetic signal, EEG data, and ECoG data are presented to illustrate the proposed algorithms.
Yin Ding and Ivan W. Selesnick
10.1016/j.sigpro.2015.09.017
1509.07234
null
null
Provable approximation properties for deep neural networks
stat.ML cs.LG cs.NE
We discuss approximation of functions using deep neural nets. Given a function $f$ on a $d$-dimensional manifold $\Gamma \subset \mathbb{R}^m$, we construct a sparsely-connected depth-4 neural network and bound its error in approximating $f$. The size of the network depends on dimension and curvature of the manifold $\Gamma$, the complexity of $f$, in terms of its wavelet description, and only weakly on the ambient dimension $m$. Essentially, our network computes wavelet functions, which are computed from Rectified Linear Units (ReLU)
Uri Shaham, Alexander Cloninger, Ronald R. Coifman
10.1016/j.acha.2016.04.003
1509.07385
null
null
Adaptive Sequential Optimization with Applications to Machine Learning
cs.LG cs.DS
A framework is introduced for solving a sequence of slowly changing optimization problems, including those arising in regression and classification applications, using optimization algorithms such as stochastic gradient descent (SGD). The optimization problems change slowly in the sense that the minimizers change at either a fixed or bounded rate. A method based on estimates of the change in the minimizers and properties of the optimization algorithm is introduced for adaptively selecting the number of samples needed from the distributions underlying each problem in order to ensure that the excess risk, i.e., the expected gap between the loss achieved by the approximate minimizer produced by the optimization algorithm and the exact minimizer, does not exceed a target level. Experiments with synthetic and real data are used to confirm that this approach performs well.
Craig Wilson and Venugopal V. Veeravalli
null
1509.07422
null
null
A 128 channel Extreme Learning Machine based Neural Decoder for Brain Machine Interfaces
cs.LG cs.HC
Currently, state-of-the-art motor intention decoding algorithms in brain-machine interfaces are mostly implemented on a PC and consume significant amount of power. A machine learning co-processor in 0.35um CMOS for motor intention decoding in brain-machine interfaces is presented in this paper. Using Extreme Learning Machine algorithm and low-power analog processing, it achieves an energy efficiency of 290 GMACs/W at a classification rate of 50 Hz. The learning in second stage and corresponding digitally stored coefficients are used to increase robustness of the core analog processor. The chip is verified with neural data recorded in monkey finger movements experiment, achieving a decoding accuracy of 99.3% for movement type. The same co-processor is also used to decode time of movement from asynchronous neural spikes. With time-delayed feature dimension enhancement, the classification accuracy can be increased by 5% with limited number of input channels. Further, a sparsity promoting training scheme enables reduction of number of programmable weights by ~2X.
Yi Chen, Enyi Yao, Arindam Basu
10.1109/TBCAS.2015.2483618
1509.07450
null
null
Spatially Encoding Temporal Correlations to Classify Temporal Data Using Convolutional Neural Networks
cs.LG
We propose an off-line approach to explicitly encode temporal patterns spatially as different types of images, namely, Gramian Angular Fields and Markov Transition Fields. This enables the use of techniques from computer vision for feature learning and classification. We used Tiled Convolutional Neural Networks to learn high-level features from individual GAF, MTF, and GAF-MTF images on 12 benchmark time series datasets and two real spatial-temporal trajectory datasets. The classification results of our approach are competitive with state-of-the-art approaches on both types of data. An analysis of the features and weights learned by the CNNs explains why the approach works.
Zhiguang Wang and Tim Oates
null
1509.07481
null
null
Linear-time Learning on Distributions with Approximate Kernel Embeddings
stat.ML cs.LG
Many interesting machine learning problems are best posed by considering instances that are distributions, or sample sets drawn from distributions. Previous work devoted to machine learning tasks with distributional inputs has done so through pairwise kernel evaluations between pdfs (or sample sets). While such an approach is fine for smaller datasets, the computation of an $N \times N$ Gram matrix is prohibitive in large datasets. Recent scalable estimators that work over pdfs have done so only with kernels that use Euclidean metrics, like the $L_2$ distance. However, there are a myriad of other useful metrics available, such as total variation, Hellinger distance, and the Jensen-Shannon divergence. This work develops the first random features for pdfs whose dot product approximates kernels using these non-Euclidean metrics, allowing estimators using such kernels to scale to large datasets by working in a primal space, without computing large Gram matrices. We provide an analysis of the approximation error in using our proposed random features and show empirically the quality of our approximation both in estimating a Gram matrix and in solving learning tasks in real-world and synthetic data.
Danica J. Sutherland and Junier B. Oliva and Barnab\'as P\'oczos and Jeff Schneider
null
1509.07553
null
null
A Review of Feature Selection Methods Based on Mutual Information
cs.LG stat.ML
In this work we present a review of the state of the art of information theoretic feature selection methods. The concepts of feature relevance, redundance and complementarity (synergy) are clearly defined, as well as Markov blanket. The problem of optimal feature selection is defined. A unifying theoretical framework is described, which can retrofit successful heuristic criteria, indicating the approximations made by each method. A number of open problems in the field are presented.
Jorge R. Vergara, Pablo A. Est\'evez
10.1007/s00521-013-1368-0
1509.07577
null
null
Online Stochastic Linear Optimization under One-bit Feedback
cs.LG
In this paper, we study a special bandit setting of online stochastic linear optimization, where only one-bit of information is revealed to the learner at each round. This problem has found many applications including online advertisement and online recommendation. We assume the binary feedback is a random variable generated from the logit model, and aim to minimize the regret defined by the unknown linear function. Although the existing method for generalized linear bandit can be applied to our problem, the high computational cost makes it impractical for real-world problems. To address this challenge, we develop an efficient online learning algorithm by exploiting particular structures of the observation model. Specifically, we adopt online Newton step to estimate the unknown parameter and derive a tight confidence region based on the exponential concavity of the logistic loss. Our analysis shows that the proposed algorithm achieves a regret bound of $O(d\sqrt{T})$, which matches the optimal result of stochastic linear bandits.
Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou
null
1509.07728
null
null
A Mathematical Theory for Clustering in Metric Spaces
cs.LG
Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the K-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our K-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual K-sets algorithm for clustering a set of data points with a cohesion measure. The dual K-sets algorithm converges in the same way as a sequential version of the classical kernel K-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite.
Cheng-Shang Chang, Wanjiun Liao, Yu-Sheng Chen, and Li-Heng Liou
10.1109/TNSE.2016.2516339
1509.07755
null
null
Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases
astro-ph.IM cs.LG
Time-domain astronomy (TDA) is facing a paradigm shift caused by the exponential growth of the sample size, data complexity and data generation rates of new astronomical sky surveys. For example, the Large Synoptic Survey Telescope (LSST), which will begin operations in northern Chile in 2022, will generate a nearly 150 Petabyte imaging dataset of the southern hemisphere sky. The LSST will stream data at rates of 2 Terabytes per hour, effectively capturing an unprecedented movie of the sky. The LSST is expected not only to improve our understanding of time-varying astrophysical objects, but also to reveal a plethora of yet unknown faint and fast-varying phenomena. To cope with a change of paradigm to data-driven astronomy, the fields of astroinformatics and astrostatistics have been created recently. The new data-oriented paradigms for astronomy combine statistics, data mining, knowledge discovery, machine learning and computational intelligence, in order to provide the automated and robust methods needed for the rapid detection and classification of known astrophysical objects as well as the unsupervised characterization of novel phenomena. In this article we present an overview of machine learning and computational intelligence applications to TDA. Future big data challenges and new lines of research in TDA, focusing on the LSST, are identified and discussed from the viewpoint of computational intelligence/machine learning. Interdisciplinary collaboration will be required to cope with the challenges posed by the deluge of astronomical data coming from the LSST.
Pablo Huijse and Pablo A. Estevez and Pavlos Protopapas and Jose C. Principe and Pablo Zegers
10.1109/MCI.2014.2326100
1509.07823
null
null
Deep Multimodal Embedding: Manipulating Novel Objects with Point-clouds, Language and Trajectories
cs.RO cs.AI cs.CV cs.LG
A robot operating in a real-world environment needs to perform reasoning over a variety of sensor modalities such as vision, language and motion trajectories. However, it is extremely challenging to manually design features relating such disparate modalities. In this work, we introduce an algorithm that learns to embed point-cloud, natural language, and manipulation trajectory data into a shared embedding space with a deep neural network. To learn semantically meaningful spaces throughout our network, we use a loss-based margin to bring embeddings of relevant pairs closer together while driving less-relevant cases from different modalities further apart. We use this both to pre-train its lower layers and fine-tune our final embedding space, leading to a more robust representation. We test our algorithm on the task of manipulating novel objects and appliances based on prior experience with other objects. On a large dataset, we achieve significant improvements in both accuracy and inference time over the previous state of the art. We also perform end-to-end experiments on a PR2 robot utilizing our learned embedding space.
Jaeyong Sung, Ian Lenz, Ashutosh Saxena
null
1509.07831
null
null
Evasion and Hardening of Tree Ensemble Classifiers
cs.LG cs.CR stat.ML
Classifier evasion consists in finding for a given instance $x$ the nearest instance $x'$ such that the classifier predictions of $x$ and $x'$ are different. We present two novel algorithms for systematically computing evasions for tree ensembles such as boosted trees and random forests. Our first algorithm uses a Mixed Integer Linear Program solver and finds the optimal evading instance under an expressive set of constraints. Our second algorithm trades off optimality for speed by using symbolic prediction, a novel algorithm for fast finite differences on tree ensembles. On a digit recognition task, we demonstrate that both gradient boosted trees and random forests are extremely susceptible to evasions. Finally, we harden a boosted tree model without loss of predictive accuracy by augmenting the training set of each boosting round with evading instances, a technique we call adversarial boosting.
Alex Kantchelian, J. D. Tygar, Anthony D. Joseph
null
1509.07892
null
null
Algorithms for Linear Bandits on Polyhedral Sets
cs.LG
We study stochastic linear optimization problem with bandit feedback. The set of arms take values in an $N$-dimensional space and belong to a bounded polyhedron described by finitely many linear inequalities. We provide a lower bound for the expected regret that scales as $\Omega(N\log T)$. We then provide a nearly optimal algorithm and show that its expected regret scales as $O(N\log^{1+\epsilon}(T))$ for an arbitrary small $\epsilon >0$. The algorithm alternates between exploration and exploitation intervals sequentially where deterministic set of arms are played in the exploration intervals and greedily selected arm is played in the exploitation intervals. We also develop an algorithm that achieves the optimal regret when sub-Gaussianity parameter of the noise term is known. Our key insight is that for a polyhedron the optimal arm is robust to small perturbations in the reward function. Consequently, a greedily selected arm is guaranteed to be optimal when the estimation error falls below some suitable threshold. Our solution resolves a question posed by Rusmevichientong and Tsitsiklis (2011) that left open the possibility of efficient algorithms with asymptotic logarithmic regret bounds. We also show that the regret upper bounds hold with probability $1$. Our numerical investigations show that while theoretical results are asymptotic the performance of our algorithms compares favorably to state-of-the-art algorithms in finite time as well.
Manjesh K. Hanawal and Amir Leshem and Venkatesh Saligrama
null
1509.07927
null
null
Super-Resolution Off the Grid
cs.LG
Super-resolution is the problem of recovering a superposition of point sources using bandlimited measurements, which may be corrupted with noise. This signal processing problem arises in numerous imaging problems, ranging from astronomy to biology to spectroscopy, where it is common to take (coarse) Fourier measurements of an object. Of particular interest is in obtaining estimation procedures which are robust to noise, with the following desirable statistical and computational properties: we seek to use coarse Fourier measurements (bounded by some cutoff frequency); we hope to take a (quantifiably) small number of measurements; we desire our algorithm to run quickly. Suppose we have k point sources in d dimensions, where the points are separated by at least \Delta from each other (in Euclidean distance). This work provides an algorithm with the following favorable guarantees: - The algorithm uses Fourier measurements, whose frequencies are bounded by O(1/\Delta) (up to log factors). Previous algorithms require a cutoff frequency which may be as large as {\Omega}( d/\Delta). - The number of measurements taken by and the computational complexity of our algorithm are bounded by a polynomial in both the number of points k and the dimension d, with no dependence on the separation \Delta. In contrast, previous algorithms depended inverse polynomially on the minimal separation and exponentially on the dimension for both of these quantities. Our estimation procedure itself is simple: we take random bandlimited measurements (as opposed to taking an exponential number of measurements on the hyper-grid). Furthermore, our analysis and algorithm are elementary (based on concentration bounds for sampling and the singular value decomposition).
Qingqing Huang, Sham M. Kakade
null
1509.07943
null
null
Modeling Curiosity in a Mobile Robot for Long-Term Autonomous Exploration and Monitoring
cs.RO cs.CV cs.LG
This paper presents a novel approach to modeling curiosity in a mobile robot, which is useful for monitoring and adaptive data collection tasks, especially in the context of long term autonomous missions where pre-programmed missions are likely to have limited utility. We use a realtime topic modeling technique to build a semantic perception model of the environment, using which, we plan a path through the locations in the world with high semantic information content. The life-long learning behavior of the proposed perception model makes it suitable for long-term exploration missions. We validate the approach using simulated exploration experiments using aerial and underwater data, and demonstrate an implementation on the Aqua underwater robot in a variety of scenarios. We find that the proposed exploration paths that are biased towards locations with high topic perplexity, produce better terrain models with high discriminative power. Moreover, we show that the proposed algorithm implemented on Aqua robot is able to do tasks such as coral reef inspection, diver following, and sea floor exploration, without any prior training or preparation.
Yogesh Girdhar, Gregory Dudek
10.1007/s10514-015-9500-x
1509.07975
null
null
Probably certifiably correct k-means clustering
cs.IT cs.DS cs.LG math.IT math.ST stat.TH
Recently, Bandeira [arXiv:1509.00824] introduced a new type of algorithm (the so-called probably certifiably correct algorithm) that combines fast solvers with the optimality certificates provided by convex relaxations. In this paper, we devise such an algorithm for the problem of k-means clustering. First, we prove that Peng and Wei's semidefinite relaxation of k-means is tight with high probability under a distribution of planted clusters called the stochastic ball model. Our proof follows from a new dual certificate for integral solutions of this semidefinite program. Next, we show how to test the optimality of a proposed k-means solution using this dual certificate in quasilinear time. Finally, we analyze a version of spectral clustering from Peng and Wei that is designed to solve k-means in the case of two clusters. In particular, we show that this quasilinear-time method typically recovers planted clusters under the stochastic ball model.
Takayuki Iguchi, Dustin G. Mixon, Jesse Peterson, Soledad Villar
null
1509.07983
null
null
Deep Trans-layer Unsupervised Networks for Representation Learning
cs.NE cs.CV cs.LG
Learning features from massive unlabelled data is a vast prevalent topic for high-level tasks in many machine learning applications. The recent great improvements on benchmark data sets achieved by increasingly complex unsupervised learning methods and deep learning models with lots of parameters usually requires many tedious tricks and much expertise to tune. However, filters learned by these complex architectures are quite similar to standard hand-crafted features visually. In this paper, unsupervised learning methods, such as PCA or auto-encoder, are employed as the building block to learn filter banks at each layer. The lower layer responses are transferred to the last layer (trans-layer) to form a more complete representation retaining more information. In addition, some beneficial methods such as local contrast normalization and whitening are added to the proposed deep trans-layer networks to further boost performance. The trans-layer representations are followed by block histograms with binary encoder schema to learn translation and rotation invariant representations, which are utilized to do high-level tasks such as recognition and classification. Compared to traditional deep learning methods, the implemented feature learning method has much less parameters and is validated in several typical experiments, such as digit recognition on MNIST and MNIST variations, object recognition on Caltech 101 dataset and face verification on LFW dataset. The deep trans-layer unsupervised learning achieves 99.45% accuracy on MNIST dataset, 67.11% accuracy on 15 samples per class and 75.98% accuracy on 30 samples per class on Caltech 101 dataset, 87.10% on LFW dataset.
Wentao Zhu, Jun Miao, Laiyun Qing, Xilin Chen
null
1509.08038
null
null
End-to-End Text-Dependent Speaker Verification
cs.LG cs.SD
In this paper we present a data-driven, integrated approach to speaker verification, which maps a test utterance and a few reference utterances directly to a single score for verification and jointly optimizes the system's components using the same evaluation protocol and metric as at test time. Such an approach will result in simple and efficient systems, requiring little domain-specific knowledge and making few model assumptions. We implement the idea by formulating the problem as a single neural network architecture, including the estimation of a speaker model on only a few utterances, and evaluate it on our internal "Ok Google" benchmark for text-dependent speaker verification. The proposed approach appears to be very effective for big data applications like ours that require highly accurate, easy-to-maintain systems with a small footprint.
Georg Heigold, Ignacio Moreno, Samy Bengio, Noam Shazeer
null
1509.08062
null
null
Online Object Tracking, Learning and Parsing with And-Or Graphs
cs.CV cs.LG
This paper presents a method, called AOGTracker, for simultaneously tracking, learning and parsing (TLP) of unknown objects in video sequences with a hierarchical and compositional And-Or graph (AOG) representation. %The AOG captures both structural and appearance variations of a target object in a principled way. The TLP method is formulated in the Bayesian framework with a spatial and a temporal dynamic programming (DP) algorithms inferring object bounding boxes on-the-fly. During online learning, the AOG is discriminatively learned using latent SVM to account for appearance (e.g., lighting and partial occlusion) and structural (e.g., different poses and viewpoints) variations of a tracked object, as well as distractors (e.g., similar objects) in background. Three key issues in online inference and learning are addressed: (i) maintaining purity of positive and negative examples collected online, (ii) controling model complexity in latent structure learning, and (iii) identifying critical moments to re-learn the structure of AOG based on its intrackability. The intrackability measures uncertainty of an AOG based on its score maps in a frame. In experiments, our AOGTracker is tested on two popular tracking benchmarks with the same parameter setting: the TB-100/50/CVPR2013 benchmarks, and the VOT benchmarks --- VOT 2013, 2014, 2015 and TIR2015 (thermal imagery tracking). In the former, our AOGTracker outperforms state-of-the-art tracking algorithms including two trackers based on deep convolutional network. In the latter, our AOGTracker outperforms all other trackers in VOT2013 and is comparable to the state-of-the-art methods in VOT2014, 2015 and TIR2015.
Tianfu Wu and Yang Lu and Song-Chun Zhu
null
1509.08067
null
null
Non-asymptotic Analysis of $\ell_1$-norm Support Vector Machines
cs.IT cs.LG math.FA math.IT math.ST stat.TH
Support Vector Machines (SVM) with $\ell_1$ penalty became a standard tool in analysis of highdimensional classification problems with sparsity constraints in many applications including bioinformatics and signal processing. Although SVM have been studied intensively in the literature, this paper has to our knowledge first non-asymptotic results on the performance of $\ell_1$-SVM in identification of sparse classifiers. We show that a $d$-dimensional $s$-sparse classification vector can be (with high probability) well approximated from only $O(s\log(d))$ Gaussian trials. The methods used in the proof include concentration of measure and probability in Banach spaces.
Anton Kolleck, Jan Vyb\'iral
null
1509.08083
null
null
Representation Benefits of Deep Feedforward Networks
cs.LG cs.NE
This note provides a family of classification problems, indexed by a positive integer $k$, where all shallow networks with fewer than exponentially (in $k$) many nodes exhibit error at least $1/6$, whereas a deep network with 2 nodes in each of $2k$ layers achieves zero error, as does a recurrent network with 3 distinct nodes iterated $k$ times. The proof is elementary, and the networks are standard feedforward networks with ReLU (Rectified Linear Unit) nonlinearities.
Matus Telgarsky
null
1509.08101
null
null
Discriminative Learning of the Prototype Set for Nearest Neighbor Classification
cs.LG
The nearest neighbor rule is a classic yet essential classification model, particularly in problems where the supervising information is given by pairwise dissimilarities and the embedding function are not easily obtained. Prototype selection provides means of generalization and improving efficiency of the nearest neighbor model, but many existing methods assume and rely on the analyses of the input vector space. In this paper, we explore a dissimilarity-based, parametrized model of the nearest neighbor rule. In the proposed model, the selection of the nearest prototypes is influenced by the parameters of the respective prototypes. It provides a formulation for minimizing the violation of the extended nearest neighbor rule over the training set in a tractable form to exploit numerical techniques. We show that the minimization problem reduces to a large-margin principle learning and demonstrate its advantage by empirical comparisons with other prototype selection methods.
Shin Ando
null
1509.08102
null
null
Feature Selection for classification of hyperspectral data by minimizing a tight bound on the VC dimension
cs.LG
Hyperspectral data consists of large number of features which require sophisticated analysis to be extracted. A popular approach to reduce computational cost, facilitate information representation and accelerate knowledge discovery is to eliminate bands that do not improve the classification and analysis methods being applied. In particular, algorithms that perform band elimination should be designed to take advantage of the specifics of the classification method being used. This paper employs a recently proposed filter-feature-selection algorithm based on minimizing a tight bound on the VC dimension. We have successfully applied this algorithm to determine a reasonable subset of bands without any user-defined stopping criteria on widely used hyperspectral images and demonstrate that this method outperforms state-of-the-art methods in terms of both sparsity of feature set as well as accuracy of classification.\end{abstract}
Phool Preet, Sanjit Singh Batra, Jayadeva
null
1509.08112
null
null
Optimal Copula Transport for Clustering Multivariate Time Series
cs.LG stat.ML
This paper presents a new methodology for clustering multivariate time series leveraging optimal transport between copulas. Copulas are used to encode both (i) intra-dependence of a multivariate time series, and (ii) inter-dependence between two time series. Then, optimal copula transport allows us to define two distances between multivariate time series: (i) one for measuring intra-dependence dissimilarity, (ii) another one for measuring inter-dependence dissimilarity based on a new multivariate dependence coefficient which is robust to noise, deterministic, and which can target specified dependencies.
Gautier Marti, Frank Nielsen, Philippe Donnat
null
1509.08144
null
null
Analysis of Intelligent Classifiers and Enhancing the Detection Accuracy for Intrusion Detection System
cs.CR cs.LG
In this paper we discuss and analyze some of the intelligent classifiers which allows for automatic detection and classification of networks attacks for any intrusion detection system. We will proceed initially with their analysis using the WEKA software to work with the classifiers on a well-known IDS (Intrusion Detection Systems) dataset like NSL-KDD dataset. The NSL-KDD dataset of network attacks was created in a military network by MIT Lincoln Labs. Then we will discuss and experiment some of the hybrid AI (Artificial Intelligence) classifiers that can be used for IDS, and finally we developed a Java software with three most efficient classifiers and compared it with other options. The outputs would show the detection accuracy and efficiency of the single and combined classifiers used.
Mohanad Albayati and Biju Issac
10.1080/18756891.2015.1084705
1509.08239
null
null
High-dimensional Time Series Prediction with Missing Values
cs.LG stat.ML
High-dimensional time series prediction is needed in applications as diverse as demand forecasting and climatology. Often, such applications require methods that are both highly scalable, and deal with noisy data in terms of corruptions or missing values. Classical time series methods usually fall short of handling both these issues. In this paper, we propose to adapt matrix matrix completion approaches that have previously been successfully applied to large scale noisy data, but which fail to adequately model high-dimensional time series due to temporal dependencies. We present a novel temporal regularized matrix factorization (TRMF) framework which supports data-driven temporal dependency learning and enables forecasting ability to our new matrix factorization approach. TRMF is highly general, and subsumes many existing matrix factorization approaches for time series data. We make interesting connections to graph regularized matrix factorization methods in the context of learning the dependencies. Experiments on both real and synthetic data show that TRMF outperforms several existing approaches for common time series tasks.
Hsiang-Fu Yu and Nikhil Rao and Inderjit S. Dhillon
null
1509.08333
null
null
Compressive spectral embedding: sidestepping the SVD
stat.ML cs.LG
Spectral embedding based on the Singular Value Decomposition (SVD) is a widely used "preprocessing" step in many learning tasks, typically leading to dimensionality reduction by projecting onto a number of dominant singular vectors and rescaling the coordinate axes (by a predefined function of the singular value). However, the number of such vectors required to capture problem structure grows with problem size, and even partial SVD computation becomes a bottleneck. In this paper, we propose a low-complexity it compressive spectral embedding algorithm, which employs random projections and finite order polynomial expansions to compute approximations to SVD-based embedding. For an m times n matrix with T non-zeros, its time complexity is O((T+m+n)log(m+n)), and the embedding dimension is O(log(m+n)), both of which are independent of the number of singular vectors whose effect we wish to capture. To the best of our knowledge, this is the first work to circumvent this dependence on the number of singular vectors for general SVD-based embeddings. The key to sidestepping the SVD is the observation that, for downstream inference tasks such as clustering and classification, we are only interested in using the resulting embedding to evaluate pairwise similarity metrics derived from the euclidean norm, rather than capturing the effect of the underlying matrix on arbitrary vectors as a partial SVD tries to do. Our numerical results on network datasets demonstrate the efficacy of the proposed method, and motivate further exploration of its application to large-scale inference tasks.
Dinesh Ramasamy and Upamanyu Madhow
null
1509.08360
null
null
Distance-Penalized Active Learning Using Quantile Search
stat.ML cs.LG
Adaptive sampling theory has shown that, with proper assumptions on the signal class, algorithms exist to reconstruct a signal in $\mathbb{R}^{d}$ with an optimal number of samples. We generalize this problem to the case of spatial signals, where the sampling cost is a function of both the number of samples taken and the distance traveled during estimation. This is motivated by our work studying regions of low oxygen concentration in the Great Lakes. We show that for one-dimensional threshold classifiers, a tradeoff between the number of samples taken and distance traveled can be achieved using a generalization of binary search, which we refer to as quantile search. We characterize both the estimation error after a fixed number of samples and the distance traveled in the noiseless case, as well as the estimation error in the case of noisy measurements. We illustrate our results in both simulations and experiments and show that our method outperforms existing algorithms in the majority of practical scenarios.
John Lipor, Brandon Wong, Donald Scavia, Branko Kerkez, and Laura Balzano
null
1509.08387
null
null
Efficient Empowerment
stat.ML cs.LG
Empowerment quantifies the influence an agent has on its environment. This is formally achieved by the maximum of the expected KL-divergence between the distribution of the successor state conditioned on a specific action and a distribution where the actions are marginalised out. This is a natural candidate for an intrinsic reward signal in the context of reinforcement learning: the agent will place itself in a situation where its action have maximum stability and maximum influence on the future. The limiting factor so far has been the computational complexity of the method: the only way of calculation has so far been a brute force algorithm, reducing the applicability of the method to environments with a small set discrete states. In this work, we propose to use an efficient approximation for marginalising out the actions in the case of continuous environments. This allows fast evaluation of empowerment, paving the way towards challenging environments such as real world robotics. The method is presented on a pendulum swing up problem.
Maximilian Karl, Justin Bayer, Patrick van der Smagt
null
1509.08455
null
null
Optimization over Sparse Symmetric Sets via a Nonmonotone Projected Gradient Method
math.OC cs.LG cs.NA stat.CO stat.ML
We consider the problem of minimizing a Lipschitz differentiable function over a class of sparse symmetric sets that has wide applications in engineering and science. For this problem, it is known that any accumulation point of the classical projected gradient (PG) method with a constant stepsize $1/L$ satisfies the $L$-stationarity optimality condition that was introduced in [3]. In this paper we introduce a new optimality condition that is stronger than the $L$-stationarity optimality condition. We also propose a nonmonotone projected gradient (NPG) method for this problem by incorporating some support-changing and coordintate-swapping strategies into a projected gradient method with variable stepsizes. It is shown that any accumulation point of NPG satisfies the new optimality condition and moreover it is a coordinatewise stationary point. Under some suitable assumptions, we further show that it is a global or a local minimizer of the problem. Numerical experiments are conducted to compare the performance of PG and NPG. The computational results demonstrate that NPG has substantially better solution quality than PG, and moreover, it is at least comparable to, but sometimes can be much faster than PG in terms of speed.
Zhaosong Lu
null
1509.08581
null
null
Semantics, Representations and Grammars for Deep Learning
cs.LG cs.NE stat.ML
Deep learning is currently the subject of intensive study. However, fundamental concepts such as representations are not formally defined -- researchers "know them when they see them" -- and there is no common language for describing and analyzing algorithms. This essay proposes an abstract framework that identifies the essential features of current practice and may provide a foundation for future developments. The backbone of almost all deep learning algorithms is backpropagation, which is simply a gradient computation distributed over a neural network. The main ingredients of the framework are thus, unsurprisingly: (i) game theory, to formalize distributed optimization; and (ii) communication protocols, to track the flow of zeroth and first-order information. The framework allows natural definitions of semantics (as the meaning encoded in functions), representations (as functions whose semantics is chosen to optimized a criterion) and grammars (as communication protocols equipped with first-order convergence guarantees). Much of the essay is spent discussing examples taken from the literature. The ultimate aim is to develop a graphical language for describing the structure of deep learning algorithms that backgrounds the details of the optimization procedure and foregrounds how the components interact. Inspiration is taken from probabilistic graphical models and factor graphs, which capture the essential structural features of multivariate distributions.
David Balduzzi
null
1509.08627
null
null