title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Spatial Semantic Scan: Jointly Detecting Subtle Events and their Spatial Footprint
cs.LG cs.CL stat.ML
Many methods have been proposed for detecting emerging events in text streams using topic modeling. However, these methods have shortcomings that make them unsuitable for rapid detection of locally emerging events on massive text streams. We describe Spatially Compact Semantic Scan (SCSS) that has been developed specifically to overcome the shortcomings of current methods in detecting new spatially compact events in text streams. SCSS employs alternating optimization between using semantic scan to estimate contrastive foreground topics in documents, and discovering spatial neighborhoods with high occurrence of documents containing the foreground topics. We evaluate our method on Emergency Department chief complaints dataset (ED dataset) to verify the effectiveness of our method in detecting real-world disease outbreaks from free-text ED chief complaint data.
Abhinav Maurya
null
1511.00352
null
null
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
cs.LG cs.CV cs.NE
Deep Neural Networks (DNN) have achieved state-of-the-art results in a wide range of tasks, with the best results obtained with large training sets and large models. In the past, GPUs enabled these breakthroughs because of their greater computational speed. In the future, faster computation at both training and test time is likely to be crucial for further progress and for consumer applications on low-power devices. As a result, there is much interest in research and development of dedicated hardware for Deep Learning (DL). Binary weights, i.e., weights which are constrained to only two possible values (e.g. -1 or 1), would bring great benefits to specialized DL hardware by replacing many multiply-accumulate operations by simple accumulations, as multipliers are the most space and power-hungry components of the digital implementation of neural networks. We introduce BinaryConnect, a method which consists in training a DNN with binary weights during the forward and backward propagations, while retaining precision of the stored weights in which gradients are accumulated. Like other dropout schemes, we show that BinaryConnect acts as regularizer and we obtain near state-of-the-art results with BinaryConnect on the permutation-invariant MNIST, CIFAR-10 and SVHN.
Matthieu Courbariaux, Yoshua Bengio and Jean-Pierre David
null
1511.00363
null
null
Submodular Functions: from Discrete to Continous Domains
cs.LG math.OC
Submodular set-functions have many applications in combinatorial optimization, as they can be minimized and approximately maximized in polynomial time. A key element in many of the algorithms and analyses is the possibility of extending the submodular set-function to a convex function, which opens up tools from convex optimization. Submodularity goes beyond set-functions and has naturally been considered for problems with multiple labels or for functions defined on continuous domains, where it corresponds essentially to cross second-derivatives being nonpositive. In this paper, we show that most results relating submodularity and convexity for set-functions can be extended to all submodular functions. In particular, (a) we naturally define a continuous extension in a set of probability measures, (b) show that the extension is convex if and only if the original function is submodular, (c) prove that the problem of minimizing a submodular function is equivalent to a typically non-smooth convex optimization problem, and (d) propose another convex optimization problem with better computational properties (e.g., a smooth dual problem). Most of these extensions from the set-function situation are obtained by drawing links with the theory of multi-marginal optimal transport, which provides also a new interpretation of existing results for set-functions. We then provide practical algorithms to minimize generic submodular functions on discrete domains, with associated convergence rates.
Francis Bach (LIENS, SIERRA)
null
1511.00394
null
null
An Impossibility Result for Reconstruction in a Degree-Corrected Planted-Partition Model
math.PR cs.LG cs.SI stat.ML
We consider the Degree-Corrected Stochastic Block Model (DC-SBM): a random graph on $n$ nodes, having i.i.d. weights $(\phi_u)_{u=1}^n$ (possibly heavy-tailed), partitioned into $q \geq 2$ asymptotically equal-sized clusters. The model parameters are two constants $a,b > 0$ and the finite second moment of the weights $\Phi^{(2)}$. Vertices $u$ and $v$ are connected by an edge with probability $\frac{\phi_u \phi_v}{n}a$ when they are in the same class and with probability $\frac{\phi_u \phi_v}{n}b$ otherwise. We prove that it is information-theoretically impossible to estimate the clusters in a way positively correlated with the true community structure when $(a-b)^2 \Phi^{(2)} \leq q(a+b)$. As by-products of our proof we obtain $(1)$ a precise coupling result for local neighbourhoods in DC-SBM's, that we use in a follow up paper [Gulikers et al., 2017] to establish a law of large numbers for local-functionals and $(2)$ that long-range interactions are weak in (power-law) DC-SBM's.
Lennart Gulikers, Marc Lelarge, Laurent Massouli\'e
null
1511.00546
null
null
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
cs.CV cs.LG cs.NE
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network. The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN and also with the well known DeepLab-LargeFOV, DeconvNet architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. We show that SegNet provides good performance with competitive inference time and more efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
Vijay Badrinarayanan and Alex Kendall and Roberto Cipolla
null
1511.00561
null
null
Toward an Efficient Multi-class Classification in an Open Universe
cs.LG cs.AI cs.DB cs.IR
Classification is a fundamental task in machine learning and data mining. Existing classification methods are designed to classify unknown instances within a set of previously known training classes. Such a classification takes the form of a prediction within a closed-set of classes. However, a more realistic scenario that fits real-world applications is to consider the possibility of encountering instances that do not belong to any of the training classes, $i.e.$, an open-set classification. In such situation, existing closed-set classifiers will assign a training label to these instances resulting in a misclassification. In this paper, we introduce Galaxy-X, a novel multi-class classification approach for open-set recognition problems. For each class of the training set, Galaxy-X creates a minimum bounding hyper-sphere that encompasses the distribution of the class by enclosing all of its instances. In such manner, our method is able to distinguish instances resembling previously seen classes from those that are of unknown ones. To adequately evaluate open-set classification, we introduce a novel evaluation procedure. Experimental results on benchmark datasets show the efficiency of our approach in classifying novel instances from known as well as unknown classes.
Wajdi Dhifli, Abdoulaye Banir\'e Diallo
null
1511.00725
null
null
ProtNN: Fast and Accurate Nearest Neighbor Protein Function Prediction based on Graph Embedding in Structural and Topological Space
cs.LG cs.SI
Studying the function of proteins is important for understanding the molecular mechanisms of life. The number of publicly available protein structures has increasingly become extremely large. Still, the determination of the function of a protein structure remains a difficult, costly, and time consuming task. The difficulties are often due to the essential role of spatial and topological structures in the determination of protein functions in living cells. In this paper, we propose ProtNN, a novel approach for protein function prediction. Given an unannotated protein structure and a set of annotated proteins, ProtNN finds the nearest neighbor annotated structures based on protein-graph pairwise similarities. Given a query protein, ProtNN finds the nearest neighbor reference proteins based on a graph representation model and a pairwise similarity between vector embedding of both query and reference protein-graphs in structural and topological spaces. ProtNN assigns to the query protein the function with the highest number of votes across the set of k nearest neighbor reference proteins, where k is a user-defined parameter. Experimental evaluation demonstrates that ProtNN is able to accurately classify several datasets in an extremely fast runtime compared to state-of-the-art approaches. We further show that ProtNN is able to scale up to a whole PDB dataset in a single-process mode with no parallelization, with a gain of thousands order of magnitude of runtime compared to state-of-the-art approaches.
Wajdi Dhifli, Abdoulaye Banir\'e Diallo
10.1186/s13040-016-0108-2
1511.00736
null
null
Learning Unfair Trading: a Market Manipulation Analysis From the Reinforcement Learning Perspective
q-fin.TR cs.LG
Market manipulation is a strategy used by traders to alter the price of financial securities. One type of manipulation is based on the process of buying or selling assets by using several trading strategies, among them spoofing is a popular strategy and is considered illegal by market regulators. Some promising tools have been developed to detect manipulation, but cases can still be found in the markets. In this paper we model spoofing and pinging trading, two strategies that differ in the legal background but share the same elemental concept of market manipulation. We use a reinforcement learning framework within the full and partial observability of Markov decision processes and analyse the underlying behaviour of the manipulators by finding the causes of what encourages the traders to perform fraudulent activities. This reveals procedures to counter the problem that may be helpful to market regulators as our model predicts the activity of spoofers.
Enrique Mart\'inez-Miranda and Peter McBurney and Matthew J. Howard
null
1511.00740
null
null
PAC Learning-Based Verification and Model Synthesis
cs.SE cs.LG cs.LO
We introduce a novel technique for verification and model synthesis of sequential programs. Our technique is based on learning a regular model of the set of feasible paths in a program, and testing whether this model contains an incorrect behavior. Exact learning algorithms require checking equivalence between the model and the program, which is a difficult problem, in general undecidable. Our learning procedure is therefore based on the framework of probably approximately correct (PAC) learning, which uses sampling instead and provides correctness guarantees expressed using the terms error probability and confidence. Besides the verification result, our procedure also outputs the model with the said correctness guarantees. Obtained preliminary experiments show encouraging results, in some cases even outperforming mature software verifiers.
Yu-Fang Chen, Chiao Hsieh, Ond\v{r}ej Leng\'al, Tsung-Ju Lii, Ming-Hsien Tsai, Bow-Yaw Wang, and Farn Wang
null
1511.00754
null
null
Fast Collaborative Filtering from Implicit Feedback with Provable Guarantees
cs.LG
Building recommendation algorithms is one of the most challenging tasks in Machine Learning. Although most of the recommendation systems are built on explicit feedback available from the users in terms of rating or text, a majority of the applications do not receive such feedback. Here we consider the recommendation task where the only available data is the records of user-item interaction over web applications over time, in terms of subscription or purchase of items; this is known as implicit feedback recommendation. There is usually a massive amount of such user-item interaction available for any web applications. Algorithms like PLSI or Matrix Factorization runs several iterations through the dataset, and may prove very expensive for large datasets. Here we propose a recommendation algorithm based on Method of Moment, which involves factorization of second and third order moments of the dataset. Our algorithm can be proven to be globally convergent using PAC learning theory. Further, we show how to extract the parameters using only three passes through the entire dataset. This results in a highly scalable algorithm that scales up to million of users even on a machine with a single-core processor and 8 GB RAM and produces competitive performance in comparison with existing algorithms.
Sayantan Dasgupta
null
1511.00792
null
null
The Variational Fair Autoencoder
stat.ML cs.LG
We investigate the problem of learning representations that are invariant to certain nuisance or sensitive factors of variation in the data while retaining as much of the remaining information as possible. Our model is based on a variational autoencoding architecture with priors that encourage independence between sensitive and latent factors of variation. Any subsequent processing, such as classification, can then be performed on this purged latent representation. To remove any remaining dependencies we incorporate an additional penalty term based on the "Maximum Mean Discrepancy" (MMD) measure. We discuss how these architectures can be efficiently trained on data and show in experiments that this method is more effective than previous work in removing unwanted sources of variation while maintaining informative latent representations.
Christos Louizos, Kevin Swersky, Yujia Li, Max Welling and Richard Zemel
null
1511.00830
null
null
Properties of the Sample Mean in Graph Spaces and the Majorize-Minimize-Mean Algorithm
cs.CV cs.LG stat.ML
One of the most fundamental concepts in statistics is the concept of sample mean. Properties of the sample mean that are well-defined in Euclidean spaces become unwieldy or even unclear in graph spaces. Open problems related to the sample mean of graphs include: non-existence, non-uniqueness, statistical inconsistency, lack of convergence results of mean algorithms, non-existence of midpoints, and disparity to midpoints. We present conditions to resolve all six problems and propose a Majorize-Minimize-Mean (MMM) Algorithm. Experiments on graph datasets representing images and molecules show that the MMM-Algorithm best approximates a sample mean of graphs compared to six other mean algorithms.
Brijnesh J. Jain
null
1511.00871
null
null
Do Prices Coordinate Markets?
cs.GT cs.LG
Walrasian equilibrium prices can be said to coordinate markets: They support a welfare optimal allocation in which each buyer is buying bundle of goods that is individually most preferred. However, this clean story has two caveats. First, the prices alone are not sufficient to coordinate the market, and buyers may need to select among their most preferred bundles in a coordinated way to find a feasible allocation. Second, we don't in practice expect to encounter exact equilibrium prices tailored to the market, but instead only approximate prices, somehow encoding "distributional" information about the market. How well do prices work to coordinate markets when tie-breaking is not coordinated, and they encode only distributional information? We answer this question. First, we provide a genericity condition such that for buyers with Matroid Based Valuations, overdemand with respect to equilibrium prices is at most 1, independent of the supply of goods, even when tie-breaking is done in an uncoordinated fashion. Second, we provide learning-theoretic results that show that such prices are robust to changing the buyers in the market, so long as all buyers are sampled from the same (unknown) distribution.
Justin Hsu, Jamie Morgenstern, Ryan Rogers, Aaron Roth, Rakesh Vohra
10.1145/2897518.2897559
1511.00925
null
null
Data Stream Classification using Random Feature Functions and Novel Method Combinations
cs.LG cs.NE
Big Data streams are being generated in a faster, bigger, and more commonplace. In this scenario, Hoeffding Trees are an established method for classification. Several extensions exist, including high-performing ensemble setups such as online and leveraging bagging. Also, $k$-nearest neighbors is a popular choice, with most extensions dealing with the inherent performance limitations over a potentially-infinite stream. At the same time, gradient descent methods are becoming increasingly popular, owing in part to the successes of deep learning. Although deep neural networks can learn incrementally, they have so far proved too sensitive to hyper-parameter options and initial conditions to be considered an effective `off-the-shelf' data-streams solution. In this work, we look at combinations of Hoeffding-trees, nearest neighbour, and gradient descent methods with a streaming preprocessing approach in the form of a random feature functions filter for additional predictive power. We further extend the investigation to implementing methods on GPUs, which we test on some large real-world datasets, and show the benefits of using GPUs for data-stream learning due to their high scalability. Our empirical evaluation yields positive results for the novel approaches that we experiment with, highlighting important issues, and shed light on promising future directions in approaches to data-stream classification.
Diego Marr\'on ([email protected]) and Jesse Read ([email protected]) and Albert Bifet ([email protected]) and Nacho Navarro ([email protected])
null
1511.00971
null
null
Understanding symmetries in deep networks
cs.LG cs.AI cs.CV
Recent works have highlighted scale invariance or symmetry present in the weight space of a typical deep network and the adverse effect it has on the Euclidean gradient based stochastic gradient descent optimization. In this work, we show that a commonly used deep network, which uses convolution, batch normalization, reLU, max-pooling, and sub-sampling pipeline, possess more complex forms of symmetry arising from scaling-based reparameterization of the network weights. We propose to tackle the issue of the weight space symmetry by constraining the filters to lie on the unit-norm manifold. Consequently, training the network boils down to using stochastic gradient descent updates on the unit-norm manifold. Our empirical evidence based on the MNIST dataset shows that the proposed updates improve the test performance beyond what is achieved with batch normalization and without sacrificing the computational efficiency of the weight updates.
Vijay Badrinarayanan and Bamdev Mishra and Roberto Cipolla
null
1511.01029
null
null
Detecting Interrogative Utterances with Recurrent Neural Networks
cs.CL cs.LG cs.NE
In this paper, we explore different neural network architectures that can predict if a speaker of a given utterance is asking a question or making a statement. We com- pare the outcomes of regularization methods that are popularly used to train deep neural networks and study how different context functions can affect the classification performance. We also compare the efficacy of gated activation functions that are favorably used in recurrent neural networks and study how to combine multimodal inputs. We evaluate our models on two multimodal datasets: MSR-Skype and CALLHOME.
Junyoung Chung and Jacob Devlin and Hany Hassan Awadalla
null
1511.01042
null
null
Detecting Clusters of Anomalies on Low-Dimensional Feature Subsets with Application to Network Traffic Flow Data
cs.NI cs.CR cs.LG
In a variety of applications, one desires to detect groups of anomalous data samples, with a group potentially manifesting its atypicality (relative to a reference model) on a low-dimensional subset of the full measured set of features. Samples may only be weakly atypical individually, whereas they may be strongly atypical when considered jointly. What makes this group anomaly detection problem quite challenging is that it is a priori unknown which subset of features jointly manifests a particular group of anomalies. Moreover, it is unknown how many anomalous groups are present in a given data batch. In this work, we develop a group anomaly detection (GAD) scheme to identify the subset of samples and subset of features that jointly specify an anomalous cluster. We apply our approach to network intrusion detection to detect BotNet and peer-to-peer flow clusters. Unlike previous studies, our approach captures and exploits statistical dependencies that may exist between the measured features. Experiments on real world network traffic data demonstrate the advantage of our proposed system, and highlight the importance of exploiting feature dependency structure, compared to the feature (or test) independence assumption made in previous studies.
Zhicong Qiu, David J. Miller, George Kesidis
null
1511.01047
null
null
Distributed Deep Learning for Question Answering
cs.LG cs.CL cs.DC
This paper is an empirical study of the distributed deep learning for question answering subtasks: answer selection and question classification. Comparison studies of SGD, MSGD, ADADELTA, ADAGRAD, ADAM/ADAMAX, RMSPROP, DOWNPOUR and EASGD/EAMSGD algorithms have been presented. Experimental results show that the distributed framework based on the message passing interface can accelerate the convergence speed at a sublinear scale. This paper demonstrates the importance of distributed training. For example, with 48 workers, a 24x speedup is achievable for the answer selection task and running time is decreased from 138.2 hours to 5.81 hours, which will increase the productivity significantly.
Minwei Feng, Bing Xiang, Bowen Zhou
10.1145/2983323.2983377
1511.01158
null
null
adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs
cs.LG math.OC stat.ML
Recurrent Neural Networks (RNNs) are powerful models that achieve exceptional performance on several pattern recognition problems. However, the training of RNNs is a computationally difficult task owing to the well-known "vanishing/exploding" gradient problem. Algorithms proposed for training RNNs either exploit no (or limited) curvature information and have cheap per-iteration complexity, or attempt to gain significant curvature information at the cost of increased per-iteration cost. The former set includes diagonally-scaled first-order methods such as ADAGRAD and ADAM, while the latter consists of second-order algorithms like Hessian-Free Newton and K-FAC. In this paper, we present adaQN, a stochastic quasi-Newton algorithm for training RNNs. Our approach retains a low per-iteration cost while allowing for non-diagonal scaling through a stochastic L-BFGS updating scheme. The method uses a novel L-BFGS scaling initialization scheme and is judicious in storing and retaining L-BFGS curvature pairs. We present numerical experiments on two language modeling tasks and show that adaQN is competitive with popular RNN training algorithms.
Nitish Shirish Keskar and Albert S. Berahas
null
1511.01169
null
null
Learn on Source, Refine on Target:A Model Transfer Learning Framework with Random Forests
cs.LG
We propose novel model transfer-learning methods that refine a decision forest model M learned within a "source" domain using a training set sampled from a "target" domain, assumed to be a variation of the source. We present two random forest transfer algorithms. The first algorithm searches greedily for locally optimal modifications of each tree structure by trying to locally expand or reduce the tree around individual nodes. The second algorithm does not modify structure, but only the parameter (thresholds) associated with decision nodes. We also propose to combine both methods by considering an ensemble that contains the union of the two forests. The proposed methods exhibit impressive experimental results over a range of problems.
Noam Segev, Maayan Harel, Shie Mannor, Koby Crammer and Ran El-Yaniv
10.1109/TPAMI.2016.2618118
1511.01258
null
null
Study of a bias in the offline evaluation of a recommendation algorithm
cs.IR cs.LG stat.ML
Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper describes this bias and discuss the relevance of a weighted offline evaluation to reduce this bias for different classes of recommendation algorithms.
Arnaud De Myttenaere (SAMM, Viadeo), Boris Golden (Viadeo), B\'en\'edicte Le Grand (CRI), Fabrice Rossi (SAMM)
null
1511.01280
null
null
Co-Clustering Network-Constrained Trajectory Data
stat.ML cs.DB cs.LG
Recently, clustering moving object trajectories kept gaining interest from both the data mining and machine learning communities. This problem, however, was studied mainly and extensively in the setting where moving objects can move freely on the euclidean space. In this paper, we study the problem of clustering trajectories of vehicles whose movement is restricted by the underlying road network. We model relations between these trajectories and road segments as a bipartite graph and we try to cluster its vertices. We demonstrate our approaches on synthetic data and show how it could be useful in inferring knowledge about the flow dynamics and the behavior of the drivers using the road network.
Mohamed Khalil El Mahrsi (LTCI, SAMM), Romain Guigour\`es (SAMM), Fabrice Rossi (SAMM), Marc Boull\'e
10.1007/978-3-319-23751-0_2
1511.01281
null
null
Factorizing LambdaMART for cold start recommendations
cs.LG cs.IR
Recommendation systems often rely on point-wise loss metrics such as the mean squared error. However, in real recommendation settings only few items are presented to a user. This observation has recently encouraged the use of rank-based metrics. LambdaMART is the state-of-the-art algorithm in learning to rank which relies on such a metric. Despite its success it does not have a principled regularization mechanism relying in empirical approaches to control model complexity leaving it thus prone to overfitting. Motivated by the fact that very often the users' and items' descriptions as well as the preference behavior can be well summarized by a small number of hidden factors, we propose a novel algorithm, LambdaMART Matrix Factorization (LambdaMART-MF), that learns a low rank latent representation of users and items using gradient boosted trees. The algorithm factorizes lambdaMART by defining relevance scores as the inner product of the learned representations of the users and items. The low rank is essentially a model complexity controller; on top of it we propose additional regularizers to constraint the learned latent representations that reflect the user and item manifolds as these are defined by their original feature based descriptors and the preference behavior. Finally we also propose to use a weighted variant of NDCG to reduce the penalty for similar items with large rating discrepancy. We experiment on two very different recommendation datasets, meta-mining and movies-users, and evaluate the performance of LambdaMART-MF, with and without regularization, in the cold start setting as well as in the simpler matrix completion setting. In both cases it outperforms in a significant manner current state of the art algorithms.
Phong Nguyen and Jun Wang and Alexandros Kalousis
null
1511.01282
null
null
Data-Driven Learning of a Union of Sparsifying Transforms Model for Blind Compressed Sensing
stat.ML cs.LG
Compressed sensing is a powerful tool in applications such as magnetic resonance imaging (MRI). It enables accurate recovery of images from highly undersampled measurements by exploiting the sparsity of the images or image patches in a transform domain or dictionary. In this work, we focus on blind compressed sensing (BCS), where the underlying sparse signal model is a priori unknown, and propose a framework to simultaneously reconstruct the underlying image as well as the unknown model from highly undersampled measurements. Specifically, our model is that the patches of the underlying image(s) are approximately sparse in a transform domain. We also extend this model to a union of transforms model that better captures the diversity of features in natural images. The proposed block coordinate descent type algorithms for blind compressed sensing are highly efficient, and are guaranteed to converge to at least the partial global and partial local minimizers of the highly non-convex BCS problems. Our numerical experiments show that the proposed framework usually leads to better quality of image reconstructions in MRI compared to several recent image reconstruction methods. Importantly, the learning of a union of sparsifying transforms leads to better image reconstructions than a single adaptive transform.
Saiprasad Ravishankar and Yoram Bresler
10.1109/TCI.2016.2567299
1511.01289
null
null
Learning in Auctions: Regret is Hard, Envy is Easy
cs.GT cs.AI cs.CC cs.LG
A line of recent work provides welfare guarantees of simple combinatorial auction formats, such as selling m items via simultaneous second price auctions (SiSPAs) (Christodoulou et al. 2008, Bhawalkar and Roughgarden 2011, Feldman et al. 2013). These guarantees hold even when the auctions are repeatedly executed and players use no-regret learning algorithms. Unfortunately, off-the-shelf no-regret algorithms for these auctions are computationally inefficient as the number of actions is exponential. We show that this obstacle is insurmountable: there are no polynomial-time no-regret algorithms for SiSPAs, unless RP$\supseteq$ NP, even when the bidders are unit-demand. Our lower bound raises the question of how good outcomes polynomially-bounded bidders may discover in such auctions. To answer this question, we propose a novel concept of learning in auctions, termed "no-envy learning." This notion is founded upon Walrasian equilibrium, and we show that it is both efficiently implementable and results in approximately optimal welfare, even when the bidders have fractionally subadditive (XOS) valuations (assuming demand oracles) or coverage valuations (without demand oracles). No-envy learning outcomes are a relaxation of no-regret outcomes, which maintain their approximate welfare optimality while endowing them with computational tractability. Our results extend to other auction formats that have been studied in the literature via the smoothness paradigm. Our results for XOS valuations are enabled by a novel Follow-The-Perturbed-Leader algorithm for settings where the number of experts is infinite, and the payoff function of the learner is non-linear. This algorithm has applications outside of auction settings, such as in security games. Our result for coverage valuations is based on a novel use of convex rounding schemes and a reduction to online convex optimization.
Constantinos Daskalakis, Vasilis Syrgkanis
null
1511.01411
null
null
Train and Test Tightness of LP Relaxations in Structured Prediction
stat.ML cs.AI cs.LG
Structured prediction is used in areas such as computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typically require the use of approximate solvers. We propose a theoretical explanation to the striking observation that approximations based on linear programming (LP) relaxations are often tight on real-world instances. In particular, we show that learning with LP relaxed inference encourages integrality of training instances, and that tightness generalizes from train to test data.
Ofer Meshi, Mehrdad Mahdavi, Adrian Weller and David Sontag
null
1511.01419
null
null
Semi-supervised Sequence Learning
cs.LG cs.CL
We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" step for a later supervised sequence learning algorithm. In other words, the parameters obtained from the unsupervised step can be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after being pretrained with the two approaches are more stable and generalize better. With pretraining, we are able to train long short term memory recurrent networks up to a few hundred timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups.
Andrew M. Dai and Quoc V. Le
null
1511.01432
null
null
Low-Rank Approximation of Weighted Tree Automata
cs.LG cs.FL
We describe a technique to minimize weighted tree automata (WTA), a powerful formalisms that subsumes probabilistic context-free grammars (PCFGs) and latent-variable PCFGs. Our method relies on a singular value decomposition of the underlying Hankel matrix defined by the WTA. Our main theoretical result is an efficient algorithm for computing the SVD of an infinite Hankel matrix implicitly represented as a WTA. We provide an analysis of the approximation error induced by the minimization, and we evaluate our method on real-world data originating in newswire treebank. We show that the model achieves lower perplexity than previous methods for PCFG minimization, and also is much more stable due to the absence of local optima.
Guillaume Rabusseau, Borja Balle, Shay B. Cohen
null
1511.01442
null
null
How Robust are Reconstruction Thresholds for Community Detection?
cs.DS cs.IT cs.LG math.IT math.PR stat.ML
The stochastic block model is one of the oldest and most ubiquitous models for studying clustering and community detection. In an exciting sequence of developments, motivated by deep but non-rigorous ideas from statistical physics, Decelle et al. conjectured a sharp threshold for when community detection is possible in the sparse regime. Mossel, Neeman and Sly and Massoulie proved the conjecture and gave matching algorithms and lower bounds. Here we revisit the stochastic block model from the perspective of semirandom models where we allow an adversary to make `helpful' changes that strengthen ties within each community and break ties between them. We show a surprising result that these `helpful' changes can shift the information-theoretic threshold, making the community detection problem strictly harder. We complement this by showing that an algorithm based on semidefinite programming (which was known to get close to the threshold) continues to work in the semirandom model (even for partial recovery). This suggests that algorithms based on semidefinite programming are robust in ways that any algorithm meeting the information-theoretic threshold cannot be. These results point to an interesting new direction: Can we find robust, semirandom analogues to some of the classical, average-case thresholds in statistics? We also explore this question in the broadcast tree model, and we show that the viewpoint of semirandom models can help explain why some algorithms are preferred to others in practice, in spite of the gaps in their statistical performance on random models.
Ankur Moitra and William Perry and Alexander S. Wein
null
1511.01473
null
null
Mean-field inference of Hawkes point processes
cs.LG cond-mat.stat-mech
We propose a fast and efficient estimation method that is able to accurately recover the parameters of a d-dimensional Hawkes point-process from a set of observations. We exploit a mean-field approximation that is valid when the fluctuations of the stochastic intensity are small. We show that this is notably the case in situations when interactions are sufficiently weak, when the dimension of the system is high or when the fluctuations are self-averaging due to the large number of past events they involve. In such a regime the estimation of a Hawkes process can be mapped on a least-squares problem for which we provide an analytic solution. Though this estimator is biased, we show that its precision can be comparable to the one of the Maximum Likelihood Estimator while its computation speed is shown to be improved considerably. We give a theoretical control on the accuracy of our new approach and illustrate its efficiency using synthetic datasets, in order to assess the statistical estimation error of the parameters.
Emmanuel Bacry, St\'ephane Ga\"iffas, Iacopo Mastromatteo and Jean-Fran\c{c}ois Muzy
10.1088/1751-8113/49/17/174006
1511.01512
null
null
Mining Local Gazetteers of Literary Chinese with CRF and Pattern based Methods for Biographical Information in Chinese History
cs.CL cs.DL cs.IR cs.LG
Person names and location names are essential building blocks for identifying events and social networks in historical documents that were written in literary Chinese. We take the lead to explore the research on algorithmically recognizing named entities in literary Chinese for historical studies with language-model based and conditional-random-field based methods, and extend our work to mining the document structures in historical documents. Practical evaluations were conducted with texts that were extracted from more than 220 volumes of local gazetteers (Difangzhi). Difangzhi is a huge and the single most important collection that contains information about officers who served in local government in Chinese history. Our methods performed very well on these realistic tests. Thousands of names and addresses were identified from the texts. A good portion of the extracted names match the biographical information currently recorded in the China Biographical Database (CBDB) of Harvard University, and many others can be verified by historians and will become as new additions to CBDB.
Chao-Lin Liu, Chih-Kai Huang, Hongsu Wang, Peter K. Bol
10.1109/BigData.2015.7363931
1511.01556
null
null
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
stat.AP cs.LG stat.ML
We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. Our models are decision lists, which consist of a series of if...then... statements (e.g., if high blood pressure, then stroke) that discretize a high-dimensional, multivariate feature space into a series of simple, readily interpretable decision statements. We introduce a generative model called Bayesian Rule Lists that yields a posterior distribution over possible decision lists. It employs a novel prior structure to encourage sparsity. Our experiments show that Bayesian Rule Lists has predictive accuracy on par with the current top algorithms for prediction in machine learning. Our method is motivated by recent developments in personalized medicine, and can be used to produce highly accurate and interpretable medical scoring systems. We demonstrate this by producing an alternative to the CHADS$_2$ score, actively used in clinical practice for estimating the risk of stroke in patients that have atrial fibrillation. Our model is as interpretable as CHADS$_2$, but more accurate.
Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, David Madigan
10.1214/15-AOAS848
1511.01644
null
null
Stochastic Proximal Gradient Descent for Nuclear Norm Regularization
cs.LG
In this paper, we utilize stochastic optimization to reduce the space complexity of convex composite optimization with a nuclear norm regularizer, where the variable is a matrix of size $m \times n$. By constructing a low-rank estimate of the gradient, we propose an iterative algorithm based on stochastic proximal gradient descent (SPGD), and take the last iterate of SPGD as the final solution. The main advantage of the proposed algorithm is that its space complexity is $O(m+n)$, in contrast, most of previous algorithms have a $O(mn)$ space complexity. Theoretical analysis shows that it achieves $O(\log T/\sqrt{T})$ and $O(\log T/T)$ convergence rates for general convex functions and strongly convex functions, respectively.
Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou
null
1511.01664
null
null
Symmetry-invariant optimization in deep networks
cs.LG cs.AI cs.CV
Recent works have highlighted scale invariance or symmetry that is present in the weight space of a typical deep network and the adverse effect that it has on the Euclidean gradient based stochastic gradient descent optimization. In this work, we show that these and other commonly used deep networks, such as those which use a max-pooling and sub-sampling layer, possess more complex forms of symmetry arising from scaling based reparameterization of the network weights. We then propose two symmetry-invariant gradient based weight updates for stochastic gradient descent based learning. Our empirical evidence based on the MNIST dataset shows that these updates improve the test performance without sacrificing the computational efficiency of the weight updates. We also show the results of training with one of the proposed weight updates on an image segmentation problem.
Vijay Badrinarayanan and Bamdev Mishra and Roberto Cipolla
null
1511.01754
null
null
Discrete R\'enyi Classifiers
cs.LG
Consider the binary classification problem of predicting a target variable $Y$ from a discrete feature vector $X = (X_1,...,X_d)$. When the probability distribution $\mathbb{P}(X,Y)$ is known, the optimal classifier, leading to the minimum misclassification rate, is given by the Maximum A-posteriori Probability decision rule. However, estimating the complete joint distribution $\mathbb{P}(X,Y)$ is computationally and statistically impossible for large values of $d$. An alternative approach is to first estimate some low order marginals of $\mathbb{P}(X,Y)$ and then design the classifier based on the estimated low order marginals. This approach is also helpful when the complete training data instances are not available due to privacy concerns. In this work, we consider the problem of finding the optimum classifier based on some estimated low order marginals of $(X,Y)$. We prove that for a given set of marginals, the minimum Hirschfeld-Gebelein-Renyi (HGR) correlation principle introduced in [1] leads to a randomized classification rule which is shown to have a misclassification rate no larger than twice the misclassification rate of the optimal classifier. Then, under a separability condition, we show that the proposed algorithm is equivalent to a randomized linear regression approach. In addition, this method naturally results in a robust feature selection method selecting a subset of features having the maximum worst case HGR correlation with the target variable. Our theoretical upper-bound is similar to the recent Discrete Chebyshev Classifier (DCC) approach [2], while the proposed algorithm has significant computational advantages since it only requires solving a least square optimization problem. Finally, we numerically compare our proposed algorithm with the DCC classifier and show that the proposed algorithm results in better misclassification rate over various datasets.
Meisam Razaviyayn, Farzan Farnia, David Tse
null
1511.01764
null
null
Computational Intractability of Dictionary Learning for Sparse Representation
cs.LG stat.ML
In this paper we consider the dictionary learning problem for sparse representation. We first show that this problem is NP-hard by polynomial time reduction of the densest cut problem. Then, using successive convex approximation strategies, we propose efficient dictionary learning schemes to solve several practical formulations of this problem to stationary points. Unlike many existing algorithms in the literature, such as K-SVD, our proposed dictionary learning scheme is theoretically guaranteed to converge to the set of stationary points under certain mild assumptions. For the image denoising application, the performance and the efficiency of the proposed dictionary learning scheme are comparable to that of K-SVD algorithm in simulation.
Meisam Razaviyayn, Hung-Wei Tseng, Zhi-Quan Luo
null
1511.01776
null
null
A note on the evaluation of generative models
stat.ML cs.LG
Probabilistic generative models can be used for compression, denoising, inpainting, texture synthesis, semi-supervised learning, unsupervised feature learning, and other tasks. Given this wide range of applications, it is not surprising that a lot of heterogeneity exists in the way these models are formulated, trained, and evaluated. As a consequence, direct comparison between models is often difficult. This article reviews mostly known but often underappreciated properties relating to the evaluation and interpretation of generative models with a focus on image models. In particular, we show that three of the currently most commonly used criteria---average log-likelihood, Parzen window estimates, and visual fidelity of samples---are largely independent of each other when the data is high-dimensional. Good performance with respect to one criterion therefore need not imply good performance with respect to the other criteria. Our results show that extrapolation from one criterion to another is not warranted and generative models need to be evaluated directly with respect to the application(s) they were intended for. In addition, we provide examples demonstrating that Parzen window estimates should generally be avoided.
Lucas Theis, A\"aron van den Oord, Matthias Bethge
null
1511.01844
null
null
Convolutional Neural Network for Stereotypical Motor Movement Detection in Autism
cs.NE cs.CV cs.LG stat.ML
Autism Spectrum Disorders (ASDs) are often associated with specific atypical postural or motor behaviors, of which Stereotypical Motor Movements (SMMs) have a specific visibility. While the identification and the quantification of SMM patterns remain complex, its automation would provide support to accurate tuning of the intervention in the therapy of autism. Therefore, it is essential to develop automatic SMM detection systems in a real world setting, taking care of strong inter-subject and intra-subject variability. Wireless accelerometer sensing technology can provide a valid infrastructure for real-time SMM detection, however such variability remains a problem also for machine learning methods, in particular whenever handcrafted features extracted from accelerometer signal are considered. Here, we propose to employ the deep learning paradigm in order to learn discriminating features from multi-sensor accelerometer signals. Our results provide preliminary evidence that feature learning and transfer learning embedded in the deep architecture achieve higher accurate SMM detectors in longitudinal scenarios.
Nastaran Mohammadian Rad, Andrea Bizzego, Seyed Mostafa Kia, Giuseppe Jurman, Paola Venuti, Cesare Furlanello
null
1511.01865
null
null
Thoughts on Massively Scalable Gaussian Processes
cs.LG cs.AI stat.ME stat.ML
We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard $O(n^3)$ complexity of GP learning and inference to $O(n)$, and the standard $O(n^2)$ complexity per test point prediction to $O(1)$. MSGP involves 1) decomposing covariance matrices as Kronecker products of Toeplitz matrices approximated by circulant matrices. This multi-level circulant approximation allows one to unify the orthogonal computational benefits of fast Kronecker and Toeplitz approaches, and is significantly faster than either approach in isolation; 2) local kernel interpolation and inducing points to allow for arbitrarily located data inputs, and $O(1)$ test time predictions; 3) exploiting block-Toeplitz Toeplitz-block structure (BTTB), which enables fast inference and learning when multidimensional Kronecker structure is not present; and 4) projections of the input space to flexibly model correlated inputs and high dimensional data. The ability to handle many ($m \approx n$) inducing points allows for near-exact accuracy and large scale kernel learning.
Andrew Gordon Wilson, Christoph Dann, Hannes Nickisch
null
1511.01870
null
null
Stop Wasting My Gradients: Practical SVRG
cs.LG math.OC stat.CO stat.ML
We present and analyze several strategies for improving the performance of stochastic variance-reduced gradient (SVRG) methods. We first show that the convergence rate of these methods can be preserved under a decreasing sequence of errors in the control variate, and use this to derive variants of SVRG that use growing-batch strategies to reduce the number of gradient calculations required in the early iterations. We further (i) show how to exploit support vectors to reduce the number of gradient computations in the later iterations, (ii) prove that the commonly-used regularized SVRG iteration is justified and improves the convergence rate, (iii) consider alternate mini-batch selection strategies, and (iv) consider the generalization error of the method.
Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Kone\v{c}n\'y, Scott Sallinen
null
1511.01942
null
null
Enhanced Low-Rank Matrix Approximation
cs.CV cs.LG math.OC
This letter proposes to estimate low-rank matrices by formulating a convex optimization problem with non-convex regularization. We employ parameterized non-convex penalty functions to estimate the non-zero singular values more accurately than the nuclear norm. A closed-form solution for the global optimum of the proposed objective function (sum of data fidelity and the non-convex regularizer) is also derived. The solution reduces to singular value thresholding method as a special case. The proposed method is demonstrated for image denoising.
Ankit Parekh and Ivan W. Selesnick
10.1109/LSP.2016.2535227
1511.01966
null
null
Towards a Better Understanding of Predict and Count Models
cs.LG cs.CL
In a recent paper, Levy and Goldberg pointed out an interesting connection between prediction-based word embedding models and count models based on pointwise mutual information. Under certain conditions, they showed that both models end up optimizing equivalent objective functions. This paper explores this connection in more detail and lays out the factors leading to differences between these models. We find that the most relevant differences from an optimization perspective are (i) predict models work in a low dimensional space where embedding vectors can interact heavily; (ii) since predict models have fewer parameters, they are less prone to overfitting. Motivated by the insight of our analysis, we show how count models can be regularized in a principled manner and provide closed-form solutions for L1 and L2 regularization. Finally, we propose a new embedding model with a convex objective and the additional benefit of being intelligible.
S. Sathiya Keerthi, Tobias Schnabel, Rajiv Khanna
null
1511.02024
null
null
Finding structure in data using multivariate tree boosting
stat.ML cs.LG
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles like random forests (Strobl, Malley, and Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called Gradient Boosted Regression Trees (Friedman, 2001). Our method, multivariate tree boosting, can be used for identifying important predictors, detecting predictors with non-linear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary without parametric assumptions. We provide the R package 'mvtboost' to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package 'gbm' (Ridgeway, 2013) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff and Keyes, 1995). Simulations verify that our approach identifies predictors with non-linear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions.
Patrick J. Miller, Gitta H. Lubke, Daniel B. McArtor, C. S. Bergeman
10.1037/met0000087
1511.02025
null
null
ALOJA-ML: A Framework for Automating Characterization and Knowledge Discovery in Hadoop Deployments
cs.LG cs.DC
This article presents ALOJA-Machine Learning (ALOJA-ML) an extension to the ALOJA project that uses machine learning techniques to interpret Hadoop benchmark performance data and performance tuning; here we detail the approach, efficacy of the model and initial results. Hadoop presents a complex execution environment, where costs and performance depends on a large number of software (SW) configurations and on multiple hardware (HW) deployment choices. These results are accompanied by a test bed and tools to deploy and evaluate the cost-effectiveness of the different hardware configurations, parameter tunings, and Cloud services. Despite early success within ALOJA from expert-guided benchmarking, it became clear that a genuinely comprehensive study requires automation of modeling procedures to allow a systematic analysis of large and resource-constrained search spaces. ALOJA-ML provides such an automated system allowing knowledge discovery by modeling Hadoop executions from observed benchmarks across a broad set of configuration parameters. The resulting performance models can be used to forecast execution behavior of various workloads; they allow 'a-priori' prediction of the execution times for new configurations and HW choices and they offer a route to model-based anomaly detection. In addition, these models can guide the benchmarking exploration efficiently, by automatically prioritizing candidate future benchmark tests. Insights from ALOJA-ML's models can be used to reduce the operational time on clusters, speed-up the data acquisition and knowledge discovery process, and importantly, reduce running costs. In addition to learning from the methodology presented in this work, the community can benefit in general from ALOJA data-sets, framework, and derived insights to improve the design and deployment of Big Data applications.
Josep Ll. Berral, Nicolas Poggi, David Carrera, Aaron Call, Rob Reinauer, Daron Green
10.1145/2783258.2788600
1511.02030
null
null
ALOJA: A Framework for Benchmarking and Predictive Analytics in Big Data Deployments
cs.LG cs.DC
This article presents the ALOJA project and its analytics tools, which leverages machine learning to interpret Big Data benchmark performance data and tuning. ALOJA is part of a long-term collaboration between BSC and Microsoft to automate the characterization of cost-effectiveness on Big Data deployments, currently focusing on Hadoop. Hadoop presents a complex run-time environment, where costs and performance depend on a large number of configuration choices. The ALOJA project has created an open, vendor-neutral repository, featuring over 40,000 Hadoop job executions and their performance details. The repository is accompanied by a test-bed and tools to deploy and evaluate the cost-effectiveness of different hardware configurations, parameters and Cloud services. Despite early success within ALOJA, a comprehensive study requires automation of modeling procedures to allow an analysis of large and resource-constrained search spaces. The predictive analytics extension, ALOJA-ML, provides an automated system allowing knowledge discovery by modeling environments from observed executions. The resulting models can forecast execution behaviors, predicting execution times for new configurations and hardware choices. That also enables model-based anomaly detection or efficient benchmark guidance by prioritizing executions. In addition, the community can benefit from ALOJA data-sets and framework to improve the design and deployment of Big Data applications.
Josep Ll. Berral, Nicolas Poggi, David Carrera, Aaron Call, Rob Reinauer, Daron Green
10.1109/TETC.2015.2496504
1511.02037
null
null
Barrier Frank-Wolfe for Marginal Inference
stat.ML cs.LG math.OC
We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the marginal polytope through repeated maximum a posteriori (MAP) calls. This modular structure enables us to leverage black-box MAP solvers (both exact and approximate) for variational inference, and obtains more accurate results than tree-reweighted algorithms that optimize over the local consistency relaxation. Theoretically, we bound the sub-optimality for the proposed algorithm despite the TRW objective having unbounded gradients at the boundary of the marginal polytope. Empirically, we demonstrate the increased quality of results found by tightening the relaxation over the marginal polytope as well as the spanning tree polytope on synthetic and real-world instances.
Rahul G. Krishnan, Simon Lacoste-Julien, David Sontag
null
1511.02124
null
null
Diffusion-Convolutional Neural Networks
cs.LG
We present diffusion-convolutional neural networks (DCNNs), a new model for graph-structured data. Through the introduction of a diffusion-convolution operation, we show how diffusion-based representations can be learned from graph-structured data and used as an effective basis for node classification. DCNNs have several attractive qualities, including a latent representation for graphical data that is invariant under isomorphism, as well as polynomial-time prediction and learning that can be represented as tensor operations and efficiently implemented on the GPU. Through several experiments with real structured datasets, we demonstrate that DCNNs are able to outperform probabilistic relational models and kernel-on-graph methods at relational node classification tasks.
James Atwood and Don Towsley
null
1511.02136
null
null
Optimal Non-Asymptotic Lower Bound on the Minimax Regret of Learning with Expert Advice
stat.ML cs.LG
We prove non-asymptotic lower bounds on the expectation of the maximum of $d$ independent Gaussian variables and the expectation of the maximum of $d$ independent symmetric random walks. Both lower bounds recover the optimal leading constant in the limit. A simple application of the lower bound for random walks is an (asymptotically optimal) non-asymptotic lower bound on the minimax regret of online learning with expert advice.
Francesco Orabona and David Pal
null
1511.02176
null
null
Evaluating Protein-protein Interaction Predictors with a Novel 3-Dimensional Metric
cs.LG
In order for the predicted interactions to be directly adopted by biologists, the ma- chine learning predictions have to be of high precision, regardless of recall. This aspect cannot be evaluated or numerically represented well by traditional metrics like accuracy, ROC, or precision-recall curve. In this work, we start from the alignment in sensitivity of ROC and recall of precision-recall curve, and propose an evaluation metric focusing on the ability of a model to be adopted by biologists. This metric evaluates the ability of a machine learning algorithm to predict only new interactions, meanwhile, it eliminates the influence of test dataset. In the experiment of evaluating different classifiers with a same data set and evaluating the same predictor with different datasets, our new metric fulfills the evaluation task of our interest while two widely recognized metrics, ROC and precision-recall curve fail the tasks for different reasons.
Haohan Wang, Madhavi K. Ganapathiraju
null
1511.02196
null
null
Deep Kernel Learning
cs.LG cs.AI stat.ME stat.ML
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the non-parametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel representation. These closed-form kernels can be used as drop-in replacements for standard kernels, with benefits in expressive power and scalability. We jointly learn the properties of these kernels through the marginal likelihood of a Gaussian process. Inference and learning cost $O(n)$ for $n$ training points, and predictions cost $O(1)$ per test point. On a large and diverse collection of applications, including a dataset with 2 million examples, we show improved performance over scalable Gaussian processes with flexible kernel learning models, and stand-alone deep architectures.
Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric P. Xing
null
1511.02222
null
null
Active Perceptual Similarity Modeling with Auxiliary Information
cs.LG stat.ML
Learning a model of perceptual similarity from a collection of objects is a fundamental task in machine learning underlying numerous applications. A common way to learn such a model is from relative comparisons in the form of triplets: responses to queries of the form "Is object a more similar to b than it is to c?". If no consideration is made in the determination of which queries to ask, existing similarity learning methods can require a prohibitively large number of responses. In this work, we consider the problem of actively learning from triplets -finding which queries are most useful for learning. Different from previous active triplet learning approaches, we incorporate auxiliary information into our similarity model and introduce an active learning scheme to find queries that are informative for quickly learning both the relevant aspects of auxiliary data and the directly-learned similarity components. Compared to prior approaches, we show that we can learn just as effectively with much fewer queries. For evaluation, we introduce a new dataset of exhaustive triplet comparisons obtained from humans and demonstrate improved performance for different types of auxiliary information.
Eric Heim (1), Matthew Berger (2), Lee Seversky (2), Milos Hauskrecht (1) ((1) University of Pittsburgh, (2) Air Force Research Laboratory, Information Directorate)
null
1511.02254
null
null
Efficient Multiscale Gaussian Process Regression using Hierarchical Clustering
cs.LG stat.ML
Standard Gaussian Process (GP) regression, a powerful machine learning tool, is computationally expensive when it is applied to large datasets, and potentially inaccurate when data points are sparsely distributed in a high-dimensional feature space. To address these challenges, a new multiscale, sparsified GP algorithm is formulated, with the goal of application to large scientific computing datasets. In this approach, the data is partitioned into clusters and the cluster centers are used to define a reduced training set, resulting in an improvement over standard GPs in terms of training and evaluation costs. Further, a hierarchical technique is used to adaptively map the local covariance representation to the underlying sparsity of the feature space, leading to improved prediction accuracy when the data distribution is highly non-uniform. A theoretical investigation of the computational complexity of the algorithm is presented. The efficacy of this method is then demonstrated on smooth and discontinuous analytical functions and on data from a direct numerical simulation of turbulent combustion.
Z. Zhang, K. Duraisamy, N. A. Gumerov
null
1511.02258
null
null
Stacked Attention Networks for Image Question Answering
cs.LG cs.CL cs.CV cs.NE
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Smola
null
1511.02274
null
null
Generation and Comprehension of Unambiguous Object Descriptions
cs.CV cs.CL cs.LG cs.RO
We propose a method that can generate an unambiguous description (known as a referring expression) of a specific object or region in an image, and which can also comprehend or interpret such an expression to infer which object is being described. We show that our method outperforms previous methods that generate descriptions of objects without taking into account other potentially ambiguous objects in the scene. Our model is inspired by recent successes of deep learning methods for image captioning, but while image captioning is difficult to evaluate, our task allows for easy objective evaluation. We also present a new large-scale dataset for referring expressions, based on MS-COCO. We have released the dataset and a toolbox for visualization and evaluation, see https://github.com/mjhucla/Google_Refexp_toolbox
Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan Yuille, Kevin Murphy
null
1511.02283
null
null
Performance Analysis of Multiclass Support Vector Machine Classification for Diagnosis of Coronary Heart Diseases
cs.LG
Automatic diagnosis of coronary heart disease helps the doctor to support in decision making a diagnosis. Coronary heart disease have some types or levels. Referring to the UCI Repository dataset, it divided into 4 types or levels that are labeled numbers 1-4 (low, medium, high and serious). The diagnosis models can be analyzed with multiclass classification approach. One of multiclass classification approach used, one of which is a support vector machine (SVM). The SVM use due to strong performance of SVM in binary classification. This research study multiclass performance classification support vector machine to diagnose the type or level of coronary heart disease. Coronary heart disease patient data taken from the UCI Repository. Stages in this study is preprocessing, which consist of, to normalizing the data, divide the data into data training and testing. The next stage of multiclass classification and performance analysis. This study uses multiclass SVM algorithm, namely: Binary Tree Support Vector Machine (BTSVM), One-Against-One (OAO), One-Against-All (OAA), Decision Direct Acyclic Graph (DDAG) and Exhaustive Output Error Correction Code (ECOC). Performance parameter used is recall, precision, F-measure and Overall accuracy.
Wiharto Wiharto, Hari Kusnanto, Herianto Herianto
null
1511.02352
null
null
Review-Level Sentiment Classification with Sentence-Level Polarity Correction
cs.CL cs.AI cs.LG
We propose an effective technique to solving review-level sentiment classification problem by using sentence-level polarity correction. Our polarity correction technique takes into account the consistency of the polarities (positive and negative) of sentences within each product review before performing the actual machine learning task. While sentences with inconsistent polarities are removed, sentences with consistent polarities are used to learn state-of-the-art classifiers. The technique achieved better results on different types of products reviews and outperforms baseline models without the correction technique. Experimental results show an average of 82% F-measure on four different product review domains.
Sylvester Olubolu Orimaye, Saadat M. Alhashmi, Eu-Gene Siew and Sang Jung Kang
null
1511.02385
null
null
Hierarchical Variational Models
stat.ML cs.LG stat.CO stat.ME
Black box variational inference allows researchers to easily prototype and evaluate an array of models. Recent advances allow such algorithms to scale to high dimensions. However, a central question remains: How to specify an expressive variational distribution that maintains efficient computation? To address this, we develop hierarchical variational models (HVMs). HVMs augment a variational approximation with a prior on its parameters, which allows it to capture complex structure for both discrete and continuous latent variables. The algorithm we develop is black box, can be used for any HVM, and has the same computational efficiency as the original approximation. We study HVMs on a variety of deep discrete latent variable models. HVMs generalize other expressive variational distributions and maintains higher fidelity to the posterior.
Rajesh Ranganath, Dustin Tran, David M. Blei
null
1511.02386
null
null
Max-Sum Diversification, Monotone Submodular Functions and Semi-metric Spaces
cs.LG
In many applications such as web-based search, document summarization, facility location and other applications, the results are preferable to be both representative and diversified subsets of documents. The goal of this study is to select a good "quality", bounded-size subset of a given set of items, while maintaining their diversity relative to a semi-metric distance function. This problem was first studied by Borodin et al\cite{borodin}, but a crucial property used throughout their proof is the triangle inequality. In this modified proof, we want to relax the triangle inequality and relate the approximation ratio of max-sum diversification problem to the parameter of the relaxed triangle inequality in the normal form of the problem (i.e., a uniform matroid) and also in an arbitrary matroid.
Sepehr Abbasi Zadeh, Mehrdad Ghadiri
null
1511.02402
null
null
Algorithmic Stability for Adaptive Data Analysis
cs.LG cs.CR cs.DS
Adaptivity is an important feature of data analysis---the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated the formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution $\mathbf{P}$ and a set of $n$ independent samples $\mathbf{x}$ is drawn from $\mathbf{P}$. We seek an algorithm that, given $\mathbf{x}$ as input, accurately answers a sequence of adaptively chosen queries about the unknown distribution $\mathbf{P}$. How many samples $n$ must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions: (i) We give upper bounds on the number of samples $n$ that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015, NIPS, 2015). (ii) We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries. As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that stability implies low generalization error. We also study weaker stability guarantees such as bounded KL divergence and total variation distance.
Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, Jonathan Ullman
null
1511.02513
null
null
Speed learning on the fly
math.OC cs.LG stat.ML
The practical performance of online stochastic gradient descent algorithms is highly dependent on the chosen step size, which must be tediously hand-tuned in many applications. The same is true for more advanced variants of stochastic gradients, such as SAGA, SVRG, or AdaGrad. Here we propose to adapt the step size by performing a gradient descent on the step size itself, viewing the whole performance of the learning trajectory as a function of step size. Importantly, this adaptation can be computed online at little cost, without having to iterate backward passes over the full data.
Pierre-Yves Mass\'e and Yann Ollivier
null
1511.02540
null
null
Sandwiching the marginal likelihood using bidirectional Monte Carlo
stat.ML cs.LG stat.CO
Computing the marginal likelihood (ML) of a model requires marginalizing out all of the parameters and latent variables, a difficult high-dimensional summation or integration problem. To make matters worse, it is often hard to measure the accuracy of one's ML estimates. We present bidirectional Monte Carlo, a technique for obtaining accurate log-ML estimates on data simulated from a model. This method obtains stochastic lower bounds on the log-ML using annealed importance sampling or sequential Monte Carlo, and obtains stochastic upper bounds by running these same algorithms in reverse starting from an exact posterior sample. The true value can be sandwiched between these two stochastic bounds with high probability. Using the ground truth log-ML estimates obtained from our method, we quantitatively evaluate a wide variety of existing ML estimators on several latent variable models: clustering, a low rank approximation, and a binary attributes model. These experiments yield insights into how to accurately estimate marginal likelihoods.
Roger B. Grosse, Zoubin Ghahramani, and Ryan P. Adams
null
1511.02543
null
null
Deep Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics
cs.NE cs.CE cs.LG
In analyzing of modern biological data, we are often dealing with ill-posed problems and missing data, mostly due to high dimensionality and multicollinearity of the dataset. In this paper, we have proposed a system based on matrix factorization (MF) and deep recurrent neural networks (DRNNs) for genotype imputation and phenotype sequences prediction. In order to model the long-term dependencies of phenotype data, the new Recurrent Linear Units (ReLU) learning strategy is utilized for the first time. The proposed model is implemented for parallel processing on central processing units (CPUs) and graphic processing units (GPUs). Performance of the proposed model is compared with other training algorithms for learning long-term dependencies as well as the sparse partial least square (SPLS) method on a set of genotype and phenotype data with 604 samples, 1980 single-nucleotide polymorphisms (SNPs), and two traits. The results demonstrate performance of the ReLU training algorithm in learning long-term dependencies in RNNs.
Farhad Pouladi, Hojjat Salehinejad and Amir Mohammad Gilani
null
1511.02554
null
null
How far can we go without convolution: Improving fully-connected networks
cs.LG cs.NE
We propose ways to improve the performance of fully connected networks. We found that two approaches in particular have a strong effect on performance: linear bottleneck layers and unsupervised pre-training using autoencoders without hidden unit biases. We show how both approaches can be related to improving gradient flow and reducing sparsity in the network. We show that a fully connected network can yield approximately 70% classification accuracy on the permutation-invariant CIFAR-10 task, which is much higher than the current state-of-the-art. By adding deformations to the training data, the fully connected network achieves 78% accuracy, which is just 10% short of a decent convolutional network.
Zhouhan Lin, Roland Memisevic, Kishore Konda
null
1511.02580
null
null
Batch-normalized Maxout Network in Network
cs.CV cs.LG
This paper reports a novel deep architecture referred to as Maxout network In Network (MIN), which can enhance model discriminability and facilitate the process of information abstraction within the receptive field. The proposed network adopts the framework of the recently developed Network In Network structure, which slides a universal approximator, multilayer perceptron (MLP) with rectifier units, to exact features. Instead of MLP, we employ maxout MLP to learn a variety of piecewise linear activation functions and to mediate the problem of vanishing gradients that can occur when using rectifier units. Moreover, batch normalization is applied to reduce the saturation of maxout units by pre-conditioning the model and dropout is applied to prevent overfitting. Finally, average pooling is used in all pooling layers to regularize maxout MLP in order to facilitate information abstraction in every receptive field while tolerating the change of object position. Because average pooling preserves all features in the local patch, the proposed MIN model can enforce the suppression of irrelevant information during training. Our experiments demonstrated the state-of-the-art classification performance when the MIN model was applied to MNIST, CIFAR-10, and CIFAR-100 datasets and comparable performance for SVHN dataset.
Jia-Ren Chang and Yong-Sheng Chen
null
1511.02583
null
null
A New Relaxation Approach to Normalized Hypergraph Cut
cs.LG cs.DS
Normalized graph cut (NGC) has become a popular research topic due to its wide applications in a large variety of areas like machine learning and very large scale integration (VLSI) circuit design. Most of traditional NGC methods are based on pairwise relationships (similarities). However, in real-world applications relationships among the vertices (objects) may be more complex than pairwise, which are typically represented as hyperedges in hypergraphs. Thus, normalized hypergraph cut (NHC) has attracted more and more attention. Existing NHC methods cannot achieve satisfactory performance in real applications. In this paper, we propose a novel relaxation approach, which is called relaxed NHC (RNHC), to solve the NHC problem. Our model is defined as an optimization problem on the Stiefel manifold. To solve this problem, we resort to the Cayley transformation to devise a feasible learning algorithm. Experimental results on a set of large hypergraph benchmarks for clustering and partitioning in VLSI domain show that RNHC can outperform the state-of-the-art methods.
Cong Xie, Wu-Jun Li and Zhihua Zhang
null
1511.02595
null
null
Decomposition Bounds for Marginal MAP
cs.LG cs.AI cs.IT math.IT stat.ML
Marginal MAP inference involves making MAP predictions in systems defined with latent variables or missing information. It is significantly more difficult than pure marginalization and MAP tasks, for which a large class of efficient and convergent variational algorithms, such as dual decomposition, exist. In this work, we generalize dual decomposition to a generic power sum inference task, which includes marginal MAP, along with pure marginalization and MAP, as special cases. Our method is based on a block coordinate descent algorithm on a new convex decomposition bound, that is guaranteed to converge monotonically, and can be parallelized efficiently. We demonstrate our approach on marginal MAP queries defined on real-world problems from the UAI approximate inference challenge, showing that our framework is faster and more reliable than previous methods.
Wei Ping, Qiang Liu, Alexander Ihler
null
1511.02619
null
null
Generating Images from Captions with Attention
cs.LG cs.CV
Motivated by the recent progress in generative models, we introduce a model that generates images from natural language descriptions. The proposed model iteratively draws patches on a canvas, while attending to the relevant words in the description. After training on Microsoft COCO, we compare our model with several baseline generative models on image generation and retrieval tasks. We demonstrate that our model produces higher quality samples than other approaches and generates images with novel scene compositions corresponding to previously unseen captions in the dataset.
Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov
null
1511.02793
null
null
Neural Module Networks
cs.CV cs.CL cs.LG cs.NE
Visual question answering is fundamentally compositional in nature---a question like "where is the dog?" shares substructure with questions like "what color is the dog?" and "where is the cat?" This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning *neural module networks*, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein
null
1511.02799
null
null
Multiple Instance Dictionary Learning using Functions of Multiple Instances
cs.CV cs.LG stat.ML
A multiple instance dictionary learning method using functions of multiple instances (DL-FUMI) is proposed to address target detection and two-class classification problems with inaccurate training labels. Given inaccurate training labels, DL-FUMI learns a set of target dictionary atoms that describe the most distinctive and representative features of the true positive class as well as a set of nontarget dictionary atoms that account for the shared information found in both the positive and negative instances. Experimental results show that the estimated target dictionary atoms found by DL-FUMI are more representative prototypes and identify better discriminative features of the true positive class than existing methods in the literature. DL-FUMI is shown to have significantly better performance on several target detection and classification problems as compared to other multiple instance learning (MIL) dictionary learning algorithms on a variety of MIL problems.
Changzhe Jiao, Alina Zare
null
1511.02825
null
null
Symmetries and control in generative neural nets
cs.CV cs.LG
We study generative nets which can control and modify observations, after being trained on real-life datasets. In order to zoom-in on an object, some spatial, color and other attributes are learned by classifiers in specialized attention nets. In field-theoretical terms, these learned symmetry statistics form the gauge group of the data set. Plugging them in the generative layers of auto-classifiers-encoders (ACE) appears to be the most direct way to simultaneously: i) generate new observations with arbitrary attributes, from a given class, ii) describe the low-dimensional manifold encoding the "essence" of the data, after superfluous attributes are factored out, and iii) organically control, i.e., move or modify objects within given observations. We demonstrate the sharp improvement of the generative qualities of shallow ACE, with added spatial and color symmetry statistics, on the distorted MNIST and CIFAR10 datasets.
Galin Georgiev
null
1511.02841
null
null
Visual Language Modeling on CNN Image Representations
cs.CV cs.AI cs.LG
Measuring the naturalness of images is important to generate realistic images or to detect unnatural regions in images. Additionally, a method to measure naturalness can be complementary to Convolutional Neural Network (CNN) based features, which are known to be insensitive to the naturalness of images. However, most probabilistic image models have insufficient capability of modeling the complex and abstract naturalness that we feel because they are built directly on raw image pixels. In this work, we assume that naturalness can be measured by the predictability on high-level features during eye movement. Based on this assumption, we propose a novel method to evaluate the naturalness by building a variant of Recurrent Neural Network Language Models on pre-trained CNN representations. Our method is applied to two tasks, demonstrating that 1) using our method as a regularizer enables us to generate more understandable images from image features than existing approaches, and 2) unnaturalness maps produced by our method achieve state-of-the-art eye fixation prediction performance on two well-studied datasets.
Hiroharu Kato and Tatsuya Harada
null
1511.02872
null
null
Neighbourhood NILM: A Big-data Approach to Household Energy Disaggregation
cs.LG
In this paper, we investigate whether "big-data" is more valuable than "precise" data for the problem of energy disaggregation: the process of breaking down aggregate energy usage on a per-appliance basis. Existing techniques for disaggregation rely on energy metering at a resolution of 1 minute or higher, but most power meters today only provide a reading once per month, and at most once every 15 minutes. In this paper, we propose a new technique called Neighbourhood NILM that leverages data from 'neighbouring' homes to disaggregate energy given only a single energy reading per month. The key intuition behind our approach is that 'similar' homes have 'similar' energy consumption on a per-appliance basis. Neighbourhood NILM matches every home with a set of 'neighbours' that have direct submetering infrastructure, i.e. power meters on individual circuits or loads. Many such homes already exist. Then, it estimates the appliance-level energy consumption of the target home to be the average of its K neighbours. We evaluate this approach using 25 homes and results show that our approach gives comparable or better disaggregation in comparison to state-of-the-art accuracy reported in the literature that depend on manual model training, high frequency power metering, or both. Results show that Neighbourhood NILM can achieve 83% and 79% accuracy disaggregating fridge and heating/cooling loads, compared to 74% and 73% for a technique called FHMM. Furthermore, it achieves up to 64% accuracy on washing machine, dryer, dishwasher, and lighting loads, which is higher than previously reported results. Many existing techniques are not able to disaggregate these loads at all. These results indicate a potentially substantial advantage to installing submetering infrastructure in a select few homes rather than installing new high-frequency smart metering infrastructure in all homes.
Nipun Batra and Amarjeet Singh and Kamin Whitehouse
null
1511.02900
null
null
Efficient Construction of Local Parametric Reduced Order Models Using Machine Learning Techniques
cs.LG
Reduced order models are computationally inexpensive approximations that capture the important dynamical characteristics of large, high-fidelity computer models of physical systems. This paper applies machine learning techniques to improve the design of parametric reduced order models. Specifically, machine learning is used to develop feasible regions in the parameter space where the admissible target accuracy is achieved with a predefined reduced order basis, to construct parametric maps, to chose the best two already existing bases for a new parameter configuration from accuracy point of view and to pre-select the optimal dimension of the reduced basis such as to meet the desired accuracy. By combining available information using bases concatenation and interpolation as well as high-fidelity solutions interpolation we are able to build accurate reduced order models associated with new parameter settings. Promising numerical results with a viscous Burgers model illustrate the potential of machine learning approaches to help design better reduced order models.
Azam Moosavi and Razvan Stefanescu and Adrian Sandu
null
1511.02909
null
null
Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
cs.CV cs.AI cs.LG
Hyperspectral image (HSI) classification is a hot topic in the remote sensing community. This paper proposes a new framework of spectral-spatial feature extraction for HSI classification, in which for the first time the concept of deep learning is introduced. Specifically, the model of autoencoder is exploited in our framework to extract various kinds of features. First we verify the eligibility of autoencoder by following classical spectral information based classification and use autoencoders with different depth to classify hyperspectral image. Further in the proposed framework, we combine PCA on spectral dimension and autoencoder on the other two spatial dimensions to extract spectral-spatial information for classification. The experimental results show that this framework achieves the highest classification accuracy among all methods, and outperforms classical classifiers such as SVM and PCA-based SVM.
Zhouhan Lin, Yushi Chen, Xing Zhao, Gang Wang
10.1109/ICICS.2013.6782778
1511.02916
null
null
Reducing the Training Time of Neural Networks by Partitioning
cs.NE cs.LG
This paper presents a new method for pre-training neural networks that can decrease the total training time for a neural network while maintaining the final performance, which motivates its use on deep neural networks. By partitioning the training task in multiple training subtasks with sub-models, which can be performed independently and in parallel, it is shown that the size of the sub-models reduces almost quadratically with the number of subtasks created, quickly scaling down the sub-models used for the pre-training. The sub-models are then merged to provide a pre-trained initial set of weights for the original model. The proposed method is independent of the other aspects of the training, such as architecture of the neural network, training method, and objective, making it compatible with a wide range of existing approaches. The speedup without loss of performance is validated experimentally on MNIST and on CIFAR10 data sets, also showing that even performing the subtasks sequentially can decrease the training time. Moreover, we show that larger models may present higher speedups and conjecture about the benefits of the method in distributed learning systems.
Conrado S. Miranda and Fernando J. Von Zuben
null
1511.02954
null
null
Learning with a Strong Adversary
cs.LG
The robustness of neural networks to intended perturbations has recently attracted significant attention. In this paper, we propose a new method, \emph{learning with a strong adversary}, that learns robust classifiers from supervised data. The proposed method takes finding adversarial examples as an intermediate step. A new and simple way of finding adversarial examples is presented and experimentally shown to be efficient. Experimental results demonstrate that resulting learning method greatly improves the robustness of the classification models produced.
Ruitong Huang, Bing Xu, Dale Schuurmans, Csaba Szepesvari
null
1511.03034
null
null
Tiny Descriptors for Image Retrieval with Unsupervised Triplet Hashing
cs.IR cs.CV cs.LG
A typical image retrieval pipeline starts with the comparison of global descriptors from a large database to find a short list of candidate matches. A good image descriptor is key to the retrieval pipeline and should reconcile two contradictory requirements: providing recall rates as high as possible and being as compact as possible for fast matching. Following the recent successes of Deep Convolutional Neural Networks (DCNN) for large scale image classification, descriptors extracted from DCNNs are increasingly used in place of the traditional hand crafted descriptors such as Fisher Vectors (FV) with better retrieval performances. Nevertheless, the dimensionality of a typical DCNN descriptor --extracted either from the visual feature pyramid or the fully-connected layers-- remains quite high at several thousands of scalar values. In this paper, we propose Unsupervised Triplet Hashing (UTH), a fully unsupervised method to compute extremely compact binary hashes --in the 32-256 bits range-- from high-dimensional global descriptors. UTH consists of two successive deep learning steps. First, Stacked Restricted Boltzmann Machines (SRBM), a type of unsupervised deep neural nets, are used to learn binary embedding functions able to bring the descriptor size down to the desired bitrate. SRBMs are typically able to ensure a very high compression rate at the expense of loosing some desirable metric properties of the original DCNN descriptor space. Then, triplet networks, a rank learning scheme based on weight sharing nets is used to fine-tune the binary embedding functions to retain as much as possible of the useful metric properties of the original space. A thorough empirical evaluation conducted on multiple publicly available dataset using DCNN descriptors shows that our method is able to significantly outperform state-of-the-art unsupervised schemes in the target bit range.
Jie Lin, Olivier Mor\`ere, Julie Petta, Vijay Chandrasekhar, Antoine Veillard
null
1511.03055
null
null
The CTU Prague Relational Learning Repository
cs.LG cs.DB
The aim of the CTU Prague Relational Learning Repository is to support machine learning research with multi-relational data. The repository currently contains 50 SQL databases hosted on a public MySQL server located at relational.fit.cvut.cz. A searchable meta-database provides metadata (e.g., the number of tables in the database, the number of rows and columns in the tables, the number of foreign key constraints between tables).
Jan Motl and Oliver Schulte
null
1511.03086
null
null
Semi-supervised Tuning from Temporal Coherence
cs.LG stat.ML
Recent works demonstrated the usefulness of temporal coherence to regularize supervised training or to learn invariant features with deep architectures. In particular, enforcing smooth output changes while presenting temporally-closed frames from video sequences, proved to be an effective strategy. In this paper we prove the efficacy of temporal coherence for semi-supervised incremental tuning. We show that a deep architecture, just mildly trained in a supervised manner, can progressively improve its classification accuracy, if exposed to video sequences of unlabeled data. The extent to which, in some cases, a semi-supervised tuning allows to improve classification accuracy (approaching the supervised one) is somewhat surprising. A number of control experiments pointed out the fundamental role of temporal coherence.
Davide Maltoni and Vincenzo Lomonaco
null
1511.03163
null
null
Sliced Wasserstein Kernels for Probability Distributions
cs.LG stat.ML
Optimal transport distances, otherwise known as Wasserstein distances, have recently drawn ample attention in computer vision and machine learning as a powerful discrepancy measure for probability distributions. The recent developments on alternative formulations of the optimal transport have allowed for faster solutions to the problem and has revamped its practical applications in machine learning. In this paper, we exploit the widely used kernel methods and provide a family of provably positive definite kernels based on the Sliced Wasserstein distance and demonstrate the benefits of these kernels in a variety of learning tasks. Our work provides a new perspective on the application of optimal transport flavored distances through kernel methods in machine learning tasks.
Soheil Kolouri, Yang Zou, and Gustavo K. Rohde
null
1511.03198
null
null
Label Efficient Learning by Exploiting Multi-class Output Codes
cs.LG
We present a new perspective on the popular multi-class algorithmic techniques of one-vs-all and error correcting output codes. Rather than studying the behavior of these techniques for supervised learning, we establish a connection between the success of these methods and the existence of label-efficient learning procedures. We show that in both the realizable and agnostic cases, if output codes are successful at learning from labeled data, they implicitly assume structure on how the classes are related. By making that structure explicit, we design learning algorithms to recover the classes with low label complexity. We provide results for the commonly studied cases of one-vs-all learning and when the codewords of the classes are well separated. We additionally consider the more challenging case where the codewords are not well separated, but satisfy a boundary features condition that captures the natural intuition that every bit of the codewords should be significant.
Maria Florina Balcan, Travis Dick, Yishay Mansour
null
1511.03225
null
null
Learning Communities in the Presence of Errors
cs.DS cs.LG math.ST stat.TH
We study the problem of learning communities in the presence of modeling errors and give robust recovery algorithms for the Stochastic Block Model (SBM). This model, which is also known as the Planted Partition Model, is widely used for community detection and graph partitioning in various fields, including machine learning, statistics, and social sciences. Many algorithms exist for learning communities in the Stochastic Block Model, but they do not work well in the presence of errors. In this paper, we initiate the study of robust algorithms for partial recovery in SBM with modeling errors or noise. We consider graphs generated according to the Stochastic Block Model and then modified by an adversary. We allow two types of adversarial errors, Feige---Kilian or monotone errors, and edge outlier errors. Mossel, Neeman and Sly (STOC 2015) posed an open question about whether an almost exact recovery is possible when the adversary is allowed to add $o(n)$ edges. Our work answers this question affirmatively even in the case of $k>2$ communities. We then show that our algorithms work not only when the instances come from SBM, but also work when the instances come from any distribution of graphs that is $\epsilon m$ close to SBM in the Kullback---Leibler divergence. This result also works in the presence of adversarial errors. Finally, we present almost tight lower bounds for two communities.
Konstantin Makarychev, Yury Makarychev and Aravindan Vijayaraghavan
null
1511.03229
null
null
A Hierarchical Spectral Method for Extreme Classification
stat.ML cs.LG
Extreme classification problems are multiclass and multilabel classification problems where the number of outputs is so large that straightforward strategies are neither statistically nor computationally viable. One strategy for dealing with the computational burden is via a tree decomposition of the output space. While this typically leads to training and inference that scales sublinearly with the number of outputs, it also results in reduced statistical performance. In this work, we identify two shortcomings of tree decomposition methods, and describe two heuristic mitigations. We compose these with an eigenvalue technique for constructing the tree. The end result is a computationally efficient algorithm that provides good statistical performance on several extreme data sets.
Paul Mineiro and Nikos Karampatziakis
null
1511.03260
null
null
Anchored Discrete Factor Analysis
stat.ML cs.LG
We present a semi-supervised learning algorithm for learning discrete factor analysis models with arbitrary structure on the latent variables. Our algorithm assumes that every latent variable has an "anchor", an observed variable with only that latent variable as its parent. Given such anchors, we show that it is possible to consistently recover moments of the latent variables and use these moments to learn complete models. We also introduce a new technique for improving the robustness of method-of-moment algorithms by optimizing over the marginal polytope or its relaxations. We evaluate our algorithm using two real-world tasks, tag prediction on questions from the Stack Overflow website and medical diagnosis in an emergency department.
Yoni Halpern and Steven Horng and David Sontag
null
1511.03299
null
null
Visual7W: Grounded Question Answering in Images
cs.CV cs.LG cs.NE
We have seen great progress in basic perceptual tasks such as object recognition and detection. However, AI models still fail to match humans in high-level vision tasks due to the lack of capacities for deeper reasoning. Recently the new task of visual question answering (QA) has been proposed to evaluate a model's capacity for deep image understanding. Previous works have established a loose, global association between QA sentences and images. However, many questions and answers, in practice, relate to local regions in the images. We establish a semantic link between textual descriptions and image regions by object-level grounding. It enables a new type of QA with visual answers, in addition to textual answers used in previous work. We study the visual QA tasks in a grounded setting with a large collection of 7W multiple-choice QA pairs. Furthermore, we evaluate human performance and several baseline models on the QA tasks. Finally, we propose a novel LSTM model with spatial attention to tackle the 7W QA tasks.
Yuke Zhu, Oliver Groth, Michael Bernstein and Li Fei-Fei
null
1511.03416
null
null
Hierarchical Latent Semantic Mapping for Automated Topic Generation
cs.LG cs.CL cs.IR
Much of information sits in an unprecedented amount of text data. Managing allocation of these large scale text data is an important problem for many areas. Topic modeling performs well in this problem. The traditional generative models (PLSA,LDA) are the state-of-the-art approaches in topic modeling and most recent research on topic generation has been focusing on improving or extending these models. However, results of traditional generative models are sensitive to the number of topics K, which must be specified manually. The problem of generating topics from corpus resembles community detection in networks. Many effective algorithms can automatically detect communities from networks without a manually specified number of the communities. Inspired by these algorithms, in this paper, we propose a novel method named Hierarchical Latent Semantic Mapping (HLSM), which automatically generates topics from corpus. HLSM calculates the association between each pair of words in the latent topic space, then constructs a unipartite network of words with this association and hierarchically generates topics from this network. We apply HLSM to several document collections and the experimental comparisons against several state-of-the-art approaches demonstrate the promising performance.
Guorui Zhou, Guang Chen
null
1511.03546
null
null
Federated Optimization:Distributed Optimization Beyond the Datacenter
cs.LG math.OC
We introduce a new and increasingly relevant setting for distributed optimization in machine learning, where the data defining the optimization are distributed (unevenly) over an extremely large number of \nodes, but the goal remains to train a high-quality centralized model. We refer to this setting as Federated Optimization. In this setting, communication efficiency is of utmost importance. A motivating example for federated optimization arises when we keep the training data locally on users' mobile devices rather than logging it to a data center for training. Instead, the mobile devices are used as nodes performing computation on their local data in order to update a global model. We suppose that we have an extremely large number of devices in our network, each of which has only a tiny fraction of data available totally; in particular, we expect the number of data points available locally to be much smaller than the number of devices. Additionally, since different users generate data with different patterns, we assume that no device has a representative sample of the overall distribution. We show that existing algorithms are not suitable for this setting, and propose a new algorithm which shows encouraging experimental results. This work also sets a path for future research needed in the context of federated optimization.
Jakub Kone\v{c}n\'y, Brendan McMahan, Daniel Ramage
null
1511.03575
null
null
DataGrinder: Fast, Accurate, Fully non-Parametric Classification Approach Using 2D Convex Hulls
cs.DB cs.CG cs.LG
It has been a long time, since data mining technologies have made their ways to the field of data management. Classification is one of the most important data mining tasks for label prediction, categorization of objects into groups, advertisement and data management. In this paper, we focus on the standard classification problem which is predicting unknown labels in Euclidean space. Most efforts in Machine Learning communities are devoted to methods that use probabilistic algorithms which are heavy on Calculus and Linear Algebra. Most of these techniques have scalability issues for big data, and are hardly parallelizable if they are to maintain their high accuracies in their standard form. Sampling is a new direction for improving scalability, using many small parallel classifiers. In this paper, rather than conventional sampling methods, we focus on a discrete classification algorithm with O(n) expected running time. Our approach performs a similar task as sampling methods. However, we use column-wise sampling of data, rather than the row-wise sampling used in the literature. In either case, our algorithm is completely deterministic. Our algorithm, proposes a way of combining 2D convex hulls in order to achieve high classification accuracy as well as scalability in the same time. First, we thoroughly describe and prove our O(n) algorithm for finding the convex hull of a point set in 2D. Then, we show with experiments our classifier model built based on this idea is very competitive compared with existing sophisticated classification algorithms included in commercial statistical applications such as MATLAB.
Mohammad Khabbaz
null
1511.03576
null
null
The Fourier Transform of Poisson Multinomial Distributions and its Algorithmic Applications
cs.DS cs.GT cs.LG math.PR math.ST stat.TH
An $(n, k)$-Poisson Multinomial Distribution (PMD) is a random variable of the form $X = \sum_{i=1}^n X_i$, where the $X_i$'s are independent random vectors supported on the set of standard basis vectors in $\mathbb{R}^k.$ In this paper, we obtain a refined structural understanding of PMDs by analyzing their Fourier transform. As our core structural result, we prove that the Fourier transform of PMDs is {\em approximately sparse}, i.e., roughly speaking, its $L_1$-norm is small outside a small set. By building on this result, we obtain the following applications: {\bf Learning Theory.} We design the first computationally efficient learning algorithm for PMDs with respect to the total variation distance. Our algorithm learns an arbitrary $(n, k)$-PMD within variation distance $\epsilon$ using a near-optimal sample size of $\widetilde{O}_k(1/\epsilon^2),$ and runs in time $\widetilde{O}_k(1/\epsilon^2) \cdot \log n.$ Previously, no algorithm with a $\mathrm{poly}(1/\epsilon)$ runtime was known, even for $k=3.$ {\bf Game Theory.} We give the first efficient polynomial-time approximation scheme (EPTAS) for computing Nash equilibria in anonymous games. For normalized anonymous games with $n$ players and $k$ strategies, our algorithm computes a well-supported $\epsilon$-Nash equilibrium in time $n^{O(k^3)} \cdot (k/\epsilon)^{O(k^3\log(k/\epsilon)/\log\log(k/\epsilon))^{k-1}}.$ The best previous algorithm for this problem had running time $n^{(f(k)/\epsilon)^k},$ where $f(k) = \Omega(k^{k^2})$, for any $k>2.$ {\bf Statistics.} We prove a multivariate central limit theorem (CLT) that relates an arbitrary PMD to a discretized multivariate Gaussian with the same mean and covariance, in total variation distance. Our new CLT strengthens the CLT of Valiant and Valiant by completely removing the dependence on $n$ in the error bound.
Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart
null
1511.03592
null
null
A Size-Free CLT for Poisson Multinomials and its Applications
cs.DS cs.GT cs.LG math.PR math.ST stat.TH
An $(n,k)$-Poisson Multinomial Distribution (PMD) is the distribution of the sum of $n$ independent random vectors supported on the set ${\cal B}_k=\{e_1,\ldots,e_k\}$ of standard basis vectors in $\mathbb{R}^k$. We show that any $(n,k)$-PMD is ${\rm poly}\left({k\over \sigma}\right)$-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on $n$ from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath, and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on $n$ and $1/\varepsilon$ of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of $(n,k)$-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from $O_k(1/\varepsilon^2)$ samples in ${\rm poly}_k(1/\varepsilon)$-time, removing the quasi-polynomial dependence of the running time on $1/\varepsilon$ from the algorithm of Daskalakis, Kamath, and Tzamos.
Constantinos Daskalakis, Anindya De, Gautam Kamath, Christos Tzamos
10.1145/2897518.2897519
1511.03641
null
null
Unifying distillation and privileged information
stat.ML cs.LG
Distillation (Hinton et al., 2015) and privileged information (Vapnik & Izmailov, 2015) are two techniques that enable machines to learn from other machines. This paper unifies these two techniques into generalized distillation, a framework to learn from multiple machines and data representations. We provide theoretical and causal insight about the inner workings of generalized distillation, extend it to unsupervised, semisupervised and multitask learning scenarios, and illustrate its efficacy on a variety of numerical simulations on both synthetic and real-world data.
David Lopez-Paz, L\'eon Bottou, Bernhard Sch\"olkopf, Vladimir Vapnik
null
1511.03643
null
null
Learning to Diagnose with LSTM Recurrent Neural Networks
cs.LG
Clinical medical data, especially in the intensive care unit (ICU), consist of multivariate time series of observations. For each patient visit (or episode), sensor data and lab test results are recorded in the patient's Electronic Health Record (EHR). While potentially containing a wealth of insights, the data is difficult to mine effectively, owing to varying length, irregular sampling and missing data. Recurrent Neural Networks (RNNs), particularly those using Long Short-Term Memory (LSTM) hidden units, are powerful and increasingly popular models for learning from sequence data. They effectively model varying length sequences and capture long range dependencies. We present the first study to empirically evaluate the ability of LSTMs to recognize patterns in multivariate time series of clinical measurements. Specifically, we consider multilabel classification of diagnoses, training a model to classify 128 diagnoses given 13 frequently but irregularly sampled clinical measurements. First, we establish the effectiveness of a simple LSTM network for modeling clinical data. Then we demonstrate a straightforward and effective training strategy in which we replicate targets at each sequence step. Trained only on raw time series, our models outperform several strong baselines, including a multilayer perceptron trained on hand-engineered features.
Zachary C. Lipton, David C. Kale, Charles Elkan, Randall Wetzel
null
1511.03677
null
null
Generative Concatenative Nets Jointly Learn to Write and Classify Reviews
cs.CL cs.LG
A recommender system's basic task is to estimate how users will respond to unseen items. This is typically modeled in terms of how a user might rate a product, but here we aim to extend such approaches to model how a user would write about the product. To do so, we design a character-level Recurrent Neural Network (RNN) that generates personalized product reviews. The network convincingly learns styles and opinions of nearly 1000 distinct authors, using a large corpus of reviews from BeerAdvocate.com. It also tailors reviews to describe specific items, categories, and star ratings. Using a simple input replication strategy, the Generative Concatenative Network (GCN) preserves the signal of static auxiliary inputs across wide sequence intervals. Without any additional training, the generative model can classify reviews, identifying the author of the review, the product category, and the sentiment (rating), with remarkable accuracy. Our evaluation shows the GCN captures complex dynamics in text, such as the effect of negation, misspellings, slang, and large vocabularies gracefully absent any machinery explicitly dedicated to the purpose.
Zachary C. Lipton, Sharad Vikram, Julian McAuley
null
1511.03683
null
null
Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?
stat.ML cs.LG stat.ME
In the current context of data explosion, online techniques that do not require storing all data in memory are indispensable to routinely perform tasks like principal component analysis (PCA). Recursive algorithms that update the PCA with each new observation have been studied in various fields of research and found wide applications in industrial monitoring, computer vision, astronomy, and latent semantic indexing, among others. This work provides guidance for selecting an online PCA algorithm in practice. We present the main approaches to online PCA, namely, perturbation techniques, incremental methods, and stochastic optimization, and compare their statistical accuracy, computation time, and memory requirements using artificial and real data. Extensions to missing data and to functional data are discussed. All studied algorithms are available in the R package onlinePCA on CRAN.
Herv\'e Cardot and David Degras
null
1511.03688
null
null
Universum Prescription: Regularization using Unlabeled Data
cs.LG
This paper shows that simply prescribing "none of the above" labels to unlabeled data has a beneficial regularization effect to supervised learning. We call it universum prescription by the fact that the prescribed labels cannot be one of the supervised labels. In spite of its simplicity, universum prescription obtained competitive results in training deep convolutional networks for CIFAR-10, CIFAR-100, STL-10 and ImageNet datasets. A qualitative justification of these approaches using Rademacher complexity is presented. The effect of a regularization parameter -- probability of sampling from unlabeled data -- is also studied empirically.
Xiang Zhang, Yann LeCun
null
1511.03719
null
null
Doubly Robust Off-policy Value Evaluation for Reinforcement Learning
cs.LG cs.AI cs.SY stat.ME stat.ML
We study the problem of off-policy value evaluation in reinforcement learning (RL), where one aims to estimate the value of a new policy based on data collected by a different policy. This problem is often a critical step when applying RL in real-world problems. Despite its importance, existing general methods either have uncontrolled bias or suffer high variance. In this work, we extend the doubly robust estimator for bandits to sequential decision-making problems, which gets the best of both worlds: it is guaranteed to be unbiased and can have a much lower variance than the popular importance sampling estimators. We demonstrate the estimator's accuracy in several benchmark problems, and illustrate its use as a subroutine in safe policy improvement. We also provide theoretical results on the hardness of the problem, and show that our estimator can match the lower bound in certain scenarios.
Nan Jiang and Lihong Li
null
1511.03722
null
null
Grounding of Textual Phrases in Images by Reconstruction
cs.CV cs.CL cs.LG
Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.
Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, Bernt Schiele
10.1007/978-3-319-46448-0_49
1511.03745
null
null
Random Multi-Constraint Projection: Stochastic Gradient Methods for Convex Optimization with Many Constraints
stat.ML cs.LG math.OC
Consider convex optimization problems subject to a large number of constraints. We focus on stochastic problems in which the objective takes the form of expected values and the feasible set is the intersection of a large number of convex sets. We propose a class of algorithms that perform both stochastic gradient descent and random feasibility updates simultaneously. At every iteration, the algorithms sample a number of projection points onto a randomly selected small subsets of all constraints. Three feasibility update schemes are considered: averaging over random projected points, projecting onto the most distant sample, projecting onto a special polyhedral set constructed based on sample points. We prove the almost sure convergence of these algorithms, and analyze the iterates' feasibility error and optimality error, respectively. We provide new convergence rate benchmarks for stochastic first-order optimization with many constraints. The rate analysis and numerical experiments reveal that the algorithm using the polyhedral-set projection scheme is the most efficient one within known algorithms.
Mengdi Wang, Yichen Chen, Jialin Liu, Yuantao Gu
null
1511.03760
null
null
Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach
cs.LG
In this paper, we develop a randomized algorithm and theory for learning a sparse model from large-scale and high-dimensional data, which is usually formulated as an empirical risk minimization problem with a sparsity-inducing regularizer. Under the assumption that there exists a (approximately) sparse solution with high classification accuracy, we argue that the dual solution is also sparse or approximately sparse. The fact that both primal and dual solutions are sparse motivates us to develop a randomized approach for a general convex-concave optimization problem. Specifically, the proposed approach combines the strength of random projection with that of sparse learning: it utilizes random projection to reduce the dimensionality, and introduces $\ell_1$-norm regularization to alleviate the approximation error caused by random projection. Theoretical analysis shows that under favored conditions, the randomized algorithm can accurately recover the optimal solutions to the convex-concave optimization problem (i.e., recover both the primal and dual solutions).
Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou
null
1511.03766
null
null
Improving performance of recurrent neural network with relu nonlinearity
cs.NE cs.LG
In recent years significant progress has been made in successfully training recurrent neural networks (RNNs) on sequence learning problems involving long range temporal dependencies. The progress has been made on three fronts: (a) Algorithmic improvements involving sophisticated optimization techniques, (b) network design involving complex hidden layer nodes and specialized recurrent layer connections and (c) weight initialization methods. In this paper, we focus on recently proposed weight initialization with identity matrix for the recurrent weights in a RNN. This initialization is specifically proposed for hidden nodes with Rectified Linear Unit (ReLU) non linearity. We offer a simple dynamical systems perspective on weight initialization process, which allows us to propose a modified weight initialization strategy. We show that this initialization technique leads to successfully training RNNs composed of ReLUs. We demonstrate that our proposal produces comparable or better solution for three toy problems involving long range temporal structure: the addition problem, the multiplication problem and the MNIST classification problem using sequence of pixels. In addition, we present results for a benchmark action recognition problem.
Sachin S. Talathi and Aniket Vartak
null
1511.03771
null
null