title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
On the Optimal Sample Complexity for Best Arm Identification
cs.LG cs.DS
We study the best arm identification (BEST-1-ARM) problem, which is defined as follows. We are given $n$ stochastic bandit arms. The $i$th arm has a reward distribution $D_i$ with an unknown mean $\mu_{i}$. Upon each play of the $i$th arm, we can get a reward, sampled i.i.d. from $D_i$. We would like to identify the arm with the largest mean with probability at least $1-\delta$, using as few samples as possible. We provide a nontrivial algorithm for BEST-1-ARM, which improves upon several prior upper bounds on the same problem. We also study an important special case where there are only two arms, which we call the sign problem. We provide a new lower bound of sign, simplifying and significantly extending a classical result by Farrell in 1964, with a completely new proof. Using the new lower bound for sign, we obtain the first lower bound for BEST-1-ARM that goes beyond the classic Mannor-Tsitsiklis lower bound, by an interesting reduction from Sign to BEST-1-ARM. We propose an interesting conjecture concerning the optimal sample complexity of BEST-1-ARM from the perspective of instance-wise optimality.
Lijie Chen, Jian Li
null
1511.03774
null
null
Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control
cs.LG cs.CV cs.RO
This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching with a three-joint robot manipulator using external visual observation. A Deep Q Network (DQN) was demonstrated to perform target reaching after training in simulation. Transferring the network to real hardware and real observation in a naive approach failed, but experiments show that the network works when replacing camera images with synthetic images.
Fangyi Zhang, J\"urgen Leitner, Michael Milford, Ben Upcroft, Peter Corke
null
1511.03791
null
null
Learning Nonparametric Forest Graphical Models with Prior Information
stat.ME cs.LG stat.ML
We present a framework for incorporating prior information into nonparametric estimation of graphical models. To avoid distributional assumptions, we restrict the graph to be a forest and build on the work of forest density estimation (FDE). We reformulate the FDE approach from a Bayesian perspective, and introduce prior distributions on the graphs. As two concrete examples, we apply this framework to estimating scale-free graphs and learning multiple graphs with similar structures. The resulting algorithms are equivalent to finding a maximum spanning tree of a weighted graph with a penalty term on the connectivity pattern of the graph. We solve the optimization problem via a minorize-maximization procedure with Kruskal's algorithm. Simulations show that the proposed methods outperform competing parametric methods, and are robust to the true data distribution. They also lead to improvement in predictive power and interpretability in two real data sets.
Yuancheng Zhu, Zhe Liu and Siqi Sun
null
1511.03796
null
null
Characterizing Concept Drift
cs.LG cs.AI
Most machine learning models are static, but the world is dynamic, and increasing online deployment of learned models gives increasing urgency to the development of efficient and effective mechanisms to address learning in the context of non-stationary distributions, or as it is commonly called concept drift. However, the key issue of characterizing the different types of drift that can occur has not previously been subjected to rigorous definition and analysis. In particular, while some qualitative drift categorizations have been proposed, few have been formally defined, and the quantitative descriptions required for precise and objective understanding of learner performance have not existed. We present the first comprehensive framework for quantitative analysis of drift. This supports the development of the first comprehensive set of formal definitions of types of concept drift. The formal definitions clarify ambiguities and identify gaps in previous definitions, giving rise to a new comprehensive taxonomy of concept drift types and a solid foundation for research into mechanisms to detect and address concept drift.
Geoffrey I. Webb and Roy Hyde and Hong Cao and Hai Long Nguyen and Francois Petitjean
10.1007/s10618-015-0448-4
1511.03816
null
null
Feature Learning based Deep Supervised Hashing with Pairwise Labels
cs.LG cs.CV
Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hash-code learning with deep neural networks, which have shown better performance than traditional hashing methods with hand-crafted features. Most of these deep hashing methods are supervised whose supervised information is given with triplet labels. For another common application scenario with pairwise labels, there have not existed methods for simultaneous feature learning and hash-code learning. In this paper, we propose a novel deep hashing method, called deep pairwise-supervised hashing(DPSH), to perform simultaneous feature learning and hash-code learning for applications with pairwise labels. Experiments on real datasets show that our DPSH method can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.
Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang
null
1511.03855
null
null
Learning Human Identity from Motion Patterns
cs.LG cs.CV cs.NE
We present a large-scale study exploring the capability of temporal deep neural networks to interpret natural human kinematics and introduce the first method for active biometric authentication with mobile inertial sensors. At Google, we have created a first-of-its-kind dataset of human movements, passively collected by 1500 volunteers using their smartphones daily over several months. We (1) compare several neural architectures for efficient learning of temporal multi-modal data representations, (2) propose an optimized shift-invariant dense convolutional mechanism (DCWRNN), and (3) incorporate the discriminatively-trained dynamic features in a probabilistic generative framework taking into account temporal characteristics. Our results demonstrate that human kinematics convey important information about user identity and can serve as a valuable component of multi-modal authentication systems.
Natalia Neverova, Christian Wolf, Griffin Lacey, Lex Fridman, Deepak Chandra, Brandon Barbello, Graham Taylor
null
1511.03908
null
null
Bayesian Analysis of Dynamic Linear Topic Models
stat.ML cs.LG stat.ME
In dynamic topic modeling, the proportional contribution of a topic to a document depends on the temporal dynamics of that topic's overall prevalence in the corpus. We extend the Dynamic Topic Model of Blei and Lafferty (2006) by explicitly modeling document level topic proportions with covariates and dynamic structure that includes polynomial trends and periodicity. A Markov Chain Monte Carlo (MCMC) algorithm that utilizes Polya-Gamma data augmentation is developed for posterior inference. Conditional independencies in the model and sampling are made explicit, and our MCMC algorithm is parallelized where possible to allow for inference in large corpora. To address computational bottlenecks associated with Polya-Gamma sampling, we appeal to the Central Limit Theorem to develop a Gaussian approximation to the Polya-Gamma random variable. This approximation is fast and reliable for parameter values relevant in the text mining domain. Our model and inference algorithm are validated with multiple simulation examples, and we consider the application of modeling trends in PubMed abstracts. We demonstrate that sharing information across documents is critical for accurately estimating document-specific topic proportions. We also show that explicitly modeling polynomial and periodic behavior improves our ability to predict topic prevalence at future time points.
Chris Glynn, Surya T. Tokdar, David L. Banks, Brian Howard
null
1511.03947
null
null
Document Context Language Models
cs.CL cs.LG stat.ML
Text documents are structured on multiple levels of detail: individual words are related by syntax, but larger units of text are related by discourse structure. Existing language models generally fail to account for discourse structure, but it is crucial if we are to have language models that reward coherence and generate coherent texts. We present and empirically evaluate a set of multi-level recurrent neural network language models, called Document-Context Language Models (DCLM), which incorporate contextual information both within and beyond the sentence. In comparison with word-level recurrent neural network language models, the DCLM models obtain slightly better predictive likelihoods, and considerably better assessments of document coherence.
Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer, Jacob Eisenstein
null
1511.03962
null
null
Representational Distance Learning for Deep Neural Networks
cs.NE cs.CV cs.LG
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs towards those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g. images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.
Patrick McClure, Nikolaus Kriegeskorte
null
1511.03979
null
null
Prediction of the Yield of Enzymatic Synthesis of Betulinic Acid Ester Using Artificial Neural Networks and Support Vector Machine
cs.LG cs.NE
3\b{eta}-O-phthalic ester of betulinic acid is of great importance in anticancer studies. However, the optimization of its reaction conditions requires a large number of experimental works. To simplify the number of times of optimization in experimental works, here, we use artificial neural network (ANN) and support vector machine (SVM) models for the prediction of yields of 3\b{eta}-O-phthalic ester of betulinic acid synthesized by betulinic acid and phthalic anhydride using lipase as biocatalyst. General regression neural network (GRNN), multilayer feed-forward neural network (MLFN) and the SVM models were trained based on experimental data. Four indicators were set as independent variables, including time (h), temperature (C), amount of enzyme (mg) and molar ratio, while the yield of the 3\b{eta}-O-phthalic ester of betulinic acid was set as the dependent variable. Results show that the GRNN and SVM models have the best prediction results during the testing process, with comparatively low RMS errors (4.01 and 4.23respectively) and short training times (both 1s). The prediction accuracy of the GRNN and SVM are both 100% in testing process, under the tolerance of 30%.
Run Wang, Qiaoli Mo, Qian Zhang, Fudi Chen and Dazuo Yang
null
1511.03984
null
null
Block-diagonal covariance selection for high-dimensional Gaussian graphical models
math.ST cs.LG stat.ML stat.TH
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on an oracle inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network.
Emilie Devijver, M\'elina Gallopin
null
1511.04033
null
null
Kernel Methods for Accurate UWB-Based Ranging with Reduced Complexity
cs.LG cs.IT math.IT
Accurate and robust positioning in multipath environments can enable many applications, such as search-and-rescue and asset tracking. For this problem, ultra-wideband (UWB) technology can provide the most accurate range estimates, which are required for range-based positioning. However, UWB still faces a problem with non-line-of-sight (NLOS) measurements, in which the range estimates based on time-of-arrival (TOA) will typically be positively biased. There are many techniques that address this problem, mainly based on NLOS identification and NLOS error mitigation algorithms. However, these techniques do not exploit all available information in the UWB channel impulse response. Kernel-based machine learning methods, such as Gaussian Process Regression (GPR), are able to make use of all information, but they may be too complex in their original form. In this paper, we propose novel ranging methods based on kernel principal component analysis (kPCA), in which the selected channel parameters are projected onto a nonlinear orthogonal high-dimensional space, and a subset of these projections is then used as an input for ranging. We evaluate the proposed methods using real UWB measurements obtained in a basement tunnel, and found that one of the proposed methods is able to outperform state-of-the-art, even if little training samples are available.
Vladimir Savic, Erik G. Larsson, Javier Ferrer-Coll, Peter Stenumgaard
10.1109/TWC.2015.2496584
1511.04045
null
null
Efficient non-greedy optimization of decision trees
cs.LG cs.CV
Decision trees and randomized forests are widely used in computer vision and machine learning. Standard algorithms for decision tree induction optimize the split functions one node at a time according to some splitting criteria. This greedy procedure often leads to suboptimal trees. In this paper, we present an algorithm for optimizing the split functions at all levels of the tree jointly with the leaf parameters, based on a global objective. We show that the problem of finding optimal linear-combination (oblique) splits for decision trees is related to structured prediction with latent variables, and we formulate a convex-concave upper bound on the tree's empirical loss. The run-time of computing the gradient of the proposed surrogate objective with respect to each training exemplar is quadratic in the the tree depth, and thus training deep trees is feasible. The use of stochastic gradient descent for optimization enables effective training with large datasets. Experiments on several classification benchmarks demonstrate that the resulting non-greedy decision trees outperform greedy decision tree baselines.
Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli
null
1511.04056
null
null
LSTM-based Deep Learning Models for Non-factoid Answer Selection
cs.CL cs.LG
In this paper, we apply a general deep learning (DL) framework for the answer selection task, which does not depend on manually defined features or linguistic tools. The basic framework is to build the embeddings of questions and answers based on bidirectional long short-term memory (biLSTM) models, and measure their closeness by cosine similarity. We further extend this basic model in two directions. One direction is to define a more composite representation for questions and answers by combining convolutional neural network with the basic framework. The other direction is to utilize a simple but efficient attention mechanism in order to generate the answer representation according to the question context. Several variations of models are provided. The models are examined by two datasets, including TREC-QA and InsuranceQA. Experimental results demonstrate that the proposed models substantially outperform several strong baselines.
Ming Tan, Cicero dos Santos, Bing Xiang, Bowen Zhou
null
1511.04108
null
null
Action Recognition using Visual Attention
cs.LG cs.CV
We propose a soft attention based model for the task of action recognition in videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpses. The model essentially learns which parts in the frames are relevant for the task at hand and attaches higher importance to them. We evaluate the model on UCF-11 (YouTube Action), HMDB-51 and Hollywood2 datasets and analyze how the model focuses its attention depending on the scene and the action being performed.
Shikhar Sharma, Ryan Kiros, Ruslan Salakhutdinov
null
1511.04119
null
null
Seeing the Unseen Network: Inferring Hidden Social Ties from Respondent-Driven Sampling
cs.SI cs.AI cs.LG
Learning about the social structure of hidden and hard-to-reach populations --- such as drug users and sex workers --- is a major goal of epidemiological and public health research on risk behaviors and disease prevention. Respondent-driven sampling (RDS) is a peer-referral process widely used by many health organizations, where research subjects recruit other subjects from their social network. In such surveys, researchers observe who recruited whom, along with the time of recruitment and the total number of acquaintances (network degree) of respondents. However, due to privacy concerns, the identities of acquaintances are not disclosed. In this work, we show how to reconstruct the underlying network structure through which the subjects are recruited. We formulate the dynamics of RDS as a continuous-time diffusion process over the underlying graph and derive the likelihood for the recruitment time series under an arbitrary recruitment time distribution. We develop an efficient stochastic optimization algorithm called RENDER (REspoNdent-Driven nEtwork Reconstruction) that finds the network that best explains the collected data. We support our analytical results through an exhaustive set of experiments on both synthetic and real data.
Lin Chen, Forrest W. Crawford, Amin Karbasi
null
1511.04137
null
null
Deep Reinforcement Learning in Parameterized Action Space
cs.AI cs.LG cs.MA cs.NE
Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning within the domain of simulated RoboCup soccer, which features a small set of discrete action types, each of which is parameterized with continuous variables. The best learned agent can score goals more reliably than the 2012 RoboCup champion agent. As such, this paper represents a successful extension of deep reinforcement learning to the class of parameterized action space MDPs.
Matthew Hausknecht and Peter Stone
null
1511.04143
null
null
A Continuous-time Mutually-Exciting Point Process Framework for Prioritizing Events in Social Media
cs.SI cs.LG
The overwhelming amount and rate of information update in online social media is making it increasingly difficult for users to allocate their attention to their topics of interest, thus there is a strong need for prioritizing news feeds. The attractiveness of a post to a user depends on many complex contextual and temporal features of the post. For instance, the contents of the post, the responsiveness of a third user, and the age of the post may all have impact. So far, these static and dynamic features has not been incorporated in a unified framework to tackle the post prioritization problem. In this paper, we propose a novel approach for prioritizing posts based on a feature modulated multi-dimensional point process. Our model is able to simultaneously capture textual and sentiment features, and temporal features such as self-excitation, mutual-excitation and bursty nature of social interaction. As an evaluation, we also curated a real-world conversational benchmark dataset crawled from Facebook. In our experiments, we demonstrate that our algorithm is able to achieve the-state-of-the-art performance in terms of analyzing, predicting, and prioritizing events. In terms of interpretability of our method, we observe that features indicating individual user profile and linguistic characteristics of the events work best for prediction and prioritization of new events.
Mehrdad Farajtabar, Safoora Yousefi, Long Q. Tran, Le Song, Hongyuan Zha
null
1511.04145
null
null
Deep Mean Maps
stat.ML cs.CV cs.LG
The use of distributions and high-level features from deep architecture has become commonplace in modern computer vision. Both of these methodologies have separately achieved a great deal of success in many computer vision tasks. However, there has been little work attempting to leverage the power of these to methodologies jointly. To this end, this paper presents the Deep Mean Maps (DMMs) framework, a novel family of methods to non-parametrically represent distributions of features in convolutional neural network models. DMMs are able to both classify images using the distribution of top-level features, and to tune the top-level features for performing this task. We show how to implement DMMs using a special mean map layer composed of typical CNN operations, making both forward and backward propagation simple. We illustrate the efficacy of DMMs at analyzing distributional patterns in image data in a synthetic data experiment. We also show that we extending existing deep architectures with DMMs improves the performance of existing CNNs on several challenging real-world datasets.
Junier B. Oliva, Danica J. Sutherland, Barnab\'as P\'oczos, Jeff Schneider
null
1511.04150
null
null
Adaptive Affinity Matrix for Unsupervised Metric Learning
cs.CV cs.LG
Spectral clustering is one of the most popular clustering approaches with the capability to handle some challenging clustering problems. Most spectral clustering methods provide a nonlinear map from the data manifold to a subspace. Only a little work focuses on the explicit linear map which can be viewed as the unsupervised distance metric learning. In practice, the selection of the affinity matrix exhibits a tremendous impact on the unsupervised learning. While much success of affinity learning has been achieved in recent years, some issues such as noise reduction remain to be addressed. In this paper, we propose a novel method, dubbed Adaptive Affinity Matrix (AdaAM), to learn an adaptive affinity matrix and derive a distance metric from the affinity. We assume the affinity matrix to be positive semidefinite with ability to quantify the pairwise dissimilarity. Our method is based on posing the optimization of objective function as a spectral decomposition problem. We yield the affinity from both the original data distribution and the widely-used heat kernel. The provided matrix can be regarded as the optimal representation of pairwise relationship on the manifold. Extensive experiments on a number of real-world data sets show the effectiveness and efficiency of AdaAM.
Yaoyi Li, Junxuan Chen and Hongtao Lu
10.1109/ICME.2016.7552887
1511.04153
null
null
Neuroprosthetic decoder training as imitation learning
stat.ML cs.LG q-bio.NC
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. We describe how training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger, [1]), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
Josh Merel, David Carlson, Liam Paninski, John P. Cunningham
10.1371/journal.pcbi.1004948
1511.04156
null
null
On the Quality of the Initial Basin in Overspecified Neural Networks
cs.LG stat.ML
Deep learning, in the form of artificial neural networks, has achieved remarkable practical success in recent years, for a variety of difficult machine learning applications. However, a theoretical explanation for this remains a major open problem, since training neural networks involves optimizing a highly non-convex objective function, and is known to be computationally hard in the worst case. In this work, we study the \emph{geometric} structure of the associated non-convex objective function, in the context of ReLU networks and starting from a random initialization of the network parameters. We identify some conditions under which it becomes more favorable to optimization, in the sense of (i) High probability of initializing at a point from which there is a monotonically decreasing path to a global minimum; and (ii) High probability of initializing at a basin (suitably defined) with a small minimal objective value. A common theme in our results is that such properties are more likely to hold for larger ("overspecified") networks, which accords with some recent empirical and theoretical observations.
Itay Safran, Ohad Shamir
null
1511.04210
null
null
Active Contextual Entropy Search
stat.ML cs.LG
Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a small number of hyperparameters. However, learning, when performed on real robotic systems, is typically restricted to a small number of trials. Bayesian optimization has recently been proposed as a sample-efficient means for contextual policy search that is well suited under these conditions. In this work, we extend entropy search, a variant of Bayesian optimization, such that it can be used for active contextual policy search where the agent selects those tasks during training in which it expects to learn the most. Empirical results in simulation suggest that this allows learning successful behavior with less trials.
Jan Hendrik Metzen
null
1511.04211
null
null
Deep Feature Learning for EEG Recordings
cs.NE cs.LG
We introduce and compare several strategies for learning discriminative features from electroencephalography (EEG) recordings using deep learning techniques. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Our proposed techniques specifically address these challenges for feature learning. Cross-trial encoding forces auto-encoders to focus on features that are stable across trials. Similarity-constraint encoders learn features that allow to distinguish between classes by demanding that two trials from the same class are more similar to each other than to trials from other classes. This tuple-based training approach is especially suitable for small datasets. Hydra-nets allow for separate processing pathways adapting to subsets of a dataset and thus combine the advantages of individual feature learning (better adaptation of early, low-level processing) with group model training (better generalization of higher-level processing in deeper layers). This way, models can, for instance, adapt to each subject individually to compensate for differences in spatial patterns due to anatomical differences or variance in electrode positions. The different techniques are evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music.
Sebastian Stober, Avital Sternin, Adrian M. Owen and Jessica A. Grahn
null
1511.04306
null
null
Handling Class Imbalance in Link Prediction using Learning to Rank Techniques
stat.ML cs.LG cs.SI
We consider the link prediction problem in a partially observed network, where the objective is to make predictions in the unobserved portion of the network. Many existing methods reduce link prediction to binary classification problem. However, the dominance of absent links in real world networks makes misclassification error a poor performance metric. Instead, researchers have argued for using ranking performance measures, like AUC, AP and NDCG, for evaluation. Our main contribution is to recast the link prediction problem as a learning to rank problem and use effective learning to rank techniques directly during training. This is in contrast to existing work that uses ranking measures only during evaluation. Our approach is able to deal with the class imbalance problem by using effective, scalable learning to rank techniques during training. Furthermore, our approach allows us to combine network topology and node features. As a demonstration of our general approach, we develop a link prediction method by optimizing the cross-entropy surrogate, originally used in the popular ListNet ranking algorithm. We conduct extensive experiments on publicly available co-authorship, citation and metabolic networks to demonstrate the merits of our method.
Bopeng Li, Sougata Chaudhuri, Ambuj Tewari
null
1511.04383
null
null
Similarity-based Text Recognition by Deeply Supervised Siamese Network
cs.CV cs.LG
In this paper, we propose a new text recognition model based on measuring the visual similarity of text and predicting the content of unlabeled texts. First a Siamese convolutional network is trained with deep supervision on a labeled training dataset. This network projects texts into a similarity manifold. The Deeply Supervised Siamese network learns visual similarity of texts. Then a K-nearest neighbor classifier is used to predict unlabeled text based on similarity distance to labeled texts. The performance of the model is evaluated on three datasets of machine-print and hand-written text combined. We demonstrate that the model reduces the cost of human estimation by $50\%-85\%$. The error of the system is less than $0.5\%$. The proposed model outperform conventional Siamese network by finding visually-similar barely-readable and readable text, e.g. machine-printed, handwritten, due to deep supervision. The results also demonstrate that the predicted labels are sometimes better than human labels e.g. spelling correction.
Ehsan Hosseini-Asl, Angshuman Guha
null
1511.04397
null
null
Symbol Grounding Association in Multimodal Sequences with Missing Elements
cs.CV cs.CL cs.LG cs.NE
In this paper, we extend a symbolic association framework for being able to handle missing elements in multimodal sequences. The general scope of the work is the symbolic associations of object-word mappings as it happens in language development in infants. In other words, two different representations of the same abstract concepts can associate in both directions. This scenario has been long interested in Artificial Intelligence, Psychology, and Neuroscience. In this work, we extend a recent approach for multimodal sequences (visual and audio) to also cope with missing elements in one or both modalities. Our method uses two parallel Long Short-Term Memories (LSTMs) with a learning rule based on EM-algorithm. It aligns both LSTM outputs via Dynamic Time Warping (DTW). We propose to include an extra step for the combination with the max operation for exploiting the common elements between both sequences. The motivation behind is that the combination acts as a condition selector for choosing the best representation from both LSTMs. We evaluated the proposed extension in the following scenarios: missing elements in one modality (visual or audio) and missing elements in both modalities (visual and sound). The performance of our extension reaches better results than the original model and similar results to individual LSTM trained in each modality.
Federico Raue, Andreas Dengel, Thomas M. Breuel, Marcus Liwicki
null
1511.04401
null
null
Dynamic Sum Product Networks for Tractable Inference on Sequence Data (Extended Version)
cs.LG cs.AI stat.ML
Sum-Product Networks (SPN) have recently emerged as a new class of tractable probabilistic graphical models. Unlike Bayesian networks and Markov networks where inference may be exponential in the size of the network, inference in SPNs is in time linear in the size of the network. Since SPNs represent distributions over a fixed set of variables only, we propose dynamic sum product networks (DSPNs) as a generalization of SPNs for sequence data of varying length. A DSPN consists of a template network that is repeated as many times as needed to model data sequences of any length. We present a local search technique to learn the structure of the template network. In contrast to dynamic Bayesian networks for which inference is generally exponential in the number of variables per time slice, DSPNs inherit the linear inference complexity of SPNs. We demonstrate the advantages of DSPNs over DBNs and other models on several datasets of sequence data.
Mazen Melibari, Pascal Poupart, Prashant Doshi and George Trimponias
null
1511.04412
null
null
Deeply-Recursive Convolutional Network for Image Super-Resolution
cs.CV cs.LG
We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Our network has a very deep recursive layer (up to 16 recursions). Increasing recursion depth can improve performance without introducing new parameters for additional convolutions. Albeit advantages, learning a DRCN is very hard with a standard gradient descent method due to exploding/vanishing gradients. To ease the difficulty of training, we propose two extensions: recursive-supervision and skip-connection. Our method outperforms previous methods by a large margin.
Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee
null
1511.04491
null
null
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
cs.CR cs.LG cs.NE stat.ML
Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems. However, recent studies have shown that deep learning, like other machine learning techniques, is vulnerable to adversarial samples: inputs crafted to force a deep neural network (DNN) to provide adversary-selected outputs. Such attacks can seriously undermine the security of the system supported by the DNN, sometimes with devastating consequences. For example, autonomous vehicles can be crashed, illicit or illegal content can bypass content filters, or biometric authentication systems can be manipulated to allow improper access. In this work, we introduce a defensive mechanism called defensive distillation to reduce the effectiveness of adversarial samples on DNNs. We analytically investigate the generalizability and robustness properties granted by the use of defensive distillation when training DNNs. We also empirically study the effectiveness of our defense mechanisms on two DNNs placed in adversarial settings. The study shows that defensive distillation can reduce effectiveness of sample creation from 95% to less than 0.5% on a studied DNN. Such dramatic gains can be explained by the fact that distillation leads gradients used in adversarial sample creation to be reduced by a factor of 10^30. We also find that distillation increases the average minimum number of features that need to be modified to create adversarial samples by about 800% on one of the DNNs we tested.
Nicolas Papernot and Patrick McDaniel and Xi Wu and Somesh Jha and Ananthram Swami
null
1511.04508
null
null
Sparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference
stat.ML cs.IT cs.LG math.IT math.OC
We study parameter estimation and asymptotic inference for sparse nonlinear regression. More specifically, we assume the data are given by $y = f( x^\top \beta^* ) + \epsilon$, where $f$ is nonlinear. To recover $\beta^*$, we propose an $\ell_1$-regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of $f$. In spite of the nonconvexity, we prove that under mild conditions, every stationary point of the objective enjoys an optimal statistical rate of convergence. In addition, we provide an efficient algorithm that provably converges to a stationary point. We also access the uncertainty of the obtained estimator. Specifically, based on any stationary point of the objective, we construct valid hypothesis tests and confidence intervals for the low dimensional components of the high-dimensional parameter $\beta^*$. Detailed numerical results are provided to back up our theory.
Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, Tong Zhang
null
1511.04514
null
null
Efficient Training of Very Deep Neural Networks for Supervised Hashing
cs.CV cs.LG cs.NE
In this paper, we propose training very deep neural networks (DNNs) for supervised learning of hash codes. Existing methods in this context train relatively "shallow" networks limited by the issues arising in back propagation (e.e. vanishing gradients) as well as computational efficiency. We propose a novel and efficient training algorithm inspired by alternating direction method of multipliers (ADMM) that overcomes some of these limitations. Our method decomposes the training process into independent layer-wise local updates through auxiliary variables. Empirically we observe that our training algorithm always converges and its computational complexity is linearly proportional to the number of edges in the networks. Empirically we manage to train DNNs with 64 hidden layers and 1024 nodes per layer for supervised hashing in about 3 hours using a single GPU. Our proposed very deep supervised hashing (VDSH) method significantly outperforms the state-of-the-art on several benchmark datasets.
Ziming Zhang, Yuting Chen and Venkatesh Saligrama
null
1511.04524
null
null
8-Bit Approximations for Parallelism in Deep Learning
cs.NE cs.LG
The creation of practical deep learning data-products often requires parallelization across processors and computers to make deep learning feasible on large data sets, but bottlenecks in communication bandwidth make it difficult to attain good speedups through parallelism. Here we develop and test 8-bit approximation algorithms which make better use of the available bandwidth by compressing 32-bit gradients and nonlinear activations to 8-bit approximations. We show that these approximations do not decrease predictive performance on MNIST, CIFAR10, and ImageNet for both model and data parallelism and provide a data transfer speedup of 2x relative to 32-bit parallelism. We build a predictive model for speedups based on our experimental data, verify its validity on known speedup data, and show that we can obtain a speedup of 50x and more on a system of 96 GPUs compared to a speedup of 23x for 32-bit. We compare our data types with other methods and show that 8-bit approximations achieve state-of-the-art speedups for model parallelism. Thus 8-bit approximation is an efficient method to parallelize convolutional networks on very large systems of GPUs.
Tim Dettmers
null
1511.04561
null
null
A Test of Relative Similarity For Model Selection in Generative Models
stat.ML cs.LG
Probabilistic generative models provide a powerful framework for representing data that avoids the expense of manual annotation typically needed by discriminative approaches. Model selection in this generative setting can be challenging, however, particularly when likelihoods are not easily accessible. To address this issue, we introduce a statistical test of relative similarity, which is used to determine which of two models generates samples that are significantly closer to a real-world reference dataset of interest. We use as our test statistic the difference in maximum mean discrepancies (MMDs) between the reference dataset and each model dataset, and derive a powerful, low-variance test based on the joint asymptotic distribution of the MMDs between each reference-model pair. In experiments on deep generative models, including the variational auto-encoder and generative moment matching network, the tests provide a meaningful ranking of model performance as a function of parameter and training settings.
Wacha Bounliphone, Eugene Belilovsky, Matthew B. Blaschko, Ioannis Antonoglou, Arthur Gretton
null
1511.04581
null
null
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
cs.CV cs.LG
We present a highly accurate single-image super-resolution (SR) method. Our method uses a very deep convolutional network inspired by VGG-net used for ImageNet classification \cite{simonyan2015very}. We find increasing our network depth shows a significant improvement in accuracy. Our final model uses 20 weight layers. By cascading small filters many times in a deep network structure, contextual information over large image regions is exploited in an efficient way. With very deep networks, however, convergence speed becomes a critical issue during training. We propose a simple yet effective training procedure. We learn residuals only and use extremely high learning rates ($10^4$ times higher than SRCNN \cite{dong2015image}) enabled by adjustable gradient clipping. Our proposed method performs better than existing methods in accuracy and visual improvements in our results are easily noticeable.
Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee
null
1511.04587
null
null
DeepFool: a simple and accurate method to fool deep neural networks
cs.LG cs.CV
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.
Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard
null
1511.04599
null
null
Deep Reinforcement Learning with a Natural Language Action Space
cs.AI cs.CL cs.LG
This paper introduces a novel architecture for reinforcement learning with deep neural networks designed to handle state and action spaces characterized by natural language, as found in text-based games. Termed a deep reinforcement relevance network (DRRN), the architecture represents action and state spaces with separate embedding vectors, which are combined with an interaction function to approximate the Q-function in reinforcement learning. We evaluate the DRRN on two popular text games, showing superior performance over other deep Q-learning architectures. Experiments with paraphrased action descriptions show that the model is extracting meaning rather than simply memorizing strings of text.
Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, Mari Ostendorf
null
1511.04636
null
null
Deep Activity Recognition Models with Triaxial Accelerometers
cs.LG cs.HC cs.NE
Despite the widespread installation of accelerometers in almost all mobile phones and wearable devices, activity recognition using accelerometers is still immature due to the poor recognition accuracy of existing recognition methods and the scarcity of labeled training data. We consider the problem of human activity recognition using triaxial accelerometers and deep learning paradigms. This paper shows that deep activity recognition models (a) provide better recognition accuracy of human activities, (b) avoid the expensive design of handcrafted features in existing systems, and (c) utilize the massive unlabeled acceleration samples for unsupervised feature extraction. Moreover, a hybrid approach of deep learning and hidden Markov models (DL-HMM) is presented for sequential activity recognition. This hybrid approach integrates the hierarchical representations of deep activity recognition models with the stochastic modeling of temporal sequences in the hidden Markov models. We show substantial recognition improvement on real world datasets over state-of-the-art methods of human activity recognition using triaxial accelerometers.
Mohammad Abu Alsheikh, Ahmed Selim, Dusit Niyato, Linda Doyle, Shaowei Lin, Hwee-Pink Tan
null
1511.04664
null
null
Robust Elastic Net Regression
cs.LG stat.ML
We propose a robust elastic net (REN) model for high-dimensional sparse regression and give its performance guarantees (both the statistical error bound and the optimization bound). A simple idea of trimming the inner product is applied to the elastic net model. Specifically, we robustify the covariance matrix by trimming the inner product based on the intuition that the trimmed inner product can not be significant affected by a bounded number of arbitrarily corrupted points (outliers). The REN model can also derive two interesting special cases: robust Lasso and robust soft thresholding. Comprehensive experimental results show that the robustness of the proposed model consistently outperforms the original elastic net and matches the performance guarantees nicely.
Weiyang Liu, Rongmei Lin, Meng Yang
null
1511.04690
null
null
An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors
cs.NA cs.LG
We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an Nth-order tensor in terms of N factor matrices and a core tensor via multilinear operations. To exploit the underlying multilinear low-rank structure in high-dimensional datasets, we propose a group-based log-sum penalty functional to place structural sparsity over the core tensor, which leads to a compact representation with smallest core tensor. The method for Tucker decomposition is developed by iteratively minimizing a surrogate function that majorizes the original objective function, which results in an iterative reweighted process. In addition, to reduce the computational complexity, an over-relaxed monotone fast iterative shrinkage-thresholding technique is adapted and embedded in the iterative reweighted process. The proposed method is able to determine the model complexity (i.e. multilinear rank) in an automatic way. Simulation results show that the proposed algorithm offers competitive performance compared with other existing algorithms.
Linxiao Yang and Jun Fang and Hongbin Li and Bing Zeng
10.1109/TSP.2016.2572047
1511.04695
null
null
Deep Linear Discriminant Analysis
cs.LG
We introduce Deep Linear Discriminant Analysis (DeepLDA) which learns linearly separable latent representations in an end-to-end fashion. Classic LDA extracts features which preserve class separability and is used for dimensionality reduction for many classification problems. The central idea of this paper is to put LDA on top of a deep neural network. This can be seen as a non-linear extension of classic LDA. Instead of maximizing the likelihood of target labels for individual samples, we propose an objective function that pushes the network to produce feature distributions which: (a) have low variance within the same class and (b) high variance between different classes. Our objective is derived from the general LDA eigenvalue problem and still allows to train with stochastic gradient descent and back-propagation. For evaluation we test our approach on three different benchmark datasets (MNIST, CIFAR-10 and STL-10). DeepLDA produces competitive results on MNIST and CIFAR-10 and outperforms a network trained with categorical cross entropy (same architecture) on a supervised setting of STL-10.
Matthias Dorfer, Rainer Kelz and Gerhard Widmer
null
1511.04707
null
null
Learning Representations of Affect from Speech
cs.CL cs.LG
There has been a lot of prior work on representation learning for speech recognition applications, but not much emphasis has been given to an investigation of effective representations of affect from speech, where the paralinguistic elements of speech are separated out from the verbal content. In this paper, we explore denoising autoencoders for learning paralinguistic attributes i.e. categorical and dimensional affective traits from speech. We show that the representations learnt by the bottleneck layer of the autoencoder are highly discriminative of activation intensity and at separating out negative valence (sadness and anger) from positive valence (happiness). We experiment with different input speech features (such as FFT and log-mel spectrograms with temporal context windows), and different autoencoder architectures (such as stacked and deep autoencoders). We also learn utterance specific representations by a combination of denoising autoencoders and BLSTM based recurrent autoencoders. Emotion classification is performed with the learnt temporal/dynamic representations to evaluate the quality of the representations. Experiments on a well-established real-life speech dataset (IEMOCAP) show that the learnt representations are comparable to state of the art feature extractors (such as voice quality features and MFCCs) and are competitive with state-of-the-art approaches at emotion and dimensional affect recognition.
Sayan Ghosh, Eugene Laksana, Louis-Philippe Morency, Stefan Scherer
null
1511.04747
null
null
Large-Scale Approximate Kernel Canonical Correlation Analysis
cs.LG
Kernel canonical correlation analysis (KCCA) is a nonlinear multi-view representation learning technique with broad applicability in statistics and machine learning. Although there is a closed-form solution for the KCCA objective, it involves solving an $N\times N$ eigenvalue system where $N$ is the training set size, making its computational requirements in both memory and time prohibitive for large-scale problems. Various approximation techniques have been developed for KCCA. A commonly used approach is to first transform the original inputs to an $M$-dimensional random feature space so that inner products in the feature space approximate kernel evaluations, and then apply linear CCA to the transformed inputs. In many applications, however, the dimensionality $M$ of the random feature space may need to be very large in order to obtain a sufficiently good approximation; it then becomes challenging to perform the linear CCA step on the resulting very high-dimensional data matrices. We show how to use a stochastic optimization algorithm, recently proposed for linear CCA and its neural-network extension, to further alleviate the computation requirements of approximate KCCA. This approach allows us to run approximate KCCA on a speech dataset with $1.4$ million training samples and a random feature space of dimensionality $M=100000$ on a typical workstation.
Weiran Wang, Karen Livescu
null
1511.04773
null
null
Expressive recommender systems through normalized nonnegative models
cs.LG stat.ML
We introduce normalized nonnegative models (NNM) for explorative data analysis. NNMs are partial convexifications of models from probability theory. We demonstrate their value at the example of item recommendation. We show that NNM-based recommender systems satisfy three criteria that all recommender systems should ideally satisfy: high predictive power, computational tractability, and expressive representations of users and items. Expressive user and item representations are important in practice to succinctly summarize the pool of customers and the pool of items. In NNMs, user representations are expressive because each user's preference can be regarded as normalized mixture of preferences of stereotypical users. The interpretability of item and user representations allow us to arrange properties of items (e.g., genres of movies or topics of documents) or users (e.g., personality traits) hierarchically.
Cyril Stark
null
1511.04775
null
null
Mixtures of Sparse Autoregressive Networks
stat.ML cs.LG
We consider high-dimensional distribution estimation through autoregressive networks. By combining the concepts of sparsity, mixtures and parameter sharing we obtain a simple model which is fast to train and which achieves state-of-the-art or better results on several standard benchmark datasets. Specifically, we use an L1-penalty to regularize the conditional distributions and introduce a procedure for automatic parameter sharing between mixture components. Moreover, we propose a simple distributed representation which permits exact likelihood evaluations since the latent variables are interleaved with the observable variables and can be easily integrated out. Our model achieves excellent generalization performance and scales well to extremely high dimensions.
Marc Goessling, Yali Amit
null
1511.04776
null
null
Causal interpretation rules for encoding and decoding models in neuroimaging
stat.ML cs.LG q-bio.NC stat.AP
Causal terminology is often introduced in the interpretation of encoding and decoding models trained on neuroimaging data. In this article, we investigate which causal statements are warranted and which ones are not supported by empirical evidence. We argue that the distinction between encoding and decoding models is not sufficient for this purpose: relevant features in encoding and decoding models carry a different meaning in stimulus- and in response-based experimental paradigms. We show that only encoding models in the stimulus-based setting support unambiguous causal interpretations. By combining encoding and decoding models trained on the same data, however, we obtain insights into causal relations beyond those that are implied by each individual model type. We illustrate the empirical relevance of our theoretical findings on EEG data recorded during a visuo-motor learning task.
Sebastian Weichwald, Timm Meyer, Ozan \"Ozdenizci, Bernhard Sch\"olkopf, Tonio Ball, Moritz Grosse-Wentrup
10.1016/j.neuroimage.2015.01.036
1511.04780
null
null
Budget Online Multiple Kernel Learning
cs.LG
Online learning with multiple kernels has gained increasing interests in recent years and found many applications. For classification tasks, Online Multiple Kernel Classification (OMKC), which learns a kernel based classifier by seeking the optimal linear combination of a pool of single kernel classifiers in an online fashion, achieves superior accuracy and enjoys great flexibility compared with traditional single-kernel classifiers. Despite being studied extensively, existing OMKC algorithms suffer from high computational cost due to their unbounded numbers of support vectors. To overcome this drawback, we present a novel framework of Budget Online Multiple Kernel Learning (BOMKL) and propose a new Sparse Passive Aggressive learning to perform effective budget online learning. Specifically, we adopt a simple yet effective Bernoulli sampling to decide if an incoming instance should be added to the current set of support vectors. By limiting the number of support vectors, our method can significantly accelerate OMKC while maintaining satisfactory accuracy that is comparable to that of the existing OMKC algorithms. We theoretically prove that our new method achieves an optimal regret bound in expectation, and empirically found that the proposed algorithm outperforms various OMKC algorithms and can easily scale up to large-scale datasets.
Jing Lu, Steven C.H. Hoi, Doyen Sahoo, Peilin Zhao
null
1511.04813
null
null
Neural Programmer: Inducing Latent Programs with Gradient Descent
cs.LG cs.CL stat.ML
Deep neural networks have achieved impressive supervised classification performance in many tasks including image recognition, speech recognition, and sequence to sequence learning. However, this success has not been translated to applications like question answering that may involve complex arithmetic and logic reasoning. A major limitation of these models is in their inability to learn even simple arithmetic and logic operations. For example, it has been shown that neural networks fail to learn to add two binary numbers reliably. In this work, we propose Neural Programmer, an end-to-end differentiable neural network augmented with a small set of basic arithmetic and logic operations. Neural Programmer can call these augmented operations over several steps, thereby inducing compositional programs that are more complex than the built-in operations. The model learns from a weak supervision signal which is the result of execution of the correct program, hence it does not require expensive annotation of the correct program itself. The decisions of what operations to call, and what data segments to apply to are inferred by Neural Programmer. Such decisions, during training, are done in a differentiable fashion so that the entire network can be trained jointly by gradient descent. We find that training the model is difficult, but it can be greatly improved by adding random noise to the gradient. On a fairly complex synthetic table-comprehension dataset, traditional recurrent networks and attentional models perform poorly while Neural Programmer typically obtains nearly perfect accuracy.
Arvind Neelakantan, Quoc V. Le, Ilya Sutskever
null
1511.04834
null
null
Nonparametric Canonical Correlation Analysis
cs.LG stat.ML
Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel or neural network structure), and are computationally demanding. Interestingly, the theory of nonlinear CCA, without functional restrictions, had been studied in the population setting by Lancaster already in the 1950s, but these results have not inspired practical algorithms. We revisit Lancaster's theory to devise a practical algorithm for nonparametric CCA (NCCA). Specifically, we show that the solution can be expressed in terms of the singular value decomposition of a certain operator associated with the joint density of the views. Thus, by estimating the population density from data, NCCA reduces to solving an eigenvalue system, superficially like kernel CCA but, importantly, without requiring the inversion of any kernel matrix. We also derive a partially linear CCA (PLCCA) variant in which one of the views undergoes a linear projection while the other is nonparametric. Using a kernel density estimate based on a small number of nearest neighbors, our NCCA and PLCCA algorithms are memory-efficient, often run much faster, and perform better than kernel CCA and comparable to deep CCA.
Tomer Michaeli, Weiran Wang, Karen Livescu
null
1511.04839
null
null
Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch
cs.MM cs.CV cs.LG cs.NE
Since the BOSS competition, in 2010, most steganalysis approaches use a learning methodology involving two steps: feature extraction, such as the Rich Models (RM), for the image representation, and use of the Ensemble Classifier (EC) for the learning step. In 2015, Qian et al. have shown that the use of a deep learning approach that jointly learns and computes the features, is very promising for the steganalysis. In this paper, we follow-up the study of Qian et al., and show that, due to intrinsic joint minimization, the results obtained from a Convolutional Neural Network (CNN) or a Fully Connected Neural Network (FNN), if well parameterized, surpass the conventional use of a RM with an EC. First, numerous experiments were conducted in order to find the best " shape " of the CNN. Second, experiments were carried out in the clairvoyant scenario in order to compare the CNN and FNN to an RM with an EC. The results show more than 16% reduction in the classification error with our CNN or FNN. Third, experiments were also performed in a cover-source mismatch setting. The results show that the CNN and FNN are naturally robust to the mismatch problem. In Addition to the experiments, we provide discussions on the internal mechanisms of a CNN, and weave links with some previously stated ideas, in order to understand the impressive results we obtained.
Lionel Pibre, Pasquet J\'er\^ome, Dino Ienco, Marc Chaumont
null
1511.04855
null
null
A Neural Transducer
cs.LG cs.CL cs.NE
Sequence-to-sequence models have achieved impressive results on various tasks. However, they are unsuitable for tasks that require incremental predictions to be made as more data arrives or tasks that have long input sequences and output sequences. This is because they generate an output sequence conditioned on an entire input sequence. In this paper, we present a Neural Transducer that can make incremental predictions as more input arrives, without redoing the entire computation. Unlike sequence-to-sequence models, the Neural Transducer computes the next-step distribution conditioned on the partially observed input sequence and the partially generated sequence. At each time step, the transducer can decide to emit zero to many output symbols. The data can be processed using an encoder and presented as input to the transducer. The discrete decision to emit a symbol at every time step makes it difficult to learn with conventional backpropagation. It is however possible to train the transducer by using a dynamic programming algorithm to generate target discrete decisions. Our experiments show that the Neural Transducer works well in settings where it is required to produce output predictions as data come in. We also find that the Neural Transducer performs well for long sequences even when attention mechanisms are not used.
Navdeep Jaitly, David Sussillo, Quoc V. Le, Oriol Vinyals, Ilya Sutskever and Samy Bengio
null
1511.04868
null
null
Sherlock: Scalable Fact Learning in Images
cs.CV cs.CL cs.LG
We study scalable and uniform understanding of facts in images. Existing visual recognition systems are typically modeled differently for each fact type such as objects, actions, and interactions. We propose a setting where all these facts can be modeled simultaneously with a capacity to understand unbounded number of facts in a structured way. The training data comes as structured facts in images, including (1) objects (e.g., $<$boy$>$), (2) attributes (e.g., $<$boy, tall$>$), (3) actions (e.g., $<$boy, playing$>$), and (4) interactions (e.g., $<$boy, riding, a horse $>$). Each fact has a semantic language view (e.g., $<$ boy, playing$>$) and a visual view (an image with this fact). We show that learning visual facts in a structured way enables not only a uniform but also generalizable visual understanding. We propose and investigate recent and strong approaches from the multiview learning literature and also introduce two learning representation models as potential baselines. We applied the investigated methods on several datasets that we augmented with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage of relating facts by the structure by the proposed models compared to the designed baselines on bidirectional fact retrieval.
Mohamed Elhoseiny, Scott Cohen, Walter Chang, Brian Price, Ahmed Elgammal
null
1511.04891
null
null
Performing Highly Accurate Predictions Through Convolutional Networks for Actual Telecommunication Challenges
cs.LG cs.CV
We investigated how the application of deep learning, specifically the use of convolutional networks trained with GPUs, can help to build better predictive models in telecommunication business environments, and fill this gap. In particular, we focus on the non-trivial problem of predicting customer churn in telecommunication operators. Our model, called WiseNet, consists of a convolutional network and a novel encoding method that transforms customer activity data and Call Detail Records (CDRs) into images. Experimental evaluation with several machine learning classifiers supports the ability of WiseNet for learning features when using structured input data. For this type of telecommunication business problems, we found that WiseNet outperforms machine learning models with hand-crafted features, and does not require the labor-intensive step of feature engineering. Furthermore, the same model has been applied without retraining to a different market, achieving consistent results. This confirms the generalization property of WiseNet and the ability to extract useful representations.
Jaime Zaratiegui, Ana Montoro and Federico Castanedo
null
1511.04906
null
null
A genetic algorithm to discover flexible motifs with support
cs.LG cs.NE
Finding repeated patterns or motifs in a time series is an important unsupervised task that has still a number of open issues, starting by the definition of motif. In this paper, we revise the notion of motif support, characterizing it as the number of patterns or repetitions that define a motif. We then propose GENMOTIF, a genetic algorithm to discover motifs with support which, at the same time, is flexible enough to accommodate other motif specifications and task characteristics. GENMOTIF is an anytime algorithm that easily adapts to many situations: searching in a range of segment lengths, applying uniform scaling, dealing with multiple dimensions, using different similarity and grouping criteria, etc. GENMOTIF is also parameter-friendly: it has only two intuitive parameters which, if set within reasonable bounds, do not substantially affect its performance. We demonstrate the value of our approach in a number of synthetic and real-world settings, considering traffic volume measurements, accelerometer signals, and telephone call records.
Joan Serr\`a, Aleksandar Matic, Josep Luis Arcos, Alexandros Karatzoglou
null
1511.04986
null
null
An Exploration of Softmax Alternatives Belonging to the Spherical Loss Family
cs.NE cs.LG stat.ML
In a multi-class classification problem, it is standard to model the output of a neural network as a categorical distribution conditioned on the inputs. The output must therefore be positive and sum to one, which is traditionally enforced by a softmax. This probabilistic mapping allows to use the maximum likelihood principle, which leads to the well-known log-softmax loss. However the choice of the softmax function seems somehow arbitrary as there are many other possible normalizing functions. It is thus unclear why the log-softmax loss would perform better than other loss alternatives. In particular Vincent et al. (2015) recently introduced a class of loss functions, called the spherical family, for which there exists an efficient algorithm to compute the updates of the output weights irrespective of the output size. In this paper, we explore several loss functions from this family as possible alternatives to the traditional log-softmax. In particular, we focus our investigation on spherical bounds of the log-softmax loss and on two spherical log-likelihood losses, namely the log-Spherical Softmax suggested by Vincent et al. (2015) and the log-Taylor Softmax that we introduce. Although these alternatives do not yield as good results as the log-softmax loss on two language modeling tasks, they surprisingly outperform it in our experiments on MNIST and CIFAR-10, suggesting that they might be relevant in a broad range of applications.
Alexandre de Br\'ebisson and Pascal Vincent
null
1511.05042
null
null
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
cs.LG cs.NE
We introduce Divnet, a flexible technique for learning networks with diverse neurons. Divnet models neuronal diversity by placing a Determinantal Point Process (DPP) over neurons in a given layer. It uses this DPP to select a subset of diverse neurons and subsequently fuses the redundant neurons into the selected ones. Compared with previous approaches, Divnet offers a more principled, flexible technique for capturing neuronal diversity and thus implicitly enforcing regularization. This enables effective auto-tuning of network architecture and leads to smaller network sizes without hurting performance. Moreover, through its focus on diversity and neuron fusing, Divnet remains compatible with other procedures that seek to reduce memory footprints of networks. We present experimental results to corroborate our claims: for pruning neural networks, Divnet is seen to be notably superior to competing approaches.
Zelda Mariet, Suvrit Sra
null
1511.05077
null
null
Topic Modeling of Behavioral Modes Using Sensor Data
cs.LG
The field of Movement Ecology, like so many other fields, is experiencing a period of rapid growth in availability of data. As the volume rises, traditional methods are giving way to machine learning and data science, which are playing an increasingly large part it turning this data into science-driving insights. One rich and interesting source is the bio-logger. These small electronic wearable devices are attached to animals free to roam in their natural habitats, and report back readings from multiple sensors, including GPS and accelerometer bursts. A common use of accelerometer data is for supervised learning of behavioral modes. However, we need unsupervised analysis tools as well, in order to overcome the inherent difficulties of obtaining a labeled dataset, which in some cases is either infeasible or does not successfully encompass the full repertoire of behavioral modes of interest. Here we present a matrix factorization based topic-model method for accelerometer bursts, derived using a linear mixture property of patch features. Our method is validated via comparison to a labeled dataset, and is further compared to standard clustering algorithms.
Yehezkel S. Resheff, Shay Rotics, Ran Nathan, Daphna Weinshall
null
1511.05082
null
null
Yin and Yang: Balancing and Answering Binary Visual Questions
cs.CL cs.CV cs.LG
The complex compositional structure of language makes problems at the intersection of vision and language challenging. But language also provides a strong prior that can result in good superficial performance, without the underlying models truly understanding the visual content. This can hinder progress in pushing state of art in the computer vision aspects of multi-modal AI. In this paper, we address binary Visual Question Answering (VQA) on abstract scenes. We formulate this problem as visual verification of concepts inquired in the questions. Specifically, we convert the question to a tuple that concisely summarizes the visual concept to be detected in the image. If the concept can be found in the image, the answer to the question is "yes", and otherwise "no". Abstract scenes play two roles (1) They allow us to focus on the high-level semantics of the VQA task as opposed to the low-level recognition problems, and perhaps more importantly, (2) They provide us the modality to balance the dataset such that language priors are controlled, and the role of vision is essential. In particular, we collect fine-grained pairs of scenes for every question, such that the answer to the question is "yes" for one scene, and "no" for the other for the exact same question. Indeed, language priors alone do not perform better than chance on our balanced dataset. Moreover, our proposed approach matches the performance of a state-of-the-art VQA approach on the unbalanced dataset, and outperforms it on the balanced dataset.
Peng Zhang, Yash Goyal, Douglas Summers-Stay, Dhruv Batra, Devi Parikh
null
1511.05099
null
null
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
stat.ML cs.AI cs.IT cs.LG math.IT
Modern applications and progress in deep learning research have created renewed interest for generative models of text and of images. However, even today it is unclear what objective functions one should use to train and evaluate these models. In this paper we present two contributions. Firstly, we present a critique of scheduled sampling, a state-of-the-art training method that contributed to the winning entry to the MSCOCO image captioning benchmark in 2015. Here we show that despite this impressive empirical performance, the objective function underlying scheduled sampling is improper and leads to an inconsistent learning algorithm. Secondly, we revisit the problems that scheduled sampling was meant to address, and present an alternative interpretation. We argue that maximum likelihood is an inappropriate training objective when the end-goal is to generate natural-looking samples. We go on to derive an ideal objective function to use in this situation instead. We introduce a generalisation of adversarial training, and show how such method can interpolate between maximum likelihood training and our ideal training objective. To our knowledge this is the first theoretical analysis that explains why adversarial training tends to produce samples with higher perceived quality.
Ferenc Husz\'ar
null
1511.05101
null
null
Resolving the Geometric Locus Dilemma for Support Vector Learning Machines
cs.LG stat.ML
Capacity control, the bias/variance dilemma, and learning unknown functions from data, are all concerned with identifying effective and consistent fits of unknown geometric loci to random data points. A geometric locus is a curve or surface formed by points, all of which possess some uniform property. A geometric locus of an algebraic equation is the set of points whose coordinates are solutions of the equation. Any given curve or surface must pass through each point on a specified locus. This paper argues that it is impossible to fit random data points to algebraic equations of partially configured geometric loci that reference arbitrary Cartesian coordinate systems. It also argues that the fundamental curve of a linear decision boundary is actually a principal eigenaxis. It is shown that learning principal eigenaxes of linear decision boundaries involves finding a point of statistical equilibrium for which eigenenergies of principal eigenaxis components are symmetrically balanced with each other. It is demonstrated that learning linear decision boundaries involves strong duality relationships between a statistical eigenlocus of principal eigenaxis components and its algebraic forms, in primal and dual, correlated Hilbert spaces. Locus equations are introduced and developed that describe principal eigen-coordinate systems for lines, planes, and hyperplanes. These equations are used to introduce and develop primal and dual statistical eigenlocus equations of principal eigenaxes of linear decision boundaries. Important generalizations for linear decision boundaries are shown to be encoded within a dual statistical eigenlocus of principal eigenaxis components. Principal eigenaxes of linear decision boundaries are shown to encode Bayes' likelihood ratio for common covariance data and a robust likelihood ratio for all other data.
Denise M. Reeves
null
1511.05102
null
null
Random sampling of bandlimited signals on graphs
cs.SI cs.LG stat.ML
We study the problem of sampling k-bandlimited signals on graphs. We propose two sampling strategies that consist in selecting a small subset of nodes at random. The first strategy is non-adaptive, i.e., independent of the graph structure, and its performance depends on a parameter called the graph coherence. On the contrary, the second strategy is adaptive but yields optimal results. Indeed, no more than O(k log(k)) measurements are sufficient to ensure an accurate and stable recovery of all k-bandlimited signals. This second strategy is based on a careful choice of the sampling distribution, which can be estimated quickly. Then, we propose a computationally efficient decoder to reconstruct k-bandlimited signals from their samples. We prove that it yields accurate reconstructions and that it is also stable to noise. Finally, we conduct several experiments to test these techniques.
Gilles Puy, Nicolas Tremblay, R\'emi Gribonval, Pierre Vandergheynst
null
1511.05118
null
null
Deep Kalman Filters
stat.ML cs.LG
Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular interest is the use of temporal generative models for counterfactual inference. We investigate the efficacy of such models for counterfactual inference, and to that end we introduce the "Healing MNIST" dataset where long-term structure, noise and actions are applied to sequences of digits. We show the efficacy of our method for modeling this dataset. We further show how our model can be used for counterfactual inference for patients, based on electronic health record data of 8,000 patients over 4.5 years.
Rahul G. Krishnan, Uri Shalit, David Sontag
null
1511.05121
null
null
Adversarial Manipulation of Deep Representations
cs.CV cs.LG cs.NE
We show that the representation of an image in a deep neural network (DNN) can be manipulated to mimic those of other natural images, with only minor, imperceptible perturbations to the original image. Previous methods for generating adversarial images focused on image perturbations designed to produce erroneous class labels, while we concentrate on the internal layers of DNN representations. In this way our new class of adversarial images differs qualitatively from others. While the adversary is perceptually similar to one image, its internal representation appears remarkably similar to a different image, one from a different class, bearing little if any apparent similarity to the input; they appear generic and consistent with the space of natural images. This phenomenon raises questions about DNN representations, as well as the properties of natural images themselves.
Sara Sabour, Yanshuai Cao, Fartash Faghri, David J. Fleet
null
1511.05122
null
null
Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting
math.OC cs.LG cs.NA
The Augmented Lagragian Method (ALM) and Alternating Direction Method of Multiplier (ADMM) have been powerful optimization methods for general convex programming subject to linear constraint. We consider the convex problem whose objective consists of a smooth part and a nonsmooth but simple part. We propose the Fast Proximal Augmented Lagragian Method (Fast PALM) which achieves the convergence rate $O(1/K^2)$, compared with $O(1/K)$ by the traditional PALM. In order to further reduce the per-iteration complexity and handle the multi-blocks problem, we propose the Fast Proximal ADMM with Parallel Splitting (Fast PL-ADMM-PS) method. It also partially improves the rate related to the smooth part of the objective function. Experimental results on both synthesized and real world data demonstrate that our fast methods significantly improve the previous PALM and ADMM.
Canyi Lu, Huan Li, Zhouchen Lin, Shuicheng Yan
null
1511.05133
null
null
Convolutional Models for Joint Object Categorization and Pose Estimation
cs.CV cs.AI cs.LG
In the task of Object Recognition, there exists a dichotomy between the categorization of objects and estimating object pose, where the former necessitates a view-invariant representation, while the latter requires a representation capable of capturing pose information over different categories of objects. With the rise of deep architectures, the prime focus has been on object category recognition. Deep learning methods have achieved wide success in this task. In contrast, object pose regression using these approaches has received relatively much less attention. In this paper we show how deep architectures, specifically Convolutional Neural Networks (CNN), can be adapted to the task of simultaneous categorization and pose estimation of objects. We investigate and analyze the layers of various CNN models and extensively compare between them with the goal of discovering how the layers of distributed representations of CNNs represent object pose information and how this contradicts with object category representations. We extensively experiment on two recent large and challenging multi-view datasets. Our models achieve better than state-of-the-art performance on both datasets.
Mohamed Elhoseiny, Tarek El-Gaaly, Amr Bakry, Ahmed Elgammal
null
1511.05175
null
null
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
cs.LG
Deep neural networks are powerful parametric models that can be trained efficiently using the backpropagation algorithm. Stochastic neural networks combine the power of large parametric functions with that of graphical models, which makes it possible to learn very complex distributions. However, as backpropagation is not directly applicable to stochastic networks that include discrete sampling operations within their computational graph, training such networks remains difficult. We present MuProp, an unbiased gradient estimator for stochastic networks, designed to make this task easier. MuProp improves on the likelihood-ratio estimator by reducing its variance using a control variate based on the first-order Taylor expansion of a mean-field network. Crucially, unlike prior attempts at using backpropagation for training stochastic networks, the resulting estimator is unbiased and well behaved. Our experiments on structured output prediction and discrete latent variable modeling demonstrate that MuProp yields consistently good performance across a range of difficult tasks.
Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih
null
1511.05176
null
null
Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models
cs.LG stat.ML
Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is $O(N \log N)$ time, where $N$ is the number of samples.
Mahdi Pakdaman Naeini, Gregory F. Cooper
null
1511.05191
null
null
Sparse-promoting Full Waveform Inversion based on Online Orthonormal Dictionary Learning
physics.geo-ph cs.LG cs.NA math.NA
Full waveform inversion (FWI) delivers high-resolution images of the subsurface by minimizing iteratively the misfit between the recorded and calculated seismic data. It has been attacked successfully with the Gauss-Newton method and sparsity promoting regularization based on fixed multiscale transforms that permit significant subsampling of the seismic data when the model perturbation at each FWI data-fitting iteration can be represented with sparse coefficients. Rather than using analytical transforms with predefined dictionaries to achieve sparse representation, we introduce an adaptive transform called the Sparse Orthonormal Transform (SOT) whose dictionary is learned from many small training patches taken from the model perturbations in previous iterations. The patch-based dictionary is constrained to be orthonormal and trained with an online approach to provide the best sparse representation of the complex features and variations of the entire model perturbation. The complexity of the training method is proportional to the cube of the number of samples in one small patch. By incorporating both compressive subsampling and the adaptive SOT-based representation into the Gauss-Newton least-squares problem for each FWI iteration, the model perturbation can be recovered after an l1-norm sparsity constraint is applied on the SOT coefficients. Numerical experiments on synthetic models demonstrate that the SOT-based sparsity promoting regularization can provide robust FWI results with reduced computation.
Lingchen Zhu, Entao Liu, James H. McClellan
null
1511.05194
null
null
Binary embeddings with structured hashed projections
cs.LG
We consider the hashing mechanism for constructing binary embeddings, that involves pseudo-random projections followed by nonlinear (sign function) mappings. The pseudo-random projection is described by a matrix, where not all entries are independent random variables but instead a fixed "budget of randomness" is distributed across the matrix. Such matrices can be efficiently stored in sub-quadratic or even linear space, provide reduction in randomness usage (i.e. number of required random values), and very often lead to computational speed ups. We prove several theoretical results showing that projections via various structured matrices followed by nonlinear mappings accurately preserve the angular distance between input high-dimensional vectors. To the best of our knowledge, these results are the first that give theoretical ground for the use of general structured matrices in the nonlinear setting. In particular, they generalize previous extensions of the Johnson-Lindenstrauss lemma and prove the plausibility of the approach that was so far only heuristically confirmed for some special structured matrices. Consequently, we show that many structured matrices can be used as an efficient information compression mechanism. Our findings build a better understanding of certain deep architectures, which contain randomly weighted and untrained layers, and yet achieve high performance on different learning tasks. We empirically verify our theoretical findings and show the dependence of learning via structured hashed projections on the performance of neural network as well as nearest neighbor classifier.
Anna Choromanska and Krzysztof Choromanski and Mariusz Bojarski and Tony Jebara and Sanjiv Kumar and Yann LeCun
null
1511.05212
null
null
How much does your data exploration overfit? Controlling bias via information usage
stat.ML cs.LG
Modern data is messy and high-dimensional, and it is often not clear a priori what are the right questions to ask. Instead, the analyst typically needs to use the data to search for interesting analyses to perform and hypotheses to test. This is an adaptive process, where the choice of analysis to be performed next depends on the results of the previous analyses on the same data. Ultimately, which results are reported can be heavily influenced by the data. It is widely recognized that this process, even if well-intentioned, can lead to biases and false discoveries, contributing to the crisis of reproducibility in science. But while %the adaptive nature of exploration any data-exploration renders standard statistical theory invalid, experience suggests that different types of exploratory analysis can lead to disparate levels of bias, and the degree of bias also depends on the particulars of the data set. In this paper, we propose a general information usage framework to quantify and provably bound the bias and other error metrics of an arbitrary exploratory analysis. We prove that our mutual information based bound is tight in natural settings, and then use it to give rigorous insights into when commonly used procedures do or do not lead to substantially biased estimation. Through the lens of information usage, we analyze the bias of specific exploration procedures such as filtering, rank selection and clustering. Our general framework also naturally motivates randomization techniques that provably reduces exploration bias while preserving the utility of the data analysis. We discuss the connections between our approach and related ideas from differential privacy and blinded data analysis, and supplement our results with illustrative simulations.
Daniel Russo and James Zou
null
1511.05219
null
null
Reduced-Precision Strategies for Bounded Memory in Deep Neural Nets
cs.LG cs.NE
This work investigates how using reduced precision data in Convolutional Neural Networks (CNNs) affects network accuracy during classification. More specifically, this study considers networks where each layer may use different precision data. Our key result is the observation that the tolerance of CNNs to reduced precision data not only varies across networks, a well established observation, but also within networks. Tuning precision per layer is appealing as it could enable energy and performance improvements. In this paper we study how error tolerance across layers varies and propose a method for finding a low precision configuration for a network while maintaining high accuracy. A diverse set of CNNs is analyzed showing that compared to a conventional implementation using a 32-bit floating-point representation for all layers, and with less than 1% loss in relative accuracy, the data footprint required by these networks can be reduced by an average of 74% and up to 92%.
Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, Raquel Urtasun, Andreas Moshovos
null
1511.05236
null
null
An extension of McDiarmid's inequality
cs.LG math.PR math.ST stat.TH
We generalize McDiarmid's inequality for functions with bounded differences on a high probability set, using an extension argument. Those functions concentrate around their conditional expectations. We further extend the results to concentration in general metric spaces.
Richard Combes
null
1511.05240
null
null
Robust PCA via Nonconvex Rank Approximation
cs.CV cs.LG cs.NA stat.ML
Numerous applications in data mining and machine learning require recovering a matrix of minimal rank. Robust principal component analysis (RPCA) is a general framework for handling this kind of problems. Nuclear norm based convex surrogate of the rank function in RPCA is widely investigated. Under certain assumptions, it can recover the underlying true low rank matrix with high probability. However, those assumptions may not hold in real-world applications. Since the nuclear norm approximates the rank by adding all singular values together, which is essentially a $\ell_1$-norm of the singular values, the resulting approximation error is not trivial and thus the resulting matrix estimator can be significantly biased. To seek a closer approximation and to alleviate the above-mentioned limitations of the nuclear norm, we propose a nonconvex rank approximation. This approximation to the matrix rank is tighter than the nuclear norm. To solve the associated nonconvex minimization problem, we develop an efficient augmented Lagrange multiplier based optimization algorithm. Experimental results demonstrate that our method outperforms current state-of-the-art algorithms in both accuracy and efficiency.
Zhao Kang, Chong Peng, Qiang Cheng
10.1109/ICDM.2015.15
1511.05261
null
null
The Use of Machine Learning Algorithms in Recommender Systems: A Systematic Review
cs.SE cs.IR cs.LG
Recommender systems use algorithms to provide users with product or service recommendations. Recently, these systems have been using machine learning algorithms from the field of artificial intelligence. However, choosing a suitable machine learning algorithm for a recommender system is difficult because of the number of algorithms described in the literature. Researchers and practitioners developing recommender systems are left with little information about the current approaches in algorithm usage. Moreover, the development of a recommender system using a machine learning algorithm often has problems and open questions that must be evaluated, so software engineers know where to focus research efforts. This paper presents a systematic review of the literature that analyzes the use of machine learning algorithms in recommender systems and identifies research opportunities for software engineering research. The study concludes that Bayesian and decision tree algorithms are widely used in recommender systems because of their relative simplicity, and that requirement and design phases of recommender system development appear to offer opportunities for further research.
Ivens Portugal, Paulo Alencar, Donald Cowan
null
1511.05263
null
null
AUC-maximized Deep Convolutional Neural Fields for Sequence Labeling
stat.ML cs.LG
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This manuscript presents Deep Convolutional Neural Fields (DeepCNF), a combination of DCNN with Conditional Random Field (CRF), for sequence labeling with highly imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on highly imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. We then test our AUC-maximized DeepCNF on three very different protein sequence labeling tasks: solvent accessibility prediction, 8-state secondary structure prediction, and disorder prediction. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also have similar performance as the other two training methods on the solvent accessibility prediction problem which has three equally-distributed labels. Furthermore, our experimental results also show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks.
Sheng Wang, Siqi Sun and Jinbo Xu
null
1511.05265
null
null
Semi-supervised Collaborative Ranking with Push at Top
cs.LG cs.IR
Existing collaborative ranking based recommender systems tend to perform best when there is enough observed ratings for each user and the observation is made completely at random. Under this setting recommender systems can properly suggest a list of recommendations according to the user interests. However, when the observed ratings are extremely sparse (e.g. in the case of cold-start users where no rating data is available), and are not sampled uniformly at random, existing ranking methods fail to effectively leverage side information to transduct the knowledge from existing ratings to unobserved ones. We propose a semi-supervised collaborative ranking model, dubbed \texttt{S$^2$COR}, to improve the quality of cold-start recommendation. \texttt{S$^2$COR} mitigates the sparsity issue by leveraging side information about both observed and missing ratings by collaboratively learning the ranking model. This enables it to deal with the case of missing data not at random, but to also effectively incorporate the available side information in transduction. We experimentally evaluated our proposed algorithm on a number of challenging real-world datasets and compared against state-of-the-art models for cold-start recommendation. We report significantly higher quality recommendations with our algorithm compared to the state-of-the-art.
Iman Barjasteh, Rana Forsati, Abdol-Hossein Esfahanian, Hayder Radha
null
1511.05266
null
null
On the interplay of network structure and gradient convergence in deep learning
cs.LG stat.ML
The regularization and output consistency behavior of dropout and layer-wise pretraining for learning deep networks have been fairly well studied. However, our understanding of how the asymptotic convergence of backpropagation in deep architectures is related to the structural properties of the network and other design choices (like denoising and dropout rate) is less clear at this time. An interesting question one may ask is whether the network architecture and input data statistics may guide the choices of learning parameters and vice versa. In this work, we explore the association between such structural, distributional and learnability aspects vis-\`a-vis their interaction with parameter convergence rates. We present a framework to address these questions based on convergence of backpropagation for general nonconvex objectives using first-order information. This analysis suggests an interesting relationship between feature denoising and dropout. Building upon these results, we obtain a setup that provides systematic guidance regarding the choice of learning parameters and network sizes that achieve a certain level of convergence (in the optimization sense) often mediated by statistical attributes of the inputs. Our results are supported by a set of experimental evaluations as well as independent empirical observations reported by other groups.
Vamsi K Ithapu, Sathya N Ravi, Vikas Singh
null
1511.05297
null
null
Structural-RNN: Deep Learning on Spatio-Temporal Graphs
cs.CV cs.LG cs.NE cs.RO
Deep Recurrent Neural Network architectures, though remarkably capable at modeling sequences, lack an intuitive high-level spatio-temporal structure. That is while many problems in computer vision inherently have an underlying high-level structure and can benefit from it. Spatio-temporal graphs are a popular tool for imposing such high-level intuitions in the formulation of real world problems. In this paper, we propose an approach for combining the power of high-level spatio-temporal graphs and sequence learning success of Recurrent Neural Networks~(RNNs). We develop a scalable method for casting an arbitrary spatio-temporal graph as a rich RNN mixture that is feedforward, fully differentiable, and jointly trainable. The proposed method is generic and principled as it can be used for transforming any spatio-temporal graph through employing a certain set of well defined steps. The evaluations of the proposed approach on a diverse set of problems, ranging from modeling human motion to object interactions, shows improvement over the state-of-the-art with a large margin. We expect this method to empower new approaches to problem formulation through high-level spatio-temporal graphs and Recurrent Neural Networks.
Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena
null
1511.05298
null
null
Constant Time EXPected Similarity Estimation using Stochastic Optimization
cs.LG
A new algorithm named EXPected Similarity Estimation (EXPoSE) was recently proposed to solve the problem of large-scale anomaly detection. It is a non-parametric and distribution free kernel method based on the Hilbert space embedding of probability measures. Given a dataset of $n$ samples, EXPoSE needs only $\mathcal{O}(n)$ (linear time) to build a model and $\mathcal{O}(1)$ (constant time) to make a prediction. In this work we improve the linear computational complexity and show that an $\epsilon$-accurate model can be estimated in constant time, which has significant implications for large-scale learning problems. To achieve this goal, we cast the original EXPoSE formulation into a stochastic optimization problem. It is crucial that this approach allows us to determine the number of iteration based on a desired accuracy $\epsilon$, independent of the dataset size $n$. We will show that the proposed stochastic gradient descent algorithm works in general (possible infinite-dimensional) Hilbert spaces, is easy to implement and requires no additional step-size parameters.
Markus Schneider and Wolfgang Ertel and G\"unther Palm
null
1511.05371
null
null
Bayesian Optimization with Dimension Scheduling: Application to Biological Systems
stat.ML cs.AI cs.LG math.OC
Bayesian Optimization (BO) is a data-efficient method for global black-box optimization of an expensive-to-evaluate fitness function. BO typically assumes that computation cost of BO is cheap, but experiments are time consuming or costly. In practice, this allows us to optimize ten or fewer critical parameters in up to 1,000 experiments. But experiments may be less expensive than BO methods assume: In some simulation models, we may be able to conduct multiple thousands of experiments in a few hours, and the computational burden of BO is no longer negligible compared to experimentation time. To address this challenge we introduce a new Dimension Scheduling Algorithm (DSA), which reduces the computational burden of BO for many experiments. The key idea is that DSA optimizes the fitness function only along a small set of dimensions at each iteration. This DSA strategy (1) reduces the necessary computation time, (2) finds good solutions faster than the traditional BO method, and (3) can be parallelized straightforwardly. We evaluate the DSA in the context of optimizing parameters of dynamic models of microalgae metabolism and show faster convergence than traditional BO.
Doniyor Ulmasov, Caroline Baroukh, Benoit Chachuat, Marc Peter Deisenroth, Ruth Misener
null
1511.05385
null
null
Learning the Dimensionality of Word Embeddings
stat.ML cs.CL cs.LG
We describe a method for learning word embeddings with data-dependent dimensionality. Our Stochastic Dimensionality Skip-Gram (SD-SG) and Stochastic Dimensionality Continuous Bag-of-Words (SD-CBOW) are nonparametric analogs of Mikolov et al.'s (2013) well-known 'word2vec' models. Vector dimensionality is made dynamic by employing techniques used by Cote & Larochelle (2016) to define an RBM with an infinite number of hidden units. We show qualitatively and quantitatively that SD-SG and SD-CBOW are competitive with their fixed-dimension counterparts while providing a distribution over embedding dimensionalities, which offers a window into how semantics distribute across dimensions.
Eric Nalisnick, Sachin Ravi
null
1511.05392
null
null
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
stat.ML cs.LG cs.NE
We propose a general framework for increasing local stability of Artificial Neural Nets (ANNs) using Robust Optimization (RO). We achieve this through an alternating minimization-maximization procedure, in which the loss of the network is minimized over perturbed examples that are generated at each parameter update. We show that adversarial training of ANNs is in fact robustification of the network optimization, and that our proposed framework generalizes previous approaches for increasing local stability of ANNs. Experimental results reveal that our approach increases the robustness of the network to existing adversarial examples, while making it harder to generate new ones. Furthermore, our algorithm improves the accuracy of the network also on the original test data.
Uri Shaham, Yutaro Yamada, and Sahand Negahban
10.1016/j.neucom.2018.04.027
1511.05432
null
null
Deep multi-scale video prediction beyond mean square error
cs.LG cs.CV stat.ML
Learning to predict future images from a video sequence involves the construction of an internal representation that models the image evolution accurately, and therefore, to some degree, its content and dynamics. This is why pixel-space video prediction may be viewed as a promising avenue for unsupervised feature learning. In addition, while optical flow has been a very studied problem in computer vision for a long time, future frame prediction is rarely approached. Still, many vision applications could benefit from the knowledge of the next frames of videos, that does not require the complexity of tracking every pixel trajectories. In this work, we train a convolutional network to generate future frames given an input sequence. To deal with the inherently blurry predictions obtained from the standard Mean Squared Error (MSE) loss function, we propose three different and complementary feature learning strategies: a multi-scale architecture, an adversarial training method, and an image gradient difference loss function. We compare our predictions to different published results based on recurrent neural networks on the UCF101 dataset
Michael Mathieu, Camille Couprie and Yann LeCun
null
1511.05440
null
null
Extending Gossip Algorithms to Distributed Estimation of U-Statistics
stat.ML cs.DC cs.LG cs.SY stat.CO
Efficient and robust algorithms for decentralized estimation in networks are essential to many distributed systems. Whereas distributed estimation of sample mean statistics has been the subject of a good deal of attention, computation of $U$-statistics, relying on more expensive averaging over pairs of observations, is a less investigated area. Yet, such data functionals are essential to describe global properties of a statistical population, with important examples including Area Under the Curve, empirical variance, Gini mean difference and within-cluster point scatter. This paper proposes new synchronous and asynchronous randomized gossip algorithms which simultaneously propagate data across the network and maintain local estimates of the $U$-statistic of interest. We establish convergence rate bounds of $O(1/t)$ and $O(\log t / t)$ for the synchronous and asynchronous cases respectively, where $t$ is the number of iterations, with explicit data and network dependent terms. Beyond favorable comparisons in terms of rate analysis, numerical experiments provide empirical evidence the proposed algorithms surpasses the previously introduced approach.
Igor Colin and Aur\'elien Bellet and Joseph Salmon and St\'ephan Cl\'emen\c{c}on
null
1511.05464
null
null
Gated Graph Sequence Neural Networks
cs.LG cs.AI cs.NE stat.ML
Graph-structured data appears frequently in domains including chemistry, natural language semantics, social networks, and knowledge bases. In this work, we study feature learning techniques for graph-structured inputs. Our starting point is previous work on Graph Neural Networks (Scarselli et al., 2009), which we modify to use gated recurrent units and modern optimization techniques and then extend to output sequences. The result is a flexible and broadly useful class of neural network models that has favorable inductive biases relative to purely sequence-based models (e.g., LSTMs) when the problem is graph-structured. We demonstrate the capabilities on some simple AI (bAbI) and graph algorithm learning tasks. We then show it achieves state-of-the-art performance on a problem from program verification, in which subgraphs need to be matched to abstract data structures.
Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel
null
1511.05493
null
null
Learning Neural Network Architectures using Backpropagation
cs.LG cs.CV cs.NE
Deep neural networks with millions of parameters are at the heart of many state of the art machine learning models today. However, recent works have shown that models with much smaller number of parameters can also perform just as well. In this work, we introduce the problem of architecture-learning, i.e; learning the architecture of a neural network along with weights. We introduce a new trainable parameter called tri-state ReLU, which helps in eliminating unnecessary neurons. We also propose a smooth regularizer which encourages the total number of neurons after elimination to be small. The resulting objective is differentiable and simple to optimize. We experimentally validate our method on both small and large networks, and show that it can learn models with a considerably small number of parameters without affecting prediction accuracy.
Suraj Srinivas and R. Venkatesh Babu
null
1511.05497
null
null
Automatic Instrument Recognition in Polyphonic Music Using Convolutional Neural Networks
cs.SD cs.IR cs.LG cs.NE
Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these "shallow" architectures, feature engineering and learning are typically disjoint and unrelated. Additionally, feature engineering is difficult, and typically depends on extensive domain expertise. In this paper, we present an application of convolutional neural networks for the task of automatic musical instrument identification. In this model, feature extraction and learning algorithms are trained together in an end-to-end fashion. We show that a convolutional neural network trained on raw audio can achieve performance surpassing traditional methods that rely on hand-crafted features.
Peter Li and Jiyuan Qian and Tian Wang
null
1511.05520
null
null
Return of Frustratingly Easy Domain Adaptation
cs.CV cs.AI cs.LG cs.NE
Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning methods. Supervised domain adaptation methods have been proposed for the case when the target data have labels, including some that perform very well despite being "frustratingly easy" to implement. However, in practice, the target domain is often unlabeled, requiring unsupervised adaptation. We propose a simple, effective, and efficient method for unsupervised domain adaptation called CORrelation ALignment (CORAL). CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. Even though it is extraordinarily simple--it can be implemented in four lines of Matlab code--CORAL performs remarkably well in extensive evaluations on standard benchmark datasets.
Baochen Sun, Jiashi Feng, Kate Saenko
null
1511.05547
null
null
Identifying the Absorption Bump with Deep Learning
cs.CV cs.LG cs.NE
The pervasive interstellar dust grains provide significant insights to understand the formation and evolution of the stars, planetary systems, and the galaxies, and may harbor the building blocks of life. One of the most effective way to analyze the dust is via their interaction with the light from background sources. The observed extinction curves and spectral features carry the size and composition information of dust. The broad absorption bump at 2175 Angstrom is the most prominent feature in the extinction curves. Traditionally, statistical methods are applied to detect the existence of the absorption bump. These methods require heavy preprocessing and the co-existence of other reference features to alleviate the influence from the noises. In this paper, we apply Deep Learning techniques to detect the broad absorption bump. We demonstrate the key steps for training the selected models and their results. The success of Deep Learning based method inspires us to generalize a common methodology for broader science discovery problems. We present our on-going work to build the DeepDis system for such kind of applications.
Min Li, Sudeep Gaddam, Xiaolin Li, Yinan Zhao, Jingzhe Ma, Jian Ge
null
1511.05607
null
null
A Block Regression Model for Short-Term Mobile Traffic Forecasting
cs.NI cs.LG
Accurate mobile traffic forecast is important for efficient network planning and operations. However, existing traffic forecasting models have high complexity, making the forecasting process slow and costly. In this paper, we analyze some characteristics of mobile traffic such as periodicity, spatial similarity and short term relativity. Based on these characteristics, we propose a \emph{Block Regression} ({BR}) model for mobile traffic forecasting. This model employs seasonal differentiation so as to take into account of the temporally repetitive nature of mobile traffic. One of the key features of our {BR} model lies in its low complexity since it constructs a single model for all base stations. We evaluate the accuracy of {BR} model based on real traffic data and compare it with the existing models. Results show that our {BR} model offers equal accuracy to the existing models but has much less complexity.
Huimin Pan, Jingchu Liu, Sheng Zhou, Zhisheng Niu
10.1109/ICCChina.2015.7448619
1511.05612
null
null
Learning Structured Inference Neural Networks with Label Relations
cs.CV cs.LG
Images of scenes have various objects as well as abundant attributes, and diverse levels of visual categorization are possible. A natural image could be assigned with fine-grained labels that describe major components, coarse-grained labels that depict high level abstraction or a set of labels that reveal attributes. Such categorization at different concept layers can be modeled with label graphs encoding label information. In this paper, we exploit this rich information with a state-of-art deep learning framework, and propose a generic structured model that leverages diverse label relations to improve image classification performance. Our approach employs a novel stacked label prediction neural network, capturing both inter-level and intra-level label semantics. We evaluate our method on benchmark image datasets, and empirical results illustrate the efficacy of our model.
Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng, Zicheng Liao, Greg Mori
null
1511.05616
null
null
Predicting distributions with Linearizing Belief Networks
cs.LG cs.CV
Conditional belief networks introduce stochastic binary variables in neural networks. Contrary to a classical neural network, a belief network can predict more than the expected value of the output $Y$ given the input $X$. It can predict a distribution of outputs $Y$ which is useful when an input can admit multiple outputs whose average is not necessarily a valid answer. Such networks are particularly relevant to inverse problems such as image prediction for denoising, or text to speech. However, traditional sigmoid belief networks are hard to train and are not suited to continuous problems. This work introduces a new family of networks called linearizing belief nets or LBNs. A LBN decomposes into a deep linear network where each linear unit can be turned on or off by non-deterministic binary latent units. It is a universal approximator of real-valued conditional distributions and can be trained using gradient descent. Moreover, the linear pathways efficiently propagate continuous information and they act as multiplicative skip-connections that help optimization by removing gradient diffusion. This yields a model which trains efficiently and improves the state-of-the-art on image denoising and facial expression generation with the Toronto faces dataset.
Yann N. Dauphin, David Grangier
null
1511.05622
null
null
Competitive Multi-scale Convolution
cs.CV cs.LG cs.NE
In this paper, we introduce a new deep convolutional neural network (ConvNet) module that promotes competition among a set of multi-scale convolutional filters. This new module is inspired by the inception module, where we replace the original collaborative pooling stage (consisting of a concatenation of the multi-scale filter outputs) by a competitive pooling represented by a maxout activation unit. This extension has the following two objectives: 1) the selection of the maximum response among the multi-scale filters prevents filter co-adaptation and allows the formation of multiple sub-networks within the same model, which has been shown to facilitate the training of complex learning problems; and 2) the maxout unit reduces the dimensionality of the outputs from the multi-scale filters. We show that the use of our proposed module in typical deep ConvNets produces classification results that are either better than or comparable to the state of the art on the following benchmark datasets: MNIST, CIFAR-10, CIFAR-100 and SVHN.
Zhibin Liao, Gustavo Carneiro
null
1511.05635
null
null
Net2Net: Accelerating Learning via Knowledge Transfer
cs.LG
We introduce techniques for rapidly transferring the information stored in one neural net into another neural net. The main purpose is to accelerate the training of a significantly larger neural net. During real-world workflows, one often trains very many different neural networks during the experimentation and design process. This is a wasteful process in which each new model is trained from scratch. Our Net2Net technique accelerates the experimentation process by instantaneously transferring the knowledge from a previous network to each new deeper or wider network. Our techniques are based on the concept of function-preserving transformations between neural network specifications. This differs from previous approaches to pre-training that altered the function represented by a neural net when adding layers to it. Using our knowledge transfer mechanism to add depth to Inception modules, we demonstrate a new state of the art accuracy rating on the ImageNet dataset.
Tianqi Chen and Ian Goodfellow and Jonathon Shlens
null
1511.05641
null
null
A New Smooth Approximation to the Zero One Loss with a Probabilistic Interpretation
cs.CV cs.AI cs.IR cs.LG
We examine a new form of smooth approximation to the zero one loss in which learning is performed using a reformulation of the widely used logistic function. Our approach is based on using the posterior mean of a novel generalized Beta-Bernoulli formulation. This leads to a generalized logistic function that approximates the zero one loss, but retains a probabilistic formulation conferring a number of useful properties. The approach is easily generalized to kernel logistic regression and easily integrated into methods for structured prediction. We present experiments in which we learn such models using an optimization method consisting of a combination of gradient descent and coordinate descent using localized grid search so as to escape from local minima. Our experiments indicate that optimization quality is improved when learning meta-parameters are themselves optimized using a validation set. Our experiments show improved performance relative to widely used logistic and hinge loss methods on a wide variety of problems ranging from standard UC Irvine and libSVM evaluation datasets to product review predictions and a visual information extraction task. We observe that the approach: 1) is more robust to outliers compared to the logistic and hinge losses; 2) outperforms comparable logistic and max margin models on larger scale benchmark problems; 3) when combined with Gaussian- Laplacian mixture prior on parameters the kernelized version of our formulation yields sparser solutions than Support Vector Machine classifiers; and 4) when integrated into a probabilistic structured prediction technique our approach provides more accurate probabilities yielding improved inference and increasing information extraction performance.
Md Kamrul Hasan, Christopher J. Pal
null
1511.05643
null
null
Adversarial Autoencoders
cs.LG
In this paper, we propose the "adversarial autoencoder" (AAE), which is a probabilistic autoencoder that uses the recently proposed generative adversarial networks (GAN) to perform variational inference by matching the aggregated posterior of the hidden code vector of the autoencoder with an arbitrary prior distribution. Matching the aggregated posterior to the prior ensures that generating from any part of prior space results in meaningful samples. As a result, the decoder of the adversarial autoencoder learns a deep generative model that maps the imposed prior to the data distribution. We show how the adversarial autoencoder can be used in applications such as semi-supervised classification, disentangling style and content of images, unsupervised clustering, dimensionality reduction and data visualization. We performed experiments on MNIST, Street View House Numbers and Toronto Face datasets and show that adversarial autoencoders achieve competitive results in generative modeling and semi-supervised classification tasks.
Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Brendan Frey
null
1511.05644
null
null
Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models
stat.ML cs.LG
Normalized random measures (NRMs) provide a broad class of discrete random measures that are often used as priors for Bayesian nonparametric models. Dirichlet process is a well-known example of NRMs. Most of posterior inference methods for NRM mixture models rely on MCMC methods since they are easy to implement and their convergence is well studied. However, MCMC often suffers from slow convergence when the acceptance rate is low. Tree-based inference is an alternative deterministic posterior inference method, where Bayesian hierarchical clustering (BHC) or incremental Bayesian hierarchical clustering (IBHC) have been developed for DP or NRM mixture (NRMM) models, respectively. Although IBHC is a promising method for posterior inference for NRMM models due to its efficiency and applicability to online inference, its convergence is not guaranteed since it uses heuristics that simply selects the best solution after multiple trials are made. In this paper, we present a hybrid inference algorithm for NRMM models, which combines the merits of both MCMC and IBHC. Trees built by IBHC outlines partitions of data, which guides Metropolis-Hastings procedure to employ appropriate proposals. Inheriting the nature of MCMC, our tree-guided MCMC (tgMCMC) is guaranteed to converge, and enjoys the fast convergence thanks to the effective proposals guided by trees. Experiments on both synthetic and real-world datasets demonstrate the benefit of our method.
Juho Lee and Seungjin Choi
null
1511.05650
null
null
Why are deep nets reversible: A simple theory, with implications for training
cs.LG
Generative models for deep learning are promising both to improve understanding of the model, and yield training methods requiring fewer labeled samples. Recent works use generative model approaches to produce the deep net's input given the value of a hidden layer several levels above. However, there is no accompanying "proof of correctness" for the generative model, showing that the feedforward deep net is the correct inference method for recovering the hidden layer given the input. Furthermore, these models are complicated. The current paper takes a more theoretical tack. It presents a very simple generative model for RELU deep nets, with the following characteristics: (i) The generative model is just the reverse of the feedforward net: if the forward transformation at a layer is $A$ then the reverse transformation is $A^T$. (This can be seen as an explanation of the old weight tying idea for denoising autoencoders.) (ii) Its correctness can be proven under a clean theoretical assumption: the edge weights in real-life deep nets behave like random numbers. Under this assumption ---which is experimentally tested on real-life nets like AlexNet--- it is formally proved that feed forward net is a correct inference method for recovering the hidden layer. The generative model suggests a simple modification for training: use the generative model to produce synthetic data with labels and include it in the training set. Experiments are shown to support this theory of random-like deep nets; and that it helps the training.
Sanjeev Arora and Yingyu Liang and Tengyu Ma
null
1511.05653
null
null
Expressiveness of Rectifier Networks
cs.LG
Rectified Linear Units (ReLUs) have been shown to ameliorate the vanishing gradient problem, allow for efficient backpropagation, and empirically promote sparsity in the learned parameters. They have led to state-of-the-art results in a variety of applications. However, unlike threshold and sigmoid networks, ReLU networks are less explored from the perspective of their expressiveness. This paper studies the expressiveness of ReLU networks. We characterize the decision boundary of two-layer ReLU networks by constructing functionally equivalent threshold networks. We show that while the decision boundary of a two-layer ReLU network can be captured by a threshold network, the latter may require an exponentially larger number of hidden units. We also formulate sufficient conditions for a corresponding logarithmic reduction in the number of hidden units to represent a sign network as a ReLU network. Finally, we experimentally compare threshold networks and their much smaller ReLU counterparts with respect to their ability to learn from synthetically generated data.
Xingyuan Pan and Vivek Srikumar
null
1511.05678
null
null
A Distribution Adaptive Framework for Prediction Interval Estimation Using Nominal Variables
cs.LG
Proposed methods for prediction interval estimation so far focus on cases where input variables are numerical. In datasets with solely nominal input variables, we observe records with the exact same input $x^u$, but different real valued outputs due to the inherent noise in the system. Existing prediction interval estimation methods do not use representations that can accurately model such inherent noise in the case of nominal inputs. We propose a new prediction interval estimation method tailored for this type of data, which is prevalent in biology and medicine. We call this method Distribution Adaptive Prediction Interval Estimation given Nominal inputs (DAPIEN) and has four main phases. First, we select a distribution function that can best represent the inherent noise of the system for all unique inputs. Then we infer the parameters $\theta_i$ (e.g. $\theta_i=[mean_i, variance_i]$) of the selected distribution function for all unique input vectors $x^u_i$ and generate a new corresponding training set using pairs of $x^u_i, \theta_i$. III). Then, we train a model to predict $\theta$ given a new $x_u$. Finally, we calculate the prediction interval for a new sample using the inverse of the cumulative distribution function once the parameters $\theta$ is predicted by the trained model. We compared DAPIEN to the commonly used Bootstrap method on three synthetic datasets. Our results show that DAPIEN provides tighter prediction intervals while preserving the requested coverage when compared to Bootstrap. This work can facilitate broader usage of regression methods in medicine and biology where it is necessary to provide tight prediction intervals while preserving coverage when input variables are nominal.
Ameen Eetemadi, Ilias Tagkopoulos
null
1511.05688
null
null