title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Random Forests for Big Data
stat.ML cs.LG math.ST stat.TH
Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to "divide-and-conquer" approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations.
Robin Genuer (ISPED, SISTM), Jean-Michel Poggi (UPD5, LM-Orsay), Christine Tuleau-Malot (JAD), Nathalie Villa-Vialaneix (MIAT INRA)
null
1511.08327
null
null
The Automatic Statistician: A Relational Perspective
cs.LG stat.ML
Gaussian Processes (GPs) provide a general and analytically tractable way of modeling complex time-varying, nonparametric functions. The Automatic Bayesian Covariance Discovery (ABCD) system constructs natural-language description of time-series data by treating unknown time-series data nonparametrically using GP with a composite covariance kernel function. Unfortunately, learning a composite covariance kernel with a single time-series data set often results in less informative kernel that may not give qualitative, distinctive descriptions of data. We address this challenge by proposing two relational kernel learning methods which can model multiple time-series data sets by finding common, shared causes of changes. We show that the relational kernel learning methods find more accurate models for regression problems on several real-world data sets; US stock data, US house price index data and currency exchange rate data.
Yunseong Hwang, Anh Tong and Jaesik Choi
null
1511.08343
null
null
Regularizing RNNs by Stabilizing Activations
cs.NE cs.CL cs.LG stat.ML
We stabilize the activations of Recurrent Neural Networks (RNNs) by penalizing the squared distance between successive hidden states' norms. This penalty term is an effective regularizer for RNNs including LSTMs and IRNNs, improving performance on character-level language modeling and phoneme recognition, and outperforming weight noise and dropout. We achieve competitive performance (18.6\% PER) on the TIMIT phoneme recognition task for RNNs evaluated without beam search or an RNN transducer. With this penalty term, IRNN can achieve similar performance to LSTM on language modeling, although adding the penalty term to the LSTM results in superior performance. Our penalty term also prevents the exponential growth of IRNN's activations outside of their training horizon, allowing them to generalize to much longer sequences.
David Krueger, Roland Memisevic
null
1511.08400
null
null
Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case
cs.LG stat.ML
We demonstrate that, in the classical non-stochastic regret minimization problem with $d$ decisions, gains and losses to be respectively maximized or minimized are fundamentally different. Indeed, by considering the additional sparsity assumption (at each stage, at most $s$ decisions incur a nonzero outcome), we derive optimal regret bounds of different orders. Specifically, with gains, we obtain an optimal regret guarantee after $T$ stages of order $\sqrt{T\log s}$, so the classical dependency in the dimension is replaced by the sparsity size. With losses, we provide matching upper and lower bounds of order $\sqrt{Ts\log(d)/d}$, which is decreasing in $d$. Eventually, we also study the bandit setting, and obtain an upper bound of order $\sqrt{Ts\log (d/s)}$ when outcomes are losses. This bound is proven to be optimal up to the logarithmic factor $\sqrt{\log(d/s)}$.
Joon Kwon and Vianney Perchet
null
1511.08405
null
null
The Mechanism of Additive Composition
cs.CL cs.LG
Additive composition (Foltz et al, 1998; Landauer and Dumais, 1997; Mitchell and Lapata, 2010) is a widely used method for computing meanings of phrases, which takes the average of vector representations of the constituent words. In this article, we prove an upper bound for the bias of additive composition, which is the first theoretical analysis on compositional frameworks from a machine learning point of view. The bound is written in terms of collocation strength; we prove that the more exclusively two successive words tend to occur together, the more accurate one can guarantee their additive composition as an approximation to the natural phrase vector. Our proof relies on properties of natural language data that are empirically verified, and can be theoretically derived from an assumption that the data is generated from a Hierarchical Pitman-Yor Process. The theory endorses additive composition as a reasonable operation for calculating meanings of phrases, and suggests ways to improve additive compositionality, including: transforming entries of distributional word vectors by a function that meets a specific condition, constructing a novel type of vector representations to make additive composition sensitive to word order, and utilizing singular value decomposition to train word vectors.
Ran Tian, Naoaki Okazaki, Kentaro Inui
10.1007/s10994-017-5634-8
1511.08407
null
null
An Introduction to Convolutional Neural Networks
cs.NE cs.CV cs.LG
The field of machine learning has taken a dramatic twist in recent times, with the rise of the Artificial Neural Network (ANN). These biologically inspired computational models are able to far exceed the performance of previous forms of artificial intelligence in common machine learning tasks. One of the most impressive forms of ANN architecture is that of the Convolutional Neural Network (CNN). CNNs are primarily used to solve difficult image-driven pattern recognition tasks and with their precise yet simple architecture, offers a simplified method of getting started with ANNs. This document provides a brief introduction to CNNs, discussing recently published papers and newly formed techniques in developing these brilliantly fantastic image recognition models. This introduction assumes you are familiar with the fundamentals of ANNs and machine learning.
Keiron O'Shea and Ryan Nash
null
1511.08458
null
null
Incremental Truncated LSTD
cs.LG cs.AI
Balancing between computational efficiency and sample efficiency is an important goal in reinforcement learning. Temporal difference (TD) learning algorithms stochastically update the value function, with a linear time complexity in the number of features, whereas least-squares temporal difference (LSTD) algorithms are sample efficient but can be quadratic in the number of features. In this work, we develop an efficient incremental low-rank LSTD({\lambda}) algorithm that progresses towards the goal of better balancing computation and sample efficiency. The algorithm reduces the computation and storage complexity to the number of features times the chosen rank parameter while summarizing past samples efficiently to nearly obtain the sample complexity of LSTD. We derive a simulation bound on the solution given by truncated low-rank approximation, illustrating a bias- variance trade-off dependent on the choice of rank. We demonstrate that the algorithm effectively balances computational complexity and sample efficiency for policy evaluation in a benchmark task and a high-dimensional energy allocation domain.
Clement Gehring, Yangchen Pan, Martha White
null
1511.08495
null
null
Iterative Instance Segmentation
cs.CV cs.LG
Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings, often leading to predictions that are visually implausible. While incorporating structure into the model should improve prediction quality, doing so is challenging - manually specifying the form of structural constraints may be impractical and inference often becomes intractable even if structural constraints are given. We sidestep this problem by reducing structured prediction to a sequence of unconstrained prediction problems and demonstrate that this approach is capable of automatically discovering priors on shape, contiguity of region predictions and smoothness of region contours from data without any a priori specification. On the instance segmentation task, this method outperforms the state-of-the-art, achieving a mean $\mathrm{AP}^{r}$ of 63.6% at 50% overlap and 43.3% at 70% overlap.
Ke Li, Bharath Hariharan, Jitendra Malik
null
1511.08498
null
null
Regularized EM Algorithms: A Unified Framework and Statistical Guarantees
cs.LG stat.ML
Latent variable models are a fundamental modeling tool in machine learning applications, but they present significant computational and analytical challenges. The popular EM algorithm and its variants, is a much used algorithmic tool; yet our rigorous understanding of its performance is highly incomplete. Recently, work in Balakrishnan et al. (2014) has demonstrated that for an important class of problems, EM exhibits linear local convergence. In the high-dimensional setting, however, the M-step may not be well defined. We address precisely this setting through a unified treatment using regularization. While regularization for high-dimensional problems is by now well understood, the iterative EM algorithm requires a careful balancing of making progress towards the solution while identifying the right structure (e.g., sparsity or low-rank). In particular, regularizing the M-step using the state-of-the-art high-dimensional prescriptions (e.g., Wainwright (2014)) is not guaranteed to provide this balance. Our algorithm and analysis are linked in a way that reveals the balance between optimization and statistical errors. We specialize our general framework to sparse gaussian mixture models, high-dimensional mixed regression, and regression with missing variables, obtaining statistical guarantees for each of these examples.
Xinyang Yi and Constantine Caramanis
null
1511.08551
null
null
Simultaneous Private Learning of Multiple Concepts
cs.DS cs.CR cs.LG
We investigate the direct-sum problem in the context of differentially private PAC learning: What is the sample complexity of solving $k$ learning tasks simultaneously under differential privacy, and how does this cost compare to that of solving $k$ learning tasks without privacy? In our setting, an individual example consists of a domain element $x$ labeled by $k$ unknown concepts $(c_1,\ldots,c_k)$. The goal of a multi-learner is to output $k$ hypotheses $(h_1,\ldots,h_k)$ that generalize the input examples. Without concern for privacy, the sample complexity needed to simultaneously learn $k$ concepts is essentially the same as needed for learning a single concept. Under differential privacy, the basic strategy of learning each hypothesis independently yields sample complexity that grows polynomially with $k$. For some concept classes, we give multi-learners that require fewer samples than the basic strategy. Unfortunately, however, we also give lower bounds showing that even for very simple concept classes, the sample cost of private multi-learning must grow polynomially in $k$.
Mark Bun and Kobbi Nissim and Uri Stemmer
10.1145/2840728.2840747
1511.08552
null
null
Shaping Proto-Value Functions via Rewards
cs.AI cs.LG
In this paper, we combine task-dependent reward shaping and task-independent proto-value functions to obtain reward dependent proto-value functions (RPVFs). In constructing the RPVFs we are making use of the immediate rewards which are available during the sampling phase but are not used in the PVF construction. We show via experiments that learning with an RPVF based representation is better than learning with just reward shaping or PVFs. In particular, when the state space is symmetrical and the rewards are asymmetrical, the RPVF capture the asymmetry better than the PVFs.
Chandrashekar Lakshmi Narayanan, Raj Kumar Maity and Shalabh Bhatnagar
null
1511.08589
null
null
Algorithms for Differentially Private Multi-Armed Bandits
stat.ML cs.CR cs.LG
We present differentially private algorithms for the stochastic Multi-Armed Bandit (MAB) problem. This is a problem for applications such as adaptive clinical trials, experiment design, and user-targeted advertising where private information is connected to individual rewards. Our major contribution is to show that there exist $(\epsilon, \delta)$ differentially private variants of Upper Confidence Bound algorithms which have optimal regret, $O(\epsilon^{-1} + \log T)$. This is a significant improvement over previous results, which only achieve poly-log regret $O(\epsilon^{-2} \log^{2} T)$, because of our use of a novel interval-based mechanism. We also substantially improve the bounds of previous family of algorithms which use a continual release mechanism. Experiments clearly validate our theoretical bounds.
Aristide Tossou, Christos Dimitrakakis
null
1511.08681
null
null
On the convergence of cycle detection for navigational reinforcement learning
cs.LG cs.AI
We consider a reinforcement learning framework where agents have to navigate from start states to goal states. We prove convergence of a cycle-detection learning algorithm on a class of tasks that we call reducible. Reducible tasks have an acyclic solution. We also syntactically characterize the form of the final policy. This characterization can be used to precisely detect the convergence point in a simulation. Our result demonstrates that even simple algorithms can be successful in learning a large class of nontrivial tasks. In addition, our framework is elementary in the sense that we only use basic concepts to formally prove convergence.
Tom J. Ameloot and Jan Van den Bussche
null
1511.08724
null
null
Informative Data Projections: A Framework and Two Examples
cs.LG cs.IR math.ST stat.TH
Methods for Projection Pursuit aim to facilitate the visual exploration of high-dimensional data by identifying interesting low-dimensional projections. A major challenge is the design of a suitable quality metric of projections, commonly referred to as the projection index, to be maximized by the Projection Pursuit algorithm. In this paper, we introduce a new information-theoretic strategy for tackling this problem, based on quantifying the amount of information the projection conveys to a user given their prior beliefs about the data. The resulting projection index is a subjective quantity, explicitly dependent on the intended user. As a useful illustration, we developed this idea for two particular kinds of prior beliefs. The first kind leads to PCA (Principal Component Analysis), shining new light on when PCA is (not) appropriate. The second kind leads to a novel projection index, the maximization of which can be regarded as a robust variant of PCA. We show how this projection index, though non-convex, can be effectively maximized using a modified power method as well as using a semidefinite programming relaxation. The usefulness of this new projection index is demonstrated in comparative empirical experiments against PCA and a popular Projection Pursuit method.
Tijl De Bie, Jefrey Lijffijt, Raul Santos-Rodriguez, Bo Kang
null
1511.08762
null
null
Multiagent Cooperation and Competition with Deep Reinforcement Learning
cs.AI cs.LG q-bio.NC
Multiagent systems appear in most social, economical, and political situations. In the present work we extend the Deep Q-Learning Network architecture proposed by Google DeepMind to multiagent environments and investigate how two agents controlled by independent Deep Q-Networks interact in the classic videogame Pong. By manipulating the classical rewarding scheme of Pong we demonstrate how competitive and collaborative behaviors emerge. Competitive agents learn to play and score efficiently. Agents trained under collaborative rewarding schemes find an optimal strategy to keep the ball in the game as long as possible. We also describe the progression from competitive to collaborative behavior. The present work demonstrates that Deep Q-Networks can become a practical tool for studying the decentralized learning of multiagent systems living in highly complex environments.
Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan Aru and Raul Vicente
null
1511.08779
null
null
Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) - The $\ell_0$ Method
cs.LG
The sparsity of natural signals and images in a transform domain or dictionary has been extensively exploited in several applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise in many applications compared to fixed or analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. In this work, we investigate an efficient method for $\ell_{0}$ "norm"-based dictionary learning by first approximating the training data set with a sum of sparse rank-one matrices and then using a block coordinate descent approach to estimate the unknowns. The proposed block coordinate descent algorithm involves efficient closed-form solutions. In particular, the sparse coding step involves a simple form of thresholding. We provide a convergence analysis for the proposed block coordinate descent approach. Our numerical experiments show the promising performance and significant speed-ups provided by our method over the classical K-SVD scheme in sparse signal representation and image denoising.
Saiprasad Ravishankar, Raj Rao Nadakuditi, Jeffrey A. Fessler
null
1511.08842
null
null
Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach
quant-ph cs.LG
Three-qubit quantum gates are key ingredients for quantum error correction and quantum information processing. We generate quantum-control procedures to design three types of three-qubit gates, namely Toffoli, Controlled-Not-Not and Fredkin gates. The design procedures are applicable to a system comprising three nearest-neighbor-coupled superconducting artificial atoms. For each three-qubit gate, the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is an accepted threshold fidelity for fault-tolerant quantum computing. We test our procedure in the presence of decoherence-induced noise as well as show its robustness against random external noise generated by the control electronics. The three-qubit gates are designed via the machine learning algorithm called Subspace-Selective Self-Adaptive Differential Evolution (SuSSADE).
Ehsan Zahedinejad, Joydip Ghosh, Barry C. Sanders
10.1103/PhysRevApplied.6.054005
1511.08862
null
null
MidRank: Learning to rank based on subsequences
cs.CV cs.LG
We present a supervised learning to rank algorithm that effectively orders images by exploiting the structure in image sequences. Most often in the supervised learning to rank literature, ranking is approached either by analyzing pairs of images or by optimizing a list-wise surrogate loss function on full sequences. In this work we propose MidRank, which learns from moderately sized sub-sequences instead. These sub-sequences contain useful structural ranking information that leads to better learnability during training and better generalization during testing. By exploiting sub-sequences, the proposed MidRank improves ranking accuracy considerably on an extensive array of image ranking applications and datasets.
Basura Fernando, Efstratios Gavves, Damien Muselet, Tinne Tuytelaars
null
1511.08951
null
null
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
math.ST cs.LG stat.ML stat.TH
We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with $p\gg n$. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable ordering. These results apply to a variety of practical situations that allow for arbitrary nondegenerate covariance structures as well as many popular regularizers including the MCP, SCAD, $\ell_{0}$ and $\ell_{1}$. The proof relies on interpreting a DAG as a recursive linear structural equation model, which reduces the estimation problem to a series of neighbourhood regressions. We provide a novel statistical analysis of these neighbourhood problems, establishing uniform control over the superexponential family of neighbourhoods associated with a Gaussian distribution. We then apply these results to study the statistical properties of score-based DAG estimators, learning causal DAGs, and inferring conditional independence relations via graphical models. Our results yield---for the first time---finite-sample guarantees for structure learning of Gaussian DAGs in high-dimensions via score-based estimation.
Bryon Aragam, Arash A. Amini, Qing Zhou
null
1511.08963
null
null
Robotic Search & Rescue via Online Multi-task Reinforcement Learning
cs.AI cs.LG cs.RO
Reinforcement learning (RL) is a general and well-known method that a robot can use to learn an optimal control policy to solve a particular task. We would like to build a versatile robot that can learn multiple tasks, but using RL for each of them would be prohibitively expensive in terms of both time and wear-and-tear on the robot. To remedy this problem, we use the Policy Gradient Efficient Lifelong Learning Algorithm (PG-ELLA), an online multi-task RL algorithm that enables the robot to efficiently learn multiple consecutive tasks by sharing knowledge between these tasks to accelerate learning and improve performance. We implemented and evaluated three RL methods--Q-learning, policy gradient RL, and PG-ELLA--on a ground robot whose task is to find a target object in an environment under different surface conditions. In this paper, we discuss our implementations as well as present an empirical analysis of their learning performance.
Lisa Lee
null
1511.08967
null
null
How do the naive Bayes classifier and the Support Vector Machine compare in their ability to forecast the Stock Exchange of Thailand?
cs.LG
This essay investigates the question of how the naive Bayes classifier and the support vector machine compare in their ability to forecast the Stock Exchange of Thailand. The theory behind the SVM and the naive Bayes classifier is explored. The algorithms are trained using data from the month of January 2010, extracted from the MarketWatch.com website. Input features are selected based on previous studies of the SET100 Index. The Weka 3 software is used to create models from the labeled training data. Mean squared error and proportion of correctly classified instances, and a number of other error measurements are the used to compare the two algorithms. This essay shows that these two algorithms are currently not advanced enough to accurately model the stock exchange. Nevertheless, the naive Bayes is better than the support vector machine at predicting the Stock Exchange of Thailand.
Napas Udomsak
null
1511.08987
null
null
Multiple-Instance Learning: Radon-Nikodym Approach to Distribution Regression Problem
cs.LG
For distribution regression problem, where a bag of $x$--observations is mapped to a single $y$ value, a one--step solution is proposed. The problem of random distribution to random value is transformed to random vector to random value by taking distribution moments of $x$ observations in a bag as random vector. Then Radon--Nikodym or least squares theory can be applied, what give $y(x)$ estimator. The probability distribution of $y$ is also obtained, what requires solving generalized eigenvalues problem, matrix spectrum (not depending on $x$) give possible $y$ outcomes and depending on $x$ probabilities of outcomes can be obtained by projecting the distribution with fixed $x$ value (delta--function) to corresponding eigenvector. A library providing numerically stable polynomial basis for these calculations is available, what make the proposed approach practical.
Vladislav Gennadievich Malyshkin
null
1511.09058
null
null
Position paper: a general framework for applying machine learning techniques in operating room
cs.CY cs.LG
In this position paper we describe a general framework for applying machine learning and pattern recognition techniques in healthcare. In particular, we are interested in providing an automated tool for monitoring and incrementing the level of awareness in the operating room and for identifying human errors which occur during the laparoscopy surgical operation. The framework that we present is divided in three different layers: each layer implements algorithms which have an increasing level of complexity and which perform functionality with an higher degree of abstraction. In the first layer, raw data collected from sensors in the operating room during surgical operation, they are pre-processed and aggregated. The results of this initial phase are transferred to a second layer, which implements pattern recognition techniques and extract relevant features from the data. Finally, in the last layer, expert systems are employed to take high level decisions, which represent the final output of the system.
Filippo Maria Bianchi, Enrico De Santis, Hedieh Montazeri, Parisa Naraei, Alireza Sadeghian
null
1511.09099
null
null
A Short Survey on Data Clustering Algorithms
cs.DS cs.CV cs.LG stat.CO stat.ML
With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end.
Ka-Chun Wong
null
1511.09123
null
null
Aspect-based Opinion Summarization with Convolutional Neural Networks
cs.CL cs.IR cs.LG
This paper considers Aspect-based Opinion Summarization (AOS) of reviews on particular products. To enable real applications, an AOS system needs to address two core subtasks, aspect extraction and sentiment classification. Most existing approaches to aspect extraction, which use linguistic analysis or topic modeling, are general across different products but not precise enough or suitable for particular products. Instead we take a less general but more precise scheme, directly mapping each review sentence into pre-defined aspects. To tackle aspect mapping and sentiment classification, we propose two Convolutional Neural Network (CNN) based methods, cascaded CNN and multitask CNN. Cascaded CNN contains two levels of convolutional networks. Multiple CNNs at level 1 deal with aspect mapping task, and a single CNN at level 2 deals with sentiment classification. Multitask CNN also contains multiple aspect CNNs and a sentiment CNN, but different networks share the same word embeddings. Experimental results indicate that both cascaded and multitask CNNs outperform SVM-based methods by large margins. Multitask CNN generally performs better than cascaded CNN.
Haibing Wu, Yiwei Gu, Shangdi Sun and Xiaodong Gu
null
1511.09128
null
null
Proximal gradient method for huberized support vector machine
stat.ML cs.LG cs.NA math.NA
The Support Vector Machine (SVM) has been used in a wide variety of classification problems. The original SVM uses the hinge loss function, which is non-differentiable and makes the problem difficult to solve in particular for regularized SVMs, such as with $\ell_1$-regularization. This paper considers the Huberized SVM (HSVM), which uses a differentiable approximation of the hinge loss function. We first explore the use of the Proximal Gradient (PG) method to solving binary-class HSVM (B-HSVM) and then generalize it to multi-class HSVM (M-HSVM). Under strong convexity assumptions, we show that our algorithm converges linearly. In addition, we give a finite convergence result about the support of the solution, based on which we further accelerate the algorithm by a two-stage method. We present extensive numerical experiments on both synthetic and real datasets which demonstrate the superiority of our methods over some state-of-the-art methods for both binary- and multi-class SVMs.
Yangyang Xu, Ioannis Akrotirianakis, Amit Chakraborty
10.1007/s10044-015-0485-z
1511.09159
null
null
Asynchronous adaptive networks
math.OC cs.LG cs.MA
In a recent article [1] we surveyed advances related to adaptation, learning, and optimization over synchronous networks. Various distributed strategies were discussed that enable a collection of networked agents to interact locally in response to streaming data and to continually learn and adapt to track drifts in the data and models. Under reasonable technical conditions on the data, the adaptive networks were shown to be mean-square stable in the slow adaptation regime, and their mean-square-error performance and convergence rate were characterized in terms of the network topology and data statistical moments [2]. Classical results for single-agent adaptation and learning were recovered as special cases. Following the works [3]-[5], this chapter complements the exposition from [1] and extends the results to asynchronous networks. The operation of this class of networks can be subject to various sources of uncertainties that influence their dynamic behavior, including randomly changing topologies, random link failures, random data arrival times, and agents turning on and off randomly. In an asynchronous environment, agents may stop updating their solutions or may stop sending or receiving information in a random manner and without coordination with other agents. The presentation will reveal that the mean-square-error performance of asynchronous networks remains largely unaltered compared to synchronous networks. The results justify the remarkable resilience of cooperative networks in the face of random events.
Ali H. Sayed and Xiaochuan Zhao
null
1511.09180
null
null
Non-adaptive Group Testing on Graphs
cs.DS cs.LG
Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma.
Hamid Kameli
10.23638/DMTCS-20-1-9
1511.09196
null
null
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models
cs.AI cs.LG cs.NE
This paper addresses the general problem of reinforcement learning (RL) in partially observable environments. In 2013, our large RL recurrent neural networks (RNNs) learned from scratch to drive simulated cars from high-dimensional video input. However, real brains are more powerful in many ways. In particular, they learn a predictive model of their initially unknown environment, and somehow use it for abstract (e.g., hierarchical) planning and reasoning. Guided by algorithmic information theory, we describe RNN-based AIs (RNNAIs) designed to do the same. Such an RNNAI can be trained on never-ending sequences of tasks, some of them provided by the user, others invented by the RNNAI itself in a curious, playful fashion, to improve its RNN-based world model. Unlike our previous model-building RNN-based RL machines dating back to 1990, the RNNAI learns to actively query its model for abstract reasoning and planning and decision making, essentially "learning to think." The basic ideas of this report can be applied to many other cases where one RNN-like system exploits the algorithmic information content of another. They are taken from a grant proposal submitted in Fall 2014, and also explain concepts such as "mirror neurons." Experimental results will be described in separate papers.
Juergen Schmidhuber
null
1511.09249
null
null
Scalable and Accurate Online Feature Selection for Big Data
cs.LG
Feature selection is important in many big data applications. Two critical challenges closely associate with big data. Firstly, in many big data applications, the dimensionality is extremely high, in millions, and keeps growing. Secondly, big data applications call for highly scalable feature selection algorithms in an online manner such that each feature can be processed in a sequential scan. We present SAOLA, a Scalable and Accurate OnLine Approach for feature selection in this paper. With a theoretical analysis on bounds of the pairwise correlations between features, SAOLA employs novel pairwise comparison techniques and maintain a parsimonious model over time in an online manner. Furthermore, to deal with upcoming features that arrive by groups, we extend the SAOLA algorithm, and then propose a new group-SAOLA algorithm for online group feature selection. The group-SAOLA algorithm can online maintain a set of feature groups that is sparse at the levels of both groups and individual features simultaneously. An empirical study using a series of benchmark real data sets shows that our two algorithms, SAOLA and group-SAOLA, are scalable on data sets of extremely high dimensionality, and have superior performance over the state-of-the-art feature selection methods.
Kui Yu, Xindong Wu, Wei Ding, and Jian Pei
null
1511.09263
null
null
Cost-aware Pre-training for Multiclass Cost-sensitive Deep Learning
cs.LG cs.NE
Deep learning has been one of the most prominent machine learning techniques nowadays, being the state-of-the-art on a broad range of applications where automatic feature extraction is needed. Many such applications also demand varying costs for different types of mis-classification errors, but it is not clear whether or how such cost information can be incorporated into deep learning to improve performance. In this work, we propose a novel cost-aware algorithm that takes into account the cost information into not only the training stage but also the pre-training stage of deep learning. The approach allows deep learning to conduct automatic feature extraction with the cost information effectively. Extensive experimental results demonstrate that the proposed approach outperforms other deep learning models that do not digest the cost information in the pre-training stage.
Yu-An Chung, Hsuan-Tien Lin, Shao-Wen Yang
null
1511.09337
null
null
k-Nearest Neighbour Classification of Datasets with a Family of Distances
stat.ML cs.LG
The $k$-nearest neighbour ($k$-NN) classifier is one of the oldest and most important supervised learning algorithms for classifying datasets. Traditionally the Euclidean norm is used as the distance for the $k$-NN classifier. In this thesis we investigate the use of alternative distances for the $k$-NN classifier. We start by introducing some background notions in statistical machine learning. We define the $k$-NN classifier and discuss Stone's theorem and the proof that $k$-NN is universally consistent on the normed space $R^d$. We then prove that $k$-NN is universally consistent if we take a sequence of random norms (that are independent of the sample and the query) from a family of norms that satisfies a particular boundedness condition. We extend this result by replacing norms with distances based on uniformly locally Lipschitz functions that satisfy certain conditions. We discuss the limitations of Stone's lemma and Stone's theorem, particularly with respect to quasinorms and adaptively choosing a distance for $k$-NN based on the labelled sample. We show the universal consistency of a two stage $k$-NN type classifier where we select the distance adaptively based on a split labelled sample and the query. We conclude by giving some examples of improvements of the accuracy of classifying various datasets using the above techniques.
Stan Hatko
null
1512.00001
null
null
Decoding Hidden Markov Models Faster Than Viterbi Via Online Matrix-Vector (max, +)-Multiplication
cs.LG cs.DS cs.IT math.IT
In this paper, we present a novel algorithm for the maximum a posteriori decoding (MAPD) of time-homogeneous Hidden Markov Models (HMM), improving the worst-case running time of the classical Viterbi algorithm by a logarithmic factor. In our approach, we interpret the Viterbi algorithm as a repeated computation of matrix-vector $(\max, +)$-multiplications. On time-homogeneous HMMs, this computation is online: a matrix, known in advance, has to be multiplied with several vectors revealed one at a time. Our main contribution is an algorithm solving this version of matrix-vector $(\max,+)$-multiplication in subquadratic time, by performing a polynomial preprocessing of the matrix. Employing this fast multiplication algorithm, we solve the MAPD problem in $O(mn^2/ \log n)$ time for any time-homogeneous HMM of size $n$ and observation sequence of length $m$, with an extra polynomial preprocessing cost negligible for $m > n$. To the best of our knowledge, this is the first algorithm for the MAPD problem requiring subquadratic time per observation, under the only assumption -- usually verified in practice -- that the transition probability matrix does not change with time.
Massimo Cairo, Gabriele Farina, Romeo Rizzi
null
1512.00077
null
null
Learning Using 1-Local Membership Queries
cs.LG cs.AI
Classic machine learning algorithms learn from labelled examples. For example, to design a machine translation system, a typical training set will consist of English sentences and their translation. There is a stronger model, in which the algorithm can also query for labels of new examples it creates. E.g, in the translation task, the algorithm can create a new English sentence, and request its translation from the user during training. This combination of examples and queries has been widely studied. Yet, despite many theoretical results, query algorithms are almost never used. One of the main causes for this is a report (Baum and Lang, 1992) on very disappointing empirical performance of a query algorithm. These poor results were mainly attributed to the fact that the algorithm queried for labels of examples that are artificial, and impossible to interpret by humans. In this work we study a new model of local membership queries (Awasthi et al., 2012), which tries to resolve the problem of artificial queries. In this model, the algorithm is only allowed to query the labels of examples which are close to examples from the training set. E.g., in translation, the algorithm can change individual words in a sentence it has already seen, and then ask for the translation. In this model, the examples queried by the algorithm will be close to natural examples and hence, hopefully, will not appear as artificial or random. We focus on 1-local queries (i.e., queries of distance 1 from an example in the training sample). We show that 1-local membership queries are already stronger than the standard learning model. We also present an experiment on a well known NLP task of sentiment analysis. In this experiment, the users were asked to provide more information than merely indicating the label. We present results that illustrate that this extra information is beneficial in practice.
Galit Bary
null
1512.00165
null
null
MOCICE-BCubed F$_1$: A New Evaluation Measure for Biclustering Algorithms
cs.LG cs.IR
The validation of biclustering algorithms remains a challenging task, even though a number of measures have been proposed for evaluating the quality of these algorithms. Although no criterion is universally accepted as the overall best, a number of meta-evaluation conditions to be satisfied by biclustering algorithms have been enunciated. In this work, we present MOCICE-BCubed F$_1$, a new external measure for evaluating biclusterings, in the scenario where gold standard annotations are available for both the object clusters and the associated feature subspaces. Our proposal relies on the so-called micro-objects transformation and satisfies the most comprehensive set of meta-evaluation conditions so far enunciated for biclusterings. Additionally, the proposed measure adequately handles the occurrence of overlapping in both the object and feature spaces. Moreover, when used for evaluating traditional clusterings, which are viewed as a particular case of biclustering, the proposed measure also satisfies the most comprehensive set of meta-evaluation conditions so far enunciated for this task.
Henry Rosales-M\'endez, Yunior Ram\'irez-Cruz
10.1016/j.patrec.2016.09.002
1512.00228
null
null
Towards Dropout Training for Convolutional Neural Networks
cs.LG cs.CV cs.NE
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.
Haibing Wu and Xiaodong Gu
10.1016/j.neunet.2015.07.007
1512.00242
null
null
Sequential visibility-graph motifs
physics.data-an cs.LG nlin.CD
Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.
Jacopo Iacovacci, Lucas Lacasa
10.1103/PhysRevE.93.042309
1512.00297
null
null
Taxonomy grounded aggregation of classifiers with different label sets
cs.AI cs.LG
We describe the problem of aggregating the label predictions of diverse classifiers using a class taxonomy. Such a taxonomy may not have been available or referenced when the individual classifiers were designed and trained, yet mapping the output labels into the taxonomy is desirable to integrate the effort spent in training the constituent classifiers. A hierarchical taxonomy representing some domain knowledge may be different from, but partially mappable to, the label sets of the individual classifiers. We present a heuristic approach and a principled graphical model to aggregate the label predictions by grounding them into the available taxonomy. Our model aggregates the labels using the taxonomy structure as constraints to find the most likely hierarchically consistent class. We experimentally validate our proposed method on image and text classification tasks.
Amrita Saha, Sathish Indurthi, Shantanu Godbole, Subendhu Rongali and Vikas C. Raykar
null
1512.00355
null
null
Reinforcement Learning Applied to an Electric Water Heater: From Theory to Practice
cs.LG
Electric water heaters have the ability to store energy in their water buffer without impacting the comfort of the end user. This feature makes them a prime candidate for residential demand response. However, the stochastic and nonlinear dynamics of electric water heaters, makes it challenging to harness their flexibility. Driven by this challenge, this paper formulates the underlying sequential decision-making problem as a Markov decision process and uses techniques from reinforcement learning. Specifically, we apply an auto-encoder network to find a compact feature representation of the sensor measurements, which helps to mitigate the curse of dimensionality. A wellknown batch reinforcement learning technique, fitted Q-iteration, is used to find a control policy, given this feature representation. In a simulation-based experiment using an electric water heater with 50 temperature sensors, the proposed method was able to achieve good policies much faster than when using the full state information. In a lab experiment, we apply fitted Q-iteration to an electric water heater with eight temperature sensors. Further reducing the state vector did not improve the results of fitted Q-iteration. The results of the lab experiment, spanning 40 days, indicate that compared to a thermostat controller, the presented approach was able to reduce the total cost of energy consumption of the electric water heater by 15%.
Frederik Ruelens, Bert Claessens, Salman Quaiyum, Bart De Schutter, Robert Babuska, and Ronnie Belmans
null
1512.00408
null
null
Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing
cs.DS cs.AI cs.IR cs.LG stat.ML
Existing methods for retrieving k-nearest neighbours suffer from the curse of dimensionality. We argue this is caused in part by inherent deficiencies of space partitioning, which is the underlying strategy used by most existing methods. We devise a new strategy that avoids partitioning the vector space and present a novel randomized algorithm that runs in time linear in dimensionality of the space and sub-linear in the intrinsic dimensionality and the size of the dataset and takes space constant in dimensionality of the space and linear in the size of the dataset. The proposed algorithm allows fine-grained control over accuracy and speed on a per-query basis, automatically adapts to variations in data density, supports dynamic updates to the dataset and is easy-to-implement. We show appealing theoretical properties and demonstrate empirically that the proposed algorithm outperforms locality-sensitivity hashing (LSH) in terms of approximation quality, speed and space efficiency.
Ke Li, Jitendra Malik
null
1512.00442
null
null
Loss Functions for Top-k Error: Analysis and Insights
stat.ML cs.CV cs.LG
In order to push the performance on realistic computer vision tasks, the number of classes in modern benchmark datasets has significantly increased in recent years. This increase in the number of classes comes along with increased ambiguity between the class labels, raising the question if top-1 error is the right performance measure. In this paper, we provide an extensive comparison and evaluation of established multiclass methods comparing their top-k performance both from a practical as well as from a theoretical perspective. Moreover, we introduce novel top-k loss functions as modifications of the softmax and the multiclass SVM losses and provide efficient optimization schemes for them. In the experiments, we compare on various datasets all of the proposed and established methods for top-k error optimization. An interesting insight of this paper is that the softmax loss yields competitive top-k performance for all k simultaneously. For a specific top-k error, our new top-k losses lead typically to further improvements while being faster to train than the softmax.
Maksim Lapin, Matthias Hein, Bernt Schiele
null
1512.00486
null
null
Attribute2Image: Conditional Image Generation from Visual Attributes
cs.LG cs.AI cs.CV
This paper investigates a novel problem of generating images from visual attributes. We model the image as a composite of foreground and background and develop a layered generative model with disentangled latent variables that can be learned end-to-end using a variational auto-encoder. We experiment with natural images of faces and birds and demonstrate that the proposed models are capable of generating realistic and diverse samples with disentangled latent representations. We use a general energy minimization algorithm for posterior inference of latent variables given novel images. Therefore, the learned generative models show excellent quantitative and visual results in the tasks of attribute-conditioned image reconstruction and completion.
Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee
null
1512.00570
null
null
Object-based World Modeling in Semi-Static Environments with Dependent Dirichlet-Process Mixtures
cs.AI cs.LG cs.RO
To accomplish tasks in human-centric indoor environments, robots need to represent and understand the world in terms of objects and their attributes. We refer to this attribute-based representation as a world model, and consider how to acquire it via noisy perception and maintain it over time, as objects are added, changed, and removed in the world. Previous work has framed this as multiple-target tracking problem, where objects are potentially in motion at all times. Although this approach is general, it is computationally expensive. We argue that such generality is not needed in typical world modeling tasks, where objects only change state occasionally. More efficient approaches are enabled by restricting ourselves to such semi-static environments. We consider a previously-proposed clustering-based world modeling approach that assumed static environments, and extend it to semi-static domains by applying a dependent Dirichlet-process (DDP) mixture model. We derive a novel MAP inference algorithm under this model, subject to data association constraints. We demonstrate our approach improves computational performance in semi-static environments.
Lawson L.S. Wong, Thanard Kurutach, Leslie Pack Kaelbling, Tom\'as Lozano-P\'erez
null
1512.00573
null
null
Centroid Based Binary Tree Structured SVM for Multi Classification
cs.LG
Support Vector Machines (SVMs) were primarily designed for 2-class classification. But they have been extended for N-class classification also based on the requirement of multiclasses in the practical applications. Although N-class classification using SVM has considerable research attention, getting minimum number of classifiers at the time of training and testing is still a continuing research. We propose a new algorithm CBTS-SVM (Centroid based Binary Tree Structured SVM) which addresses this issue. In this we build a binary tree of SVM models based on the similarity of the class labels by finding their distance from the corresponding centroids at the root level. The experimental results demonstrates the comparable accuracy for CBTS with OVO with reasonable gamma and cost values. On the other hand when CBTS is compared with OVA, it gives the better accuracy with reduced training time and testing time. Furthermore CBTS is also scalable as it is able to handle the large data sets.
Aruna Govada, Bhavul Gauri and S.K.Sahay
10.1109/ICACCI.2015.7275618
1512.00659
null
null
Recognizing Semantic Features in Faces using Deep Learning
cs.LG cs.AI cs.CV stat.ML
The human face constantly conveys information, both consciously and subconsciously. However, as basic as it is for humans to visually interpret this information, it is quite a big challenge for machines. Conventional semantic facial feature recognition and analysis techniques are already in use and are based on physiological heuristics, but they suffer from lack of robustness and high computation time. This thesis aims to explore ways for machines to learn to interpret semantic information available in faces in an automated manner without requiring manual design of feature detectors, using the approach of Deep Learning. This thesis provides a study of the effects of various factors and hyper-parameters of deep neural networks in the process of determining an optimal network configuration for the task of semantic facial feature recognition. This thesis explores the effectiveness of the system to recognize the various semantic features (like emotions, age, gender, ethnicity etc.) present in faces. Furthermore, the relation between the effect of high-level concepts on low level features is explored through an analysis of the similarities in low-level descriptors of different semantic features. This thesis also demonstrates a novel idea of using a deep network to generate 3-D Active Appearance Models of faces from real-world 2-D images. For a more detailed report on this work, please see [arXiv:1512.00743v1].
Amogh Gudi
null
1512.00743
null
null
Zero-Shot Event Detection by Multimodal Distributional Semantic Embedding of Videos
cs.CV cs.CL cs.LG
We propose a new zero-shot Event Detection method by Multi-modal Distributional Semantic embedding of videos. Our model embeds object and action concepts as well as other available modalities from videos into a distributional semantic space. To our knowledge, this is the first Zero-Shot event detection model that is built on top of distributional semantics and extends it in the following directions: (a) semantic embedding of multimodal information in videos (with focus on the visual modalities), (b) automatically determining relevance of concepts/attributes to a free text query, which could be useful for other applications, and (c) retrieving videos by free text event query (e.g., "changing a vehicle tire") based on their content. We embed videos into a distributional semantic space and then measure the similarity between videos and the event query in a free text form. We validated our method on the large TRECVID MED (Multimedia Event Detection) challenge. Using only the event title as a query, our method outperformed the state-of-the-art that uses big descriptions from 12.6% to 13.5% with MAP metric and 0.73 to 0.83 with ROC-AUC metric. It is also an order of magnitude faster.
Mohamed Elhoseiny, Jingen Liu, Hui Cheng, Harpreet Sawhney, Ahmed Elgammal
null
1512.00818
null
null
Protein secondary structure prediction using deep convolutional neural fields
q-bio.BM cs.LG q-bio.QM
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Sheng Wang, Jian Peng, Jianzhu Ma and Jinbo Xu
null
1512.00843
null
null
Innovation Pursuit: A New Approach to Subspace Clustering
cs.CV cs.IR cs.IT cs.LG math.IT stat.ML
In subspace clustering, a group of data points belonging to a union of subspaces are assigned membership to their respective subspaces. This paper presents a new approach dubbed Innovation Pursuit (iPursuit) to the problem of subspace clustering using a new geometrical idea whereby subspaces are identified based on their relative novelties. We present two frameworks in which the idea of innovation pursuit is used to distinguish the subspaces. Underlying the first framework is an iterative method that finds the subspaces consecutively by solving a series of simple linear optimization problems, each searching for a direction of innovation in the span of the data potentially orthogonal to all subspaces except for the one to be identified in one step of the algorithm. A detailed mathematical analysis is provided establishing sufficient conditions for iPursuit to correctly cluster the data. The proposed approach can provably yield exact clustering even when the subspaces have significant intersections. It is shown that the complexity of the iterative approach scales only linearly in the number of data points and subspaces, and quadratically in the dimension of the subspaces. The second framework integrates iPursuit with spectral clustering to yield a new variant of spectral-clustering-based algorithms. The numerical simulations with both real and synthetic data demonstrate that iPursuit can often outperform the state-of-the-art subspace clustering algorithms, more so for subspaces with significant intersections, and that it significantly improves the state-of-the-art result for subspace-segmentation-based face clustering.
Mostafa Rahmani, George Atia
10.1109/TSP.2017.2749206
1512.00907
null
null
Neural Enquirer: Learning to Query Tables with Natural Language
cs.AI cs.CL cs.LG cs.NE
We proposed Neural Enquirer as a neural network architecture to execute a natural language (NL) query on a knowledge-base (KB) for answers. Basically, Neural Enquirer finds the distributed representation of a query and then executes it on knowledge-base tables to obtain the answer as one of the values in the tables. Unlike similar efforts in end-to-end training of semantic parsers, Neural Enquirer is fully "neuralized": it not only gives distributional representation of the query and the knowledge-base, but also realizes the execution of compositional queries as a series of differentiable operations, with intermediate results (consisting of annotations of the tables at different levels) saved on multiple layers of memory. Neural Enquirer can be trained with gradient descent, with which not only the parameters of the controlling components and semantic parsing component, but also the embeddings of the tables and query words can be learned from scratch. The training can be done in an end-to-end fashion, but it can take stronger guidance, e.g., the step-by-step supervision for complicated queries, and benefit from it. Neural Enquirer is one step towards building neural network systems which seek to understand language by executing it on real-world. Our experiments show that Neural Enquirer can learn to execute fairly complicated NL queries on tables with rich structures.
Pengcheng Yin, Zhengdong Lu, Hang Li, Ben Kao
null
1512.00965
null
null
Fast Low-Rank Matrix Learning with Nonconvex Regularization
cs.NA cs.LG stat.ML
Low-rank modeling has a lot of important applications in machine learning, computer vision and social network analysis. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better recovery performance. However, the resultant optimization problem is much more challenging. A very recent state-of-the-art is based on the proximal gradient algorithm. However, it requires an expensive full SVD in each proximal step. In this paper, we show that for many commonly-used nonconvex low-rank regularizers, a cutoff can be derived to automatically threshold the singular values obtained from the proximal operator. This allows the use of power method to approximate the SVD efficiently. Besides, the proximal operator can be reduced to that of a much smaller matrix projected onto this leading subspace. Convergence, with a rate of O(1/T) where T is the number of iterations, can be guaranteed. Extensive experiments are performed on matrix completion and robust principal component analysis. The proposed method achieves significant speedup over the state-of-the-art. Moreover, the matrix solution obtained is more accurate and has a lower rank than that of the traditional nuclear norm regularizer.
Quanming Yao, James T. Kwok, Wenliang Zhong
null
1512.00984
null
null
Bag Reference Vector for Multi-instance Learning
stat.ML cs.LG
Multi-instance learning (MIL) has a wide range of applications due to its distinctive characteristics. Although many state-of-the-art algorithms have achieved decent performances, a plurality of existing methods solve the problem only in instance level rather than excavating relations among bags. In this paper, we propose an efficient algorithm to describe each bag by a corresponding feature vector via comparing it with other bags. In other words, the crucial information of a bag is extracted from the similarity between that bag and other reference bags. In addition, we apply extensions of Hausdorff distance to representing the similarity, to a certain extent, overcoming the key challenge of MIL problem, the ambiguity of instances' labels in positive bags. Experimental results on benchmarks and text categorization tasks show that the proposed method outperforms the previous state-of-the-art by a large margin.
Hanqiang Song and Zhuotun Zhu and Xinggang Wang
null
1512.00994
null
null
Bayesian Matrix Completion via Adaptive Relaxed Spectral Regularization
cs.NA cs.AI cs.LG
Bayesian matrix completion has been studied based on a low-rank matrix factorization formulation with promising results. However, little work has been done on Bayesian matrix completion based on the more direct spectral regularization formulation. We fill this gap by presenting a novel Bayesian matrix completion method based on spectral regularization. In order to circumvent the difficulties of dealing with the orthonormality constraints of singular vectors, we derive a new equivalent form with relaxed constraints, which then leads us to design an adaptive version of spectral regularization feasible for Bayesian inference. Our Bayesian method requires no parameter tuning and can infer the number of latent factors automatically. Experiments on synthetic and real datasets demonstrate encouraging results on rank recovery and collaborative filtering, with notably good results for very sparse matrices.
Yang Song, Jun Zhu
null
1512.01110
null
null
Deep Reinforcement Learning with Attention for Slate Markov Decision Processes with High-Dimensional States and Actions
cs.AI cs.HC cs.LG
Many real-world problems come with action spaces represented as feature vectors. Although high-dimensional control is a largely unsolved problem, there has recently been progress for modest dimensionalities. Here we report on a successful attempt at addressing problems of dimensionality as high as $2000$, of a particular form. Motivated by important applications such as recommendation systems that do not fit the standard reinforcement learning frameworks, we introduce Slate Markov Decision Processes (slate-MDPs). A Slate-MDP is an MDP with a combinatorial action space consisting of slates (tuples) of primitive actions of which one is executed in an underlying MDP. The agent does not control the choice of this executed action and the action might not even be from the slate, e.g., for recommendation systems for which all recommendations can be ignored. We use deep Q-learning based on feature representations of both the state and action to learn the value of whole slates. Unlike existing methods, we optimize for both the combinatorial and sequential aspects of our tasks. The new agent's superiority over agents that either ignore the combinatorial or sequential long-term value aspect is demonstrated on a range of environments with dynamics from a real-world recommendation system. Further, we use deep deterministic policy gradients to learn a policy that for each position of the slate, guides attention towards the part of the action space in which the value is the highest and we only evaluate actions in this area. The attention is used within a sequentially greedy procedure leveraging submodularity. Finally, we show how introducing risk-seeking can dramatically improve the agents performance and ability to discover more far reaching strategies.
Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin and Ben Coppin
null
1512.01124
null
null
Building Memory with Concept Learning Capabilities from Large-scale Knowledge Base
cs.CL cs.AI cs.LG
We present a new perspective on neural knowledge base (KB) embeddings, from which we build a framework that can model symbolic knowledge in the KB together with its learning process. We show that this framework well regularizes previous neural KB embedding model for superior performance in reasoning tasks, while having the capabilities of dealing with unseen entities, that is, to learn their embeddings from natural language descriptions, which is very like human's behavior of learning semantic concepts.
Jiaxin Shi, Jun Zhu
null
1512.01173
null
null
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
cs.DC cs.LG cs.MS cs.NE
MXNet is a multi-language machine learning (ML) library to ease the development of ML algorithms, especially for deep neural networks. Embedded in the host language, it blends declarative symbolic expression with imperative tensor computation. It offers auto differentiation to derive gradients. MXNet is computation and memory efficient and runs on various heterogeneous systems, ranging from mobile devices to distributed GPU clusters. This paper describes both the API design and the system implementation of MXNet, and explains how embedding of both symbolic expression and tensor operation is handled in a unified fashion. Our preliminary experiments reveal promising results on large scale deep neural network applications using multiple GPU machines.
Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang and Zheng Zhang
null
1512.01274
null
null
Predicting the top and bottom ranks of billboard songs using Machine Learning
cs.CL cs.LG
The music industry is a $130 billion industry. Predicting whether a song catches the pulse of the audience impacts the industry. In this paper we analyze language inside the lyrics of the songs using several computational linguistic algorithms and predict whether a song would make to the top or bottom of the billboard rankings based on the language features. We trained and tested an SVM classifier with a radial kernel function on the linguistic features. Results indicate that we can classify whether a song belongs to top and bottom of the billboard charts with a precision of 0.76.
Vivek Datla and Abhinav Vishnu
null
1512.01283
null
null
Predicting and visualizing psychological attributions with a deep neural network
cs.CV cs.LG cs.NE
Judgments about personality based on facial appearance are strong effectors in social decision making, and are known to have impact on areas from presidential elections to jury decisions. Recent work has shown that it is possible to predict perception of memorability, trustworthiness, intelligence and other attributes in human face images. The most successful of these approaches require face images expertly annotated with key facial landmarks. We demonstrate a Convolutional Neural Network (CNN) model that is able to perform the same task without the need for landmark features, thereby greatly increasing efficiency. The model has high accuracy, surpassing human-level performance in some cases. Furthermore, we use a deconvolutional approach to visualize important features for perception of 22 attributes and demonstrate a new method for separately visualizing positive and negative features.
Edward Grant, Stephan Sahm, Mariam Zabihi, Marcel van Gerven
null
1512.01289
null
null
Fixed-Point Performance Analysis of Recurrent Neural Networks
cs.LG cs.NE
Recurrent neural networks have shown excellent performance in many applications, however they require increased complexity in hardware or software based implementations. The hardware complexity can be much lowered by minimizing the word-length of weights and signals. This work analyzes the fixed-point performance of recurrent neural networks using a retrain based quantization method. The quantization sensitivity of each layer in RNNs is studied, and the overall fixed-point optimization results minimizing the capacity of weights while not sacrificing the performance are presented. A language model and a phoneme recognition examples are used.
Sungho Shin, Kyuyeon Hwang, and Wonyong Sung
10.1109/MSP.2015.2411564
1512.01322
null
null
Toward a Taxonomy and Computational Models of Abnormalities in Images
cs.CV cs.AI cs.HC cs.IT cs.LG math.IT
The human visual system can spot an abnormal image, and reason about what makes it strange. This task has not received enough attention in computer vision. In this paper we study various types of atypicalities in images in a more comprehensive way than has been done before. We propose a new dataset of abnormal images showing a wide range of atypicalities. We design human subject experiments to discover a coarse taxonomy of the reasons for abnormality. Our experiments reveal three major categories of abnormality: object-centric, scene-centric, and contextual. Based on this taxonomy, we propose a comprehensive computational model that can predict all different types of abnormality in images and outperform prior arts in abnormality recognition.
Babak Saleh, Ahmed Elgammal, Jacob Feldman, Ali Farhadi
null
1512.01325
null
null
Q-Networks for Binary Vector Actions
cs.NE cs.LG
In this paper reinforcement learning with binary vector actions was investigated. We suggest an effective architecture of the neural networks for approximating an action-value function with binary vector actions. The proposed architecture approximates the action-value function by a linear function with respect to the action vector, but is still non-linear with respect to the state input. We show that this approximation method enables the efficient calculation of greedy action selection and softmax action selection. Using this architecture, we suggest an online algorithm based on Q-learning. The empirical results in the grid world and the blocker task suggest that our approximation architecture would be effective for the RL problems with large discrete action sets.
Naoto Yoshida
null
1512.01332
null
null
Proposition of a Theoretical Model for Missing Data Imputation using Deep Learning and Evolutionary Algorithms
cs.NE cs.LG
In the last couple of decades, there has been major advancements in the domain of missing data imputation. The techniques in the domain include amongst others: Expectation Maximization, Neural Networks with Evolutionary Algorithms or optimization techniques and K-Nearest Neighbor approaches to solve the problem. The presence of missing data entries in databases render the tasks of decision-making and data analysis nontrivial. As a result this area has attracted a lot of research interest with the aim being to yield accurate and time efficient and sensitive missing data imputation techniques especially when time sensitive applications are concerned like power plants and winding processes. In this article, considering arbitrary and monotone missing data patterns, we hypothesize that the use of deep neural networks built using autoencoders and denoising autoencoders in conjunction with genetic algorithms, swarm intelligence and maximum likelihood estimator methods as novel data imputation techniques will lead to better imputed values than existing techniques. Also considered are the missing at random, missing completely at random and missing not at random missing data mechanisms. We also intend to use fuzzy logic in tandem with deep neural networks to perform the missing data imputation tasks, as well as different building blocks for the deep neural networks like Stacked Restricted Boltzmann Machines and Deep Belief Networks to test our hypothesis. The motivation behind this article is the need for missing data imputation techniques that lead to better imputed values than existing methods with higher accuracies and lower errors.
Collins Leke, Tshilidzi Marwala and Satyakama Paul
null
1512.01362
null
null
Max-Pooling Dropout for Regularization of Convolutional Neural Networks
cs.LG cs.CV cs.NE
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.
Haibing Wu and Xiaodong Gu
null
1512.01400
null
null
State of the Art Control of Atari Games Using Shallow Reinforcement Learning
cs.LG
The recently introduced Deep Q-Networks (DQN) algorithm has gained attention as one of the first successful combinations of deep neural networks and reinforcement learning. Its promise was demonstrated in the Arcade Learning Environment (ALE), a challenging framework composed of dozens of Atari 2600 games used to evaluate general competency in AI. It achieved dramatically better results than earlier approaches, showing that its ability to learn good representations is quite robust and general. This paper attempts to understand the principles that underlie DQN's impressive performance and to better contextualize its success. We systematically evaluate the importance of key representational biases encoded by DQN's network by proposing simple linear representations that make use of these concepts. Incorporating these characteristics, we obtain a computationally practical feature set that achieves competitive performance to DQN in the ALE. Besides offering insight into the strengths and weaknesses of DQN, we provide a generic representation for the ALE, significantly reducing the burden of learning a representation for each game. Moreover, we also provide a simple, reproducible benchmark for the sake of comparison to future work in the ALE.
Yitao Liang, Marlos C. Machado, Erik Talvitie, Michael Bowling
null
1512.01563
null
null
Hybrid Approach for Inductive Semi Supervised Learning using Label Propagation and Support Vector Machine
cs.LG cs.DC
Semi supervised learning methods have gained importance in today's world because of large expenses and time involved in labeling the unlabeled data by human experts. The proposed hybrid approach uses SVM and Label Propagation to label the unlabeled data. In the process, at each step SVM is trained to minimize the error and thus improve the prediction quality. Experiments are conducted by using SVM and logistic regression(Logreg). Results prove that SVM performs tremendously better than Logreg. The approach is tested using 12 datasets of different sizes ranging from the order of 1000s to the order of 10000s. Results show that the proposed approach outperforms Label Propagation by a large margin with F-measure of almost twice on average. The parallel version of the proposed approach is also designed and implemented, the analysis shows that the training time decreases significantly when parallel version is used.
Aruna Govada, Pravin Joshi, Sahil Mittal and Sanjay K Sahay
10.1007/978-3-319-21024-7_14
1512.01568
null
null
Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text
cs.CL cs.AI cs.IR cs.IT cs.LG math.IT
We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.
Sahil Garg, Aram Galstyan, Ulf Hermjakob, and Daniel Marcu
null
1512.01587
null
null
Creation of a Deep Convolutional Auto-Encoder in Caffe
cs.NE cs.CV cs.LG
The development of a deep (stacked) convolutional auto-encoder in the Caffe deep learning framework is presented in this paper. We describe simple principles which we used to create this model in Caffe. The proposed model of convolutional auto-encoder does not have pooling/unpooling layers yet. The results of our experimental research show comparable accuracy of dimensionality reduction in comparison with a classic auto-encoder on the example of MNIST dataset.
Volodymyr Turchenko, Artur Luczak
null
1512.01596
null
null
Risk-Constrained Reinforcement Learning with Percentile Risk Criteria
cs.AI cs.LG math.OC
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account \emph{risk}, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective of this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumulative cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically, we first derive a formula for computing the gradient of the Lagrangian function for percentile risk-constrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Finally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an online marketing application.
Yinlam Chow and Mohammad Ghavamzadeh and Lucas Janson and Marco Pavone
null
1512.01629
null
null
Approximated and User Steerable tSNE for Progressive Visual Analytics
cs.CV cs.LG
Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of several high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis.
Nicola Pezzotti, Boudewijn P.F. Lelieveldt, Laurens van der Maaten, Thomas H\"ollt, Elmar Eisemann, and Anna Vilanova
null
1512.01655
null
null
Deep Attention Recurrent Q-Network
cs.LG
A deep learning approach to reinforcement learning led to a general learner able to train on visual input to play a variety of arcade games at the human and superhuman levels. Its creators at the Google DeepMind's team called the approach: Deep Q-Network (DQN). We present an extension of DQN by "soft" and "hard" attention mechanisms. Tests of the proposed Deep Attention Recurrent Q-Network (DARQN) algorithm on multiple Atari 2600 games show level of performance superior to that of DQN. Moreover, built-in attention mechanisms allow a direct online monitoring of the training process by highlighting the regions of the game screen the agent is focusing on when making decisions.
Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva
null
1512.01693
null
null
Variance Reduction for Distributed Stochastic Gradient Descent
cs.LG cs.DC math.OC stat.ML
Variance reduction (VR) methods boost the performance of stochastic gradient descent (SGD) by enabling the use of larger, constant stepsizes and preserving linear convergence rates. However, current variance reduced SGD methods require either high memory usage or an exact gradient computation (using the entire dataset) at the end of each epoch. This limits the use of VR methods in practical distributed settings. In this paper, we propose a variance reduction method, called VR-lite, that does not require full gradient computations or extra storage. We explore distributed synchronous and asynchronous variants that are scalable and remain stable with low communication frequency. We empirically compare both the sequential and distributed algorithms to state-of-the-art stochastic optimization methods, and find that our proposed algorithms perform favorably to other stochastic methods.
Soham De, Gavin Taylor, Tom Goldstein
null
1512.01708
null
null
Generating News Headlines with Recurrent Neural Networks
cs.CL cs.LG cs.NE
We describe an application of an encoder-decoder recurrent neural network with LSTM units and attention to generating headlines from the text of news articles. We find that the model is quite effective at concisely paraphrasing news articles. Furthermore, we study how the neural network decides which input words to pay attention to, and specifically we identify the function of the different neurons in a simplified attention mechanism. Interestingly, our simplified attention mechanism performs better that the more complex attention mechanism on a held out set of articles.
Konstantin Lopyrev
null
1512.01712
null
null
Similarity Learning via Adaptive Regression and Its Application to Image Retrieval
cs.LG
We study the problem of similarity learning and its application to image retrieval with large-scale data. The similarity between pairs of images can be measured by the distances between their high dimensional representations, and the problem of learning the appropriate similarity is often addressed by distance metric learning. However, distance metric learning requires the learned metric to be a PSD matrix, which is computational expensive and not necessary for retrieval ranking problem. On the other hand, the bilinear model is shown to be more flexible for large-scale image retrieval task, hence, we adopt it to learn a matrix for estimating pairwise similarities under the regression framework. By adaptively updating the target matrix in regression, we can mimic the hinge loss, which is more appropriate for similarity learning problem. Although the regression problem can have the closed-form solution, the computational cost can be very expensive. The computational challenges come from two aspects: the number of images can be very large and image features have high dimensionality. We address the first challenge by compressing the data by a randomized algorithm with the theoretical guarantee. For the high dimensional issue, we address it by taking low rank assumption and applying alternating method to obtain the partial matrix, which has a global optimal solution. Empirical studies on real world image datasets (i.e., Caltech and ImageNet) demonstrate the effectiveness and efficiency of the proposed method.
Qi Qian, Inci M. Baytas, Rong Jin, Anil Jain and Shenghuo Zhu
null
1512.01728
null
null
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
cs.LG cs.AI
Traditional graph-based semi-supervised learning (SSL) approaches, even though widely applied, are not suited for massive data and large label scenarios since they scale linearly with the number of edges $|E|$ and distinct labels $m$. To deal with the large label size problem, recent works propose sketch-based methods to approximate the distribution on labels per node thereby achieving a space reduction from $O(m)$ to $O(\log m)$, under certain conditions. In this paper, we present a novel streaming graph-based SSL approximation that captures the sparsity of the label distribution and ensures the algorithm propagates labels accurately, and further reduces the space complexity per node to $O(1)$. We also provide a distributed version of the algorithm that scales well to large data sizes. Experiments on real-world datasets demonstrate that the new method achieves better performance than existing state-of-the-art algorithms with significant reduction in memory footprint. We also study different graph construction mechanisms for natural language applications and propose a robust graph augmentation strategy trained using state-of-the-art unsupervised deep learning architectures that yields further significant quality gains.
Sujith Ravi, Qiming Diao
null
1512.01752
null
null
Explaining reviews and ratings with PACO: Poisson Additive Co-Clustering
cs.LG stat.ML
Understanding a user's motivations provides valuable information beyond the ability to recommend items. Quite often this can be accomplished by perusing both ratings and review texts, since it is the latter where the reasoning for specific preferences is explicitly expressed. Unfortunately matrix factorization approaches to recommendation result in large, complex models that are difficult to interpret and give recommendations that are hard to clearly explain to users. In contrast, in this paper, we attack this problem through succinct additive co-clustering. We devise a novel Bayesian technique for summing co-clusterings of Poisson distributions. With this novel technique we propose a new Bayesian model for joint collaborative filtering of ratings and text reviews through a sum of simple co-clusterings. The simple structure of our model yields easily interpretable recommendations. Even with a simple, succinct structure, our model outperforms competitors in terms of predicting ratings with reviews.
Chao-Yuan Wu, Alex Beutel, Amr Ahmed, Alexander J. Smola
null
1512.01845
null
null
Rademacher Complexity of the Restricted Boltzmann Machine
cs.LG
Boltzmann machine, as a fundamental construction block of deep belief network and deep Boltzmann machines, is widely used in deep learning community and great success has been achieved. However, theoretical understanding of many aspects of it is still far from clear. In this paper, we studied the Rademacher complexity of both the asymptotic restricted Boltzmann machine and the practical implementation with single-step contrastive divergence (CD-1) procedure. Our results disclose the fact that practical implementation training procedure indeed increased the Rademacher complexity of restricted Boltzmann machines. A further research direction might be the investigation of the VC dimension of a compositional function used in the CD-1 procedure.
Xiao Zhang
null
1512.01914
null
null
Thinking Required
cs.LG cs.AI cs.CL
There exists a theory of a single general-purpose learning algorithm which could explain the principles its operation. It assumes the initial rough architecture, a small library of simple innate circuits which are prewired at birth. and proposes that all significant mental algorithms are learned. Given current understanding and observations, this paper reviews and lists the ingredients of such an algorithm from architectural and functional perspectives.
Kamil Rocki
null
1512.01926
null
null
Fast Optimization Algorithm on Riemannian Manifolds and Its Application in Low-Rank Representation
cs.NA cs.CV cs.LG
The paper addresses the problem of optimizing a class of composite functions on Riemannian manifolds and a new first order optimization algorithm (FOA) with a fast convergence rate is proposed. Through the theoretical analysis for FOA, it has been proved that the algorithm has quadratic convergence. The experiments in the matrix completion task show that FOA has better performance than other first order optimization methods on Riemannian manifolds. A fast subspace pursuit method based on FOA is proposed to solve the low-rank representation model based on augmented Lagrange method on the low rank matrix variety. Experimental results on synthetic and real data sets are presented to demonstrate that both FOA and SP-RPRG(ALM) can achieve superior performance in terms of faster convergence and higher accuracy.
Haoran Chen and Yanfeng Sun and Junbin Gao and Yongli Hu
null
1512.01927
null
null
A Novel Approach to Distributed Multi-Class SVM
cs.LG cs.DC
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research proposes a novel algorithm that implements the Support Vector Machine over a multi-class dataset and is efficient in a distributed environment (here, Hadoop). The idea is to divide the dataset into half recursively and thus compute the optimal Support Vector Machine for this half during the training phase, much like a divide and conquer approach. While testing, this structure has been effectively exploited to significantly reduce the prediction time. Our algorithm has shown better computation time during the prediction phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the dataset grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.
Aruna Govada, Shree Ranjani, Aditi Viswanathan and S.K.Sahay
10.14738/tmlai.25.562
1512.01993
null
null
Jointly Modeling Topics and Intents with Global Order Structure
cs.CL cs.IR cs.LG
Modeling document structure is of great importance for discourse analysis and related applications. The goal of this research is to capture the document intent structure by modeling documents as a mixture of topic words and rhetorical words. While the topics are relatively unchanged through one document, the rhetorical functions of sentences usually change following certain orders in discourse. We propose GMM-LDA, a topic modeling based Bayesian unsupervised model, to analyze the document intent structure cooperated with order information. Our model is flexible that has the ability to combine the annotations and do supervised learning. Additionally, entropic regularization can be introduced to model the significant divergence between topics and intents. We perform experiments in both unsupervised and supervised settings, results show the superiority of our model over several state-of-the-art baselines.
Bei Chen, Jun Zhu, Nan Yang, Tian Tian, Ming Zhou, Bo Zhang
null
1512.02009
null
null
How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies
cs.LG cs.AI
Using deep neural nets as function approximator for reinforcement learning tasks have recently been shown to be very powerful for solving problems approaching real-world complexity. Using these results as a benchmark, we discuss the role that the discount factor may play in the quality of the learning process of a deep Q-network (DQN). When the discount factor progressively increases up to its final value, we empirically show that it is possible to significantly reduce the number of learning steps. When used in conjunction with a varying learning rate, we empirically show that it outperforms original DQN on several experiments. We relate this phenomenon with the instabilities of neural networks when they are used in an approximate Dynamic Programming setting. We also describe the possibility to fall within a local optimum during the learning process, thus connecting our discussion with the exploration/exploitation dilemma.
Vincent Fran\c{c}ois-Lavet, Raphael Fonteneau, Damien Ernst
null
1512.02011
null
null
Discriminative Nonparametric Latent Feature Relational Models with Data Augmentation
cs.LG stat.ML
We present a discriminative nonparametric latent feature relational model (LFRM) for link prediction to automatically infer the dimensionality of latent features. Under the generic RegBayes (regularized Bayesian inference) framework, we handily incorporate the prediction loss with probabilistic inference of a Bayesian model; set distinct regularization parameters for different types of links to handle the imbalance issue in real networks; and unify the analysis of both the smooth logistic log-loss and the piecewise linear hinge loss. For the nonconjugate posterior inference, we present a simple Gibbs sampler via data augmentation, without making restricting assumptions as done in variational methods. We further develop an approximate sampler using stochastic gradient Langevin dynamics to handle large networks with hundreds of thousands of entities and millions of links, orders of magnitude larger than what existing LFRM models can process. Extensive studies on various real networks show promising performance.
Bei Chen, Ning Chen, Jun Zhu, Jiaming Song, Bo Zhang
null
1512.02016
null
null
Risk Minimization in Structured Prediction using Orbit Loss
cs.LG
We introduce a new surrogate loss function called orbit loss in the structured prediction framework, which has good theoretical and practical advantages. While the orbit loss is not convex, it has a simple analytical gradient and a simple perceptron-like learning rule. We analyze the new loss theoretically and state a PAC-Bayesian generalization bound. We also prove that the new loss is consistent in the strong sense; namely, the risk achieved by the set of the trained parameters approaches the infimum risk achievable by any linear decoder over the given features. Methods that are aimed at risk minimization, such as the structured ramp loss, the structured probit loss and the direct loss minimization require at least two inference operations per training iteration. In this sense, the orbit loss is more efficient as it requires only one inference operation per training iteration, while yields similar performance. We conclude the paper with an empirical comparison of the proposed loss function to the structured hinge loss, the structured ramp loss, the structured probit loss and the direct loss minimization method on several benchmark datasets and tasks.
Danny Karmon and Joseph Keshet
null
1512.02033
null
null
Clustering by Deep Nearest Neighbor Descent (D-NND): A Density-based Parameter-Insensitive Clustering Method
stat.ML cs.CV cs.LG stat.CO stat.ME
Most density-based clustering methods largely rely on how well the underlying density is estimated. However, density estimation itself is also a challenging problem, especially the determination of the kernel bandwidth. A large bandwidth could lead to the over-smoothed density estimation in which the number of density peaks could be less than the true clusters, while a small bandwidth could lead to the under-smoothed density estimation in which spurious density peaks, or called the "ripple noise", would be generated in the estimated density. In this paper, we propose a density-based hierarchical clustering method, called the Deep Nearest Neighbor Descent (D-NND), which could learn the underlying density structure layer by layer and capture the cluster structure at the same time. The over-smoothed density estimation could be largely avoided and the negative effect of the under-estimated cases could be also largely reduced. Overall, D-NND presents not only the strong capability of discovering the underlying cluster structure but also the remarkable reliability due to its insensitivity to parameters.
Teng Qiu, Yongjie Li
null
1512.02097
null
null
Obtaining A Linear Combination of the Principal Components of a Matrix on Quantum Computers
quant-ph cs.LG math.ST stat.TH
Principal component analysis is a multivariate statistical method frequently used in science and engineering to reduce the dimension of a problem or extract the most significant features from a dataset. In this paper, using a similar notion to the quantum counting, we show how to apply the amplitude amplification together with the phase estimation algorithm to an operator in order to procure the eigenvectors of the operator associated to the eigenvalues defined in the range $\left[a, b\right]$, where $a$ and $b$ are real and $0 \leq a \leq b \leq 1$. This makes possible to obtain a combination of the eigenvectors associated to the largest eigenvalues and so can be used to do principal component analysis on quantum computers.
Anmer Daskin
10.1007/s11128-016-1388-7
1512.02109
null
null
A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation
cs.CV cs.LG stat.ML
Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.
Nikolaus Mayer, Eddy Ilg, Philip H\"ausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, Thomas Brox
10.1109/CVPR.2016.438
1512.02134
null
null
The Teaching Dimension of Linear Learners
cs.LG
Teaching dimension is a learning theoretic quantity that specifies the minimum training set size to teach a target model to a learner. Previous studies on teaching dimension focused on version-space learners which maintain all hypotheses consistent with the training data, and cannot be applied to modern machine learners which select a specific hypothesis via optimization. This paper presents the first known teaching dimension for ridge regression, support vector machines, and logistic regression. We also exhibit optimal training sets that match these teaching dimensions. Our approach generalizes to other linear learners.
Ji Liu and Xiaojin Zhu
null
1512.02181
null
null
Pseudo-Bayesian Robust PCA: Algorithms and Analyses
cs.CV cs.LG stat.ML
Commonly used in computer vision and other applications, robust PCA represents an algorithmic attempt to reduce the sensitivity of classical PCA to outliers. The basic idea is to learn a decomposition of some data matrix of interest into low rank and sparse components, the latter representing unwanted outliers. Although the resulting optimization problem is typically NP-hard, convex relaxations provide a computationally-expedient alternative with theoretical support. However, in practical regimes performance guarantees break down and a variety of non-convex alternatives, including Bayesian-inspired models, have been proposed to boost estimation quality. Unfortunately though, without additional a priori knowledge none of these methods can significantly expand the critical operational range such that exact principal subspace recovery is possible. Into this mix we propose a novel pseudo-Bayesian algorithm that explicitly compensates for design weaknesses in many existing non-convex approaches leading to state-of-the-art performance with a sound analytical foundation. Surprisingly, our algorithm can even outperform convex matrix completion despite the fact that the latter is provided with perfect knowledge of which entries are not corrupted.
Tae-Hyun Oh, Yasuyuki Matsushita, In So Kweon, David Wipf
null
1512.02188
null
null
Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors
cs.DS cs.CC cs.LG stat.ML
We consider two problems that arise in machine learning applications: the problem of recovering a planted sparse vector in a random linear subspace and the problem of decomposing a random low-rank overcomplete 3-tensor. For both problems, the best known guarantees are based on the sum-of-squares method. We develop new algorithms inspired by analyses of the sum-of-squares method. Our algorithms achieve the same or similar guarantees as sum-of-squares for these problems but the running time is significantly faster. For the planted sparse vector problem, we give an algorithm with running time nearly linear in the input size that approximately recovers a planted sparse vector with up to constant relative sparsity in a random subspace of $\mathbb R^n$ of dimension up to $\tilde \Omega(\sqrt n)$. These recovery guarantees match the best known ones of Barak, Kelner, and Steurer (STOC 2014) up to logarithmic factors. For tensor decomposition, we give an algorithm with running time close to linear in the input size (with exponent $\approx 1.086$) that approximately recovers a component of a random 3-tensor over $\mathbb R^n$ of rank up to $\tilde \Omega(n^{4/3})$. The best previous algorithm for this problem due to Ge and Ma (RANDOM 2015) works up to rank $\tilde \Omega(n^{3/2})$ but requires quasipolynomial time.
Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, David Steurer
null
1512.02337
null
null
Online Crowdsourcing
cs.LG
With the success of modern internet based platform, such as Amazon Mechanical Turk, it is now normal to collect a large number of hand labeled samples from non-experts. The Dawid- Skene algorithm, which is based on Expectation- Maximization update, has been widely used for inferring the true labels from noisy crowdsourced labels. However, Dawid-Skene scheme requires all the data to perform each EM iteration, and can be infeasible for streaming data or large scale data. In this paper, we provide an online version of Dawid- Skene algorithm that only requires one data frame for each iteration. Further, we prove that under mild conditions, the online Dawid-Skene scheme with projection converges to a stationary point of the marginal log-likelihood of the observed data. Our experiments demonstrate that the online Dawid- Skene scheme achieves state of the art performance comparing with other methods based on the Dawid- Skene scheme.
Changbo Zhu, Huan Xu, Shuicheng Yan
null
1512.02393
null
null
Online Gradient Descent in Function Space
cs.LG
In many problems in machine learning and operations research, we need to optimize a function whose input is a random variable or a probability density function, i.e. to solve optimization problems in an infinite dimensional space. On the other hand, online learning has the advantage of dealing with streaming examples, and better model a changing environ- ment. In this paper, we extend the celebrated online gradient descent algorithm to Hilbert spaces (function spaces), and analyze the convergence guarantee of the algorithm. Finally, we demonstrate that our algorithms can be useful in several important problems.
Changbo Zhu, Huan Xu
null
1512.02394
null
null
Learning Discrete Bayesian Networks from Continuous Data
cs.AI cs.LG
Learning Bayesian networks from raw data can help provide insights into the relationships between variables. While real data often contains a mixture of discrete and continuous-valued variables, many Bayesian network structure learning algorithms assume all random variables are discrete. Thus, continuous variables are often discretized when learning a Bayesian network. However, the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled Bayesian discretization method for continuous variables in Bayesian networks with quadratic complexity instead of the cubic complexity of other standard techniques. Empirical demonstrations show that the proposed method is superior to the established minimum description length algorithm. In addition, this paper shows how to incorporate existing methods into the structure learning process to discretize all continuous variables and simultaneously learn Bayesian network structures.
Yi-Chun Chen, Tim Allan Wheeler, Mykel John Kochenderfer
null
1512.02406
null
null
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
cs.LG stat.ML
Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging machine learning problems, e.g., image classification, natural language processing or human action recognition. Although these methods perform impressively well, they have a significant disadvantage, the lack of transparency, limiting the interpretability of the solution and thus the scope of application in practice. Especially DNNs act as black boxes due to their multilayer nonlinear structure. In this paper we introduce a novel methodology for interpreting generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements. Although our focus is on image classification, the method is applicable to a broad set of input data, learning tasks and network architectures. Our method is based on deep Taylor decomposition and efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input layer. We evaluate the proposed method empirically on the MNIST and ILSVRC data sets.
Gr\'egoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek, Klaus-Robert M\"uller
10.1016/j.patcog.2016.11.008
1512.02479
null
null
Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views
cs.CV cs.LG cs.NE
This paper presents an end-to-end convolutional neural network (CNN) for 2D-3D exemplar detection. We demonstrate that the ability to adapt the features of natural images to better align with those of CAD rendered views is critical to the success of our technique. We show that the adaptation can be learned by compositing rendered views of textured object models on natural images. Our approach can be naturally incorporated into a CNN detection pipeline and extends the accuracy and speed benefits from recent advances in deep learning to 2D-3D exemplar detection. We applied our method to two tasks: instance detection, where we evaluated on the IKEA dataset, and object category detection, where we out-perform Aubry et al. for "chair" detection on a subset of the Pascal VOC dataset.
Francisco Massa, Bryan Russell, Mathieu Aubry
null
1512.02497
null
null
Deep Learning for Single and Multi-Session i-Vector Speaker Recognition
cs.SD cs.LG
The promising performance of Deep Learning (DL) in speech recognition has motivated the use of DL in other speech technology applications such as speaker recognition. Given i-vectors as inputs, the authors proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on Deep Belief Networks (DBN) and Deep Neural Networks (DNN) to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single and multi-session speaker enrollment tasks, some experiments have been carried out in this paper in both scenarios. Additionally, the parameters of the global model, referred to as universal DBN (UDBN), are normalized before adaptation. UDBN normalization facilitates training DNNs specifically with more than one hidden layer. Experiments are performed on the NIST SRE 2006 corpus. It is shown that the proposed impostor selection algorithm and UDBN adaptation process enhance the performance of conventional DNNs 8-20 % and 16-20 % in terms of EER for the single and multi-session tasks, respectively. In both scenarios, the proposed architectures outperform the baseline systems obtaining up to 17 % reduction in EER.
Omid Ghahabi and Javier Hernando
10.1109/TASLP.2017.2661705
1512.02560
null
null
Speeding Up Distributed Machine Learning Using Codes
cs.DC cs.IT cs.LG cs.PF math.IT
Codes are widely used in many engineering applications to offer robustness against noise. In large-scale systems there are several types of noise that can affect the performance of distributed machine learning algorithms -- straggler nodes, system failures, or communication bottlenecks -- but there has been little interaction cutting across codes, machine learning, and distributed systems. In this work, we provide theoretical insights on how coded solutions can achieve significant gains compared to uncoded ones. We focus on two of the most basic building blocks of distributed learning algorithms: matrix multiplication and data shuffling. For matrix multiplication, we use codes to alleviate the effect of stragglers, and show that if the number of homogeneous workers is $n$, and the runtime of each subtask has an exponential tail, coded computation can speed up distributed matrix multiplication by a factor of $\log n$. For data shuffling, we use codes to reduce communication bottlenecks, exploiting the excess in storage. We show that when a constant fraction $\alpha$ of the data matrix can be cached at each worker, and $n$ is the number of workers, \emph{coded shuffling} reduces the communication cost by a factor of $(\alpha + \frac{1}{n})\gamma(n)$ compared to uncoded shuffling, where $\gamma(n)$ is the ratio of the cost of unicasting $n$ messages to $n$ users to multicasting a common message (of the same size) to $n$ users. For instance, $\gamma(n) \simeq n$ if multicasting a message to $n$ users is as cheap as unicasting a message to one user. We also provide experiment results, corroborating our theoretical gains of the coded algorithms.
Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, Kannan Ramchandran
10.1109/TIT.2017.2736066
1512.02673
null
null
Reinforcement Control with Hierarchical Backpropagated Adaptive Critics
cs.NE cs.LG cs.SY
Present incremental learning methods are limited in the ability to achieve reliable credit assignment over a large number time steps (or events). However, this situation is typical for cases where the dynamical system to be controlled requires relatively frequent control updates in order to maintain stability or robustness yet has some action-consequences which must be established over relatively long periods of time. To address this problem, the learning capabilities of a control architecture comprised of two Backpropagated Adaptive Critics (BACs) in a two-level hierarchy with continuous actions are explored. The high-level BAC updates less frequently than the low-level BAC and controls the latter to some degree. The response of the low-level to high-level signals can either be determined a priori or it can emerge during learning. A general approach called Response Induction Learning is introduced to address the latter case.
John W. Jameson
null
1512.02693
null
null
Distributed Training of Deep Neural Networks with Theoretical Analysis: Under SSP Setting
stat.ML cs.LG math.OC
We propose a distributed approach to train deep neural networks (DNNs), which has guaranteed convergence theoretically and great scalability empirically: close to 6 times faster on instance of ImageNet data set when run with 6 machines. The proposed scheme is close to optimally scalable in terms of number of machines, and guaranteed to converge to the same optima as the undistributed setting. The convergence and scalability of the distributed setting is shown empirically across different datasets (TIMIT and ImageNet) and machine learning tasks (image classification and phoneme extraction). The convergence analysis provides novel insights into this complex learning scheme, including: 1) layerwise convergence, and 2) convergence of the weights in probability.
Abhimanu Kumar and Pengtao Xie and Junming Yin and Eric P. Xing
null
1512.02728
null
null
Window-Object Relationship Guided Representation Learning for Generic Object Detections
cs.CV cs.LG cs.MM
In existing works that learn representation for object detection, the relationship between a candidate window and the ground truth bounding box of an object is simplified by thresholding their overlap. This paper shows information loss in this simplification and picks up the relative location/size information discarded by thresholding. We propose a representation learning pipeline to use the relationship as supervision for improving the learned representation in object detection. Such relationship is not limited to object of the target category, but also includes surrounding objects of other categories. We show that image regions with multiple contexts and multiple rotations are effective in capturing such relationship during the representation learning process and in handling the semantic and visual variation caused by different window-object configurations. Experimental results show that the representation learned by our approach can improve the object detection accuracy by 6.4% in mean average precision (mAP) on ILSVRC2014. On the challenging ILSVRC2014 test dataset, 48.6% mAP is achieved by our single model and it is the best among published results. On PASCAL VOC, it outperforms the state-of-the-art result of Fast RCNN by 3.3% in absolute mAP.
Xingyu Zeng, Wanli Ouyang, Xiaogang Wang
null
1512.02736
null
null
Perfect Recovery Conditions For Non-Negative Sparse Modeling
cs.IT cs.LG math.IT
Sparse modeling has been widely and successfully used in many applications such as computer vision, machine learning, and pattern recognition. Accompanied with those applications, significant research has studied the theoretical limits and algorithm design for convex relaxations in sparse modeling. However, theoretical analyses on non-negative versions of sparse modeling are limited in the literature either to a noiseless setting or a scenario with a specific statistical noise model such as Gaussian noise. This paper studies the performance of non-negative sparse modeling in a more general scenario where the observed signals have an unknown arbitrary distortion, especially focusing on non-negativity constrained and L1-penalized least squares, and gives an exact bound for which this problem can recover the correct signal elements. We pose two conditions to guarantee the correct signal recovery: minimum coefficient condition (MCC) and nonlinearity vs. subset coherence condition (NSCC). The former defines the minimum weight for each of the correct atoms present in the signal and the latter defines the tolerable deviation from the linear model relative to the positive subset coherence (PSC), a novel type of "coherence" metric. We provide rigorous performance guarantees based on these conditions and experimentally verify their precise predictive power in a hyperspectral data unmixing application.
Yuki Itoh, Marco F. Duarte, Mario Parente
10.1109/TSP.2016.2613067
1512.02743
null
null
A Novel Regularized Principal Graph Learning Framework on Explicit Graph Representation
cs.AI cs.LG stat.ML
Many scientific datasets are of high dimension, and the analysis usually requires visual manipulation by retaining the most important structures of data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures that are not self-intersected, which is quite restrictive for real applications. A few methods can overcome the above problem, but they either require complicated human-made rules for a specific task with lack of convergence guarantee and adaption flexibility to different tasks, or cannot obtain explicit structures of data. To address these issues, we develop a new regularized principal graph learning framework that captures the local information of the underlying graph structure based on reversed graph embedding. As showcases, models that can learn a spanning tree or a weighted undirected $\ell_1$ graph are proposed, and a new learning algorithm is developed that learns a set of principal points and a graph structure from data, simultaneously. The new algorithm is simple with guaranteed convergence. We then extend the proposed framework to deal with large-scale data. Experimental results on various synthetic and six real world datasets show that the proposed method compares favorably with baselines and can uncover the underlying structure correctly.
Qi Mao, Li Wang, Ivor W. Tsang, Yijun Sun
null
1512.02752
null
null