title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Context-Based Prediction of App Usage
cs.LG
There are around a hundred installed apps on an average smartphone. The high number of apps and the limited number of app icons that can be displayed on the device's screen requires a new paradigm to address their visibility to the user. In this paper we propose a new online algorithm for dynamically predicting a set of apps that the user is likely to use. The algorithm runs on the user's device and constantly learns the user's habits at a given time, location, and device state. It is designed to actively help the user to navigate to the desired app as well as to provide a personalized feeling, and hence is aimed at maximizing the AUC. We show both theoretically and empirically that the algorithm maximizes the AUC, and yields good results on a set of 1,000 devices.
Joseph Keshet, Adam Kariv, Arnon Dagan, Dvir Volk, Joey Simhon
null
1512.07851
null
null
An unsupervised spatiotemporal graphical modeling approach to anomaly detection in distributed CPS
cs.LG
Modern distributed cyber-physical systems (CPSs) encounter a large variety of physical faults and cyber anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. This paper presents a new data-driven framework for system-wide anomaly detection for addressing such issues. The framework is based on a spatiotemporal feature extraction scheme built on the concept of symbolic dynamics for discovering and representing causal interactions among the subsystems of a CPS. The extracted spatiotemporal features are then used to learn system-wide patterns via a Restricted Boltzmann Machine (RBM). The results show that: (1) the RBM free energy in the off-nominal conditions is different from that in the nominal conditions and can be used for anomaly detection; (2) the framework can capture multiple nominal modes with one graphical model; (3) the case studies with simulated data and an integrated building system validate the proposed approach.
Chao Liu, Sambuddha Ghosal, Zhanhong Jiang, Soumik Sarkar
null
1512.07876
null
null
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
stat.ML cs.LG
Stochastic gradient Markov chain Monte Carlo (SG-MCMC) methods are Bayesian analogs to popular stochastic optimization methods; however, this connection is not well studied. We explore this relationship by applying simulated annealing to an SGMCMC algorithm. Furthermore, we extend recent SG-MCMC methods with two key components: i) adaptive preconditioners (as in ADAgrad or RMSprop), and ii) adaptive element-wise momentum weights. The zero-temperature limit gives a novel stochastic optimization method with adaptive element-wise momentum weights, while conventional optimization methods only have a shared, static momentum weight. Under certain assumptions, our theoretical analysis suggests the proposed simulated annealing approach converges close to the global optima. Experiments on several deep neural network models show state-of-the-art results compared to related stochastic optimization algorithms.
Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li and Lawrence Carin
null
1512.07962
null
null
Inducing Generalized Multi-Label Rules with Learning Classifier Systems
cs.NE cs.LG
In recent years, multi-label classification has attracted a significant body of research, motivated by real-life applications, such as text classification and medical diagnoses. Although sparsely studied in this context, Learning Classifier Systems are naturally well-suited to multi-label classification problems, whose search space typically involves multiple highly specific niches. This is the motivation behind our current work that introduces a generalized multi-label rule format -- allowing for flexible label-dependency modeling, with no need for explicit knowledge of which correlations to search for -- and uses it as a guide for further adapting the general Michigan-style supervised Learning Classifier System framework. The integration of the aforementioned rule format and framework adaptations results in a novel algorithm for multi-label classification whose behavior is studied through a set of properly defined artificial problems. The proposed algorithm is also thoroughly evaluated on a set of multi-label datasets and found competitive to other state-of-the-art multi-label classification methods.
Fani A. Tzima, Miltiadis Allamanis, Alexandros Filotheou, Pericles A. Mitkas
null
1512.07982
null
null
Discovering topic structures of a temporally evolving document corpus
cs.IR cs.LG
In this paper we describe a novel framework for the discovery of the topical content of a data corpus, and the tracking of its complex structural changes across the temporal dimension. In contrast to previous work our model does not impose a prior on the rate at which documents are added to the corpus nor does it adopt the Markovian assumption which overly restricts the type of changes that the model can capture. Our key technical contribution is a framework based on (i) discretization of time into epochs, (ii) epoch-wise topic discovery using a hierarchical Dirichlet process-based model, and (iii) a temporal similarity graph which allows for the modelling of complex topic changes: emergence and disappearance, evolution, splitting, and merging. The power of the proposed framework is demonstrated on two medical literature corpora concerned with the autism spectrum disorder (ASD) and the metabolic syndrome (MetS) -- both increasingly important research subjects with significant social and healthcare consequences. In addition to the collected ASD and metabolic syndrome literature corpora which we made freely available, our contribution also includes an extensive empirical analysis of the proposed framework. We describe a detailed and careful examination of the effects that our algorithms's free parameters have on its output, and discuss the significance of the findings both in the context of the practical application of our algorithm as well as in the context of the existing body of work on temporal topic analysis. Our quantitative analysis is followed by several qualitative case studies highly relevant to the current research on ASD and MetS, on which our algorithm is shown to capture well the actual developments in these fields.
Adham Beykikhoshk and Ognjen Arandjelovic and Dinh Phung and Svetha Venkatesh
null
1512.08008
null
null
Statistical Learning under Nonstationary Mixing Processes
cs.LG stat.ML
We study a special case of the problem of statistical learning without the i.i.d. assumption. Specifically, we suppose a learning method is presented with a sequence of data points, and required to make a prediction (e.g., a classification) for each one, and can then observe the loss incurred by this prediction. We go beyond traditional analyses, which have focused on stationary mixing processes or nonstationary product processes, by combining these two relaxations to allow nonstationary mixing processes. We are particularly interested in the case of $\beta$-mixing processes, with the sum of changes in marginal distributions growing sublinearly in the number of samples. Under these conditions, we propose a learning method, and establish that for bounded VC subgraph classes, the cumulative excess risk grows sublinearly in the number of predictions, at a quantified rate.
Steve Hanneke, Liu Yang
null
1512.08064
null
null
Inverse Reinforcement Learning via Deep Gaussian Process
cs.LG cs.RO stat.ML
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Incorporating the IRL engine into the nonlinear latent structure renders existing deep GP inference approaches intractable. To tackle this, we develop a non-standard variational approximation framework which extends previous inference schemes. This allows for approximate Bayesian treatment of the feature space and guards against overfitting. Carrying out representation and inverse reinforcement learning simultaneously within our model outperforms state-of-the-art approaches, as we demonstrate with experiments on standard benchmarks ("object world","highway driving") and a new benchmark ("binary world").
Ming Jin, Andreas Damianou, Pieter Abbeel, Costas Spanos
null
1512.08065
null
null
Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning
cs.LG cs.AI
Multi-relational learning has received lots of attention from researchers in various research communities. Most existing methods either suffer from superlinear per-iteration cost, or are sensitive to the given ranks. To address both issues, we propose a scalable core tensor trace norm Regularized Orthogonal Iteration Decomposition (ROID) method for full or incomplete tensor analytics, which can be generalized as a graph Laplacian regularized version by using auxiliary information or a sparse higher-order orthogonal iteration (SHOOI) version. We first induce the equivalence relation of the Schatten p-norm (0<p<\infty) of a low multi-linear rank tensor and its core tensor. Then we achieve a much smaller matrix trace norm minimization problem. Finally, we develop two efficient augmented Lagrange multiplier algorithms to solve our problems with convergence guarantees. Extensive experiments using both real and synthetic datasets, even though with only a few observations, verified both the efficiency and effectiveness of our methods.
Fanhua Shang and James Cheng and Hong Cheng
null
1512.08120
null
null
The Utility of Abstaining in Binary Classification
cs.LG
We explore the problem of binary classification in machine learning, with a twist - the classifier is allowed to abstain on any datum, professing ignorance about the true class label without committing to any prediction. This is directly motivated by applications like medical diagnosis and fraud risk assessment, in which incorrect predictions have potentially calamitous consequences. We focus on a recent spate of theoretically driven work in this area that characterizes how allowing abstentions can lead to fewer errors in very general settings. Two areas are highlighted: the surprising possibility of zero-error learning, and the fundamental tradeoff between predicting sufficiently often and avoiding incorrect predictions. We review efficient algorithms with provable guarantees for each of these areas. We also discuss connections to other scenarios, notably active learning, as they suggest promising directions of further inquiry in this emerging field.
Akshay Balsubramani
null
1512.08133
null
null
Self-Excitation: An Enabler for Online Thermal Estimation and Model Predictive Control of Buildings
cs.SY cs.LG
This paper investigates a method to improve buildings' thermal predictive control performance via online identification and excitation (active learning process) that minimally disrupts normal operations. In previous studies we have demonstrated scalable methods to acquire multi-zone thermal models of passive buildings using a gray-box approach that leverages building topology and measurement data. Here we extend the method to multi-zone actively controlled buildings and examine how to improve the thermal model estimation by using the controller to excite unknown portions of the building's dynamics. Comparing against a baseline thermostat controller, we demonstrate the utility of both the initially acquired and improved thermal models within a Model Predictive Control (MPC) framework, which anticipates weather uncertainty and time-varying temperature set-points. A simulation study demonstrates self-excitation improves model estimation, which corresponds to improved MPC energy savings and occupant comfort. By coupling building topology, estimation, and control routines into a single online framework, we have demonstrated the potential for low-cost scalable methods to actively learn and control buildings to ensure occupant comfort and minimize energy usage, all while using the existing building's HVAC sensors and hardware.
Peter Radecki and Brandon Hencey
null
1512.08169
null
null
Electricity Demand Forecasting by Multi-Task Learning
cs.LG
We explore the application of kernel-based multi-task learning techniques to forecast the demand of electricity in multiple nodes of a distribution network. We show that recently developed output kernel learning techniques are particularly well suited to solve this problem, as they allow to flexibly model the complex seasonal effects that characterize electricity demand data, while learning and exploiting correlations between multiple demand profiles. We also demonstrate that kernels with a multiplicative structure yield superior predictive performance with respect to the widely adopted (generalized) additive models. Our study is based on residential and industrial smart meter data provided by the Irish Commission for Energy Regulation (CER).
Jean-Baptiste Fiot, Francesco Dinuzzo
null
1512.08178
null
null
New Perspectives on $k$-Support and Cluster Norms
cs.LG stat.ML
We study a regularizer which is defined as a parameterized infimum of quadratics, and which we call the box-norm. We show that the k-support norm, a regularizer proposed by [Argyriou et al, 2012] for sparse vector prediction problems, belongs to this family, and the box-norm can be generated as a perturbation of the former. We derive an improved algorithm to compute the proximity operator of the squared box-norm, and we provide a method to compute the norm. We extend the norms to matrices, introducing the spectral k-support norm and spectral box-norm. We note that the spectral box-norm is essentially equivalent to the cluster norm, a multitask learning regularizer introduced by [Jacob et al. 2009a], and which in turn can be interpreted as a perturbation of the spectral k-support norm. Centering the norm is important for multitask learning and we also provide a method to use centered versions of the norms as regularizers. Numerical experiments indicate that the spectral k-support and box-norms and their centered variants provide state of the art performance in matrix completion and multitask learning problems respectively.
Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos
null
1512.08204
null
null
Robust Semi-supervised Least Squares Classification by Implicit Constraints
stat.ML cs.LG
We introduce the implicitly constrained least squares (ICLS) classifier, a novel semi-supervised version of the least squares classifier. This classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, this approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. This method can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a limited 1-dimensional setting, this approach never leads to performance worse than the supervised classifier. Experimental results show that also in the general multidimensional case performance improvements can be expected, both in terms of the squared loss that is intrinsic to the classifier, as well as in terms of the expected classification error.
Jesse H. Krijthe and Marco Loog
10.1016/j.patcog.2016.09.009
1512.08240
null
null
Using Causal Discovery to Track Information Flow in Spatio-Temporal Data - A Testbed and Experimental Results Using Advection-Diffusion Simulations
cs.LG
Causal discovery algorithms based on probabilistic graphical models have emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, which indicates information flow, thus pathways of interactions, in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. This paper seeks to fill this gap. We develop a testbed that emulates two dynamical processes dominant in many geoscience applications, namely advection and diffusion, in a 2D grid. Then we apply the causal discovery based information tracking algorithms to the simulation data to study how well the algorithms work for different scenarios and to gain a better understanding of the physical meaning of the graph results, in particular of instantaneous connections. We make all data sets used in this study available to the community as a benchmark. Keywords: Information flow, graphical model, structure learning, causal discovery, geoscience.
Imme Ebert-Uphoff and Yi Deng
null
1512.08279
null
null
Natural Language Inference by Tree-Based Convolution and Heuristic Matching
cs.CL cs.LG
In this paper, we propose the TBCNN-pair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentence-level semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms existing sentence encoding-based approaches by a large margin.
Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, Zhi Jin
null
1512.08422
null
null
Convexified Modularity Maximization for Degree-corrected Stochastic Block Models
math.ST cs.LG cs.SI stat.ML stat.TH
The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper proposes a convexified modularity maximization approach for estimating the hidden communities under DCSBM. Our approach is based on a convex programming relaxation of the classical (generalized) modularity maximization formulation, followed by a novel doubly-weighted $ \ell_1 $-norm $ k $-median procedure. We establish non-asymptotic theoretical guarantees for both approximate clustering and perfect clustering. Our approximate clustering results are insensitive to the minimum degree, and hold even in sparse regime with bounded average degrees. In the special case of SBM, these theoretical results match the best-known performance guarantees of computationally feasible algorithms. Numerically, we provide an efficient implementation of our algorithm, which is applied to both synthetic and real-world networks. Experiment results show that our method enjoys competitive performance compared to the state of the art in the literature.
Yudong Chen and Xiaodong Li and Jiaming Xu
null
1512.08425
null
null
Visually Indicated Sounds
cs.CV cs.LG cs.SD
Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. We present an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick. This algorithm uses a recurrent neural network to predict sound features from videos and then produces a waveform from these features with an example-based synthesis procedure. We show that the sounds predicted by our model are realistic enough to fool participants in a "real or fake" psychophysical experiment, and that they convey significant information about material properties and physical interactions.
Andrew Owens, Phillip Isola, Josh McDermott, Antonio Torralba, Edward H. Adelson, William T. Freeman
null
1512.08512
null
null
Taming the Noise in Reinforcement Learning via Soft Updates
cs.LG cs.IT math.IT
Model-free reinforcement learning algorithms, such as Q-learning, perform poorly in the early stages of learning in noisy environments, because much effort is spent unlearning biased estimates of the state-action value function. The bias results from selecting, among several noisy estimates, the apparent optimum, which may actually be suboptimal. We propose G-learning, a new off-policy learning algorithm that regularizes the value estimates by penalizing deterministic policies in the beginning of the learning process. We show that this method reduces the bias of the value-function estimation, leading to faster convergence to the optimal value and the optimal policy. Moreover, G-learning enables the natural incorporation of prior domain knowledge, when available. The stochastic nature of G-learning also makes it avoid some exploration costs, a property usually attributed only to on-policy algorithms. We illustrate these ideas in several examples, where G-learning results in significant improvements of the convergence rate and the cost of the learning process.
Roy Fox, Ari Pakman, Naftali Tishby
null
1512.08562
null
null
Structured Pruning of Deep Convolutional Neural Networks
cs.NE cs.LG stat.ML
Real time application of deep learning algorithms is often hindered by high computational complexity and frequent memory accesses. Network pruning is a promising technique to solve this problem. However, pruning usually results in irregular network connections that not only demand extra representation efforts but also do not fit well on parallel computation. We introduce structured sparsity at various scales for convolutional neural networks, which are channel wise, kernel wise and intra kernel strided sparsity. This structured sparsity is very advantageous for direct computational resource savings on embedded computers, parallel computing environments and hardware based systems. To decide the importance of network connections and paths, the proposed method uses a particle filtering approach. The importance weight of each particle is assigned by computing the misclassification rate with corresponding connectivity pattern. The pruned network is re-trained to compensate for the losses due to pruning. While implementing convolutions as matrix products, we particularly show that intra kernel strided sparsity with a simple constraint can significantly reduce the size of kernel and feature map matrices. The pruned network is finally fixed point optimized with reduced word length precision. This results in significant reduction in the total storage size providing advantages for on-chip memory based implementations of deep neural networks.
Sajid Anwar, Kyuyeon Hwang and Wonyong Sung
null
1512.08571
null
null
Optimal Selective Attention in Reactive Agents
cs.LG cs.IT math.IT
In POMDPs, information about the hidden state, delivered through observations, is both valuable to the agent, allowing it to base its actions on better informed internal states, and a "curse", exploding the size and diversity of the internal state space. One attempt to deal with this is to focus on reactive policies, that only base their actions on the most recent observation. However, even reactive policies can be demanding on resources, and agents need to pay selective attention to only some of the information available to them in observations. In this report we present the minimum-information principle for selective attention in reactive agents. We further motivate this approach by reducing the general problem of optimal control in POMDPs, to reactive control with complex observations. Lastly, we explore a newly discovered phenomenon of this optimization process - period doubling bifurcations. This necessitates periodic policies, and raises many more questions regarding stability, periodicity and chaos in optimal control.
Roy Fox, Naftali Tishby
null
1512.08575
null
null
A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data
cs.LG cs.CY
The increased availability of large-scale trajectory data around the world provides rich information for the study of urban dynamics. For example, New York City Taxi Limousine Commission regularly releases source-destination information about trips in the taxis they regulate. Taxi data provide information about traffic patterns, and thus enable the study of urban flow -- what will traffic between two locations look like at a certain date and time in the future? Existing big data methods try to outdo each other in terms of complexity and algorithmic sophistication. In the spirit of "big data beats algorithms", we present a very simple baseline which outperforms state-of-the-art approaches, including Bing Maps and Baidu Maps (whose APIs permit large scale experimentation). Such a travel time estimation baseline has several important uses, such as navigation (fast travel time estimates can serve as approximate heuristics for A search variants for path finding) and trip planning (which uses operating hours for popular destinations along with travel time estimates to create an itinerary).
Hongjian Wang, Zhenhui Li, Yu-Hsuan Kuo, Dan Kifer
null
1512.08580
null
null
Tight Bounds for Approximate Carath\'eodory and Beyond
cs.DS cs.LG math.OC
We give a deterministic nearly-linear time algorithm for approximating any point inside a convex polytope with a sparse convex combination of the polytope's vertices. Our result provides a constructive proof for the Approximate Carath\'{e}odory Problem, which states that any point inside a polytope contained in the $\ell_p$ ball of radius $D$ can be approximated to within $\epsilon$ in $\ell_p$ norm by a convex combination of only $O\left(D^2 p/\epsilon^2\right)$ vertices of the polytope for $p \geq 2$. We also show that this bound is tight, using an argument based on anti-concentration for the binomial distribution. Along the way of establishing the upper bound, we develop a technique for minimizing norms over convex sets with complicated geometry; this is achieved by running Mirror Descent on a dual convex function obtained via Sion's Theorem. As simple extensions of our method, we then provide new algorithms for submodular function minimization and SVM training. For submodular function minimization we obtain a simplification and (provable) speed-up over Wolfe's algorithm, the method commonly found to be the fastest in practice. For SVM training, we obtain $O(1/\epsilon^2)$ convergence for arbitrary kernels; each iteration only requires matrix-vector operations involving the kernel matrix, so we overcome the obstacle of having to explicitly store the kernel or compute its Cholesky factorization.
Vahab Mirrokni, Renato Paes Leme, Adrian Vladu, Sam Chiu-wai Wong
null
1512.08602
null
null
Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems
cs.LG cs.NE
We propose a simplified model of attention which is applicable to feed-forward neural networks and demonstrate that the resulting model can solve the synthetic "addition" and "multiplication" long-term memory problems for sequence lengths which are both longer and more widely varying than the best published results for these tasks.
Colin Raffel and Daniel P. W. Ellis
null
1512.08756
null
null
Matrix Completion Under Monotonic Single Index Models
stat.ML cs.LG
Most recent results in matrix completion assume that the matrix under consideration is low-rank or that the columns are in a union of low-rank subspaces. In real-world settings, however, the linear structure underlying these models is distorted by a (typically unknown) nonlinear transformation. This paper addresses the challenge of matrix completion in the face of such nonlinearities. Given a few observations of a matrix that are obtained by applying a Lipschitz, monotonic function to a low rank matrix, our task is to estimate the remaining unobserved entries. We propose a novel matrix completion method that alternates between low-rank matrix estimation and monotonic function estimation to estimate the missing matrix elements. Mean squared error bounds provide insight into how well the matrix can be estimated based on the size, rank of the matrix and properties of the nonlinear transformation. Empirical results on synthetic and real-world datasets demonstrate the competitiveness of the proposed approach.
Ravi Ganti, Laura Balzano, Rebecca Willett
null
1512.08787
null
null
Common Variable Learning and Invariant Representation Learning using Siamese Neural Networks
stat.ML cs.LG cs.NE
We consider the statistical problem of learning common source of variability in data which are synchronously captured by multiple sensors, and demonstrate that Siamese neural networks can be naturally applied to this problem. This approach is useful in particular in exploratory, data-driven applications, where neither a model nor label information is available. In recent years, many researchers have successfully applied Siamese neural networks to obtain an embedding of data which corresponds to a "semantic similarity". We present an interpretation of this "semantic similarity" as learning of equivalence classes. We discuss properties of the embedding obtained by Siamese networks and provide empirical results that demonstrate the ability of Siamese networks to learn common variability.
Uri Shaham, Roy Lederman
null
1512.08806
null
null
Sparse group factor analysis for biclustering of multiple data sources
cs.LG cs.IR stat.ML
Motivation: Modelling methods that find structure in data are necessary with the current large volumes of genomic data, and there have been various efforts to find subsets of genes exhibiting consistent patterns over subsets of treatments. These biclustering techniques have focused on one data source, often gene expression data. We present a Bayesian approach for joint biclustering of multiple data sources, extending a recent method Group Factor Analysis (GFA) to have a biclustering interpretation with additional sparsity assumptions. The resulting method enables data-driven detection of linear structure present in parts of the data sources. Results: Our simulation studies show that the proposed method reliably infers bi-clusters from heterogeneous data sources. We tested the method on data from the NCI-DREAM drug sensitivity prediction challenge, resulting in an excellent prediction accuracy. Moreover, the predictions are based on several biclusters which provide insight into the data sources, in this case on gene expression, DNA methylation, protein abundance, exome sequence, functional connectivity fingerprints and drug sensitivity.
Kerstin Bunte, Eemeli Lepp\"aaho, Inka Saarinen, Samuel Kaski
10.1093/bioinformatics/btw207
1512.08808
null
null
Learning to Filter with Predictive State Inference Machines
cs.LG
Latent state space models are a fundamental and widely used tool for modeling dynamical systems. However, they are difficult to learn from data and learned models often lack performance guarantees on inference tasks such as filtering and prediction. In this work, we present the PREDICTIVE STATE INFERENCE MACHINE (PSIM), a data-driven method that considers the inference procedure on a dynamical system as a composition of predictors. The key idea is that rather than first learning a latent state space model, and then using the learned model for inference, PSIM directly learns predictors for inference in predictive state space. We provide theoretical guarantees for inference, in both realizable and agnostic settings, and showcase practical performance on a variety of simulated and real world robotics benchmarks.
Wen Sun, Arun Venkatraman, Byron Boots, J. Andrew Bagnell
null
1512.08836
null
null
Estimation of the sample covariance matrix from compressive measurements
stat.ML cs.LG
This paper focuses on the estimation of the sample covariance matrix from low-dimensional random projections of data known as compressive measurements. In particular, we present an unbiased estimator to extract the covariance structure from compressive measurements obtained by a general class of random projection matrices consisting of i.i.d. zero-mean entries and finite first four moments. In contrast to previous works, we make no structural assumptions about the underlying covariance matrix such as being low-rank. In fact, our analysis is based on a non-Bayesian data setting which requires no distributional assumptions on the set of data samples. Furthermore, inspired by the generality of the projection matrices, we propose an approach to covariance estimation that utilizes sparse Rademacher matrices. Therefore, our algorithm can be used to estimate the covariance matrix in applications with limited memory and computation power at the acquisition devices. Experimental results demonstrate that our approach allows for accurate estimation of the sample covariance matrix on several real-world data sets, including video data.
Farhad Pourkamali-Anaraki
10.1049/iet-spr.2016.0169
1512.08887
null
null
Online Keyword Spotting with a Character-Level Recurrent Neural Network
cs.CL cs.LG cs.NE
In this paper, we propose a context-aware keyword spotting model employing a character-level recurrent neural network (RNN) for spoken term detection in continuous speech. The RNN is end-to-end trained with connectionist temporal classification (CTC) to generate the probabilities of character and word-boundary labels. There is no need for the phonetic transcription, senone modeling, or system dictionary in training and testing. Also, keywords can easily be added and modified by editing the text based keyword list without retraining the RNN. Moreover, the unidirectional RNN processes an infinitely long input audio streams without pre-segmentation and keywords are detected with low-latency before the utterance is finished. Experimental results show that the proposed keyword spotter significantly outperforms the deep neural network (DNN) and hidden Markov model (HMM) based keyword-filler model even with less computations.
Kyuyeon Hwang, Minjae Lee, Wonyong Sung
null
1512.08903
null
null
Simple, Robust and Optimal Ranking from Pairwise Comparisons
cs.LG cs.AI cs.IT math.IT stat.ML
We consider data in the form of pairwise comparisons of n items, with the goal of precisely identifying the top k items for some value of k < n, or alternatively, recovering a ranking of all the items. We analyze the Copeland counting algorithm that ranks the items in order of the number of pairwise comparisons won, and show it has three attractive features: (a) its computational efficiency leads to speed-ups of several orders of magnitude in computation time as compared to prior work; (b) it is robust in that theoretical guarantees impose no conditions on the underlying matrix of pairwise-comparison probabilities, in contrast to some prior work that applies only to the BTL parametric model; and (c) it is an optimal method up to constant factors, meaning that it achieves the information-theoretic limits for recovering the top k-subset. We extend our results to obtain sharp guarantees for approximate recovery under the Hamming distortion metric, and more generally, to any arbitrary error requirement that satisfies a simple and natural monotonicity condition.
Nihar B. Shah and Martin J. Wainwright
null
1512.08949
null
null
Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap
math.PR cs.CC cs.IT cs.LG cs.SI math.IT
In a paper that initiated the modern study of the stochastic block model, Decelle et al., backed by Mossel et al., made the following conjecture: Denote by $k$ the number of balanced communities, $a/n$ the probability of connecting inside communities and $b/n$ across, and set $\mathrm{SNR}=(a-b)^2/(k(a+(k-1)b)$; for any $k \geq 2$, it is possible to detect communities efficiently whenever $\mathrm{SNR}>1$ (the KS threshold), whereas for $k\geq 4$, it is possible to detect communities information-theoretically for some $\mathrm{SNR}<1$. Massouli\'e, Mossel et al.\ and Bordenave et al.\ succeeded in proving that the KS threshold is efficiently achievable for $k=2$, while Mossel et al.\ proved that it cannot be crossed information-theoretically for $k=2$. The above conjecture remained open for $k \geq 3$. This paper proves this conjecture, further extending the efficient detection to non-symmetrical SBMs with a generalized notion of detection and KS threshold. For the efficient part, a linearized acyclic belief propagation (ABP) algorithm is developed and proved to detect communities for any $k$ down to the KS threshold in time $O(n \log n)$. Achieving this requires showing optimality of ABP in the presence of cycles, a challenge for message passing algorithms. The paper further connects ABP to a power iteration method with a nonbacktracking operator of generalized order, formalizing the interplay between message passing and spectral methods. For the information-theoretic (IT) part, a non-efficient algorithm sampling a typical clustering is shown to break down the KS threshold at $k=4$. The emerging gap is shown to be large in some cases; if $a=0$, the KS threshold reads $b \gtrsim k^2$ whereas the IT bound reads $b \gtrsim k \ln(k)$, making the SBM a good study-case for information-computation gaps.
Emmanuel Abbe and Colin Sandon
null
1512.09080
null
null
Low rank approximation and decomposition of large matrices using error correcting codes
cs.IT cs.LG cs.NA math.IT
Low rank approximation is an important tool used in many applications of signal processing and machine learning. Recently, randomized sketching algorithms were proposed to effectively construct low rank approximations and obtain approximate singular value decompositions of large matrices. Similar ideas were used to solve least squares regression problems. In this paper, we show how matrices from error correcting codes can be used to find such low rank approximations and matrix decompositions, and extend the framework to linear least squares regression problems. The benefits of using these code matrices are the following: (i) They are easy to generate and they reduce randomness significantly. (ii) Code matrices with mild properties satisfy the subspace embedding property, and have a better chance of preserving the geometry of an entire subspace of vectors. (iii) For parallel and distributed applications, code matrices have significant advantages over structured random matrices and Gaussian random matrices. (iv) Unlike Fourier or Hadamard transform matrices, which require sampling $O(k\log k)$ columns for a rank-$k$ approximation, the log factor is not necessary for certain types of code matrices. That is, $(1+\epsilon)$ optimal Frobenius norm error can be achieved for a rank-$k$ approximation with $O(k/\epsilon)$ samples. (v) Fast multiplication is possible with structured code matrices, so fast approximations can be achieved for general dense input matrices. (vi) For least squares regression problem $\min\|Ax-b\|_2$ where $A\in \mathbb{R}^{n\times d}$, the $(1+\epsilon)$ relative error approximation can be achieved with $O(d/\epsilon)$ samples, with high probability, when certain code matrices are used.
Shashanka Ubaru, Arya Mazumdar and Yousef Saad
10.1109/TIT.2017.2723898
1512.09156
null
null
Statistical Query Algorithms for Mean Vector Estimation and Stochastic Convex Optimization
cs.LG cs.DS
Stochastic convex optimization, where the objective is the expectation of a random convex function, is an important and widely used method with numerous applications in machine learning, statistics, operations research and other areas. We study the complexity of stochastic convex optimization given only statistical query (SQ) access to the objective function. We show that well-known and popular first-order iterative methods can be implemented using only statistical queries. For many cases of interest we derive nearly matching upper and lower bounds on the estimation (sample) complexity including linear optimization in the most general setting. We then present several consequences for machine learning, differential privacy and proving concrete lower bounds on the power of convex optimization based methods. The key ingredient of our work is SQ algorithms and lower bounds for estimating the mean vector of a distribution over vectors supported on a convex body in $\mathbb{R}^d$. This natural problem has not been previously studied and we show that our solutions can be used to get substantially improved SQ versions of Perceptron and other online algorithms for learning halfspaces.
Vitaly Feldman, Cristobal Guzman, Santosh Vempala
null
1512.09170
null
null
Personalized Course Sequence Recommendations
cs.CY cs.LG
Given the variability in student learning it is becoming increasingly important to tailor courses as well as course sequences to student needs. This paper presents a systematic methodology for offering personalized course sequence recommendations to students. First, a forward-search backward-induction algorithm is developed that can optimally select course sequences to decrease the time required for a student to graduate. The algorithm accounts for prerequisite requirements (typically present in higher level education) and course availability. Second, using the tools of multi-armed bandits, an algorithm is developed that can optimally recommend a course sequence that both reduces the time to graduate while also increasing the overall GPA of the student. The algorithm dynamically learns how students with different contextual backgrounds perform for given course sequences and then recommends an optimal course sequence for new students. Using real-world student data from the UCLA Mechanical and Aerospace Engineering department, we illustrate how the proposed algorithms outperform other methods that do not include student contextual information when making course sequence recommendations.
Jie Xu, Tianwei Xing, Mihaela van der Schaar
10.1109/TSP.2016.2595495
1512.09176
null
null
Bayes-Optimal Effort Allocation in Crowdsourcing: Bounds and Index Policies
cs.LG cs.AI stat.ML
We consider effort allocation in crowdsourcing, where we wish to assign labeling tasks to imperfect homogeneous crowd workers to maximize overall accuracy in a continuous-time Bayesian setting, subject to budget and time constraints. The Bayes-optimal policy for this problem is the solution to a partially observable Markov decision process, but the curse of dimensionality renders the computation infeasible. Based on the Lagrangian Relaxation technique in Adelman & Mersereau (2008), we provide a computationally tractable instance-specific upper bound on the value of this Bayes-optimal policy, which can in turn be used to bound the optimality gap of any other sub-optimal policy. In an approach similar in spirit to the Whittle index for restless multiarmed bandits, we provide an index policy for effort allocation in crowdsourcing and demonstrate numerically that it outperforms other stateof- arts and performs close to optimal solution.
Weici Hu, Peter I. Frazier
null
1512.09204
null
null
Denoising and Completion of 3D Data via Multidimensional Dictionary Learning
cs.LG cs.CV cs.DS
In this paper a new dictionary learning algorithm for multidimensional data is proposed. Unlike most conventional dictionary learning methods which are derived for dealing with vectors or matrices, our algorithm, named KTSVD, learns a multidimensional dictionary directly via a novel algebraic approach for tensor factorization as proposed in [3, 12, 13]. Using this approach one can define a tensor-SVD and we propose to extend K-SVD algorithm used for 1-D data to a K-TSVD algorithm for handling 2-D and 3-D data. Our algorithm, based on the idea of sparse coding (using group-sparsity over multidimensional coefficient vectors), alternates between estimating a compact representation and dictionary learning. We analyze our KTSVD algorithm and demonstrate its result on video completion and multispectral image denoising.
Zemin Zhang and Shuchin Aeron
null
1512.09227
null
null
Strategies and Principles of Distributed Machine Learning on Big Data
stat.ML cs.DC cs.LG
The rise of Big Data has led to new demands for Machine Learning (ML) systems to learn complex models with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics thereupon. In order to run ML algorithms at such scales, on a distributed cluster with 10s to 1000s of machines, it is often the case that significant engineering efforts are required --- and one might fairly ask if such engineering truly falls within the domain of ML research or not. Taking the view that Big ML systems can benefit greatly from ML-rooted statistical and algorithmic insights --- and that ML researchers should therefore not shy away from such systems design --- we discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solutions. These principles and strategies span a continuum from application, to engineering, and to theoretical research and development of Big ML systems and architectures, with the goal of understanding how to make them efficient, generally-applicable, and supported with convergence and scaling guarantees. They concern four key questions which traditionally receive little attention in ML research: How to distribute an ML program over a cluster? How to bridge ML computation with inter-machine communication? How to perform such communication? What should be communicated between machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs but not typically seen in traditional computer programs, and by dissecting successful cases to reveal how we have harnessed these principles to design and develop both high-performance distributed ML software as well as general-purpose ML frameworks, we present opportunities for ML researchers and practitioners to further shape and grow the area that lies between ML and systems.
Eric P. Xing, Qirong Ho, Pengtao Xie, Wei Dai
null
1512.09295
null
null
Autoencoding beyond pixels using a learned similarity metric
cs.LG cs.CV stat.ML
We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.
Anders Boesen Lindbo Larsen, S{\o}ren Kaae S{\o}nderby, Hugo Larochelle, Ole Winther
null
1512.09300
null
null
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
cs.LG stat.ML
This paper makes two contributions to Bayesian machine learning algorithms. Firstly, we propose stochastic natural gradient expectation propagation (SNEP), a novel alternative to expectation propagation (EP), a popular variational inference algorithm. SNEP is a black box variational algorithm, in that it does not require any simplifying assumptions on the distribution of interest, beyond the existence of some Monte Carlo sampler for estimating the moments of the EP tilted distributions. Further, as opposed to EP which has no guarantee of convergence, SNEP can be shown to be convergent, even when using Monte Carlo moment estimates. Secondly, we propose a novel architecture for distributed Bayesian learning which we call the posterior server. The posterior server allows scalable and robust Bayesian learning in cases where a data set is stored in a distributed manner across a cluster, with each compute node containing a disjoint subset of data. An independent Monte Carlo sampler is run on each compute node, with direct access only to the local data subset, but which targets an approximation to the global posterior distribution given all data across the whole cluster. This is achieved by using a distributed asynchronous implementation of SNEP to pass messages across the cluster. We demonstrate SNEP and the posterior server on distributed Bayesian learning of logistic regression and neural networks. Keywords: Distributed Learning, Large Scale Learning, Deep Learning, Bayesian Learn- ing, Variational Inference, Expectation Propagation, Stochastic Approximation, Natural Gradient, Markov chain Monte Carlo, Parameter Server, Posterior Server.
Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh
null
1512.09327
null
null
Homology Computation of Large Point Clouds using Quantum Annealing
quant-ph cs.LG
Homology is a tool in topological data analysis which measures the shape of the data. In many cases, these measurements translate into new insights which are not available by other means. To compute homology, we rely on mathematical constructions which scale exponentially with the size of the data. Therefore, for large point clouds, the computation is infeasible using classical computers. In this paper, we present a quantum annealing pipeline for computation of homology of large point clouds. The pipeline takes as input a graph approximating the given point cloud. It uses quantum annealing to compute a clique covering of the graph and then uses this cover to construct a Mayer-Vietoris complex. The pipeline terminates by performing a simplified homology computation of the Mayer-Vietoris complex. We have introduced three different clique coverings and their quantum annealing formulation. Our pipeline scales polynomially in the size of the data, once the covering step is solved. To prove correctness of our algorithm, we have also included tests using D-Wave 2X quantum processor.
Raouf Dridi, Hedayat Alghassi
null
1512.09328
null
null
Selecting Near-Optimal Learners via Incremental Data Allocation
cs.LG stat.ML
We study a novel machine learning (ML) problem setting of sequentially allocating small subsets of training data amongst a large set of classifiers. The goal is to select a classifier that will give near-optimal accuracy when trained on all data, while also minimizing the cost of misallocated samples. This is motivated by large modern datasets and ML toolkits with many combinations of learning algorithms and hyper-parameters. Inspired by the principle of "optimism under uncertainty," we propose an innovative strategy, Data Allocation using Upper Bounds (DAUB), which robustly achieves these objectives across a variety of real-world datasets. We further develop substantial theoretical support for DAUB in an idealized setting where the expected accuracy of a classifier trained on $n$ samples can be known exactly. Under these conditions we establish a rigorous sub-linear bound on the regret of the approach (in terms of misallocated data), as well as a rigorous bound on suboptimality of the selected classifier. Our accuracy estimates using real-world datasets only entail mild violations of the theoretical scenario, suggesting that the practical behavior of DAUB is likely to approach the idealized behavior.
Ashish Sabharwal, Horst Samulowitz, Gerald Tesauro
null
1601.00024
null
null
Write a Classifier: Predicting Visual Classifiers from Unstructured Text
cs.CV cs.CL cs.LG
People typically learn through exposure to visual concepts associated with linguistic descriptions. For instance, teaching visual object categories to children is often accompanied by descriptions in text or speech. In a machine learning context, these observations motivates us to ask whether this learning process could be computationally modeled to learn visual classifiers. More specifically, the main question of this work is how to utilize purely textual description of visual classes with no training images, to learn explicit visual classifiers for them. We propose and investigate two baseline formulations, based on regression and domain transfer, that predict a linear classifier. Then, we propose a new constrained optimization formulation that combines a regression function and a knowledge transfer function with additional constraints to predict the parameters of a linear classifier. We also propose a generic kernelized models where a kernel classifier is predicted in the form defined by the representer theorem. The kernelized models allow defining and utilizing any two RKHS (Reproducing Kernel Hilbert Space) kernel functions in the visual space and text space, respectively. We finally propose a kernel function between unstructured text descriptions that builds on distributional semantics, which shows an advantage in our setting and could be useful for other applications. We applied all the studied models to predict visual classifiers on two fine-grained and challenging categorization datasets (CU Birds and Flower Datasets), and the results indicate successful predictions of our final model over several baselines that we designed.
Mohamed Elhoseiny, Ahmed Elgammal, Babak Saleh
null
1601.00025
null
null
Stochastic Neural Networks with Monotonic Activation Functions
stat.ML cs.LG cs.NE
We propose a Laplace approximation that creates a stochastic unit from any smooth monotonic activation function, using only Gaussian noise. This paper investigates the application of this stochastic approximation in training a family of Restricted Boltzmann Machines (RBM) that are closely linked to Bregman divergences. This family, that we call exponential family RBM (Exp-RBM), is a subset of the exponential family Harmoniums that expresses family members through a choice of smooth monotonic non-linearity for each neuron. Using contrastive divergence along with our Gaussian approximation, we show that Exp-RBM can learn useful representations using novel stochastic units.
Siamak Ravanbakhsh, Barnabas Poczos, Jeff Schneider, Dale Schuurmans, Russell Greiner
null
1601.00034
null
null
Practical Algorithms for Learning Near-Isometric Linear Embeddings
stat.ML cs.LG math.OC
We propose two practical non-convex approaches for learning near-isometric, linear embeddings of finite sets of data points. Given a set of training points $\mathcal{X}$, we consider the secant set $S(\mathcal{X})$ that consists of all pairwise difference vectors of $\mathcal{X}$, normalized to lie on the unit sphere. The problem can be formulated as finding a symmetric and positive semi-definite matrix $\boldsymbol{\Psi}$ that preserves the norms of all the vectors in $S(\mathcal{X})$ up to a distortion parameter $\delta$. Motivated by non-negative matrix factorization, we reformulate our problem into a Frobenius norm minimization problem, which is solved by the Alternating Direction Method of Multipliers (ADMM) and develop an algorithm, FroMax. Another method solves for a projection matrix $\boldsymbol{\Psi}$ by minimizing the restricted isometry property (RIP) directly over the set of symmetric, postive semi-definite matrices. Applying ADMM and a Moreau decomposition on a proximal mapping, we develop another algorithm, NILE-Pro, for dimensionality reduction. FroMax is shown to converge faster for smaller $\delta$ while NILE-Pro converges faster for larger $\delta$. Both non-convex approaches are then empirically demonstrated to be more computationally efficient than prior convex approaches for a number of applications in machine learning and signal processing.
Jerry Luo, Kayla Shapiro, Hao-Jun Michael Shi, Qi Yang, and Kan Zhu
null
1601.00062
null
null
Supervised Dimensionality Reduction via Distance Correlation Maximization
cs.LG stat.ML
In our work, we propose a novel formulation for supervised dimensionality reduction based on a nonlinear dependency criterion called Statistical Distance Correlation, Szekely et. al. (2007). We propose an objective which is free of distributional assumptions on regression variables and regression model assumptions. Our proposed formulation is based on learning a low-dimensional feature representation $\mathbf{z}$, which maximizes the squared sum of Distance Correlations between low dimensional features $\mathbf{z}$ and response $y$, and also between features $\mathbf{z}$ and covariates $\mathbf{x}$. We propose a novel algorithm to optimize our proposed objective using the Generalized Minimization Maximizaiton method of \Parizi et. al. (2015). We show superior empirical results on multiple datasets proving the effectiveness of our proposed approach over several relevant state-of-the-art supervised dimensionality reduction methods.
Praneeth Vepakomma and Chetan Tonde and Ahmed Elgammal
null
1601.00236
null
null
Dimensionality-Dependent Generalization Bounds for $k$-Dimensional Coding Schemes
stat.ML cs.LG
The $k$-dimensional coding schemes refer to a collection of methods that attempt to represent data using a set of representative $k$-dimensional vectors, and include non-negative matrix factorization, dictionary learning, sparse coding, $k$-means clustering and vector quantization as special cases. Previous generalization bounds for the reconstruction error of the $k$-dimensional coding schemes are mainly dimensionality independent. A major advantage of these bounds is that they can be used to analyze the generalization error when data is mapped into an infinite- or high-dimensional feature space. However, many applications use finite-dimensional data features. Can we obtain dimensionality-dependent generalization bounds for $k$-dimensional coding schemes that are tighter than dimensionality-independent bounds when data is in a finite-dimensional feature space? The answer is positive. In this paper, we address this problem and derive a dimensionality-dependent generalization bound for $k$-dimensional coding schemes by bounding the covering number of the loss function class induced by the reconstruction error. The bound is of order $\mathcal{O}\left(\left(mk\ln(mkn)/n\right)^{\lambda_n}\right)$, where $m$ is the dimension of features, $k$ is the number of the columns in the linear implementation of coding schemes, $n$ is the size of sample, $\lambda_n>0.5$ when $n$ is finite and $\lambda_n=0.5$ when $n$ is infinite. We show that our bound can be tighter than previous results, because it avoids inducing the worst-case upper bound on $k$ of the loss function and converges faster. The proposed generalization bound is also applied to some specific coding schemes to demonstrate that the dimensionality-dependent bound is an indispensable complement to these dimensionality-independent generalization bounds.
Tongliang Liu, Dacheng Tao, and Dong Xu
null
1601.00238
null
null
A Unified Approach for Learning the Parameters of Sum-Product Networks
cs.LG cs.AI
We present a unified approach for learning the parameters of Sum-Product networks (SPNs). We prove that any complete and decomposable SPN is equivalent to a mixture of trees where each tree corresponds to a product of univariate distributions. Based on the mixture model perspective, we characterize the objective function when learning SPNs based on the maximum likelihood estimation (MLE) principle and show that the optimization problem can be formulated as a signomial program. We construct two parameter learning algorithms for SPNs by using sequential monomial approximations (SMA) and the concave-convex procedure (CCCP), respectively. The two proposed methods naturally admit multiplicative updates, hence effectively avoiding the projection operation. With the help of the unified framework, we also show that, in the case of SPNs, CCCP leads to the same algorithm as Expectation Maximization (EM) despite the fact that they are different in general.
Han Zhao, Pascal Poupart, Geoff Gordon
null
1601.00318
null
null
Sparse Diffusion Steepest-Descent for One Bit Compressed Sensing in Wireless Sensor Networks
stat.ML cs.IT cs.LG math.IT
This letter proposes a sparse diffusion steepest-descent algorithm for one bit compressed sensing in wireless sensor networks. The approach exploits the diffusion strategy from distributed learning in the one bit compressed sensing framework. To estimate a common sparse vector cooperatively from only the sign of measurements, steepest-descent is used to minimize the suitable global and local convex cost functions. A diffusion strategy is suggested for distributive learning of the sparse vector. Simulation results show the effectiveness of the proposed distributed algorithm compared to the state-of-the-art non distributive algorithms in the one bit compressed sensing framework.
Hadi Zayyani, Mehdi Korki, Farrokh Marvasti
null
1601.00350
null
null
On the Reducibility of Submodular Functions
cs.LG stat.ML
The scalability of submodular optimization methods is critical for their usability in practice. In this paper, we study the reducibility of submodular functions, a property that enables us to reduce the solution space of submodular optimization problems without performance loss. We introduce the concept of reducibility using marginal gains. Then we show that by adding perturbation, we can endow irreducible functions with reducibility, based on which we propose the perturbation-reduction optimization framework. Our theoretical analysis proves that given the perturbation scales, the reducibility gain could be computed, and the performance loss has additive upper bounds. We further conduct empirical studies and the results demonstrate that our proposed framework significantly accelerates existing optimization methods for irreducible submodular functions with a cost of only small performance losses.
Jincheng Mei, Hao Zhang, Bao-Liang Lu
null
1601.00393
null
null
Fitting Spectral Decay with the $k$-Support Norm
cs.LG stat.ML
The spectral $k$-support norm enjoys good estimation properties in low rank matrix learning problems, empirically outperforming the trace norm. Its unit ball is the convex hull of rank $k$ matrices with unit Frobenius norm. In this paper we generalize the norm to the spectral $(k,p)$-support norm, whose additional parameter $p$ can be used to tailor the norm to the decay of the spectrum of the underlying model. We characterize the unit ball and we explicitly compute the norm. We further provide a conditional gradient method to solve regularization problems with the norm, and we derive an efficient algorithm to compute the Euclidean projection on the unit ball in the case $p=\infty$. In numerical experiments, we show that allowing $p$ to vary significantly improves performance over the spectral $k$-support norm on various matrix completion benchmarks, and better captures the spectral decay of the underlying model.
Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos
null
1601.00449
null
null
Approximate Message Passing with Nearest Neighbor Sparsity Pattern Learning
cs.IT cs.LG math.IT
We consider the problem of recovering clustered sparse signals with no prior knowledge of the sparsity pattern. Beyond simple sparsity, signals of interest often exhibits an underlying sparsity pattern which, if leveraged, can improve the reconstruction performance. However, the sparsity pattern is usually unknown a priori. Inspired by the idea of k-nearest neighbor (k-NN) algorithm, we propose an efficient algorithm termed approximate message passing with nearest neighbor sparsity pattern learning (AMP-NNSPL), which learns the sparsity pattern adaptively. AMP-NNSPL specifies a flexible spike and slab prior on the unknown signal and, after each AMP iteration, sets the sparse ratios as the average of the nearest neighbor estimates via expectation maximization (EM). Experimental results on both synthetic and real data demonstrate the superiority of our proposed algorithm both in terms of reconstruction performance and computational complexity.
Xiangming Meng and Sheng Wu and Linling Kuang and Defeng (David) Huang and Jianhua Lu
null
1601.00543
null
null
NFL Play Prediction
cs.LG
Based on NFL game data we try to predict the outcome of a play in multiple different ways. An application of this is the following: by plugging in various play options one could determine the best play for a given situation in real time. While the outcome of a play can be described in many ways we had the most promising results with a newly defined measure that we call "progress". We see this work as a first step to include predictive analysis into NFL playcalling.
Brendan Teich, Roman Lutz, Valentin Kassarnig
null
1601.00574
null
null
Robust Non-linear Regression: A Greedy Approach Employing Kernels with Application to Image Denoising
cs.LG stat.ML
We consider the task of robust non-linear regression in the presence of both inlier noise and outliers. Assuming that the unknown non-linear function belongs to a Reproducing Kernel Hilbert Space (RKHS), our goal is to estimate the set of the associated unknown parameters. Due to the presence of outliers, common techniques such as the Kernel Ridge Regression (KRR) or the Support Vector Regression (SVR) turn out to be inadequate. Instead, we employ sparse modeling arguments to explicitly model and estimate the outliers, adopting a greedy approach. The proposed robust scheme, i.e., Kernel Greedy Algorithm for Robust Denoising (KGARD), is inspired by the classical Orthogonal Matching Pursuit (OMP) algorithm. Specifically, the proposed method alternates between a KRR task and an OMP-like selection step. Theoretical results concerning the identification of the outliers are provided. Moreover, KGARD is compared against other cutting edge methods, where its performance is evaluated via a set of experiments with various types of noise. Finally, the proposed robust estimation framework is applied to the task of image denoising, and its enhanced performance in the presence of outliers is demonstrated.
George Papageorgiou, Pantelis Bouboulis and Sergios Theodoridis
10.1109/TSP.2017.2708029
1601.00595
null
null
Scalable Models for Computing Hierarchies in Information Networks
cs.AI cs.DL cs.LG
Information hierarchies are organizational structures that often used to organize and present large and complex information as well as provide a mechanism for effective human navigation. Fortunately, many statistical and computational models exist that automatically generate hierarchies; however, the existing approaches do not consider linkages in information {\em networks} that are increasingly common in real-world scenarios. Current approaches also tend to present topics as an abstract probably distribution over words, etc rather than as tangible nodes from the original network. Furthermore, the statistical techniques present in many previous works are not yet capable of processing data at Web-scale. In this paper we present the Hierarchical Document Topic Model (HDTM), which uses a distributed vertex-programming process to calculate a nonparametric Bayesian generative model. Experiments on three medium size data sets and the entire Wikipedia dataset show that HDTM can infer accurate hierarchies even over large information networks.
Baoxu Shi and Tim Weninger
null
1601.00626
null
null
Variational Inference: A Review for Statisticians
stat.CO cs.LG stat.ML
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this paper, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find the member of that family which is close to the target. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this paper is to catalyze statistical research on this class of algorithms.
David M. Blei, Alp Kucukelbir, Jon D. McAuliffe
10.1080/01621459.2017.1285773
1601.00670
null
null
Nonlinear Hebbian learning as a unifying principle in receptive field formation
q-bio.NC cs.LG
The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely Nonlinear Hebbian Learning. When Nonlinear Hebbian Learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities.
Carlos S. N. Brito, Wulfram Gerstner
10.1371/journal.pcbi.1005070
1601.00701
null
null
Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis
cs.LG cs.AI cs.CV
An important problem for both graphics and vision is to synthesize novel views of a 3D object from a single image. This is particularly challenging due to the partial observability inherent in projecting a 3D object onto the image space, and the ill-posedness of inferring object shape and pose. However, we can train a neural network to address the problem if we restrict our attention to specific object categories (in our case faces and chairs) for which we can gather ample training data. In this paper, we propose a novel recurrent convolutional encoder-decoder network that is trained end-to-end on the task of rendering rotated objects starting from a single image. The recurrent structure allows our model to capture long-term dependencies along a sequence of transformations. We demonstrate the quality of its predictions for human faces on the Multi-PIE dataset and for a dataset of 3D chair models, and also show its ability to disentangle latent factors of variation (e.g., identity and pose) without using full supervision.
Jimei Yang, Scott Reed, Ming-Hsuan Yang, Honglak Lee
null
1601.00706
null
null
Low-Rank Representation over the Manifold of Curves
cs.CV cs.LG
In machine learning it is common to interpret each data point as a vector in Euclidean space. However the data may actually be functional i.e.\ each data point is a function of some variable such as time and the function is discretely sampled. The naive treatment of functional data as traditional multivariate data can lead to poor performance since the algorithms are ignoring the correlation in the curvature of each function. In this paper we propose a method to analyse subspace structure of the functional data by using the state of the art Low-Rank Representation (LRR). Experimental evaluation on synthetic and real data reveals that this method massively outperforms conventional LRR in tasks concerning functional data.
Stephen Tierney, Junbin Gao, Yi Guo and Zhengwu Zhang
null
1601.00732
null
null
Brain4Cars: Car That Knows Before You Do via Sensory-Fusion Deep Learning Architecture
cs.RO cs.CV cs.LG
Advanced Driver Assistance Systems (ADAS) have made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver. However, many accidents are unavoidable because by the time drivers are alerted, it is already too late. Anticipating maneuvers beforehand can alert drivers before they perform the maneuver and also give ADAS more time to avoid or prepare for the danger. In this work we propose a vehicular sensor-rich platform and learning algorithms for maneuver anticipation. For this purpose we equip a car with cameras, Global Positioning System (GPS), and a computing device to capture the driving context from both inside and outside of the car. In order to anticipate maneuvers, we propose a sensory-fusion deep learning architecture which jointly learns to anticipate and fuse multiple sensory streams. Our architecture consists of Recurrent Neural Networks (RNNs) that use Long Short-Term Memory (LSTM) units to capture long temporal dependencies. We propose a novel training procedure which allows the network to predict the future given only a partial temporal context. We introduce a diverse data set with 1180 miles of natural freeway and city driving, and show that we can anticipate maneuvers 3.5 seconds before they occur in real-time with a precision and recall of 90.5\% and 87.4\% respectively.
Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, Ashutosh Saxena
null
1601.00740
null
null
Learning Preferences for Manipulation Tasks from Online Coactive Feedback
cs.RO cs.AI cs.LG
We consider the problem of learning preferences over trajectories for mobile manipulators such as personal robots and assembly line robots. The preferences we learn are more intricate than simple geometric constraints on trajectories; they are rather governed by the surrounding context of various objects and human interactions in the environment. We propose a coactive online learning framework for teaching preferences in contextually rich environments. The key novelty of our approach lies in the type of feedback expected from the user: the human user does not need to demonstrate optimal trajectories as training data, but merely needs to iteratively provide trajectories that slightly improve over the trajectory currently proposed by the system. We argue that this coactive preference feedback can be more easily elicited than demonstrations of optimal trajectories. Nevertheless, theoretical regret bounds of our algorithm match the asymptotic rates of optimal trajectory algorithms. We implement our algorithm on two high degree-of-freedom robots, PR2 and Baxter, and present three intuitive mechanisms for providing such incremental feedback. In our experimental evaluation we consider two context rich settings -- household chores and grocery store checkout -- and show that users are able to train the robot with just a few feedbacks (taking only a few minutes).\footnote{Parts of this work has been published at NIPS and ISRR conferences~\citep{Jain13,Jain13b}. This journal submission presents a consistent full paper, and also includes the proof of regret bounds, more details of the robotic system, and a thorough related work.}
Ashesh Jain, Shikhar Sharma, Thorsten Joachims, Ashutosh Saxena
null
1601.00741
null
null
End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures
cs.CL cs.LG
We present a novel end-to-end neural model to extract entities and relations between them. Our recurrent neural network based model captures both word sequence and dependency tree substructure information by stacking bidirectional tree-structured LSTM-RNNs on bidirectional sequential LSTM-RNNs. This allows our model to jointly represent both entities and relations with shared parameters in a single model. We further encourage detection of entities during training and use of entity information in relation extraction via entity pretraining and scheduled sampling. Our model improves over the state-of-the-art feature-based model on end-to-end relation extraction, achieving 12.1% and 5.7% relative error reductions in F1-score on ACE2005 and ACE2004, respectively. We also show that our LSTM-RNN based model compares favorably to the state-of-the-art CNN based model (in F1-score) on nominal relation classification (SemEval-2010 Task 8). Finally, we present an extensive ablation analysis of several model components.
Makoto Miwa and Mohit Bansal
null
1601.00770
null
null
Open challenges in understanding development and evolution of speech forms: The roles of embodied self-organization, motivation and active exploration
cs.AI cs.CL cs.CY cs.LG
This article discusses open scientific challenges for understanding development and evolution of speech forms, as a commentary to Moulin-Frier et al. (Moulin-Frier et al., 2015). Based on the analysis of mathematical models of the origins of speech forms, with a focus on their assumptions , we study the fundamental question of how speech can be formed out of non--speech, at both developmental and evolutionary scales. In particular, we emphasize the importance of embodied self-organization , as well as the role of mechanisms of motivation and active curiosity-driven exploration in speech formation. Finally , we discuss an evolutionary-developmental perspective of the origins of speech.
Pierre-Yves Oudeyer (Flowers)
10.1016/j.wocn.2015.09.001
1601.00816
null
null
DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks
cs.LG cs.NE
The performance of deep neural networks is well-known to be sensitive to the setting of their hyperparameters. Recent advances in reverse-mode automatic differentiation allow for optimizing hyperparameters with gradients. The standard way of computing these gradients involves a forward and backward pass of computations. However, the backward pass usually needs to consume unaffordable memory to store all the intermediate variables to exactly reverse the forward training procedure. In this work we propose a simple but effective method, DrMAD, to distill the knowledge of the forward pass into a shortcut path, through which we approximately reverse the training trajectory. Experiments on several image benchmark datasets show that DrMAD is at least 45 times faster and consumes 100 times less memory compared to state-of-the-art methods for optimizing hyperparameters with minimal compromise to its effectiveness. To the best of our knowledge, DrMAD is the first research attempt to make it practical to automatically tune thousands of hyperparameters of deep neural networks. The code can be downloaded from https://github.com/bigaidream-projects/drmad
Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, Tat-Seng Chua
null
1601.00917
null
null
Complex Decomposition of the Negative Distance kernel
cs.LG
A Support Vector Machine (SVM) has become a very popular machine learning method for text classification. One reason for this relates to the range of existing kernels which allow for classifying data that is not linearly separable. The linear, polynomial and RBF (Gaussian Radial Basis Function) kernel are commonly used and serve as a basis of comparison in our study. We show how to derive the primal form of the quadratic Power Kernel (PK) -- also called the Negative Euclidean Distance Kernel (NDK) -- by means of complex numbers. We exemplify the NDK in the framework of text categorization using the Dewey Document Classification (DDC) as the target scheme. Our evaluation shows that the power kernel produces F-scores that are comparable to the reference kernels, but is -- except for the linear kernel -- faster to compute. Finally, we show how to extend the NDK-approach by including the Mahalanobis distance.
Tim vor der Br\"uck, Steffen Eger, Alexander Mehler
null
1601.00925
null
null
Optimally Pruning Decision Tree Ensembles With Feature Cost
stat.ML cs.LG
We consider the problem of learning decision rules for prediction with feature budget constraint. In particular, we are interested in pruning an ensemble of decision trees to reduce expected feature cost while maintaining high prediction accuracy for any test example. We propose a novel 0-1 integer program formulation for ensemble pruning. Our pruning formulation is general - it takes any ensemble of decision trees as input. By explicitly accounting for feature-sharing across trees together with accuracy/cost trade-off, our method is able to significantly reduce feature cost by pruning subtrees that introduce more loss in terms of feature cost than benefit in terms of prediction accuracy gain. Theoretically, we prove that a linear programming relaxation produces the exact solution of the original integer program. This allows us to use efficient convex optimization tools to obtain an optimally pruned ensemble for any given budget. Empirically, we see that our pruning algorithm significantly improves the performance of the state of the art ensemble method BudgetRF.
Feng Nan, Joseph Wang, Venkatesh Saligrama
null
1601.00955
null
null
A Survey on Social Media Anomaly Detection
cs.LG cs.SI
Social media anomaly detection is of critical importance to prevent malicious activities such as bullying, terrorist attack planning, and fraud information dissemination. With the recent popularity of social media, new types of anomalous behaviors arise, causing concerns from various parties. While a large amount of work have been dedicated to traditional anomaly detection problems, we observe a surge of research interests in the new realm of social media anomaly detection. In this paper, we present a survey on existing approaches to address this problem. We focus on the new type of anomalous phenomena in the social media and review the recent developed techniques to detect those special types of anomalies. We provide a general overview of the problem domain, common formulations, existing methodologies and potential directions. With this work, we hope to call out the attention from the research community on this challenging problem and open up new directions that we can contribute in the future.
Rose Yu, Huida Qiu, Zhen Wen, Ching-Yung Lin, Yan Liu
null
1601.01102
null
null
A pragmatic approach to multi-class classification
cs.LG
We present a novel hierarchical approach to multi-class classification which is generic in that it can be applied to different classification models (e.g., support vector machines, perceptrons), and makes no explicit assumptions about the probabilistic structure of the problem as it is usually done in multi-class classification. By adding a cascade of additional classifiers, each of which receives the previous classifier's output in addition to regular input data, the approach harnesses unused information that manifests itself in the form of, e.g., correlations between predicted classes. Using multilayer perceptrons as a classification model, we demonstrate the validity of this approach by testing it on a complex ten-class 3D gesture recognition task.
Thomas Kopinski, St\'ephane Magand (ENSTA ParisTech U2IS/RV), Uwe Handmann, Alexander Gepperth (Flowers, ENSTA ParisTech U2IS/RV)
10.1109/IJCNN.2015.7280768
1601.01121
null
null
Streaming Gibbs Sampling for LDA Model
cs.LG stat.ML
Streaming variational Bayes (SVB) is successful in learning LDA models in an online manner. However previous attempts toward developing online Monte-Carlo methods for LDA have little success, often by having much worse perplexity than their batch counterparts. We present a streaming Gibbs sampling (SGS) method, an online extension of the collapsed Gibbs sampling (CGS). Our empirical study shows that SGS can reach similar perplexity as CGS, much better than SVB. Our distributed version of SGS, DSGS, is much more scalable than SVB mainly because the updates' communication complexity is small.
Yang Gao, Jianfei Chen, Jun Zhu
null
1601.01142
null
null
A simple technique for improving multi-class classification with neural networks
cs.LG
We present a novel method to perform multi-class pattern classification with neural networks and test it on a challenging 3D hand gesture recognition problem. Our method consists of a standard one-against-all (OAA) classification, followed by another network layer classifying the resulting class scores, possibly augmented by the original raw input vector. This allows the network to disambiguate hard-to-separate classes as the distribution of class scores carries considerable information as well, and is in fact often used for assessing the confidence of a decision. We show that by this approach we are able to significantly boost our results, overall as well as for particular difficult cases, on the hard 10-class gesture classification task.
Thomas Kopinski, Alexander Gepperth (ENSTA ParisTech U2IS/RV, Flowers), Uwe Handmann
null
1601.01157
null
null
Adaptive and Efficient Nonlinear Channel Equalization for Underwater Acoustic Communication
cs.LG cs.IT cs.SD math.IT
We investigate underwater acoustic (UWA) channel equalization and introduce hierarchical and adaptive nonlinear channel equalization algorithms that are highly efficient and provide significantly improved bit error rate (BER) performance. Due to the high complexity of nonlinear equalizers and poor performance of linear ones, to equalize highly difficult underwater acoustic channels, we employ piecewise linear equalizers. However, in order to achieve the performance of the best piecewise linear model, we use a tree structure to hierarchically partition the space of the received signal. Furthermore, the equalization algorithm should be completely adaptive, since due to the highly non-stationary nature of the underwater medium, the optimal MSE equalizer as well as the best piecewise linear equalizer changes in time. To this end, we introduce an adaptive piecewise linear equalization algorithm that not only adapts the linear equalizer at each region but also learns the complete hierarchical structure with a computational complexity only polynomial in the number of nodes of the tree. Furthermore, our algorithm is constructed to directly minimize the final squared error without introducing any ad-hoc parameters. We demonstrate the performance of our algorithms through highly realistic experiments performed on accurately simulated underwater acoustic channels.
Dariush Kari and Nuri Denizcan Vanli and Suleyman Serdar Kozat
null
1601.01218
null
null
Angrier Birds: Bayesian reinforcement learning
cs.AI cs.LG
We train a reinforcement learner to play a simplified version of the game Angry Birds. The learner is provided with a game state in a manner similar to the output that could be produced by computer vision algorithms. We improve on the efficiency of regular {\epsilon}-greedy Q-Learning with linear function approximation through more systematic exploration in Randomized Least Squares Value Iteration (RLSVI), an algorithm that samples its policy from a posterior distribution on optimal policies. With larger state-action spaces, efficient exploration becomes increasingly important, as evidenced by the faster learning in RLSVI.
Imanol Arrieta Ibarra, Bernardo Ramos, Lars Roemheld
null
1601.01297
null
null
From Word Embeddings to Item Recommendation
cs.LG cs.CL cs.IR cs.SI
Social network platforms can use the data produced by their users to serve them better. One of the services these platforms provide is recommendation service. Recommendation systems can predict the future preferences of users using their past preferences. In the recommendation systems literature there are various techniques, such as neighborhood based methods, machine-learning based methods and matrix-factorization based methods. In this work, a set of well known methods from natural language processing domain, namely Word2Vec, is applied to recommendation systems domain. Unlike previous works that use Word2Vec for recommendation, this work uses non-textual features, the check-ins, and it recommends venues to visit/check-in to the target users. For the experiments, a Foursquare check-in dataset is used. The results show that use of continuous vector space representations of items modeled by techniques of Word2Vec is promising for making recommendations.
Makbule Gulcin Ozsoy
null
1601.01356
null
null
Learning Kernels for Structured Prediction using Polynomial Kernel Transformations
cs.LG stat.ML
Learning the kernel functions used in kernel methods has been a vastly explored area in machine learning. It is now widely accepted that to obtain 'good' performance, learning a kernel function is the key challenge. In this work we focus on learning kernel representations for structured regression. We propose use of polynomials expansion of kernels, referred to as Schoenberg transforms and Gegenbaur transforms, which arise from the seminal result of Schoenberg (1938). These kernels can be thought of as polynomial combination of input features in a high dimensional reproducing kernel Hilbert space (RKHS). We learn kernels over input and output for structured data, such that, dependency between kernel features is maximized. We use Hilbert-Schmidt Independence Criterion (HSIC) to measure this. We also give an efficient, matrix decomposition-based algorithm to learn these kernel transformations, and demonstrate state-of-the-art results on several real-world datasets.
Chetan Tonde and Ahmed Elgammal
null
1601.01411
null
null
Fast Kronecker product kernel methods via generalized vec trick
stat.ML cs.LG
Kronecker product kernel provides the standard approach in the kernel methods literature for learning from graph data, where edges are labeled and both start and end vertices have their own feature representations. The methods allow generalization to such new edges, whose start and end vertices do not appear in the training data, a setting known as zero-shot or zero-data learning. Such a setting occurs in numerous applications, including drug-target interaction prediction, collaborative filtering and information retrieval. Efficient training algorithms based on the so-called vec trick, that makes use of the special structure of the Kronecker product, are known for the case where the training data is a complete bipartite graph. In this work we generalize these results to non-complete training graphs. This allows us to derive a general framework for training Kronecker product kernel methods, as specific examples we implement Kronecker ridge regression and support vector machine algorithms. Experimental results demonstrate that the proposed approach leads to accurate models, while allowing order of magnitude improvements in training and prediction time.
Antti Airola, Tapio Pahikkala
10.1109/TNNLS.2017.2727545
1601.01507
null
null
State Space representation of non-stationary Gaussian Processes
cs.LG stat.ML
The state space (SS) representation of Gaussian processes (GP) has recently gained a lot of interest. The main reason is that it allows to compute GPs based inferences in O(n), where $n$ is the number of observations. This implementation makes GPs suitable for Big Data. For this reason, it is important to provide a SS representation of the most important kernels used in machine learning. The aim of this paper is to show how to exploit the transient behaviour of SS models to map non-stationary kernels to SS models.
Alessio Benavoli and Marco Zaffalon
null
1601.01544
null
null
An Automaton Learning Approach to Solving Safety Games over Infinite Graphs
cs.FL cs.LG cs.LO
We propose a method to construct finite-state reactive controllers for systems whose interactions with their adversarial environment are modeled by infinite-duration two-player games over (possibly) infinite graphs. The proposed method targets safety games with infinitely many states or with such a large number of states that it would be impractical---if not impossible---for conventional synthesis techniques that work on the entire state space. We resort to constructing finite-state controllers for such systems through an automata learning approach, utilizing a symbolic representation of the underlying game that is based on finite automata. Throughout the learning process, the learner maintains an approximation of the winning region (represented as a finite automaton) and refines it using different types of counterexamples provided by the teacher until a satisfactory controller can be derived (if one exists). We present a symbolic representation of safety games (inspired by regular model checking), propose implementations of the learner and teacher, and evaluate their performance on examples motivated by robotic motion planning in dynamic environments.
Daniel Neider, Ufuk Topcu
null
1601.01660
null
null
Ensemble Methods of Classification for Power Systems Security Assessment
cs.AI cs.LG
One of the most promising approaches for complex technical systems analysis employs ensemble methods of classification. Ensemble methods enable to build a reliable decision rules for feature space classification in the presence of many possible states of the system. In this paper, novel techniques based on decision trees are used for evaluation of the reliability of the regime of electric power systems. We proposed hybrid approach based on random forests models and boosting models. Such techniques can be applied to predict the interaction of increasing renewable power, storage devices and swiching of smart loads from intelligent domestic appliances, heaters and air-conditioning units and electric vehicles with grid for enhanced decision making. The ensemble classification methods were tested on the modified 118-bus IEEE power system showing that proposed technique can be employed to examine whether the power system is secured under steady-state operating conditions.
Alexei Zhukov, Victor Kurbatsky, Nikita Tomin, Denis Sidorov, Daniil Panasetsky and Aoife Foley
null
1601.01675
null
null
Dense Bag-of-Temporal-SIFT-Words for Time Series Classification
cs.LG
Time series classification is an application of particular interest with the increase of data to monitor. Classical techniques for time series classification rely on point-to-point distances. Recently, Bag-of-Words approaches have been used in this context. Words are quantized versions of simple features extracted from sliding windows. The SIFT framework has proved efficient for image classification. In this paper, we design a time series classification scheme that builds on the SIFT framework adapted to time series to feed a Bag-of-Words. We then refine our method by studying the impact of normalized Bag-of-Words, as well as densely extract point descriptors. Proposed adjustements achieve better performance. The evaluation shows that our method outperforms classical techniques in terms of classification.
Adeline Bailly (LETG - Costel, OBELIX), Simon Malinowski (LinkMedia), Romain Tavenard (LETG - Costel, OBELIX), Thomas Guyet (DREAM), Laetitia Chapel (OBELIX)
null
1601.01799
null
null
Song Recommendation with Non-Negative Matrix Factorization and Graph Total Variation
stat.ML cs.IR cs.LG physics.data-an
This work formulates a novel song recommender system as a matrix completion problem that benefits from collaborative filtering through Non-negative Matrix Factorization (NMF) and content-based filtering via total variation (TV) on graphs. The graphs encode both playlist proximity information and song similarity, using a rich combination of audio, meta-data and social features. As we demonstrate, our hybrid recommendation system is very versatile and incorporates several well-known methods while outperforming them. Particularly, we show on real-world data that our model overcomes w.r.t. two evaluation metrics the recommendation of models solely based on low-rank information, graph-based information or a combination of both.
Kirell Benzi, Vassilis Kalofolias, Xavier Bresson, Pierre Vandergheynst
null
1601.01892
null
null
Nonparametric semi-supervised learning of class proportions
stat.ML cs.LG
The problem of developing binary classifiers from positive and unlabeled data is often encountered in machine learning. A common requirement in this setting is to approximate posterior probabilities of positive and negative classes for a previously unseen data point. This problem can be decomposed into two steps: (i) the development of accurate predictors that discriminate between positive and unlabeled data, and (ii) the accurate estimation of the prior probabilities of positive and negative examples. In this work we primarily focus on the latter subproblem. We study nonparametric class prior estimation and formulate this problem as an estimation of mixing proportions in two-component mixture models, given a sample from one of the components and another sample from the mixture itself. We show that estimation of mixing proportions is generally ill-defined and propose a canonical form to obtain identifiability while maintaining the flexibility to model any distribution. We use insights from this theory to elucidate the optimization surface of the class priors and propose an algorithm for estimating them. To address the problems of high-dimensional density estimation, we provide practical transformations to low-dimensional spaces that preserve class priors. Finally, we demonstrate the efficacy of our method on univariate and multivariate data.
Shantanu Jain, Martha White, Michael W. Trosset, Predrag Radivojac
null
1601.01944
null
null
Scale-Free Online Learning
cs.LG
We design and analyze algorithms for online linear optimization that have optimal regret and at the same time do not need to know any upper or lower bounds on the norm of the loss vectors. Our algorithms are instances of the Follow the Regularized Leader (FTRL) and Mirror Descent (MD) meta-algorithms. We achieve adaptiveness to the norms of the loss vectors by scale invariance, i.e., our algorithms make exactly the same decisions if the sequence of loss vectors is multiplied by any positive constant. The algorithm based on FTRL works for any decision set, bounded or unbounded. For unbounded decisions sets, this is the first adaptive algorithm for online linear optimization with a non-vacuous regret bound. In contrast, we show lower bounds on scale-free algorithms based on MD on unbounded domains.
Francesco Orabona and D\'avid P\'al
null
1601.01974
null
null
A note on the sample complexity of the Er-SpUD algorithm by Spielman, Wang and Wright for exact recovery of sparsely used dictionaries
math.PR cs.LG math.ST stat.TH
We consider the problem of recovering an invertible $n \times n$ matrix $A$ and a sparse $n \times p$ random matrix $X$ based on the observation of $Y = AX$ (up to a scaling and permutation of columns of $A$ and rows of $X$). Using only elementary tools from the theory of empirical processes we show that a version of the Er-SpUD algorithm by Spielman, Wang and Wright with high probability recovers $A$ and $X$ exactly, provided that $p \ge Cn\log n$, which is optimal up to the constant $C$.
Rados{\l}aw Adamczak
null
1601.02049
null
null
On Computationally Tractable Selection of Experiments in Measurement-Constrained Regression Models
stat.ML cs.LG math.ST stat.TH
We derive computationally tractable methods to select a small subset of experiment settings from a large pool of given design points. The primary focus is on linear regression models, while the technique extends to generalized linear models and Delta's method (estimating functions of linear regression models) as well. The algorithms are based on a continuous relaxation of an otherwise intractable combinatorial optimization problem, with sampling or greedy procedures as post-processing steps. Formal approximation guarantees are established for both algorithms, and numerical results on both synthetic and real-world data confirm the effectiveness of the proposed methods.
Yining Wang and Adams Wei Yu and Aarti Singh
null
1601.02068
null
null
On Clustering Time Series Using Euclidean Distance and Pearson Correlation
cs.LG cs.AI stat.ML
For time series comparisons, it has often been observed that z-score normalized Euclidean distances far outperform the unnormalized variant. In this paper we show that a z-score normalized, squared Euclidean Distance is, in fact, equal to a distance based on Pearson Correlation. This has profound impact on many distance-based classification or clustering methods. In addition to this theoretically sound result we also show that the often used k-Means algorithm formally needs a mod ification to keep the interpretation as Pearson correlation strictly valid. Experimental results demonstrate that in many cases the standard k-Means algorithm generally produces the same results.
Michael R. Berthold and Frank H\"oppner
null
1601.02213
null
null
A Sufficient Statistics Construction of Bayesian Nonparametric Exponential Family Conjugate Models
cs.LG stat.ML
Conjugate pairs of distributions over infinite dimensional spaces are prominent in statistical learning theory, particularly due to the widespread adoption of Bayesian nonparametric methodologies for a host of models and applications. Much of the existing literature in the learning community focuses on processes possessing some form of computationally tractable conjugacy as is the case for the beta and gamma processes (and, via normalization, the Dirichlet process). For these processes, proofs of conjugacy and requisite derivation of explicit computational formulae for posterior density parameters are idiosyncratic to the stochastic process in question. As such, Bayesian Nonparametric models are currently available for a limited number of conjugate pairs, e.g. the Dirichlet-multinomial and beta-Bernoulli process pairs. In each of these above cases the likelihood process belongs to the class of discrete exponential family distributions. The exclusion of continuous likelihood distributions from the known cases of Bayesian Nonparametric Conjugate models stands as a disparity in the researcher's toolbox. In this paper we first address the problem of obtaining a general construction of prior distributions over infinite dimensional spaces possessing distributional properties amenable to conjugacy. Second, we bridge the divide between the discrete and continuous likelihoods by illustrating a canonical construction for stochastic processes whose Levy measure densities are from positive exponential families, and then demonstrate that these processes in fact form the prior, likelihood, and posterior in a conjugate family. Our canonical construction subsumes known computational formulae for posterior density parameters in the cases where the likelihood is from a discrete distribution belonging to an exponential family.
Robert Finn and Brian Kulis
null
1601.02257
null
null
Temporal Multinomial Mixture for Instance-Oriented Evolutionary Clustering
cs.IR cs.LG stat.ML
Evolutionary clustering aims at capturing the temporal evolution of clusters. This issue is particularly important in the context of social media data that are naturally temporally driven. In this paper, we propose a new probabilistic model-based evolutionary clustering technique. The Temporal Multinomial Mixture (TMM) is an extension of classical mixture model that optimizes feature co-occurrences in the trade-off with temporal smoothness. Our model is evaluated for two recent case studies on opinion aggregation over time. We compare four different probabilistic clustering models and we show the superiority of our proposal in the task of instance-oriented clustering.
Young-Min Kim, Julien Velcin, St\'ephane Bonnevay, Marian-Andrei Rizoiu
10.1007/978-3-319-16354-3_66
1601.02300
null
null
A Synthetic Approach for Recommendation: Combining Ratings, Social Relations, and Reviews
cs.IR cs.AI cs.LG
Recommender systems (RSs) provide an effective way of alleviating the information overload problem by selecting personalized choices. Online social networks and user-generated content provide diverse sources for recommendation beyond ratings, which present opportunities as well as challenges for traditional RSs. Although social matrix factorization (Social MF) can integrate ratings with social relations and topic matrix factorization can integrate ratings with item reviews, both of them ignore some useful information. In this paper, we investigate the effective data fusion by combining the two approaches, in two steps. First, we extend Social MF to exploit the graph structure of neighbors. Second, we propose a novel framework MR3 to jointly model these three types of information effectively for rating prediction by aligning latent factors and hidden topics. We achieve more accurate rating prediction on two real-life datasets. Furthermore, we measure the contribution of each data source to the proposed framework.
Guang-Neng Hu, Xin-Yu Dai, Yunya Song, Shu-Jian Huang, Jia-Jun Chen
null
1601.02327
null
null
Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction
cs.LG cs.IR
Predicting user responses, such as click-through rate and conversion rate, are critical in many web applications including web search, personalised recommendation, and online advertising. Different from continuous raw features that we usually found in the image and audio domains, the input features in web space are always of multi-field and are mostly discrete and categorical while their dependencies are little known. Major user response prediction models have to either limit themselves to linear models or require manually building up high-order combination features. The former loses the ability of exploring feature interactions, while the latter results in a heavy computation in the large feature space. To tackle the issue, we propose two novel models using deep neural networks (DNNs) to automatically learn effective patterns from categorical feature interactions and make predictions of users' ad clicks. To get our DNNs efficiently work, we propose to leverage three feature transformation methods, i.e., factorisation machines (FMs), restricted Boltzmann machines (RBMs) and denoising auto-encoders (DAEs). This paper presents the structure of our models and their efficient training algorithms. The large-scale experiments with real-world data demonstrate that our methods work better than major state-of-the-art models.
Weinan Zhang, Tianming Du, Jun Wang
null
1601.02376
null
null
Implicit Look-alike Modelling in Display Ads: Transfer Collaborative Filtering to CTR Estimation
cs.LG cs.IR
User behaviour targeting is essential in online advertising. Compared with sponsored search keyword targeting and contextual advertising page content targeting, user behaviour targeting builds users' interest profiles via tracking their online behaviour and then delivers the relevant ads according to each user's interest, which leads to higher targeting accuracy and thus more improved advertising performance. The current user profiling methods include building keywords and topic tags or mapping users onto a hierarchical taxonomy. However, to our knowledge, there is no previous work that explicitly investigates the user online visits similarity and incorporates such similarity into their ad response prediction. In this work, we propose a general framework which learns the user profiles based on their online browsing behaviour, and transfers the learned knowledge onto prediction of their ad response. Technically, we propose a transfer learning model based on the probabilistic latent factor graphic models, where the users' ad response profiles are generated from their online browsing profiles. The large-scale experiments based on real-world data demonstrate significant improvement of our solution over some strong baselines.
Weinan Zhang, Lingxi Chen, Jun Wang
null
1601.02377
null
null
How to learn a graph from smooth signals
stat.ML cs.LG physics.data-an
We propose a framework that learns the graph structure underlying a set of smooth signals. Given $X\in\mathbb{R}^{m\times n}$ whose rows reside on the vertices of an unknown graph, we learn the edge weights $w\in\mathbb{R}_+^{m(m-1)/2}$ under the smoothness assumption that $\text{tr}{X^\top LX}$ is small. We show that the problem is a weighted $\ell$-1 minimization that leads to naturally sparse solutions. We point out how known graph learning or construction techniques fall within our framework and propose a new model that performs better than the state of the art in many settings. We present efficient, scalable primal-dual based algorithms for both our model and the previous state of the art, and evaluate their performance on artificial and real data.
Vassilis Kalofolias
null
1601.02513
null
null
How to Use Temporal-Driven Constrained Clustering to Detect Typical Evolutions
cs.LG cs.DS
In this paper, we propose a new time-aware dissimilarity measure that takes into account the temporal dimension. Observations that are close in the description space, but distant in time are considered as dissimilar. We also propose a method to enforce the segmentation contiguity, by introducing, in the objective function, a penalty term inspired from the Normal Distribution Function. We combine the two propositions into a novel time-driven constrained clustering algorithm, called TDCK-Means, which creates a partition of coherent clusters, both in the multidimensional space and in the temporal space. This algorithm uses soft semi-supervised constraints, to encourage adjacent observations belonging to the same entity to be assigned to the same cluster. We apply our algorithm to a Political Studies dataset in order to detect typical evolution phases. We adapt the Shannon entropy in order to measure the entity contiguity, and we show that our proposition consistently improves temporal cohesion of clusters, without any significant loss in the multidimensional variance.
Marian-Andrei Rizoiu, Julien Velcin, St\'ephane Lallich
10.1142/S0218213014600136
1601.02603
null
null
Using SVM to pre-classify government purchases
cs.LG
The Brazilian government often misclassifies the goods it buys. That makes it hard to audit government expenditures. We cannot know whether the price paid for a ballpoint pen (code #7510) was reasonable if the pen was misclassified as a technical drawing pen (code #6675) or as any other good. This paper shows how we can use machine learning to reduce misclassification. I trained a support vector machine (SVM) classifier that takes a product description as input and returns the most likely category codes as output. I trained the classifier using 20 million goods purchased by the Brazilian government between 1999-04-01 and 2015-04-02. In 83.3% of the cases the correct category code was one of the three most likely category codes identified by the classifier. I used the trained classifier to develop a web app that might help the government reduce misclassification. I open sourced the code on GitHub; anyone can use and modify it.
Thiago Marzag\~ao
null
1601.02680
null
null
Robobarista: Learning to Manipulate Novel Objects via Deep Multimodal Embedding
cs.RO cs.AI cs.LG
There is a large variety of objects and appliances in human environments, such as stoves, coffee dispensers, juice extractors, and so on. It is challenging for a roboticist to program a robot for each of these object types and for each of their instantiations. In this work, we present a novel approach to manipulation planning based on the idea that many household objects share similarly-operated object parts. We formulate the manipulation planning as a structured prediction problem and learn to transfer manipulation strategy across different objects by embedding point-cloud, natural language, and manipulation trajectory data into a shared embedding space using a deep neural network. In order to learn semantically meaningful spaces throughout our network, we introduce a method for pre-training its lower layers for multimodal feature embedding and a method for fine-tuning this embedding space using a loss-based margin. In order to collect a large number of manipulation demonstrations for different objects, we develop a new crowd-sourcing platform called Robobarista. We test our model on our dataset consisting of 116 objects and appliances with 249 parts along with 250 language instructions, for which there are 1225 crowd-sourced manipulation demonstrations. We further show that our robot with our model can even prepare a cup of a latte with appliances it has never seen before.
Jaeyong Sung, Seok Hyun Jin, Ian Lenz, Ashutosh Saxena
null
1601.02705
null
null
Deep Learning of Part-based Representation of Data Using Sparse Autoencoders with Nonnegativity Constraints
cs.LG stat.ML
We demonstrate a new deep learning autoencoder network, trained by a nonnegativity constraint algorithm (NCAE), that learns features which show part-based representation of data. The learning algorithm is based on constraining negative weights. The performance of the algorithm is assessed based on decomposing data into parts and its prediction performance is tested on three standard image data sets and one text dataset. The results indicate that the nonnegativity constraint forces the autoencoder to learn features that amount to a part-based representation of data, while improving sparsity and reconstruction quality in comparison with the traditional sparse autoencoder and Nonnegative Matrix Factorization. It is also shown that this newly acquired representation improves the prediction performance of a deep neural network.
Ehsan Hosseini-Asl, Jacek M. Zurada, Olfa Nasraoui
10.1109/TNNLS.2015.2479223
1601.02733
null
null
Learning Hidden Unit Contributions for Unsupervised Acoustic Model Adaptation
cs.CL cs.LG cs.SD
This work presents a broad study on the adaptation of neural network acoustic models by means of learning hidden unit contributions (LHUC) -- a method that linearly re-combines hidden units in a speaker- or environment-dependent manner using small amounts of unsupervised adaptation data. We also extend LHUC to a speaker adaptive training (SAT) framework that leads to a more adaptable DNN acoustic model, working both in a speaker-dependent and a speaker-independent manner, without the requirements to maintain auxiliary speaker-dependent feature extractors or to introduce significant speaker-dependent changes to the DNN structure. Through a series of experiments on four different speech recognition benchmarks (TED talks, Switchboard, AMI meetings, and Aurora4) comprising 270 test speakers, we show that LHUC in both its test-only and SAT variants results in consistent word error rate reductions ranging from 5% to 23% relative depending on the task and the degree of mismatch between training and test data. In addition, we have investigated the effect of the amount of adaptation data per speaker, the quality of unsupervised adaptation targets, the complementarity to other adaptation techniques, one-shot adaptation, and an extension to adapting DNNs trained in a sequence discriminative manner.
Pawel Swietojanski and Jinyu Li and Steve Renals
10.1109/TASLP.2016.2560534
1601.02828
null
null
Online Model Estimation for Predictive Thermal Control of Buildings
cs.SY cs.LG
This study proposes a general, scalable method to learn control-oriented thermal models of buildings that could enable wide-scale deployment of cost-effective predictive controls. An Unscented Kalman Filter augmented for parameter and disturbance estimation is shown to accurately learn and predict a building's thermal response. Recent studies of heating, ventilating, and air conditioning (HVAC) systems have shown significant energy savings with advanced model predictive control (MPC). A scalable cost-effective method to readily acquire accurate, robust models of individual buildings' unique thermal envelopes has historically been elusive and hindered the widespread deployment of prediction-based control systems. Continuous commissioning and lifetime performance of these thermal models requires deployment of on-line data-driven system identification and parameter estimation routines. We propose a novel gray-box approach using an Unscented Kalman Filter based on a multi-zone thermal network and validate it with EnergyPlus simulation data. The filter quickly learns parameters of a thermal network during periods of known or constrained loads and then characterizes unknown loads in order to provide accurate 24+ hour energy predictions. This study extends our initial investigation by formalizing parameter and disturbance estimation routines and demonstrating results across a year-long study.
Peter Radecki and Brandon Hencey
null
1601.02947
null
null
Infomax strategies for an optimal balance between exploration and exploitation
cs.LG cs.IT math.IT physics.data-an q-bio.PE stat.ML
Proper balance between exploitation and exploration is what makes good decisions, which achieve high rewards like payoff or evolutionary fitness. The Infomax principle postulates that maximization of information directs the function of diverse systems, from living systems to artificial neural networks. While specific applications are successful, the validity of information as a proxy for reward remains unclear. Here, we consider the multi-armed bandit decision problem, which features arms (slot-machines) of unknown probabilities of success and a player trying to maximize cumulative payoff by choosing the sequence of arms to play. We show that an Infomax strategy (Info-p) which optimally gathers information on the highest mean reward among the arms saturates known optimal bounds and compares favorably to existing policies. The highest mean reward considered by Info-p is not the quantity actually needed for the choice of the arm to play, yet it allows for optimal tradeoffs between exploration and exploitation.
Gautam Reddy, Antonio Celani and Massimo Vergassola
10.1007/s10955-016-1521-0
1601.03073
null
null
Online Prediction of Dyadic Data with Heterogeneous Matrix Factorization
cs.LG stat.ML
Dyadic Data Prediction (DDP) is an important problem in many research areas. This paper develops a novel fully Bayesian nonparametric framework which integrates two popular and complementary approaches, discrete mixed membership modeling and continuous latent factor modeling into a unified Heterogeneous Matrix Factorization~(HeMF) model, which can predict the unobserved dyadics accurately. The HeMF can determine the number of communities automatically and exploit the latent linear structure for each bicluster efficiently. We propose a Variational Bayesian method to estimate the parameters and missing data. We further develop a novel online learning approach for Variational inference and use it for the online learning of HeMF, which can efficiently cope with the important large-scale DDP problem. We evaluate the performance of our method on the EachMoive, MovieLens and Netflix Prize collaborative filtering datasets. The experiment shows that, our model outperforms state-of-the-art methods on all benchmarks. Compared with Stochastic Gradient Method (SGD), our online learning approach achieves significant improvement on the estimation accuracy and robustness.
Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng
null
1601.03124
null
null
Dynamic Privacy For Distributed Machine Learning Over Network
cs.LG
Privacy-preserving distributed machine learning becomes increasingly important due to the recent rapid growth of data. This paper focuses on a class of regularized empirical risk minimization (ERM) machine learning problems, and develops two methods to provide differential privacy to distributed learning algorithms over a network. We first decentralize the learning algorithm using the alternating direction method of multipliers (ADMM), and propose the methods of dual variable perturbation and primal variable perturbation to provide dynamic differential privacy. The two mechanisms lead to algorithms that can provide privacy guarantees under mild conditions of the convexity and differentiability of the loss function and the regularizer. We study the performance of the algorithms, and show that the dual variable perturbation outperforms its primal counterpart. To design an optimal privacy mechanisms, we analyze the fundamental tradeoff between privacy and accuracy, and provide guidelines to choose privacy parameters. Numerical experiments using customer information database are performed to corroborate the results on privacy and utility tradeoffs and design.
Tao Zhang, Quanyan Zhu
null
1601.03466
null
null
Deep Learning Applied to Image and Text Matching
cs.LG cs.CL cs.CV
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.
Afroze Ibrahim Baqapuri
null
1601.03478
null
null