sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A361401
Irregular table T(n, k), n >= 0, k = 1..A361398(n); the n-th row lists the numbers whose binary expansion is a self-infiltration of that of n.
[ "0", "1", "3", "2", "4", "6", "10", "12", "3", "7", "15", "4", "8", "12", "16", "20", "24", "36", "40", "48", "5", "9", "11", "13", "19", "21", "25", "27", "43", "45", "51", "53", "6", "12", "14", "26", "28", "30", "54", "58", "60", "7", "15", "31", "63", "8", "16", "24", "32", "40", "48", "64", "72", "80", "96", "136", "144", "160", "192" ]
[ "nonn", "base", "tabf" ]
15
0
3
[ "A330941", "A358893", "A361398", "A361401" ]
null
Rémy Sigrist, Mar 10 2023
2023-03-15T16:27:42
oeisdata/seq/A361/A361401.seq
1aefe0ae61f5f1f62022950b9ba2e8b0
A361402
a(1) = 5; a(n+1) is the smallest prime p > a(n) such that digsum(p) = a(n).
[ "5", "23", "599", "7899999999999999999999999999999999999999999999999899999999999999999" ]
[ "nonn", "base" ]
6
1
1
[ "A007953", "A046704", "A062802", "A361402" ]
null
Ya-Ping Lu, Mar 10 2023
2023-03-24T17:50:07
oeisdata/seq/A361/A361402.seq
919e56d34b25277db1e0036a1c1fa729
A361403
Number of bicolored connected cubic graphs on 2n unlabeled vertices.
[ "1", "0", "5", "23", "247", "4660", "124480", "4286155", "177173770", "8460721770", "456369771864", "27394102475517", "1809905002448020", "130479709461582679", "10191059146232826353", "857183200472049855001", "77244717697104310952411", "7424434373914632379955822", "758150225111024064264853603", "81967014740890327829104517614", "9353488650500180241693235592248" ]
[ "nonn" ]
7
0
3
[ "A321304", "A361362", "A361403" ]
null
Andrew Howroyd, Mar 10 2023
2023-03-11T18:26:39
oeisdata/seq/A361/A361403.seq
222416a911398ce986bd5464f953c4ae
A361404
Triangle read by rows: T(n,k) is the number of graphs with loops on n unlabeled vertices with k loops.
[ "1", "1", "1", "2", "2", "2", "4", "6", "6", "4", "11", "20", "28", "20", "11", "34", "90", "148", "148", "90", "34", "156", "544", "1144", "1408", "1144", "544", "156", "1044", "5096", "13128", "20364", "20364", "13128", "5096", "1044", "12346", "79264", "250240", "472128", "580656", "472128", "250240", "79264", "12346" ]
[ "nonn", "tabl" ]
13
0
4
[ "A000088", "A000666", "A303829", "A361361", "A361404", "A361405" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T19:48:24
oeisdata/seq/A361/A361404.seq
ccb63986618a693a028618a904fd0b99
A361405
Number of graphs with loops on 2n unlabeled vertices with n loops.
[ "1", "2", "28", "1408", "580656", "2658827456", "146702084635392", "98485306566812364032", "820443196111261227164076544", "86804253216450161933010414314819072", "119212631345634236227720012129209606659383296", "2166023316743980619769969171366251471253351621687457792" ]
[ "nonn" ]
8
0
2
[ "A007139", "A361404", "A361405" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T19:46:27
oeisdata/seq/A361/A361405.seq
99cc35153f400aa19c15266e55bc2e0b
A361406
Number of bicolored connected cubic graphs on 2n unlabeled vertices with n vertices of each color.
[ "1", "0", "1", "5", "63", "1052", "27336", "882321", "34455134", "1558650424", "80016369538", "4589908631503", "290839634055722", "20171917072658395", "1519875854413728667", "123616508830454828043", "10794216583730162449785", "1007179737486515827821590", "100007950522974604304016627", "10529173417583858651114779790", "1171605981584666223513790021758" ]
[ "nonn" ]
7
0
4
[ "A002851", "A321304", "A361406", "A361407", "A361408" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T18:26:35
oeisdata/seq/A361/A361406.seq
8f070d2e201e712693e8520f589c5ddb
A361407
Number of connected cubic graphs on 2n unlabeled vertices rooted at a vertex.
[ "0", "1", "2", "10", "64", "490", "4595", "51063", "657623", "9592204", "155630924", "2771922417", "53673859357", "1121581872170", "25143397213226", "601751140758134", "15310778492310274", "412656423154230159", "11743600063060974656", "351882591907696156959" ]
[ "nonn" ]
6
1
3
[ "A002851", "A005638", "A321304", "A361407", "A361408", "A361410" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T18:26:31
oeisdata/seq/A361/A361407.seq
f3a41056e0640c465ce59db7e9a60c0f
A361408
Number of connected cubic graphs on 2n unlabeled vertices rooted at a pair of indistinguishable vertices.
[ "0", "1", "5", "31", "248", "2382", "27233", "359800", "5364193", "88622485", "1602171855", "31410476113", "663240471075", "15001046054183", "361775504849332", "9266474332849318", "251217335356943672", "7186461542458525108", "216332059500870350414", "6835872042063656823802" ]
[ "nonn" ]
5
1
3
[ "A002851", "A005638", "A321304", "A361407", "A361408", "A361411" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T18:26:27
oeisdata/seq/A361/A361408.seq
0b5b3f5ea1b18ab07e9e80754eb4fffb
A361409
Number of bicolored cubic graphs on 2n unlabeled vertices with n vertices of each color.
[ "1", "0", "1", "5", "66", "1071", "27606", "887305", "34583357", "1562797351", "80177945542", "4597212665432", "291214532031215", "20193430937073303", "1521240318892230748", "123711268485285686123", "10801367759750192440520", "1007762402877770768660697", "100058924666668698411972015", "10533938778032068908299390227", "1172080056205294525370971027435" ]
[ "nonn" ]
6
0
4
[ "A005638", "A361361", "A361406", "A361409", "A361410", "A361411" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T18:26:23
oeisdata/seq/A361/A361409.seq
058a7ea5214b571c33fa2ef69da444ca
A361410
Number of cubic graphs on 2n unlabeled vertices rooted at a vertex.
[ "0", "1", "2", "11", "68", "510", "4712", "51877", "664520", "9662968", "156490473", "2783955994", "53863486240", "1124886942314", "25206326633070", "603048386506505", "15339533779133582", "413338072569232815", "11760801736217845686", "352342902996056683824" ]
[ "nonn" ]
4
1
3
[ "A005638", "A361361", "A361407", "A361410", "A361411" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T18:26:20
oeisdata/seq/A361/A361410.seq
5b2874c262503a9528e93fe062417030
A361411
Number of cubic graphs on 2n unlabeled vertices rooted at a pair of indistinguishable vertices.
[ "0", "1", "5", "33", "257", "2443", "27682", "363759", "5405697", "89134360", "1609418390", "31525697245", "665263778962", "15039817276939", "362579178545598", "9284375250749758", "251643492565059981", "7197256536139662143", "216621907269166632361", "6844093745422473471562" ]
[ "nonn" ]
5
1
3
[ "A005638", "A361361", "A361408", "A361410", "A361411" ]
null
Andrew Howroyd, Mar 11 2023
2023-03-11T18:26:15
oeisdata/seq/A361/A361411.seq
9b623568ce169ab93bd7b5a3e3230342
A361412
Number of connected 3-regular multigraphs on 2n unlabeled nodes rooted at an unoriented edge (or loop), loops allowed.
[ "1", "3", "12", "67", "441", "3464", "31616", "331997", "3961462", "53105424", "791237787", "12978022526", "232407307054", "4511887729886", "94385418177277", "2116529900006321", "50646269987874834", "1288091152941695791", "34697173459041347465", "986800102740080746702", "29548269236430810895013" ]
[ "nonn" ]
7
0
2
[ "A005967", "A129427", "A361135", "A361412", "A361446", "A361447", "A361448" ]
null
Andrew Howroyd, Mar 12 2023
2023-03-13T13:29:22
oeisdata/seq/A361/A361412.seq
eb8460f60afaca60336fb8ce46f89bcd
A361413
Number of ways to tile an n X n square using rectangles with distinct dimensions where all the rectangle edge lengths are prime numbers.
[ "0", "1", "1", "0", "1", "0", "1", "0", "0", "4128", "1", "10880", "641", "45904", "349496", "892088", "40873", "17695080" ]
[ "nonn", "more" ]
8
1
10
[ "A004003", "A182275", "A360256", "A360499", "A360773", "A360804", "A360943", "A361413" ]
null
Scott R. Shannon, Mar 10 2023
2023-03-11T23:07:12
oeisdata/seq/A361/A361413.seq
ee006ffe9df95108bb1d316cca91980b
A361414
Number of non-abelian indecomposable groups of order n.
[ "0", "0", "0", "0", "0", "1", "0", "2", "0", "1", "0", "2", "0", "1", "0", "7", "0", "2", "0", "2", "1", "1", "0", "6", "0", "1", "2", "1", "0", "1", "0", "33", "0", "1", "0", "4", "0", "1", "1", "5", "0", "2", "0", "1", "0", "1", "0", "23", "0", "2", "0", "2", "0", "6", "1", "5", "1", "1", "0", "3", "0", "1", "1", "200", "0", "1", "0", "2", "0", "1", "0", "19", "0", "1", "1", "1", "0", "2", "0", "24", "8", "1", "0", "3", "0" ]
[ "nonn" ]
36
1
8
[ "A060689", "A069513", "A090751", "A361414" ]
null
Kevin Lamoreau, Mar 10 2023
2023-09-16T19:50:15
oeisdata/seq/A361/A361414.seq
3006a68767d56d29b8ab532b3643dca8
A361415
Numbers k such that A360016(k) > 0.
[ "5", "7", "9", "12", "15", "18", "23", "24", "30", "36", "37", "42", "45", "47", "51", "53", "57", "59", "60", "66", "67", "73", "75", "78", "81", "84", "87", "90", "93", "99", "102", "105", "108", "120", "122", "123", "131", "132", "138", "144", "147", "151", "153", "157", "165", "173", "177", "179", "180", "185", "186", "195", "196", "198", "207", "210", "211", "213", "225", "228", "233", "234", "237", "240", "245" ]
[ "nonn", "easy" ]
10
1
1
[ "A360016", "A361415" ]
null
Naohiro Nomoto, Mar 11 2023
2023-04-30T17:59:46
oeisdata/seq/A361/A361415.seq
44dcff27bf22fc6f261d066c5e507c37
A361416
a(n) is the least integer z for which there is a triple (x,y,z) satisfying x^2 + n*x*y + y^2 = z^2 and 0 < x < y < z.
[ "7", "3", "11", "11", "5", "7", "11", "7", "13", "5", "9", "13", "7", "11", "25", "9", "13", "8", "11", "15", "37", "7", "17", "31", "15", "11", "25", "17", "21", "10", "19", "23", "23", "14", "25", "49", "11", "9", "73", "25", "29", "17", "27", "31", "85", "16", "21", "35", "31", "20", "49", "15", "13", "19", "35", "39", "49", "11", "41", "85", "39", "14", "47", "41", "45", "26", "19", "17" ]
[ "nonn" ]
22
1
1
[ "A361416", "A361417" ]
null
Zhining Yang, Mar 11 2023
2023-05-13T13:35:06
oeisdata/seq/A361/A361416.seq
d7a16421eeadd046f26623cb919c594b
A361417
a(n) is the least integer z for which there is a triple (x,y,z) satisfying x^3 + n*x*y + y^3 = z^3 and 0 < x < y < z.
[ "105", "55", "26", "54", "44", "20", "147", "35", "3", "16", "24", "4", "165", "294", "5", "70", "22", "6", "51", "32", "7", "48", "16", "8", "220", "29", "9", "378", "24", "10", "62", "140", "11", "44", "308", "12", "45", "43", "13", "42", "175", "14", "528", "96", "15", "32", "25", "16", "181", "31", "17", "58", "40", "18", "8", "245", "19", "5", "115", "20", "65", "124", "21", "90" ]
[ "nonn" ]
25
1
1
[ "A361416", "A361417" ]
null
Zhining Yang, Mar 11 2023
2023-05-13T13:35:33
oeisdata/seq/A361/A361417.seq
e6267d965a3c3fbd9938ea83b0b7ee10
A361418
a(n) is the least number with exactly n noninfinitary divisors.
[ "1", "4", "12", "16", "60", "36", "48", "256", "360", "4096", "180", "144", "240", "576", "768", "65536", "2520", "1048576", "12288", "900", "1260", "1296", "720", "2304", "1680", "9216", "2880", "5184", "3840", "147456", "196608", "36864", "27720", "46656", "3145728", "4398046511104", "61440", "3600", "6300", "18014398509481984", "10080", "20736" ]
[ "nonn" ]
9
0
2
[ "A005179", "A025487", "A038547", "A085629", "A130279", "A187941", "A309181", "A340232", "A340233", "A348341", "A348342", "A357450", "A358252", "A361418" ]
null
Amiram Eldar, Mar 11 2023
2023-03-12T04:20:44
oeisdata/seq/A361/A361418.seq
a86bc71a61fdf4b792f98f2404753259
A361419
Numbers k such that there is a unique number m for which the sum of the aliquot infinitary divisors of m (A126168) is k.
[ "0", "6", "7", "9", "11", "18", "32", "44", "56", "62", "72", "82", "94", "96", "98", "102", "104", "110", "116", "122", "132", "136", "138", "146", "150", "152", "178", "180", "182", "210", "222", "226", "230", "236", "238", "242", "248", "252", "264", "272", "284", "292", "296", "304", "322", "332", "338", "342", "350", "356", "360", "374", "382", "390", "392", "404" ]
[ "nonn" ]
16
1
2
[ "A057709", "A126168", "A324277", "A331973", "A331974", "A357324", "A361419", "A361420" ]
null
Amiram Eldar, Mar 11 2023
2023-03-12T04:08:37
oeisdata/seq/A361/A361419.seq
99d4a08b02103d8885f4e31489ad411b
A361420
a(n) is the unique number m such that A126168(m) = A361419(n).
[ "1", "6", "8", "15", "21", "52", "58", "82", "106", "118", "268", "158", "356", "1264", "1296", "388", "202", "214", "226", "130", "508", "524", "1936", "160", "138", "298", "692", "2608", "358", "3088", "288", "446", "454", "466", "932", "478", "432", "348", "1792", "538", "562", "578", "586", "12032", "1268", "748", "20736", "1348", "694", "706", "26368", "544", "758" ]
[ "nonn" ]
10
1
2
[ "A126168", "A357313", "A357325", "A361419", "A361420" ]
null
Amiram Eldar, Mar 11 2023
2023-03-12T04:20:28
oeisdata/seq/A361/A361420.seq
1f3e4970827b2e86b879aafb087edc53
A361421
Infinitary aliquot sequence starting at 840: a(1) = 840, a(n) = A126168(a(n-1)), for n >= 2.
[ "840", "2040", "4440", "9240", "25320", "51000", "117480", "271320", "765480", "1531320", "3721800", "5956440", "12295560", "25086840", "54141960", "108284280", "250301640", "502213560", "1007626440", "2017856760", "4039750920", "8079502200", "19596145800", "44369345400", "71495068200", "115576350360", "231152701080" ]
[ "nonn" ]
9
1
1
[ "A008892", "A045477", "A126168", "A127661", "A293355", "A361421" ]
null
Amiram Eldar, Mar 11 2023
2023-03-12T04:20:40
oeisdata/seq/A361/A361421.seq
cb96110ead5582beb7c744c78d232c53
A361422
Inverse permutation to A361379.
[ "0", "1", "3", "2", "4", "17", "5", "8", "10", "18", "6", "19", "7", "20", "29", "9", "11", "47", "71", "21", "12", "22", "72", "96", "13", "23", "30", "24", "31", "121", "32", "36", "38", "48", "197", "49", "14", "50", "73", "97", "15", "51", "74", "25", "75", "26", "367", "98", "16", "52", "76", "27", "77", "28", "33", "99", "112", "122", "34", "123", "35", "124", "135", "37", "39" ]
[ "nonn", "base" ]
16
0
3
[ "A361379", "A361422" ]
null
Rémy Sigrist, Mar 11 2023
2023-03-13T12:01:21
oeisdata/seq/A361/A361422.seq
2df7d8cc76a0dc0997a283a9aa24866d
A361423
Start with natural numbers, for all positive integer periods p sieve out every p-th number p-1 times over.
[ "1", "3", "9", "27", "75", "225", "651", "1947", "5661", "15753", "44497", "128325", "357339", "1025029", "2881677", "8152327", "22251081", "62981541", "175699737", "491888331", "1353494089", "3827528649", "10655040429", "29413393659", "80737582089", "226955441541", "626061311481", "1745916338341", "4826531920159", "13166998285539" ]
[ "nonn" ]
178
1
2
[ "A000959", "A000960", "A003309", "A007950", "A056533", "A099267", "A111039", "A361423" ]
null
Rok Cestnik, Jul 17 2023
2023-07-23T02:08:03
oeisdata/seq/A361/A361423.seq
b0c88ee784e6ff68ed40658ae619427e
A361424
Triangle read by rows: T(n,k) is the maximum of a certain measure of the difficulty level (see comments) for tiling an n X k rectangle with a set of integer-sided rectangular pieces, rounded down to the nearest integer.
[ "1", "2", "2", "2", "6", "8", "4", "12", "48", "80", "4", "16", "80", "480", "1152", "8", "48", "480", "2880", "20160", "53760", "8", "53", "960", "13440", "107520" ]
[ "nonn", "more", "tabl" ]
8
1
2
[ "A016116", "A360629", "A361216", "A361221", "A361424", "A361425", "A361426", "A361427", "A361428" ]
null
Pontus von Brömssen, Mar 11 2023
2023-03-13T13:30:48
oeisdata/seq/A361/A361424.seq
b6a21446d8a72f89f1e1af3008a92773
A361425
Maximum difficulty level (see A361424 for the definition) for tiling an n X n square with a set of integer-sided rectangles, rounded down to the nearest integer.
[ "1", "2", "8", "80", "1152", "53760" ]
[ "nonn", "more" ]
5
1
2
[ "A360630", "A361217", "A361222", "A361424", "A361425" ]
null
Pontus von Brömssen, Mar 11 2023
2023-03-13T13:30:53
oeisdata/seq/A361/A361425.seq
d215f0138501823dfd6e5e39bff331aa
A361426
Maximum difficulty level (see A361424 for the definition) for tiling an n X 2 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer.
[ "2", "2", "6", "12", "16", "48", "53", "120", "320", "280", "1120", "2240", "2986", "8960", "17920", "26880", "53760", "107520", "134400", "268800", "537600", "591360", "1182720", "2365440", "2956800", "5677056", "11354112" ]
[ "nonn", "more" ]
5
1
1
[ "A360631", "A361218", "A361224", "A361424", "A361426" ]
null
Pontus von Brömssen, Mar 11 2023
2023-03-13T13:30:57
oeisdata/seq/A361/A361426.seq
793fd0e2c1d949626e64b6c8056e448f
A361427
Maximum difficulty level (see A361424 for the definition) for tiling an n X 3 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer.
[ "2", "6", "8", "48", "80", "480", "960", "1920", "3360", "13440", "20160", "60480", "80640", "201600", "967680", "1612800" ]
[ "nonn", "more" ]
5
1
1
[ "A360632", "A361219", "A361225", "A361424", "A361427" ]
null
Pontus von Brömssen, Mar 11 2023
2023-03-13T13:31:02
oeisdata/seq/A361/A361427.seq
ffaeda667717a7f2226f9eb317b9a5ac
A361428
Maximum difficulty level (see A361424 for the definition) for tiling an n X 4 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer.
[ "4", "12", "48", "80", "480", "2880", "13440", "53760", "107520", "322560", "725760" ]
[ "nonn", "more" ]
5
1
1
[ "A361220", "A361424", "A361428" ]
null
Pontus von Brömssen, Mar 11 2023
2023-03-13T13:31:07
oeisdata/seq/A361/A361428.seq
f43a2cdce950a301b8314814e31e61db
A361429
a(n) is the smallest positive number not among the terms between a(n-1) and the most recent previous term whose value appears with the same frequency (inclusive); if no such term exists, set a(n)=1; a(1)=1.
[ "1", "1", "2", "1", "3", "4", "1", "2", "5", "3", "1", "4", "2", "6", "7", "1", "3", "4", "1", "2", "5", "8", "6", "1", "3", "4", "1", "2", "7", "5", "9", "10", "1", "3", "4", "1", "2", "6", "7", "1", "3", "4", "1", "2", "5", "8", "11", "9", "1", "3", "4", "1", "2", "6", "7", "1", "3", "4", "1", "2", "5", "10", "8", "12", "13", "1", "3", "4", "1", "2", "6", "7", "1", "3", "4", "1", "2", "5", "9", "10", "1", "3", "4", "1", "2", "6" ]
[ "nonn" ]
22
1
3
[ "A001511", "A358921", "A361172", "A361429" ]
null
Neal Gersh Tolunsky, Mar 11 2023
2023-05-13T23:50:31
oeisdata/seq/A361/A361429.seq
8a50c426f778005b2413cf6caeb61c0f
A361430
Multiplicative with a(p^e) = e - 1.
[ "1", "0", "0", "1", "0", "0", "0", "2", "1", "0", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "2", "0", "0", "0", "0", "4", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "5", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "easy", "mult", "changed" ]
27
1
8
[ "A000005", "A001694", "A005361", "A298826", "A307958", "A335850", "A343443", "A360908", "A360910", "A360911", "A360997", "A361430" ]
null
Vaclav Kotesovec, Mar 11 2023
2025-04-15T11:56:41
oeisdata/seq/A361/A361430.seq
8cfee6e94892714ce2958b75e33d8a88
A361431
Number of ways to write n^2 as an ordered sum of n^2 squares of integers.
[ "1", "2", "24", "34802", "509145568", "142743029326162", "715761543475698773496", "63014651062141097287201438690", "96683719664587866428237173383906926464", "2573179910450886540215919614478751310457090316706", "1184101051443285881265166362742300236491599013268534224381864" ]
[ "nonn" ]
9
0
2
[ "A000290", "A066535", "A361431" ]
null
Alois P. Heinz, Mar 11 2023
2023-03-13T09:17:01
oeisdata/seq/A361/A361431.seq
463651c0684ee023822dd4bbd9ccebc0
A361432
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j).
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "6", "4", "0", "1", "4", "12", "20", "8", "0", "1", "5", "20", "54", "68", "16", "0", "1", "6", "30", "112", "252", "232", "32", "0", "1", "7", "42", "200", "656", "1188", "792", "64", "0", "1", "8", "56", "324", "1400", "3904", "5616", "2704", "128", "0", "1", "9", "72", "490", "2628", "10000", "23360", "26568", "9232", "256", "0" ]
[ "nonn", "tabl", "easy" ]
29
0
8
[ "A000007", "A006012", "A011782", "A081335", "A083881", "A084061", "A084062", "A084097", "A090139", "A143079", "A145301", "A145302", "A145303", "A289414", "A289415", "A361432" ]
null
Seiichi Manyama, Mar 11 2023
2023-03-12T08:47:53
oeisdata/seq/A361/A361432.seq
925552fd0d4d3fb88a46e124ab8d82d7
A361433
a(n) = number of squares in the n-th antidiagonal of the natural number array, A000027.
[ "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1" ]
[ "nonn", "easy" ]
22
1
null
[ "A000027", "A000290", "A022846", "A061288", "A063957", "A064784", "A361433" ]
null
Clark Kimberling, Mar 11 2023
2023-05-24T07:33:04
oeisdata/seq/A361/A361433.seq
848a7968c8b9a27b59d0ae4d0a5dbc65
A361434
Positions in Pi where the leader in the race of digits changes.
[ "1", "4", "11", "18", "59", "108", "187", "198", "274", "335", "338", "374", "381", "387", "433", "815", "848", "1495", "1629", "2002", "3554", "3565", "4112", "4318", "4569", "4592", "4613", "4618", "4643", "4727", "4733", "6103", "6118", "7074", "7153", "7319", "7521", "7562", "7567", "7684", "7748", "7757", "7764", "7989", "8205", "8561", "8620" ]
[ "nonn", "base" ]
12
1
2
[ "A000796", "A096567", "A195835", "A342325", "A361131", "A361434" ]
null
Alois P. Heinz, Mar 11 2023
2023-03-12T16:15:03
oeisdata/seq/A361/A361434.seq
23444cca08fadb8ff80b62ac40312e20
A361435
a(n) is the least positive integer that can be expressed as the sum of one or more consecutive squarefree numbers in exactly n ways.
[ "1", "3", "11", "34", "144", "165", "229", "517", "790", "6870", "12757", "21134", "54155", "226470", "193225", "431900", "948949", "3960994", "6674779", "7594013", "14204939", "32720909", "20369309", "176923605", "335119938" ]
[ "nonn", "more" ]
13
1
2
[ "A005117", "A054859", "A361435" ]
null
Ilya Gutkovskiy, Mar 11 2023
2023-03-13T06:23:52
oeisdata/seq/A361/A361435.seq
5f334a2e836d125cbdfea38136c1c006
A361436
Primes of the form k! - Sum_{i=1..k-1} (-1)^(k-i)*i!.
[ "3", "7", "29", "139", "821", "5659", "44741", "515616581", "1389068025019", "2390389721955353653838200398484730341485707553165512827613149996957838364422981" ]
[ "hard", "nonn" ]
14
1
1
[ "A005165", "A071828", "A361436", "A361437" ]
null
Jack Braxton, Mar 11 2023
2023-03-31T06:41:26
oeisdata/seq/A361/A361436.seq
a01717680fc26fcee4073d000e83e3e3
A361437
Numbers k such that k! - Sum_{i=1..k-1} (-1)^(k-i)*i! is prime.
[ "2", "3", "4", "5", "6", "7", "8", "12", "15", "58", "59", "102", "111", "118", "164", "291", "589", "685", "1671", "1900", "1945", "4905", "9564" ]
[ "nonn", "hard", "more" ]
36
1
1
[ "A001272", "A005165", "A071828", "A361436", "A361437" ]
null
Jack Braxton, Mar 11 2023
2024-10-02T14:21:32
oeisdata/seq/A361/A361437.seq
2f7a6a9bf210aabe0e0d4cbae13b6f0b
A361438
Triangle T(n,k), n >= 1, 1 <= k <= A046801(n), read by rows, where T(n,k) is k-th smallest divisor of 2^n-1.
[ "1", "1", "3", "1", "7", "1", "3", "5", "15", "1", "31", "1", "3", "7", "9", "21", "63", "1", "127", "1", "3", "5", "15", "17", "51", "85", "255", "1", "7", "73", "511", "1", "3", "11", "31", "33", "93", "341", "1023", "1", "23", "89", "2047", "1", "3", "5", "7", "9", "13", "15", "21", "35", "39", "45", "63", "65", "91", "105", "117", "195", "273", "315", "455", "585", "819", "1365", "4095", "1", "8191", "1", "3", "43", "127", "129", "381", "5461", "16383" ]
[ "nonn", "tabf", "look" ]
34
1
3
[ "A000225", "A027750", "A049479", "A075708", "A361438", "A374237" ]
null
Seiichi Manyama, Mar 12 2023
2024-10-20T17:42:33
oeisdata/seq/A361/A361438.seq
05631230c21e2e510737cb6e69994d8b
A361439
The number of generators for the monoid of basic log-concave (with no internal zeros) cyclotomic generating functions of degree n.
[ "1", "1", "1", "1", "1", "2", "2", "4", "4", "7", "8", "18", "19", "37", "42", "66", "87", "132", "157", "252" ]
[ "nonn", "more" ]
14
1
6
null
null
Sara Billey, Mar 12 2023
2023-04-25T03:29:17
oeisdata/seq/A361/A361439.seq
d8e2460ac733c34f9c5872f21aedbced
A361440
The number of generators for the monoid of basic unimodal cyclotomic generating functions of degree n.
[ "1", "1", "1", "2", "2", "3", "4", "7", "10", "9", "15", "28", "30", "34", "66", "82", "125", "126", "222", "294" ]
[ "nonn", "more" ]
11
1
4
null
null
Sara Billey, Mar 12 2023
2023-04-25T03:14:05
oeisdata/seq/A361/A361440.seq
0bec674c5da52fb76b6ca90b03c9635a
A361441
The number of generators for the monoid of basic cyclotomic generating functions of degree n.
[ "1", "2", "1", "3", "1", "4", "1", "6", "1", "5", "3", "16", "5", "14", "6", "37", "9", "46", "33", "87" ]
[ "nonn", "more" ]
10
1
2
null
null
Sara Billey, Mar 12 2023
2023-04-25T03:26:57
oeisdata/seq/A361/A361441.seq
17e0de1c3c5f3a266bed631c6395abe8
A361442
Infinite triangle T(n, k), n, k >= 0, read and filled by rows the greedy way with distinct integers such that for any n, k >= 0, T(n, k) + T(n+1, k) + T(n+1, k+1) = 0; each term is minimal in absolute value and in case of a tie, preference is given to the positive value.
[ "0", "1", "-1", "2", "-3", "4", "3", "-5", "8", "-12", "5", "-8", "13", "-21", "33", "6", "-11", "19", "-32", "53", "-86", "-2", "-4", "15", "-34", "66", "-119", "205", "9", "-7", "11", "-26", "60", "-126", "245", "-450", "10", "-19", "26", "-37", "63", "-123", "249", "-494", "944", "7", "-17", "36", "-62", "99", "-162", "285", "-534", "1028", "-1972" ]
[ "sign", "tabl" ]
14
0
4
[ "A152920", "A361442", "A361443" ]
null
Rémy Sigrist, Mar 12 2023
2023-03-14T03:44:10
oeisdata/seq/A361/A361442.seq
b1a4960d5c657218721d147adbfeafa6
A361443
a(n) is the first term of the n-th row of A361442.
[ "0", "1", "2", "3", "5", "6", "-2", "9", "10", "7", "16", "-10", "24", "14", "17", "22", "-13", "-29", "-16", "-18", "-25", "-24", "-20", "-27", "-35", "12", "-30", "-42", "-22", "-36", "-40", "-43", "-44", "-45", "-46", "21", "35", "28", "32", "38", "27", "37", "41", "30", "50", "46", "55", "51", "56", "39", "74", "54", "73", "67", "57", "78", "71", "59", "61", "80", "68", "79" ]
[ "sign" ]
10
0
3
[ "A361442", "A361443" ]
null
Rémy Sigrist, Mar 12 2023
2023-03-14T03:44:06
oeisdata/seq/A361/A361443.seq
2e6315b148a5d0b4f6fe81f4df8dc35b
A361444
Lexicographically earliest sequence of distinct positive base-10 palindromes such that a(n) + a(n+1) is prime.
[ "1", "2", "3", "4", "7", "6", "5", "8", "9", "22", "141", "88", "111", "202", "55", "222", "11", "212", "99", "232", "121", "252", "101", "66", "131", "242", "191", "272", "77", "282", "151", "292", "171", "262", "181", "606", "313", "414", "343", "444", "353", "44", "303", "424", "33", "434", "323", "404", "383", "474", "535", "484", "373", "454", "333", "464", "363" ]
[ "base", "nonn" ]
30
1
2
[ "A002113", "A082979", "A361444" ]
null
Jodi Spitz, Mar 12 2023
2023-03-19T13:35:18
oeisdata/seq/A361/A361444.seq
a17d21a23247d2089cd6ace73935ba1f
A361445
Sums of consecutive terms of A361444.
[ "3", "5", "7", "11", "13", "11", "13", "17", "31", "163", "229", "199", "313", "257", "277", "233", "223", "311", "331", "353", "373", "353", "167", "197", "373", "433", "463", "349", "359", "433", "443", "463", "433", "443", "787", "919", "727", "757", "787", "797", "397", "347", "727", "457", "467", "757", "727", "787", "857", "1009", "1019", "857" ]
[ "nonn", "base" ]
11
1
1
[ "A086527", "A361444", "A361445" ]
null
Jodi Spitz, Mar 12 2023
2023-03-19T14:56:41
oeisdata/seq/A361/A361445.seq
00bae5893d4e0dd23383f9e67affa77a
A361446
Number of connected 3-regular multigraphs on 2n unlabeled nodes rooted at an oriented edge (or loop), loops allowed.
[ "1", "3", "16", "99", "717", "5964", "56701", "611750", "7432491", "100838222", "1514749135", "24989362186", "449429188211", "8754181791029", "183621843677724", "4126714250580949", "98932328702693666", "2520187379996442269", "67980528958530199837", "1935753445850303203221", "58025998739501873764826" ]
[ "nonn" ]
11
0
2
[ "A005967", "A129427", "A352174", "A352175", "A361412", "A361446", "A361447", "A361448" ]
null
Andrew Howroyd, Mar 12 2023
2023-03-13T13:29:27
oeisdata/seq/A361/A361446.seq
6f6daad2a62acffa246f022a72cc18ce
A361447
Number of connected 3-regular (cubic) multigraphs on 2n unlabeled nodes rooted at an unoriented edge (or loop) whose removal does not disconnect the graph, loops allowed.
[ "1", "2", "9", "49", "338", "2744", "26025", "282419", "3463502", "47439030", "718618117", "11937743088", "215896959624", "4224096594516", "88919920910684", "2004237153640098", "48165411560792500", "1229462431057436457", "33221743136066636436", "947415638925100675208", "28436953641282225835143" ]
[ "nonn" ]
11
0
2
[ "A005967", "A129427", "A352175", "A361135", "A361412", "A361446", "A361447", "A361448" ]
null
Andrew Howroyd, Mar 12 2023
2023-03-21T23:08:38
oeisdata/seq/A361/A361447.seq
f983c6e6dbf248227396771e1efd638b
A361448
Number of connected 3-regular multigraphs on 2n unlabeled nodes rooted at an oriented edge (or loop) whose removal does not disconnect the graph, loops allowed.
[ "1", "2", "10", "66", "511", "4536", "45519", "512661", "6436571", "89505875", "1369509795", "22908806774", "416408493351", "8178599551905", "172690849144538", "3902128758180500", "93970611848528998", "2402929936231885063", "65029668312580777779", "1856984518220396165657", "55803367549204703645086" ]
[ "nonn" ]
10
0
2
[ "A005967", "A129427", "A352174", "A352175", "A361412", "A361446", "A361447", "A361448" ]
null
Andrew Howroyd, Mar 12 2023
2023-03-21T23:08:34
oeisdata/seq/A361/A361448.seq
52fbc4fc35420a38ba45fd2eb3bb1610
A361449
Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any horizontal, diagonal or antidiagonal neighbor.
[ "1", "4", "1573", "235862938", "37155328943771767", "12458003910177278332403197817", "15868284521418341362691384074620547198698934", "126024243590219798408446284849897811759970155660106999854057796", "9633603531065043175094488158875624821526224424118142906010095879389674957042528276201" ]
[ "nonn" ]
4
1
2
[ "A208096", "A361449" ]
null
Andrew Howroyd, Mar 13 2023
2023-03-13T13:31:30
oeisdata/seq/A361/A361449.seq
0cbe82e6754fdeb33b3f33ce4a606afe
A361450
Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any horizontal or antidiagonal neighbor.
[ "1", "5", "2906", "656404264", "148049849095504726", "67939294184937980415465539016", "114130286115375064054502412158789812265958284", "1159829070306179232444894822978404171908276758235252386883985596", "110658909677185498376669680234621983460781735371211477687464832774947897935655888426146" ]
[ "nonn" ]
4
1
2
[ "A208301", "A361450" ]
null
Andrew Howroyd, Mar 13 2023
2023-03-13T13:31:25
oeisdata/seq/A361/A361450.seq
42aac6446d379f8b7e996b24f678d405
A361451
Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any horizontal, vertical or antidiagonal neighbor.
[ "1", "2", "716", "112073062", "18633407199331522", "6575857942770612176290018153", "8769438200005128572266011359369913757287151", "72530091349507692706447958441062812294511923156598114466468667", "5746371835090565784276352813398004749296101606959968049467898643632416711373273639694" ]
[ "nonn" ]
4
1
2
[ "A208054", "A361451" ]
null
Andrew Howroyd, Mar 13 2023
2023-03-13T13:31:17
oeisdata/seq/A361/A361451.seq
9681d44c9adf382b0db8dc375073593a
A361452
Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any diagonal or antidiagonal neighbor.
[ "1", "7", "4192", "953124784", "213291369981652792", "96638817185266245591837984336", "160065721141038888919235753368205172658011648", "1603869086916486859475402575499346988054543498175515730927380336", "150972529586126094166343144224892296826763766718771806614594599643773846828229334720096" ]
[ "nonn" ]
4
1
2
[ "A207981", "A361452" ]
null
Andrew Howroyd, Mar 13 2023
2023-03-15T16:26:57
oeisdata/seq/A361/A361452.seq
6f12cb5b36ce32bdb9e0b6ae050cd0ad
A361453
Number of colorings of the n X n knight graph up to permutation of the colors.
[ "1", "15", "4141", "450288795", "50602429743064097", "12123635532529660182357354372" ]
[ "nonn", "more" ]
18
1
2
[ "A000110", "A207863", "A208001", "A289136", "A295178", "A361453" ]
null
Andrew Howroyd, Mar 13 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361453.seq
be11472e5be97a9c216f35123a4e19f8
A361454
Number of 4-regular multigraphs on n unlabeled nodes with 4 external legs, loops allowed.
[ "1", "4", "17", "78", "360", "1835", "10168", "62271", "419701", "3107800", "25108419", "219982357", "2076785950", "21011123423", "226708386212", "2598075587529", "31509529248585", "403155101535686", "5426659537490872", "76655160760249052", "1133766220709242638", "17522418780011531368", "282452568669871514771", "4740645804610572971112" ]
[ "nonn" ]
5
1
2
[ "A129429", "A361454", "A361698" ]
null
Andrew Howroyd, Mar 21 2023
2023-03-21T23:08:47
oeisdata/seq/A361/A361454.seq
de0b971a00a7e4d67f41c23c4418a233
A361455
Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.
[ "1", "0", "1", "0", "1", "3", "0", "18", "21", "25", "0", "1606", "1173", "774", "543", "0", "565080", "271790", "122595", "59830", "29281", "0", "734774776", "229224750", "70500705", "25349355", "10110735", "3781503", "0", "3523091615568", "685793359804", "138122171880", "35130437825", "11002159455", "3767987307", "1138779265" ]
[ "nonn", "tabl" ]
10
0
6
[ "A003024", "A003030", "A053763", "A189898", "A361269", "A361455", "A361582", "A361591" ]
null
Andrew Howroyd, Mar 16 2023
2023-05-04T14:57:12
oeisdata/seq/A361/A361455.seq
67e530998942f75a0ef83c611cecfe9f
A361456
Irregular triangle read by rows. T(n,k) is the number of properly colored simple labeled graphs on [n] with exactly k edges, n >= 0, 0 <= k <= binomial(n,2).
[ "1", "1", "3", "2", "13", "30", "24", "6", "75", "372", "780", "872", "546", "180", "24", "541", "4660", "18180", "42140", "64150", "66900", "48320", "23820", "7650", "1440", "120", "4683", "62130", "385980", "1487520", "3973770", "7789032", "11565360", "13238520", "11771130", "8124710", "4314420", "1729440", "506010", "101880", "12600", "720" ]
[ "nonn", "tabf" ]
28
0
3
[ "A000142", "A000670", "A046860", "A334282", "A361456" ]
null
Geoffrey Critzer, Mar 12 2023
2023-03-16T04:50:40
oeisdata/seq/A361/A361456.seq
e06e01a45aa3b7c3e93b3f3fe4510742
A361457
Numbers k such that the first player has a winning strategy in the game described in the Comments.
[ "3", "4", "6", "7", "8", "10", "11", "12", "14", "15", "16", "17", "19", "20", "21", "23", "24", "26", "27", "28", "29", "30", "33", "34", "35", "36", "37", "38", "40", "42" ]
[ "nonn", "more" ]
18
1
1
null
null
Robert Israel, Mar 12 2023
2023-05-22T19:25:06
oeisdata/seq/A361/A361457.seq
f76997e6d27b47f6611b3042afef4324
A361458
Size of the symmetric difference of {1,2,3}, {2,4,6}, ..., {n,2n,3n}.
[ "3", "4", "3", "4", "7", "8", "11", "12", "11", "12", "15", "16", "19", "20", "19", "20", "23", "24", "27", "28", "27", "28", "31", "32", "35", "36", "35", "36", "39", "40", "43", "44", "43", "44", "47", "48", "51", "52", "51", "52", "55", "56", "59", "60", "59", "60", "63", "64", "67", "68", "67", "68", "71", "72", "75", "76", "75", "76", "79", "80", "83", "84", "83", "84", "87", "88", "91" ]
[ "nonn", "easy" ]
27
1
1
[ "A361458", "A361471" ]
null
Guenter Pilz, May 17 2023
2024-01-11T08:51:02
oeisdata/seq/A361/A361458.seq
4a1b1551ef0de53070ec5f1f3a37fb3f
A361459
Number of partitions p of n such that 5*min(p) is a part of p.
[ "0", "0", "0", "0", "0", "1", "1", "2", "3", "5", "7", "12", "15", "23", "31", "44", "58", "82", "105", "142", "185", "244", "312", "409", "516", "664", "837", "1063", "1328", "1674", "2074", "2588", "3194", "3952", "4847", "5964", "7270", "8884", "10786", "13104", "15832", "19147", "23027", "27709", "33203", "39776", "47476", "56661", "67382", "80108", "94960", "112494", "132919", "156965" ]
[ "nonn" ]
19
1
8
[ "A117989", "A237827", "A238589", "A238590", "A238591", "A361459", "A363068" ]
null
Seiichi Manyama, May 17 2023
2024-05-30T06:55:43
oeisdata/seq/A361/A361459.seq
378fc99a1900b6e3ec906318fcc72705
A361460
a(n) = 1 if A135504(n+1) = 2 * A135504(n), otherwise 0.
[ "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "1" ]
[ "nonn" ]
12
1
null
[ "A135504", "A135506", "A361460", "A361461", "A361463" ]
null
Antti Karttunen, Mar 13 2023
2023-03-14T18:31:42
oeisdata/seq/A361/A361460.seq
c47f8ed54fe611a1ee3a51e6db6c0485
A361461
Numbers k such that x(k+1) = 2 * x(k), when x(1)=1 and x(n) = x(n-1) + lcm(x(n-1),n), i.e., x(n) = A135504(n).
[ "2", "5", "7", "8", "11", "13", "15", "17", "19", "20", "23", "26", "27", "29", "31", "34", "35", "37", "39", "41", "43", "44", "47", "48", "49", "53", "54", "55", "56", "59", "61", "62", "63", "65", "67", "69", "71", "73", "74", "75", "76", "79", "80", "83", "84", "87", "89", "92", "94", "95", "97", "98", "99", "101", "103", "104", "107", "109", "110", "111", "113", "116", "118", "119", "120", "123", "124", "125", "127", "129", "131", "132" ]
[ "nonn" ]
17
1
1
[ "A135504", "A135506", "A361460", "A361461", "A361464" ]
null
Antti Karttunen, Mar 13 2023
2023-03-14T18:31:47
oeisdata/seq/A361/A361461.seq
b60e86f16473020b54a021cc78077984
A361462
a(n) = A135506(n) mod 4.
[ "2", "1", "2", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "3", "3", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "3", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1" ]
[ "nonn" ]
8
1
1
[ "A010873", "A135506", "A361462", "A361463", "A361464" ]
null
Antti Karttunen, Mar 13 2023
2023-03-14T18:31:51
oeisdata/seq/A361/A361462.seq
ebcb5a6d0b84c222b7f5068ce47aab66
A361463
a(n) = 1 if A135506(n) == 3 (mod 4), otherwise 0.
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0" ]
[ "nonn" ]
8
1
null
[ "A135506", "A361462", "A361463", "A361464" ]
null
Antti Karttunen, Mar 14 2023
2023-05-11T16:56:56
oeisdata/seq/A361/A361463.seq
9a9a5fbd3550ef4bd7c89044e2674523
A361464
Numbers k such that A135504(k+1) / A135504(k) is a multiple of 4.
[ "6", "10", "18", "21", "22", "30", "32", "42", "45", "46", "58", "66", "68", "70", "78", "82", "85", "91", "93", "102", "106", "114", "117", "126", "128", "130", "133", "138", "140", "141", "150", "162", "165", "166", "171", "176", "178", "187", "190", "198", "200", "205", "210", "212", "213", "214", "222", "226", "234", "235", "238", "248", "250", "253", "261", "262", "267", "270", "282", "294", "301", "306", "308", "310", "320" ]
[ "nonn" ]
8
1
1
[ "A135504", "A135506", "A361461", "A361462", "A361463", "A361464" ]
null
Antti Karttunen, Mar 14 2023
2023-03-14T18:31:59
oeisdata/seq/A361/A361464.seq
c20ab8d958be7bc7ad3ffc9609b84c9b
A361465
a(n) = 1 if A017665(n) [the numerator of the sum of the reciprocals of the divisors of n] is a power of 2, otherwise 0.
[ "1", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
15
1
null
[ "A000035", "A003961", "A017665", "A043305", "A209229", "A355943", "A361465", "A361466" ]
null
Antti Karttunen, Mar 20 2023
2023-03-21T09:22:56
oeisdata/seq/A361/A361465.seq
745e918aa4b8eb956f494298ccf3b209
A361466
a(n) = 1 if A017665(A003961(n)) is a power of 2, otherwise 0. Here A017665 is the numerator of the sum of the reciprocals of the divisors of n, and A003961 is fully multiplicative with a(p) = nextprime(p).
[ "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
13
1
null
[ "A003961", "A209229", "A326042", "A341525", "A341605", "A348942", "A355942", "A355943", "A361465", "A361466" ]
null
Antti Karttunen, Mar 20 2023
2023-03-21T07:16:16
oeisdata/seq/A361/A361466.seq
5641e1996d7063f8cfd251733bcd4959
A361467
a(n) = A003961(n) * sigma(A003961(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
[ "1", "12", "30", "117", "56", "360", "132", "1080", "775", "672", "182", "3510", "306", "1584", "1680", "9801", "380", "9300", "552", "6552", "3960", "2184", "870", "32400", "2793", "3672", "19500", "15444", "992", "20160", "1406", "88452", "5460", "4560", "7392", "90675", "1722", "6624", "9180", "60480", "1892", "47520", "2256", "21294", "43400", "10440", "2862", "294030", "16093", "33516", "11400" ]
[ "nonn", "mult" ]
13
1
2
[ "A000203", "A003961", "A003973", "A064987", "A361467", "A361468" ]
null
Antti Karttunen, Mar 20 2023
2023-05-18T10:40:31
oeisdata/seq/A361/A361467.seq
03eb28c3444eb06663c45a063329ebdf
A361468
a(n) = A249670(A003961(n)).
[ "1", "12", "30", "117", "56", "40", "132", "1080", "775", "672", "182", "390", "306", "176", "1680", "9801", "380", "9300", "552", "6552", "3960", "2184", "870", "144", "2793", "408", "19500", "1716", "992", "2240", "1406", "88452", "5460", "4560", "7392", "90675", "1722", "736", "9180", "60480", "1892", "5280", "2256", "126", "43400", "1160", "2862", "32670", "16093", "3724", "456", "442", "3540", "26000" ]
[ "nonn" ]
10
1
2
[ "A000290", "A003961", "A249670", "A336850", "A361467", "A361468" ]
null
Antti Karttunen, Mar 20 2023
2023-03-21T07:16:23
oeisdata/seq/A361/A361468.seq
496e26cdf9adec4ebc90115650c3c787
A361469
a(n) = bigomega(A249670(A003961(n))).
[ "0", "3", "3", "3", "4", "4", "4", "7", "3", "7", "3", "4", "4", "5", "7", "6", "4", "6", "5", "7", "7", "6", "4", "6", "4", "5", "7", "5", "6", "8", "3", "9", "6", "7", "8", "6", "4", "6", "7", "11", "4", "8", "6", "4", "7", "5", "5", "7", "4", "5", "5", "3", "5", "8", "5", "9", "8", "9", "3", "8", "4", "6", "7", "7", "8", "7", "6", "7", "5", "9", "3", "8", "6", "5", "7", "6", "7", "8", "5", "10", "6", "7", "5", "6", "8", "7", "9", "10", "4", "10", "8", "5", "6", "6", "9", "10", "4", "7", "6", "5", "5", "6", "6", "7", "11" ]
[ "nonn" ]
10
1
2
[ "A001222", "A003961", "A065997", "A247086", "A249670", "A361468", "A361469" ]
null
Antti Karttunen, Mar 20 2023
2023-03-21T09:23:00
oeisdata/seq/A361/A361469.seq
b8cc9bdcace33031ea6e7aef897aa5dc
A361470
a(n) = gcd(n+1, A135504(n)).
[ "1", "3", "2", "1", "6", "1", "8", "9", "2", "1", "12", "1", "14", "3", "16", "1", "18", "1", "20", "21", "2", "1", "24", "5", "2", "27", "28", "1", "30", "1", "32", "3", "2", "35", "36", "1", "38", "3", "40", "1", "42", "1", "44", "45", "2", "1", "48", "49", "50", "3", "4", "1", "54", "55", "56", "57", "2", "1", "60", "1", "62", "63", "64", "5", "66", "1", "68", "3", "70", "1", "72", "1", "74", "75", "76", "77", "6", "1", "80", "81", "2", "1", "84", "85", "2", "3", "88" ]
[ "nonn" ]
14
1
2
[ "A135504", "A135506", "A361470" ]
null
Antti Karttunen, Mar 26 2023
2023-05-11T09:23:04
oeisdata/seq/A361/A361470.seq
569efe0a4878cf9f24159b03b07e12e9
A361471
Size of the symmetric difference of {1,2,3,4}, {2,4,6,8}, ..., {n,2n,3n,4n}.
[ "4", "4", "4", "4", "8", "12", "16", "16", "16", "16", "20", "20", "24", "24", "24", "24", "28", "32", "36", "36", "36", "36", "40", "40", "44", "44", "44", "44", "48", "52", "56", "56", "56", "56", "60", "60", "64", "64", "64", "64", "68", "72", "76", "76", "76", "76", "80", "80", "84", "84", "84", "84", "88", "92", "96", "96", "96", "96", "100", "100", "104", "104", "104", "104", "108" ]
[ "nonn", "easy" ]
20
1
1
[ "A361458", "A361471" ]
null
Guenter Pilz, May 17 2023
2023-05-18T01:56:21
oeisdata/seq/A361/A361471.seq
79dcf464c8b97c50ce756811fffd568e
A361472
Size of the symmetric differences of {1,2,3,4,5}, {2,4,6,8,10}, ..., {n,2n,3n,4n,5n}.
[ "5", "6", "7", "8", "5", "10", "15", "16", "17", "18", "23", "24", "29", "30", "31", "32", "37", "42", "47", "48", "49", "50", "55", "56", "53", "54", "55", "56", "61", "58", "63", "64", "65", "66", "63", "64", "69", "70", "71", "72", "77", "82", "87", "88", "89", "90", "95", "96", "101", "102", "103", "104", "109", "114", "111", "112", "113", "114", "119", "120", "125", "126", "127" ]
[ "nonn", "easy" ]
20
1
1
[ "A361458", "A361471", "A361472" ]
null
Guenter Pilz, May 17 2023
2023-05-21T20:18:58
oeisdata/seq/A361/A361472.seq
6e4870cdd40577bc5958e37ae0e4c620
A361473
a(n) is the least positive integer that can be expressed as the sum of one or more consecutive nonprime numbers in exactly n ways.
[ "1", "10", "27", "45", "143", "306", "903", "465", "1215", "3037", "2418", "4809", "17193", "8349", "32055", "75847", "117705", "306075", "379395", "467955", "1269075", "2517687", "1809295", "4720023", "6375915", "12961575", "21540987", "35647010", "16615305", "192717405", "268822806", "186269391", "247067415" ]
[ "nonn" ]
12
1
2
[ "A018252", "A054859", "A361473" ]
null
Ilya Gutkovskiy, Mar 13 2023
2023-03-14T09:29:21
oeisdata/seq/A361/A361473.seq
780fe16a82379ed480719237f5685f71
A361474
a(n) = 1*binomial(n,2) + 3*binomial(n,3) + 6*binomial(n,4) + 10*binomial(n,5).
[ "0", "0", "1", "6", "24", "80", "225", "546", "1176", "2304", "4185", "7150", "11616", "18096", "27209", "39690", "56400", "78336", "106641", "142614", "187720", "243600", "312081", "395186", "495144", "614400", "755625", "921726", "1115856", "1341424", "1602105", "1901850", "2244896", "2635776", "3079329", "3580710", "4145400", "4779216", "5488321", "6279234" ]
[ "nonn", "easy" ]
24
0
4
[ "A006000", "A361099", "A361474" ]
null
Enrique Navarrete, Mar 13 2023
2023-04-16T13:40:41
oeisdata/seq/A361/A361474.seq
056a3899e2e7a5f0607907831d3981e8
A361475
Array read by ascending antidiagonals: A(n, k) = (k^n - 1)/(k - 1), with k >= 2.
[ "0", "1", "0", "3", "1", "0", "7", "4", "1", "0", "15", "13", "5", "1", "0", "31", "40", "21", "6", "1", "0", "63", "121", "85", "31", "7", "1", "0", "127", "364", "341", "156", "43", "8", "1", "0", "255", "1093", "1365", "781", "259", "57", "9", "1", "0", "511", "3280", "5461", "3906", "1555", "400", "73", "10", "1", "0", "1023", "9841", "21845", "19531", "9331", "2801", "585", "91", "11", "1", "0" ]
[ "nonn", "tabl" ]
8
0
4
[ "A000225", "A002275", "A002450", "A002452", "A003462", "A003463", "A003464", "A003992", "A016123", "A023000", "A023001", "A361291", "A361475", "A361476" ]
null
Stefano Spezia, Mar 13 2023
2023-03-14T09:32:06
oeisdata/seq/A361/A361475.seq
76c0f2450a1ce31cffcc69ddaf0ca00d
A361476
Antidiagonal sums of A361475.
[ "0", "1", "4", "12", "34", "99", "308", "1040", "3820", "15197", "65060", "297828", "1449742", "7468527", "40555732", "231335944", "1381989864", "8623700793", "56078446596", "379233142780", "2662013133274", "19362917621979", "145719550012276", "1133023004941248", "9090156910550084", "75161929739797493", "639793220877941476" ]
[ "nonn" ]
11
0
3
[ "A026898", "A104878", "A361475", "A361476" ]
null
Stefano Spezia, Mar 13 2023
2024-11-12T11:26:44
oeisdata/seq/A361/A361476.seq
76aa6f8c20556dfd4731e07a14c4a0a6
A361477
a(n) is the number of integers whose binary expansions have the same multiset of run-lengths as that of n.
[ "1", "1", "1", "1", "2", "1", "2", "1", "2", "3", "1", "3", "1", "3", "2", "1", "2", "3", "4", "3", "4", "1", "4", "3", "2", "3", "4", "3", "2", "3", "2", "1", "2", "3", "4", "6", "6", "5", "6", "6", "4", "5", "1", "5", "6", "5", "4", "3", "2", "6", "6", "1", "6", "5", "6", "6", "1", "6", "4", "6", "2", "3", "2", "1", "2", "3", "4", "6", "12", "5", "12", "3", "12", "10", "6", "10", "4", "10", "12", "6", "4", "5", "6", "10" ]
[ "nonn", "base" ]
11
0
5
[ "A090706", "A101211", "A140690", "A361477" ]
null
Rémy Sigrist, Mar 13 2023
2023-03-16T12:02:53
oeisdata/seq/A361/A361477.seq
1a028e10332f7bffa2690f79d43d2250
A361478
Irregular table T(n, k), n >= 0, k = 1..A361477(n), read by rows; the n-th row lists the integers whose binary expansions have the same multiset of run-lengths as that of n.
[ "0", "1", "2", "3", "4", "6", "5", "4", "6", "7", "8", "14", "9", "11", "13", "10", "9", "11", "13", "12", "9", "11", "13", "8", "14", "15", "16", "30", "17", "23", "29", "18", "20", "22", "26", "19", "25", "27", "18", "20", "22", "26", "21", "18", "20", "22", "26", "17", "23", "29", "24", "28", "19", "25", "27", "18", "20", "22", "26", "19", "25", "27", "24", "28", "17", "23", "29", "16", "30" ]
[ "nonn", "base", "tabf" ]
13
0
3
[ "A187786", "A361477", "A361478", "A361479", "A361480" ]
null
Rémy Sigrist, Mar 13 2023
2023-03-30T15:14:26
oeisdata/seq/A361/A361478.seq
27a18b6d4327a1e25f677b10bccc2d5d
A361479
a(n) is the least integer whose binary expansion has the same multiset of run-lengths as that of n.
[ "0", "1", "2", "3", "4", "5", "4", "7", "8", "9", "10", "9", "12", "9", "8", "15", "16", "17", "18", "19", "18", "21", "18", "17", "24", "19", "18", "19", "24", "17", "16", "31", "32", "33", "34", "35", "36", "37", "36", "35", "34", "37", "42", "37", "36", "37", "34", "33", "48", "35", "36", "51", "36", "37", "36", "35", "56", "35", "34", "35", "48", "33", "32", "63", "64", "65", "66", "67" ]
[ "nonn", "base" ]
9
0
3
[ "A073137", "A361478", "A361479", "A361480" ]
null
Rémy Sigrist, Mar 13 2023
2023-03-16T12:05:31
oeisdata/seq/A361/A361479.seq
fc46f8095f63bc86b61d3f01e423e09d
A361480
a(n) is the greatest integer whose binary expansion has the same multiset of run-lengths as that of n.
[ "0", "1", "2", "3", "6", "5", "6", "7", "14", "13", "10", "13", "12", "13", "14", "15", "30", "29", "26", "27", "26", "21", "26", "29", "28", "27", "26", "27", "28", "29", "30", "31", "62", "61", "58", "59", "54", "53", "54", "59", "58", "53", "42", "53", "54", "53", "58", "61", "60", "59", "54", "51", "54", "53", "54", "59", "56", "59", "58", "59", "60", "61", "62", "63", "126", "125" ]
[ "nonn", "look", "base" ]
18
0
3
[ "A073138", "A335835", "A361478", "A361479", "A361480" ]
null
Rémy Sigrist, Mar 13 2023
2023-03-30T15:28:38
oeisdata/seq/A361/A361480.seq
14945854a218757b71b9eafa15651b30
A361481
Distinct values of A361478, in order of appearance.
[ "0", "1", "2", "3", "4", "6", "5", "7", "8", "14", "9", "11", "13", "10", "12", "15", "16", "30", "17", "23", "29", "18", "20", "22", "26", "19", "25", "27", "21", "24", "28", "31", "32", "62", "33", "47", "61", "34", "40", "46", "58", "35", "39", "49", "55", "57", "59", "36", "38", "44", "50", "52", "54", "37", "41", "43", "45", "53", "42", "48", "60", "51", "56", "63", "64", "126", "65" ]
[ "nonn", "base" ]
8
0
3
[ "A361478", "A361481", "A361482" ]
null
Rémy Sigrist, Mar 14 2023
2023-03-16T12:05:27
oeisdata/seq/A361/A361481.seq
cae26f69e51808131ed73ec07c019391
A361482
Inverse permutation to A361481.
[ "0", "1", "2", "3", "4", "6", "5", "7", "8", "10", "13", "11", "14", "12", "9", "15", "16", "18", "21", "25", "22", "28", "23", "19", "29", "26", "24", "27", "30", "20", "17", "31", "32", "34", "37", "41", "47", "53", "48", "42", "38", "54", "58", "55", "49", "56", "39", "35", "59", "43", "50", "61", "51", "57", "52", "44", "62", "45", "40", "46", "60", "36", "33", "63", "64", "66", "69", "73" ]
[ "nonn", "base" ]
8
0
3
[ "A361481", "A361482" ]
null
Rémy Sigrist, Mar 14 2023
2023-03-16T12:05:23
oeisdata/seq/A361/A361482.seq
5bbe2e674f8aa31426d6a44a37750004
A361483
Primes p such that p + 256 is also prime.
[ "7", "13", "37", "61", "97", "103", "127", "163", "193", "211", "223", "307", "313", "331", "337", "397", "421", "463", "487", "541", "571", "601", "607", "631", "673", "691", "727", "757", "853", "907", "937", "967", "1021", "1033", "1051", "1063", "1117", "1153", "1171", "1231", "1237", "1297", "1303", "1327", "1381", "1453", "1531", "1567", "1621", "1657", "1693", "1723" ]
[ "nonn", "easy" ]
19
1
1
[ "A000040", "A001359", "A023200", "A023202", "A049488", "A049489", "A049490", "A049491", "A361483", "A361484", "A361485" ]
null
Elmo R. Oliveira, Mar 13 2023
2023-03-20T13:38:28
oeisdata/seq/A361/A361483.seq
bf87b4e833a4641fb58cc28f7345493c
A361484
Primes p such that p + 512 is also prime.
[ "11", "29", "59", "89", "101", "107", "131", "149", "179", "197", "227", "239", "257", "311", "317", "347", "479", "509", "521", "557", "617", "641", "659", "701", "719", "809", "887", "911", "941", "947", "971", "977", "1019", "1031", "1097", "1109", "1151", "1181", "1187", "1229", "1277", "1289", "1319", "1361", "1367", "1439", "1481", "1487", "1499", "1571", "1601" ]
[ "nonn", "easy" ]
19
1
1
[ "A000040", "A001359", "A023200", "A023202", "A049488", "A049489", "A049490", "A049491", "A361483", "A361484", "A361485" ]
null
Elmo R. Oliveira, Mar 13 2023
2023-03-20T13:39:04
oeisdata/seq/A361/A361484.seq
b30dd8c342caadbeffc91c9d18e19e67
A361485
Primes p such that p + 1024 is also prime.
[ "7", "37", "67", "73", "79", "127", "139", "157", "163", "193", "199", "277", "283", "337", "349", "409", "457", "463", "487", "499", "547", "577", "613", "643", "673", "709", "787", "823", "853", "877", "883", "907", "1039", "1063", "1087", "1117", "1129", "1213", "1249", "1327", "1399", "1423", "1453", "1567", "1597", "1609", "1663", "1669", "1753", "1777", "1873", "1879" ]
[ "nonn", "easy" ]
22
1
1
[ "A000040", "A001359", "A023200", "A023202", "A049488", "A049489", "A049490", "A049491", "A361483", "A361484", "A361485" ]
null
Elmo R. Oliveira, Mar 13 2023
2023-03-20T18:56:50
oeisdata/seq/A361/A361485.seq
4a1aa9536760b3603972b6c60a37b215
A361486
Lexicographically earliest sequence of positive numbers on a square spiral such that no three equal numbers are collinear.
[ "1", "1", "1", "1", "2", "2", "3", "2", "2", "3", "2", "2", "3", "2", "2", "3", "1", "3", "3", "1", "4", "1", "4", "3", "5", "5", "1", "4", "3", "4", "5", "4", "4", "5", "6", "6", "7", "4", "4", "5", "5", "6", "2", "4", "1", "4", "5", "1", "6", "2", "6", "4", "6", "5", "5", "7", "2", "3", "4", "6", "5", "5", "7", "2", "3", "8", "1", "4", "3", "6", "7", "5", "5", "3", "5", "7", "6", "3", "1", "1", "7", "8", "7", "7", "4", "5", "8", "5", "9", "6", "6", "8", "7", "7", "6", "8", "9", "9", "3" ]
[ "nonn", "look" ]
23
1
5
[ "A174344", "A229037", "A274640", "A274923", "A346294", "A361486" ]
null
Scott R. Shannon, Mar 13 2023
2023-03-20T06:23:32
oeisdata/seq/A361/A361486.seq
05cae7a10c25851145da271db006efce
A361487
Odd numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).
[ "75", "135", "147", "189", "225", "245", "363", "375", "405", "441", "507", "525", "567", "605", "675", "735", "825", "845", "847", "867", "875", "891", "945", "975", "1029", "1053", "1083", "1089", "1125", "1183", "1215", "1225", "1275", "1323", "1375", "1377", "1425", "1445", "1485", "1521", "1539", "1575", "1587", "1617", "1625", "1701", "1715", "1725", "1755", "1805", "1815", "1859", "1863", "1875", "1911" ]
[ "nonn" ]
11
1
1
[ "A005408", "A007947", "A013929", "A024619", "A119288", "A126706", "A355432", "A360768", "A360769", "A361487" ]
null
Michael De Vlieger, Mar 29 2023
2023-04-01T13:28:59
oeisdata/seq/A361/A361487.seq
2950fd32996b5b9771b2dd3b560152d6
A361488
Diagonal of rational function 1/(1 - (x^3 + y^3 + x^4*y)).
[ "1", "0", "0", "2", "2", "0", "6", "12", "6", "20", "60", "60", "90", "280", "420", "532", "1330", "2520", "3444", "6804", "14112", "21912", "37884", "77616", "133914", "223080", "432432", "793364", "1341912", "2471040", "4629196", "8076640", "14453010", "26960232", "48308832", "85794852", "157947816", "287413152", "512697900", "933072064" ]
[ "nonn" ]
30
0
4
[ "A006139", "A115962", "A360267", "A361488", "A361727" ]
null
Seiichi Manyama, Mar 22 2023
2023-03-23T07:57:15
oeisdata/seq/A361/A361488.seq
ed1e1583eaa9091aa971a4127d37922c
A361489
Expansion of e.g.f. exp(exp(x) - 1 + x^3/6).
[ "1", "1", "2", "6", "19", "72", "313", "1472", "7612", "42679", "255515", "1632710", "11065057", "79065807", "594174922", "4679473130", "38500353667", "330172915164", "2944613004359", "27253908250340", "261328607398332", "2591724561444621", "26545170005412613", "280411070646125638" ]
[ "nonn", "easy" ]
25
0
3
[ "A124504", "A360991", "A361489" ]
null
Seiichi Manyama, Mar 14 2023
2023-03-14T12:59:34
oeisdata/seq/A361/A361489.seq
762c5f964351fda0c14a8d5c98507b99
A361490
a(1) = 8; for n > 1, a(n) is the least triprime > a(n-1) such that a(n) - a(n-1) and a(n) + a(n-1) are both prime.
[ "8", "45", "52", "75", "92", "99", "130", "147", "164", "195", "236", "255", "266", "333", "406", "423", "430", "477", "494", "555", "574", "627", "670", "711", "716", "777", "782", "801", "806", "903", "908", "915", "932", "935", "938", "969", "1010", "1017", "1022", "1065", "1076", "1233", "1244", "1443", "1474", "1479", "1490", "1533", "1556", "1635", "1724", "1737", "1790", "1833", "1844", "2007", "2012" ]
[ "nonn" ]
8
1
1
[ "A014612", "A361490" ]
null
Zak Seidov and Robert Israel, Mar 14 2023
2023-03-14T11:46:19
oeisdata/seq/A361/A361490.seq
a4cb502293c381acb484713623289607
A361491
Expansion of x*(1+38*x+x^2)/((1-x)*(x^2-34*x+1)).
[ "1", "73", "2521", "85681", "2910673", "98877241", "3358915561", "114104251873", "3876185648161", "131676207785641", "4473114879063673", "151954229680379281", "5161970694253831921", "175355049374949906073", "5956909708054042974601", "202359575024462511230401", "6874268641123671338859073", "233522774223180363009978121" ]
[ "nonn", "easy" ]
15
1
2
[ "A046176", "A361491" ]
null
R. J. Mathar, Mar 14 2023
2024-06-10T08:53:11
oeisdata/seq/A361/A361491.seq
5a84ce9fa3abfdb87300592cb4f723d4
A361492
Common difference corresponding to increasing arithmetic progression of at least n >= 2 primes whose first term is A284708(n); a(1) = 1.
[ "1", "1", "2", "6", "30", "30", "210", "210", "210", "17430", "30030", "60060", "510510", "3573570" ]
[ "nonn", "more" ]
31
1
3
[ "A284708", "A361492" ]
null
Bernard Schott, Mar 14 2023
2023-03-24T17:13:41
oeisdata/seq/A361/A361492.seq
f396f17282999925b553ab9fef2da621
A361493
Expansion of e.g.f. exp(exp(x) - 1 + x^3).
[ "1", "1", "2", "11", "39", "172", "1163", "6547", "41772", "335139", "2486215", "20078610", "186139957", "1676540257", "16077206122", "168739976555", "1763716943267", "19358116589964", "226362412711759", "2669223655597955", "32748447519013132", "421204995451111971", "5496921281576148363" ]
[ "nonn", "easy" ]
11
0
3
[ "A355337", "A361489", "A361493" ]
null
Seiichi Manyama, Mar 14 2023
2023-03-14T12:58:47
oeisdata/seq/A361/A361493.seq
832c84e77928c34baefd5f66d24081a7
A361494
Expansion of e.g.f. 1/(1 - log(2 - exp(x))).
[ "1", "-1", "0", "0", "-2", "-10", "-62", "-518", "-5042", "-55914", "-700982", "-9801022", "-151141850", "-2548546130", "-46648614014", "-921144036486", "-19518279101570", "-441740723440186", "-10635049333176902", "-271391755745104334", "-7317268150934309162", "-207850529950047641250" ]
[ "sign" ]
16
0
5
[ "A006252", "A217033", "A305988", "A360446", "A361494" ]
null
Seiichi Manyama, May 11 2023
2023-05-11T10:26:34
oeisdata/seq/A361/A361494.seq
f7a5b6960c8c92cd42caff7bdaf39da8
A361495
Number of magic quad squares that can be formed using cards from Quads-2^n deck, where the first row and column are fixed.
[ "10", "1370", "70138", "1159994", "12654010", "116939450", "1003021498", "8303802554", "67568410810", "545138438330", "4379550748858", "35110336483514", "281178729140410", "2250614613070010", "18009657286316218", "144096222341746874", "1152845639987482810" ]
[ "nonn", "easy" ]
22
4
1
[ "A361495", "A361613", "A362874", "A362963", "A362964" ]
null
Tanya Khovanova and PRIMES STEP senior group, May 11 2023
2023-08-09T18:19:04
oeisdata/seq/A361/A361495.seq
7320ba44d63c9e9b6428a45561ac24fe
A361496
Inventory of positions as an irregular table; row 0 contains 0, subsequent rows contain the 0-based positions (mod 2) of 0's, followed by the positions (mod 2) of 1's in prior rows flattened.
[ "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabf" ]
8
0
null
[ "A342585", "A356784", "A358066", "A361496" ]
null
Ctibor O. Zizka, Mar 14 2023
2023-04-01T21:38:33
oeisdata/seq/A361/A361496.seq
56722987fa5279eb46cb72f244ff0116
A361497
Number of cusps in Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n).
[ "3", "4", "4", "4", "7", "7", "6", "8", "6", "10", "12", "6", "11", "8", "12", "14", "10", "17", "14", "16", "16", "16", "15", "8", "20", "21", "10", "18", "14", "24", "18", "20", "12", "16", "22", "25", "30", "20", "22", "12", "32", "36", "12", "30", "16", "42", "22", "32", "16", "22", "30", "31", "32", "22", "26", "12", "36", "39", "18", "37", "28", "48", "35", "28", "32", "42", "32", "34", "46", "30", "29", "26", "40", "49", "52", "14", "45", "24", "34", "48", "32", "56", "30", "44", "38", "40", "36", "45", "20", "54", "74", "22", "49", "28" ]
[ "nonn" ]
6
1
1
[ "A361169", "A361497", "A361498", "A361500" ]
null
N. J. A. Sloane, Mar 14 2023
2024-08-05T05:15:51
oeisdata/seq/A361/A361497.seq
071c69fbb09fe34ca8aa072f237f737f
A361498
Genus of Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n).
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "3", "5", "1", "4", "4", "6", "4", "5", "7", "5", "9", "6", "9", "8", "9", "10", "9", "8", "9", "9", "9", "11", "14", "10", "11", "14", "15", "16", "14", "15", "14", "21", "18", "22", "19", "19", "17", "23", "21", "17", "23", "19", "27", "22", "30", "18", "27", "22", "34", "30", "25", "29", "22", "41", "35", "43", "26", "36", "29", "33", "36", "30", "39", "35", "39", "43", "55", "37", "40", "38", "49", "46", "38", "44", "40" ]
[ "nonn" ]
7
1
14
[ "A361169", "A361497", "A361498", "A361499", "A361500" ]
null
N. J. A. Sloane, Mar 14 2023
2024-08-05T05:16:27
oeisdata/seq/A361/A361498.seq
10898b273457e84db93952c41f2fc5f4
A361499
Number of orbifold points of order 2 in Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n).
[ "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1", "2", "0", "0", "0", "2", "1", "0", "1", "0", "2", "1", "0", "0", "0", "0", "3", "0", "1", "0", "0", "3", "2", "0", "0", "0", "2", "2", "0", "2", "0", "1", "3", "0", "0", "0", "0", "4", "2", "1", "0", "0", "2", "2", "0", "0", "0", "0", "3", "0", "2", "0", "0", "3", "3", "0", "0", "0", "2", "1", "0", "3", "0", "0", "3", "4", "0", "0", "0", "4", "4", "0", "1", "0", "0", "4", "2", "0", "0", "0", "2", "5", "0", "2" ]
[ "nonn" ]
7
1
12
[ "A361169", "A361497", "A361498", "A361499", "A361500" ]
null
N. J. A. Sloane, Mar 14 2023
2024-08-05T05:23:27
oeisdata/seq/A361/A361499.seq
9daf6dd1b5000f17a0920ac52c09a828
A361500
Number of orbifold points of order 3 in Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n).
[ "1", "0", "0", "2", "0", "0", "2", "1", "2", "0", "0", "2", "1", "0", "2", "0", "0", "2", "2", "0", "0", "4", "1", "4", "0", "2", "2", "0", "0", "0", "3", "0", "2", "2", "0", "1", "0", "2", "3", "4", "2", "0", "4", "0", "2", "0", "2", "0", "0", "6", "0", "0", "0", "4", "2", "4", "0", "4", "4", "1", "0", "0", "2", "0", "0", "4", "4", "0", "0", "6", "5", "2", "0", "2", "0", "6", "0", "0", "3", "0", "2", "2", "6", "0", "2", "0", "4", "3", "4", "0", "0", "6", "0", "2" ]
[ "nonn" ]
7
1
4
[ "A361169", "A361497", "A361498", "A361499", "A361500" ]
null
N. J. A. Sloane, Mar 14 2023
2024-08-05T05:17:06
oeisdata/seq/A361/A361500.seq
38ac75a9a5f6c0b5545c3c259f186bb0