sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A361201 | Product of the right half (exclusive) of the multiset of prime factors of n; a(1) = 0. | [
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"5",
"1",
"3",
"1",
"7",
"5",
"4",
"1",
"3",
"1",
"5",
"7",
"11",
"1",
"6",
"5",
"13",
"3",
"7",
"1",
"5",
"1",
"4",
"11",
"17",
"7",
"9",
"1",
"19",
"13",
"10",
"1",
"7",
"1",
"11",
"5",
"23",
"1",
"6",
"7",
"5",
"17",
"13",
"1",
"9",
"11",
"14",
"19",
"29",
"1",
"15",
"1",
"31",
"7",
"8",
"13",
"11",
"1",
"17",
"23",
"7",
"1",
"9",
"1",
"37",
"5",
"19",
"11",
"13",
"1"
]
| [
"nonn",
"look"
]
| 11 | 1 | 4 | [
"A000005",
"A000040",
"A001221",
"A001222",
"A001248",
"A006530",
"A026424",
"A056239",
"A096825",
"A112798",
"A123666",
"A347043",
"A347044",
"A347045",
"A347046",
"A360005",
"A360616",
"A360617",
"A360671",
"A360672",
"A360673",
"A360675",
"A360676",
"A360677",
"A360678",
"A360679",
"A361200",
"A361201"
]
| null | Gus Wiseman, Mar 10 2023 | 2024-08-13T09:10:30 | oeisdata/seq/A361/A361201.seq | c11184b608c7e5af73463e00c287b1f0 |
A361202 | Maximum product of the vertex arboricities of a graph of order n and its complement. | [
"1",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"12",
"14",
"16",
"18",
"20",
"22",
"25",
"27",
"30",
"33",
"36",
"39",
"42",
"45",
"49",
"52",
"56",
"60",
"64",
"68",
"72",
"76",
"81",
"85",
"90",
"95",
"100",
"105",
"110",
"115",
"121",
"126",
"132",
"138",
"144",
"150",
"156",
"162",
"169",
"175",
"182",
"189",
"196",
"203",
"210",
"217",
"225",
"232",
"240",
"248"
]
| [
"nonn",
"easy"
]
| 40 | 1 | 3 | [
"A002620",
"A361202"
]
| null | Allan Bickle, Apr 20 2023 | 2023-07-30T15:59:47 | oeisdata/seq/A361/A361202.seq | 6b7b6c63726a965e069a5da04d9da594 |
A361203 | a(n) = n*A010888(n). | [
"0",
"1",
"4",
"9",
"16",
"25",
"36",
"49",
"64",
"81",
"10",
"22",
"36",
"52",
"70",
"90",
"112",
"136",
"162",
"19",
"40",
"63",
"88",
"115",
"144",
"175",
"208",
"243",
"28",
"58",
"90",
"124",
"160",
"198",
"238",
"280",
"324",
"37",
"76",
"117",
"160",
"205",
"252",
"301",
"352",
"405",
"46",
"94",
"144",
"196",
"250",
"306",
"364",
"424",
"486",
"55",
"112",
"171",
"232"
]
| [
"nonn",
"base",
"easy"
]
| 20 | 0 | 3 | [
"A010888",
"A017173",
"A057147",
"A361203"
]
| null | Stefano Spezia, Apr 20 2023 | 2023-04-24T02:01:34 | oeisdata/seq/A361/A361203.seq | 01293afb682801b17dc40b5272b5b1b2 |
A361204 | Positive integers k such that 2*omega(k) <= bigomega(k). | [
"1",
"4",
"8",
"9",
"16",
"24",
"25",
"27",
"32",
"36",
"40",
"48",
"49",
"54",
"56",
"64",
"72",
"80",
"81",
"88",
"96",
"100",
"104",
"108",
"112",
"121",
"125",
"128",
"135",
"136",
"144",
"152",
"160",
"162",
"169",
"176",
"184",
"189",
"192",
"196",
"200",
"208",
"216",
"224",
"225",
"232",
"240",
"243",
"248",
"250",
"256",
"272",
"288",
"289",
"296",
"297",
"304"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A001221",
"A001222",
"A046660",
"A056239",
"A061395",
"A067340",
"A067801",
"A111907",
"A112798",
"A237363",
"A237365",
"A239959",
"A324517",
"A324521",
"A324522",
"A324560",
"A324562",
"A360005",
"A360254",
"A360457",
"A360558",
"A361204",
"A361393",
"A361394",
"A361395"
]
| null | Gus Wiseman, Mar 14 2023 | 2023-03-23T03:45:45 | oeisdata/seq/A361/A361204.seq | bb2fe3d9fff9a7793495c1813f2e8bed |
A361205 | a(n) = 2*omega(n) - bigomega(n). | [
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"-1",
"0",
"2",
"1",
"1",
"1",
"2",
"2",
"-2",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"0",
"0",
"2",
"-1",
"1",
"1",
"3",
"1",
"-3",
"2",
"2",
"2",
"0",
"1",
"2",
"2",
"0",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"-1",
"0",
"1",
"2",
"1",
"1",
"0",
"2",
"0",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"-4",
"2",
"3",
"1",
"1",
"2",
"3",
"1",
"-1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"-1",
"-2",
"2",
"1",
"2"
]
| [
"sign",
"easy"
]
| 16 | 1 | 6 | [
"A001221",
"A001222",
"A046660",
"A056239",
"A061395",
"A067340",
"A067801",
"A077761",
"A083342",
"A111907",
"A112798",
"A136141",
"A237363",
"A237365",
"A239959",
"A324517",
"A324522",
"A326567",
"A326568",
"A360254",
"A360558",
"A361204",
"A361205",
"A361393",
"A361394",
"A361395"
]
| null | Gus Wiseman, Mar 16 2023 | 2023-10-01T02:32:49 | oeisdata/seq/A361/A361205.seq | 0256168f2009040c3b83e68f1eb069a9 |
A361206 | Lexicographically earliest infinite sequence of distinct imperfect numbers such that the sum of the abundance of all terms is never < 1. | [
"12",
"1",
"2",
"4",
"18",
"3",
"8",
"20",
"10",
"24",
"5",
"7",
"16",
"30",
"9",
"14",
"32",
"36",
"11",
"13",
"40",
"15",
"42",
"17",
"48",
"19",
"21",
"54",
"22",
"44",
"56",
"50",
"60",
"23",
"25",
"52",
"64",
"66",
"26",
"70",
"72",
"27",
"29",
"34",
"78",
"45",
"80",
"33",
"68",
"84",
"31",
"35",
"88",
"90",
"37",
"38",
"96",
"39",
"41",
"100",
"46",
"102",
"76",
"104",
"108",
"43",
"58"
]
| [
"nonn",
"easy"
]
| 18 | 1 | 1 | [
"A005101",
"A033879",
"A033880",
"A132999",
"A361206"
]
| null | John Tyler Rascoe, Mar 04 2023 | 2023-03-10T19:38:55 | oeisdata/seq/A361/A361206.seq | 7fa0deb03a122f91fbeba515d9c3a502 |
A361207 | An infinite 2d grid is filled with the positive integers by placing them clockwise around the lowest number with open neighbors. a(n) is then the n-th term when the grid is read as a clockwise square spiral. | [
"1",
"2",
"7",
"3",
"10",
"4",
"12",
"5",
"8",
"16",
"6",
"15",
"29",
"17",
"9",
"20",
"35",
"21",
"11",
"23",
"39",
"24",
"13",
"18",
"30",
"46",
"28",
"14",
"27",
"45",
"67",
"47",
"31",
"19",
"34",
"53",
"76",
"54",
"36",
"22",
"38",
"58",
"82",
"59",
"40",
"25",
"32",
"48",
"68",
"92",
"66",
"44",
"26",
"43",
"65",
"91",
"121",
"93",
"69",
"49",
"33",
"52",
"75",
"102",
"133",
"103",
"77"
]
| [
"nonn",
"easy"
]
| 45 | 1 | 2 | [
"A090915",
"A217010",
"A337822",
"A361207"
]
| null | John Tyler Rascoe, Mar 04 2023 | 2023-07-10T01:40:00 | oeisdata/seq/A361/A361207.seq | 3a84f3d17dd68f2782e26ecc695f47a7 |
A361208 | Number of middle divisors of the n-th number whose divisors increase by a factor of 2 or less. | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"4",
"2",
"1",
"2",
"2",
"3",
"2",
"2",
"2",
"1",
"2",
"2",
"4",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"2",
"1",
"2",
"3",
"2",
"2",
"2",
"4",
"4",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"4"
]
| [
"nonn"
]
| 29 | 1 | 4 | [
"A067742",
"A174973",
"A237048",
"A237270",
"A237593",
"A281007",
"A317305",
"A354452",
"A361208"
]
| null | Omar E. Pol, Mar 06 2023 | 2023-10-17T07:39:27 | oeisdata/seq/A361/A361208.seq | 167446b3f1d89b5fd1add9f7047fa953 |
A361209 | Second hexagonal numbers having middle divisors. | [
"36",
"210",
"300",
"528",
"990",
"1176",
"1485",
"1596",
"2080",
"2346",
"3240",
"3570",
"4095",
"4278",
"4851",
"5460",
"6555",
"6786",
"7260",
"8256",
"8778",
"9870",
"10440",
"11628",
"12880",
"13530",
"14196",
"14535",
"15225",
"15576",
"17020",
"17766",
"20100",
"20910",
"21736",
"22578",
"23436",
"24310",
"25200",
"26565",
"27495",
"27966",
"30876"
]
| [
"nonn"
]
| 35 | 1 | 1 | [
"A014105",
"A014107",
"A067742",
"A071562",
"A236104",
"A237048",
"A237591",
"A237593",
"A240542",
"A262626",
"A298856",
"A361209"
]
| null | Omar E. Pol, Mar 10 2023 | 2023-10-23T08:34:43 | oeisdata/seq/A361/A361209.seq | 5c361965a5f5833f5aacda6d9d175d48 |
A361210 | Number of labeled digraphs on [n] with exactly 1 in-node and exactly 1 out-node. | [
"0",
"1",
"2",
"15",
"588",
"83295",
"40993230",
"70413420511",
"433343743592312",
"9825711749274316671",
"840137012096473747415610",
"275596225117501271622460109871",
"351011149451321734143551287903432452",
"1749719217881846572487198585072701742763487",
"34317835907818751756576624929762210160396817182918"
]
| [
"nonn"
]
| 64 | 0 | 3 | [
"A086193",
"A361210"
]
| null | Geoffrey Critzer, Apr 09 2023 | 2023-04-09T11:30:09 | oeisdata/seq/A361/A361210.seq | 84e7210070564f59b3ea63c233705b64 |
A361211 | Busy Beaver for the Binary Lambda Calculus (BLC) language BBλ2: the maximum output size of self-delimiting BLC programs of size n, or 0 if no program of size n exists. | [
"0",
"0",
"0",
"0",
"0",
"4",
"0",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"22",
"24",
"26",
"30",
"42",
"52",
"44",
"64",
"223",
"160"
]
| [
"nonn",
"more"
]
| 70 | 1 | 6 | [
"A333479",
"A361211"
]
| null | John Tromp, Apr 09 2023 | 2024-05-09T10:59:14 | oeisdata/seq/A361/A361211.seq | d5523e10404b105e0702e63ded7edb55 |
A361212 | E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1-x) ). | [
"1",
"3",
"33",
"612",
"16353",
"576108",
"25306803",
"1334701854",
"82258866225",
"5805344935368",
"461848917299499",
"40904277651802458",
"3992219566916292873",
"425766991650939828828",
"49266876888419716251315",
"6147944525591645916094182",
"823045511075200872642258273"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A052868",
"A360939",
"A361066",
"A361182",
"A361212"
]
| null | Seiichi Manyama, Mar 04 2023 | 2025-02-16T08:34:05 | oeisdata/seq/A361/A361212.seq | a7a85273e723530defd3d61ac5d2e9f6 |
A361213 | E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1+x) ). | [
"1",
"2",
"8",
"68",
"848",
"14192",
"298048",
"7546016",
"223792640",
"7612381952",
"292216807424",
"12497875215872",
"589392367925248",
"30386736933804032",
"1700376343771136000",
"102641314849948602368",
"6648428846464054919168",
"459977466799800897437696"
]
| [
"nonn"
]
| 22 | 0 | 2 | [
"A335945",
"A361068",
"A361193",
"A361213",
"A361214"
]
| null | Seiichi Manyama, Mar 04 2023 | 2025-02-16T08:34:05 | oeisdata/seq/A361/A361213.seq | 3d1455bd07e3b34568f3304da06230ba |
A361214 | E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1+x) ). | [
"1",
"3",
"21",
"288",
"5841",
"158148",
"5370003",
"219641922",
"10518990129",
"577629889848",
"35788733371179",
"2470154920005798",
"187970878034549001",
"15636177199793409444",
"1411635193678825868979",
"137469669176542404342042",
"14364540773583252035937633"
]
| [
"nonn"
]
| 23 | 0 | 2 | [
"A335945",
"A361069",
"A361194",
"A361213",
"A361214"
]
| null | Seiichi Manyama, Mar 04 2023 | 2025-02-16T08:34:05 | oeisdata/seq/A361/A361214.seq | a002275ed995ce5221511d13cf53d8be |
A361215 | Intersection of A361073 and 2 * A361611. | [
"8",
"20",
"50",
"1406",
"1516",
"1558",
"1868",
"1898",
"1948",
"1978",
"1986",
"5862",
"5972",
"6014",
"7122",
"7966",
"7996",
"8270",
"8348",
"8366",
"8548",
"8618",
"21092",
"31804",
"31822",
"32158",
"33092",
"33162",
"33316",
"33414",
"37124",
"37190",
"37292",
"37394",
"39164",
"39214",
"39316",
"39346",
"39484",
"39562",
"39604",
"39622",
"39692",
"39794",
"45044",
"45244"
]
| [
"nonn"
]
| 34 | 1 | 1 | [
"A361073",
"A361215",
"A361611"
]
| null | Zak Seidov and Robert Israel, Apr 09 2023 | 2023-04-17T10:58:55 | oeisdata/seq/A361/A361215.seq | 425f9311677390b333630ca77808475d |
A361216 | Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle. | [
"1",
"1",
"4",
"2",
"11",
"56",
"3",
"29",
"370",
"5752",
"4",
"94",
"2666",
"82310",
"2519124",
"6",
"263",
"19126",
"1232770",
"88117873",
"6126859968",
"12",
"968",
"134902",
"19119198",
"2835424200"
]
| [
"nonn",
"tabl",
"more"
]
| 17 | 1 | 3 | [
"A102462",
"A360629",
"A361216",
"A361217",
"A361218",
"A361219",
"A361220",
"A361221"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-12T10:45:05 | oeisdata/seq/A361/A361216.seq | b3a770af95e5f083b5f5313786be0c7d |
A361217 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X n square. | [
"1",
"4",
"56",
"5752",
"2519124",
"6126859968"
]
| [
"nonn",
"more"
]
| 5 | 1 | 2 | [
"A360630",
"A361216",
"A361217",
"A361222"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:38:28 | oeisdata/seq/A361/A361217.seq | 36eaa9bb4b6f756b9f8dbad670acc0a4 |
A361218 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle. | [
"1",
"4",
"11",
"29",
"94",
"263",
"968",
"3416",
"11520",
"41912",
"136972",
"481388",
"1743784",
"6275886",
"23615432",
"93819128",
"368019576",
"1367900808",
"5403282616",
"19831367476",
"76031433360",
"300581321056",
"1143307393600",
"4542840116352",
"17001097572544",
"65314285778004",
"246695766031432"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A360631",
"A361216",
"A361218",
"A361224"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:37:53 | oeisdata/seq/A361/A361218.seq | f92df76c48231e388990a67df2aaeb8f |
A361219 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 3 rectangle. | [
"2",
"11",
"56",
"370",
"2666",
"19126",
"134902",
"1026667",
"8049132",
"60996816",
"450456500",
"3427769018",
"27127841200",
"211563038980",
"1837421211974",
"15474223886906"
]
| [
"nonn",
"more"
]
| 5 | 1 | 1 | [
"A360632",
"A361216",
"A361219",
"A361225"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:37:58 | oeisdata/seq/A361/A361219.seq | f1e97d75de9fd83b23c35bf76126e117 |
A361220 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 4 rectangle. | [
"3",
"29",
"370",
"5752",
"82310",
"1232770",
"19119198",
"307914196",
"5020522468",
"89323885136",
"1708142066600"
]
| [
"nonn",
"more"
]
| 5 | 1 | 1 | [
"A361216",
"A361220"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:38:02 | oeisdata/seq/A361/A361220.seq | e02f53f78f4eb776640dae567067edc8 |
A361221 | Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle, up to rotations and reflections. | [
"1",
"1",
"1",
"1",
"5",
"8",
"2",
"12",
"95",
"719",
"2",
"31",
"682",
"20600",
"315107"
]
| [
"nonn",
"tabl",
"more"
]
| 7 | 1 | 5 | [
"A360629",
"A361216",
"A361221",
"A361222",
"A361223",
"A361224",
"A361225"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:38:06 | oeisdata/seq/A361/A361221.seq | deb4cc7a87869e5dd039f0c5fbec21fd |
A361222 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X n square, up to rotations and reflections. | [
"1",
"1",
"8",
"719",
"315107"
]
| [
"nonn",
"more"
]
| 5 | 1 | 3 | [
"A360630",
"A361217",
"A361221",
"A361222"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:38:10 | oeisdata/seq/A361/A361222.seq | 43640093f02bec1a5e193186666c0680 |
A361223 | Maximum number of inequivalent permutations of a partition of n, where two permutations are equivalent if they are reversals of each other. | [
"1",
"1",
"1",
"2",
"2",
"4",
"6",
"10",
"16",
"30",
"54",
"84",
"140",
"252",
"420",
"756",
"1260",
"2520",
"4620",
"7920",
"13860",
"27720",
"51480",
"90120",
"180180",
"337890",
"600600",
"1081080",
"2042040",
"3675672",
"6348888",
"12252240",
"23279256",
"42325920",
"77597520",
"148140720",
"271591320",
"480507720",
"892371480"
]
| [
"nonn"
]
| 9 | 1 | 4 | [
"A102462",
"A361221",
"A361223"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T09:39:29 | oeisdata/seq/A361/A361223.seq | e0d1c45486662bda10fa8ebf72bee575 |
A361224 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle, up to rotations and reflections. | [
"1",
"1",
"5",
"12",
"31",
"86",
"242",
"854",
"2888",
"10478",
"34264",
"120347"
]
| [
"nonn",
"more"
]
| 6 | 1 | 3 | [
"A360631",
"A361218",
"A361221",
"A361224"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:38:21 | oeisdata/seq/A361/A361224.seq | 98beef0f773104690eea76222f55908b |
A361225 | Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 3 rectangle, up to rotations and reflections. | [
"1",
"5",
"8",
"95",
"682",
"4801",
"33807"
]
| [
"nonn",
"more"
]
| 5 | 1 | 2 | [
"A360632",
"A361219",
"A361221",
"A361225"
]
| null | Pontus von Brömssen, Mar 05 2023 | 2023-03-11T08:38:24 | oeisdata/seq/A361/A361225.seq | ad13b066f0ce61990ae3416e5ee19f87 |
A361226 | Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards. | [
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"2",
"5",
"3",
"0",
"3",
"9",
"12",
"6",
"0",
"4",
"13",
"21",
"22",
"10",
"0",
"5",
"17",
"30",
"38",
"35",
"15",
"0",
"6",
"21",
"39",
"54",
"60",
"51",
"21",
"0",
"7",
"25",
"48",
"70",
"85",
"87",
"70",
"28",
"0",
"8",
"29",
"57",
"86",
"110",
"123",
"119",
"92",
"36",
"0",
"9",
"33",
"66",
"102",
"135",
"159",
"168",
"156",
"117",
"45"
]
| [
"nonn",
"tabl"
]
| 54 | 0 | 8 | [
"A000004",
"A000290",
"A000326",
"A001477",
"A002414",
"A002492",
"A005476",
"A016777",
"A016813",
"A016873",
"A017017",
"A017101",
"A017197",
"A017581",
"A022264",
"A022266",
"A026741",
"A033275",
"A034827",
"A143844",
"A160378",
"A161680",
"A299120",
"A360962",
"A361226"
]
| null | Paul Curtz, Mar 05 2023 | 2024-02-22T02:03:10 | oeisdata/seq/A361/A361226.seq | e1f84c384c4622d5da0dfc50cc19bae1 |
A361227 | Irregular triangle T(n, k), n > 0, k = 0..A007814(n), read by rows: T(n, k) = Sum_{i = n-2^k+1..n} A361144(i). | [
"1",
"2",
"3",
"4",
"5",
"9",
"12",
"6",
"7",
"13",
"8",
"10",
"18",
"31",
"43",
"11",
"14",
"25",
"15",
"17",
"32",
"57",
"16",
"19",
"35",
"20",
"21",
"41",
"76",
"133",
"176",
"22",
"23",
"45",
"24",
"26",
"50",
"95",
"27",
"28",
"55",
"29",
"30",
"59",
"114",
"209",
"33",
"34",
"67",
"36",
"37",
"73",
"140",
"38",
"39",
"77",
"40",
"42",
"82",
"159",
"299",
"508",
"684",
"44",
"46",
"90"
]
| [
"nonn",
"tabf"
]
| 9 | 1 | 2 | [
"A007814",
"A361144",
"A361227"
]
| null | Rémy Sigrist, Mar 05 2023 | 2023-03-13T06:31:18 | oeisdata/seq/A361/A361227.seq | 8736ac0430343cb41a7dbe99613189c5 |
A361228 | a(n) is the first number k such that k + a(i) has n prime factors, counted with multiplicity, for all i < n; a(0) = 0. | [
"0",
"2",
"4",
"66",
"1012",
"14630",
"929390",
"63798350",
"19371451550"
]
| [
"nonn",
"more"
]
| 27 | 0 | 2 | [
"A001222",
"A361228"
]
| null | Robert Israel, Mar 21 2023 | 2024-11-08T11:37:39 | oeisdata/seq/A361/A361228.seq | 9b640ec76708003b9877e8bcb63ff2c2 |
A361229 | G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2. | [
"1",
"0",
"0",
"0",
"1",
"2",
"3",
"4",
"7",
"14",
"27",
"48",
"84",
"152",
"284",
"532",
"987",
"1826",
"3401",
"6384",
"12024",
"22656",
"42728",
"80780",
"153151",
"290970",
"553601",
"1054688",
"2012373",
"3845646",
"7359345",
"14100692",
"27048061",
"51941850",
"99855389",
"192163904",
"370159216",
"713672568",
"1377168108",
"2659729380"
]
| [
"nonn"
]
| 34 | 0 | 6 | [
"A002026",
"A006319",
"A023426",
"A052702",
"A361229"
]
| null | Seiichi Manyama, Oct 15 2023 | 2023-12-04T06:22:42 | oeisdata/seq/A361/A361229.seq | cd515b9ceb080a789bd22c4733837616 |
A361230 | Third Lie-Betti number of a path graph on n vertices. | [
"0",
"1",
"6",
"16",
"33",
"58",
"92",
"136",
"191",
"258",
"338",
"432",
"541",
"666",
"808",
"968",
"1147",
"1346",
"1566",
"1808",
"2073",
"2362",
"2676",
"3016",
"3383",
"3778",
"4202",
"4656",
"5141",
"5658",
"6208",
"6792",
"7411",
"8066",
"8758",
"9488",
"10257",
"11066",
"11916",
"12808",
"13743",
"14722",
"15746",
"16816",
"17933"
]
| [
"nonn",
"easy"
]
| 26 | 1 | 3 | [
"A360571",
"A361230"
]
| null | Samuel J. Bevins, Mar 05 2023 | 2025-03-02T10:03:18 | oeisdata/seq/A361/A361230.seq | 3bf06ee1cc1343a5eed70b837e538e73 |
A361231 | a(1)=2; a(n) is the largest k for which the sum a(n-1) + a(n-2) + ... + a(n-k) is prime; if no such k exists, a(n)=-1. | [
"2",
"1",
"2",
"3",
"2",
"3",
"6",
"7",
"6",
"7",
"9",
"8",
"10",
"10",
"12",
"12",
"14",
"14",
"11",
"19",
"13",
"17",
"12",
"21",
"19",
"19",
"25",
"25",
"27",
"26",
"28",
"12",
"29",
"33",
"32",
"32",
"33",
"21",
"35",
"39",
"38",
"39",
"42",
"42",
"40",
"45",
"39",
"47",
"45",
"49",
"44",
"49",
"39",
"47",
"53",
"49",
"55",
"50",
"48",
"56",
"57",
"60",
"54",
"62",
"28",
"64",
"62",
"63",
"65",
"69",
"68"
]
| [
"nonn"
]
| 24 | 1 | 1 | [
"A000040",
"A361178",
"A361199",
"A361231"
]
| null | Neal Gersh Tolunsky, Mar 05 2023 | 2023-03-08T10:30:13 | oeisdata/seq/A361/A361231.seq | 579e96d754202ad39f86fef7feff3ee6 |
A361232 | Numbers m such that the increasing sequence of divisors of m, regarded as words on the finite alphabet of its prime factors, is ordered lexicographically. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"29",
"31",
"32",
"33",
"34",
"35",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"57",
"58",
"59",
"61",
"62",
"64",
"65",
"66",
"67",
"68",
"69",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"81"
]
| [
"nonn"
]
| 32 | 1 | 2 | [
"A027855",
"A361232"
]
| null | Andreas Weingartner, Mar 05 2023 | 2023-03-30T09:15:56 | oeisdata/seq/A361/A361232.seq | e466b7f910cdaabc81f39ebc72696682 |
A361233 | Numbers k such that the "Pisano cycle modulo k shape" is bounded. | [
"1",
"2",
"4",
"5",
"6",
"8",
"10",
"11",
"12",
"14",
"16",
"18",
"19",
"20",
"22",
"24",
"28",
"29",
"30",
"31",
"32",
"36",
"37",
"38",
"40",
"42",
"44",
"46",
"48",
"50",
"52",
"53",
"54",
"55",
"56",
"58",
"59",
"60",
"62",
"64",
"66",
"68",
"70",
"71",
"72",
"76",
"78",
"79",
"80",
"82",
"84",
"86",
"88",
"89",
"90",
"92",
"94",
"95",
"96",
"98",
"100",
"101",
"102",
"104",
"106",
"108",
"109",
"110",
"112"
]
| [
"nonn"
]
| 40 | 1 | 2 | [
"A001175",
"A161553",
"A361233"
]
| null | Luca Onnis, Mar 05 2023 | 2023-04-09T02:44:05 | oeisdata/seq/A361/A361233.seq | b97f246166cfd1e472cf96115275b818 |
A361234 | Infinite sequence of nonzero integers build the greedy way such that the products Product_{i = k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct; each term is minimal in absolute value and in case of a tie, preference is given to the positive value. | [
"-1",
"2",
"3",
"-3",
"4",
"-4",
"5",
"-5",
"6",
"-6",
"7",
"-7",
"8",
"-8",
"9",
"10",
"-10",
"11",
"-11",
"12",
"-12",
"13",
"-13",
"14",
"-14",
"15",
"-15",
"16",
"17",
"-17",
"-18",
"19",
"-19",
"20",
"-20",
"21",
"-21",
"22",
"-22",
"23",
"-23",
"24",
"-24",
"25",
"26",
"-26",
"27",
"-27",
"28",
"-28",
"29",
"-29",
"30",
"-30",
"31",
"-31",
"32",
"-32",
"33",
"-33",
"34"
]
| [
"sign"
]
| 7 | 1 | 2 | [
"A360305",
"A361144",
"A361234"
]
| null | Rémy Sigrist, Mar 05 2023 | 2023-03-07T07:41:45 | oeisdata/seq/A361/A361234.seq | 9e8e21679cf265f945d0b51bfcd2a753 |
A361235 | a(n) = number of k < n, such that k does not divide n, omega(k) < omega(n) and rad(k) | rad(n), where omega(n) = A001221(n) and rad(n) = A007947(n). | [
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"2",
"0",
"2",
"1",
"0",
"0",
"3",
"0",
"2",
"1",
"3",
"0",
"2",
"0",
"3",
"0",
"2",
"0",
"10",
"0",
"0",
"2",
"4",
"1",
"4",
"0",
"4",
"2",
"3",
"0",
"11",
"0",
"3",
"2",
"4",
"0",
"3",
"0",
"4",
"2",
"3",
"0",
"4",
"1",
"3",
"2",
"4",
"0",
"14",
"0",
"4",
"2",
"0",
"1",
"14",
"0",
"4",
"2",
"12",
"0",
"4",
"0",
"5",
"2",
"4",
"1",
"15",
"0",
"3",
"0",
"5",
"0",
"16",
"1",
"5",
"3",
"3",
"0",
"19",
"1",
"4",
"3",
"5",
"1",
"4",
"0",
"5"
]
| [
"nonn"
]
| 9 | 1 | 10 | [
"A000961",
"A001221",
"A007947",
"A010846",
"A013929",
"A045763",
"A051953",
"A243822",
"A243823",
"A272618",
"A355432",
"A361235"
]
| null | Michael De Vlieger, Mar 06 2023 | 2023-03-14T04:16:42 | oeisdata/seq/A361/A361235.seq | fca4c04229571b5e9599c406824bf942 |
A361236 | Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"5",
"11",
"1",
"1",
"1",
"1",
"8",
"33",
"49",
"1",
"1",
"1",
"1",
"9",
"63",
"230",
"204",
"1",
"1",
"1",
"1",
"12",
"105",
"664",
"1827",
"984",
"1",
"1",
"1",
"1",
"13",
"159",
"1419",
"7462",
"15466",
"4807",
"1",
"1",
"1",
"1",
"16",
"221",
"2637",
"21085",
"90896",
"137085",
"24739",
"1"
]
| [
"nonn",
"tabl"
]
| 16 | 0 | 14 | [
"A000012",
"A042948",
"A070914",
"A296532",
"A303694",
"A303912",
"A361236",
"A361237",
"A361238",
"A361239",
"A361242"
]
| null | Andrew Howroyd, Mar 05 2023 | 2023-03-11T00:14:05 | oeisdata/seq/A361/A361236.seq | cefc42881e1066aaab81b6baa7713891 |
A361237 | Number of nonequivalent noncrossing triangular cacti with n triangles up to rotation. | [
"1",
"1",
"1",
"5",
"33",
"230",
"1827",
"15466",
"137085",
"1260545",
"11930690",
"115607310",
"1142333751",
"11475243990",
"116910923720",
"1205717972880",
"12567935262965",
"132238934938755",
"1403053736656275",
"14997682223032473",
"161392162120990570",
"1747309339397241620",
"19021521745371642498"
]
| [
"nonn"
]
| 9 | 0 | 4 | [
"A361236",
"A361237",
"A361240"
]
| null | Andrew Howroyd, Mar 05 2023 | 2023-03-11T00:13:54 | oeisdata/seq/A361/A361237.seq | e14f3748f31b296f7a0cbafab2310752 |
A361238 | Number of nonequivalent noncrossing 4-gonal cacti with n polygons up to rotation. | [
"1",
"1",
"1",
"8",
"63",
"664",
"7462",
"90896",
"1159587",
"15369761",
"209785576",
"2933152208",
"41833725570",
"606735330572",
"8926655086328",
"132969013796640",
"2002168332793035",
"30435351234214599",
"466570991414368225",
"7206553709798780480",
"112066631802051120600",
"1753396593921234013664"
]
| [
"nonn"
]
| 7 | 0 | 4 | [
"A361236",
"A361238",
"A361241"
]
| null | Andrew Howroyd, Mar 05 2023 | 2023-03-11T00:13:58 | oeisdata/seq/A361/A361238.seq | 239282676f8731e22dc35b1fa5ff0fc6 |
A361239 | Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation and reflection. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"4",
"7",
"1",
"1",
"1",
"1",
"6",
"19",
"28",
"1",
"1",
"1",
"1",
"7",
"35",
"124",
"108",
"1",
"1",
"1",
"1",
"9",
"57",
"349",
"931",
"507",
"1",
"1",
"1",
"1",
"10",
"85",
"737",
"3766",
"7801",
"2431",
"1",
"1",
"1",
"1",
"12",
"117",
"1359",
"10601",
"45632",
"68685",
"12441",
"1"
]
| [
"nonn",
"tabl"
]
| 13 | 0 | 14 | [
"A000012",
"A032766",
"A296533",
"A361236",
"A361239",
"A361240",
"A361241",
"A361243"
]
| null | Andrew Howroyd, Mar 06 2023 | 2023-03-11T00:13:49 | oeisdata/seq/A361/A361239.seq | 36989fae801bd621551d1b1932ed4afd |
A361240 | Number of nonequivalent noncrossing triangular cacti with n triangles up to rotation and reflection. | [
"1",
"1",
"1",
"4",
"19",
"124",
"931",
"7801",
"68685",
"630850",
"5966610",
"57808920",
"571178751",
"5737672339",
"58455577800",
"602859484608",
"6283968796705",
"66119472527814",
"701526880303315",
"7498841163925819",
"80696081185766970",
"873654670250482120",
"9510760874015305314",
"104056578392127906720"
]
| [
"nonn"
]
| 8 | 0 | 4 | [
"A002294",
"A118970",
"A361237",
"A361239",
"A361240"
]
| null | Andrew Howroyd, Mar 06 2023 | 2023-03-11T00:13:41 | oeisdata/seq/A361/A361240.seq | d49671d24844a50763386bfe3ea98315 |
A361241 | Number of nonequivalent noncrossing 4-gonal cacti with n polygons up to rotation and reflection. | [
"1",
"1",
"1",
"6",
"35",
"349",
"3766",
"45632",
"580203",
"7687128",
"104898024",
"1466605630",
"20916933674",
"303368072539",
"4463328542008",
"66484512715040",
"1001084180891355",
"15217675702394661",
"233285495922344929",
"3603276856175739600",
"56033315904277236728",
"876698296980033411125"
]
| [
"nonn"
]
| 8 | 0 | 4 | [
"A361238",
"A361239",
"A361241"
]
| null | Andrew Howroyd, Mar 06 2023 | 2023-03-11T00:13:35 | oeisdata/seq/A361/A361241.seq | 9643c238f741f35aad3a0eb7c72d30e3 |
A361242 | Number of nonequivalent noncrossing cacti with n nodes up to rotation. | [
"1",
"1",
"1",
"2",
"7",
"26",
"144",
"800",
"4995",
"32176",
"215914",
"1486270",
"10471534",
"75137664",
"547756650",
"4047212142",
"30255934851",
"228513227318",
"1741572167716",
"13380306774014",
"103542814440878",
"806476983310180",
"6318519422577854",
"49769050291536486",
"393933908000862866"
]
| [
"nonn"
]
| 11 | 0 | 4 | [
"A003168",
"A007297",
"A361236",
"A361242",
"A361243"
]
| null | Andrew Howroyd, Mar 07 2023 | 2023-03-11T00:13:31 | oeisdata/seq/A361/A361242.seq | 644b51c65baaca7b646cc72017e60563 |
A361243 | Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection. | [
"1",
"1",
"1",
"2",
"5",
"17",
"79",
"421",
"2537",
"16214",
"108204",
"743953",
"5237414",
"37574426",
"273889801",
"2023645764",
"15128049989",
"114256903169",
"870786692493",
"6690155544157",
"51771411793812",
"403238508004050",
"3159259746188665",
"24884525271410389",
"196966954270163612"
]
| [
"nonn"
]
| 8 | 0 | 4 | [
"A003168",
"A007297",
"A361239",
"A361242",
"A361243"
]
| null | Andrew Howroyd, Mar 07 2023 | 2023-03-11T00:13:26 | oeisdata/seq/A361/A361243.seq | 3df451d3228d0c89a25054b97d3fc399 |
A361244 | Number of noncrossing bridgeless cacti with n nodes. | [
"1",
"1",
"0",
"1",
"1",
"6",
"13",
"57",
"169",
"673",
"2301",
"8933",
"32747",
"127063",
"483484",
"1889957",
"7352241",
"29003446",
"114481435",
"455542880",
"1816976042",
"7285391071",
"29291855748",
"118218771203",
"478372112363",
"1941436590561",
"7897802784418",
"32205683248225",
"131602039333873"
]
| [
"nonn"
]
| 9 | 0 | 6 | [
"A003168",
"A361242",
"A361244",
"A361245"
]
| null | Andrew Howroyd, Mar 08 2023 | 2023-03-11T00:13:15 | oeisdata/seq/A361/A361244.seq | b38794255ba55acce91ed30cfde9eb7b |
A361245 | Number of noncrossing 2,3 cacti with n nodes. | [
"1",
"1",
"1",
"4",
"20",
"115",
"715",
"4683",
"31824",
"222300",
"1586310",
"11514030",
"84742320",
"630946446",
"4743789260",
"35965715780",
"274659794160",
"2110810059795",
"16312695488265",
"126693445737170",
"988340783454380",
"7740875273884445",
"60846920004855985",
"479854293574853085"
]
| [
"nonn"
]
| 8 | 0 | 4 | [
"A091481",
"A091485",
"A091486",
"A091487",
"A361242",
"A361244",
"A361245"
]
| null | Andrew Howroyd, Mar 08 2023 | 2023-03-11T00:13:10 | oeisdata/seq/A361/A361245.seq | f53954b577eddb3551be4deb6b86b2ee |
A361246 | a(n) is the smallest integer k > 1 that satisfies k mod j <= 1 for all integers j in 1..n. | [
"2",
"2",
"3",
"4",
"16",
"25",
"36",
"120",
"505",
"721",
"2520",
"2520",
"41041",
"83161",
"83161",
"196560",
"524161",
"524161",
"3160080",
"3160080",
"3160080",
"3160080",
"68468401",
"68468401",
"68468401",
"68468401",
"4724319601",
"4724319601",
"26702676000",
"26702676000"
]
| [
"nonn"
]
| 34 | 1 | 1 | [
"A003418",
"A064219",
"A361246",
"A361247",
"A361248"
]
| null | Andrew Cogliano, Mar 05 2023 | 2023-06-21T06:47:14 | oeisdata/seq/A361/A361246.seq | e53e94b6507d01666a0435281ff95c09 |
A361247 | a(n) is the smallest integer k > 2 that satisfies k mod j <= 2 for all integers j in 1..n. | [
"3",
"3",
"3",
"4",
"5",
"6",
"30",
"42",
"56",
"72",
"792",
"792",
"1080",
"1080",
"1080",
"30240",
"246961",
"246961",
"636482",
"636482",
"1360801",
"2162162",
"2162162",
"2162162",
"39412802",
"39412802",
"107881202",
"107881202",
"3625549202",
"3625549202",
"3625549202",
"170918748001",
"170918748001",
"170918748001",
"170918748001",
"170918748001"
]
| [
"nonn"
]
| 25 | 1 | 1 | [
"A003418",
"A056697",
"A361246",
"A361247",
"A361248"
]
| null | Andrew Cogliano, Mar 05 2023 | 2023-06-02T10:20:52 | oeisdata/seq/A361/A361247.seq | a538c258ad74872ea9e2b437a1d16763 |
A361248 | a(n) is the smallest integer k > 3 that satisfies k mod j <= 3 for all integers j in 1..n. | [
"4",
"4",
"4",
"4",
"5",
"6",
"7",
"8",
"56",
"72",
"91",
"651",
"651",
"1080",
"1080",
"1443",
"20163",
"20163",
"246962",
"246962",
"246962",
"609843",
"2162162",
"2162162",
"29055601",
"29055601",
"107881202",
"107881202",
"205405203",
"205405203",
"3625549202",
"5675443203",
"8374212002",
"8374212002",
"8374212002",
"8374212002",
"131668891200",
"131668891200"
]
| [
"nonn"
]
| 36 | 1 | 1 | [
"A003418",
"A361246",
"A361247",
"A361248"
]
| null | Andrew Cogliano, Mar 05 2023 | 2023-06-20T15:00:51 | oeisdata/seq/A361/A361248.seq | a82a614a9a8bc8ab271c569f7ec7c4c1 |
A361249 | Run length transform of A362415. | [
"1",
"1",
"2",
"2",
"3",
"1",
"4",
"3",
"5",
"4",
"6",
"5",
"7",
"6",
"3",
"4",
"8",
"7",
"9",
"8",
"10",
"9",
"8",
"10",
"11",
"10",
"12",
"11",
"13",
"12",
"14",
"13",
"11",
"14",
"15",
"14",
"15",
"15",
"16",
"16",
"17",
"17",
"18",
"18",
"19",
"19",
"19",
"19",
"20",
"20",
"21",
"21",
"22",
"20",
"20",
"22",
"23",
"23",
"24",
"24",
"25",
"25",
"26",
"26",
"27",
"22",
"23",
"27",
"28",
"27",
"28",
"28",
"29",
"29",
"30",
"30",
"31",
"31"
]
| [
"nonn"
]
| 46 | 1 | 3 | [
"A028242",
"A361249",
"A362415"
]
| null | Neal Gersh Tolunsky, Apr 20 2023 | 2024-12-19T11:46:19 | oeisdata/seq/A361/A361249.seq | 71a0b512ec175a4b9ac266a2d2f6b41f |
A361250 | Number of tilings of a 5 X n rectangle using n pentominoes of shapes T, N, X. | [
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2",
"0",
"2",
"2",
"8",
"0",
"18",
"6",
"16",
"6",
"48",
"22",
"74",
"48",
"182",
"74",
"306",
"204",
"544",
"342",
"1114",
"826",
"2038",
"1546",
"4144",
"3126",
"7452",
"6470",
"14538",
"12542",
"27824",
"25994",
"53398",
"50244",
"103288",
"101306",
"195756",
"200120",
"380310",
"395802"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 11 | [
"A174249",
"A343529",
"A349187",
"A352421",
"A358933",
"A361250"
]
| null | Alois P. Heinz, Apr 20 2023 | 2023-05-02T08:36:16 | oeisdata/seq/A361/A361250.seq | 8f0f73c0a22203df6e8acadf657f3750 |
A361251 | Inverse permutation to A360371. | [
"1",
"2",
"3",
"4",
"6",
"5",
"7",
"10",
"8",
"9",
"11",
"12",
"15",
"16",
"13",
"14",
"21",
"17",
"22",
"18",
"23",
"28",
"29",
"19",
"24",
"20",
"30",
"36",
"37",
"31",
"45",
"25",
"38",
"27",
"39",
"46",
"55",
"56",
"26",
"32",
"66",
"47",
"67",
"35",
"48",
"78",
"79",
"40",
"91",
"58",
"34",
"33",
"92",
"57",
"69",
"44",
"68",
"105",
"106",
"80",
"120",
"54",
"93",
"49",
"41",
"43"
]
| [
"nonn"
]
| 40 | 1 | 2 | [
"A360371",
"A361251"
]
| null | Rémy Sigrist, Mar 30 2023 | 2025-03-20T22:32:31 | oeisdata/seq/A361/A361251.seq | aef718f3334e403a08ebcd03e1242d17 |
A361252 | Primes in A239237. | [
"503",
"10169",
"10253",
"10303",
"10753",
"11047",
"12409",
"12503",
"13049",
"14083",
"20333",
"20773",
"20929",
"21023",
"21067",
"21407",
"23053",
"23059",
"25033",
"25303",
"29303",
"30089",
"30103",
"31063",
"32057",
"32099",
"32303",
"33403",
"38083",
"40087",
"40213",
"40253",
"40483",
"40787",
"41609",
"42403",
"43103",
"46103",
"50227",
"50363"
]
| [
"nonn",
"base"
]
| 29 | 1 | 1 | [
"A239237",
"A361252"
]
| null | Teja Prabhu Buddala, Mar 05 2023 | 2023-04-03T15:00:28 | oeisdata/seq/A361/A361252.seq | 6d18550c020c90c7ce1273ea1bc97ae1 |
A361253 | If n = m^2 for some m > 1 then a(n) = a(m), otherwise a(n) = n. | [
"0",
"1",
"2",
"3",
"2",
"5",
"6",
"7",
"8",
"3",
"10",
"11",
"12",
"13",
"14",
"15",
"2",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"5",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"6",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"7",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"8",
"65",
"66",
"67",
"68"
]
| [
"nonn",
"easy"
]
| 24 | 0 | 3 | [
"A000037",
"A001146",
"A011764",
"A097448",
"A176594",
"A361253"
]
| null | Rémy Sigrist, Mar 06 2023 | 2023-03-17T13:17:57 | oeisdata/seq/A361/A361253.seq | 1f4ce3f0af380d1b782b6cb05a002dbb |
A361254 | Number of n-regular graphs on 2*n labeled nodes. | [
"1",
"1",
"3",
"70",
"19355",
"66462606",
"2977635137862",
"1803595358964773088",
"15138592322753242235338875",
"1793196665025885172290508971592750",
"3040059281615704147007085764679679740691838",
"74597015246986083384362428357508730776063716190667288",
"26737694395324301026230134763403079891362936970900741153038680278"
]
| [
"nonn"
]
| 34 | 0 | 3 | [
"A001223",
"A059441",
"A339987",
"A360437",
"A361254"
]
| null | Atabey Kaygun, Mar 06 2023 | 2023-03-28T15:29:48 | oeisdata/seq/A361/A361254.seq | 36d98a31ffbce44f54e4d23713b69840 |
A361255 | Triangle read by rows: row n lists the exponential unitary divisors of n. | [
"1",
"2",
"3",
"2",
"4",
"5",
"6",
"7",
"2",
"8",
"3",
"9",
"10",
"11",
"6",
"12",
"13",
"14",
"15",
"2",
"16",
"17",
"6",
"18",
"19",
"10",
"20",
"21",
"22",
"23",
"6",
"24",
"5",
"25",
"26",
"3",
"27",
"14",
"28",
"29",
"30",
"31",
"2",
"32",
"33",
"34",
"35",
"6",
"12",
"18",
"36",
"37",
"38",
"39",
"10",
"40",
"41",
"42",
"43",
"22",
"44",
"15",
"45",
"46",
"47",
"6",
"48",
"7",
"49",
"10",
"50",
"51",
"26",
"52",
"53",
"6",
"54",
"55",
"14",
"56",
"57",
"58",
"59"
]
| [
"nonn",
"tabf"
]
| 14 | 1 | 2 | [
"A278908",
"A322791",
"A322857",
"A361255"
]
| null | R. J. Mathar, Mar 06 2023 | 2023-03-11T15:08:31 | oeisdata/seq/A361/A361255.seq | c21c2c94cdd365a5f3da2d2ef2b4b27d |
A361256 | Smallest base-n strong Fermat pseudoprime with n distinct prime factors. | [
"2047",
"8911",
"129921",
"381347461",
"333515107081",
"37388680793101",
"713808066913201",
"665242007427361",
"179042026797485691841",
"8915864307267517099501",
"331537694571170093744101",
"2359851544225139066759651401",
"17890806687914532842449765082011"
]
| [
"nonn"
]
| 7 | 2 | 1 | [
"A001262",
"A180065",
"A271874",
"A360184",
"A361256"
]
| null | Daniel Suteu, Mar 06 2023 | 2023-03-26T16:53:42 | oeisdata/seq/A361/A361256.seq | 445bcd4faa240ccc1fdae3dce322eba7 |
A361257 | a(n) = Sum_{j=0..n} n^wt(j), where wt = A000120. | [
"1",
"2",
"5",
"16",
"29",
"66",
"127",
"512",
"737",
"1090",
"1541",
"3312",
"4369",
"7658",
"12209",
"65536",
"83537",
"105282",
"130987",
"167600",
"203701",
"254122",
"313259",
"649728",
"766201",
"912626",
"1079027",
"1778896",
"2071469",
"3081570",
"4329151",
"33554432",
"39135425",
"45436546",
"52524221",
"60511536"
]
| [
"nonn",
"base"
]
| 17 | 0 | 2 | [
"A000120",
"A002416",
"A059841",
"A360189",
"A361257"
]
| null | Alois P. Heinz, Mar 06 2023 | 2023-03-06T19:34:57 | oeisdata/seq/A361/A361257.seq | fba08386a0e707ab742f8582238d5749 |
A361258 | Irregular triangle read by rows in which row n lists the print order of a 4n-page booklet. | [
"2",
"3",
"4",
"1",
"2",
"7",
"8",
"1",
"4",
"5",
"6",
"3",
"2",
"11",
"12",
"1",
"4",
"9",
"10",
"3",
"6",
"7",
"8",
"5",
"2",
"15",
"16",
"1",
"4",
"13",
"14",
"3",
"6",
"11",
"12",
"5",
"8",
"9",
"10",
"7",
"2",
"19",
"20",
"1",
"4",
"17",
"18",
"3",
"6",
"15",
"16",
"5",
"8",
"13",
"14",
"7",
"10",
"11",
"12",
"9",
"2",
"23",
"24",
"1",
"4",
"21",
"22",
"3",
"6",
"19",
"20",
"5",
"8",
"17",
"18",
"7",
"10",
"15",
"16",
"9",
"12",
"13",
"14",
"11"
]
| [
"nonn",
"look",
"tabf"
]
| 36 | 1 | 1 | [
"A008586",
"A033585",
"A361258"
]
| null | Ole Palnatoke Andersen, Mar 06 2023 | 2023-04-02T12:47:39 | oeisdata/seq/A361/A361258.seq | f6d673316f1ec82866d858146c99442a |
A361259 | a(n) is the least semiprime that is the sum of n consecutive primes. | [
"10",
"26",
"39",
"358",
"58",
"77",
"155",
"129",
"583",
"562",
"323",
"326",
"551",
"381",
"629",
"501",
"707",
"1294",
"789",
"791",
"961",
"1354",
"1159",
"1262",
"1369",
"1371",
"1591",
"1718",
"1849",
"1851",
"2271",
"2127",
"3561",
"2427",
"3077",
"2747",
"3085",
"3442",
"4811",
"3826",
"3829",
"3831",
"5089",
"4227",
"4659",
"4661",
"5345",
"7318",
"5587",
"8146",
"6333",
"6081",
"6338"
]
| [
"nonn"
]
| 15 | 3 | 1 | [
"A001358",
"A361259"
]
| null | Zak Seidov and Robert Israel, Mar 06 2023 | 2023-03-13T11:52:02 | oeisdata/seq/A361/A361259.seq | 8caf030adde1503ed742c0b93ba3b8be |
A361260 | Maximum latitude in degrees of spherical Mercator projection with an aspect ratio of one, arctan(sinh(Pi))*180/Pi. | [
"8",
"5",
"0",
"5",
"1",
"1",
"2",
"8",
"7",
"7",
"9",
"8",
"0",
"6",
"5",
"9",
"2",
"3",
"7",
"7",
"7",
"9",
"6",
"7",
"1",
"5",
"5",
"2",
"1",
"9",
"2",
"4",
"6",
"9",
"2",
"0",
"6",
"6",
"9",
"8",
"2",
"5",
"9",
"1",
"2",
"6",
"8",
"4",
"2",
"0",
"6",
"8",
"8",
"4",
"0",
"5",
"7",
"6",
"2",
"4",
"5",
"9",
"3",
"9",
"1",
"5",
"9",
"4",
"5",
"8",
"9",
"3",
"7",
"0",
"0",
"8",
"3",
"4",
"6",
"7",
"3",
"1",
"2",
"7",
"1",
"7",
"4",
"3",
"6",
"3",
"7",
"9",
"0",
"5",
"7",
"6",
"4",
"6",
"7",
"8",
"7",
"3",
"1",
"4",
"5",
"0",
"3",
"1",
"6",
"1",
"1",
"4",
"9",
"0",
"2",
"0",
"8",
"2",
"9",
"1",
"5",
"9",
"8",
"2",
"3",
"4",
"7"
]
| [
"nonn",
"cons"
]
| 19 | 2 | 1 | [
"A334401",
"A361260"
]
| null | Donghwi Park, Mar 06 2023 | 2023-03-26T17:05:41 | oeisdata/seq/A361/A361260.seq | 2ba100abf0e59d4c1794f20c2cc8bd35 |
A361261 | Array of Ramsey core number rc(s,t) read by antidiagonals. | [
"2",
"3",
"3",
"4",
"5",
"4",
"5",
"6",
"6",
"5",
"6",
"8",
"8",
"8",
"6",
"7",
"9",
"10",
"10",
"9",
"7",
"8",
"10",
"11",
"11",
"11",
"10",
"8",
"9",
"12",
"13",
"13",
"13",
"13",
"12",
"9",
"10",
"13",
"14",
"15",
"15",
"15",
"14",
"13",
"10",
"11",
"14",
"15",
"16",
"16",
"16",
"16",
"15",
"14",
"11",
"12",
"15",
"17",
"18",
"18",
"18",
"18",
"18",
"17",
"15",
"12",
"13",
"17",
"18",
"19",
"20",
"20",
"20",
"20",
"19",
"18",
"17",
"13"
]
| [
"nonn",
"tabl"
]
| 45 | 1 | 1 | [
"A080036",
"A361261",
"A361684"
]
| null | Allan Bickle, Mar 28 2023 | 2024-05-04T07:05:41 | oeisdata/seq/A361/A361261.seq | 6e64cebee380e3f7d944aa014558976d |
A361262 | Numbers k such that k+i^2, i=0..6 are all semiprimes. | [
"3238",
"4162",
"4537",
"13918",
"16837",
"17857",
"18673",
"24553",
"55477",
"62353",
"78457",
"84358",
"92878",
"102838",
"106813",
"129838",
"135853",
"140002",
"142822",
"146722",
"148318",
"151957",
"166177",
"180013",
"184213",
"187933",
"194338",
"210637",
"214393",
"231757",
"242698",
"271198",
"274393",
"305677"
]
| [
"nonn"
]
| 30 | 1 | 1 | [
"A001358",
"A070552",
"A361262"
]
| null | Alexandru Petrescu, Mar 06 2023 | 2025-02-02T04:28:39 | oeisdata/seq/A361/A361262.seq | 09f6ea2537cd33d5ba5d123c22b4cb1b |
A361263 | Numbers of the form k*(k^5 +- 1)/2. | [
"0",
"1",
"31",
"33",
"363",
"366",
"2046",
"2050",
"7810",
"7815",
"23325",
"23331",
"58821",
"58828",
"131068",
"131076",
"265716",
"265725",
"499995",
"500005",
"885775",
"885786",
"1492986",
"1492998",
"2413398",
"2413411",
"3764761",
"3764775",
"5695305",
"5695320",
"8388600",
"8388616",
"12068776",
"12068793",
"17006103",
"17006121",
"23522931",
"23522950"
]
| [
"nonn",
"easy"
]
| 25 | 1 | 3 | [
"A006003",
"A021003",
"A027441",
"A057587",
"A057590",
"A135503",
"A167963",
"A168029",
"A361263"
]
| null | Thomas Scheuerle, Mar 06 2023 | 2023-03-22T22:00:47 | oeisdata/seq/A361/A361263.seq | 1457d84721b052cfd7de62c4f127e4d1 |
A361264 | Multiplicative with a(p^e) = p^(e + 2), e > 0. | [
"1",
"8",
"27",
"16",
"125",
"216",
"343",
"32",
"81",
"1000",
"1331",
"432",
"2197",
"2744",
"3375",
"64",
"4913",
"648",
"6859",
"2000",
"9261",
"10648",
"12167",
"864",
"625",
"17576",
"243",
"5488",
"24389",
"27000",
"29791",
"128",
"35937",
"39304",
"42875",
"1296",
"50653",
"54872",
"59319",
"4000",
"68921",
"74088",
"79507",
"21296",
"10125"
]
| [
"nonn",
"easy",
"mult"
]
| 13 | 1 | 2 | [
"A000005",
"A003557",
"A007947",
"A064549",
"A065483",
"A330523",
"A360997",
"A361264",
"A361266"
]
| null | Vaclav Kotesovec, Mar 06 2023 | 2023-09-01T04:09:28 | oeisdata/seq/A361/A361264.seq | 112e674edb839806788687af4f5a125e |
A361265 | Multiplicative with a(p^e) = e * p^(e + 1), e > 0. | [
"1",
"4",
"9",
"16",
"25",
"36",
"49",
"48",
"54",
"100",
"121",
"144",
"169",
"196",
"225",
"128",
"289",
"216",
"361",
"400",
"441",
"484",
"529",
"432",
"250",
"676",
"243",
"784",
"841",
"900",
"961",
"320",
"1089",
"1156",
"1225",
"864",
"1369",
"1444",
"1521",
"1200",
"1681",
"1764",
"1849",
"1936",
"1350",
"2116",
"2209",
"1152",
"686",
"1000",
"2601",
"2704"
]
| [
"nonn",
"easy",
"mult"
]
| 17 | 1 | 2 | [
"A005361",
"A064549",
"A203639",
"A361265",
"A361268"
]
| null | Vaclav Kotesovec, Mar 06 2023 | 2023-09-01T04:09:37 | oeisdata/seq/A361/A361265.seq | d7bf598c5058529fa0ccc69f74bbff9d |
A361266 | Multiplicative with a(p^e) = p^(e + 3), e > 0. | [
"1",
"16",
"81",
"32",
"625",
"1296",
"2401",
"64",
"243",
"10000",
"14641",
"2592",
"28561",
"38416",
"50625",
"128",
"83521",
"3888",
"130321",
"20000",
"194481",
"234256",
"279841",
"5184",
"3125",
"456976",
"729",
"76832",
"707281",
"810000",
"923521",
"256",
"1185921",
"1336336",
"1500625",
"7776",
"1874161",
"2085136",
"2313441",
"40000"
]
| [
"nonn",
"easy",
"mult"
]
| 18 | 1 | 2 | [
"A003557",
"A007947",
"A064549",
"A361264",
"A361266"
]
| null | Vaclav Kotesovec, Mar 06 2023 | 2023-09-01T04:09:46 | oeisdata/seq/A361/A361266.seq | 0daf8d94a115a978c0cd9eb31a24d791 |
A361267 | Numbers k such that prime(k+2) - prime(k) = 6. | [
"3",
"4",
"5",
"6",
"7",
"12",
"13",
"19",
"25",
"26",
"27",
"28",
"43",
"44",
"48",
"49",
"59",
"63",
"64",
"69",
"88",
"89",
"112",
"116",
"142",
"143",
"147",
"148",
"151",
"152",
"181",
"182",
"206",
"211",
"212",
"224",
"225",
"229",
"234",
"235",
"236",
"253",
"261",
"264",
"276",
"285",
"286",
"287",
"301",
"302",
"313",
"314",
"322",
"332",
"336",
"352",
"384",
"389"
]
| [
"nonn"
]
| 34 | 1 | 1 | [
"A000040",
"A000720",
"A007529",
"A022004",
"A022005",
"A361267"
]
| null | Atabey Kaygun, Mar 06 2023 | 2025-02-16T08:34:05 | oeisdata/seq/A361/A361267.seq | 7660d8aa89fddf4af2599a94d9362979 |
A361268 | Multiplicative with a(p^e) = e * p^(e + 2), e > 0. | [
"1",
"8",
"27",
"32",
"125",
"216",
"343",
"96",
"162",
"1000",
"1331",
"864",
"2197",
"2744",
"3375",
"256",
"4913",
"1296",
"6859",
"4000",
"9261",
"10648",
"12167",
"2592",
"1250",
"17576",
"729",
"10976",
"24389",
"27000",
"29791",
"640",
"35937",
"39304",
"42875",
"5184",
"50653",
"54872",
"59319",
"12000",
"68921",
"74088",
"79507",
"42592"
]
| [
"nonn",
"easy",
"mult"
]
| 20 | 1 | 2 | [
"A005361",
"A059956",
"A203639",
"A361264",
"A361265",
"A361268"
]
| null | Vaclav Kotesovec, Mar 06 2023 | 2023-09-01T02:55:22 | oeisdata/seq/A361/A361268.seq | d3e5f0305fb1f3265e29877b771c3ba6 |
A361269 | Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n. | [
"1",
"0",
"2",
"0",
"4",
"12",
"0",
"144",
"168",
"200",
"0",
"25696",
"18768",
"12384",
"8688",
"0",
"18082560",
"8697280",
"3923040",
"1914560",
"936992",
"0",
"47025585664",
"14670384000",
"4512045120",
"1622358720",
"647087040",
"242016192",
"0",
"450955726792704",
"87781550054912",
"17679638000640",
"4496696041600",
"1408276410240",
"482302375296",
"145763745920"
]
| [
"nonn",
"tabl"
]
| 28 | 0 | 3 | [
"A002416",
"A003024",
"A003030",
"A361269"
]
| null | Geoffrey Critzer, Mar 06 2023 | 2023-03-16T04:50:52 | oeisdata/seq/A361/A361269.seq | 7200c1b9316a3e325f6c4bb1fc14ce96 |
A361270 | Number of 1324-avoiding odd Grassmannian permutations of size n. | [
"0",
"0",
"1",
"2",
"5",
"8",
"16",
"20",
"38",
"40",
"75",
"70",
"131",
"112",
"210",
"168",
"316",
"240",
"453",
"330",
"625",
"440",
"836",
"572",
"1090",
"728",
"1391",
"910",
"1743",
"1120",
"2150",
"1360",
"2616",
"1632",
"3145",
"1938",
"3741",
"2280",
"4408",
"2660",
"5150",
"3080",
"5971",
"3542",
"6875",
"4048",
"7866",
"4600",
"8948",
"5200",
"10125"
]
| [
"nonn",
"easy"
]
| 20 | 0 | 4 | [
"A356185",
"A361270",
"A361271"
]
| null | Juan B. Gil, Mar 07 2023 | 2023-03-08T02:49:29 | oeisdata/seq/A361/A361270.seq | d22730911c51958a87898406be7704c6 |
A361271 | Number of 1342-avoiding odd Grassmannian permutations of size n. | [
"0",
"0",
"1",
"2",
"6",
"9",
"19",
"25",
"44",
"54",
"85",
"100",
"146",
"167",
"231",
"259",
"344",
"380",
"489",
"534",
"670",
"725",
"891",
"957",
"1156",
"1234",
"1469",
"1560",
"1834",
"1939",
"2255",
"2375",
"2736",
"2872",
"3281",
"3434",
"3894",
"4065",
"4579",
"4769",
"5340",
"5550",
"6181",
"6412",
"7106",
"7359",
"8119",
"8395",
"9224",
"9524",
"10425"
]
| [
"nonn",
"easy"
]
| 21 | 0 | 4 | [
"A356185",
"A361270",
"A361271",
"A361274"
]
| null | Juan B. Gil, Mar 07 2023 | 2023-03-10T11:04:28 | oeisdata/seq/A361/A361271.seq | 22db54925d74f9f9058b68511f4f9c99 |
A361272 | Number of 1243-avoiding even Grassmannian permutations of size n. | [
"1",
"1",
"1",
"3",
"6",
"12",
"20",
"32",
"47",
"67",
"91",
"121",
"156",
"198",
"246",
"302",
"365",
"437",
"517",
"607",
"706",
"816",
"936",
"1068",
"1211",
"1367",
"1535",
"1717",
"1912",
"2122",
"2346",
"2586",
"2841",
"3113",
"3401",
"3707",
"4030",
"4372",
"4732",
"5112",
"5511",
"5931",
"6371",
"6833",
"7316",
"7822",
"8350",
"8902",
"9477",
"10077"
]
| [
"nonn",
"easy"
]
| 21 | 0 | 4 | [
"A175287",
"A356185",
"A361272",
"A361273"
]
| null | Juan B. Gil, Mar 09 2023 | 2023-03-09T17:33:46 | oeisdata/seq/A361/A361272.seq | a7a01ef0651fe2e348621ee8aa95d8d3 |
A361273 | Number of 1324-avoiding even Grassmannian permutations of size n. | [
"1",
"1",
"1",
"3",
"6",
"13",
"20",
"37",
"47",
"81",
"91",
"151",
"156",
"253",
"246",
"393",
"365",
"577",
"517",
"811",
"706",
"1101",
"936",
"1453",
"1211",
"1873",
"1535",
"2367",
"1912",
"2941",
"2346",
"3601",
"2841",
"4353",
"3401",
"5203",
"4030",
"6157",
"4732",
"7221",
"5511",
"8401",
"6371",
"9703",
"7316",
"11133",
"8350",
"12697",
"9477",
"14401",
"10701"
]
| [
"nonn",
"easy"
]
| 8 | 0 | 4 | [
"A356185",
"A361270",
"A361272",
"A361273"
]
| null | Juan B. Gil, Mar 09 2023 | 2023-03-09T20:02:37 | oeisdata/seq/A361/A361273.seq | 20f02b4cbb6ec60b9bff69d9cdf1c099 |
A361274 | Number of 1342-avoiding even Grassmannian permutations of size n. | [
"1",
"1",
"1",
"3",
"5",
"12",
"17",
"32",
"41",
"67",
"81",
"121",
"141",
"198",
"225",
"302",
"337",
"437",
"481",
"607",
"661",
"816",
"881",
"1068",
"1145",
"1367",
"1457",
"1717",
"1821",
"2122",
"2241",
"2586",
"2721",
"3113",
"3265",
"3707",
"3877",
"4372",
"4561",
"5112",
"5321",
"5931",
"6161",
"6833",
"7085",
"7822",
"8097",
"8902",
"9201",
"10077",
"10401"
]
| [
"nonn",
"easy"
]
| 9 | 0 | 4 | [
"A356185",
"A361271",
"A361274"
]
| null | Juan B. Gil, Mar 09 2023 | 2023-03-10T09:11:06 | oeisdata/seq/A361/A361274.seq | 1b7aad46fece25bb69a37a5563bc1420 |
A361275 | Number of 1423-avoiding even Grassmannian permutations of size n. | [
"1",
"1",
"1",
"3",
"5",
"11",
"17",
"29",
"41",
"61",
"81",
"111",
"141",
"183",
"225",
"281",
"337",
"409",
"481",
"571",
"661",
"771",
"881",
"1013",
"1145",
"1301",
"1457",
"1639",
"1821",
"2031",
"2241",
"2481",
"2721",
"2993",
"3265",
"3571",
"3877",
"4219",
"4561",
"4941",
"5321",
"5741",
"6161",
"6623",
"7085",
"7591",
"8097",
"8649",
"9201",
"9801",
"10401"
]
| [
"nonn",
"easy"
]
| 11 | 0 | 4 | [
"A005993",
"A356185",
"A361272",
"A361273",
"A361274",
"A361275"
]
| null | Juan B. Gil, Mar 10 2023 | 2023-03-10T12:39:55 | oeisdata/seq/A361/A361275.seq | c5ea454f32a9fdccc13259db3ab5262b |
A361276 | Number of 2413-avoiding even Grassmannian permutations of size n. | [
"1",
"1",
"1",
"3",
"6",
"13",
"22",
"37",
"55",
"81",
"111",
"151",
"196",
"253",
"316",
"393",
"477",
"577",
"685",
"811",
"946",
"1101",
"1266",
"1453",
"1651",
"1873",
"2107",
"2367",
"2640",
"2941",
"3256",
"3601",
"3961",
"4353",
"4761",
"5203",
"5662",
"6157",
"6670",
"7221",
"7791",
"8401",
"9031",
"9703",
"10396",
"11133",
"11892",
"12697",
"13525",
"14401"
]
| [
"nonn",
"easy"
]
| 8 | 0 | 4 | [
"A006918",
"A356185",
"A361272",
"A361273",
"A361274",
"A361275",
"A361276"
]
| null | Juan B. Gil, Mar 10 2023 | 2023-08-14T12:54:34 | oeisdata/seq/A361/A361276.seq | d481f92fff1963e6bc294c02cb575484 |
A361277 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"7",
"1",
"1",
"1",
"7",
"19",
"25",
"1",
"1",
"1",
"9",
"37",
"97",
"81",
"1",
"1",
"1",
"11",
"61",
"241",
"581",
"331",
"1",
"1",
"1",
"13",
"91",
"481",
"1981",
"3661",
"1303",
"1",
"1",
"1",
"15",
"127",
"841",
"4881",
"17551",
"26335",
"5937",
"1",
"1",
"1",
"17",
"169",
"1345",
"10001",
"55321",
"171697",
"202049",
"26785",
"1"
]
| [
"nonn",
"tabl"
]
| 14 | 0 | 9 | [
"A000012",
"A047974",
"A293012",
"A361277",
"A361278",
"A361279",
"A361280",
"A361281"
]
| null | Seiichi Manyama, Mar 06 2023 | 2023-03-07T10:37:15 | oeisdata/seq/A361/A361277.seq | bf636332f95773f1fc67bfd424fe9493 |
A361278 | Expansion of e.g.f. exp(x * (1+x)^2). | [
"1",
"1",
"5",
"19",
"97",
"581",
"3661",
"26335",
"202049",
"1659817",
"14621941",
"135567851",
"1326672865",
"13624218349",
"146056961597",
"1633376573431",
"18980051829121",
"228677164878545",
"2852155973178469",
"36740599423566787",
"488127224550517601",
"6678832987859315221"
]
| [
"nonn"
]
| 23 | 0 | 3 | [
"A082579",
"A361277",
"A361278"
]
| null | Seiichi Manyama, Mar 06 2023 | 2023-11-11T08:21:54 | oeisdata/seq/A361/A361278.seq | ee44cfa5aa932cef1422939f28eeb647 |
A361279 | Expansion of e.g.f. exp(x * (1+x)^3). | [
"1",
"1",
"7",
"37",
"241",
"1981",
"17551",
"171697",
"1860097",
"21609721",
"268697431",
"3566446621",
"50060084977",
"740156116597",
"11496472967071",
"186824483634601",
"3167058238988161",
"55882288483846897",
"1023891003620741287",
"19440027237549627541",
"381822392009503555441"
]
| [
"nonn"
]
| 25 | 0 | 3 | [
"A091695",
"A361277",
"A361279"
]
| null | Seiichi Manyama, Mar 06 2023 | 2023-11-11T08:48:42 | oeisdata/seq/A361/A361279.seq | 7481959f90a8a9f582462b0158f16342 |
A361280 | Expansion of e.g.f. exp(x * (1+x)^4). | [
"1",
"1",
"9",
"61",
"481",
"4881",
"55321",
"682669",
"9343041",
"139078081",
"2216425321",
"37736834301",
"683184324769",
"13064452686481",
"262867726142841",
"5549111222344621",
"122499654278797441",
"2819926900630750209",
"67539541277010100681",
"1679557316488693881661"
]
| [
"nonn"
]
| 25 | 0 | 3 | [
"A361277",
"A361280",
"A361283"
]
| null | Seiichi Manyama, Mar 06 2023 | 2023-11-11T09:59:54 | oeisdata/seq/A361/A361280.seq | c23287a36de11a16ac5a9dc873d4b099 |
A361281 | a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!. | [
"1",
"1",
"5",
"37",
"481",
"10001",
"288901",
"10820965",
"511186817",
"29843419681",
"2106779832901",
"176180844038981",
"17165338119936865",
"1924030148121500017",
"245630480526435293381",
"35409038825312233143301",
"5719025066628373334423041",
"1027649751647068260334391105"
]
| [
"nonn"
]
| 21 | 0 | 3 | [
"A096131",
"A099237",
"A226391",
"A278070",
"A293013",
"A361277",
"A361281"
]
| null | Seiichi Manyama, Mar 06 2023 | 2023-03-13T11:34:44 | oeisdata/seq/A361/A361281.seq | 63c27597c861e44c6f7ff8b3d3980c21 |
A361282 | Number of rank n+1 simple connected series-parallel matroids on [2n]. | [
"0",
"1",
"75",
"9345",
"1865745",
"554479695",
"231052877055",
"128938132548225",
"92986310399407425",
"84250567868935042575",
"93744545254140599193375",
"125717783386887888296925825",
"200041202339679732328342670625",
"372688996228146502285257581079375",
"803768398459351988653830600415029375"
]
| [
"nonn"
]
| 18 | 1 | 3 | [
"A034941",
"A361282",
"A361355"
]
| null | Matt Larson, Mar 06 2023 | 2023-03-09T20:03:59 | oeisdata/seq/A361/A361282.seq | cf46ca3b0953beb04be9bd912ff6410f |
A361283 | Expansion of e.g.f. exp(x/(1-x)^4). | [
"1",
"1",
"9",
"85",
"961",
"13041",
"207001",
"3746149",
"75832065",
"1693615681",
"41302616041",
"1090835399061",
"30988423000129",
"941461990360945",
"30439632977968761",
"1042973073239321701",
"37731609890300935681",
"1436586994020158747649"
]
| [
"nonn"
]
| 17 | 0 | 3 | [
"A293012",
"A361280",
"A361283"
]
| null | Seiichi Manyama, Mar 06 2023 | 2023-11-11T10:16:22 | oeisdata/seq/A361/A361283.seq | baa5dc57d9bd83a553da1d71fa7f9c3d |
A361284 | Number of unordered triples of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are not allowed. | [
"0",
"0",
"0",
"0",
"0",
"15",
"420",
"7140",
"95760",
"1116990",
"11891880",
"118776900",
"1132182480",
"10415938533",
"93207174060",
"815777235000",
"7011723045600",
"59364660734172",
"496238466573648",
"4102968354298200",
"33602671702168800",
"272909132004479355",
"2200084921469527092",
"17618774018675345340",
"140252152286127750000"
]
| [
"nonn",
"easy"
]
| 14 | 1 | 6 | [
"A261064",
"A359404",
"A360716",
"A361284"
]
| null | Ivaylo Kortezov, Mar 07 2023 | 2023-04-03T21:47:43 | oeisdata/seq/A361/A361284.seq | 060d20051a926f7968bcb377cd4a8476 |
A361285 | Number of unordered triples of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are allowed. | [
"0",
"0",
"1",
"10",
"85",
"695",
"5600",
"45080",
"364854",
"2973270",
"24382875",
"200967250",
"1662197251",
"13772638789",
"114126098450",
"944285871200",
"7791140945180",
"64038240953196",
"523977421054245",
"4266101869823850",
"34554155058753505",
"278417272387723315",
"2231755184899383220",
"17799741659621513240"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 4 | [
"A360021",
"A360715",
"A360717",
"A361285"
]
| null | Ivaylo Kortezov, Mar 07 2023 | 2023-03-11T09:39:48 | oeisdata/seq/A361/A361285.seq | 26e846016936bf16887f4cf31a53eb13 |
A361286 | Total over all partitions lambda of n, of factors of s_lambda in the skew Schur function s_( nu/lambda ) with (s_lambda)^2 = Sum( C(nu, lambda, lambda) s_nu ). | [
"1",
"2",
"6",
"18",
"50",
"138",
"430",
"1242",
"3666",
"10938",
"34598",
"108098",
"338634",
"1058370"
]
| [
"nonn",
"more",
"hard"
]
| 17 | 0 | 2 | [
"A067855",
"A322210",
"A361286"
]
| null | Wouter Meeussen, Mar 07 2023 | 2023-04-09T02:31:00 | oeisdata/seq/A361/A361286.seq | 0835e64567521005b5bc685620f7befe |
A361287 | A variant of the inventory sequence A342585: now a row ends when the number of occurrences of the largest term in the sequence thus far has been recorded. | [
"0",
"1",
"1",
"1",
"3",
"0",
"1",
"2",
"4",
"1",
"1",
"1",
"2",
"7",
"2",
"1",
"1",
"0",
"0",
"1",
"4",
"10",
"3",
"2",
"2",
"0",
"0",
"1",
"0",
"0",
"1",
"8",
"12",
"5",
"2",
"2",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"11",
"17",
"7",
"2",
"2",
"1",
"0",
"2",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"17",
"23",
"10",
"2",
"2",
"1",
"0",
"2",
"1",
"0",
"2",
"1",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0"
]
| [
"nonn",
"tabf"
]
| 51 | 0 | 5 | [
"A342585",
"A347317",
"A361287"
]
| null | Robert Dober, Mar 07 2023 | 2023-03-20T16:33:20 | oeisdata/seq/A361/A361287.seq | a390cf8b0e18a1ee7d7a6537e1525239 |
A361288 | Number of free polyominoes of size 2n for which there exists at least one closed path that passes through each square exactly once. | [
"1",
"1",
"3",
"6",
"25",
"84",
"397",
"1855",
"9708",
"51684",
"286011",
"1609097",
"9222409",
"53543338",
"314612803"
]
| [
"nonn",
"more",
"hard"
]
| 21 | 2 | 3 | [
"A266549",
"A361288"
]
| null | John Mason and Tanya Khovanova, Mar 07 2023 | 2023-03-09T02:15:26 | oeisdata/seq/A361/A361288.seq | 690be99b00147259c9c4a4b354ef4a04 |
A361289 | For the odd numbers 2n + 1, the least practical number r such that 2n + 1 = r + p where p is prime. | [
"1",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"4",
"6",
"2",
"2",
"4",
"6",
"2",
"4",
"2",
"2",
"4",
"2",
"4",
"6",
"2",
"4",
"6",
"2",
"2",
"4",
"6",
"2",
"4",
"2",
"2",
"4",
"6",
"2",
"4",
"2",
"4",
"6",
"2",
"4",
"6",
"8",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"4",
"6",
"8",
"16",
"12",
"18",
"2",
"4",
"2",
"4",
"6",
"2",
"2",
"4",
"6",
"8",
"12",
"2",
"2",
"4",
"6",
"2",
"4",
"6",
"2",
"4",
"2",
"4",
"6",
"2",
"4",
"6",
"2",
"2",
"4",
"6",
"8",
"12"
]
| [
"nonn"
]
| 22 | 1 | 2 | [
"A005153",
"A361289"
]
| null | Frank M Jackson, Mar 07 2023 | 2023-06-19T12:14:52 | oeisdata/seq/A361/A361289.seq | 50aaea11d1a65796dff06c88311af704 |
A361290 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor((n-1)/2)} k^(n-1-j) * binomial(n,2*j+1). | [
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"2",
"0",
"0",
"1",
"4",
"4",
"0",
"0",
"1",
"6",
"14",
"8",
"0",
"0",
"1",
"8",
"30",
"48",
"16",
"0",
"0",
"1",
"10",
"52",
"144",
"164",
"32",
"0",
"0",
"1",
"12",
"80",
"320",
"684",
"560",
"64",
"0",
"0",
"1",
"14",
"114",
"600",
"1936",
"3240",
"1912",
"128",
"0",
"0",
"1",
"16",
"154",
"1008",
"4400",
"11648",
"15336",
"6528",
"256",
"0"
]
| [
"nonn",
"easy",
"tabl"
]
| 45 | 0 | 9 | [
"A007070",
"A016129",
"A016175",
"A030192",
"A093145",
"A131577",
"A154237",
"A154248",
"A154348",
"A360766",
"A361290",
"A361293",
"A361432"
]
| null | Seiichi Manyama, Mar 11 2023 | 2023-03-26T11:14:36 | oeisdata/seq/A361/A361290.seq | 8df3b9ea4f84c3af01f7c824af91490b |
A361291 | a(n) = ((2*n + 1)^n - 1)/(2*n). | [
"1",
"6",
"57",
"820",
"16105",
"402234",
"12204241",
"435984840",
"17927094321",
"833994048910",
"43309534450633",
"2483526865641276",
"155867505885345241",
"10627079738421409410",
"782175399728156197665",
"61812037545704964935440",
"5220088150634922700769761",
"469168161404536131943150998"
]
| [
"nonn",
"easy"
]
| 28 | 1 | 2 | [
"A000169",
"A000312",
"A005408",
"A019762",
"A038057",
"A051129",
"A052746",
"A062971",
"A213236",
"A218722",
"A361291"
]
| null | Stefano Spezia, Mar 12 2023 | 2023-03-14T12:55:56 | oeisdata/seq/A361/A361291.seq | c8455c691b4f0943980ce32e51bcef6c |
A361292 | Square array A(n, k), n, k >= 0, read by antidiagonals; A(0, 0) = 1, and otherwise A(n, k) is the sum of all terms in previous antidiagonals at one knight's move away. | [
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"2",
"0",
"1",
"0",
"2",
"4",
"2",
"4",
"2",
"0",
"2",
"5",
"4",
"7",
"7",
"4",
"5",
"2",
"5",
"5",
"10",
"14",
"12",
"14",
"10",
"5",
"5",
"5",
"10",
"21",
"23",
"30",
"30",
"23",
"21",
"10",
"5",
"10",
"23",
"35",
"49",
"62",
"60",
"62",
"49",
"35",
"23",
"10",
"23",
"40",
"69",
"100",
"119",
"137",
"137",
"119",
"100",
"69",
"40",
"23"
]
| [
"nonn",
"tabl"
]
| 20 | 0 | 18 | [
"A355320",
"A361292"
]
| null | Rémy Sigrist, Mar 12 2023 | 2023-10-17T10:55:39 | oeisdata/seq/A361/A361292.seq | 65dfef8bf2372747c5c41b45c8a2cc81 |
A361293 | a(n) = 20 * a(n-1) - 90 * a(n-2) for n>1, with a(0)=0, a(1)=1. | [
"0",
"1",
"20",
"310",
"4400",
"60100",
"806000",
"10711000",
"141680000",
"1869610000",
"24641000000",
"324555100000",
"4273412000000",
"56258281000000",
"740558540000000",
"9747925510000000",
"128308241600000000",
"1688851536100000000",
"22229288978000000000",
"292589141311000000000"
]
| [
"nonn",
"easy"
]
| 26 | 0 | 3 | [
"A289414",
"A361290",
"A361293"
]
| null | Seiichi Manyama, Mar 12 2023 | 2023-12-16T11:43:03 | oeisdata/seq/A361/A361293.seq | 576643b83083e44a435c9d2fb3e1de88 |
A361294 | A variant of payphone permutations: given a circular booth with n payphones, one of which is already occupied, a(n) is the number ways for n-1 people to choose the payphones in order, where each person chooses an unoccupied payphone such that the closest occupied payphone is as distant as possible, and a payphone adjacent to a single occupied payphone is preferred over a payphone sandwiched between two occupied payphones. | [
"1",
"1",
"2",
"2",
"8",
"16",
"24",
"48",
"192",
"1536",
"4608",
"18432",
"23040",
"92160",
"241920",
"1935360",
"3870720",
"41287680",
"371589120",
"11890851840",
"29727129600",
"237817036800",
"1248539443200",
"19976631091200",
"11236854988800",
"42807066624000",
"176579149824000",
"3390319676620800",
"6886586843136000"
]
| [
"nonn"
]
| 14 | 1 | 3 | [
"A095236",
"A095239",
"A095240",
"A095912",
"A358056",
"A361294",
"A361295",
"A361296",
"A362192"
]
| null | Max Alekseyev, Apr 10 2023 | 2023-04-16T20:54:45 | oeisdata/seq/A361/A361294.seq | a0d5a592651abe0512cd7432ab55c130 |
A361295 | A variant of payphone permutations: given a row of n payphones, a(n) is the number ways for n people to choose the payphones in order, where each person chooses an unoccupied payphone such that the closest occupied payphone is as distant as possible, and among the available payphones adjacent to a single occupied payphone the most preferred are payphones at open ends. | [
"1",
"2",
"4",
"6",
"12",
"40",
"144",
"384",
"1008",
"6816",
"33600",
"115200",
"783360",
"3024000",
"16450560",
"140636160",
"558351360",
"2262435840",
"29599395840",
"180278784000",
"2124328550400",
"13664957644800",
"127667338444800",
"852837440716800",
"11377123378790400",
"116737211695104000",
"816490952589312000"
]
| [
"nonn"
]
| 10 | 1 | 2 | [
"A095236",
"A095239",
"A095912",
"A358056",
"A361294",
"A361295",
"A361296",
"A362192",
"A363785"
]
| null | Max Alekseyev, Apr 08 2023 | 2023-06-21T17:49:34 | oeisdata/seq/A361/A361295.seq | 5b94fd135aab9a0c3cc1e286b3a01d13 |
A361296 | A variant of payphone permutations: given a circular booth with n payphones, a(n) is the number ways for n people to choose the payphones in order, where each person chooses an unoccupied payphone such that the closest occupied payphone is as distant as possible. | [
"1",
"2",
"6",
"8",
"60",
"144",
"336",
"384",
"8640",
"57600",
"221760",
"967680",
"4193280",
"9031680",
"14515200",
"30965760",
"2368880640",
"50164531200",
"582465945600",
"7357464576000",
"50214695731200",
"245494068019200",
"1443672502272000",
"24103053950976000",
"200858782924800000",
"835572536967168000"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A095236",
"A095239",
"A095912",
"A358056",
"A361294",
"A361295",
"A361296",
"A362192"
]
| null | Max Alekseyev, Apr 08 2023 | 2023-04-16T20:55:15 | oeisdata/seq/A361/A361296.seq | 7e44b9d1ff0eec8e46a15d033d8c3c27 |
A361297 | Number of n-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin. | [
"1",
"2",
"20",
"996",
"108136",
"19784060",
"5389230384",
"2031493901304",
"1009373201680848",
"638377781979995244",
"500510427096797296240",
"476433596774288713285352",
"541348750963243079098368768",
"723928411313545718524263072248",
"1125748074023593276830674831519936"
]
| [
"nonn",
"walk"
]
| 20 | 0 | 2 | [
"A005843",
"A303503",
"A361297",
"A361397"
]
| null | Alois P. Heinz, Mar 08 2023 | 2023-05-27T06:54:44 | oeisdata/seq/A361/A361297.seq | bf904c0e06732f91a6df3485d4803cef |
A361298 | Second differences of the overpartitions. | [
"1",
"2",
"2",
"4",
"6",
"8",
"12",
"18",
"24",
"34",
"48",
"64",
"88",
"120",
"158",
"212",
"282",
"368",
"484",
"632",
"816",
"1056",
"1360",
"1738",
"2220",
"2826",
"3576",
"4520",
"5696",
"7144",
"8948",
"11176",
"13908",
"17280",
"21414",
"26460",
"32638",
"40168"
]
| [
"nonn"
]
| 4 | 2 | 2 | [
"A015128",
"A211971",
"A361298"
]
| null | R. J. Mathar, Mar 08 2023 | 2023-03-08T12:51:11 | oeisdata/seq/A361/A361298.seq | a8c44addac55af9aea449d91c6384513 |
A361299 | Counterclockwise spiral constructed of distinct terms such that any two terms a knight's move apart are coprime; always choose the smallest possible positive term. | [
"1",
"2",
"3",
"4",
"5",
"7",
"9",
"8",
"11",
"10",
"13",
"6",
"15",
"12",
"17",
"14",
"19",
"16",
"23",
"18",
"25",
"20",
"29",
"22",
"21",
"24",
"31",
"26",
"37",
"28",
"35",
"32",
"41",
"34",
"43",
"27",
"33",
"36",
"47",
"44",
"39",
"38",
"49",
"40",
"53",
"46",
"59",
"30",
"51",
"50",
"61",
"55",
"67",
"58",
"71",
"52",
"45",
"56",
"73",
"62",
"65",
"64",
"79",
"42",
"77",
"48",
"83"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A308884",
"A361299"
]
| null | Jodi Spitz, Mar 08 2023 | 2023-03-09T11:28:03 | oeisdata/seq/A361/A361299.seq | c3c0f943bf87b3121b5ed7f6ea591aa8 |
A361300 | Numbers of the form m^2 + p^2 for p prime and m > 0. | [
"5",
"8",
"10",
"13",
"18",
"20",
"25",
"26",
"29",
"34",
"40",
"41",
"45",
"50",
"53",
"58",
"61",
"65",
"68",
"73",
"74",
"85",
"89",
"90",
"98",
"104",
"106",
"109",
"113",
"122",
"125",
"130",
"137",
"146",
"148",
"149",
"153",
"157",
"169",
"170",
"173",
"178",
"185",
"193",
"194",
"200",
"202",
"205",
"218",
"221",
"229",
"233",
"234",
"242"
]
| [
"nonn",
"easy"
]
| 16 | 1 | 1 | [
"A000404",
"A185086",
"A361300"
]
| null | Charles R Greathouse IV, Mar 08 2023 | 2023-03-29T21:39:52 | oeisdata/seq/A361/A361300.seq | a4c4e1452e63ac572df32bf1b1df5586 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.