sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A361201
Product of the right half (exclusive) of the multiset of prime factors of n; a(1) = 0.
[ "0", "1", "1", "2", "1", "3", "1", "2", "3", "5", "1", "3", "1", "7", "5", "4", "1", "3", "1", "5", "7", "11", "1", "6", "5", "13", "3", "7", "1", "5", "1", "4", "11", "17", "7", "9", "1", "19", "13", "10", "1", "7", "1", "11", "5", "23", "1", "6", "7", "5", "17", "13", "1", "9", "11", "14", "19", "29", "1", "15", "1", "31", "7", "8", "13", "11", "1", "17", "23", "7", "1", "9", "1", "37", "5", "19", "11", "13", "1" ]
[ "nonn", "look" ]
11
1
4
[ "A000005", "A000040", "A001221", "A001222", "A001248", "A006530", "A026424", "A056239", "A096825", "A112798", "A123666", "A347043", "A347044", "A347045", "A347046", "A360005", "A360616", "A360617", "A360671", "A360672", "A360673", "A360675", "A360676", "A360677", "A360678", "A360679", "A361200", "A361201" ]
null
Gus Wiseman, Mar 10 2023
2024-08-13T09:10:30
oeisdata/seq/A361/A361201.seq
c11184b608c7e5af73463e00c287b1f0
A361202
Maximum product of the vertex arboricities of a graph of order n and its complement.
[ "1", "1", "2", "3", "4", "5", "6", "7", "9", "10", "12", "14", "16", "18", "20", "22", "25", "27", "30", "33", "36", "39", "42", "45", "49", "52", "56", "60", "64", "68", "72", "76", "81", "85", "90", "95", "100", "105", "110", "115", "121", "126", "132", "138", "144", "150", "156", "162", "169", "175", "182", "189", "196", "203", "210", "217", "225", "232", "240", "248" ]
[ "nonn", "easy" ]
40
1
3
[ "A002620", "A361202" ]
null
Allan Bickle, Apr 20 2023
2023-07-30T15:59:47
oeisdata/seq/A361/A361202.seq
6b7b6c63726a965e069a5da04d9da594
A361203
a(n) = n*A010888(n).
[ "0", "1", "4", "9", "16", "25", "36", "49", "64", "81", "10", "22", "36", "52", "70", "90", "112", "136", "162", "19", "40", "63", "88", "115", "144", "175", "208", "243", "28", "58", "90", "124", "160", "198", "238", "280", "324", "37", "76", "117", "160", "205", "252", "301", "352", "405", "46", "94", "144", "196", "250", "306", "364", "424", "486", "55", "112", "171", "232" ]
[ "nonn", "base", "easy" ]
20
0
3
[ "A010888", "A017173", "A057147", "A361203" ]
null
Stefano Spezia, Apr 20 2023
2023-04-24T02:01:34
oeisdata/seq/A361/A361203.seq
01293afb682801b17dc40b5272b5b1b2
A361204
Positive integers k such that 2*omega(k) <= bigomega(k).
[ "1", "4", "8", "9", "16", "24", "25", "27", "32", "36", "40", "48", "49", "54", "56", "64", "72", "80", "81", "88", "96", "100", "104", "108", "112", "121", "125", "128", "135", "136", "144", "152", "160", "162", "169", "176", "184", "189", "192", "196", "200", "208", "216", "224", "225", "232", "240", "243", "248", "250", "256", "272", "288", "289", "296", "297", "304" ]
[ "nonn" ]
13
1
2
[ "A001221", "A001222", "A046660", "A056239", "A061395", "A067340", "A067801", "A111907", "A112798", "A237363", "A237365", "A239959", "A324517", "A324521", "A324522", "A324560", "A324562", "A360005", "A360254", "A360457", "A360558", "A361204", "A361393", "A361394", "A361395" ]
null
Gus Wiseman, Mar 14 2023
2023-03-23T03:45:45
oeisdata/seq/A361/A361204.seq
bb2fe3d9fff9a7793495c1813f2e8bed
A361205
a(n) = 2*omega(n) - bigomega(n).
[ "0", "1", "1", "0", "1", "2", "1", "-1", "0", "2", "1", "1", "1", "2", "2", "-2", "1", "1", "1", "1", "2", "2", "1", "0", "0", "2", "-1", "1", "1", "3", "1", "-3", "2", "2", "2", "0", "1", "2", "2", "0", "1", "3", "1", "1", "1", "2", "1", "-1", "0", "1", "2", "1", "1", "0", "2", "0", "2", "2", "1", "2", "1", "2", "1", "-4", "2", "3", "1", "1", "2", "3", "1", "-1", "1", "2", "1", "1", "2", "3", "1", "-1", "-2", "2", "1", "2" ]
[ "sign", "easy" ]
16
1
6
[ "A001221", "A001222", "A046660", "A056239", "A061395", "A067340", "A067801", "A077761", "A083342", "A111907", "A112798", "A136141", "A237363", "A237365", "A239959", "A324517", "A324522", "A326567", "A326568", "A360254", "A360558", "A361204", "A361205", "A361393", "A361394", "A361395" ]
null
Gus Wiseman, Mar 16 2023
2023-10-01T02:32:49
oeisdata/seq/A361/A361205.seq
0256168f2009040c3b83e68f1eb069a9
A361206
Lexicographically earliest infinite sequence of distinct imperfect numbers such that the sum of the abundance of all terms is never < 1.
[ "12", "1", "2", "4", "18", "3", "8", "20", "10", "24", "5", "7", "16", "30", "9", "14", "32", "36", "11", "13", "40", "15", "42", "17", "48", "19", "21", "54", "22", "44", "56", "50", "60", "23", "25", "52", "64", "66", "26", "70", "72", "27", "29", "34", "78", "45", "80", "33", "68", "84", "31", "35", "88", "90", "37", "38", "96", "39", "41", "100", "46", "102", "76", "104", "108", "43", "58" ]
[ "nonn", "easy" ]
18
1
1
[ "A005101", "A033879", "A033880", "A132999", "A361206" ]
null
John Tyler Rascoe, Mar 04 2023
2023-03-10T19:38:55
oeisdata/seq/A361/A361206.seq
7fa0deb03a122f91fbeba515d9c3a502
A361207
An infinite 2d grid is filled with the positive integers by placing them clockwise around the lowest number with open neighbors. a(n) is then the n-th term when the grid is read as a clockwise square spiral.
[ "1", "2", "7", "3", "10", "4", "12", "5", "8", "16", "6", "15", "29", "17", "9", "20", "35", "21", "11", "23", "39", "24", "13", "18", "30", "46", "28", "14", "27", "45", "67", "47", "31", "19", "34", "53", "76", "54", "36", "22", "38", "58", "82", "59", "40", "25", "32", "48", "68", "92", "66", "44", "26", "43", "65", "91", "121", "93", "69", "49", "33", "52", "75", "102", "133", "103", "77" ]
[ "nonn", "easy" ]
45
1
2
[ "A090915", "A217010", "A337822", "A361207" ]
null
John Tyler Rascoe, Mar 04 2023
2023-07-10T01:40:00
oeisdata/seq/A361/A361207.seq
3a84f3d17dd68f2782e26ecc695f47a7
A361208
Number of middle divisors of the n-th number whose divisors increase by a factor of 2 or less.
[ "1", "1", "1", "2", "1", "2", "1", "1", "2", "2", "2", "2", "1", "1", "2", "2", "2", "2", "2", "2", "1", "2", "3", "2", "2", "2", "2", "2", "1", "2", "2", "2", "4", "2", "1", "2", "2", "3", "2", "2", "2", "1", "2", "2", "4", "2", "1", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "4", "4", "1", "2", "2", "2", "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "1", "2", "4", "2", "2", "2", "4", "2", "2", "4", "2", "2", "2", "1", "2", "3", "2", "2", "2", "4", "4", "2", "2", "3", "2", "2", "2", "2", "2", "2", "4" ]
[ "nonn" ]
29
1
4
[ "A067742", "A174973", "A237048", "A237270", "A237593", "A281007", "A317305", "A354452", "A361208" ]
null
Omar E. Pol, Mar 06 2023
2023-10-17T07:39:27
oeisdata/seq/A361/A361208.seq
167446b3f1d89b5fd1add9f7047fa953
A361209
Second hexagonal numbers having middle divisors.
[ "36", "210", "300", "528", "990", "1176", "1485", "1596", "2080", "2346", "3240", "3570", "4095", "4278", "4851", "5460", "6555", "6786", "7260", "8256", "8778", "9870", "10440", "11628", "12880", "13530", "14196", "14535", "15225", "15576", "17020", "17766", "20100", "20910", "21736", "22578", "23436", "24310", "25200", "26565", "27495", "27966", "30876" ]
[ "nonn" ]
35
1
1
[ "A014105", "A014107", "A067742", "A071562", "A236104", "A237048", "A237591", "A237593", "A240542", "A262626", "A298856", "A361209" ]
null
Omar E. Pol, Mar 10 2023
2023-10-23T08:34:43
oeisdata/seq/A361/A361209.seq
5c361965a5f5833f5aacda6d9d175d48
A361210
Number of labeled digraphs on [n] with exactly 1 in-node and exactly 1 out-node.
[ "0", "1", "2", "15", "588", "83295", "40993230", "70413420511", "433343743592312", "9825711749274316671", "840137012096473747415610", "275596225117501271622460109871", "351011149451321734143551287903432452", "1749719217881846572487198585072701742763487", "34317835907818751756576624929762210160396817182918" ]
[ "nonn" ]
64
0
3
[ "A086193", "A361210" ]
null
Geoffrey Critzer, Apr 09 2023
2023-04-09T11:30:09
oeisdata/seq/A361/A361210.seq
84e7210070564f59b3ea63c233705b64
A361211
Busy Beaver for the Binary Lambda Calculus (BLC) language BBλ2: the maximum output size of self-delimiting BLC programs of size n, or 0 if no program of size n exists.
[ "0", "0", "0", "0", "0", "4", "0", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "22", "24", "26", "30", "42", "52", "44", "64", "223", "160" ]
[ "nonn", "more" ]
70
1
6
[ "A333479", "A361211" ]
null
John Tromp, Apr 09 2023
2024-05-09T10:59:14
oeisdata/seq/A361/A361211.seq
d5523e10404b105e0702e63ded7edb55
A361212
E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1-x) ).
[ "1", "3", "33", "612", "16353", "576108", "25306803", "1334701854", "82258866225", "5805344935368", "461848917299499", "40904277651802458", "3992219566916292873", "425766991650939828828", "49266876888419716251315", "6147944525591645916094182", "823045511075200872642258273" ]
[ "nonn" ]
19
0
2
[ "A052868", "A360939", "A361066", "A361182", "A361212" ]
null
Seiichi Manyama, Mar 04 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361212.seq
a7a85273e723530defd3d61ac5d2e9f6
A361213
E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1+x) ).
[ "1", "2", "8", "68", "848", "14192", "298048", "7546016", "223792640", "7612381952", "292216807424", "12497875215872", "589392367925248", "30386736933804032", "1700376343771136000", "102641314849948602368", "6648428846464054919168", "459977466799800897437696" ]
[ "nonn" ]
22
0
2
[ "A335945", "A361068", "A361193", "A361213", "A361214" ]
null
Seiichi Manyama, Mar 04 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361213.seq
3d1455bd07e3b34568f3304da06230ba
A361214
E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1+x) ).
[ "1", "3", "21", "288", "5841", "158148", "5370003", "219641922", "10518990129", "577629889848", "35788733371179", "2470154920005798", "187970878034549001", "15636177199793409444", "1411635193678825868979", "137469669176542404342042", "14364540773583252035937633" ]
[ "nonn" ]
23
0
2
[ "A335945", "A361069", "A361194", "A361213", "A361214" ]
null
Seiichi Manyama, Mar 04 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361214.seq
a002275ed995ce5221511d13cf53d8be
A361215
Intersection of A361073 and 2 * A361611.
[ "8", "20", "50", "1406", "1516", "1558", "1868", "1898", "1948", "1978", "1986", "5862", "5972", "6014", "7122", "7966", "7996", "8270", "8348", "8366", "8548", "8618", "21092", "31804", "31822", "32158", "33092", "33162", "33316", "33414", "37124", "37190", "37292", "37394", "39164", "39214", "39316", "39346", "39484", "39562", "39604", "39622", "39692", "39794", "45044", "45244" ]
[ "nonn" ]
34
1
1
[ "A361073", "A361215", "A361611" ]
null
Zak Seidov and Robert Israel, Apr 09 2023
2023-04-17T10:58:55
oeisdata/seq/A361/A361215.seq
425f9311677390b333630ca77808475d
A361216
Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle.
[ "1", "1", "4", "2", "11", "56", "3", "29", "370", "5752", "4", "94", "2666", "82310", "2519124", "6", "263", "19126", "1232770", "88117873", "6126859968", "12", "968", "134902", "19119198", "2835424200" ]
[ "nonn", "tabl", "more" ]
17
1
3
[ "A102462", "A360629", "A361216", "A361217", "A361218", "A361219", "A361220", "A361221" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-12T10:45:05
oeisdata/seq/A361/A361216.seq
b3a770af95e5f083b5f5313786be0c7d
A361217
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X n square.
[ "1", "4", "56", "5752", "2519124", "6126859968" ]
[ "nonn", "more" ]
5
1
2
[ "A360630", "A361216", "A361217", "A361222" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:38:28
oeisdata/seq/A361/A361217.seq
36eaa9bb4b6f756b9f8dbad670acc0a4
A361218
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle.
[ "1", "4", "11", "29", "94", "263", "968", "3416", "11520", "41912", "136972", "481388", "1743784", "6275886", "23615432", "93819128", "368019576", "1367900808", "5403282616", "19831367476", "76031433360", "300581321056", "1143307393600", "4542840116352", "17001097572544", "65314285778004", "246695766031432" ]
[ "nonn" ]
6
1
2
[ "A360631", "A361216", "A361218", "A361224" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:37:53
oeisdata/seq/A361/A361218.seq
f92df76c48231e388990a67df2aaeb8f
A361219
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 3 rectangle.
[ "2", "11", "56", "370", "2666", "19126", "134902", "1026667", "8049132", "60996816", "450456500", "3427769018", "27127841200", "211563038980", "1837421211974", "15474223886906" ]
[ "nonn", "more" ]
5
1
1
[ "A360632", "A361216", "A361219", "A361225" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:37:58
oeisdata/seq/A361/A361219.seq
f1e97d75de9fd83b23c35bf76126e117
A361220
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 4 rectangle.
[ "3", "29", "370", "5752", "82310", "1232770", "19119198", "307914196", "5020522468", "89323885136", "1708142066600" ]
[ "nonn", "more" ]
5
1
1
[ "A361216", "A361220" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:38:02
oeisdata/seq/A361/A361220.seq
e02f53f78f4eb776640dae567067edc8
A361221
Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle, up to rotations and reflections.
[ "1", "1", "1", "1", "5", "8", "2", "12", "95", "719", "2", "31", "682", "20600", "315107" ]
[ "nonn", "tabl", "more" ]
7
1
5
[ "A360629", "A361216", "A361221", "A361222", "A361223", "A361224", "A361225" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:38:06
oeisdata/seq/A361/A361221.seq
deb4cc7a87869e5dd039f0c5fbec21fd
A361222
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X n square, up to rotations and reflections.
[ "1", "1", "8", "719", "315107" ]
[ "nonn", "more" ]
5
1
3
[ "A360630", "A361217", "A361221", "A361222" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:38:10
oeisdata/seq/A361/A361222.seq
43640093f02bec1a5e193186666c0680
A361223
Maximum number of inequivalent permutations of a partition of n, where two permutations are equivalent if they are reversals of each other.
[ "1", "1", "1", "2", "2", "4", "6", "10", "16", "30", "54", "84", "140", "252", "420", "756", "1260", "2520", "4620", "7920", "13860", "27720", "51480", "90120", "180180", "337890", "600600", "1081080", "2042040", "3675672", "6348888", "12252240", "23279256", "42325920", "77597520", "148140720", "271591320", "480507720", "892371480" ]
[ "nonn" ]
9
1
4
[ "A102462", "A361221", "A361223" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T09:39:29
oeisdata/seq/A361/A361223.seq
e0d1c45486662bda10fa8ebf72bee575
A361224
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle, up to rotations and reflections.
[ "1", "1", "5", "12", "31", "86", "242", "854", "2888", "10478", "34264", "120347" ]
[ "nonn", "more" ]
6
1
3
[ "A360631", "A361218", "A361221", "A361224" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:38:21
oeisdata/seq/A361/A361224.seq
98beef0f773104690eea76222f55908b
A361225
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 3 rectangle, up to rotations and reflections.
[ "1", "5", "8", "95", "682", "4801", "33807" ]
[ "nonn", "more" ]
5
1
2
[ "A360632", "A361219", "A361221", "A361225" ]
null
Pontus von Brömssen, Mar 05 2023
2023-03-11T08:38:24
oeisdata/seq/A361/A361225.seq
ad13b066f0ce61990ae3416e5ee19f87
A361226
Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.
[ "0", "0", "0", "0", "1", "1", "0", "2", "5", "3", "0", "3", "9", "12", "6", "0", "4", "13", "21", "22", "10", "0", "5", "17", "30", "38", "35", "15", "0", "6", "21", "39", "54", "60", "51", "21", "0", "7", "25", "48", "70", "85", "87", "70", "28", "0", "8", "29", "57", "86", "110", "123", "119", "92", "36", "0", "9", "33", "66", "102", "135", "159", "168", "156", "117", "45" ]
[ "nonn", "tabl" ]
54
0
8
[ "A000004", "A000290", "A000326", "A001477", "A002414", "A002492", "A005476", "A016777", "A016813", "A016873", "A017017", "A017101", "A017197", "A017581", "A022264", "A022266", "A026741", "A033275", "A034827", "A143844", "A160378", "A161680", "A299120", "A360962", "A361226" ]
null
Paul Curtz, Mar 05 2023
2024-02-22T02:03:10
oeisdata/seq/A361/A361226.seq
e1f84c384c4622d5da0dfc50cc19bae1
A361227
Irregular triangle T(n, k), n > 0, k = 0..A007814(n), read by rows: T(n, k) = Sum_{i = n-2^k+1..n} A361144(i).
[ "1", "2", "3", "4", "5", "9", "12", "6", "7", "13", "8", "10", "18", "31", "43", "11", "14", "25", "15", "17", "32", "57", "16", "19", "35", "20", "21", "41", "76", "133", "176", "22", "23", "45", "24", "26", "50", "95", "27", "28", "55", "29", "30", "59", "114", "209", "33", "34", "67", "36", "37", "73", "140", "38", "39", "77", "40", "42", "82", "159", "299", "508", "684", "44", "46", "90" ]
[ "nonn", "tabf" ]
9
1
2
[ "A007814", "A361144", "A361227" ]
null
Rémy Sigrist, Mar 05 2023
2023-03-13T06:31:18
oeisdata/seq/A361/A361227.seq
8736ac0430343cb41a7dbe99613189c5
A361228
a(n) is the first number k such that k + a(i) has n prime factors, counted with multiplicity, for all i < n; a(0) = 0.
[ "0", "2", "4", "66", "1012", "14630", "929390", "63798350", "19371451550" ]
[ "nonn", "more" ]
27
0
2
[ "A001222", "A361228" ]
null
Robert Israel, Mar 21 2023
2024-11-08T11:37:39
oeisdata/seq/A361/A361228.seq
9b640ec76708003b9877e8bcb63ff2c2
A361229
G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2.
[ "1", "0", "0", "0", "1", "2", "3", "4", "7", "14", "27", "48", "84", "152", "284", "532", "987", "1826", "3401", "6384", "12024", "22656", "42728", "80780", "153151", "290970", "553601", "1054688", "2012373", "3845646", "7359345", "14100692", "27048061", "51941850", "99855389", "192163904", "370159216", "713672568", "1377168108", "2659729380" ]
[ "nonn" ]
34
0
6
[ "A002026", "A006319", "A023426", "A052702", "A361229" ]
null
Seiichi Manyama, Oct 15 2023
2023-12-04T06:22:42
oeisdata/seq/A361/A361229.seq
cd515b9ceb080a789bd22c4733837616
A361230
Third Lie-Betti number of a path graph on n vertices.
[ "0", "1", "6", "16", "33", "58", "92", "136", "191", "258", "338", "432", "541", "666", "808", "968", "1147", "1346", "1566", "1808", "2073", "2362", "2676", "3016", "3383", "3778", "4202", "4656", "5141", "5658", "6208", "6792", "7411", "8066", "8758", "9488", "10257", "11066", "11916", "12808", "13743", "14722", "15746", "16816", "17933" ]
[ "nonn", "easy" ]
26
1
3
[ "A360571", "A361230" ]
null
Samuel J. Bevins, Mar 05 2023
2025-03-02T10:03:18
oeisdata/seq/A361/A361230.seq
3bf06ee1cc1343a5eed70b837e538e73
A361231
a(1)=2; a(n) is the largest k for which the sum a(n-1) + a(n-2) + ... + a(n-k) is prime; if no such k exists, a(n)=-1.
[ "2", "1", "2", "3", "2", "3", "6", "7", "6", "7", "9", "8", "10", "10", "12", "12", "14", "14", "11", "19", "13", "17", "12", "21", "19", "19", "25", "25", "27", "26", "28", "12", "29", "33", "32", "32", "33", "21", "35", "39", "38", "39", "42", "42", "40", "45", "39", "47", "45", "49", "44", "49", "39", "47", "53", "49", "55", "50", "48", "56", "57", "60", "54", "62", "28", "64", "62", "63", "65", "69", "68" ]
[ "nonn" ]
24
1
1
[ "A000040", "A361178", "A361199", "A361231" ]
null
Neal Gersh Tolunsky, Mar 05 2023
2023-03-08T10:30:13
oeisdata/seq/A361/A361231.seq
579e96d754202ad39f86fef7feff3ee6
A361232
Numbers m such that the increasing sequence of divisors of m, regarded as words on the finite alphabet of its prime factors, is ordered lexicographically.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "31", "32", "33", "34", "35", "37", "38", "39", "41", "42", "43", "44", "46", "47", "49", "50", "51", "52", "53", "54", "55", "57", "58", "59", "61", "62", "64", "65", "66", "67", "68", "69", "71", "73", "74", "75", "76", "77", "78", "79", "81" ]
[ "nonn" ]
32
1
2
[ "A027855", "A361232" ]
null
Andreas Weingartner, Mar 05 2023
2023-03-30T09:15:56
oeisdata/seq/A361/A361232.seq
e466b7f910cdaabc81f39ebc72696682
A361233
Numbers k such that the "Pisano cycle modulo k shape" is bounded.
[ "1", "2", "4", "5", "6", "8", "10", "11", "12", "14", "16", "18", "19", "20", "22", "24", "28", "29", "30", "31", "32", "36", "37", "38", "40", "42", "44", "46", "48", "50", "52", "53", "54", "55", "56", "58", "59", "60", "62", "64", "66", "68", "70", "71", "72", "76", "78", "79", "80", "82", "84", "86", "88", "89", "90", "92", "94", "95", "96", "98", "100", "101", "102", "104", "106", "108", "109", "110", "112" ]
[ "nonn" ]
40
1
2
[ "A001175", "A161553", "A361233" ]
null
Luca Onnis, Mar 05 2023
2023-04-09T02:44:05
oeisdata/seq/A361/A361233.seq
b97f246166cfd1e472cf96115275b818
A361234
Infinite sequence of nonzero integers build the greedy way such that the products Product_{i = k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct; each term is minimal in absolute value and in case of a tie, preference is given to the positive value.
[ "-1", "2", "3", "-3", "4", "-4", "5", "-5", "6", "-6", "7", "-7", "8", "-8", "9", "10", "-10", "11", "-11", "12", "-12", "13", "-13", "14", "-14", "15", "-15", "16", "17", "-17", "-18", "19", "-19", "20", "-20", "21", "-21", "22", "-22", "23", "-23", "24", "-24", "25", "26", "-26", "27", "-27", "28", "-28", "29", "-29", "30", "-30", "31", "-31", "32", "-32", "33", "-33", "34" ]
[ "sign" ]
7
1
2
[ "A360305", "A361144", "A361234" ]
null
Rémy Sigrist, Mar 05 2023
2023-03-07T07:41:45
oeisdata/seq/A361/A361234.seq
9e8e21679cf265f945d0b51bfcd2a753
A361235
a(n) = number of k < n, such that k does not divide n, omega(k) < omega(n) and rad(k) | rad(n), where omega(n) = A001221(n) and rad(n) = A007947(n).
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "2", "0", "2", "0", "2", "1", "0", "0", "3", "0", "2", "1", "3", "0", "2", "0", "3", "0", "2", "0", "10", "0", "0", "2", "4", "1", "4", "0", "4", "2", "3", "0", "11", "0", "3", "2", "4", "0", "3", "0", "4", "2", "3", "0", "4", "1", "3", "2", "4", "0", "14", "0", "4", "2", "0", "1", "14", "0", "4", "2", "12", "0", "4", "0", "5", "2", "4", "1", "15", "0", "3", "0", "5", "0", "16", "1", "5", "3", "3", "0", "19", "1", "4", "3", "5", "1", "4", "0", "5" ]
[ "nonn" ]
9
1
10
[ "A000961", "A001221", "A007947", "A010846", "A013929", "A045763", "A051953", "A243822", "A243823", "A272618", "A355432", "A361235" ]
null
Michael De Vlieger, Mar 06 2023
2023-03-14T04:16:42
oeisdata/seq/A361/A361235.seq
fca4c04229571b5e9599c406824bf942
A361236
Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "5", "11", "1", "1", "1", "1", "8", "33", "49", "1", "1", "1", "1", "9", "63", "230", "204", "1", "1", "1", "1", "12", "105", "664", "1827", "984", "1", "1", "1", "1", "13", "159", "1419", "7462", "15466", "4807", "1", "1", "1", "1", "16", "221", "2637", "21085", "90896", "137085", "24739", "1" ]
[ "nonn", "tabl" ]
16
0
14
[ "A000012", "A042948", "A070914", "A296532", "A303694", "A303912", "A361236", "A361237", "A361238", "A361239", "A361242" ]
null
Andrew Howroyd, Mar 05 2023
2023-03-11T00:14:05
oeisdata/seq/A361/A361236.seq
cefc42881e1066aaab81b6baa7713891
A361237
Number of nonequivalent noncrossing triangular cacti with n triangles up to rotation.
[ "1", "1", "1", "5", "33", "230", "1827", "15466", "137085", "1260545", "11930690", "115607310", "1142333751", "11475243990", "116910923720", "1205717972880", "12567935262965", "132238934938755", "1403053736656275", "14997682223032473", "161392162120990570", "1747309339397241620", "19021521745371642498" ]
[ "nonn" ]
9
0
4
[ "A361236", "A361237", "A361240" ]
null
Andrew Howroyd, Mar 05 2023
2023-03-11T00:13:54
oeisdata/seq/A361/A361237.seq
e14f3748f31b296f7a0cbafab2310752
A361238
Number of nonequivalent noncrossing 4-gonal cacti with n polygons up to rotation.
[ "1", "1", "1", "8", "63", "664", "7462", "90896", "1159587", "15369761", "209785576", "2933152208", "41833725570", "606735330572", "8926655086328", "132969013796640", "2002168332793035", "30435351234214599", "466570991414368225", "7206553709798780480", "112066631802051120600", "1753396593921234013664" ]
[ "nonn" ]
7
0
4
[ "A361236", "A361238", "A361241" ]
null
Andrew Howroyd, Mar 05 2023
2023-03-11T00:13:58
oeisdata/seq/A361/A361238.seq
239282676f8731e22dc35b1fa5ff0fc6
A361239
Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation and reflection.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "4", "7", "1", "1", "1", "1", "6", "19", "28", "1", "1", "1", "1", "7", "35", "124", "108", "1", "1", "1", "1", "9", "57", "349", "931", "507", "1", "1", "1", "1", "10", "85", "737", "3766", "7801", "2431", "1", "1", "1", "1", "12", "117", "1359", "10601", "45632", "68685", "12441", "1" ]
[ "nonn", "tabl" ]
13
0
14
[ "A000012", "A032766", "A296533", "A361236", "A361239", "A361240", "A361241", "A361243" ]
null
Andrew Howroyd, Mar 06 2023
2023-03-11T00:13:49
oeisdata/seq/A361/A361239.seq
36989fae801bd621551d1b1932ed4afd
A361240
Number of nonequivalent noncrossing triangular cacti with n triangles up to rotation and reflection.
[ "1", "1", "1", "4", "19", "124", "931", "7801", "68685", "630850", "5966610", "57808920", "571178751", "5737672339", "58455577800", "602859484608", "6283968796705", "66119472527814", "701526880303315", "7498841163925819", "80696081185766970", "873654670250482120", "9510760874015305314", "104056578392127906720" ]
[ "nonn" ]
8
0
4
[ "A002294", "A118970", "A361237", "A361239", "A361240" ]
null
Andrew Howroyd, Mar 06 2023
2023-03-11T00:13:41
oeisdata/seq/A361/A361240.seq
d49671d24844a50763386bfe3ea98315
A361241
Number of nonequivalent noncrossing 4-gonal cacti with n polygons up to rotation and reflection.
[ "1", "1", "1", "6", "35", "349", "3766", "45632", "580203", "7687128", "104898024", "1466605630", "20916933674", "303368072539", "4463328542008", "66484512715040", "1001084180891355", "15217675702394661", "233285495922344929", "3603276856175739600", "56033315904277236728", "876698296980033411125" ]
[ "nonn" ]
8
0
4
[ "A361238", "A361239", "A361241" ]
null
Andrew Howroyd, Mar 06 2023
2023-03-11T00:13:35
oeisdata/seq/A361/A361241.seq
9643c238f741f35aad3a0eb7c72d30e3
A361242
Number of nonequivalent noncrossing cacti with n nodes up to rotation.
[ "1", "1", "1", "2", "7", "26", "144", "800", "4995", "32176", "215914", "1486270", "10471534", "75137664", "547756650", "4047212142", "30255934851", "228513227318", "1741572167716", "13380306774014", "103542814440878", "806476983310180", "6318519422577854", "49769050291536486", "393933908000862866" ]
[ "nonn" ]
11
0
4
[ "A003168", "A007297", "A361236", "A361242", "A361243" ]
null
Andrew Howroyd, Mar 07 2023
2023-03-11T00:13:31
oeisdata/seq/A361/A361242.seq
644b51c65baaca7b646cc72017e60563
A361243
Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection.
[ "1", "1", "1", "2", "5", "17", "79", "421", "2537", "16214", "108204", "743953", "5237414", "37574426", "273889801", "2023645764", "15128049989", "114256903169", "870786692493", "6690155544157", "51771411793812", "403238508004050", "3159259746188665", "24884525271410389", "196966954270163612" ]
[ "nonn" ]
8
0
4
[ "A003168", "A007297", "A361239", "A361242", "A361243" ]
null
Andrew Howroyd, Mar 07 2023
2023-03-11T00:13:26
oeisdata/seq/A361/A361243.seq
3df451d3228d0c89a25054b97d3fc399
A361244
Number of noncrossing bridgeless cacti with n nodes.
[ "1", "1", "0", "1", "1", "6", "13", "57", "169", "673", "2301", "8933", "32747", "127063", "483484", "1889957", "7352241", "29003446", "114481435", "455542880", "1816976042", "7285391071", "29291855748", "118218771203", "478372112363", "1941436590561", "7897802784418", "32205683248225", "131602039333873" ]
[ "nonn" ]
9
0
6
[ "A003168", "A361242", "A361244", "A361245" ]
null
Andrew Howroyd, Mar 08 2023
2023-03-11T00:13:15
oeisdata/seq/A361/A361244.seq
b38794255ba55acce91ed30cfde9eb7b
A361245
Number of noncrossing 2,3 cacti with n nodes.
[ "1", "1", "1", "4", "20", "115", "715", "4683", "31824", "222300", "1586310", "11514030", "84742320", "630946446", "4743789260", "35965715780", "274659794160", "2110810059795", "16312695488265", "126693445737170", "988340783454380", "7740875273884445", "60846920004855985", "479854293574853085" ]
[ "nonn" ]
8
0
4
[ "A091481", "A091485", "A091486", "A091487", "A361242", "A361244", "A361245" ]
null
Andrew Howroyd, Mar 08 2023
2023-03-11T00:13:10
oeisdata/seq/A361/A361245.seq
f53954b577eddb3551be4deb6b86b2ee
A361246
a(n) is the smallest integer k > 1 that satisfies k mod j <= 1 for all integers j in 1..n.
[ "2", "2", "3", "4", "16", "25", "36", "120", "505", "721", "2520", "2520", "41041", "83161", "83161", "196560", "524161", "524161", "3160080", "3160080", "3160080", "3160080", "68468401", "68468401", "68468401", "68468401", "4724319601", "4724319601", "26702676000", "26702676000" ]
[ "nonn" ]
34
1
1
[ "A003418", "A064219", "A361246", "A361247", "A361248" ]
null
Andrew Cogliano, Mar 05 2023
2023-06-21T06:47:14
oeisdata/seq/A361/A361246.seq
e53e94b6507d01666a0435281ff95c09
A361247
a(n) is the smallest integer k > 2 that satisfies k mod j <= 2 for all integers j in 1..n.
[ "3", "3", "3", "4", "5", "6", "30", "42", "56", "72", "792", "792", "1080", "1080", "1080", "30240", "246961", "246961", "636482", "636482", "1360801", "2162162", "2162162", "2162162", "39412802", "39412802", "107881202", "107881202", "3625549202", "3625549202", "3625549202", "170918748001", "170918748001", "170918748001", "170918748001", "170918748001" ]
[ "nonn" ]
25
1
1
[ "A003418", "A056697", "A361246", "A361247", "A361248" ]
null
Andrew Cogliano, Mar 05 2023
2023-06-02T10:20:52
oeisdata/seq/A361/A361247.seq
a538c258ad74872ea9e2b437a1d16763
A361248
a(n) is the smallest integer k > 3 that satisfies k mod j <= 3 for all integers j in 1..n.
[ "4", "4", "4", "4", "5", "6", "7", "8", "56", "72", "91", "651", "651", "1080", "1080", "1443", "20163", "20163", "246962", "246962", "246962", "609843", "2162162", "2162162", "29055601", "29055601", "107881202", "107881202", "205405203", "205405203", "3625549202", "5675443203", "8374212002", "8374212002", "8374212002", "8374212002", "131668891200", "131668891200" ]
[ "nonn" ]
36
1
1
[ "A003418", "A361246", "A361247", "A361248" ]
null
Andrew Cogliano, Mar 05 2023
2023-06-20T15:00:51
oeisdata/seq/A361/A361248.seq
a82a614a9a8bc8ab271c569f7ec7c4c1
A361249
Run length transform of A362415.
[ "1", "1", "2", "2", "3", "1", "4", "3", "5", "4", "6", "5", "7", "6", "3", "4", "8", "7", "9", "8", "10", "9", "8", "10", "11", "10", "12", "11", "13", "12", "14", "13", "11", "14", "15", "14", "15", "15", "16", "16", "17", "17", "18", "18", "19", "19", "19", "19", "20", "20", "21", "21", "22", "20", "20", "22", "23", "23", "24", "24", "25", "25", "26", "26", "27", "22", "23", "27", "28", "27", "28", "28", "29", "29", "30", "30", "31", "31" ]
[ "nonn" ]
46
1
3
[ "A028242", "A361249", "A362415" ]
null
Neal Gersh Tolunsky, Apr 20 2023
2024-12-19T11:46:19
oeisdata/seq/A361/A361249.seq
71a0b512ec175a4b9ac266a2d2f6b41f
A361250
Number of tilings of a 5 X n rectangle using n pentominoes of shapes T, N, X.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "2", "0", "2", "2", "8", "0", "18", "6", "16", "6", "48", "22", "74", "48", "182", "74", "306", "204", "544", "342", "1114", "826", "2038", "1546", "4144", "3126", "7452", "6470", "14538", "12542", "27824", "25994", "53398", "50244", "103288", "101306", "195756", "200120", "380310", "395802" ]
[ "nonn", "easy" ]
19
0
11
[ "A174249", "A343529", "A349187", "A352421", "A358933", "A361250" ]
null
Alois P. Heinz, Apr 20 2023
2023-05-02T08:36:16
oeisdata/seq/A361/A361250.seq
8f0f73c0a22203df6e8acadf657f3750
A361251
Inverse permutation to A360371.
[ "1", "2", "3", "4", "6", "5", "7", "10", "8", "9", "11", "12", "15", "16", "13", "14", "21", "17", "22", "18", "23", "28", "29", "19", "24", "20", "30", "36", "37", "31", "45", "25", "38", "27", "39", "46", "55", "56", "26", "32", "66", "47", "67", "35", "48", "78", "79", "40", "91", "58", "34", "33", "92", "57", "69", "44", "68", "105", "106", "80", "120", "54", "93", "49", "41", "43" ]
[ "nonn" ]
40
1
2
[ "A360371", "A361251" ]
null
Rémy Sigrist, Mar 30 2023
2025-03-20T22:32:31
oeisdata/seq/A361/A361251.seq
aef718f3334e403a08ebcd03e1242d17
A361252
Primes in A239237.
[ "503", "10169", "10253", "10303", "10753", "11047", "12409", "12503", "13049", "14083", "20333", "20773", "20929", "21023", "21067", "21407", "23053", "23059", "25033", "25303", "29303", "30089", "30103", "31063", "32057", "32099", "32303", "33403", "38083", "40087", "40213", "40253", "40483", "40787", "41609", "42403", "43103", "46103", "50227", "50363" ]
[ "nonn", "base" ]
29
1
1
[ "A239237", "A361252" ]
null
Teja Prabhu Buddala, Mar 05 2023
2023-04-03T15:00:28
oeisdata/seq/A361/A361252.seq
6d18550c020c90c7ce1273ea1bc97ae1
A361253
If n = m^2 for some m > 1 then a(n) = a(m), otherwise a(n) = n.
[ "0", "1", "2", "3", "2", "5", "6", "7", "8", "3", "10", "11", "12", "13", "14", "15", "2", "17", "18", "19", "20", "21", "22", "23", "24", "5", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "6", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "7", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "8", "65", "66", "67", "68" ]
[ "nonn", "easy" ]
24
0
3
[ "A000037", "A001146", "A011764", "A097448", "A176594", "A361253" ]
null
Rémy Sigrist, Mar 06 2023
2023-03-17T13:17:57
oeisdata/seq/A361/A361253.seq
1f4ce3f0af380d1b782b6cb05a002dbb
A361254
Number of n-regular graphs on 2*n labeled nodes.
[ "1", "1", "3", "70", "19355", "66462606", "2977635137862", "1803595358964773088", "15138592322753242235338875", "1793196665025885172290508971592750", "3040059281615704147007085764679679740691838", "74597015246986083384362428357508730776063716190667288", "26737694395324301026230134763403079891362936970900741153038680278" ]
[ "nonn" ]
34
0
3
[ "A001223", "A059441", "A339987", "A360437", "A361254" ]
null
Atabey Kaygun, Mar 06 2023
2023-03-28T15:29:48
oeisdata/seq/A361/A361254.seq
36d98a31ffbce44f54e4d23713b69840
A361255
Triangle read by rows: row n lists the exponential unitary divisors of n.
[ "1", "2", "3", "2", "4", "5", "6", "7", "2", "8", "3", "9", "10", "11", "6", "12", "13", "14", "15", "2", "16", "17", "6", "18", "19", "10", "20", "21", "22", "23", "6", "24", "5", "25", "26", "3", "27", "14", "28", "29", "30", "31", "2", "32", "33", "34", "35", "6", "12", "18", "36", "37", "38", "39", "10", "40", "41", "42", "43", "22", "44", "15", "45", "46", "47", "6", "48", "7", "49", "10", "50", "51", "26", "52", "53", "6", "54", "55", "14", "56", "57", "58", "59" ]
[ "nonn", "tabf" ]
14
1
2
[ "A278908", "A322791", "A322857", "A361255" ]
null
R. J. Mathar, Mar 06 2023
2023-03-11T15:08:31
oeisdata/seq/A361/A361255.seq
c21c2c94cdd365a5f3da2d2ef2b4b27d
A361256
Smallest base-n strong Fermat pseudoprime with n distinct prime factors.
[ "2047", "8911", "129921", "381347461", "333515107081", "37388680793101", "713808066913201", "665242007427361", "179042026797485691841", "8915864307267517099501", "331537694571170093744101", "2359851544225139066759651401", "17890806687914532842449765082011" ]
[ "nonn" ]
7
2
1
[ "A001262", "A180065", "A271874", "A360184", "A361256" ]
null
Daniel Suteu, Mar 06 2023
2023-03-26T16:53:42
oeisdata/seq/A361/A361256.seq
445bcd4faa240ccc1fdae3dce322eba7
A361257
a(n) = Sum_{j=0..n} n^wt(j), where wt = A000120.
[ "1", "2", "5", "16", "29", "66", "127", "512", "737", "1090", "1541", "3312", "4369", "7658", "12209", "65536", "83537", "105282", "130987", "167600", "203701", "254122", "313259", "649728", "766201", "912626", "1079027", "1778896", "2071469", "3081570", "4329151", "33554432", "39135425", "45436546", "52524221", "60511536" ]
[ "nonn", "base" ]
17
0
2
[ "A000120", "A002416", "A059841", "A360189", "A361257" ]
null
Alois P. Heinz, Mar 06 2023
2023-03-06T19:34:57
oeisdata/seq/A361/A361257.seq
fba08386a0e707ab742f8582238d5749
A361258
Irregular triangle read by rows in which row n lists the print order of a 4n-page booklet.
[ "2", "3", "4", "1", "2", "7", "8", "1", "4", "5", "6", "3", "2", "11", "12", "1", "4", "9", "10", "3", "6", "7", "8", "5", "2", "15", "16", "1", "4", "13", "14", "3", "6", "11", "12", "5", "8", "9", "10", "7", "2", "19", "20", "1", "4", "17", "18", "3", "6", "15", "16", "5", "8", "13", "14", "7", "10", "11", "12", "9", "2", "23", "24", "1", "4", "21", "22", "3", "6", "19", "20", "5", "8", "17", "18", "7", "10", "15", "16", "9", "12", "13", "14", "11" ]
[ "nonn", "look", "tabf" ]
36
1
1
[ "A008586", "A033585", "A361258" ]
null
Ole Palnatoke Andersen, Mar 06 2023
2023-04-02T12:47:39
oeisdata/seq/A361/A361258.seq
f6d673316f1ec82866d858146c99442a
A361259
a(n) is the least semiprime that is the sum of n consecutive primes.
[ "10", "26", "39", "358", "58", "77", "155", "129", "583", "562", "323", "326", "551", "381", "629", "501", "707", "1294", "789", "791", "961", "1354", "1159", "1262", "1369", "1371", "1591", "1718", "1849", "1851", "2271", "2127", "3561", "2427", "3077", "2747", "3085", "3442", "4811", "3826", "3829", "3831", "5089", "4227", "4659", "4661", "5345", "7318", "5587", "8146", "6333", "6081", "6338" ]
[ "nonn" ]
15
3
1
[ "A001358", "A361259" ]
null
Zak Seidov and Robert Israel, Mar 06 2023
2023-03-13T11:52:02
oeisdata/seq/A361/A361259.seq
8caf030adde1503ed742c0b93ba3b8be
A361260
Maximum latitude in degrees of spherical Mercator projection with an aspect ratio of one, arctan(sinh(Pi))*180/Pi.
[ "8", "5", "0", "5", "1", "1", "2", "8", "7", "7", "9", "8", "0", "6", "5", "9", "2", "3", "7", "7", "7", "9", "6", "7", "1", "5", "5", "2", "1", "9", "2", "4", "6", "9", "2", "0", "6", "6", "9", "8", "2", "5", "9", "1", "2", "6", "8", "4", "2", "0", "6", "8", "8", "4", "0", "5", "7", "6", "2", "4", "5", "9", "3", "9", "1", "5", "9", "4", "5", "8", "9", "3", "7", "0", "0", "8", "3", "4", "6", "7", "3", "1", "2", "7", "1", "7", "4", "3", "6", "3", "7", "9", "0", "5", "7", "6", "4", "6", "7", "8", "7", "3", "1", "4", "5", "0", "3", "1", "6", "1", "1", "4", "9", "0", "2", "0", "8", "2", "9", "1", "5", "9", "8", "2", "3", "4", "7" ]
[ "nonn", "cons" ]
19
2
1
[ "A334401", "A361260" ]
null
Donghwi Park, Mar 06 2023
2023-03-26T17:05:41
oeisdata/seq/A361/A361260.seq
2ba100abf0e59d4c1794f20c2cc8bd35
A361261
Array of Ramsey core number rc(s,t) read by antidiagonals.
[ "2", "3", "3", "4", "5", "4", "5", "6", "6", "5", "6", "8", "8", "8", "6", "7", "9", "10", "10", "9", "7", "8", "10", "11", "11", "11", "10", "8", "9", "12", "13", "13", "13", "13", "12", "9", "10", "13", "14", "15", "15", "15", "14", "13", "10", "11", "14", "15", "16", "16", "16", "16", "15", "14", "11", "12", "15", "17", "18", "18", "18", "18", "18", "17", "15", "12", "13", "17", "18", "19", "20", "20", "20", "20", "19", "18", "17", "13" ]
[ "nonn", "tabl" ]
45
1
1
[ "A080036", "A361261", "A361684" ]
null
Allan Bickle, Mar 28 2023
2024-05-04T07:05:41
oeisdata/seq/A361/A361261.seq
6e64cebee380e3f7d944aa014558976d
A361262
Numbers k such that k+i^2, i=0..6 are all semiprimes.
[ "3238", "4162", "4537", "13918", "16837", "17857", "18673", "24553", "55477", "62353", "78457", "84358", "92878", "102838", "106813", "129838", "135853", "140002", "142822", "146722", "148318", "151957", "166177", "180013", "184213", "187933", "194338", "210637", "214393", "231757", "242698", "271198", "274393", "305677" ]
[ "nonn" ]
30
1
1
[ "A001358", "A070552", "A361262" ]
null
Alexandru Petrescu, Mar 06 2023
2025-02-02T04:28:39
oeisdata/seq/A361/A361262.seq
09f6ea2537cd33d5ba5d123c22b4cb1b
A361263
Numbers of the form k*(k^5 +- 1)/2.
[ "0", "1", "31", "33", "363", "366", "2046", "2050", "7810", "7815", "23325", "23331", "58821", "58828", "131068", "131076", "265716", "265725", "499995", "500005", "885775", "885786", "1492986", "1492998", "2413398", "2413411", "3764761", "3764775", "5695305", "5695320", "8388600", "8388616", "12068776", "12068793", "17006103", "17006121", "23522931", "23522950" ]
[ "nonn", "easy" ]
25
1
3
[ "A006003", "A021003", "A027441", "A057587", "A057590", "A135503", "A167963", "A168029", "A361263" ]
null
Thomas Scheuerle, Mar 06 2023
2023-03-22T22:00:47
oeisdata/seq/A361/A361263.seq
1457d84721b052cfd7de62c4f127e4d1
A361264
Multiplicative with a(p^e) = p^(e + 2), e > 0.
[ "1", "8", "27", "16", "125", "216", "343", "32", "81", "1000", "1331", "432", "2197", "2744", "3375", "64", "4913", "648", "6859", "2000", "9261", "10648", "12167", "864", "625", "17576", "243", "5488", "24389", "27000", "29791", "128", "35937", "39304", "42875", "1296", "50653", "54872", "59319", "4000", "68921", "74088", "79507", "21296", "10125" ]
[ "nonn", "easy", "mult" ]
13
1
2
[ "A000005", "A003557", "A007947", "A064549", "A065483", "A330523", "A360997", "A361264", "A361266" ]
null
Vaclav Kotesovec, Mar 06 2023
2023-09-01T04:09:28
oeisdata/seq/A361/A361264.seq
112e674edb839806788687af4f5a125e
A361265
Multiplicative with a(p^e) = e * p^(e + 1), e > 0.
[ "1", "4", "9", "16", "25", "36", "49", "48", "54", "100", "121", "144", "169", "196", "225", "128", "289", "216", "361", "400", "441", "484", "529", "432", "250", "676", "243", "784", "841", "900", "961", "320", "1089", "1156", "1225", "864", "1369", "1444", "1521", "1200", "1681", "1764", "1849", "1936", "1350", "2116", "2209", "1152", "686", "1000", "2601", "2704" ]
[ "nonn", "easy", "mult" ]
17
1
2
[ "A005361", "A064549", "A203639", "A361265", "A361268" ]
null
Vaclav Kotesovec, Mar 06 2023
2023-09-01T04:09:37
oeisdata/seq/A361/A361265.seq
d7bf598c5058529fa0ccc69f74bbff9d
A361266
Multiplicative with a(p^e) = p^(e + 3), e > 0.
[ "1", "16", "81", "32", "625", "1296", "2401", "64", "243", "10000", "14641", "2592", "28561", "38416", "50625", "128", "83521", "3888", "130321", "20000", "194481", "234256", "279841", "5184", "3125", "456976", "729", "76832", "707281", "810000", "923521", "256", "1185921", "1336336", "1500625", "7776", "1874161", "2085136", "2313441", "40000" ]
[ "nonn", "easy", "mult" ]
18
1
2
[ "A003557", "A007947", "A064549", "A361264", "A361266" ]
null
Vaclav Kotesovec, Mar 06 2023
2023-09-01T04:09:46
oeisdata/seq/A361/A361266.seq
0daf8d94a115a978c0cd9eb31a24d791
A361267
Numbers k such that prime(k+2) - prime(k) = 6.
[ "3", "4", "5", "6", "7", "12", "13", "19", "25", "26", "27", "28", "43", "44", "48", "49", "59", "63", "64", "69", "88", "89", "112", "116", "142", "143", "147", "148", "151", "152", "181", "182", "206", "211", "212", "224", "225", "229", "234", "235", "236", "253", "261", "264", "276", "285", "286", "287", "301", "302", "313", "314", "322", "332", "336", "352", "384", "389" ]
[ "nonn" ]
34
1
1
[ "A000040", "A000720", "A007529", "A022004", "A022005", "A361267" ]
null
Atabey Kaygun, Mar 06 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361267.seq
7660d8aa89fddf4af2599a94d9362979
A361268
Multiplicative with a(p^e) = e * p^(e + 2), e > 0.
[ "1", "8", "27", "32", "125", "216", "343", "96", "162", "1000", "1331", "864", "2197", "2744", "3375", "256", "4913", "1296", "6859", "4000", "9261", "10648", "12167", "2592", "1250", "17576", "729", "10976", "24389", "27000", "29791", "640", "35937", "39304", "42875", "5184", "50653", "54872", "59319", "12000", "68921", "74088", "79507", "42592" ]
[ "nonn", "easy", "mult" ]
20
1
2
[ "A005361", "A059956", "A203639", "A361264", "A361265", "A361268" ]
null
Vaclav Kotesovec, Mar 06 2023
2023-09-01T02:55:22
oeisdata/seq/A361/A361268.seq
d3e5f0305fb1f3265e29877b771c3ba6
A361269
Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.
[ "1", "0", "2", "0", "4", "12", "0", "144", "168", "200", "0", "25696", "18768", "12384", "8688", "0", "18082560", "8697280", "3923040", "1914560", "936992", "0", "47025585664", "14670384000", "4512045120", "1622358720", "647087040", "242016192", "0", "450955726792704", "87781550054912", "17679638000640", "4496696041600", "1408276410240", "482302375296", "145763745920" ]
[ "nonn", "tabl" ]
28
0
3
[ "A002416", "A003024", "A003030", "A361269" ]
null
Geoffrey Critzer, Mar 06 2023
2023-03-16T04:50:52
oeisdata/seq/A361/A361269.seq
7200c1b9316a3e325f6c4bb1fc14ce96
A361270
Number of 1324-avoiding odd Grassmannian permutations of size n.
[ "0", "0", "1", "2", "5", "8", "16", "20", "38", "40", "75", "70", "131", "112", "210", "168", "316", "240", "453", "330", "625", "440", "836", "572", "1090", "728", "1391", "910", "1743", "1120", "2150", "1360", "2616", "1632", "3145", "1938", "3741", "2280", "4408", "2660", "5150", "3080", "5971", "3542", "6875", "4048", "7866", "4600", "8948", "5200", "10125" ]
[ "nonn", "easy" ]
20
0
4
[ "A356185", "A361270", "A361271" ]
null
Juan B. Gil, Mar 07 2023
2023-03-08T02:49:29
oeisdata/seq/A361/A361270.seq
d22730911c51958a87898406be7704c6
A361271
Number of 1342-avoiding odd Grassmannian permutations of size n.
[ "0", "0", "1", "2", "6", "9", "19", "25", "44", "54", "85", "100", "146", "167", "231", "259", "344", "380", "489", "534", "670", "725", "891", "957", "1156", "1234", "1469", "1560", "1834", "1939", "2255", "2375", "2736", "2872", "3281", "3434", "3894", "4065", "4579", "4769", "5340", "5550", "6181", "6412", "7106", "7359", "8119", "8395", "9224", "9524", "10425" ]
[ "nonn", "easy" ]
21
0
4
[ "A356185", "A361270", "A361271", "A361274" ]
null
Juan B. Gil, Mar 07 2023
2023-03-10T11:04:28
oeisdata/seq/A361/A361271.seq
22db54925d74f9f9058b68511f4f9c99
A361272
Number of 1243-avoiding even Grassmannian permutations of size n.
[ "1", "1", "1", "3", "6", "12", "20", "32", "47", "67", "91", "121", "156", "198", "246", "302", "365", "437", "517", "607", "706", "816", "936", "1068", "1211", "1367", "1535", "1717", "1912", "2122", "2346", "2586", "2841", "3113", "3401", "3707", "4030", "4372", "4732", "5112", "5511", "5931", "6371", "6833", "7316", "7822", "8350", "8902", "9477", "10077" ]
[ "nonn", "easy" ]
21
0
4
[ "A175287", "A356185", "A361272", "A361273" ]
null
Juan B. Gil, Mar 09 2023
2023-03-09T17:33:46
oeisdata/seq/A361/A361272.seq
a7a01ef0651fe2e348621ee8aa95d8d3
A361273
Number of 1324-avoiding even Grassmannian permutations of size n.
[ "1", "1", "1", "3", "6", "13", "20", "37", "47", "81", "91", "151", "156", "253", "246", "393", "365", "577", "517", "811", "706", "1101", "936", "1453", "1211", "1873", "1535", "2367", "1912", "2941", "2346", "3601", "2841", "4353", "3401", "5203", "4030", "6157", "4732", "7221", "5511", "8401", "6371", "9703", "7316", "11133", "8350", "12697", "9477", "14401", "10701" ]
[ "nonn", "easy" ]
8
0
4
[ "A356185", "A361270", "A361272", "A361273" ]
null
Juan B. Gil, Mar 09 2023
2023-03-09T20:02:37
oeisdata/seq/A361/A361273.seq
20f02b4cbb6ec60b9bff69d9cdf1c099
A361274
Number of 1342-avoiding even Grassmannian permutations of size n.
[ "1", "1", "1", "3", "5", "12", "17", "32", "41", "67", "81", "121", "141", "198", "225", "302", "337", "437", "481", "607", "661", "816", "881", "1068", "1145", "1367", "1457", "1717", "1821", "2122", "2241", "2586", "2721", "3113", "3265", "3707", "3877", "4372", "4561", "5112", "5321", "5931", "6161", "6833", "7085", "7822", "8097", "8902", "9201", "10077", "10401" ]
[ "nonn", "easy" ]
9
0
4
[ "A356185", "A361271", "A361274" ]
null
Juan B. Gil, Mar 09 2023
2023-03-10T09:11:06
oeisdata/seq/A361/A361274.seq
1b7aad46fece25bb69a37a5563bc1420
A361275
Number of 1423-avoiding even Grassmannian permutations of size n.
[ "1", "1", "1", "3", "5", "11", "17", "29", "41", "61", "81", "111", "141", "183", "225", "281", "337", "409", "481", "571", "661", "771", "881", "1013", "1145", "1301", "1457", "1639", "1821", "2031", "2241", "2481", "2721", "2993", "3265", "3571", "3877", "4219", "4561", "4941", "5321", "5741", "6161", "6623", "7085", "7591", "8097", "8649", "9201", "9801", "10401" ]
[ "nonn", "easy" ]
11
0
4
[ "A005993", "A356185", "A361272", "A361273", "A361274", "A361275" ]
null
Juan B. Gil, Mar 10 2023
2023-03-10T12:39:55
oeisdata/seq/A361/A361275.seq
c5ea454f32a9fdccc13259db3ab5262b
A361276
Number of 2413-avoiding even Grassmannian permutations of size n.
[ "1", "1", "1", "3", "6", "13", "22", "37", "55", "81", "111", "151", "196", "253", "316", "393", "477", "577", "685", "811", "946", "1101", "1266", "1453", "1651", "1873", "2107", "2367", "2640", "2941", "3256", "3601", "3961", "4353", "4761", "5203", "5662", "6157", "6670", "7221", "7791", "8401", "9031", "9703", "10396", "11133", "11892", "12697", "13525", "14401" ]
[ "nonn", "easy" ]
8
0
4
[ "A006918", "A356185", "A361272", "A361273", "A361274", "A361275", "A361276" ]
null
Juan B. Gil, Mar 10 2023
2023-08-14T12:54:34
oeisdata/seq/A361/A361276.seq
d481f92fff1963e6bc294c02cb575484
A361277
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!.
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "5", "7", "1", "1", "1", "7", "19", "25", "1", "1", "1", "9", "37", "97", "81", "1", "1", "1", "11", "61", "241", "581", "331", "1", "1", "1", "13", "91", "481", "1981", "3661", "1303", "1", "1", "1", "15", "127", "841", "4881", "17551", "26335", "5937", "1", "1", "1", "17", "169", "1345", "10001", "55321", "171697", "202049", "26785", "1" ]
[ "nonn", "tabl" ]
14
0
9
[ "A000012", "A047974", "A293012", "A361277", "A361278", "A361279", "A361280", "A361281" ]
null
Seiichi Manyama, Mar 06 2023
2023-03-07T10:37:15
oeisdata/seq/A361/A361277.seq
bf636332f95773f1fc67bfd424fe9493
A361278
Expansion of e.g.f. exp(x * (1+x)^2).
[ "1", "1", "5", "19", "97", "581", "3661", "26335", "202049", "1659817", "14621941", "135567851", "1326672865", "13624218349", "146056961597", "1633376573431", "18980051829121", "228677164878545", "2852155973178469", "36740599423566787", "488127224550517601", "6678832987859315221" ]
[ "nonn" ]
23
0
3
[ "A082579", "A361277", "A361278" ]
null
Seiichi Manyama, Mar 06 2023
2023-11-11T08:21:54
oeisdata/seq/A361/A361278.seq
ee44cfa5aa932cef1422939f28eeb647
A361279
Expansion of e.g.f. exp(x * (1+x)^3).
[ "1", "1", "7", "37", "241", "1981", "17551", "171697", "1860097", "21609721", "268697431", "3566446621", "50060084977", "740156116597", "11496472967071", "186824483634601", "3167058238988161", "55882288483846897", "1023891003620741287", "19440027237549627541", "381822392009503555441" ]
[ "nonn" ]
25
0
3
[ "A091695", "A361277", "A361279" ]
null
Seiichi Manyama, Mar 06 2023
2023-11-11T08:48:42
oeisdata/seq/A361/A361279.seq
7481959f90a8a9f582462b0158f16342
A361280
Expansion of e.g.f. exp(x * (1+x)^4).
[ "1", "1", "9", "61", "481", "4881", "55321", "682669", "9343041", "139078081", "2216425321", "37736834301", "683184324769", "13064452686481", "262867726142841", "5549111222344621", "122499654278797441", "2819926900630750209", "67539541277010100681", "1679557316488693881661" ]
[ "nonn" ]
25
0
3
[ "A361277", "A361280", "A361283" ]
null
Seiichi Manyama, Mar 06 2023
2023-11-11T09:59:54
oeisdata/seq/A361/A361280.seq
c23287a36de11a16ac5a9dc873d4b099
A361281
a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.
[ "1", "1", "5", "37", "481", "10001", "288901", "10820965", "511186817", "29843419681", "2106779832901", "176180844038981", "17165338119936865", "1924030148121500017", "245630480526435293381", "35409038825312233143301", "5719025066628373334423041", "1027649751647068260334391105" ]
[ "nonn" ]
21
0
3
[ "A096131", "A099237", "A226391", "A278070", "A293013", "A361277", "A361281" ]
null
Seiichi Manyama, Mar 06 2023
2023-03-13T11:34:44
oeisdata/seq/A361/A361281.seq
63c27597c861e44c6f7ff8b3d3980c21
A361282
Number of rank n+1 simple connected series-parallel matroids on [2n].
[ "0", "1", "75", "9345", "1865745", "554479695", "231052877055", "128938132548225", "92986310399407425", "84250567868935042575", "93744545254140599193375", "125717783386887888296925825", "200041202339679732328342670625", "372688996228146502285257581079375", "803768398459351988653830600415029375" ]
[ "nonn" ]
18
1
3
[ "A034941", "A361282", "A361355" ]
null
Matt Larson, Mar 06 2023
2023-03-09T20:03:59
oeisdata/seq/A361/A361282.seq
cf46ca3b0953beb04be9bd912ff6410f
A361283
Expansion of e.g.f. exp(x/(1-x)^4).
[ "1", "1", "9", "85", "961", "13041", "207001", "3746149", "75832065", "1693615681", "41302616041", "1090835399061", "30988423000129", "941461990360945", "30439632977968761", "1042973073239321701", "37731609890300935681", "1436586994020158747649" ]
[ "nonn" ]
17
0
3
[ "A293012", "A361280", "A361283" ]
null
Seiichi Manyama, Mar 06 2023
2023-11-11T10:16:22
oeisdata/seq/A361/A361283.seq
baa5dc57d9bd83a553da1d71fa7f9c3d
A361284
Number of unordered triples of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are not allowed.
[ "0", "0", "0", "0", "0", "15", "420", "7140", "95760", "1116990", "11891880", "118776900", "1132182480", "10415938533", "93207174060", "815777235000", "7011723045600", "59364660734172", "496238466573648", "4102968354298200", "33602671702168800", "272909132004479355", "2200084921469527092", "17618774018675345340", "140252152286127750000" ]
[ "nonn", "easy" ]
14
1
6
[ "A261064", "A359404", "A360716", "A361284" ]
null
Ivaylo Kortezov, Mar 07 2023
2023-04-03T21:47:43
oeisdata/seq/A361/A361284.seq
060d20051a926f7968bcb377cd4a8476
A361285
Number of unordered triples of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are allowed.
[ "0", "0", "1", "10", "85", "695", "5600", "45080", "364854", "2973270", "24382875", "200967250", "1662197251", "13772638789", "114126098450", "944285871200", "7791140945180", "64038240953196", "523977421054245", "4266101869823850", "34554155058753505", "278417272387723315", "2231755184899383220", "17799741659621513240" ]
[ "nonn", "easy" ]
10
1
4
[ "A360021", "A360715", "A360717", "A361285" ]
null
Ivaylo Kortezov, Mar 07 2023
2023-03-11T09:39:48
oeisdata/seq/A361/A361285.seq
26e846016936bf16887f4cf31a53eb13
A361286
Total over all partitions lambda of n, of factors of s_lambda in the skew Schur function s_( nu/lambda ) with (s_lambda)^2 = Sum( C(nu, lambda, lambda) s_nu ).
[ "1", "2", "6", "18", "50", "138", "430", "1242", "3666", "10938", "34598", "108098", "338634", "1058370" ]
[ "nonn", "more", "hard" ]
17
0
2
[ "A067855", "A322210", "A361286" ]
null
Wouter Meeussen, Mar 07 2023
2023-04-09T02:31:00
oeisdata/seq/A361/A361286.seq
0835e64567521005b5bc685620f7befe
A361287
A variant of the inventory sequence A342585: now a row ends when the number of occurrences of the largest term in the sequence thus far has been recorded.
[ "0", "1", "1", "1", "3", "0", "1", "2", "4", "1", "1", "1", "2", "7", "2", "1", "1", "0", "0", "1", "4", "10", "3", "2", "2", "0", "0", "1", "0", "0", "1", "8", "12", "5", "2", "2", "1", "0", "1", "1", "0", "1", "0", "1", "11", "17", "7", "2", "2", "1", "0", "2", "1", "0", "1", "1", "1", "0", "0", "0", "0", "1", "17", "23", "10", "2", "2", "1", "0", "2", "1", "0", "2", "1", "1", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0" ]
[ "nonn", "tabf" ]
51
0
5
[ "A342585", "A347317", "A361287" ]
null
Robert Dober, Mar 07 2023
2023-03-20T16:33:20
oeisdata/seq/A361/A361287.seq
a390cf8b0e18a1ee7d7a6537e1525239
A361288
Number of free polyominoes of size 2n for which there exists at least one closed path that passes through each square exactly once.
[ "1", "1", "3", "6", "25", "84", "397", "1855", "9708", "51684", "286011", "1609097", "9222409", "53543338", "314612803" ]
[ "nonn", "more", "hard" ]
21
2
3
[ "A266549", "A361288" ]
null
John Mason and Tanya Khovanova, Mar 07 2023
2023-03-09T02:15:26
oeisdata/seq/A361/A361288.seq
690be99b00147259c9c4a4b354ef4a04
A361289
For the odd numbers 2n + 1, the least practical number r such that 2n + 1 = r + p where p is prime.
[ "1", "2", "2", "2", "4", "2", "2", "4", "2", "2", "4", "2", "4", "6", "2", "2", "4", "6", "2", "4", "2", "2", "4", "2", "4", "6", "2", "4", "6", "2", "2", "4", "6", "2", "4", "2", "2", "4", "6", "2", "4", "2", "4", "6", "2", "4", "6", "8", "2", "4", "2", "2", "4", "2", "2", "4", "2", "4", "6", "8", "16", "12", "18", "2", "4", "2", "4", "6", "2", "2", "4", "6", "8", "12", "2", "2", "4", "6", "2", "4", "6", "2", "4", "2", "4", "6", "2", "4", "6", "2", "2", "4", "6", "8", "12" ]
[ "nonn" ]
22
1
2
[ "A005153", "A361289" ]
null
Frank M Jackson, Mar 07 2023
2023-06-19T12:14:52
oeisdata/seq/A361/A361289.seq
50aaea11d1a65796dff06c88311af704
A361290
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor((n-1)/2)} k^(n-1-j) * binomial(n,2*j+1).
[ "0", "0", "1", "0", "1", "0", "0", "1", "2", "0", "0", "1", "4", "4", "0", "0", "1", "6", "14", "8", "0", "0", "1", "8", "30", "48", "16", "0", "0", "1", "10", "52", "144", "164", "32", "0", "0", "1", "12", "80", "320", "684", "560", "64", "0", "0", "1", "14", "114", "600", "1936", "3240", "1912", "128", "0", "0", "1", "16", "154", "1008", "4400", "11648", "15336", "6528", "256", "0" ]
[ "nonn", "easy", "tabl" ]
45
0
9
[ "A007070", "A016129", "A016175", "A030192", "A093145", "A131577", "A154237", "A154248", "A154348", "A360766", "A361290", "A361293", "A361432" ]
null
Seiichi Manyama, Mar 11 2023
2023-03-26T11:14:36
oeisdata/seq/A361/A361290.seq
8df3b9ea4f84c3af01f7c824af91490b
A361291
a(n) = ((2*n + 1)^n - 1)/(2*n).
[ "1", "6", "57", "820", "16105", "402234", "12204241", "435984840", "17927094321", "833994048910", "43309534450633", "2483526865641276", "155867505885345241", "10627079738421409410", "782175399728156197665", "61812037545704964935440", "5220088150634922700769761", "469168161404536131943150998" ]
[ "nonn", "easy" ]
28
1
2
[ "A000169", "A000312", "A005408", "A019762", "A038057", "A051129", "A052746", "A062971", "A213236", "A218722", "A361291" ]
null
Stefano Spezia, Mar 12 2023
2023-03-14T12:55:56
oeisdata/seq/A361/A361291.seq
c8455c691b4f0943980ce32e51bcef6c
A361292
Square array A(n, k), n, k >= 0, read by antidiagonals; A(0, 0) = 1, and otherwise A(n, k) is the sum of all terms in previous antidiagonals at one knight's move away.
[ "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "2", "2", "0", "1", "0", "2", "4", "2", "4", "2", "0", "2", "5", "4", "7", "7", "4", "5", "2", "5", "5", "10", "14", "12", "14", "10", "5", "5", "5", "10", "21", "23", "30", "30", "23", "21", "10", "5", "10", "23", "35", "49", "62", "60", "62", "49", "35", "23", "10", "23", "40", "69", "100", "119", "137", "137", "119", "100", "69", "40", "23" ]
[ "nonn", "tabl" ]
20
0
18
[ "A355320", "A361292" ]
null
Rémy Sigrist, Mar 12 2023
2023-10-17T10:55:39
oeisdata/seq/A361/A361292.seq
65dfef8bf2372747c5c41b45c8a2cc81
A361293
a(n) = 20 * a(n-1) - 90 * a(n-2) for n>1, with a(0)=0, a(1)=1.
[ "0", "1", "20", "310", "4400", "60100", "806000", "10711000", "141680000", "1869610000", "24641000000", "324555100000", "4273412000000", "56258281000000", "740558540000000", "9747925510000000", "128308241600000000", "1688851536100000000", "22229288978000000000", "292589141311000000000" ]
[ "nonn", "easy" ]
26
0
3
[ "A289414", "A361290", "A361293" ]
null
Seiichi Manyama, Mar 12 2023
2023-12-16T11:43:03
oeisdata/seq/A361/A361293.seq
576643b83083e44a435c9d2fb3e1de88
A361294
A variant of payphone permutations: given a circular booth with n payphones, one of which is already occupied, a(n) is the number ways for n-1 people to choose the payphones in order, where each person chooses an unoccupied payphone such that the closest occupied payphone is as distant as possible, and a payphone adjacent to a single occupied payphone is preferred over a payphone sandwiched between two occupied payphones.
[ "1", "1", "2", "2", "8", "16", "24", "48", "192", "1536", "4608", "18432", "23040", "92160", "241920", "1935360", "3870720", "41287680", "371589120", "11890851840", "29727129600", "237817036800", "1248539443200", "19976631091200", "11236854988800", "42807066624000", "176579149824000", "3390319676620800", "6886586843136000" ]
[ "nonn" ]
14
1
3
[ "A095236", "A095239", "A095240", "A095912", "A358056", "A361294", "A361295", "A361296", "A362192" ]
null
Max Alekseyev, Apr 10 2023
2023-04-16T20:54:45
oeisdata/seq/A361/A361294.seq
a0d5a592651abe0512cd7432ab55c130
A361295
A variant of payphone permutations: given a row of n payphones, a(n) is the number ways for n people to choose the payphones in order, where each person chooses an unoccupied payphone such that the closest occupied payphone is as distant as possible, and among the available payphones adjacent to a single occupied payphone the most preferred are payphones at open ends.
[ "1", "2", "4", "6", "12", "40", "144", "384", "1008", "6816", "33600", "115200", "783360", "3024000", "16450560", "140636160", "558351360", "2262435840", "29599395840", "180278784000", "2124328550400", "13664957644800", "127667338444800", "852837440716800", "11377123378790400", "116737211695104000", "816490952589312000" ]
[ "nonn" ]
10
1
2
[ "A095236", "A095239", "A095912", "A358056", "A361294", "A361295", "A361296", "A362192", "A363785" ]
null
Max Alekseyev, Apr 08 2023
2023-06-21T17:49:34
oeisdata/seq/A361/A361295.seq
5b94fd135aab9a0c3cc1e286b3a01d13
A361296
A variant of payphone permutations: given a circular booth with n payphones, a(n) is the number ways for n people to choose the payphones in order, where each person chooses an unoccupied payphone such that the closest occupied payphone is as distant as possible.
[ "1", "2", "6", "8", "60", "144", "336", "384", "8640", "57600", "221760", "967680", "4193280", "9031680", "14515200", "30965760", "2368880640", "50164531200", "582465945600", "7357464576000", "50214695731200", "245494068019200", "1443672502272000", "24103053950976000", "200858782924800000", "835572536967168000" ]
[ "nonn" ]
7
1
2
[ "A095236", "A095239", "A095912", "A358056", "A361294", "A361295", "A361296", "A362192" ]
null
Max Alekseyev, Apr 08 2023
2023-04-16T20:55:15
oeisdata/seq/A361/A361296.seq
7e44b9d1ff0eec8e46a15d033d8c3c27
A361297
Number of n-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin.
[ "1", "2", "20", "996", "108136", "19784060", "5389230384", "2031493901304", "1009373201680848", "638377781979995244", "500510427096797296240", "476433596774288713285352", "541348750963243079098368768", "723928411313545718524263072248", "1125748074023593276830674831519936" ]
[ "nonn", "walk" ]
20
0
2
[ "A005843", "A303503", "A361297", "A361397" ]
null
Alois P. Heinz, Mar 08 2023
2023-05-27T06:54:44
oeisdata/seq/A361/A361297.seq
bf904c0e06732f91a6df3485d4803cef
A361298
Second differences of the overpartitions.
[ "1", "2", "2", "4", "6", "8", "12", "18", "24", "34", "48", "64", "88", "120", "158", "212", "282", "368", "484", "632", "816", "1056", "1360", "1738", "2220", "2826", "3576", "4520", "5696", "7144", "8948", "11176", "13908", "17280", "21414", "26460", "32638", "40168" ]
[ "nonn" ]
4
2
2
[ "A015128", "A211971", "A361298" ]
null
R. J. Mathar, Mar 08 2023
2023-03-08T12:51:11
oeisdata/seq/A361/A361298.seq
a8c44addac55af9aea449d91c6384513
A361299
Counterclockwise spiral constructed of distinct terms such that any two terms a knight's move apart are coprime; always choose the smallest possible positive term.
[ "1", "2", "3", "4", "5", "7", "9", "8", "11", "10", "13", "6", "15", "12", "17", "14", "19", "16", "23", "18", "25", "20", "29", "22", "21", "24", "31", "26", "37", "28", "35", "32", "41", "34", "43", "27", "33", "36", "47", "44", "39", "38", "49", "40", "53", "46", "59", "30", "51", "50", "61", "55", "67", "58", "71", "52", "45", "56", "73", "62", "65", "64", "79", "42", "77", "48", "83" ]
[ "nonn" ]
17
1
2
[ "A308884", "A361299" ]
null
Jodi Spitz, Mar 08 2023
2023-03-09T11:28:03
oeisdata/seq/A361/A361299.seq
c3c0f943bf87b3121b5ed7f6ea591aa8
A361300
Numbers of the form m^2 + p^2 for p prime and m > 0.
[ "5", "8", "10", "13", "18", "20", "25", "26", "29", "34", "40", "41", "45", "50", "53", "58", "61", "65", "68", "73", "74", "85", "89", "90", "98", "104", "106", "109", "113", "122", "125", "130", "137", "146", "148", "149", "153", "157", "169", "170", "173", "178", "185", "193", "194", "200", "202", "205", "218", "221", "229", "233", "234", "242" ]
[ "nonn", "easy" ]
16
1
1
[ "A000404", "A185086", "A361300" ]
null
Charles R Greathouse IV, Mar 08 2023
2023-03-29T21:39:52
oeisdata/seq/A361/A361300.seq
a4c4e1452e63ac572df32bf1b1df5586