sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A361101
a(n) is the smallest positive number not among the terms in a(1..n-1) with index a(n-1)*k for any integer k; a(1)=1.
[ "1", "2", "1", "3", "2", "1", "4", "1", "5", "1", "6", "2", "4", "4", "4", "4", "5", "3", "6", "4", "5", "3", "6", "4", "5", "3", "6", "5", "3", "7", "1", "8", "2", "6", "5", "3", "8", "2", "9", "1", "10", "2", "9", "1", "11", "4", "6", "5", "3", "8", "2", "9", "1", "12", "1", "13", "1", "14", "1", "15", "1", "16", "1", "17", "1", "18", "1", "19", "3", "8", "2", "10", "2", "11", "4", "6", "6", "6", "8", "2", "20", "3", "8", "3", "8", "3" ]
[ "nonn" ]
36
1
2
[ "A358921", "A361101", "A361172" ]
null
Neal Gersh Tolunsky, Mar 02 2023
2023-03-08T03:05:08
oeisdata/seq/A361/A361101.seq
ae9e6f1bc10bf2e2cee8498276a45b3a
A361102
1 together with numbers having at least two distinct prime factors.
[ "1", "6", "10", "12", "14", "15", "18", "20", "21", "22", "24", "26", "28", "30", "33", "34", "35", "36", "38", "39", "40", "42", "44", "45", "46", "48", "50", "51", "52", "54", "55", "56", "57", "58", "60", "62", "63", "65", "66", "68", "69", "70", "72", "74", "75", "76", "77", "78", "80", "82", "84", "85", "86", "87", "88", "90", "91", "92", "93", "94", "95", "96", "98", "99", "100", "102", "104", "105", "106", "108", "110", "111", "112" ]
[ "nonn" ]
31
1
2
[ "A000469", "A024619", "A120944", "A126706", "A246655", "A360519", "A361102" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 02 2023
2024-08-31T12:29:26
oeisdata/seq/A361/A361102.seq
4307558523a7e308ea1a416c93b116ec
A361103
a(n) = k such that A360519(k) = A361102(n), or -1 if A361102(n) never appears in A360519.
[ "1", "2", "3", "6", "11", "14", "10", "7", "5", "16", "19", "28", "20", "23", "9", "24", "4", "27", "32", "18", "15", "31", "36", "34", "40", "35", "39", "30", "44", "68", "8", "52", "42", "48", "64", "51", "26", "22", "72", "56", "41", "47", "76", "55", "46", "43", "12", "80", "60", "59", "63", "38", "84", "49", "88", "87", "21", "92", "50", "96", "33", "91", "67", "13", "71", "95", "100", "53", "104", "99", "75", "54", "112", "108" ]
[ "nonn" ]
10
0
2
[ "A336957", "A360519", "A361102", "A361103", "A361104" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 02 2023
2023-03-05T20:42:55
oeisdata/seq/A361/A361103.seq
14aa31c434d6927ef07d928b25ac7d05
A361104
a(n) = k such that A361103(k-1) = n, or -1 if n never appears in A361103.
[ "1", "2", "3", "17", "9", "4", "8", "31", "15", "7", "5", "47", "64", "6", "21", "10", "96", "20", "11", "13", "57", "38", "14", "16", "79", "37", "18", "12", "160", "28", "22", "19", "61", "24", "26", "23", "131", "52", "27", "25", "41", "33", "46", "29", "77", "45", "42", "34", "54", "59", "36", "32", "68", "72", "44", "40", "104", "82", "50", "49", "75", "111", "51", "35", "98", "143", "63", "30", "85" ]
[ "nonn" ]
21
1
2
[ "A336957", "A360519", "A361102", "A361103", "A361104" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 02 2023
2023-03-05T20:51:02
oeisdata/seq/A361/A361104.seq
029064edacd1f500e7a56e3ce4a238fd
A361105
Fixed points in A360519.
[ "1", "88", "92", "112", "116", "172", "268", "272", "324", "17242", "18650", "43208", "55828", "192434", "1497756" ]
[ "nonn", "more" ]
10
1
2
[ "A336957", "A338050", "A360519", "A361105" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 02 2023
2023-03-04T04:07:05
oeisdata/seq/A361/A361105.seq
57f3af18c6c1a07d22790cc0ccabcac5
A361106
Numbers k such that w(k), w(k+1), and w(k+2) are all odd, where w is A360519.
[ "12", "4565", "6402", "12255", "20112", "21421", "24818", "28859", "28924", "29257", "31026", "31207", "34856", "36933", "43614", "49287", "51164", "51869", "59526", "60503", "62984", "65273", "70478", "75659", "76632", "78501", "84754", "86195", "90824", "92301", "95598", "103451", "114460", "115025", "115890", "116995", "117608", "118021", "119994", "121439", "123892" ]
[ "nonn" ]
8
1
1
[ "A336957", "A337644", "A360519", "A361106" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 02 2023
2023-03-03T07:52:14
oeisdata/seq/A361/A361106.seq
bacba590e3ead403750653bba2e8facc
A361107
Records in A360519.
[ "1", "6", "10", "35", "55", "77", "99", "143", "221", "235", "301", "329", "371", "391", "497", "511", "623", "1243", "1253", "1379", "1393", "1799", "1837", "1969", "2513", "2629", "3353", "3493", "3601", "3983", "6259", "8063", "10417", "12991", "13453", "16003", "17413", "21967", "23089", "27049", "32329", "33737", "40079", "60073", "70103", "73411", "79673", "105131", "116677", "117799", "119933", "124619", "128227", "130537", "149083" ]
[ "nonn" ]
9
1
2
[ "A360519", "A361107", "A361108" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T06:03:08
oeisdata/seq/A361/A361107.seq
6146d2f25a47e4bc5a2bb58979f62770
A361108
Indices of records in A360519.
[ "1", "2", "3", "4", "8", "12", "13", "17", "29", "74", "85", "97", "105", "110", "145", "149", "186", "230", "369", "401", "442", "521", "689", "741", "745", "989", "993", "1062", "1129", "1153", "1274", "1493", "1937", "2722", "2818", "2842", "3237", "4097", "4301", "5939", "6006", "7516", "7560", "9439", "12984", "14141", "14748", "16480", "21610", "21818", "22226", "23110", "23778", "24210", "27607", "29330", "31392", "35201", "43306", "44199", "47795" ]
[ "nonn" ]
7
1
2
[ "A360519", "A361107", "A361108" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T06:03:12
oeisdata/seq/A361/A361108.seq
85ca231efe8ed1da5b82b303a86e8365
A361109
After A360519(n) has been found, a(n) is the smallest member of C (A361102) that is missing from A360519.
[ "6", "10", "12", "12", "12", "14", "14", "14", "14", "14", "15", "15", "15", "22", "22", "24", "24", "24", "26", "26", "26", "26", "26", "26", "26", "26", "26", "38", "38", "38", "38", "44", "44", "44", "44", "46", "46", "46", "46", "52", "52", "52", "52", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54", "54" ]
[ "nonn" ]
14
1
1
[ "A360519", "A361109", "A361110" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T06:01:58
oeisdata/seq/A361/A361109.seq
4465664c04fc92ea88309ae63de9a8d3
A361110
a(n) indicates the index of A361109 in C (A361102).
[ "1", "2", "3", "3", "3", "4", "4", "4", "4", "4", "5", "5", "5", "9", "9", "10", "10", "10", "11", "11", "11", "11", "11", "11", "11", "11", "11", "18", "18", "18", "18", "22", "22", "22", "22", "24", "24", "24", "24", "28", "28", "28", "28", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "38", "38" ]
[ "nonn" ]
15
1
2
[ "A360519", "A361102", "A361109", "A361110" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T06:02:02
oeisdata/seq/A361/A361110.seq
23ae4bcf683e0f209873987d0603c547
A361111
The binary expansion of a(n) specifies which primes divide A360519(n).
[ "0", "3", "5", "12", "10", "3", "5", "20", "18", "3", "9", "24", "18", "6", "5", "17", "48", "34", "3", "9", "40", "36", "7", "65", "72", "10", "3", "33", "96", "66", "11", "129", "132", "6", "3", "17", "80", "68", "5", "257", "258", "130", "129", "33", "34", "6", "13", "513", "514", "1026", "1025", "9", "14", "2050", "2049", "65", "66", "4098", "4097", "5", "260", "264", "11", "7" ]
[ "nonn", "base" ]
20
1
2
[ "A087207", "A360519", "A361111" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T06:02:09
oeisdata/seq/A361/A361111.seq
4667649b52552e5a9fe0481819bbd5c1
A361112
Numbers that begin a run of 3 consecutive odd valued terms in A360519.
[ "77", "5775", "7917", "14745", "23925", "25425", "29435", "34035", "34125", "34485", "36495", "36705", "40803", "43275", "50925", "57375", "59565", "60345", "68859", "70035", "72825", "75525", "81435", "87405", "141495", "90705", "97695", "99267", "104355", "106035", "109935", "118755", "143769", "131745", "132765", "134055", "134805", "135225", "138525", "139065", "141945" ]
[ "nonn" ]
6
1
1
[ "A336957", "A337644", "A360519", "A361106", "A361112" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T08:33:38
oeisdata/seq/A361/A361112.seq
7d6efa3b348c94adc3d7c19be5b5b755
A361113
a(n)=1 if A361102(n) is even, otherwise 0.
[ "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1", "0" ]
[ "nonn" ]
16
1
null
[ "A361102", "A361113", "A361114", "A361115", "A361116" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-10-11T08:41:42
oeisdata/seq/A361/A361113.seq
01b3a99687dc65dcfce0f4651dc5368a
A361114
a(n)=1 if A361102(n) is odd, otherwise 0.
[ "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1" ]
[ "nonn" ]
13
0
null
[ "A361102", "A361113", "A361114", "A361115", "A361116" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T10:49:34
oeisdata/seq/A361/A361114.seq
e8272934d3e77f3260efdc0cecd2510b
A361115
a(n)=1 if A361102(n) is divisible by 3, otherwise 0.
[ "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0" ]
[ "nonn" ]
13
0
null
[ "A361102", "A361113", "A361114", "A361115", "A361116" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T10:49:21
oeisdata/seq/A361/A361115.seq
c5609640c4874f472846cf4b3255df3b
A361116
a(n)=0 if A361102(n) is divisible by 3, otherwise 1.
[ "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1" ]
[ "nonn" ]
13
0
null
[ "A361102", "A361113", "A361114", "A361115", "A361116" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 03 2023
2023-03-03T10:58:30
oeisdata/seq/A361/A361116.seq
041d40543f9e5f49bf4a0d2c2d6fde1e
A361117
a(n) is the least k such that A360519(k) is divisible by the n-th prime number.
[ "2", "2", "3", "4", "8", "17", "24", "32", "40", "48", "50", "54", "58", "69", "73", "104", "120", "122", "126", "137", "141", "160", "164", "176", "200", "202", "206", "208", "210", "229", "252", "260", "276", "280", "304", "308", "312", "332", "336", "344", "361", "376", "388", "392", "400", "404", "428", "452", "468", "472", "480", "496", "500", "508", "520", "532" ]
[ "nonn" ]
8
1
1
[ "A360519", "A361117" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 03 2023
2023-03-03T13:53:14
oeisdata/seq/A361/A361117.seq
d0f47bfdffcb24ca8d011db531e0a175
A361118
a(n) = gcd(A360519(n), A360519(n+1)).
[ "1", "2", "5", "7", "3", "4", "5", "11", "3", "2", "7", "11", "3", "5", "2", "11", "13", "3", "4", "7", "13", "5", "2", "17", "7", "9", "2", "13", "17", "3", "2", "19", "5", "3", "4", "11", "17", "5", "2", "23", "3", "19", "4", "13", "3", "5", "2", "29", "3", "31", "2", "7", "3", "37", "2", "17", "3", "41", "2", "5", "23", "7", "12", "5", "29", "7", "2", "3", "43", "5", "2", "3", "47", "5", "2", "3", "7", "19", "2" ]
[ "nonn" ]
8
1
2
[ "A360519", "A361118" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 03 2023
2023-03-03T14:09:06
oeisdata/seq/A361/A361118.seq
af664b2a65a3888a6adcfc30cd9b3b2a
A361119
a(n) is the least prime factor of A360519(n) with a(1) = 1.
[ "1", "2", "2", "5", "3", "2", "2", "5", "3", "2", "2", "7", "3", "3", "2", "2", "11", "3", "2", "2", "7", "5", "2", "2", "7", "3", "2", "2", "13", "3", "2", "2", "5", "3", "2", "2", "11", "5", "2", "2", "3", "3", "2", "2", "3", "3", "2", "2", "3", "3", "2", "2", "3", "3", "2", "2", "3", "3", "2", "2", "5", "7", "2", "2", "5", "7", "2", "2", "3", "5", "2", "2", "3", "5", "2", "2", "3", "7", "2", "2", "3", "5", "2", "2", "7", "5" ]
[ "nonn" ]
9
1
2
[ "A020639", "A360519", "A361119", "A361120" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 03 2023
2023-03-03T14:03:37
oeisdata/seq/A361/A361119.seq
8c93919fcd07855715194d4a89175a93
A361120
a(n) is the greatest prime factor of A360519(n) with a(1) = 1.
[ "1", "3", "5", "7", "7", "3", "5", "11", "11", "3", "7", "11", "11", "5", "5", "11", "13", "13", "3", "7", "13", "13", "5", "17", "17", "7", "3", "13", "17", "17", "7", "19", "19", "5", "3", "11", "17", "17", "5", "23", "23", "19", "19", "13", "13", "5", "7", "29", "29", "31", "31", "7", "7", "37", "37", "17", "17", "41", "41", "5", "23", "23", "7", "5", "29", "29", "7", "3", "43", "43", "5", "11", "47" ]
[ "nonn", "look" ]
9
1
2
[ "A006530", "A360519", "A361119", "A361120" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 03 2023
2023-03-03T14:02:38
oeisdata/seq/A361/A361120.seq
6066ec8284b141e953c89a34b3f8ca0e
A361121
1 if n-th composite number A002808(n) is even, otherwise 0.
[ "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0" ]
[ "nonn" ]
10
1
null
[ "A002808", "A181923", "A361113", "A361121" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 04 2023
2023-05-04T13:31:13
oeisdata/seq/A361/A361121.seq
7e6403cedca0d7ed259dae1283085f3a
A361122
0 if n-th composite number A002808(n) is divisible by 3, otherwise 1.
[ "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1" ]
[ "nonn" ]
7
1
null
[ "A002808", "A181923", "A361121", "A361122", "A361123" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 04 2023
2023-03-04T16:59:53
oeisdata/seq/A361/A361122.seq
8bf36cf391896bc0e980c1b3e6937177
A361123
1 if n-th composite number A002808(n) is divisible by 3, otherwise 0.
[ "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0" ]
[ "nonn" ]
18
1
null
[ "A002808", "A181923", "A361121", "A361122", "A361123" ]
null
Scott R. Shannon, Rémy Sigrist and N. J. A. Sloane, Mar 04 2023
2024-02-11T11:14:44
oeisdata/seq/A361/A361123.seq
6ab6aeff1c83734d04c4ff12b16f2b88
A361124
Records in A361103.
[ "1", "2", "3", "6", "11", "14", "16", "19", "28", "32", "36", "40", "44", "68", "72", "76", "80", "84", "88", "92", "96", "100", "104", "112", "116", "120", "123", "132", "136", "139", "144", "148", "156", "160", "164", "171", "172", "175", "180", "184", "188", "192", "196", "200", "216", "220", "228", "236", "244", "248", "256", "271", "272", "276", "280", "284", "288", "292", "296" ]
[ "nonn" ]
11
1
2
[ "A360519", "A361103", "A361124", "A361125", "A361126" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 05 2023
2023-03-06T01:46:26
oeisdata/seq/A361/A361124.seq
3c6c8948a7af1e970cd8d9754b1b6733
A361125
Indices of records in A361103.
[ "0", "1", "2", "3", "4", "5", "9", "10", "11", "18", "22", "24", "28", "29", "38", "42", "47", "52", "54", "57", "59", "66", "68", "72", "75", "77", "80", "83", "86", "92", "94", "98", "104", "107", "114", "115", "118", "119", "121", "124", "127", "131", "133", "135", "138", "143", "149", "163", "165", "175", "181", "188", "197", "199", "202", "204", "206", "211", "213", "216", "218", "222" ]
[ "nonn" ]
9
1
3
[ "A360519", "A361103", "A361124", "A361125", "A361126" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 05 2023
2023-03-06T01:50:15
oeisdata/seq/A361/A361125.seq
dffba392d0aeed6287424e2101082fbf
A361126
a(n) = A361102(A361125(n)).
[ "1", "6", "10", "12", "14", "15", "22", "24", "26", "38", "44", "46", "52", "54", "66", "72", "78", "86", "88", "92", "94", "104", "106", "112", "116", "118", "122", "126", "132", "140", "142", "146", "154", "158", "166", "168", "172", "174", "176", "180", "184", "188", "190", "194", "198", "204", "210", "226", "230", "244", "250", "260", "272", "274", "278", "280", "284", "290", "292" ]
[ "nonn" ]
9
1
2
null
null
Scott R. Shannon and N. J. A. Sloane, Mar 05 2023
2023-03-06T02:03:52
oeisdata/seq/A361/A361126.seq
ba90f7649f6be5dfbae5d46935248378
A361127
Let p = n-th odd prime; a(n) = index where 2*p appears in A360519, or -1 if 2*p never appears.
[ "2", "3", "11", "16", "28", "24", "32", "40", "48", "51", "55", "59", "84", "96", "104", "120", "123", "127", "144", "148", "160", "164", "176", "200", "203", "207", "208", "211", "236", "252", "260", "276", "280", "304", "308", "312", "332", "336", "344", "368", "376", "388", "392", "400", "404", "428", "452", "468", "472", "480", "496", "500", "508", "520", "532", "556", "560" ]
[ "nonn" ]
11
1
1
[ "A360103", "A360519", "A361127" ]
null
Scott R. Shannon and N. J. A. Sloane, Mar 08 2023
2023-03-12T07:32:04
oeisdata/seq/A361/A361127.seq
2bddede9f567b0826a217bda98d8e18a
A361128
Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives L(n).
[ "1", "2", "5", "7", "3", "4", "5", "11", "9", "2", "7", "11", "3", "5", "2", "11", "13", "3", "4", "7", "13", "5", "2", "17", "7", "9", "2", "13", "17", "3", "2", "19", "5", "3", "4", "11", "17", "25", "2", "23", "3", "19", "4", "13", "3", "5", "2", "29", "3", "31", "8", "7", "3", "37", "4", "17", "3", "41", "16", "5", "23", "7", "12", "5", "29", "49", "2", "3", "43", "25", "2", "3", "47", "5", "8", "3", "7", "19", "2", "27", "5", "31" ]
[ "nonn" ]
34
2
2
[ "A360519", "A361118", "A361128", "A361129", "A361130" ]
null
Scott R. Shannon, Rémy Sigrist, and N. J. A. Sloane, Mar 09 2023
2023-03-10T07:48:52
oeisdata/seq/A361/A361128.seq
59699e4a0098658729d9b099fbeaa135
A361129
Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives M(n).
[ "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "11", "1", "1", "11", "1", "1", "1", "1", "13", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "5", "17", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1" ]
[ "nonn" ]
17
2
1
[ "A360519", "A361118", "A361128", "A361129", "A361130" ]
null
Scott R. Shannon, Rémy Sigrist, and N. J. A. Sloane, Mar 09 2023
2023-03-09T23:09:42
oeisdata/seq/A361/A361129.seq
3dae5db96b3f5dd635a82a07b42e3943
A361130
Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives R(n).
[ "2", "5", "7", "3", "4", "5", "11", "3", "2", "7", "11", "9", "5", "8", "11", "13", "3", "8", "7", "13", "5", "2", "17", "7", "9", "4", "13", "17", "3", "2", "19", "5", "9", "16", "11", "17", "5", "2", "23", "3", "19", "4", "13", "9", "25", "2", "29", "3", "31", "2", "7", "3", "37", "2", "17", "9", "41", "2", "5", "23", "7", "12", "5", "29", "7", "2", "27", "43", "5", "4", "3", "47", "5", "2", "9", "49", "19", "8", "3", "5", "31", "4", "43", "7" ]
[ "nonn" ]
9
2
1
[ "A360519", "A361118", "A361128", "A361129", "A361130" ]
null
Scott R. Shannon, Rémy Sigrist, and N. J. A. Sloane, Mar 09 2023
2023-03-09T18:32:05
oeisdata/seq/A361/A361130.seq
ec2ce2b7d26470cd7270a852487a5233
A361131
Let d = A096567(n) be the first digit to appear n times in the decimal expansion of Pi; if d is the m-th digit of Pi, a(n) = m.
[ "1", "4", "11", "18", "25", "26", "28", "44", "47", "59", "63", "80", "81", "101", "108", "114", "125", "135", "148", "151", "153", "162", "172", "187", "198", "205", "206", "223", "229", "234", "237", "256", "268", "274", "279", "294", "297", "304", "322", "335", "338", "355", "374", "381", "387", "393", "401", "433", "438", "439", "443", "446", "447", "472", "484", "491", "495" ]
[ "nonn", "base" ]
17
1
2
[ "A000796", "A096567", "A276992", "A361131", "A361434" ]
null
N. J. A. Sloane, Mar 11 2023
2025-03-20T14:42:17
oeisdata/seq/A361/A361131.seq
7a85765719e9123f105f3206de32a7ef
A361132
Multiplicative with a(p^e) = e^4, p prime and e > 0.
[ "1", "1", "1", "16", "1", "1", "1", "81", "16", "1", "1", "16", "1", "1", "1", "256", "1", "16", "1", "16", "1", "1", "1", "81", "16", "1", "81", "16", "1", "1", "1", "625", "1", "1", "1", "256", "1", "1", "1", "81", "1", "1", "1", "16", "16", "1", "1", "256", "16", "16", "1", "16", "1", "81", "1", "81", "1", "1", "1", "16", "1", "1", "16", "1296", "1", "1", "1", "16", "1", "1", "1", "1296", "1", "1", "16", "16" ]
[ "nonn", "mult" ]
22
1
4
[ "A005361", "A082695", "A322328", "A360969", "A360970", "A361132", "A361148", "A361179" ]
null
Vaclav Kotesovec, Mar 02 2023, following a suggestion from Amiram Eldar
2023-03-03T06:45:40
oeisdata/seq/A361/A361132.seq
82c9b5e86dc1336966cbe8ecb98b4873
A361133
a(n) = n for n <= 3. Let h, i, j represent a(n-3), a(n-2), a(n-1) respectively. For n > 3, if there is a symmetric difference in the sets of distinct primes dividing h and j, with greatest member p then a(n) is the least novel multiple of p. Otherwise, a(n) is the least novel k such that (k,i) > 1.
[ "1", "2", "3", "6", "9", "4", "12", "8", "10", "5", "15", "18", "20", "21", "7", "14", "24", "28", "16", "27", "35", "42", "49", "25", "56", "22", "11", "33", "30", "44", "36", "40", "55", "66", "77", "63", "88", "70", "45", "99", "110", "121", "39", "13", "26", "48", "52", "32", "51", "17", "34", "54", "68", "38", "19", "57", "60", "76", "69", "23", "46", "72", "92", "50", "65", "115", "138", "161", "84", "184" ]
[ "nonn", "look" ]
25
1
2
[ "A007947", "A064413", "A336957", "A361133" ]
null
David James Sycamore, Mar 02 2023
2024-11-09T04:39:49
oeisdata/seq/A361/A361133.seq
22ffbdc287110c83de42ddf06dbed080
A361134
a(1) = 1, a(2) = 2; for n >= 3, a(n) = (n-1)^3 - a(n-1) - a(n-2).
[ "1", "2", "5", "20", "39", "66", "111", "166", "235", "328", "437", "566", "725", "906", "1113", "1356", "1627", "1930", "2275", "2654", "3071", "3536", "4041", "4590", "5193", "5842", "6541", "7300", "8111", "8978", "9911", "10902", "11955", "13080", "14269", "15526", "16861", "18266", "19745", "21308", "22947", "24666", "26475", "28366", "30343" ]
[ "nonn", "easy" ]
28
1
2
[ "A000578", "A152728", "A242135", "A361134" ]
null
Tamas Sandor Nagy, Mar 02 2023
2023-03-04T08:59:29
oeisdata/seq/A361/A361134.seq
6f6085fac530b356ff47ec5567668166
A361135
The number of unlabeled connected fairly 4-regular multigraphs of order n, loops allowed.
[ "1", "3", "8", "30", "118", "548", "2790", "16029", "101353", "706572", "5375249", "44402094", "395734706", "3786401086", "38711834576", "421217184135", "4860174299186", "59278045511959", "762055884150141", "10299293881159294", "145994591873294780", "2165938721141964179", "33564939201581495090", "542344644703485899950", "9122110321170144880053" ]
[ "nonn", "hard" ]
33
1
2
[ "A085549", "A352174", "A361135" ]
null
R. J. Mathar, Mar 02 2023
2023-03-21T05:29:16
oeisdata/seq/A361/A361135.seq
bf26ddabe5769c8bfaddafa164da447a
A361136
Numbers appearing on the upper face of a die as a result of its turning over the edge while it rolls along the square spiral of natural numbers.
[ "1", "2", "3", "1", "4", "2", "3", "1", "4", "6", "2", "1", "5", "4", "2", "3", "5", "1", "2", "6", "5", "3", "2", "4", "5", "3", "6", "4", "1", "3", "6", "5", "1", "2", "6", "5", "1", "3", "6", "4", "1", "3", "6", "5", "1", "2", "6", "5", "1", "2", "3", "5", "4", "2", "3", "5", "4", "1", "3", "6", "4", "1", "3", "6", "4", "5", "3", "2", "4", "5", "3", "2", "4", "6", "3", "1", "4", "6", "3", "1", "4", "6", "2", "1", "5", "6", "2", "1", "5", "6", "2", "4", "5", "3", "2", "4" ]
[ "nonn" ]
23
1
2
null
null
Nicolay Avilov, Mar 02 2023
2023-03-05T12:08:08
oeisdata/seq/A361/A361136.seq
fd9f4c3419c2b57a34aa2881f4a80bba
A361137
Number of rooted maps of genus 1/2 with n edges.
[ "1", "10", "98", "983", "10062", "105024", "1112757", "11934910", "129307100", "1412855500", "15548498902", "172168201088", "1916619748084", "21436209373224", "240741065193282", "2713584138389838" ]
[ "nonn", "more" ]
10
1
2
[ "A000168", "A361137" ]
null
R. J. Mathar, Mar 02 2023
2023-03-03T07:58:42
oeisdata/seq/A361/A361137.seq
a2067f65cba2bd95c1db9d6b3e2a87bc
A361138
Number of rooted maps of genus 1 with n edges.
[ "0", "5", "104", "1647", "23560", "320198", "4222792", "54617267", "696972524", "8807574390", "110483092984", "1377998069826", "17108920039328", "211636362018548", "2609949110616064", "32104324480419131" ]
[ "nonn", "more" ]
10
1
2
[ "A000168", "A361138" ]
null
R. J. Mathar, Mar 02 2023
2023-03-03T07:59:17
oeisdata/seq/A361/A361138.seq
21d8aca14d5bbb257884b5dce875b3ce
A361139
Number of rooted bipartite maps of genus 1/2 with n edges.
[ "0", "1", "9", "69", "510", "3738", "27405", "201569", "1488762", "11043318", "82257890", "615092178", "4615882908", "34752865332", "262437282621", "1987229885913" ]
[ "nonn", "more" ]
10
1
3
[ "A000257", "A361139" ]
null
R. J. Mathar, Mar 02 2023
2023-03-03T07:57:10
oeisdata/seq/A361/A361139.seq
bc80fd67efb6bb8507abfd7ad7b91c3c
A361140
Number of rooted bipartite maps of genus 1 with n edges.
[ "0", "0", "4", "63", "720", "7254", "68460", "621315", "5496208", "47759130", "409620156", "3478672642", "29315742924", "245539064736", "2046309441924", "16983591315267" ]
[ "nonn", "more" ]
10
1
3
[ "A000257", "A361140" ]
null
R. J. Mathar, Mar 02 2023
2023-03-03T07:58:04
oeisdata/seq/A361/A361140.seq
a64f2ec48bbd20fffdb21cdde0a37138
A361141
Number of rooted triangulations of genus 1 with 2n edges.
[ "7", "202", "4900", "112046", "2490132", "54442636", "1177912344", "25302706734", "540709469284", "11509659737732", "244254583041960", "5170993925895980", "109258058984867592", "2304778527410416728", "48552885599587471920" ]
[ "nonn", "more" ]
12
1
1
[ "A002005", "A322928", "A361141" ]
null
R. J. Mathar, Mar 02 2023
2023-03-03T07:58:24
oeisdata/seq/A361/A361141.seq
77db1ee0a1fcc3e4da43f948206b2572
A361142
E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x*A(x)) ).
[ "1", "1", "7", "91", "1773", "46401", "1529593", "60911103", "2845757449", "152663425633", "9250206248781", "624880915165959", "46569571425664477", "3795729136868379777", "335902071304953561073", "32074779600414913885231", "3287242849289861637185937", "359917016243351870997841473" ]
[ "nonn" ]
19
0
3
[ "A000262", "A052868", "A052873", "A161630", "A361142", "A361143" ]
null
Seiichi Manyama, Mar 02 2023
2023-03-14T03:41:57
oeisdata/seq/A361/A361142.seq
8d07f75caf09670a5581eb1b3bdd13ab
A361143
E.g.f. satisfies A(x) = exp( x*A(x)^4/(1 - x*A(x)^2) ).
[ "1", "1", "11", "241", "8105", "370061", "21403675", "1500521485", "123685912817", "11724012791929", "1256517775425131", "150254377493878505", "19833528195709809817", "2864566162751107839493", "449364739762263286489403", "76084967168410028438252101", "13829896583435315152843525985" ]
[ "nonn" ]
13
0
3
[ "A000262", "A212722", "A361065", "A361093", "A361142", "A361143" ]
null
Seiichi Manyama, Mar 02 2023
2023-03-14T03:41:54
oeisdata/seq/A361/A361143.seq
9c4151f9ddebd6d262b9a1f2974153f0
A361144
Lexicographically earliest sequence of positive integers such that the sums Sum_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct.
[ "1", "2", "4", "5", "6", "7", "8", "10", "11", "14", "15", "17", "16", "19", "20", "21", "22", "23", "24", "26", "27", "28", "29", "30", "33", "34", "36", "37", "38", "39", "40", "42", "44", "46", "47", "49", "48", "51", "52", "53", "54", "56", "58", "60", "61", "62", "63", "64", "65", "66", "68", "69", "70", "71", "72", "74", "75", "78", "79", "81", "80", "83", "84", "85", "86", "87", "88" ]
[ "nonn" ]
17
1
2
[ "A326936", "A360305", "A361144", "A361146", "A361189", "A361191", "A361227", "A361234" ]
null
Rémy Sigrist, Mar 02 2023
2023-03-07T07:42:28
oeisdata/seq/A361/A361144.seq
80e33069bbf21d421a675b99e9447761
A361145
Number of downwards peaks in row 2*n-1 of the Sierpinski triangle.
[ "1", "3", "2", "7", "2", "6", "4", "15", "2", "6", "4", "14", "4", "12", "8", "31", "2", "6", "4", "14", "4", "12", "8", "30", "4", "12", "8", "28", "8", "24", "16", "63", "2", "6", "4", "14", "4", "12", "8", "30", "4", "12", "8", "28", "8", "24", "16", "62", "4", "12", "8", "28", "8", "24", "16", "60", "8", "24", "16", "56", "16", "48", "32", "127", "2", "6", "4", "14", "4", "12", "8", "30", "4", "12", "8", "28", "8", "24", "16", "62" ]
[ "nonn", "easy", "look" ]
94
1
2
[ "A000120", "A001316", "A047999", "A048881", "A053645", "A209229", "A361145" ]
null
Raphael S. Ner, Jun 12 2023
2025-03-25T08:56:32
oeisdata/seq/A361/A361145.seq
0ac42ecd7c2098028132ff471017ae67
A361146
a(n) is the sibling of n in the infinite binary tree underlying A361144.
[ "2", "1", "9", "5", "4", "7", "6", "10", "3", "8", "14", "31", "18", "11", "17", "19", "15", "13", "16", "21", "20", "23", "22", "26", "32", "24", "28", "27", "30", "29", "12", "25", "34", "33", "41", "37", "36", "39", "38", "42", "35", "40", "133", "46", "50", "44", "49", "51", "47", "45", "48", "53", "52", "56", "59", "54", "76", "60", "55", "58", "62", "61", "64", "63", "66", "65", "73" ]
[ "nonn" ]
11
1
1
[ "A328654", "A361144", "A361146" ]
null
Rémy Sigrist, Mar 02 2023
2023-03-07T07:42:19
oeisdata/seq/A361/A361146.seq
207ca73938890ab1496b001ff303eed1
A361147
a(n) = sigma(n)^3.
[ "1", "27", "64", "343", "216", "1728", "512", "3375", "2197", "5832", "1728", "21952", "2744", "13824", "13824", "29791", "5832", "59319", "8000", "74088", "32768", "46656", "13824", "216000", "29791", "74088", "64000", "175616", "27000", "373248", "32768", "250047", "110592", "157464", "110592", "753571", "54872", "216000", "175616" ]
[ "nonn", "mult" ]
10
1
2
[ "A000005", "A000203", "A000578", "A024916", "A035116", "A072379", "A072861", "A319089", "A361147", "A361179" ]
null
Vaclav Kotesovec, Mar 02 2023
2023-03-10T12:14:23
oeisdata/seq/A361/A361147.seq
e9c0a19e018e39b81900e1387a840778
A361148
a(n) = phi(n)^4.
[ "1", "1", "16", "16", "256", "16", "1296", "256", "1296", "256", "10000", "256", "20736", "1296", "4096", "4096", "65536", "1296", "104976", "4096", "20736", "10000", "234256", "4096", "160000", "20736", "104976", "20736", "614656", "4096", "810000", "65536", "160000", "65536", "331776", "20736", "1679616", "104976", "331776", "65536", "2560000" ]
[ "nonn", "easy", "mult" ]
18
1
3
[ "A000010", "A002088", "A057434", "A059956", "A065464", "A127473", "A358714", "A361132", "A361148", "A361179" ]
null
Vaclav Kotesovec, Mar 02 2023
2023-09-01T04:09:17
oeisdata/seq/A361/A361148.seq
44477c7597f08a173ca550dd4ddd50e0
A361149
Number of chordless cycles in the n-hypercube graph Q_n.
[ "0", "0", "1", "10", "224", "22176", "149137552" ]
[ "nonn", "more" ]
20
0
4
[ "A000937", "A361149" ]
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:04
oeisdata/seq/A361/A361149.seq
e484e7cc7f6f8d30b7a940b82464b3a1
A361150
a(n) = A014284(n^2) + A014284(n^2-1).
[ "1", "17", "137", "611", "1839", "4405", "9101", "16859", "28987", "46663", "71797", "105863", "151259", "209895", "284777", "378661", "493863", "634985", "804801", "1007439", "1245345", "1526369", "1851971", "2227153", "2658287", "3151447", "3711837", "4343483", "5053859", "5849959", "6739255", "7727399", "8825137", "10034745" ]
[ "nonn" ]
23
1
2
[ "A008578", "A014284", "A361150" ]
null
N. J. A. Sloane, Mar 02 2023
2023-08-10T07:16:05
oeisdata/seq/A361/A361150.seq
cffea860be4bdbc3850376be9d1ce699
A361151
a(n) = K(n-1) + K(n) + K(n+1), where K(n) = A341711(floor(n/2)).
[ "2", "7", "11", "29", "43", "97", "137", "283", "389", "749", "1003", "1839", "2421", "4259", "5515", "9391", "12011", "19887", "25143", "40665", "50931", "80679", "100161", "155847", "192051", "294047", "359839", "543127", "660623", "984239", "1190359", "1752799", "2109119", "3072351", "3679263", "5307023", "6327871", "9044395" ]
[ "nonn" ]
13
0
1
[ "A341711", "A361151" ]
null
N. J. A. Sloane, Mar 02 2023
2023-12-01T15:58:00
oeisdata/seq/A361/A361151.seq
530d8b27f6505b142d88fa806b9ad7c2
A361152
a(n) = (A051894(n) - 1)/2.
[ "0", "1", "4", "9", "21", "40", "79", "138", "250", "415", "707", "1126", "1836", "2837", "4466", "6723", "10290", "15167", "22672", "32805", "48071", "68470", "98610", "138491", "196474", "272559", "381540", "523417", "724042", "983415", "1345848", "1811341", "2454994", "3276807", "4402076", "5830801", "7769950", "10219523", "13516934" ]
[ "nonn" ]
9
0
3
[ "A051894", "A361152" ]
null
N. J. A. Sloane, Mar 02 2023
2023-03-03T09:33:04
oeisdata/seq/A361/A361152.seq
ea1c53315a7d701dbcd11c8d64721356
A361153
a(0)=0, a(1)=1; thereafter a(n) = (n-1)*a(n-1)! + (n-2)*a(n-2)!.
[ "0", "1", "1", "3", "20", "9731608032706560018" ]
[ "nonn" ]
3
0
4
[ "A000045", "A005604", "A114045", "A361153" ]
null
N. J. A. Sloane, Mar 03 2023, following a suggestion from Akshat Kadia, Feb 2023
2023-03-03T23:35:11
oeisdata/seq/A361/A361153.seq
bb119d72a29e36266b9f1ea1e600b954
A361154
Consider the square grid with cells {(x,y), x, y >= 0}; label the cells by downwards antidiagonals with nonnegative integers so that cells which are a knight's move apart have different labels; always choose smallest possible label.
[ "0", "0", "0", "1", "0", "1", "1", "2", "2", "1", "0", "1", "2", "1", "0", "0", "0", "2", "2", "0", "0", "1", "0", "3", "1", "3", "0", "1", "1", "1", "2", "4", "4", "2", "1", "1", "0", "1", "2", "3", "0", "3", "2", "1", "0", "0", "0", "2", "2", "0", "0", "2", "2", "0", "0", "1", "0", "3", "3", "1", "0", "1", "3", "3", "0", "1", "1", "1", "2", "3", "1", "2", "2", "1", "3", "2", "1", "1", "0", "1", "2", "3", "0", "1", "2", "1", "0", "3", "2", "1", "0" ]
[ "nonn", "tabl" ]
37
0
8
[ "A060510", "A308884", "A361154" ]
null
N. J. A. Sloane, Mar 07 2023, based on an email from Jodi Spitz, Mar 07 2023
2023-03-09T13:52:14
oeisdata/seq/A361/A361154.seq
dac65be8869ff1bf24e765f354df3e80
A361155
Discriminants of gothic Teichmuller curves.
[ "12", "24", "28", "33", "40", "48", "52", "57", "60", "72", "73", "76", "84", "88", "96", "97" ]
[ "nonn", "more" ]
4
1
1
[ "A361155", "A361156" ]
null
N. J. A. Sloane, Mar 13 2023
2023-03-13T23:19:19
oeisdata/seq/A361/A361155.seq
41d72b9875313db3f6fdd44cca8e7d53
A361156
Number of ideals of norm 6 in the order O_D associated with the Teichmuller curve of discriminant D = A361155(n).
[ "1", "1", "2", "2", "2", "1", "2", "2", "1", "1", "4", "2", "1", "2", "1", "4" ]
[ "nonn", "more" ]
4
1
3
[ "A361155", "A361156" ]
null
N. J. A. Sloane, Mar 13 2023
2023-03-13T23:20:12
oeisdata/seq/A361/A361156.seq
50c95227bd3af29e497ef30ec9acb010
A361157
Genus of Weierstrass curve with discriminant A079896(n) in moduli space M_2 of compact Riemann surfaces of genus 2.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "2", "3", "1", "3" ]
[ "nonn", "more" ]
12
1
20
[ "A079896", "A361157", "A361158", "A361159" ]
null
N. J. A. Sloane, Mar 14 2023
2024-06-20T06:40:52
oeisdata/seq/A361/A361157.seq
fe8bb0982441bb578c6256ede2f5576e
A361158
Number of elliptic points of order 2 in Weierstrass curve with discriminant A079896(n) in moduli space M_2 of compact Riemann surfaces of genus 2.
[ "1", "0", "1", "1", "1", "0", "2", "1", "2", "3", "2", "1", "1", "1", "2", "3", "2", "2", "0", "3", "2", "1", "4" ]
[ "nonn", "more" ]
10
1
7
[ "A079896", "A361157", "A361158", "A361159" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T14:20:08
oeisdata/seq/A361/A361158.seq
0ba97200a5d6789eaee8a93a32be0dcd
A361159
Number of cusps in Weierstrass curve with discriminant A079896(n) in moduli space M_2 of compact Riemann surfaces of genus 2.
[ "1", "2", "3", "3", "3", "5", "4", "6", "7", "5", "7", "6", "9", "12", "7", "9", "8", "11", "15", "7", "10", "10", "12" ]
[ "nonn", "more" ]
8
1
2
[ "A079896", "A361157", "A361158", "A361159" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T14:20:47
oeisdata/seq/A361/A361159.seq
608cb94b157dad3d72a69644c9552fb6
A361160
Discriminants of Weierstrass curves in moduli space M_3 of compact Riemann surfaces of genus 3.
[ "8", "12", "17", "20", "24", "28", "32", "33", "40", "41", "44", "48", "52", "56", "57", "60" ]
[ "nonn", "more" ]
4
1
1
[ "A361160", "A361161", "A361164" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T12:47:28
oeisdata/seq/A361/A361160.seq
a77b92b1825baf5ed7a9e5ddd3422c90
A361161
Genus of Weierstrass curve with discriminant A361160(n) in moduli space M_3 of compact Riemann surfaces of genus 3.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "2" ]
[ "nonn", "more" ]
11
1
16
[ "A361160", "A361161", "A361162", "A361164" ]
null
N. J. A. Sloane, Mar 14 2023
2024-06-20T06:40:38
oeisdata/seq/A361/A361161.seq
1ab95dd9e85fae4bbfadd517f725eb2e
A361162
Number of elliptic points of order 2 in Weierstrass curve with discriminant A361160(n) in moduli space M_3 of compact Riemann surfaces of genus 3.
[ "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1", "2", "0", "0" ]
[ "nonn", "more" ]
12
1
14
[ "A361160", "A361161", "A361162", "A361163", "A361164" ]
null
N. J. A. Sloane, Mar 14 2023
2024-06-20T06:40:28
oeisdata/seq/A361/A361162.seq
3947371ad7e4d0d26861ece333c266bc
A361163
Number of elliptic points of order 3 in Weierstrass curve with discriminant A361160(n) in moduli space M_3 of compact Riemann surfaces of genus 3.
[ "1", "0", "1", "0", "0", "2", "0", "0", "2", "1", "2", "0", "0", "2", "1", "0" ]
[ "nonn", "more" ]
11
1
6
[ "A361160", "A361161", "A361162", "A361163", "A361164" ]
null
N. J. A. Sloane, Mar 14 2023
2024-06-20T06:40:19
oeisdata/seq/A361/A361163.seq
204f7fedc57e9cd19328212b35dd801b
A361164
Number of cusps in Weierstrass curve with discriminant A361160(n) in moduli space M_3 of compact Riemann surfaces of genus 3.
[ "1", "2", "3", "4", "4", "4", "7", "7", "6", "8", "6", "10", "12", "6", "11", "8" ]
[ "nonn", "more" ]
11
1
2
[ "A361160", "A361161", "A361162", "A361163", "A361164" ]
null
N. J. A. Sloane, Mar 14 2023
2024-06-20T06:40:03
oeisdata/seq/A361/A361164.seq
5fa9c61f1e660932c6188b5dab1d81c1
A361165
Genus of Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4.
[ "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "2", "1", "2", "3", "3", "4", "4", "4", "4", "6", "7", "8" ]
[ "nonn", "more" ]
14
1
12
[ "A079896", "A361165", "A361166", "A361168" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T14:36:50
oeisdata/seq/A361/A361165.seq
b8ff3df60a3d12d00e7e9715edfc5348
A361166
Number of elliptic points of order 2 in Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4.
[ "0", "1", "1", "0", "0", "2", "0", "2", "2", "0", "2", "0", "0", "2", "0", "4", "0", "2", "2", "0", "4", "0", "4" ]
[ "nonn", "more" ]
8
1
6
[ "A079896", "A361165", "A361166", "A361167", "A361168" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T14:43:23
oeisdata/seq/A361/A361166.seq
9276fa23df54acd9eb70fe6bcbd2f51c
A361167
Number of elliptic points of order 3 in Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4.
[ "1", "1", "0", "2", "1", "1", "1", "0", "2", "3", "2", "0", "4", "2", "1", "2", "0", "1", "2", "5", "2", "1", "0" ]
[ "nonn", "more" ]
7
1
4
[ "A079896", "A361165", "A361166", "A361167", "A361168" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T14:46:02
oeisdata/seq/A361/A361167.seq
c547b1b49ca168772be2852067b0949b
A361168
Number of cusps in Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4.
[ "1", "2", "3", "3", "6", "5", "4", "6", "7", "5", "7", "12", "9", "12", "14", "9", "8", "11", "15", "7", "10", "20", "12" ]
[ "nonn", "more" ]
5
1
2
[ "A079896", "A361165", "A361166", "A361167", "A361168" ]
null
N. J. A. Sloane, Mar 14 2023
2023-03-14T14:49:10
oeisdata/seq/A361/A361168.seq
55f158a912017ac3e3156ac36720019d
A361169
Discriminants D of Prym-Teichmuller curves W_D(4) in genus 3.
[ "17", "20", "24", "28", "32", "33", "40", "41", "44", "48", "52", "56", "57", "60", "65", "68", "72", "73", "76", "80", "84", "88", "89", "92", "96", "97", "104", "105", "108", "112", "113", "116", "120", "124", "128", "129", "132", "136", "137", "140", "145", "148", "152", "153", "156", "160", "161", "164", "168", "172", "176", "177", "180", "184", "185", "188", "192", "193", "200", "201", "204", "208", "209", "212", "216", "217", "220", "224", "228", "232", "233" ]
[ "nonn" ]
6
1
1
null
null
N. J. A. Sloane, Mar 14 2023
2024-08-05T05:58:30
oeisdata/seq/A361/A361169.seq
4fa8a4109873e1c6afe6c2a199bf645c
A361170
The leading column of the table of primes in the top row and subsequent rows defined by the GPF of Pascal-alike sums of previous rows.
[ "2", "5", "7", "3", "5", "5", "3", "2", "3", "3", "2", "7", "3", "2", "7", "3", "5", "2", "7", "3", "5", "3", "5", "5", "3", "2", "7", "7", "7", "5", "7", "5", "2", "7", "7", "3", "5", "7", "3", "2", "2", "2", "2", "7", "3", "5", "3", "3", "2", "3", "2", "2", "3", "2", "7", "3", "2", "7", "7", "5", "5", "7", "3", "2", "3", "3", "2", "5", "2", "7", "7", "3", "5", "3", "2", "2", "2", "2", "5", "2", "2", "3", "3", "2", "2", "2", "2", "5", "5", "2", "2", "3", "2", "2" ]
[ "nonn" ]
37
1
1
[ "A006530", "A071216", "A361170" ]
null
R. J. Mathar, May 10 2023
2023-05-11T01:44:58
oeisdata/seq/A361/A361170.seq
a96da870f323bc1fe8b554a5a538b2fe
A361171
Number of chordless cycles in the n X n king graph.
[ "0", "0", "1", "13", "197", "4729", "156806", "7035482", "505265569", "82612843683", "33651820752580", "23922790371389972", "25614853328191562332", "43322613720440154974138", "128405885225433787867253690", "738840753928503040569961869076", "8481241718402438554921627740308746", "179685856472407342498054958799766397100" ]
[ "nonn" ]
18
1
4
[ "A140519", "A234622", "A297664", "A357501", "A361171" ]
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:04
oeisdata/seq/A361/A361171.seq
0415b5af64677dfd1a9e8cdb91694c9e
A361172
a(n) is the smallest positive number not among the terms between a(n-1) and the previous most recent occurrence of a(n-1) inclusive; if a(n-1) is a first occurrence, set a(n)=1; a(1)=1.
[ "1", "1", "2", "1", "3", "1", "2", "4", "1", "3", "5", "1", "2", "6", "1", "3", "4", "7", "1", "2", "5", "8", "1", "3", "6", "9", "1", "2", "4", "10", "1", "3", "5", "7", "11", "1", "2", "6", "8", "12", "1", "3", "4", "9", "13", "1", "2", "5", "10", "14", "1", "3", "6", "7", "15", "1", "2", "4", "8", "11", "16", "1", "3", "5", "9", "12", "17", "1", "2", "6", "10", "13", "18", "1", "3", "4", "7", "14", "19", "1", "2", "5", "8", "15", "20", "1" ]
[ "nonn" ]
29
1
3
[ "A060432", "A358921", "A361101", "A361172" ]
null
Neal Gersh Tolunsky, Mar 02 2023
2023-03-06T20:13:04
oeisdata/seq/A361/A361172.seq
fb0b6cbf00ac88503747b465fd39e84a
A361173
Numbers k such that, in base 4, the greatest prime less than 4^k and the least prime greater than 4^k have no common digit.
[ "1", "4", "28", "83", "1816" ]
[ "nonn", "base", "more" ]
43
1
2
[ "A068802", "A104082", "A104089", "A156981", "A361173" ]
null
Lewis Baxter, Mar 02 2023
2023-05-19T04:18:49
oeisdata/seq/A361/A361173.seq
438a16bc6589d4907f04c48f869a909b
A361174
The sum of the exponential squarefree exponential divisors (or e-squarefree e-divisors) of n.
[ "1", "2", "3", "6", "5", "6", "7", "10", "12", "10", "11", "18", "13", "14", "15", "6", "17", "24", "19", "30", "21", "22", "23", "30", "30", "26", "30", "42", "29", "30", "31", "34", "33", "34", "35", "72", "37", "38", "39", "50", "41", "42", "43", "66", "60", "46", "47", "18", "56", "60", "51", "78", "53", "60", "55", "70", "57", "58", "59", "90", "61", "62", "84", "78", "65", "66", "67", "102" ]
[ "nonn", "mult" ]
18
1
2
[ "A051377", "A278908", "A322857", "A323309", "A361174", "A361175" ]
null
Amiram Eldar, Mar 03 2023
2024-02-13T02:20:28
oeisdata/seq/A361/A361174.seq
67dc509bbb4bc960fb3bb39603a466b2
A361175
The sum of the exponential infinitary divisors of n.
[ "1", "2", "3", "6", "5", "6", "7", "10", "12", "10", "11", "18", "13", "14", "15", "18", "17", "24", "19", "30", "21", "22", "23", "30", "30", "26", "30", "42", "29", "30", "31", "34", "33", "34", "35", "72", "37", "38", "39", "50", "41", "42", "43", "66", "60", "46", "47", "54", "56", "60", "51", "78", "53", "60", "55", "70", "57", "58", "59", "90", "61", "62", "84", "78", "65", "66", "67" ]
[ "nonn", "mult" ]
15
1
2
[ "A051377", "A077609", "A307848", "A322857", "A323309", "A361174", "A361175" ]
null
Amiram Eldar, Mar 03 2023
2023-03-11T06:22:20
oeisdata/seq/A361/A361175.seq
8cd19d4dc8675221a5eef7657a2be528
A361176
Numbers that are not exponentially cubefree: numbers with at least one noncubefree exponent in their canonical prime factorization.
[ "256", "768", "1280", "1792", "2304", "2816", "3328", "3840", "4352", "4864", "5376", "5888", "6400", "6561", "6912", "7424", "7936", "8448", "8960", "9472", "9984", "10496", "11008", "11520", "12032", "12544", "13056", "13122", "13568", "14080", "14592", "15104", "15616", "16128", "16640", "17152", "17664", "18176", "18688", "19200", "19712" ]
[ "nonn" ]
10
1
1
[ "A004709", "A046099", "A130897", "A209061", "A262276", "A361176" ]
null
Amiram Eldar, Mar 03 2023
2023-03-04T08:56:28
oeisdata/seq/A361/A361176.seq
ec15b4d3b77efb205767b43b3cecf196
A361177
Exponentially powerful numbers: numbers whose exponents in their canonical prime factorization are all powerful numbers (A001694).
[ "1", "2", "3", "5", "6", "7", "10", "11", "13", "14", "15", "16", "17", "19", "21", "22", "23", "26", "29", "30", "31", "33", "34", "35", "37", "38", "39", "41", "42", "43", "46", "47", "48", "51", "53", "55", "57", "58", "59", "61", "62", "65", "66", "67", "69", "70", "71", "73", "74", "77", "78", "79", "80", "81", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "101", "102" ]
[ "nonn" ]
10
1
2
[ "A001694", "A138302", "A197680", "A209061", "A268335", "A361177" ]
null
Amiram Eldar, Mar 03 2023
2023-03-04T08:56:24
oeisdata/seq/A361/A361177.seq
c71afced8ff6720db8d88f369f264474
A361178
a(1) = 1, a(2) = 2; for n >= 3, a(n) is the greatest k where a(n-1) + a(n-2) + ... + a(n-k) is prime, or a(n) = -1 if no such k exists.
[ "1", "2", "2", "3", "3", "5", "4", "6", "6", "8", "8", "10", "9", "13", "13", "8", "16", "13", "16", "6", "19", "17", "5", "23", "21", "21", "25", "27", "26", "26", "28", "30", "31", "29", "33", "27", "20", "35", "34", "33", "39", "41", "40", "16", "43", "38", "40", "47", "25", "49", "49", "44", "46", "49", "51", "55", "39", "57", "57", "59", "58", "59", "62", "57", "61", "58", "66", "61", "67" ]
[ "sign" ]
25
1
2
[ "A000040", "A361178", "A361199", "A361231" ]
null
Tamas Sandor Nagy, Mar 03 2023
2023-03-10T02:26:32
oeisdata/seq/A361/A361178.seq
65b3261788c34b58cfef84791a43100e
A361179
a(n) = sigma(n)^4.
[ "1", "81", "256", "2401", "1296", "20736", "4096", "50625", "28561", "104976", "20736", "614656", "38416", "331776", "331776", "923521", "104976", "2313441", "160000", "3111696", "1048576", "1679616", "331776", "12960000", "923521", "3111696", "2560000", "9834496", "810000", "26873856", "1048576", "15752961", "5308416" ]
[ "nonn", "mult" ]
7
1
2
[ "A000203", "A072861", "A361132", "A361147", "A361148", "A361179" ]
null
Vaclav Kotesovec, Mar 03 2023
2023-03-03T06:27:46
oeisdata/seq/A361/A361179.seq
1edbd9a80b01bd42314c727b9521ab79
A361180
Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1.
[ "3", "5", "17", "97", "193", "257", "641", "769", "12289", "18433", "40961", "65537", "114689", "147457", "163841", "786433", "1179649", "5767169", "7340033", "13631489", "23068673", "167772161", "469762049", "2013265921", "2281701377", "3221225473", "3489660929", "12348030977", "77309411329", "206158430209", "2061584302081", "2748779069441" ]
[ "nonn" ]
40
1
1
[ "A000040", "A000265", "A007814", "A023506", "A057023", "A361180" ]
null
Lorenzo Sauras Altuzarra, Mar 03 2023
2023-03-27T10:44:54
oeisdata/seq/A361/A361180.seq
41ba2902f60f3ad55817951acbc3cc46
A361181
Numbers such that both sum and product of the prime factors (without multiplicity) are palindromic.
[ "2", "3", "4", "5", "6", "7", "8", "9", "11", "12", "16", "18", "24", "25", "27", "32", "36", "48", "49", "54", "64", "72", "81", "96", "101", "108", "121", "125", "128", "131", "144", "151", "162", "181", "191", "192", "216", "243", "256", "288", "313", "324", "343", "353", "373", "383", "384", "432", "486", "512", "576", "625", "648", "717", "727", "729", "757", "768", "787", "797", "864", "919", "929", "972", "989" ]
[ "nonn", "base" ]
40
1
1
[ "A002113", "A007947", "A008472", "A361181" ]
null
Alexandru Petrescu, Mar 06 2023
2023-03-06T10:19:16
oeisdata/seq/A361/A361181.seq
a96eb84400147b86ac66142e10c274a7
A361182
E.g.f. satisfies A(x) = exp( 3*x*A(x) ) / (1-x).
[ "1", "4", "41", "735", "19293", "672573", "29342241", "1540097541", "94579646553", "6656561754345", "528414534842949", "46716837535074897", "4552821617337191637", "484953672676323320109", "56056228305888242732841", "6988787950179969557086797", "934866118278080385555647025" ]
[ "nonn" ]
20
0
2
[ "A352410", "A352448", "A361066", "A361182" ]
null
Seiichi Manyama, Mar 03 2023
2025-02-16T08:34:04
oeisdata/seq/A361/A361182.seq
e7271ad4b935fce80ca70170dfbbda29
A361183
Number of chordless cycles in the n-Mycielski graph.
[ "0", "0", "1", "46", "1152", "35698", "5567415" ]
[ "nonn", "more" ]
8
1
4
null
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361183.seq
5fd683792962afd849c086f2a577a463
A361184
Number of chordless cycles in the n X n queen graph.
[ "0", "0", "12", "228", "2120", "21004", "241186", "3375074", "56315906" ]
[ "nonn", "more" ]
9
1
3
null
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361184.seq
cb3643def60d0901cd8dec8fa8a30af4
A361185
Number of chordless cycles in the n X n rook complement graph.
[ "0", "0", "15", "264", "1700", "6900", "21315", "54880", "123984", "253800", "480975", "856680", "1450020", "2351804", "3678675", "5577600", "8230720", "11860560", "16735599", "23176200", "31560900", "42333060", "56007875", "73179744", "94530000", "120835000", "152974575", "191940840", "238847364", "294938700" ]
[ "nonn" ]
13
1
3
[ "A070968", "A360854", "A361185" ]
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361185.seq
30f18d1a24210f03cb16fde591afda76
A361186
Number of chordless cycles in the halved cube graph Q_n/2.
[ "0", "0", "0", "6", "252", "14904", "9021648", "1059526463616" ]
[ "nonn", "more" ]
18
1
4
[ "A358356", "A361149", "A361186", "A361187" ]
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361186.seq
a956d6611cd1e2b74f651d279e93bffe
A361187
Number of chordless cycles in the n-folded cube graph.
[ "0", "0", "36", "312", "20264", "136507408" ]
[ "nonn", "more" ]
18
2
3
[ "A358358", "A361149", "A361186", "A361187" ]
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361187.seq
65a24045e420dd6801b1d7effc308006
A361188
Number of odd chordless cycles in the complement of the n X n queen graph.
[ "0", "0", "0", "48", "696", "4424", "16296", "46096", "106072", "219840", "410384", "717048", "1180992", "1862352", "2818944", "4141160", "5909616", "8242416", "11250560", "15086744", "19892296", "25863248", "33172832", "42059520", "52742984", "65508072", "80612544", "98400416" ]
[ "nonn", "more" ]
13
1
4
null
null
Eric W. Weisstein, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361188.seq
a49196221dd310fb2c44ec74eb69f688
A361189
Infinite sequence of nonzero integers build the greedy way such that the sums Sum_{i = k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct; each term is minimal in absolute value and in case of a tie, preference is given to the positive value.
[ "1", "2", "-1", "-4", "-3", "-6", "4", "-11", "5", "6", "7", "8", "-8", "-12", "9", "21", "-10", "-13", "12", "25", "13", "16", "-14", "31", "-15", "-17", "19", "33", "-19", "-21", "22", "41", "-22", "-24", "24", "49", "-25", "-26", "-27", "-28", "28", "34", "-29", "61", "-30", "-31", "-33", "-34", "35", "39", "-35", "75", "-36", "-37", "38", "77", "-38", "-39", "-41", "-42" ]
[ "sign" ]
14
1
2
[ "A361144", "A361189" ]
null
Rémy Sigrist, Mar 03 2023
2024-12-22T14:27:47
oeisdata/seq/A361/A361189.seq
816bf90148487709cbe3dce5cf8597b7
A361190
Number of 4n-step lattice paths starting and ending at (0,0) that do not go above the diagonal x=y or below the x-axis using steps in {(1,1), (1,-1), (-1,0)}.
[ "1", "1", "9", "153", "3579", "101630", "3288871", "116951012", "4465824585", "180310624841", "7614208325878", "333613510494834", "15075162152856423", "699290488810583617", "33176816563410874752", "1605135467691243954419", "79003021319962788395355", "3947913343912428255683930" ]
[ "nonn", "walk" ]
102
0
3
[ "A001006", "A005789", "A026945", "A151332", "A217823", "A359647", "A361190" ]
null
Alois P. Heinz, Jul 31 2023
2023-08-04T10:13:35
oeisdata/seq/A361/A361190.seq
1b10fdd575df48665fecb7c7ad45bbfe
A361191
Lexicographically earliest sequence of positive integers such that the sums SumXOR_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct (where SumXOR is the analog of summation under the binary XOR operation).
[ "1", "2", "4", "8", "5", "11", "6", "16", "7", "10", "9", "21", "18", "32", "19", "64", "20", "33", "25", "49", "26", "34", "27", "65", "30", "35", "31", "66", "36", "71", "37", "105", "38", "67", "39", "108", "41", "68", "42", "128", "43", "69", "44", "116", "45", "70", "51", "176", "52", "72", "57", "129", "58", "73", "59", "118", "60", "78", "63", "130", "74", "132", "80", "256", "81" ]
[ "nonn", "base" ]
9
1
2
[ "A361144", "A361191" ]
null
Rémy Sigrist, Mar 03 2023
2023-03-13T07:21:19
oeisdata/seq/A361/A361191.seq
2e52c835a1a21998b5b48e8024f837cd
A361192
Number of intersections of a grid and (growing) circle with center at a lattice point.
[ "1", "4", "12", "8", "12", "20", "12", "20", "16", "20", "28", "20", "28", "20", "28", "36", "28", "36", "32", "36", "28", "36", "28", "44", "36", "44", "36", "44", "40", "44", "36", "44", "52", "44", "52", "44", "52", "44", "52", "44", "52", "60", "48", "60", "52", "60", "52", "60", "52", "60", "52", "60", "68", "52", "68", "60", "68", "64", "68", "60", "68", "60", "68", "60", "68", "76", "68", "76", "60", "76", "68", "76", "68" ]
[ "nonn" ]
27
1
2
[ "A000404", "A001481", "A017113", "A063725", "A242118", "A361192" ]
null
Volodymyr Dykun, Mar 03 2023
2023-10-16T07:41:44
oeisdata/seq/A361/A361192.seq
b38e073085bbd7a8d9a8ba674fb60117
A361193
E.g.f. satisfies A(x) = exp( -2*x*A(x) ) / (1-x).
[ "1", "-1", "6", "-50", "648", "-10952", "232336", "-5919664", "176435328", "-6024464000", "231972167424", "-9946181374208", "470038191434752", "-24276240445152256", "1360508977539004416", "-82233680186863536128", "5332689963474238341120", "-369321737420738845638656" ]
[ "sign" ]
15
0
3
[ "A352410", "A352448", "A361068", "A361182", "A361193", "A361194" ]
null
Seiichi Manyama, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361193.seq
137a268cc14309c96e84e85a3309a9d5
A361194
E.g.f. satisfies A(x) = exp( -3*x*A(x) ) / (1-x).
[ "1", "-2", "17", "-237", "4893", "-133683", "4567905", "-187666587", "9017657433", "-496470972951", "30824023641669", "-2131090659947439", "162397790115179733", "-13525005928296072915", "1222285110682680848169", "-119135392516302191619507", "12458374493322416970025521" ]
[ "sign" ]
15
0
2
[ "A352410", "A352448", "A361069", "A361182", "A361193", "A361194" ]
null
Seiichi Manyama, Mar 03 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361194.seq
ae1d9785ccdeb50ffb86c2336a34243e
A361195
Numerator of the discriminant of the n-th Legendre polynomial.
[ "1", "3", "135", "23625", "260465625", "11371668721875", "7888446990683634375", "21776965089186101310140625", "15330043202319289712414934678515625", "43033523436556282747812223470803609794921875", "1927983533652930855481078826533672813447199742802734375" ]
[ "nonn", "frac" ]
8
1
2
[ "A361195", "A361196" ]
null
Michel Marcus, Mar 04 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361195.seq
3b0809fe3c34333e2e95e257f96c0a5a
A361196
Denominator of the discriminant of the n-th Legendre polynomial.
[ "1", "1", "4", "16", "1024", "65536", "16777216", "4294967296", "70368744177664", "1152921504606846976", "75557863725914323419136", "4951760157141521099596496896", "5192296858534827628530496329220096", "5444517870735015415413993718908291383296", "22835963083295358096932575511191922182123945984" ]
[ "nonn", "frac" ]
7
1
3
[ "A361195", "A361196" ]
null
Michel Marcus, Mar 04 2023
2025-02-16T08:34:05
oeisdata/seq/A361/A361196.seq
886a631b0bd5e8d9adef2d222e961218
A361197
a(n) is the number of equations in the set {x^2 + 2y^2 = n, 2x^2 + 3y^2 = n, ..., k*x^2 + (k+1)*y^2 = n, ..., n*x^2 + (n+1)*y^2 = n} which admit at least one nonnegative integer solution.
[ "1", "2", "3", "3", "3", "3", "3", "4", "4", "2", "5", "5", "3", "3", "3", "5", "4", "4", "5", "5", "5", "3", "3", "6", "4", "3", "6", "5", "5", "3", "5", "6", "4", "4", "4", "8", "3", "3", "5", "4", "6", "2", "5", "8", "6", "3", "3", "7", "6", "4", "6", "6", "4", "6", "3", "7", "4", "2", "7", "5", "6", "3", "6", "8", "3", "5", "5", "6", "7", "2", "5", "8", "4", "4", "6", "8", "4", "2", "6", "7", "8", "4", "5", "9", "3", "5", "4", "5", "6", "4", "6", "5", "4", "3", "4", "9" ]
[ "nonn" ]
16
1
2
[ "A356770", "A361197" ]
null
Luca Onnis, Mar 04 2023
2023-03-04T15:25:29
oeisdata/seq/A361/A361197.seq
bca5c82b45761c28ef3116ae957772d5
A361198
Consider a perfect infinite binary tree with nodes labeled with distinct positive integers where n appears at level A082850(n) and each level is filled from left to right; a(n) is the sibling of n in this tree.
[ "2", "1", "6", "5", "4", "3", "14", "9", "8", "13", "12", "11", "10", "7", "30", "17", "16", "21", "20", "19", "18", "29", "24", "23", "28", "27", "26", "25", "22", "15", "62", "33", "32", "37", "36", "35", "34", "45", "40", "39", "44", "43", "42", "41", "38", "61", "48", "47", "52", "51", "50", "49", "60", "55", "54", "59", "58", "57", "56", "53", "46", "31", "126", "65", "64", "69", "68" ]
[ "nonn" ]
19
1
1
[ "A082850", "A101925", "A126646", "A308187", "A361198" ]
null
Rémy Sigrist, Mar 04 2023
2025-03-03T09:32:55
oeisdata/seq/A361/A361198.seq
6cf2f3cd69ee1c2a07f8334dd5a8afee
A361199
a(1) = 1, a(2) = 2; for n >=3, a(n) is the number of primes in a(n-1), a(n-1) + a(n-2), ..., a(n-1) + a(n-2) + ... + a(1).
[ "1", "2", "2", "2", "2", "1", "3", "2", "2", "3", "7", "2", "3", "7", "3", "5", "3", "7", "3", "7", "4", "4", "1", "10", "9", "2", "5", "7", "6", "4", "4", "5", "11", "8", "6", "2", "4", "7", "15", "6", "5", "10", "12", "9", "7", "11", "7", "14", "9", "8", "7", "16", "11", "9", "11", "10", "8", "7", "11", "13", "13", "9", "15", "9", "13", "14", "7", "15", "9", "12", "14", "15", "5", "13", "12", "6", "12", "9", "15" ]
[ "nonn" ]
42
1
2
[ "A000040", "A361178", "A361199", "A361231" ]
null
Tamas Sandor Nagy, Mar 04 2023
2023-03-22T12:51:15
oeisdata/seq/A361/A361199.seq
c2675a742ade8fa8745ee52024b70c95
A361200
Product of the left half (exclusive) of the multiset of prime factors of n; a(1) = 0.
[ "0", "1", "1", "2", "1", "2", "1", "2", "3", "2", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "2", "1", "4", "5", "2", "3", "2", "1", "2", "1", "4", "3", "2", "5", "4", "1", "2", "3", "4", "1", "2", "1", "2", "3", "2", "1", "4", "7", "2", "3", "2", "1", "6", "5", "4", "3", "2", "1", "4", "1", "2", "3", "8", "5", "2", "1", "2", "3", "2", "1", "4", "1", "2", "3", "2", "7", "2", "1", "4", "9", "2", "1", "4", "5", "2", "3" ]
[ "nonn" ]
16
1
4
[ "A000005", "A000040", "A001221", "A001222", "A001248", "A006530", "A026424", "A027746", "A037143", "A056239", "A096825", "A112798", "A347043", "A347044", "A347045", "A347046", "A360005", "A360616", "A360617", "A360671", "A360672", "A360673", "A360675", "A360676", "A360677", "A360678", "A360679", "A361200", "A361201" ]
null
Gus Wiseman, Mar 10 2023
2024-11-02T09:13:36
oeisdata/seq/A361/A361200.seq
c3719ce30bbdcacf15736cce38e4f896