sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A361801
Number of nonempty subsets of {1..n} with median n/2.
[ "0", "0", "1", "1", "4", "4", "14", "14", "49", "49", "175", "175", "637", "637", "2353", "2353", "8788", "8788", "33098", "33098", "125476", "125476", "478192", "478192", "1830270", "1830270", "7030570", "7030570", "27088870", "27088870", "104647630", "104647630", "405187825", "405187825", "1571990935", "1571990935" ]
[ "nonn", "easy" ]
11
0
5
[ "A000975", "A006134", "A007318", "A013580", "A024718", "A057552", "A079309", "A100066", "A231147", "A325347", "A327475", "A327481", "A359893", "A360005", "A361654", "A361801", "A361849", "A361864", "A361866", "A361911", "A362046" ]
null
Gus Wiseman, Apr 07 2023
2023-04-11T08:39:39
oeisdata/seq/A361/A361801.seq
c45d632e208e28da71165aa2ceb00388
A361802
Irregular triangle read by rows where T(n,k) is the number of k-subsets of {-n+1,...,n} with sum 0, for k = 1,...,2n-1.
[ "1", "1", "1", "1", "1", "2", "3", "2", "1", "1", "3", "6", "7", "5", "2", "1", "1", "4", "10", "16", "18", "14", "8", "3", "1", "1", "5", "15", "31", "46", "51", "43", "27", "12", "3", "1", "1", "6", "21", "53", "98", "139", "155", "134", "88", "43", "16", "4", "1", "1", "7", "28", "83", "184", "319", "441", "486", "424", "293", "161", "68", "21", "4", "1" ]
[ "nonn", "tabf" ]
11
1
6
[ "A000975", "A005408", "A006134", "A007318", "A013580", "A024718", "A067538", "A079309", "A212352", "A231147", "A326512", "A327475", "A327481", "A349156", "A361654", "A361802", "A362046" ]
null
Gus Wiseman, Apr 10 2023
2023-04-11T22:40:54
oeisdata/seq/A361/A361802.seq
2fff00018b875046d442f8bc677ea635
A361803
Least k > 1 such that k^n - n > 1 is semiprime, or 0 if no such k exists.
[ "5", "4", "5", "3", "6", "2", "2", "5", "8", "3", "4", "11", "15", "5", "2", "0", "4", "2", "14", "7", "48", "42", "6", "35", "2", "7", "602", "3", "16", "13", "2", "3", "2", "6", "37", "3185", "6", "9", "2", "33", "28", "2", "20", "9", "2", "135", "6", "5", "2", "49", "100", "5", "166", "5", "4", "9", "98", "15", "4", "27", "24", "2", "4", "17343", "34", "19", "24", "15", "56", "6", "90", "5", "2", "85" ]
[ "nonn" ]
22
1
1
[ "A001358", "A016744", "A130827", "A361803" ]
null
Kevin P. Thompson, Jun 12 2023
2023-06-25T18:20:51
oeisdata/seq/A361/A361803.seq
62e6cd75481a1cad6f6a7dd9bb854fa7
A361804
Number of partitions of [n] with an equal number of even and odd block sizes.
[ "1", "0", "0", "3", "0", "15", "45", "63", "1260", "1515", "25515", "104973", "510345", "5679765", "17252235", "263214318", "1207222380", "11863296915", "101718989235", "630468648873", "8281982665215", "48583038314415", "656006633919945", "5122900223419938", "54304561161840825", "605082149235374265" ]
[ "nonn" ]
19
0
4
[ "A000110", "A003724", "A004767", "A004773", "A005046", "A275679", "A361804" ]
null
Alois P. Heinz, Jun 12 2023
2023-06-12T18:53:06
oeisdata/seq/A361/A361804.seq
705931a7b2088c0b61a2610e28a7eebf
A361805
Expansion of Product_{j=1..n, k=1..n} (1 + x^(k^j)) / (1 - x^(k^j)).
[ "1", "2", "10", "52", "278", "1508", "8262", "45604", "253186", "1412196", "7906866", "44411420", "250124308", "1411963200", "7986664250", "45255888828", "256840959728", "1459686175768", "8306130772008", "47318321533008", "269839722667800", "1540242835509060", "8799238591245006", "50308756959106988" ]
[ "nonn" ]
31
0
2
[ "A000009", "A000041", "A001156", "A003108", "A015128", "A033461", "A103265", "A279329", "A280263", "A361805", "A369577", "A369578" ]
null
Vaclav Kotesovec, Jan 28 2024
2024-01-29T09:01:34
oeisdata/seq/A361/A361805.seq
ffd3482492b2e167bbcd765bb4f5093f
A361806
Sum of distinct prime factors of all composite numbers between n-th and (n+1)st primes.
[ "0", "2", "5", "10", "5", "17", "5", "28", "30", "10", "45", "42", "12", "44", "47", "76", "10", "72", "57", "5", "97", "51", "117", "150", "28", "22", "83", "5", "65", "321", "66", "131", "28", "298", "10", "108", "172", "145", "109", "205", "10", "276", "5", "127", "16", "441", "582", "130", "24", "80", "232", "10", "276", "195", "270", "256", "10", "218", "187", "52", "388", "701", "162" ]
[ "nonn", "easy" ]
34
1
2
[ "A008472", "A052297", "A061214", "A077218", "A361806" ]
null
Karl-Heinz Hofmann, Mar 26 2023
2023-04-16T15:55:20
oeisdata/seq/A361/A361806.seq
559bc1c91ced4536e62f5cc3588a379b
A361807
Numbers k with record values of the ratio A000005(k)/A049419(k) between the number of divisors of k and the number of exponential divisors of k.
[ "1", "2", "6", "30", "210", "2310", "30030", "480480", "510510", "8168160", "9699690", "155195040", "223092870", "3569485920", "6469693230", "103515091680", "200560490130", "3208967842080", "7420738134810", "118731810156960", "304250263527210", "4868004216435360", "13082761331670030", "209324181306720480" ]
[ "nonn" ]
17
1
2
[ "A000005", "A002110", "A025487", "A049419", "A307870", "A335832", "A361807" ]
null
Amiram Eldar, Mar 25 2023
2024-07-18T09:18:47
oeisdata/seq/A361/A361807.seq
416e8cd1d318290b71b34a8d064bb86b
A361808
Inverse permutation to A181820.
[ "1", "2", "3", "4", "5", "6", "7", "9", "11", "8", "10", "13", "14", "12", "15", "22", "18", "20", "25", "17", "19", "16", "32", "29", "23", "21", "38", "24", "40", "27", "51", "54", "26", "28", "30", "43", "63", "35", "33", "36", "80", "34", "98", "31", "49", "46", "119", "66", "44", "41", "42", "39", "145", "72", "37", "47", "53", "58", "173", "55", "207", "71", "61", "114", "48", "45" ]
[ "nonn" ]
8
1
2
[ "A025487", "A181820", "A361808", "A361809" ]
null
Pontus von Brömssen, Mar 25 2023
2023-03-25T13:18:36
oeisdata/seq/A361/A361808.seq
d9daf7fa29e07e5a6bbc424acab035ed
A361809
Fixed points of A181820 and A361808.
[ "1", "2", "3", "4", "5", "6", "7", "15", "46", "58", "817", "5494", "8502" ]
[ "nonn", "more" ]
8
1
2
[ "A025487", "A025488", "A181820", "A361808", "A361809" ]
null
Pontus von Brömssen, Mar 25 2023
2023-03-25T12:07:45
oeisdata/seq/A361/A361809.seq
db134705d5b0c206b748c9de2d83d54d
A361810
a(n) is the sum of divisors of n that are both infinitary and exponential.
[ "1", "2", "3", "4", "5", "6", "7", "10", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "30", "25", "26", "30", "28", "29", "30", "31", "34", "33", "34", "35", "36", "37", "38", "39", "50", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "60", "55", "70", "57", "58", "59", "60", "61", "62", "63", "68", "65", "66", "67", "68" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A002110", "A049417", "A051377", "A082020", "A115964", "A138302", "A359411", "A361810" ]
null
Amiram Eldar, Mar 25 2023
2023-03-27T03:38:17
oeisdata/seq/A361/A361810.seq
bb3153656880527c44e7811e7a05bf8e
A361811
Smallest members of infinitary sociable quadruples.
[ "1026", "10098", "10260", "41800", "45696", "100980", "241824", "685440", "4938136", "13959680", "14958944", "25581600", "28158165", "32440716", "36072320", "55204500", "74062944", "81128632", "149589440", "178327008", "192793770", "209524210", "283604220", "319848642", "498215416", "581112000", "740629440", "1236402232" ]
[ "nonn" ]
9
1
1
[ "A004607", "A007357", "A049417", "A090615", "A126168", "A126169", "A126170", "A319902", "A319915", "A361811" ]
null
Amiram Eldar, Mar 25 2023
2023-03-25T08:18:33
oeisdata/seq/A361/A361811.seq
75b761f03ba144a6b677b9dd8fbb599a
A361812
Expansion of 1/sqrt(1 - 4*x*(1+x)^3).
[ "1", "2", "12", "62", "342", "1932", "11094", "64480", "378150", "2233304", "13263772", "79136844", "473969586", "2847911596", "17159547804", "103640073972", "627280131594", "3803643145596", "23102172930156", "140522319418164", "855880464524472", "5219168576004184", "31861229045809436" ]
[ "nonn" ]
20
0
2
[ "A006139", "A137635", "A360133", "A361790", "A361791", "A361792", "A361812", "A361813", "A361814", "A361830" ]
null
Seiichi Manyama, Mar 25 2023
2024-07-12T16:40:35
oeisdata/seq/A361/A361812.seq
ae8b682807008c2e72a1ffb2516feef3
A361813
Expansion of 1/sqrt(1 - 4*x*(1+x)^4).
[ "1", "2", "14", "80", "486", "3030", "19184", "122924", "794678", "5173160", "33863666", "222683588", "1469908848", "9733916596", "64636957300", "430240178484", "2869778018070", "19177245746844", "128361805431752", "860443079597872", "5775392952659170", "38811408514848032", "261101034656317244" ]
[ "nonn" ]
7
0
2
[ "A006139", "A137635", "A360133", "A361790", "A361791", "A361792", "A361812", "A361813", "A361814" ]
null
Seiichi Manyama, Mar 25 2023
2023-03-25T08:19:19
oeisdata/seq/A361/A361813.seq
a84cced128c5cd973db69f2069a95966
A361814
Expansion of 1/sqrt(1 - 4*x*(1+x)^5).
[ "1", "2", "16", "100", "660", "4482", "30886", "215364", "1515000", "10730800", "76426846", "546792056", "3926775646", "28290272420", "204375145480", "1479963148220", "10739326203132", "78072933869364", "568503202324540", "4145718464390120", "30271771382355430", "221305746414518180" ]
[ "nonn" ]
16
0
2
[ "A006139", "A137635", "A360133", "A361790", "A361791", "A361792", "A361812", "A361813", "A361814" ]
null
Seiichi Manyama, Mar 25 2023
2023-03-25T12:07:41
oeisdata/seq/A361/A361814.seq
5e05c0d5876b9c0e00b07d143e5eecd0
A361815
Expansion of 1/sqrt(1 - 4*x*(1-x)^2).
[ "1", "2", "2", "-2", "-14", "-32", "-30", "64", "346", "752", "584", "-2044", "-9486", "-19324", "-11368", "66180", "271658", "514916", "192584", "-2151612", "-7949736", "-13933280", "-1779028", "69933368", "235295106", "378579404", "-61171228", "-2267724644", "-7003832456", "-10248117752", "5236354188", "73288104568" ]
[ "sign" ]
15
0
2
[ "A085362", "A110170", "A137635", "A162478", "A359489", "A359758", "A360132", "A361815", "A361816", "A361817" ]
null
Seiichi Manyama, Mar 25 2023
2023-03-25T13:20:11
oeisdata/seq/A361/A361815.seq
f7644bf420b190e5b999c939667cc593
A361816
Expansion of 1/sqrt(1 - 4*x*(1-x)^3).
[ "1", "2", "0", "-10", "-22", "12", "174", "344", "-354", "-3304", "-5780", "9180", "65258", "99132", "-226620", "-1313580", "-1690990", "5441340", "26681700", "28070100", "-128211552", "-543818824", "-440381780", "2978145240", "11080939914", "6162798092", "-68377892976", "-225107280388", "-64286124152" ]
[ "sign" ]
12
0
2
[ "A085362", "A110170", "A162478", "A359489", "A359758", "A360132", "A361812", "A361815", "A361816", "A361817", "A361834" ]
null
Seiichi Manyama, Mar 25 2023
2023-03-28T10:48:26
oeisdata/seq/A361/A361816.seq
e3f8ceb620922047467d32799519de59
A361817
Expansion of 1/sqrt(1 - 4*x*(1-x)^4).
[ "1", "2", "-2", "-16", "-10", "118", "304", "-500", "-3754", "-2488", "30866", "83716", "-135568", "-1080972", "-792876", "9090484", "25788118", "-39325156", "-335074520", "-271779024", "2820643842", "8348113120", "-11788972644", "-107836934448", "-96107852032", "900943403012", "2778574561276", "-3596374190416" ]
[ "sign" ]
10
0
2
[ "A085362", "A110170", "A162478", "A359489", "A359758", "A360132", "A361813", "A361815", "A361816", "A361817" ]
null
Seiichi Manyama, Mar 25 2023
2023-03-25T08:19:12
oeisdata/seq/A361/A361817.seq
af1cc06e9f6cf727b55c23b7e17ba3be
A361818
For any number k >= 0, let T_k be the triangle whose base corresponds to the ternary expansion of k (without leading zeros) and other values, say t above u and v, satisfy t = (-u-v) mod 3; this sequence lists the numbers k such that T_k has 3-fold rotational symmetry.
[ "0", "1", "2", "4", "8", "13", "26", "34", "40", "46", "59", "65", "80", "112", "121", "130", "224", "233", "242", "304", "364", "424", "518", "578", "728", "772", "862", "925", "1003", "1093", "1183", "1261", "1324", "1414", "1535", "1598", "1688", "1766", "1856", "1919", "2006", "2096", "2186", "2257", "2509", "2734", "3028", "3280", "3532", "3826", "4051" ]
[ "nonn", "base" ]
15
1
3
[ "A004488", "A048328", "A060587", "A297250", "A334556", "A361818" ]
null
Rémy Sigrist, Mar 25 2023
2023-03-28T14:01:21
oeisdata/seq/A361/A361818.seq
e3dff7622c556d202bfaddc843c1ed1a
A361819
Irregular triangle read by rows where T(n,k) is the distance which number A361660(n,k) moves in the process described in A361642.
[ "2", "3", "3", "4", "2", "2", "4", "5", "3", "4", "3", "5", "6", "4", "2", "3", "3", "2", "4", "6", "7", "5", "3", "5", "2", "5", "3", "5", "7", "8", "6", "4", "2", "4", "4", "4", "4", "2", "4", "6", "8", "9", "7", "5", "3", "6", "3", "3", "3", "3", "6", "3", "5", "7", "9", "10", "8", "6", "4", "2", "5", "5", "2", "6", "2", "5", "5", "2", "4", "6", "8", "10", "11", "9", "7", "5", "3", "7", "4", "4", "5", "5", "4", "4", "7", "3", "5", "7", "9", "11" ]
[ "nonn", "tabf" ]
24
1
1
[ "A002378", "A002541", "A361642", "A361660", "A361819" ]
null
Tamas Sandor Nagy, Mar 25 2023
2023-04-13T08:30:37
oeisdata/seq/A361/A361819.seq
3e90bac7ab0e2388661548ef941393a6
A361820
Palindromes in A329150.
[ "0", "2", "3", "5", "7", "11", "22", "33", "55", "77", "202", "222", "232", "252", "272", "303", "313", "323", "333", "353", "373", "505", "525", "535", "555", "575", "707", "717", "727", "737", "757", "777", "1111", "2002", "2112", "2222", "2332", "2552", "2772", "3003", "3113", "3223", "3333", "3553", "3773", "5005", "5115", "5225", "5335", "5555", "5775", "7007", "7117" ]
[ "nonn", "base" ]
26
1
2
[ "A002113", "A002276", "A002277", "A002279", "A002281", "A099814", "A118597", "A329147", "A329150", "A361750", "A361820", "A361821" ]
null
Bernard Schott, Mar 25 2023
2023-04-06T06:36:27
oeisdata/seq/A361/A361820.seq
7fdcf0f7e1076ff8d84dcedcc943acf3
A361821
Perfect powers in A329150.
[ "25", "27", "32", "225", "2025", "2197", "2500", "3025", "3375", "7225", "11025", "13225", "21952", "22500", "27000", "27225", "55225", "70225", "112225", "133225", "172225", "195112", "202500", "207025", "235225", "250000", "255025", "302500", "319225", "511225", "555025", "570025", "722500", "1102500", "1113025", "1177225", "1311025" ]
[ "nonn", "base" ]
32
1
1
[ "A001597", "A030485", "A053919", "A058426", "A191486", "A329147", "A329150", "A361821" ]
null
Bernard Schott, Mar 25 2023
2023-04-03T15:30:50
oeisdata/seq/A361/A361821.seq
d5566ff274db51d54ff95cc35f3fc1b5
A361822
Primes that have digits consisting only of line segments {1, 4, 7} or curved digits {0, 3, 6, 8, 9}.
[ "3", "7", "11", "13", "17", "19", "31", "37", "41", "43", "47", "61", "67", "71", "73", "79", "83", "89", "97", "101", "103", "107", "109", "113", "131", "137", "139", "149", "163", "167", "173", "179", "181", "191", "193", "197", "199", "307", "311", "313", "317", "331", "337", "347", "349", "367", "373", "379", "383", "389", "397", "401", "409", "419", "431", "433", "439", "443", "449", "461", "463" ]
[ "nonn", "base" ]
25
1
1
[ "A000040", "A034470", "A079651", "A079652", "A247052", "A361780", "A361822" ]
null
Bernard Schott, Mar 26 2023
2023-04-09T07:53:52
oeisdata/seq/A361/A361822.seq
ce74934d53ec796ad944632181e2f2d5
A361823
a(1) = 3; thereafter, a(n+1) is the smallest prime p such that p - prevprime(p) >= a(n) - prevprime(a(n)).
[ "3", "5", "7", "11", "17", "23", "29", "37", "53", "59", "67", "79", "89", "97", "127", "307", "331", "541", "907", "1151", "1361", "8501", "9587", "12889", "14143", "15727", "19661", "25523", "31469", "156007", "338119", "360749", "370373", "492227", "1349651", "1357333", "1562051", "2010881", "4652507", "11114087", "15204131", "17051887" ]
[ "nonn" ]
17
1
1
[ "A001223", "A070866", "A134266", "A348178", "A361823" ]
null
Ya-Ping Lu, Mar 25 2023
2023-04-23T22:09:11
oeisdata/seq/A361/A361823.seq
b4a215f078928aa7ecef0c9e216d66dc
A361824
Sum of odd middle divisors of n, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).
[ "1", "1", "0", "0", "0", "3", "0", "0", "3", "0", "0", "3", "0", "0", "8", "0", "0", "3", "0", "5", "0", "0", "0", "0", "5", "0", "0", "7", "0", "5", "0", "0", "0", "0", "12", "0", "0", "0", "0", "5", "0", "7", "0", "0", "14", "0", "0", "0", "7", "5", "0", "0", "0", "9", "0", "7", "0", "0", "0", "0", "0", "0", "16", "0", "0", "11", "0", "0", "0", "7", "0", "9", "0", "0", "0", "0", "18", "0", "0", "0", "9", "0", "0", "7", "0", "0", "0", "11", "0", "9", "20", "0", "0", "0", "0", "0", "0", "7", "20", "0" ]
[ "nonn", "look" ]
38
1
6
[ "A000203", "A000593", "A067742", "A071090", "A071562", "A299761", "A299777", "A303297", "A358434", "A361824", "A361879" ]
null
Omar E. Pol, Mar 25 2023
2023-03-27T22:36:19
oeisdata/seq/A361/A361824.seq
96142dd148eae78629f91dd246e13bbc
A361825
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is a multiple of the smallest prime that does not divide a(n-2) + a(n-1).
[ "1", "2", "4", "5", "6", "8", "3", "10", "12", "9", "14", "16", "7", "18", "20", "15", "22", "24", "21", "26", "28", "25", "30", "32", "27", "34", "36", "33", "38", "40", "35", "42", "44", "39", "46", "48", "45", "50", "52", "55", "54", "56", "51", "58", "60", "57", "62", "64", "65", "66", "68", "63", "70", "72", "69", "74", "76", "49", "78", "80", "75", "82", "84", "81", "86", "88", "85", "90", "92", "87", "94", "96", "93", "98", "100", "95" ]
[ "nonn" ]
10
1
2
[ "A351495", "A352793", "A353026", "A359804", "A361825" ]
null
Scott R. Shannon, Mar 25 2023
2023-03-31T06:55:57
oeisdata/seq/A361/A361825.seq
82451ae1e44a57de2e10df38b610e171
A361826
a(n) is equal to the number of roots of the equation n*cos(x) = sqrt(x).
[ "1", "1", "3", "5", "7", "11", "15", "21", "25", "31", "39", "45", "53", "63", "71", "81", "91", "103", "115", "127", "141", "155", "169", "183", "199", "215", "233", "249", "267", "287", "305", "325", "347", "367", "389", "413", "435", "459", "485", "509", "535", "561", "589", "617", "645", "673", "703", "733", "765", "795", "827", "861", "895", "929", "963", "999", "1035" ]
[ "nonn" ]
49
1
3
[ "A178832", "A361826" ]
null
Nicolay Avilov, Mar 27 2023
2023-05-01T18:06:26
oeisdata/seq/A361/A361826.seq
4a3b70eb0b70507534529df589b45e24
A361827
For any number k >= 0, let T_k be the triangle whose base corresponds to the ternary expansion of k (without leading zeros) and other values, say t above u and v, satisfy t = (-u-v) mod 3; this sequence lists the numbers k such that the configurations of 0's, 1's and 2's in T_k are the same up to rotation.
[ "3", "5", "6", "7", "11", "15", "19", "21", "84", "93", "102", "140", "149", "158", "168", "177", "186", "196", "205", "214", "308", "318", "351", "377", "410", "420", "528", "532", "574", "588", "702", "715", "2271", "2396", "2523", "2621", "2775", "2873", "2933", "3150", "3185", "3375", "3410", "3627", "3687", "3785", "3939", "4037", "4164", "4289", "4519" ]
[ "nonn", "base" ]
12
1
1
[ "A004488", "A007494", "A297250", "A361818", "A361827" ]
null
Rémy Sigrist, Mar 26 2023
2023-03-28T14:01:17
oeisdata/seq/A361/A361827.seq
12a5fbba2322aab90ca8724eb65cfd3d
A361828
a(0) = 1; a(n+1) = Sum_{k=0..n} k^k * a(n-k).
[ "1", "1", "2", "7", "40", "338", "3841", "54821", "939335", "18744832", "426390069", "10881017916", "307686450208", "9546443638409", "322375619648549", "11769010007246745", "461834905502223078", "19384809864763869231", "866564718107731746860", "41102477939620052536314" ]
[ "nonn", "easy" ]
14
0
3
[ "A000312", "A051295", "A277610", "A361828" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-26T10:25:24
oeisdata/seq/A361/A361828.seq
9c55105db756d3513c12fe40cca46abc
A361829
a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n*k,n-k).
[ "1", "2", "10", "62", "486", "4482", "47106", "553226", "7152438", "100644194", "1527758136", "24839853326", "430045385424", "7888706328934", "152685931935634", "3106864307092950", "66253232332628166", "1476558925897693698", "34307420366092350048", "829217371825336147142" ]
[ "nonn" ]
14
0
2
[ "A099237", "A361829", "A361830", "A361835" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-26T10:25:20
oeisdata/seq/A361/A361829.seq
6c309ebba2a64d202a268fbd7882ff0d
A361830
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).
[ "1", "1", "2", "1", "2", "6", "1", "2", "8", "20", "1", "2", "10", "32", "70", "1", "2", "12", "46", "136", "252", "1", "2", "14", "62", "226", "592", "924", "1", "2", "16", "80", "342", "1136", "2624", "3432", "1", "2", "18", "100", "486", "1932", "5810", "11776", "12870", "1", "2", "20", "122", "660", "3030", "11094", "30080", "53344", "48620" ]
[ "nonn", "tabl" ]
20
0
3
[ "A000984", "A006139", "A099233", "A137635", "A361812", "A361813", "A361814", "A361829", "A361830", "A361834" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-26T11:14:50
oeisdata/seq/A361/A361830.seq
295a29535c07bf712d33b5567e010e7e
A361831
a(n) is the first member of A106843 with sum of digits n.
[ "2", "3", "13", "5", "6", "7", "17", "9", "19", "29", "39", "67", "59", "69", "79", "89", "99", "199", "389", "489", "499", "599", "699", "997", "1889", "999", "1999", "2999", "4989", "4999", "6899", "6999", "17989", "8999", "18999", "29989", "39989", "48999", "49999", "59999", "69999", "79999", "98999", "198999", "199999", "389999", "589989", "598999", "599999", "798999", "799999", "989999" ]
[ "nonn", "base" ]
60
2
1
[ "A007953", "A106843", "A361831" ]
null
Robert Israel, Mar 26 2023
2023-04-02T17:49:17
oeisdata/seq/A361/A361831.seq
d54c903f29e6017fd3e9031e1b14d3d2
A361832
For any number k >= 0, let T_k be the triangle whose base corresponds to the ternary expansion of k (without leading zeros) and other values, say t above u and v, satisfy t = (-u-v) mod 3; the ternary expansion of a(n) corresponds to the left border of T_n (the most significant digit being at the bottom left corner).
[ "0", "1", "2", "5", "4", "3", "7", "6", "8", "16", "17", "15", "12", "13", "14", "11", "9", "10", "23", "21", "22", "19", "20", "18", "24", "25", "26", "50", "49", "48", "53", "52", "51", "47", "46", "45", "38", "37", "36", "41", "40", "39", "44", "43", "42", "35", "34", "33", "29", "28", "27", "32", "31", "30", "70", "69", "71", "64", "63", "65", "67", "66", "68", "58", "57", "59", "61", "60" ]
[ "nonn", "base" ]
14
0
3
[ "A004488", "A048328", "A334727", "A361818", "A361832", "A361833" ]
null
Rémy Sigrist, Mar 26 2023
2024-03-30T11:38:34
oeisdata/seq/A361/A361832.seq
ada1140d6abbe984728a5d11400b6e5b
A361833
Fixed points of A361832.
[ "0", "1", "2", "4", "8", "12", "13", "14", "24", "25", "26", "37", "40", "43", "74", "77", "80", "111", "112", "113", "120", "121", "122", "129", "130", "131", "222", "223", "224", "231", "232", "233", "240", "241", "242", "334", "336", "341", "362", "364", "366", "387", "392", "394", "668", "670", "672", "693", "698", "700", "721", "723", "728", "1002", "1003", "1004" ]
[ "nonn", "base" ]
6
1
3
[ "A117855", "A361832", "A361833" ]
null
Rémy Sigrist, Mar 26 2023
2023-03-28T14:01:11
oeisdata/seq/A361/A361833.seq
86d68e74c81266ec0b8c78b893a0367e
A361834
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (-1)^(n-j) * binomial(2*j,j) * binomial(k*j,n-j).
[ "1", "1", "2", "1", "2", "6", "1", "2", "4", "20", "1", "2", "2", "8", "70", "1", "2", "0", "-2", "16", "252", "1", "2", "-2", "-10", "-14", "32", "924", "1", "2", "-4", "-16", "-22", "-32", "64", "3432", "1", "2", "-6", "-20", "-10", "12", "-30", "128", "12870", "1", "2", "-8", "-22", "20", "118", "174", "64", "256", "48620", "1", "2", "-10", "-22", "66", "242", "304", "344", "346", "512", "184756" ]
[ "sign", "tabl" ]
15
0
3
[ "A000079", "A000984", "A361815", "A361816", "A361817", "A361830", "A361834", "A361835" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-26T11:14:46
oeisdata/seq/A361/A361834.seq
118d114e3a4cebd500d605ec1681bc85
A361835
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n*k,n-k).
[ "1", "2", "2", "-10", "-10", "242", "-678", "-7054", "88342", "-207646", "-6015904", "88310862", "-312514816", "-8847633338", "184252541514", "-1269592841970", "-17662739133178", "634109114537218", "-7914500471718552", "-18165019012117450", "2936604063787679650", "-62899139815867627378" ]
[ "sign" ]
14
0
2
[ "A361829", "A361834", "A361835", "A361836" ]
null
Seiichi Manyama, Mar 26 2023
2023-04-10T12:50:35
oeisdata/seq/A361/A361835.seq
413753e812f1f7d7f1ff52ecb8c8888d
A361836
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n*k,n-k).
[ "1", "1", "-1", "-2", "13", "-29", "-80", "1268", "-7351", "13276", "245746", "-3632793", "27451743", "-63909390", "-1752952501", "34899085656", "-370619158447", "1779155624299", "23668687715473", "-780307293795152", "12058261763444876", "-107734052276914986", "-180664717708949253", "30298196609011736398" ]
[ "sign", "easy" ]
9
0
4
[ "A099237", "A361835", "A361836" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-26T10:25:28
oeisdata/seq/A361/A361836.seq
2c9434ca3dc8f7500c6a32d278717e7e
A361837
Maximum cardinality of trifferent codes with length n.
[ "3", "4", "6", "9", "10", "13", "16", "20", "27" ]
[ "nonn", "hard", "more" ]
16
1
1
null
null
Lorenzo Sauras Altuzarra, Mar 26 2023
2025-05-11T01:17:29
oeisdata/seq/A361/A361837.seq
333f66ef6ebeee2d60f9a8e13e2da5e3
A361838
a(n) is the number of 2s in the binary hereditary representation of 2n.
[ "1", "2", "3", "2", "3", "4", "5", "3", "4", "5", "6", "5", "6", "7", "8", "3", "4", "5", "6", "5", "6", "7", "8", "6", "7", "8", "9", "8", "9", "10", "11", "4", "5", "6", "7", "6", "7", "8", "9", "7", "8", "9", "10", "9", "10", "11", "12", "7", "8", "9", "10", "9", "10", "11", "12", "10", "11", "12", "13", "12", "13", "14", "15", "4", "5", "6", "7", "6", "7", "8", "9", "7", "8", "9", "10", "9", "10", "11", "12", "7" ]
[ "nonn", "base", "hear" ]
16
1
2
[ "A005245", "A025280", "A361838" ]
null
Jodi Spitz, Mar 26 2023
2024-06-04T14:24:05
oeisdata/seq/A361/A361838.seq
34ee86dd17ebb92e009ab1c2bf7d9c32
A361839
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).
[ "1", "1", "3", "1", "3", "18", "1", "3", "21", "126", "1", "3", "24", "162", "945", "1", "3", "27", "201", "1341", "7371", "1", "3", "30", "243", "1809", "11529", "58968", "1", "3", "33", "288", "2352", "16893", "101619", "480168", "1", "3", "36", "336", "2973", "23607", "161676", "911466", "3961386", "1", "3", "39", "387", "3675", "31818", "242757", "1574289", "8281737", "33011550" ]
[ "nonn", "tabl" ]
12
0
3
[ "A004987", "A180400", "A361830", "A361839", "A361840", "A361841", "A361842", "A361846" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-27T10:14:42
oeisdata/seq/A361/A361839.seq
57de1911c37716dc4143fae89502d5b8
A361840
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 - x)^k)^(1/3).
[ "1", "1", "3", "1", "3", "18", "1", "3", "15", "126", "1", "3", "12", "90", "945", "1", "3", "9", "57", "585", "7371", "1", "3", "6", "27", "297", "3969", "58968", "1", "3", "3", "0", "78", "1629", "27657", "480168", "1", "3", "0", "-24", "-75", "207", "9216", "196290", "3961386", "1", "3", "-3", "-45", "-165", "-438", "459", "53217", "1411965", "33011550" ]
[ "sign", "tabl" ]
12
0
3
[ "A004987", "A361834", "A361839", "A361840", "A361843", "A361844", "A361845", "A361847" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-27T10:14:38
oeisdata/seq/A361/A361840.seq
fe3f809b3640cc629a720edbc51a1d28
A361841
Expansion of 1/(1 - 9*x*(1+x)^2)^(1/3).
[ "1", "3", "24", "201", "1809", "16893", "161676", "1574289", "15527052", "154662930", "1552725504", "15688410264", "159355067283", "1625899880673", "16652520666414", "171119405299005", "1763475423260049", "18219685282559559", "188664151412242368", "1957539823296458841", "20347733657193596127" ]
[ "nonn" ]
19
0
2
[ "A002478", "A137635", "A361839", "A361841", "A361844" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-30T09:14:59
oeisdata/seq/A361/A361841.seq
4037db1a8ead52afee94566bbf196d6a
A361842
Expansion of 1/(1 - 9*x*(1+x)^3)^(1/3).
[ "1", "3", "27", "243", "2352", "23607", "242757", "2539431", "26904492", "287858421", "3104029755", "33684914907", "367483636746", "4026930734223", "44295829667055", "488855016668727", "5410588668898995", "60035381850523284", "667643481187840206", "7439651232903588528", "83050643822779921347" ]
[ "nonn" ]
22
0
2
[ "A099234", "A361812", "A361839", "A361842", "A361845" ]
null
Seiichi Manyama, Mar 26 2023
2024-07-12T10:17:08
oeisdata/seq/A361/A361842.seq
65f843628d7651d07e8687401a93bea9
A361843
Expansion of 1/(1 - 9*x*(1-x))^(1/3).
[ "1", "3", "15", "90", "585", "3969", "27657", "196290", "1411965", "10261485", "75183147", "554480316", "4111617510", "30628393110", "229048769790", "1718666596692", "12933847045701", "97584913269675", "737953856289675", "5591915004100950", "42450848142844995", "322796964495941235" ]
[ "nonn" ]
18
0
2
[ "A004987", "A361840", "A361843" ]
null
Seiichi Manyama, Mar 26 2023
2023-04-07T02:33:04
oeisdata/seq/A361/A361843.seq
31df4c9ab5284fd9bbdfbe2796bd6d2b
A361844
Expansion of 1/(1 - 9*x*(1-x)^2)^(1/3).
[ "1", "3", "12", "57", "297", "1629", "9216", "53217", "311796", "1846818", "11032416", "66356712", "401364531", "2439135585", "14882263002", "91116281565", "559528781697", "3445002647847", "21260140172244", "131474746842345", "814564464082263", "5055177167348463", "31420067723814780" ]
[ "nonn" ]
17
0
2
[ "A004987", "A361815", "A361840", "A361844" ]
null
Seiichi Manyama, Mar 26 2023
2023-03-27T15:14:13
oeisdata/seq/A361/A361844.seq
6246af249aec372e2540b65ea0776b38
A361845
Expansion of 1/(1 - 9*x*(1-x)^3)^(1/3).
[ "1", "3", "9", "27", "78", "207", "459", "567", "-1926", "-20763", "-120123", "-569349", "-2410200", "-9379449", "-33818715", "-112292001", "-335018295", "-837341388", "-1317232530", "2358000072", "35974607355", "228270292803", "1148026536963", "5094839173779", "20667058966044", "77501033284779" ]
[ "sign" ]
18
0
2
[ "A361816", "A361840", "A361845" ]
null
Seiichi Manyama, Mar 26 2023
2024-07-12T10:17:21
oeisdata/seq/A361/A361845.seq
b224c2a0abe12c1574ff6c89fd099aad
A361846
a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n*k,n-k).
[ "1", "3", "24", "243", "2973", "41676", "652662", "11228556", "209674050", "4211011422", "90309000630", "2056139084544", "49460437075896", "1251936022103679", "33228751234896060", "922028391785300940", "26676362307801924057", "802875670635086298600" ]
[ "nonn" ]
16
0
2
[ "A361829", "A361839", "A361846", "A361847" ]
null
Seiichi Manyama, Mar 27 2023
2023-04-07T08:57:04
oeisdata/seq/A361/A361846.seq
dd2cb3c8fe21a2cf65f077a573a0e025
A361847
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(n*k,n-k).
[ "1", "3", "12", "27", "-75", "-444", "4734", "11532", "-466782", "1626750", "50347410", "-708889296", "-2196754992", "179878246239", "-1795732735128", "-24691325878980", "953903679982809", "-7684914725016600", "-226465559200630566", "7742131606464606525", "-58889021552013912990" ]
[ "sign" ]
13
0
2
[ "A361835", "A361840", "A361846", "A361847" ]
null
Seiichi Manyama, Mar 27 2023
2023-04-07T02:33:19
oeisdata/seq/A361/A361847.seq
a9e0c8465117559d89db41667ad5e385
A361848
Number of integer partitions of n such that (maximum) <= 2*(median).
[ "1", "2", "3", "5", "6", "9", "12", "15", "19", "26", "31", "40", "49", "61", "75", "93", "112", "137", "165", "199", "238", "289", "341", "408", "482", "571", "674", "796", "932", "1096", "1280", "1495", "1738", "2026", "2347", "2724", "3148", "3639", "4191", "4831", "5545", "6372", "7298", "8358", "9552", "10915", "12439", "14176", "16121", "18325" ]
[ "nonn" ]
11
0
2
[ "A000009", "A000041", "A000975", "A008284", "A013580", "A027193", "A061395", "A067538", "A111907", "A237755", "A237824", "A240219", "A307683", "A324562", "A325347", "A359893", "A359901", "A359907", "A360005", "A360457", "A361394", "A361848", "A361849", "A361851", "A361856", "A361857", "A361858", "A361859", "A361860", "A361867", "A361868" ]
null
Gus Wiseman, Mar 28 2023
2023-03-30T20:54:44
oeisdata/seq/A361/A361848.seq
917e11d5002526afdafa7ff288ae0733
A361849
Number of integer partitions of n such that the maximum is twice the median.
[ "0", "0", "0", "1", "1", "1", "4", "3", "4", "7", "9", "9", "15", "16", "20", "26", "34", "37", "50", "55", "68", "86", "103", "117", "145", "168", "201", "236", "282", "324", "391", "449", "525", "612", "712", "818", "962", "1106", "1278", "1470", "1698", "1939", "2238", "2550", "2924", "3343", "3824", "4341", "4963", "5627", "6399", "7256", "8231", "9300" ]
[ "nonn" ]
6
1
7
[ "A000009", "A000041", "A008284", "A013580", "A027193", "A053263", "A058398", "A061395", "A067659", "A111907", "A116608", "A118096", "A237753", "A237755", "A240219", "A307683", "A325347", "A359893", "A359901", "A359902", "A360005", "A360457", "A361848", "A361849", "A361851", "A361853", "A361856", "A361857", "A361859", "A361860" ]
null
Gus Wiseman, Apr 02 2023
2023-04-02T09:48:00
oeisdata/seq/A361/A361849.seq
d0eb6b0897b76d4267915b9a30ee61e6
A361850
Number of strict integer partitions of n such that the maximum is twice the median.
[ "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "2", "0", "2", "1", "3", "3", "4", "2", "5", "4", "7", "8", "10", "6", "11", "11", "15", "16", "21", "18", "25", "23", "28", "32", "40", "40", "51", "51", "58", "60", "73", "75", "93", "97", "113", "123", "139", "141", "164", "175", "199", "217", "248", "263", "301", "320", "356", "383", "426", "450", "511", "551", "613", "664", "737" ]
[ "nonn" ]
5
1
11
[ "A000009", "A000041", "A000975", "A008284", "A027193", "A058398", "A067659", "A079309", "A111907", "A116608", "A237755", "A237824", "A241035", "A241087", "A307683", "A325347", "A359893", "A359897", "A359901", "A359902", "A359907", "A359908", "A360005", "A360457", "A360952", "A361849", "A361850", "A361851", "A361856", "A361857", "A361858", "A361859", "A361860", "A361867" ]
null
Gus Wiseman, Apr 02 2023
2023-04-02T09:48:32
oeisdata/seq/A361/A361850.seq
75d1ecae35cf1f270ce30afd8213a635
A361851
Number of integer partitions of n such that (length) * (maximum) <= 2*n.
[ "1", "2", "3", "5", "7", "11", "12", "18", "23", "31", "37", "51", "58", "75", "96", "116", "126", "184", "193", "253", "307", "346", "402", "511", "615", "678", "792", "1045", "1088", "1386", "1419", "1826", "2181", "2293", "2779", "3568", "3659", "3984", "4867", "5885", "6407", "7732", "8124", "9400", "11683", "13025", "13269", "16216", "17774", "22016" ]
[ "nonn" ]
9
1
2
[ "A000009", "A000041", "A008284", "A051293", "A058398", "A067538", "A111907", "A237755", "A237824", "A237984", "A240219", "A324521", "A324562", "A327482", "A349156", "A360068", "A360071", "A360241", "A361394", "A361848", "A361849", "A361851", "A361852", "A361853", "A361855", "A361856", "A361858", "A361859", "A361906", "A361907" ]
null
Gus Wiseman, Mar 28 2023
2023-03-31T05:01:37
oeisdata/seq/A361/A361851.seq
d4b20b437b7287a032da5517259a21bf
A361852
Number of integer partitions of n such that (length) * (maximum) < 2n.
[ "1", "2", "3", "5", "7", "9", "12", "17", "21", "27", "37", "41", "58", "67", "80", "106", "126", "153", "193", "209", "263", "326", "402", "419", "565", "650", "694", "891", "1088", "1120", "1419", "1672", "1987", "2245", "2345", "2856", "3659", "3924", "4519", "4975", "6407", "6534", "8124", "8280", "9545", "12937", "13269", "13788", "16474", "20336" ]
[ "nonn" ]
7
1
2
[ "A000009", "A000041", "A008284", "A027193", "A051293", "A058398", "A067538", "A111907", "A116608", "A237754", "A237755", "A237824", "A237984", "A324517", "A327482", "A349156", "A360068", "A360071", "A361394", "A361848", "A361849", "A361852", "A361853", "A361855", "A361856", "A361858", "A361906", "A361907" ]
null
Gus Wiseman, Mar 29 2023
2023-03-31T05:01:30
oeisdata/seq/A361/A361852.seq
2a03eaae5b59694444b88b07d7c1d12d
A361853
Number of integer partitions of n such that (length) * (maximum) = 2n.
[ "0", "0", "0", "0", "0", "2", "0", "1", "2", "4", "0", "10", "0", "8", "16", "10", "0", "31", "0", "44", "44", "20", "0", "92", "50", "28", "98", "154", "0", "266", "0", "154", "194", "48", "434", "712", "0", "60", "348", "910", "0", "1198", "0", "1120", "2138", "88", "0", "2428", "1300", "1680", "912", "2506", "0", "4808", "4800", "5968", "1372", "140", "0", "14820", "0", "160" ]
[ "nonn" ]
6
1
6
[ "A000009", "A000041", "A008284", "A051293", "A058398", "A067538", "A111907", "A116608", "A118096", "A188814", "A237753", "A237755", "A237824", "A237984", "A240219", "A268192", "A326844", "A326849", "A327482", "A349156", "A359894", "A361849", "A361851", "A361852", "A361853", "A361854", "A361855", "A361856", "A361906", "A361907" ]
null
Gus Wiseman, Mar 29 2023
2023-03-31T05:01:23
oeisdata/seq/A361/A361853.seq
f9f7fc6fc5d9ef86d88c201ff5ca7c8a
A361854
Number of strict integer partitions of n such that (length) * (maximum) = 2n.
[ "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "2", "0", "1", "2", "2", "0", "5", "0", "6", "3", "5", "0", "11", "6", "8", "7", "10", "0", "36", "0", "14", "16", "16", "29", "43", "0", "21", "36", "69", "0", "97", "0", "35", "138", "33", "0", "150", "61", "137", "134", "74", "0", "231", "134", "265", "229", "56", "0", "650", "0", "65", "749", "267", "247", "533", "0", "405", "565" ]
[ "nonn" ]
7
1
12
[ "A000009", "A000041", "A005117", "A008284", "A008289", "A058398", "A067538", "A102627", "A111907", "A116608", "A118096", "A237753", "A237755", "A240850", "A241035", "A241087", "A268192", "A326844", "A326849", "A359897", "A360068", "A360071", "A360243", "A361848", "A361849", "A361850", "A361851", "A361852", "A361853", "A361854", "A361855", "A361906" ]
null
Gus Wiseman, Mar 29 2023
2023-03-31T05:01:14
oeisdata/seq/A361/A361854.seq
ef79dbae3abd4975911649cb8919b408
A361855
Numbers > 1 whose prime indices satisfy (maximum) * (length) = 2*(sum).
[ "28", "40", "78", "84", "171", "190", "198", "220", "240", "252", "280", "351", "364", "390", "406", "435", "714", "748", "756", "765", "777", "784", "814", "840", "850", "925", "988", "1118", "1197", "1254", "1330", "1352", "1419", "1425", "1440", "1505", "1564", "1600", "1638", "1716", "1755", "1794", "1802", "1820", "1950", "2067", "2204", "2254" ]
[ "nonn" ]
6
1
1
[ "A001221", "A001222", "A056239", "A061395", "A067801", "A112798", "A118096", "A237753", "A237824", "A316413", "A324521", "A326567", "A326568", "A326844", "A361205", "A361849", "A361851", "A361853", "A361854", "A361855", "A361856", "A361906", "A361908", "A361909" ]
null
Gus Wiseman, Mar 29 2023
2023-04-01T22:03:27
oeisdata/seq/A361/A361855.seq
0c597e4bea27cc44b78c047a88b51c40
A361856
Positive integers whose prime indices satisfy (maximum) = 2*(median).
[ "12", "24", "42", "48", "60", "63", "72", "96", "126", "130", "140", "144", "189", "192", "195", "252", "266", "288", "308", "325", "330", "360", "378", "384", "399", "420", "432", "495", "546", "567", "572", "576", "588", "600", "630", "638", "650", "665", "756", "768", "819", "864", "882", "884", "931", "945", "957", "962", "975", "1122", "1134", "1152", "1190" ]
[ "nonn" ]
6
1
1
[ "A000975", "A001221", "A001222", "A027193", "A056239", "A061395", "A067801", "A111907", "A112798", "A118096", "A237753", "A307683", "A325347", "A359893", "A359901", "A360005", "A360457", "A361205", "A361848", "A361849", "A361853", "A361855", "A361856", "A361858", "A361908", "A361909" ]
null
Gus Wiseman, Apr 02 2023
2023-04-02T09:40:11
oeisdata/seq/A361/A361856.seq
6fd25a8edd81bfa5153a6d23186a84af
A361857
Number of integer partitions of n such that the maximum is greater than twice the median.
[ "0", "0", "0", "0", "1", "2", "3", "7", "11", "16", "25", "37", "52", "74", "101", "138", "185", "248", "325", "428", "554", "713", "914", "1167", "1476", "1865", "2336", "2922", "3633", "4508", "5562", "6854", "8405", "10284", "12536", "15253", "18489", "22376", "26994", "32507", "39038", "46802", "55963", "66817", "79582", "94643", "112315" ]
[ "nonn" ]
5
1
6
[ "A000009", "A000041", "A000975", "A008284", "A013580", "A027193", "A061395", "A237751", "A237755", "A237820", "A237824", "A240219", "A307683", "A325347", "A359893", "A359901", "A360005", "A360457", "A361394", "A361848", "A361849", "A361851", "A361856", "A361857", "A361858", "A361859", "A361860", "A361867", "A361868", "A361907" ]
null
Gus Wiseman, Apr 02 2023
2023-04-03T09:16:59
oeisdata/seq/A361/A361857.seq
0debc4f2fa2d503ed297073a4c9e944f
A361858
Number of integer partitions of n such that the maximum is less than twice the median.
[ "1", "2", "3", "4", "5", "8", "8", "12", "15", "19", "22", "31", "34", "45", "55", "67", "78", "100", "115", "144", "170", "203", "238", "291", "337", "403", "473", "560", "650", "772", "889", "1046", "1213", "1414", "1635", "1906", "2186", "2533", "2913", "3361", "3847", "4433", "5060", "5808", "6628", "7572", "8615", "9835", "11158", "12698", "14394" ]
[ "nonn" ]
5
1
2
[ "A000009", "A000041", "A000975", "A008284", "A027193", "A053263", "A237751", "A237754", "A237755", "A237820", "A237824", "A240219", "A307683", "A325347", "A359893", "A359901", "A360005", "A360457", "A361394", "A361848", "A361849", "A361850", "A361851", "A361852", "A361856", "A361857", "A361858", "A361859", "A361860", "A361867", "A361868", "A361907" ]
null
Gus Wiseman, Apr 02 2023
2023-04-03T09:16:53
oeisdata/seq/A361/A361858.seq
371c88e89c4e68492a2d18b370d200ab
A361859
Number of integer partitions of n such that the maximum is greater than or equal to twice the median.
[ "0", "0", "0", "1", "2", "3", "7", "10", "15", "23", "34", "46", "67", "90", "121", "164", "219", "285", "375", "483", "622", "799", "1017", "1284", "1621", "2033", "2537", "3158", "3915", "4832", "5953", "7303", "8930", "10896", "13248", "16071", "19451", "23482", "28272", "33977", "40736", "48741", "58201", "69367", "82506", "97986", "116139" ]
[ "nonn" ]
5
1
5
[ "A000009", "A000041", "A000975", "A008284", "A027193", "A067538", "A237752", "A237755", "A237820", "A237821", "A237824", "A240219", "A307683", "A325347", "A359893", "A359901", "A359907", "A360005", "A360457", "A361848", "A361849", "A361851", "A361856", "A361857", "A361858", "A361859", "A361860", "A361867", "A361868", "A361906", "A361907" ]
null
Gus Wiseman, Apr 02 2023
2023-04-03T09:17:07
oeisdata/seq/A361/A361859.seq
43ed7e6d0fcd6e0822c6e14845178fb9
A361860
Number of integer partitions of n whose median part is the smallest.
[ "1", "2", "2", "4", "4", "7", "8", "12", "15", "21", "25", "36", "44", "58", "72", "95", "117", "150", "185", "235", "289", "362", "441", "550", "670", "824", "1000", "1223", "1476", "1795", "2159", "2609", "3126", "3758", "4485", "5369", "6388", "7609", "9021", "10709", "12654", "14966", "17632", "20782", "24414", "28684", "33601", "39364", "45996" ]
[ "nonn" ]
7
1
2
[ "A000005", "A000009", "A000041", "A006141", "A008284", "A027193", "A053263", "A058398", "A067659", "A111907", "A116608", "A118096", "A237753", "A240219", "A307683", "A325347", "A359893", "A359901", "A359902", "A359907", "A360005", "A360457", "A361848", "A361849", "A361860", "A361861" ]
null
Gus Wiseman, Apr 02 2023
2023-04-03T09:16:27
oeisdata/seq/A361/A361860.seq
aab3e8c058b9f564ab157d1007adc4f8
A361861
Number of integer partitions of n where the median is twice the minimum.
[ "0", "0", "0", "1", "1", "1", "2", "5", "5", "8", "11", "16", "20", "28", "38", "53", "67", "87", "111", "146", "183", "236", "297", "379", "471", "591", "729", "909", "1116", "1376", "1682", "2065", "2507", "3055", "3699", "4482", "5395", "6501", "7790", "9345", "11153", "13316", "15839", "18844", "22333", "26466", "31266", "36924", "43478", "51177" ]
[ "nonn" ]
6
1
7
[ "A000009", "A000041", "A006141", "A008284", "A027193", "A039900", "A053263", "A058398", "A067659", "A111907", "A116608", "A118096", "A237753", "A237755", "A237757", "A237824", "A307683", "A325347", "A359893", "A359901", "A359902", "A360005", "A360457", "A361848", "A361853", "A361860", "A361861" ]
null
Gus Wiseman, Apr 02 2023
2023-04-03T09:15:58
oeisdata/seq/A361/A361861.seq
3acdb0cbb8c8c704548cc07261c19e5e
A361862
Number of integer partitions of n such that (maximum) - (minimum) = (mean).
[ "0", "0", "0", "1", "0", "1", "0", "3", "2", "2", "0", "7", "0", "3", "6", "10", "0", "13", "0", "17", "10", "5", "0", "40", "12", "6", "18", "34", "0", "62", "0", "50", "24", "8", "60", "125", "0", "9", "32", "169", "0", "165", "0", "95", "176", "11", "0", "373", "114", "198", "54", "143", "0", "384", "254", "574", "66", "14", "0", "1090", "0", "15", "748", "633", "448", "782", "0", "286" ]
[ "nonn" ]
9
1
8
[ "A000009", "A000040", "A000041", "A008284", "A058398", "A067538", "A097364", "A118096", "A237755", "A237824", "A237832", "A237984", "A240219", "A243055", "A326836", "A326837", "A326844", "A327482", "A349156", "A359360", "A360068", "A360241", "A361853", "A361862", "A362047" ]
null
Gus Wiseman, Apr 10 2023
2023-04-12T11:08:26
oeisdata/seq/A361/A361862.seq
52bbcc3525857b33f3cd054e77aebb0e
A361863
Number of set partitions of {1..n} such that the median of medians of the blocks is (n+1)/2.
[ "1", "2", "3", "9", "26", "69", "335", "1018", "6629", "22805", "182988", "703745" ]
[ "nonn", "more" ]
10
1
2
[ "A000110", "A000975", "A007837", "A013580", "A027193", "A035470", "A038041", "A067659", "A079309", "A231147", "A275714", "A275780", "A307683", "A325347", "A326512", "A326513", "A326516", "A326521", "A326537", "A327475", "A327481", "A359893", "A359901", "A359902", "A359907", "A360005", "A360457", "A361654", "A361801", "A361863", "A361864", "A361865", "A361866", "A361910", "A361911" ]
null
Gus Wiseman, Apr 04 2023
2023-04-04T07:41:43
oeisdata/seq/A361/A361863.seq
7f819d729e1004168160452548ee6fce
A361864
Number of set partitions of {1..n} whose block-medians have integer median.
[ "1", "0", "3", "6", "30", "96", "461", "2000", "10727", "57092", "342348" ]
[ "nonn", "more" ]
5
1
3
[ "A000110", "A000975", "A007837", "A013580", "A027193", "A035470", "A038041", "A067659", "A079309", "A231147", "A275714", "A275780", "A307683", "A308037", "A325347", "A326512", "A326513", "A327475", "A327481", "A359893", "A359907", "A360005", "A360457", "A361801", "A361864", "A361865", "A361866", "A361911" ]
null
Gus Wiseman, Apr 04 2023
2023-04-04T07:41:38
oeisdata/seq/A361/A361864.seq
387b8e785a4c12ba76cfac8bf79afa6a
A361865
Number of set partitions of {1..n} such that the mean of the means of the blocks is an integer.
[ "1", "0", "3", "2", "12", "18", "101", "232", "1547", "3768", "24974", "116728", "687419", "3489664", "26436217", "159031250", "1129056772" ]
[ "nonn", "more", "changed" ]
10
1
3
[ "A000110", "A000975", "A007837", "A035470", "A038041", "A067538", "A102627", "A275714", "A275780", "A308037", "A326512", "A326513", "A326521", "A326537", "A326836", "A327475", "A327481", "A361864", "A361865", "A361866", "A361911" ]
null
Gus Wiseman, Apr 04 2023
2025-06-30T21:09:30
oeisdata/seq/A361/A361865.seq
eca49a15a5d89319c765547795492cc1
A361866
Number of set partitions of {1..n} with block-means summing to an integer.
[ "1", "1", "1", "3", "8", "22", "75", "267", "1119", "4965", "22694", "117090", "670621", "3866503", "24113829", "161085223", "1120025702", "8121648620", "62083083115", "492273775141", "4074919882483" ]
[ "nonn", "more" ]
11
0
4
[ "A000110", "A000975", "A007837", "A013580", "A035470", "A038041", "A067538", "A067659", "A102627", "A275714", "A275780", "A308037", "A326512", "A326513", "A326515", "A326516", "A326521", "A326836", "A327475", "A327481", "A361864", "A361865", "A361866", "A361911" ]
null
Gus Wiseman, Apr 04 2023
2025-05-12T19:06:48
oeisdata/seq/A361/A361866.seq
22c8183dd36fd1907b7ffe8ccbdade74
A361867
Positive integers > 1 whose prime indices satisfy (maximum) > 2*(median).
[ "20", "28", "40", "44", "52", "56", "66", "68", "76", "78", "80", "84", "88", "92", "99", "102", "104", "112", "114", "116", "117", "120", "124", "132", "136", "138", "148", "152", "153", "156", "160", "164", "168", "170", "171", "172", "174", "176", "184", "186", "188", "190", "198", "200", "204", "207", "208", "212", "220", "222", "224", "228", "230", "232", "234" ]
[ "nonn" ]
6
1
1
[ "A000975", "A001221", "A001222", "A053263", "A056239", "A061395", "A067801", "A111907", "A112798", "A237751", "A237820", "A359893", "A360005", "A360457", "A361848", "A361849", "A361855", "A361856", "A361857", "A361858", "A361859", "A361867", "A361868", "A361907", "A361908", "A361909" ]
null
Gus Wiseman, Apr 05 2023
2023-04-06T21:44:06
oeisdata/seq/A361/A361867.seq
01a3704b8e0e32083762807640eecc06
A361868
Positive integers > 1 whose prime indices satisfy (maximum) >= 2*(median).
[ "12", "20", "24", "28", "40", "42", "44", "48", "52", "56", "60", "63", "66", "68", "72", "76", "78", "80", "84", "88", "92", "96", "99", "102", "104", "112", "114", "116", "117", "120", "124", "126", "130", "132", "136", "138", "140", "144", "148", "152", "153", "156", "160", "164", "168", "170", "171", "172", "174", "176", "184", "186", "188", "189", "190", "192", "195" ]
[ "nonn" ]
7
1
1
[ "A000975", "A001221", "A001222", "A027193", "A053263", "A056239", "A061395", "A111907", "A112798", "A118096", "A237753", "A237821", "A307683", "A325347", "A359893", "A359901", "A360005", "A360457", "A361848", "A361849", "A361855", "A361856", "A361857", "A361858", "A361859", "A361867", "A361868", "A361906", "A361908" ]
null
Gus Wiseman, Apr 05 2023
2023-04-07T09:24:26
oeisdata/seq/A361/A361868.seq
6163c5abd2454b7e5d0c7a0a4740c296
A361869
Let x_0, x_1, x_2, ... be the iterations of the arithmetic derivative A003415 starting with x_0 = n. a(n) is the greatest k such that x_0 > x_1 > ... > x_k.
[ "0", "1", "2", "2", "0", "2", "3", "2", "0", "4", "3", "2", "0", "2", "5", "1", "0", "2", "0", "2", "0", "4", "3", "2", "0", "4", "2", "0", "0", "2", "0", "2", "0", "6", "3", "1", "0", "2", "5", "1", "0", "2", "3", "2", "0", "2", "5", "2", "0", "6", "3", "1", "0", "2", "0", "1", "0", "4", "3", "2", "0", "2", "7", "2", "0", "1", "3", "2", "0", "3", "3", "2", "0", "2", "2", "2", "0", "1", "3", "2", "0", "0", "3", "2", "0", "4", "3", "1", "0", "2", "0", "1", "0", "4", "7", "1", "0", "2", "2", "3" ]
[ "nonn" ]
50
0
3
[ "A003415", "A099307", "A361869" ]
null
Robert Israel, May 28 2023
2023-05-30T07:45:30
oeisdata/seq/A361/A361869.seq
05fa2993a2fb5ba0669896c7c6fbf444
A361870
Array read by downward antidiagonals: A(n,k) is the number of nonequivalent 2-colorings of the cells of an n-dimensional hypercube with edges k cells long under action of symmetry.
[ "2", "2", "1", "2", "2", "1", "2", "3", "2", "1", "2", "6", "6", "2", "1", "2", "10", "102", "22", "2", "1", "2", "20", "8548", "2852288", "402", "2", "1", "2", "36", "4211744", "384307306807269376", "6296489398464125698304", "1228158", "2", "1" ]
[ "tabl", "nonn" ]
123
0
1
[ "A000616", "A003992", "A005418", "A054247", "A361870" ]
null
Natalia L. Skirrow, May 28 2023
2025-06-02T16:49:53
oeisdata/seq/A361/A361870.seq
588433e7a0883dd26e16df0d63cc8c0d
A361871
The smallest order of a non-abelian group with an element of order n.
[ "6", "6", "6", "8", "10", "12", "14", "16", "18", "20", "22", "24", "26", "28", "30", "32", "34", "36", "38", "40", "42", "44", "46", "48", "50", "52", "54", "56", "58", "60", "62", "64", "66", "68", "70", "72", "74", "76", "78", "80", "82", "84", "86", "88", "90", "92", "94", "96", "98", "100", "102", "104", "106", "108", "110", "112", "114", "116", "118", "120" ]
[ "nonn", "easy" ]
15
1
1
[ "A051755", "A103517", "A163300", "A361871" ]
null
Yue Yu, Apr 01 2023
2023-08-11T09:53:26
oeisdata/seq/A361/A361871.seq
7cf9a7df765083d2c8dca0ba4b4d5d01
A361872
Number of primitive practical numbers (PPNs)(A267124) between successive primorial numbers (A002110) where the PPNs q are in the range A002110(n-1) < q <= A002110(n).
[ "1", "1", "3", "8", "108", "1107", "15788", "252603", "5121763" ]
[ "nonn", "more" ]
13
1
3
[ "A002110", "A267124", "A361872" ]
null
Frank M Jackson, Mar 27 2023
2023-06-21T06:41:12
oeisdata/seq/A361/A361872.seq
cc9db6a75d38d3251f6ff83954529c30
A361873
Decimal representation of continued fraction 1, 4, 7, 10, 13, 16, 19, ... (A016777).
[ "1", "2", "4", "1", "4", "9", "5", "7", "1", "9", "5", "7", "9", "3", "0", "3", "1", "1", "3", "0", "1", "9", "9", "6", "6", "3", "7", "6", "3", "0", "6", "4", "5", "0", "3", "2", "3", "4", "8", "0", "8", "5", "8", "6", "7", "1", "2", "5", "3", "6", "1", "3", "4", "8", "6", "4", "5", "4", "5", "9", "6", "2", "3", "3", "5", "6", "7", "5", "5", "9", "2", "4", "2", "7", "5", "6", "7", "2", "9", "7", "4", "4", "0", "6", "3", "9", "2", "6", "1", "7", "6", "9", "8", "7", "3", "2", "4", "5", "9", "7", "9", "4", "5", "7", "4", "9", "9", "7", "4", "1", "5", "5", "7", "1", "2", "0", "7", "6", "6", "7" ]
[ "nonn", "cons" ]
19
1
2
[ "A016777", "A060997", "A073747", "A361873" ]
null
Kelvin Voskuijl, Mar 27 2023
2023-04-21T09:23:21
oeisdata/seq/A361/A361873.seq
15d936d83f9b3147cbf76575b4aee8e6
A361874
a(n) is the least k such that k, k+1 and 2*k+1 all have exactly n prime factors counted with multiplicity.
[ "2", "25", "171", "1592", "37975", "928624", "8412687", "106390624", "2306890624", "37119730112", "429122890624", "23027923554687" ]
[ "nonn", "more" ]
36
1
1
[ "A001222", "A361874" ]
null
Zak Seidov and Robert Israel, Mar 27 2023
2023-04-13T05:34:59
oeisdata/seq/A361/A361874.seq
adaebcee1e37bfa047a2034f1dee49cc
A361875
Integers of the form k*2^m + 1 where 0 < k <= m and k is odd.
[ "3", "5", "9", "17", "25", "33", "49", "65", "97", "129", "161", "193", "257", "321", "385", "513", "641", "769", "897", "1025", "1281", "1537", "1793", "2049", "2561", "3073", "3585", "4097", "4609", "5121", "6145", "7169", "8193", "9217", "10241", "12289", "14337", "16385", "18433", "20481", "22529", "24577", "28673", "32769", "36865", "40961", "45057", "49153", "57345", "65537", "73729", "81921" ]
[ "nonn", "easy" ]
9
1
1
[ "A361180", "A361875" ]
null
Lorenzo Sauras Altuzarra, Mar 27 2023
2023-03-28T03:46:59
oeisdata/seq/A361/A361875.seq
3e7b0a7d9bd1dccbce3bc98b762ec953
A361876
Dispersion of the odd primes: a rectangular array read by downward antidiagonals.
[ "1", "3", "2", "7", "5", "4", "19", "13", "11", "6", "71", "43", "37", "17", "8", "359", "193", "163", "61", "23", "9", "2423", "1181", "971", "293", "89", "29", "10", "21589", "9547", "7669", "1931", "463", "113", "31", "12", "244481", "99523", "78101", "16699", "3301", "619", "131", "41", "14", "3413801", "1292831", "994559", "184463", "30593", "4583", "743" ]
[ "nonn", "tabl" ]
16
1
2
[ "A000040", "A065091", "A114537", "A114577", "A361876" ]
null
Clark Kimberling, Apr 08 2023
2023-05-20T15:47:14
oeisdata/seq/A361/A361876.seq
59ed66d1295f5ba8fd4e9af0e5684f3f
A361877
a(n) = binomial(2*n, n) * binomial(2*n - 1, n).
[ "1", "2", "18", "200", "2450", "31752", "426888", "5889312", "82818450", "1181952200", "17067389768", "248817153312", "3656229836168", "54086240180000", "804670797780000", "12030722505475200", "180648817621276050", "2722858995011344200", "41179040356653045000", "624643836545795220000", "9500832753861545296200" ]
[ "nonn" ]
18
0
2
[ "A000984", "A001700", "A002894", "A361877" ]
null
Peter Luschny, Mar 27 2023
2023-03-29T04:57:17
oeisdata/seq/A361/A361877.seq
70eb17b67c3ecb24868459f6051db750
A361878
a(n) = hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1).
[ "1", "3", "43", "849", "19371", "480503", "12587065", "342634365", "9596641195", "274766987955", "8005895472543", "236615835243329", "7076435929811769", "213755697648537567", "6512143129366530853", "199862758637494411349", "6173557491107989995435", "191779157650960532459435", "5987596175475052883532955" ]
[ "nonn" ]
14
0
2
[ "A005259", "A361712", "A361878" ]
null
Peter Luschny, Mar 27 2023
2023-03-29T10:30:39
oeisdata/seq/A361/A361878.seq
1ae9f3bd4b2a3dd8bb97c3fd4cf991e5
A361879
Sum of even middle divisors of n, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).
[ "0", "0", "0", "2", "0", "2", "0", "2", "0", "0", "0", "4", "0", "0", "0", "4", "0", "0", "0", "4", "0", "0", "0", "10", "0", "0", "0", "4", "0", "6", "0", "4", "0", "0", "0", "6", "0", "0", "0", "8", "0", "6", "0", "0", "0", "0", "0", "14", "0", "0", "0", "0", "0", "6", "0", "8", "0", "0", "0", "16", "0", "0", "0", "8", "0", "6", "0", "0", "0", "10", "0", "14", "0", "0", "0", "0", "0", "0", "0", "18", "0", "0", "0", "12", "0", "0", "0", "8", "0", "10", "0", "0", "0", "0", "0", "20" ]
[ "nonn", "look" ]
23
1
4
[ "A000203", "A067742", "A071090", "A071562", "A146076", "A299761", "A299777", "A303297", "A358434", "A361561", "A361824", "A361879" ]
null
Omar E. Pol, Mar 27 2023
2024-03-18T16:52:21
oeisdata/seq/A361/A361879.seq
d5237f5817a917f2c6c43ec3c4e477ab
A361880
Expansion of 1/(1 - 9*x/(1 - x)^2)^(1/3).
[ "1", "3", "24", "207", "1893", "17952", "174402", "1723494", "17250000", "174354822", "1776119970", "18208500000", "187659221409", "1942674634371", "20187543581880", "210472842939975", "2200677521078253", "23068297001178240", "242353695578011416", "2551260130246575048", "26905595698893121728" ]
[ "nonn" ]
17
0
2
[ "A004987", "A361375", "A361843", "A361844", "A361845", "A361880", "A361895", "A361896" ]
null
Seiichi Manyama, Mar 28 2023
2023-03-29T12:09:13
oeisdata/seq/A361/A361880.seq
a89e85dc5a07b7992884b559d40a2632
A361881
Expansion of 1/(1 - 9*x/(1 + x))^(1/3).
[ "1", "3", "15", "93", "618", "4278", "30390", "219810", "1611105", "11929395", "89045079", "669018837", "5053759440", "38350056072", "292147584072", "2233020788184", "17117923408746", "131560216858110", "1013413369611606", "7822237588031586", "60487791859818348", "468511159492134516" ]
[ "nonn" ]
21
0
2
[ "A004987", "A180400", "A361375", "A361841", "A361842", "A361881", "A361882" ]
null
Seiichi Manyama, Mar 28 2023
2025-04-15T14:31:02
oeisdata/seq/A361/A361881.seq
cf3ab432eb965a22acfa2b0c2e0a86bd
A361882
Expansion of 1/(1 - 9*x/(1 + x)^2)^(1/3).
[ "1", "3", "12", "63", "357", "2112", "12834", "79446", "498504", "3160566", "20202882", "129998400", "841084065", "5466859635", "35672889180", "233564188167", "1533744021741", "10097724827904", "66633102118296", "440600483618184", "2918753549183712", "19367330685385032", "128704927930928088" ]
[ "nonn" ]
18
0
2
[ "A004987", "A180400", "A361841", "A361842", "A361880", "A361881", "A361882" ]
null
Seiichi Manyama, Mar 28 2023
2023-03-30T09:39:14
oeisdata/seq/A361/A361882.seq
8f058d43582429fc630af80c9b7bd4c7
A361883
a(n) = (1/n) * Sum_{k = 0..n} (n+2*k) * binomial(n+k-1,k)^3.
[ "4", "98", "3550", "150722", "6993504", "343542572", "17560824138", "924397069250", "49770307114528", "2728028537409848", "151717661909940724", "8539838104822762220", "485583352521437530000", "27850592121190001279928", "1609345458428168657866050" ]
[ "nonn", "easy" ]
18
1
1
[ "A000984", "A002894", "A361883", "A361884", "A361885", "A361886" ]
null
Peter Bala, Mar 28 2023
2023-03-30T05:08:15
oeisdata/seq/A361/A361883.seq
89d3cbadf4f264919f01199b603f1a8d
A361884
a(n) = (1/n) * Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k) * binomial(n+k-1,k)^3.
[ "2", "66", "2540", "110530", "5197752", "257490156", "13238524728", "699822144450", "37800431926400", "2077184897317816", "115757876008359312", "6526739641107783916", "371641758587326581200", "21341134886976332825400", "1234474507620634579565040" ]
[ "nonn", "easy" ]
19
1
1
[ "A000984", "A002894", "A361883", "A361884", "A361885", "A361886" ]
null
Peter Bala, Mar 28 2023
2023-03-30T05:08:24
oeisdata/seq/A361/A361884.seq
0467e089d6124d1fe208a6283e57fdc7
A361885
a(n) = (1/n) * Sum_{k = 0..2*n} (n+2*k) * binomial(n+k-1,k)^3.
[ "9", "979", "165816", "33372819", "7380882509", "1732912534168", "424032181044264", "106952563532680339", "27609695174536836075", "7259294757681340436979", "1937215339689731617386000", "523352118643145676922317336", "142854011885066484369862826496", "39337931825265398967484384872560" ]
[ "nonn", "easy" ]
18
0
1
[ "A005809", "A188662", "A361883", "A361884", "A361885", "A361886" ]
null
Peter Bala, Mar 28 2023
2023-03-30T05:09:01
oeisdata/seq/A361/A361885.seq
e0cdc6ed49be79bb6f8447863e4609ee
A361886
a(n) = (1/n) * Sum_{k = 0..2*n} (-1)^k * (n+2*k) * binomial(n+k-1,k)^3.
[ "3", "435", "79464", "16551315", "3732732003", "887492378136", "219081875199120", "55618197870142611", "14429522546341842225", "3808899907812064500435", "1019705941257612879722400", "276212555234100323977483800", "75563424471884688135891640224" ]
[ "nonn", "easy" ]
16
1
1
[ "A005809", "A361883", "A361884", "A361885", "A361886" ]
null
Peter Bala, Mar 28 2023
2023-03-30T05:08:35
oeisdata/seq/A361/A361886.seq
51d8133b53df8dd161c4231fdd9707a2
A361887
a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "1", "2", "33", "276", "4150", "65300", "1083425", "20965000", "399876876", "8461219032", "178642861782", "4010820554664", "90684123972156", "2130950905378152", "50560833176021025", "1231721051614138800", "30294218438009039800", "759645100717216142000", "19213764100954274616908", "493269287121905287769776" ]
[ "nonn", "easy" ]
28
0
3
[ "A003161", "A003162", "A008315", "A120730", "A183069", "A357824", "A361887", "A361888", "A361889", "A361890", "A361891", "A361892" ]
null
Peter Bala, Mar 28 2023
2025-03-25T15:09:47
oeisdata/seq/A361/A361887.seq
d9c0d1e82a3a765075a369fed36e4691
A361888
a(n) = S(5,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "1", "1", "11", "46", "415", "3265", "30955", "299500", "3173626", "33576266", "386672861", "4340714886", "52846226091", "620906440961", "7857161332715", "95704821415240", "1246162831674580", "15624127945644100", "207990691516965886", "2669841775757784796", "36176886727828945286", "473508685502539872586" ]
[ "nonn", "easy" ]
20
0
4
[ "A003161", "A003162", "A183069", "A361887", "A361888", "A361889", "A361890", "A361891", "A361892" ]
null
Peter Bala, Mar 29 2023
2025-03-24T10:19:02
oeisdata/seq/A361/A361888.seq
5277750ab0437782b40d14d63872a2ae
A361889
a(n) = S(5,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "11", "415", "30955", "3173626", "386672861", "52846226091", "7857161332715", "1246162831674580", "207990691516965886", "36176886727828945286", "6510211391453319830461", "1205449991704260042021490", "228686327051301858363357905", "44299708036441260810228742915", "8738765548899621077157770551275" ]
[ "nonn", "easy" ]
25
1
2
[ "A003161", "A003162", "A183069", "A361887", "A361888", "A361889", "A361890", "A361891", "A361892", "A382394" ]
null
Peter Bala, Mar 29 2023
2025-03-25T15:14:07
oeisdata/seq/A361/A361889.seq
0b5a459293a69aa363c46d2bab4df8b1
A361890
a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "1", "2", "129", "2316", "94510", "4939220", "211106945", "14879165560", "828070125876", "61472962084968", "4223017425122958", "325536754765395096", "25399546083773839692", "2059386837863675003112", "173281152533121109073025", "14789443838781868027714800", "1307994690673355979749969800" ]
[ "nonn", "easy" ]
25
0
3
[ "A003161", "A003162", "A008315", "A120730", "A183069", "A357824", "A361887", "A361888", "A361889", "A361890", "A361891", "A361892", "A382394" ]
null
Peter Bala, Mar 30 2023
2025-03-25T12:57:51
oeisdata/seq/A361/A361890.seq
5ea3a508889e368985bffef1823ca71b
A361891
a(n) = S(7,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "1", "1", "43", "386", "9451", "246961", "6031627", "212559508", "6571985126", "243940325734", "9140730357409", "352312505157354", "14801600281919487", "600054439936968241", "26927918031565051915", "1149140935414286560040", "53804800109969394477580", "2401141625752684697505820" ]
[ "nonn", "easy" ]
24
0
4
[ "A003161", "A003162", "A183069", "A361887", "A361888", "A361889", "A361890", "A361891", "A361892" ]
null
Peter Bala, Mar 30 2023
2025-03-25T13:06:17
oeisdata/seq/A361/A361891.seq
f538c750eb3874ad36a247090c5d8cc0
A361892
a(n) = S(7,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "43", "9451", "6031627", "6571985126", "9140730357409", "14801600281919487", "26927918031565051915", "53804800109969394477580", "116002825041515533807200418", "266118189111094898593879923346", "642598035707739308769581970619393" ]
[ "nonn", "easy" ]
23
1
2
[ "A003161", "A003162", "A183069", "A361887", "A361888", "A361889", "A361890", "A361891", "A361892", "A382394" ]
null
Peter Bala, Mar 30 2023
2025-03-25T17:56:10
oeisdata/seq/A361/A361892.seq
e10ee4348f3165b4bc9206286a210e2d
A361893
Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.
[ "1", "0", "1", "0", "2", "2", "0", "3", "12", "6", "0", "4", "36", "72", "24", "0", "5", "80", "360", "480", "120", "0", "6", "150", "1200", "3600", "3600", "720", "0", "7", "252", "3150", "16800", "37800", "30240", "5040", "0", "8", "392", "7056", "58800", "235200", "423360", "282240", "40320", "0", "9", "576", "14112", "169344", "1058400", "3386880", "5080320", "2903040", "362880" ]
[ "nonn", "tabl" ]
10
0
5
[ "A000142", "A011379", "A021010", "A052852", "A055303", "A062119", "A144084", "A187535", "A317365", "A361893" ]
null
Peter Luschny, Mar 28 2023
2023-07-30T17:45:42
oeisdata/seq/A361/A361893.seq
a0ae3e31bc08feebef25264048c92e30
A361894
Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.
[ "1", "2", "1", "3", "2", "1", "4", "6", "2", "1", "5", "16", "6", "2", "1", "6", "35", "20", "6", "2", "1", "7", "66", "65", "20", "6", "2", "1", "8", "112", "186", "70", "20", "6", "2", "1", "9", "176", "462", "246", "70", "20", "6", "2", "1", "10", "261", "1016", "812", "252", "70", "20", "6", "2", "1", "11", "370", "2025", "2416", "917", "252", "70", "20", "6", "2", "1", "12", "506", "3730", "6435", "3256", "924", "252", "70", "20", "6", "2", "1" ]
[ "nonn", "tabl" ]
9
1
2
[ "A000984", "A103371", "A132812", "A201631", "A361574", "A361681", "A361894" ]
null
Peter Luschny, Mar 31 2023
2023-03-31T07:00:24
oeisdata/seq/A361/A361894.seq
00ce849e71c2c820d1cc249f7c878277
A361895
Expansion of 1/(1 - 9*x/(1 - x)^3)^(1/3).
[ "1", "3", "27", "252", "2487", "25434", "266364", "2837082", "30601233", "333302931", "3658565127", "40413860334", "448778693844", "5005642415907", "56044616215041", "629552293867800", "7092072533703567", "80095810435943526", "906605837653876254", "10282430320166723448", "116829834042508121682" ]
[ "nonn", "changed" ]
19
0
2
[ "A004987", "A361375", "A361843", "A361844", "A361845", "A361880", "A361895", "A361896" ]
null
Seiichi Manyama, Mar 28 2023
2025-07-11T02:57:33
oeisdata/seq/A361/A361895.seq
343a1a65b03c2c67ef31d21cd92700ec
A361896
Expansion of 1/(1 - 9*x/(1 - x)^4)^(1/3).
[ "1", "3", "30", "300", "3165", "34584", "386880", "4400928", "50692266", "589584042", "6910397886", "81507086634", "966408021984", "11509174498254", "137584249375308", "1650109151463594", "19847075122106145", "239316542492974317", "2892135259684291248", "35021199836282568456", "424837125616822551264" ]
[ "nonn" ]
11
0
2
[ "A004987", "A361375", "A361843", "A361844", "A361845", "A361880", "A361895", "A361896" ]
null
Seiichi Manyama, Mar 28 2023
2023-03-30T05:16:27
oeisdata/seq/A361/A361896.seq
66758601ed5ac63488377ac0b9ed1a8c
A361897
Leading terms of the rows of the array in A362450; or, Gilbreath transform of tau (A000005).
[ "1", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0" ]
[ "easy", "nonn" ]
64
1
1
[ "A000005", "A001659", "A036262", "A051950", "A361897", "A362450", "A362451", "A362452", "A362453", "A362454" ]
null
Wayman Eduardo Luy and Robert G. Wilson v, Mar 28 2023
2023-09-27T15:02:58
oeisdata/seq/A361/A361897.seq
470855468263374d1ef89a3e752b30ee
A361898
A set of 13 primes that form a covering set for a Sierpiński (or Riesel) number.
[ "3", "5", "7", "11", "31", "73", "97", "151", "241", "631", "673", "1321", "23311" ]
[ "nonn", "fini", "full" ]
10
1
1
[ "A076336", "A101036", "A291360", "A296924", "A361898", "A361899", "A361900" ]
null
Arkadiusz Wesolowski, Mar 28 2023
2023-04-22T19:30:06
oeisdata/seq/A361/A361898.seq
44bd160c65ccac10d603fd10e813154c
A361899
a(n) = 3*(6858365065530*(2^45 - 1)*n + 153479820268467961)^2.
[ "70668165688923686196507258250492563", "174687593550891106640307045856561008882907291372256643", "698750373759134872171732581703201135992894186495330123", "1572188340624731296664944773228844067526467943619713003" ]
[ "nonn", "easy" ]
33
0
1
[ "A000215", "A229852", "A351332", "A361898", "A361899", "A361900" ]
null
Arkadiusz Wesolowski, Mar 28 2023
2023-10-31T11:21:17
oeisdata/seq/A361/A361899.seq
ad062f226af902342f9275c59bd102ac
A361900
Numbers k such that 3*153479820268467961^2*2^k + 1 is prime.
[ "600", "810", "1074", "7974", "22290", "43086" ]
[ "nonn", "more" ]
12
1
1
[ "A000215", "A229852", "A351332", "A361898", "A361899", "A361900" ]
null
Arkadiusz Wesolowski, Mar 28 2023
2023-04-22T19:30:10
oeisdata/seq/A361/A361900.seq
82de136057285dee247fc160838b7d96