sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A362201
a(n) = number of isogeny classes of dimension 3 abelian varieties over the finite field of order prime(n).
[ "215", "677", "2953", "7979", "30543", "50371", "112283", "156589", "277517", "555843", "678957", "1153875", "1569637", "1810805", "2364089", "3389675", "4675707", "5167277", "6846631", "8147047", "8855295", "11222313", "13014767", "16045439", "20772343", "23449327", "24870063", "27880975", "29473619", "32839031", "46617799", "51162221" ]
[ "nonn" ]
20
1
1
[ "A362198", "A362201", "A362570" ]
null
Robin Visser, Apr 10 2023
2023-07-23T22:23:15
oeisdata/seq/A362/A362201.seq
4fbe04d3e50c7450dfa27c6189ac0df4
A362202
Lexicographic earliest sequence of distinct positive integers having the same concatenation of digits as the sequence 2^a(n).
[ "6", "4", "1", "62", "46", "11", "68", "60", "18", "42", "7", "3", "8", "790", "470", "36", "87", "44", "17", "76", "64", "20", "48", "2", "9", "5", "14", "7905", "179", "35", "28", "25", "85", "61", "15", "29", "21", "50", "460", "684", "69", "762", "621", "444", "39", "80", "465", "1110", "41", "288", "256", "65", "117", "32", "84", "4609", "23", "26", "89", "53", "110", "52", "643", "7622", "83", "175", "24", "1780", "49", "13" ]
[ "nonn", "base" ]
9
1
1
[ "A000079", "A362191", "A362202" ]
null
M. F. Hasler, Apr 10 2023
2024-01-25T07:55:38
oeisdata/seq/A362/A362202.seq
cfa6a4053d63efd0f9217dc80ae1100f
A362203
First of three consecutive primes p,q,r such that p+q, p+r and q+r are all triprimes.
[ "1559", "3449", "5237", "5987", "9241", "12119", "16787", "16943", "22397", "22871", "24697", "27143", "29881", "30809", "33203", "40241", "41149", "50627", "57601", "59473", "60169", "64817", "69151", "73727", "78929", "86629", "89231", "94747", "97511", "98479", "108037", "114847", "119513", "122533", "123887", "132371", "134741", "134789", "138739", "140419", "141539" ]
[ "nonn" ]
15
1
1
[ "A001358", "A014612", "A362203" ]
null
Zak Seidov and Robert Israel, Apr 10 2023
2023-04-16T15:55:12
oeisdata/seq/A362/A362203.seq
11c000d329503b67b00a59d43dd14fca
A362204
Expansion of e.g.f. exp(x/sqrt(1-2*x)).
[ "1", "1", "3", "16", "121", "1176", "13921", "193978", "3106881", "56201176", "1132709041", "25162197006", "610668537073", "16073212005436", "455980333073721", "13868451147012946", "450140785396634881", "15529495879187075088", "567427732311438658081", "21889446540911251445206" ]
[ "nonn", "easy" ]
15
0
3
[ "A025168", "A362163", "A362204" ]
null
Seiichi Manyama, Apr 11 2023
2024-02-20T04:38:09
oeisdata/seq/A362/A362204.seq
97eb0208aed1ba5ee65956053db74c06
A362205
Expansion of e.g.f. exp(x/(1-3*x)^(1/3)).
[ "1", "1", "3", "19", "185", "2401", "38731", "745123", "16630769", "422157025", "12005107091", "377957000851", "13048046175913", "490052749100929", "19890724260375515", "867582126490694371", "40467070835396193761", "2009901604798183428673", "105901641663222888913699" ]
[ "nonn", "easy" ]
15
0
3
[ "A321837", "A362164", "A362188", "A362205" ]
null
Seiichi Manyama, Apr 11 2023
2023-04-11T11:33:24
oeisdata/seq/A362/A362205.seq
9bbaea1dff94009bbdbd0141a4dcb14d
A362206
Expansion of 1/(1 - x/(1-9*x)^(1/3)).
[ "1", "1", "4", "25", "181", "1399", "11212", "91936", "765805", "6452449", "54841438", "469306102", "4038193870", "34903997029", "302828905471", "2635745917759", "23003622046900", "201241080558652", "1764149626139119", "15493365042402772", "136288275628625410", "1200600389345625754" ]
[ "nonn", "easy" ]
15
0
3
[ "A026671", "A362157", "A362206", "A362210" ]
null
Seiichi Manyama, Apr 11 2023
2024-02-19T12:06:49
oeisdata/seq/A362/A362206.seq
21eb2086a9156765265e719c7388076a
A362207
a(n) is the number of unordered triples of shortest nonintersecting grid paths joining two opposite corners of an n X n X n grid.
[ "2", "1440", "5039744", "30456915312", "244247250106272", "2330237215901633376", "25005390829898900970720", "292102859220245236374450192", "3638369778575244135648725730848", "47651985114895805442163075548018912", "649794504408024777960179124905242154688" ]
[ "nonn" ]
32
1
1
[ "A000891", "A362207" ]
null
Janaka Rodrigo, Apr 11 2023
2023-04-13T00:28:22
oeisdata/seq/A362/A362207.seq
f7a1f2cafb60ca53f8047eb3b9cddf92
A362208
Irregular triangle read by rows: T(n, k) is the number of compositions (ordered partitions) of n into exactly k distinct parts between the members of [k^2].
[ "1", "0", "0", "2", "0", "2", "0", "4", "0", "2", "6", "0", "2", "6", "0", "0", "12", "0", "0", "18", "0", "0", "24", "24", "0", "0", "30", "24", "0", "0", "42", "48", "0", "0", "42", "72", "0", "0", "48", "120", "0", "0", "48", "144", "120", "0", "0", "48", "216", "120", "0", "0", "42", "264", "240", "0", "0", "42", "360", "360", "0", "0", "30", "432", "600", "0", "0", "24", "552", "840", "0", "0", "18", "648", "1200", "720" ]
[ "nonn", "tabf" ]
14
1
4
[ "A000290", "A003056", "A072574", "A216652", "A362208", "A362209", "A362221" ]
null
Stefano Spezia, Apr 11 2023
2023-04-16T20:37:29
oeisdata/seq/A362/A362208.seq
0f02636a1cdf2577b31d883108beddc1
A362209
Irregular triangle read by rows: T(n, k) is the number of k X k matrices using all the integers from 1 to k^2 and having trace equal to n, with 1 <= k <= A003056(n).
[ "1", "0", "0", "4", "0", "4", "0", "8", "0", "4", "4320", "0", "4", "4320", "0", "0", "8640", "0", "0", "12960", "0", "0", "17280", "11496038400", "0", "0", "21600", "11496038400", "0", "0", "30240", "22992076800", "0", "0", "30240", "34488115200", "0", "0", "34560", "57480192000", "0", "0", "34560", "68976230400", "291948240981196800000" ]
[ "nonn", "tabf" ]
11
1
4
[ "A000290", "A003056", "A345132", "A362187", "A362208", "A362209" ]
null
Stefano Spezia, Apr 11 2023
2023-04-16T20:37:44
oeisdata/seq/A362/A362209.seq
726596c4418cf008ab69ea57c97bf84b
A362210
Expansion of 1/(1 - x/(1-9*x)^(2/3)).
[ "1", "1", "7", "58", "505", "4498", "40576", "368965", "3373225", "30958240", "284934754", "2628211291", "24283705558", "224677646416", "2081054132179", "19293026227024", "178996540057615", "1661743445778403", "15435351753092176", "143439377236572826", "1333496145331028230" ]
[ "nonn", "easy" ]
8
0
3
[ "A362206", "A362210" ]
null
Seiichi Manyama, Apr 11 2023
2023-04-11T11:34:30
oeisdata/seq/A362/A362210.seq
06be353cc2724c1976e3d72987f28c3b
A362211
a(n) is the unique solution to A323410(x) = A362185(n).
[ "1", "6", "15", "21", "35", "11392", "1688", "10048", "53632", "101632", "5272", "2632", "6616", "50368", "1386", "102016", "1716", "1722", "161152", "4356", "11992", "92992", "4716", "101312", "589312", "2634", "644608", "3538", "3778", "898048", "30896", "16312", "3610", "3510", "4702", "1432576", "4626", "606976", "8908", "3738", "343936" ]
[ "nonn" ]
10
1
2
[ "A131826", "A323410", "A362185", "A362211", "A362212" ]
null
Amiram Eldar, Apr 11 2023
2023-04-12T08:06:01
oeisdata/seq/A362/A362211.seq
7684c16677f8d846b38e8d2715f6ddd4
A362212
a(n) is the unique solution to A047994(x) = A361969(n).
[ "4", "8", "24", "16", "32", "76", "96", "64", "128", "184", "236", "216", "224", "316", "332", "384", "256", "344", "552", "428", "376", "424", "472", "556", "544", "768", "512", "692", "716", "608", "664", "796", "1128", "892", "908", "896", "1076", "864", "1416", "1132", "944", "1268", "1536", "1024", "1372", "1192", "1436", "1468", "1532", "1992", "1556", "1384" ]
[ "nonn" ]
11
1
1
[ "A047994", "A131826", "A135347", "A361966", "A361969", "A362211", "A362212" ]
null
Amiram Eldar, Apr 11 2023
2023-04-12T08:05:55
oeisdata/seq/A362/A362212.seq
7cc5a3eebb58e5b9435a8e6aba633e39
A362213
Irregular table read by rows in which the n-th row consists of all the numbers m such that cototient(m) = n, where cototient is A051953.
[ "4", "9", "6", "8", "25", "10", "15", "49", "12", "14", "16", "21", "27", "35", "121", "18", "20", "22", "33", "169", "26", "39", "55", "24", "28", "32", "65", "77", "289", "34", "51", "91", "361", "38", "45", "57", "85", "30", "95", "119", "143", "529", "36", "40", "44", "46", "69", "125", "133", "63", "81", "115", "187", "52", "161", "209", "221", "841", "42", "50", "58", "87", "247", "961" ]
[ "nonn", "tabf" ]
11
2
1
[ "A005278", "A032447", "A051953", "A063507", "A063740", "A063741", "A063742", "A063748", "A100827", "A101373", "A131825", "A131826", "A361966", "A362180", "A362213" ]
null
Amiram Eldar, Apr 11 2023
2023-04-12T08:05:50
oeisdata/seq/A362/A362213.seq
e936d17cd8edb3bc7f253a0c0ef6f371
A362214
a(n) = the hypergraph Fuss-Catalan number FC_(2,2)(n).
[ "1", "1", "144", "1341648", "693520980336" ]
[ "nonn", "walk", "more" ]
14
0
3
[ "A000108", "A355262", "A362167", "A362214", "A362215", "A362216", "A362217" ]
null
Peter Bala, Apr 11 2023
2023-04-25T06:15:59
oeisdata/seq/A362/A362214.seq
fc0c270c12fdbeeb020a8e9bd47c5842
A362215
a(n) = the hypergraph Fuss-Catalan number FC_(2,3)(n).
[ "1", "1", "480", "200225", "18527520", "45589896150400" ]
[ "nonn", "walk", "more" ]
10
0
3
[ "A000108", "A355262", "A362167", "A362214", "A362215", "A362216", "A362217" ]
null
Peter Bala, Apr 11 2023
2023-04-25T06:16:16
oeisdata/seq/A362/A362215.seq
fd11f5a7ed26af2a71708a96f5340701
A362216
a(n) = the hypergraph Fuss-Catalan number FC_(3,2)(n).
[ "1", "1", "11532", "628958939250", "163980917165716725552156" ]
[ "nonn", "walk", "more" ]
11
0
3
[ "A000108", "A355262", "A362167", "A362214", "A362215", "A362216", "A362217" ]
null
Peter Bala, Apr 11 2023
2023-04-25T06:16:43
oeisdata/seq/A362/A362216.seq
6569bea7cfeafc7fe4c835e353190fe3
A362217
a(n) = the hypergraph Fuss-Catalan number FC_(3,3)(n).
[ "1", "1", "38440", "8272793255000", "9396808005460764741084000" ]
[ "nonn", "walk", "more" ]
13
0
3
[ "A000108", "A355262", "A362167", "A362214", "A362215", "A362216", "A362217" ]
null
Peter Bala, Apr 11 2023
2023-04-25T06:16:30
oeisdata/seq/A362/A362217.seq
6750801e13f7113b2217fc8dc8211392
A362218
Three-column array read by rows: row n gives the unique ordered primitive Pythagorean triple (a,b,c) with a<b such that (b+c)/a = n.
[ "3", "4", "5", "8", "15", "17", "5", "12", "13", "12", "35", "37", "7", "24", "25", "16", "63", "65", "9", "40", "41", "20", "99", "101", "11", "60", "61", "24", "143", "145", "13", "84", "85", "28", "195", "197", "15", "112", "113", "32", "255", "257", "17", "144", "145", "36", "323", "325", "19", "180", "181", "40", "399", "401" ]
[ "nonn", "tabf" ]
37
3
1
[ "A022998", "A066830", "A228564", "A362218" ]
null
Miguel-Ángel Pérez García-Ortega, Apr 11 2023
2023-04-30T18:11:34
oeisdata/seq/A362/A362218.seq
31b39ed261e7bede6fb046d601af23eb
A362219
Decimal expansion of smallest positive solution to tan(x) = arctan(x).
[ "4", "0", "6", "7", "5", "8", "8", "8", "6", "5", "7", "6", "5", "8", "6", "2", "7", "9", "0", "9", "1", "7", "0", "8", "5", "0", "2", "5", "3", "1", "2", "4", "1", "1", "3", "1", "9", "0", "6", "8", "3", "0", "0", "6", "7", "4", "4", "9", "3", "9", "5", "7", "9", "2", "2", "6", "3", "7", "2", "6", "3", "4", "3", "6", "5", "5", "1", "4", "6", "5", "8", "6", "2", "6", "6", "0", "5", "4", "7", "1", "0", "1", "5", "5", "9", "0", "2", "8", "2", "3", "7", "7", "0", "4", "4", "0", "0", "1", "1", "6", "8", "2", "0" ]
[ "cons", "nonn" ]
7
1
1
[ "A115365", "A362219", "A362220" ]
null
Wolfe Padawer, Apr 11 2023
2023-05-09T00:30:37
oeisdata/seq/A362/A362219.seq
97007262fe7e9d15f062f143103faf72
A362220
Decimal expansion of smallest positive root of x = tan(tan(x)).
[ "1", "3", "2", "9", "7", "3", "1", "2", "2", "0", "6", "7", "8", "9", "4", "5", "5", "1", "5", "7", "3", "7", "1", "4", "6", "0", "6", "5", "5", "8", "4", "6", "4", "8", "5", "8", "9", "6", "0", "4", "8", "2", "9", "8", "5", "7", "4", "9", "0", "3", "8", "0", "4", "3", "6", "7", "5", "1", "2", "4", "6", "4", "5", "7", "9", "7", "9", "9", "7", "8", "0", "4", "7", "0", "6", "0", "1", "4", "3", "2", "0", "4", "5", "8", "3", "8", "2", "3", "7", "1", "3", "6", "9", "5", "1", "6", "2", "4", "8", "8", "4", "3", "6" ]
[ "cons", "nonn" ]
8
1
2
[ "A115365", "A362219", "A362220" ]
null
Wolfe Padawer, Apr 11 2023
2023-05-09T00:30:32
oeisdata/seq/A362/A362220.seq
de25c62b164c4a61a373e99a7e81905f
A362221
Irregular triangle read by rows: T(n, k) is the number of partitions of n into exactly k distinct parts between the members of [k^2].
[ "1", "0", "0", "1", "0", "1", "0", "2", "0", "1", "1", "0", "1", "1", "0", "0", "2", "0", "0", "3", "0", "0", "4", "1", "0", "0", "5", "1", "0", "0", "7", "2", "0", "0", "7", "3", "0", "0", "8", "5", "0", "0", "8", "6", "1", "0", "0", "8", "9", "1", "0", "0", "7", "11", "2", "0", "0", "7", "15", "3", "0", "0", "5", "18", "5", "0", "0", "4", "23", "7", "0", "0", "3", "27", "10", "1", "0", "0", "2", "34", "13", "1", "0", "0", "1", "38", "18", "2" ]
[ "nonn", "tabf" ]
9
1
8
[ "A000290", "A003056", "A072574", "A216652", "A362208", "A362221" ]
null
Stefano Spezia, Apr 11 2023
2023-04-16T20:37:57
oeisdata/seq/A362/A362221.seq
0e509922e4e96347ad0384013130f6e2
A362222
Slowest increasing sequence where a(n) + n^2 is a prime.
[ "1", "3", "4", "7", "12", "17", "18", "19", "20", "27", "28", "29", "30", "31", "32", "37", "42", "43", "48", "49", "50", "57", "58", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "93", "96", "97", "100", "103", "104", "105", "124", "133", "138", "147", "148", "153", "154", "163", "166", "171", "184", "193", "196", "197", "198", "205" ]
[ "nonn" ]
17
1
2
[ "A053000", "A107819", "A362222" ]
null
Angad Singh, Apr 11 2023
2023-04-16T20:27:20
oeisdata/seq/A362/A362222.seq
9ed801575143d67a13aa210cebd6b063
A362223
a(n) is the number of n-celled fixed rounded polyominoes.
[ "1", "4", "20", "113", "682", "4294", "27830", "184240", "1239575", "8446660", "58150684", "403735761" ]
[ "nonn", "more" ]
7
1
2
[ "A056840", "A362223", "A362224" ]
null
John Mason, Apr 11 2023
2023-04-12T10:51:52
oeisdata/seq/A362/A362223.seq
a03bbcfe7f1fe8bf9d6abb68fc2f5642
A362224
a(n) is the number of n-celled one-sided rounded polyominoes
[ "1", "2", "6", "34", "177", "1105", "6992", "46264", "310126", "2113012", "14539215", "100943151" ]
[ "nonn", "more" ]
6
1
2
[ "A056840", "A362223", "A362224" ]
null
John Mason, Apr 11 2023
2023-04-12T10:51:56
oeisdata/seq/A362/A362224.seq
803361cc1ea1f36b0dc09d325801f8d2
A362225
Primes of the form (2*p^2 + 1)/3 where p is a prime > 3.
[ "17", "113", "193", "241", "353", "641", "1873", "3361", "5281", "8513", "10753", "16433", "17713", "18593", "21841", "25873", "34961", "80273", "92753", "107201", "111521", "117041", "134401", "158113", "168673", "172721", "182353", "195121", "211313", "217361", "221953", "239201", "279073", "376001", "394241" ]
[ "nonn" ]
17
1
1
[ "A175255", "A175256", "A362225" ]
null
Alain Rocchelli, Apr 11 2023
2023-05-18T19:42:34
oeisdata/seq/A362/A362225.seq
afb2dec2649683f843fb4db2dbe45cd2
A362226
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k isolated strongly connected components, n>=0, 0<=k<=n.
[ "1", "0", "1", "2", "1", "1", "36", "24", "3", "1", "2240", "1762", "87", "6", "1", "462720", "577000", "8630", "215", "10", "1", "332613632", "737645836", "3455820", "26085", "435", "15", "1", "867410804736", "3525456796232", "5166693532", "12154030", "61775", "777", "21", "1", "8503156728135680", "63526200994115056", "28215577119548", "20705805988", "32624585", "125776", "1274", "28", "1" ]
[ "nonn", "tabl" ]
11
0
4
[ "A003030", "A053763", "A217580", "A361579", "A362226" ]
null
Geoffrey Critzer, Apr 11 2023
2023-04-12T11:31:53
oeisdata/seq/A362/A362226.seq
faffaafa131eb4b43607e4d64ebfd105
A362227
a(n) = Product_{k=1..w(n)} p(k)^(S(n,k)-1), where set S(n,k) = row n of A272011 and w(n) = A000120(n) is the binary weight of n.
[ "1", "2", "4", "12", "8", "24", "72", "360", "16", "48", "144", "720", "432", "2160", "10800", "75600", "32", "96", "288", "1440", "864", "4320", "21600", "151200", "2592", "12960", "64800", "453600", "324000", "2268000", "15876000", "174636000", "64", "192", "576", "2880", "1728", "8640", "43200", "302400", "5184", "25920", "129600", "907200", "648000", "4536000", "31752000", "349272000", "15552" ]
[ "nonn", "easy" ]
30
0
2
[ "A000120", "A006939", "A067255", "A087980", "A272011", "A362227" ]
null
Michael De Vlieger, Jun 08 2023
2023-06-11T12:29:09
oeisdata/seq/A362/A362227.seq
114199b450d8a2b232d13e6e048abbe8
A362228
Triangle read by rows: row n is the shortest, then lexicographically earliest sequence of positive integers that takes n iterations of the run transform to reach 1.
[ "1", "2", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "2", "2", "1", "1", "2", "1", "1", "2", "1" ]
[ "nonn", "tabf" ]
53
0
2
[ "A327662", "A362228" ]
null
Neal Gersh Tolunsky, Apr 11 2023
2025-04-27T03:22:46
oeisdata/seq/A362/A362228.seq
dbd16ce3e37c5e5d0f47dc7b0f3eb5ed
A362229
a(n) is the largest m such that uphi(m) = n, where uphi is the unitary totient function (A047994), or a(n) = 0 if no such m exists.
[ "2", "6", "4", "10", "0", "14", "8", "30", "0", "22", "0", "42", "0", "24", "16", "34", "0", "38", "0", "66", "0", "46", "0", "78", "0", "54", "0", "58", "0", "62", "32", "102", "0", "0", "0", "114", "0", "0", "0", "110", "0", "86", "0", "138", "0", "94", "0", "210", "0", "0", "0", "106", "0", "76", "0", "174", "0", "118", "0", "186", "0", "96", "64", "170", "0", "134", "0", "0", "0", "142", "0", "222" ]
[ "nonn" ]
12
1
1
[ "A047994", "A057635", "A347771", "A361966", "A362229", "A362230", "A362231" ]
null
Amiram Eldar, Apr 12 2023
2023-04-13T02:35:48
oeisdata/seq/A362/A362229.seq
2d6182c50269f73a0840e38e68a283c3
A362230
Unitary sparsely totient numbers: numbers k such that m > k implies uphi(m) > uphi(k), where uphi is the unitary totient function (A047994).
[ "2", "6", "10", "14", "30", "42", "66", "78", "102", "114", "138", "210", "222", "330", "390", "462", "510", "570", "690", "714", "798", "870", "930", "966", "1110", "1230", "1290", "1302", "1410", "1470", "1590", "1770", "2310", "2730", "3570", "3990", "4290", "4830", "5610", "6090", "6510", "6630", "7770", "8610", "9030", "9870", "10230", "11130", "11310" ]
[ "nonn" ]
9
1
1
[ "A036913", "A047994", "A361966", "A362229", "A362230", "A362231" ]
null
Amiram Eldar, Apr 12 2023
2023-04-13T02:35:45
oeisdata/seq/A362/A362230.seq
8f15760da4c5ecc8ed42c1459512a38c
A362231
a(n) = A047994(A362230(n)).
[ "1", "2", "4", "6", "8", "12", "20", "24", "32", "36", "44", "48", "72", "80", "96", "120", "128", "144", "176", "192", "216", "224", "240", "264", "288", "320", "336", "360", "368", "384", "416", "464", "480", "576", "768", "864", "960", "1056", "1280", "1344", "1440", "1536", "1728", "1920", "2016", "2208", "2400", "2496", "2688", "2784", "2880", "3168", "3360" ]
[ "nonn" ]
8
1
2
[ "A036912", "A047994", "A361966", "A362229", "A362230", "A362231" ]
null
Amiram Eldar, Apr 12 2023
2023-04-13T02:35:42
oeisdata/seq/A362/A362231.seq
c1ea90ebaa1138a7b2b8f72f2edf130e
A362232
a(1) = 1; for n > 1, a(n) is number of terms in the first n-1 terms of the sequence that are not proper divisors of a(n-1).
[ "1", "1", "2", "1", "4", "1", "6", "2", "4", "3", "6", "4", "6", "6", "7", "11", "12", "3", "14", "12", "5", "17", "18", "11", "20", "15", "19", "23", "24", "12", "15", "24", "14", "26", "28", "23", "32", "28", "26", "33", "32", "32", "33", "35", "38", "38", "39", "41", "44", "38", "43", "47", "48", "33", "46", "47", "52", "46", "50", "52", "49", "56", "48", "43", "60", "43", "62", "61", "64", "57", "63", "64", "60", "51", "67", "71", "72", "56", "64" ]
[ "nonn" ]
18
1
3
[ "A027751", "A032741", "A032742", "A152271", "A362232" ]
null
Scott R. Shannon, Apr 12 2023
2023-05-10T22:40:48
oeisdata/seq/A362/A362232.seq
b3e543346408b3f001426d1ff04e779f
A362233
Number of vertices among all distinct circles that can be constructed from a point on the origin and n equally spaced points on each of the +x,-x,+y,-y coordinates axes when each pair of points is connected by a circle and where the points lie at the ends of the circles' diameter.
[ "17", "249", "1381", "4745", "12581", "26861", "51649", "89357", "145501", "225621", "335497" ]
[ "nonn", "more" ]
11
1
1
[ "A139275", "A354605", "A359932", "A362233", "A362234", "A362235", "A362236" ]
null
Scott R. Shannon, Apr 12 2023
2023-04-14T07:32:21
oeisdata/seq/A362/A362233.seq
e875d9a02da84bd2d3fd720bcd36a89e
A362234
Number of regions among all distinct circles that can be constructed from a point on the origin and n equally spaced points on each of the +x,-x,+y,-y coordinates axes when each pair of points is connected by a circle and where the points lie at the ends of the circles' diameter.
[ "32", "372", "1804", "5772", "14660", "30816", "58232", "100080", "161700", "249200", "368384" ]
[ "nonn", "more" ]
7
1
1
[ "A139275", "A353782", "A359933", "A362233", "A362234", "A362235", "A362236" ]
null
Scott R. Shannon, Apr 13 2023
2023-04-14T07:32:31
oeisdata/seq/A362/A362234.seq
e415def2892a5939cfa9a16600834684
A362235
Number of edges among all distinct circles that can be constructed from a point on the origin and n equally spaced points on each of the +x,-x,+y,-y coordinates axes when each pair of points is connected by a circle and where the points lie at the ends of the circles' diameter.
[ "48", "620", "3184", "10516", "27240", "57676", "109880", "189436", "307200", "474820", "703880" ]
[ "nonn", "more" ]
6
1
1
[ "A139275", "A356358", "A359934", "A362233", "A362234", "A362235", "A362236" ]
null
Scott R. Shannon, Apr 13 2023
2023-04-14T07:32:50
oeisdata/seq/A362/A362235.seq
d333a850c4d9b59fd52299ecc75d989e
A362236
Irregular table read by rows: T(n,k) is the number of k-gons, k>=2, among all distinct circles that can be constructed from a point on the origin and n equally spaced points on each of the +x,-x,+y,-y coordinates axes when each pair of points is connected by a circle and where the points lie at the ends of the circles' diameter.
[ "12", "12", "8", "32", "204", "120", "16", "56", "928", "652", "156", "4", "8", "72", "2724", "2332", "504", "120", "16", "4", "96", "6416", "6120", "1648", "352", "20", "8", "128", "13356", "12444", "4156", "668", "52", "12", "208", "24348", "23892", "8148", "1488", "124", "24", "248", "41268", "41528", "14108", "2616", "276", "36", "336", "65684", "67272", "23372", "4592", "388", "52", "0", "4" ]
[ "nonn", "tabf" ]
11
1
1
[ "A139275", "A359935", "A361623", "A362233", "A362234", "A362235", "A362236" ]
null
Scott R. Shannon, Apr 13 2023
2024-01-04T14:29:12
oeisdata/seq/A362/A362236.seq
f0264bbc4cd656ec2cef0c796de98a88
A362237
Expansion of e.g.f.: 1/(1 - x/(1-x)^x).
[ "1", "1", "2", "12", "84", "700", "7140", "84798", "1148448", "17508384", "296577360", "5525645400", "112311096480", "2473005981576", "58642262698656", "1489908226161600", "40377279733096320", "1162635170476462080", "35446505436393782400", "1140734265246337985856", "38643098112640927503360" ]
[ "nonn" ]
9
0
3
[ "A347726", "A362237", "A362238" ]
null
Seiichi Manyama, Apr 12 2023
2023-04-12T08:05:07
oeisdata/seq/A362/A362237.seq
20d360796df6f7bf010760f511621e1a
A362238
Expansion of e.g.f.: 1/(1 - x*(1+x)^x).
[ "1", "1", "2", "12", "60", "460", "3900", "39438", "456288", "5896224", "85230000", "1349017560", "23353941600", "437432418696", "8828284404576", "190867622500800", "4401749312069760", "107859517575659520", "2798352667710645120", "76636669899079699776", "2209235394261812751360" ]
[ "nonn" ]
9
0
3
[ "A002478", "A099234", "A099235", "A202152", "A362237", "A362238" ]
null
Seiichi Manyama, Apr 12 2023
2023-04-12T08:04:59
oeisdata/seq/A362/A362238.seq
baaa32847830c6c73c4cebc99362de8e
A362239
Primes such that all composite numbers up to the next prime have the same number of distinct prime divisors.
[ "2", "3", "5", "11", "17", "19", "29", "37", "41", "43", "53", "59", "71", "97", "101", "107", "137", "149", "157", "179", "191", "197", "223", "227", "239", "269", "281", "311", "347", "419", "431", "461", "499", "521", "569", "599", "617", "641", "643", "659", "673", "739", "809", "821", "827", "857", "881", "1019", "1031", "1049", "1061", "1091", "1151" ]
[ "nonn" ]
21
1
1
[ "A001221", "A001359", "A362239" ]
null
Mike Jones, Apr 12 2023
2023-05-18T23:26:38
oeisdata/seq/A362/A362239.seq
095c2e63f33c305b2fb2c957a96aac79
A362240
Triangle read by rows: Row n is the shortest, then lexicographically earliest sequence of 0s and 1s not yet in the sequence.
[ "0", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1" ]
[ "nonn", "tabf" ]
38
1
null
[ "A076478", "A118247", "A362009", "A362240", "A362241" ]
null
Samuel Harkness, Apr 12 2023
2024-03-31T17:11:22
oeisdata/seq/A362/A362240.seq
15e27d7daaf73bc9278b1e238c5363e1
A362241
Binary encoding of the rows of A362240.
[ "0", "1", "0", "3", "0", "5", "7", "0", "10", "13", "0", "3", "4", "7", "14", "31", "4", "9", "13", "15", "17", "20", "27", "28", "37", "44", "51", "53", "63", "2", "15", "17", "20", "28", "31", "41", "44", "46", "48", "53", "58", "71", "78", "99", "101", "123", "2", "5", "7", "11", "17", "19", "24", "35", "39", "41", "55", "58", "63", "72", "83", "85", "89", "97", "107", "111", "113", "134" ]
[ "nonn", "base" ]
27
1
4
[ "A053645", "A118248", "A362009", "A362240", "A362241" ]
null
Samuel Harkness, Apr 12 2023
2023-05-08T02:28:26
oeisdata/seq/A362/A362241.seq
1951ff638bafcd60e8030580ff7f29de
A362242
Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (k,n-k) using steps (i,j) with i,j>=0 and gcd(i,j)=1.
[ "1", "1", "1", "1", "3", "1", "1", "6", "6", "1", "1", "10", "17", "10", "1", "1", "15", "39", "39", "15", "1", "1", "21", "76", "111", "76", "21", "1", "1", "28", "135", "266", "266", "135", "28", "1", "1", "36", "222", "566", "757", "566", "222", "36", "1", "1", "45", "346", "1100", "1876", "1876", "1100", "346", "45", "1", "1", "55", "515", "1997", "4197", "5321", "4197", "1997", "515", "55", "1" ]
[ "nonn", "tabl" ]
31
0
5
[ "A000012", "A000217", "A059576", "A362242", "A368639", "A368672" ]
null
Keith S. Reid, Apr 12 2023
2025-03-16T09:27:06
oeisdata/seq/A362/A362242.seq
de2b0eef881e4d5f2db80b884f540d34
A362243
a(n) = number of isomorphism classes of elliptic curves over the finite field of order prime(n).
[ "5", "8", "12", "18", "22", "32", "36", "42", "46", "60", "66", "80", "84", "90", "94", "108", "118", "128", "138", "142", "152", "162", "166", "180", "200", "204", "210", "214", "224", "228", "258", "262", "276", "282", "300", "306", "320", "330", "334", "348", "358", "368", "382", "392", "396", "402", "426", "450", "454", "464", "468", "478", "488", "502", "516", "526", "540", "546", "560", "564", "570" ]
[ "nonn" ]
13
1
1
null
null
Robin Visser, Apr 12 2023
2023-08-28T15:50:43
oeisdata/seq/A362/A362243.seq
283feebedd3610da8e3478bb1b79a4a6
A362244
Expansion of e.g.f. 1/(1 - x * exp(-x * (exp(-x) - 1))).
[ "1", "1", "2", "12", "60", "440", "3810", "37212", "430696", "5482080", "78252390", "1227201140", "20955546348", "388492703040", "7745445183658", "165550236166980", "3773990094033360", "91401848785134272", "2344168680183033678", "63455096201600595060", "1808160553359068792020" ]
[ "nonn" ]
11
0
3
[ "A362237", "A362244", "A362245", "A362246", "A362247" ]
null
Seiichi Manyama, Apr 12 2023
2024-12-27T16:13:32
oeisdata/seq/A362/A362244.seq
a348db38a0f8978cd6470e75d76468ac
A362245
Expansion of e.g.f. 1/(1 - x * exp(x * (exp(x) - 1))).
[ "1", "1", "2", "12", "84", "680", "6750", "78372", "1035608", "15402816", "254672730", "4631221100", "91872810612", "1974481960464", "45698618329910", "1133221107064620", "29974735063385520", "842413032202481792", "25067919890384214066", "787394937539847359052", "26034146454319615550540" ]
[ "nonn" ]
10
0
3
[ "A362238", "A362244", "A362245", "A362246", "A362247" ]
null
Seiichi Manyama, Apr 12 2023
2023-04-13T08:29:43
oeisdata/seq/A362/A362245.seq
7f654918e856575dd878ffda7ef22562
A362246
Expansion of e.g.f. exp(x * exp(-x * (exp(-x) - 1))).
[ "1", "1", "1", "7", "13", "81", "391", "1093", "18537", "577", "1013131", "-54339", "39429853", "424162753", "-4130181873", "137131757701", "-1733851435439", "29708533549953", "-337960798083053", "3890007865959661", "-11844138798049659", "-662440203084569279", "30135319297423429783" ]
[ "sign" ]
9
0
4
[ "A347726", "A362244", "A362245", "A362246", "A362247" ]
null
Seiichi Manyama, Apr 12 2023
2023-04-13T08:29:52
oeisdata/seq/A362/A362246.seq
be6ceef025925f415acd087ff9d0d558
A362247
Expansion of e.g.f. exp(x * exp(x * (exp(x) - 1))).
[ "1", "1", "1", "7", "37", "201", "1531", "12433", "112729", "1158769", "12920311", "157007841", "2063354437", "29052921769", "436908104179", "6981843029281", "118083965782321", "2106973566128865", "39538081855597807", "778216030845226561", "16027517577057849181", "344635879922587951321" ]
[ "nonn" ]
10
0
4
[ "A000258", "A202152", "A362244", "A362245", "A362246", "A362247" ]
null
Seiichi Manyama, Apr 12 2023
2023-04-13T08:29:47
oeisdata/seq/A362/A362247.seq
8c81549914f4df5889a68a4cc1421c9c
A362248
a(n) is the number of locations 1..n-1 which can reach i=n-1, where jumps from location i to i +- a(i) are permitted (within 1..n-1); a(1)=1. See example.
[ "1", "1", "2", "3", "1", "5", "6", "7", "1", "1", "2", "11", "1", "13", "14", "15", "1", "1", "2", "3", "1", "5", "6", "23", "1", "1", "2", "27", "1", "29", "30", "31", "1", "1", "2", "3", "1", "5", "6", "7", "1", "1", "2", "11", "1", "13", "14", "47", "1", "1", "2", "3", "1", "5", "6", "55", "1", "1", "2", "59", "1", "61", "62", "63", "1", "1", "2", "3", "1", "5", "6", "7", "1", "1", "2", "11", "1", "13", "14", "15" ]
[ "nonn" ]
70
1
3
[ "A023758", "A047619", "A089633", "A100892", "A360745", "A360746", "A362248" ]
null
Neal Gersh Tolunsky, May 12 2023
2024-12-19T11:45:36
oeisdata/seq/A362/A362248.seq
69dd63aeeaf6ecc5fb38f76d7c5cede5
A362249
Point number on a 4-arm square spiral of point n on the East arm scaled up by steps of that point itself.
[ "1", "4", "19", "16", "13", "64", "149", "58", "81", "70", "139", "324", "583", "268", "217", "256", "233", "244", "569", "1024", "1609", "916", "421", "566", "625", "586", "461", "884", "1591", "2500", "3611", "2324", "1323", "1000", "1213", "1296", "1237", "1048", "1269", "2284", "3589", "5184", "7069", "4924", "3169", "1804", "1997", "2290", "2401", "2318", "2053", "1724", "3103", "4876" ]
[ "nonn" ]
73
1
2
[ "A000290", "A001844", "A002061", "A340944", "A340945", "A362249", "A362363" ]
null
Tamas Sandor Nagy and Thomas Scheuerle, Apr 13 2023
2023-05-28T08:46:07
oeisdata/seq/A362/A362249.seq
a2470ff008423c3196b22b21a1e28cc2
A362250
Primes dividing terms of A231831.
[ "3", "5", "7", "11", "19", "23", "89", "101", "137", "157", "211", "373", "659", "877", "881", "1399", "1597", "1627", "1663", "1811", "2029", "2069", "2087", "2153", "2381", "2677", "2939", "3433", "3491", "3511", "3617", "3673", "4111", "4127", "4547", "4721", "5059", "5483", "6529", "6793", "6827", "7757", "8209", "8297", "8677", "9203", "9463", "9811", "10139", "10159", "11321" ]
[ "nonn" ]
9
1
1
[ "A000058", "A007996", "A180871", "A231830", "A231831", "A362250", "A362251", "A362252", "A362253" ]
null
Max Alekseyev, Apr 13 2023
2023-04-16T08:39:54
oeisdata/seq/A362/A362250.seq
beff9d1f2f4b16e91cb4496ec04f1092
A362251
a(n) is the unique index such that prime A362250(n) divides A231831(a(n)).
[ "1", "2", "2", "3", "3", "4", "9", "4", "4", "8", "3", "31", "12", "7", "7", "9", "44", "8", "22", "29", "36", "37", "8", "21", "5", "26", "4", "20", "24", "12", "76", "30", "5", "47", "5", "13", "9", "25", "6", "41", "51", "9", "53", "6", "27", "39", "5", "12", "78", "64", "10", "185", "113", "205", "91", "85", "43", "195", "32", "117", "20", "133", "142", "119", "64", "70", "199", "41", "125", "79", "243", "70", "35", "105", "67", "156" ]
[ "nonn" ]
6
1
2
[ "A000058", "A007996", "A180871", "A231830", "A231831", "A362250", "A362251", "A362252", "A362253" ]
null
Max Alekseyev, Apr 13 2023
2023-04-16T08:40:00
oeisdata/seq/A362/A362251.seq
c3e1938b27c5862d882f4da728e1bfd0
A362252
Primes dividing terms of A231830.
[ "5", "53", "89", "101", "373", "877", "1109", "1181", "1597", "1613", "2029", "2069", "2153", "2213", "2381", "2741", "3617", "4273", "6529", "6737", "7417", "7717", "11321", "12653", "13009", "13309", "16829", "17729", "23581", "23993", "25373", "32569", "33353", "33857", "34841", "35053", "36097", "37201", "38609", "41513", "42461", "48661", "55829", "58369", "59093", "63281" ]
[ "nonn" ]
6
1
1
[ "A000058", "A007996", "A180871", "A231830", "A231831", "A362250", "A362251", "A362252", "A362253" ]
null
Max Alekseyev, Apr 21 2023
2023-04-22T10:28:31
oeisdata/seq/A362/A362252.seq
6c7e2338567dcaee4963ba5ed0d7d7b4
A362253
a(n) is the unique index such that prime A362252(n) divides A231830(a(n)).
[ "1", "4", "7", "2", "19", "25", "30", "38", "45", "4", "26", "33", "27", "46", "10", "59", "102", "38", "84", "37", "22", "77", "80", "37", "240", "57", "45", "240", "173", "38", "41", "100", "88", "44", "114", "39", "63", "24", "14", "121", "177", "12", "155", "270", "65", "109", "44", "391", "54", "22", "96", "320", "194", "347", "182", "226", "143", "290", "105", "135", "29", "198", "113", "302", "572", "53", "692", "168", "366" ]
[ "nonn" ]
9
1
2
[ "A000058", "A007996", "A180871", "A231830", "A231831", "A362250", "A362251", "A362252", "A362253" ]
null
Max Alekseyev, Apr 21 2023
2023-04-22T10:28:08
oeisdata/seq/A362/A362253.seq
eeb3435b79a3245714a69a1d83ecfdf4
A362254
Reciprocal of n modulo largest prime smaller than n.
[ "1", "1", "2", "1", "3", "1", "4", "5", "2", "1", "6", "1", "7", "9", "10", "1", "9", "1", "10", "13", "5", "1", "12", "8", "6", "14", "4", "1", "15", "1", "16", "21", "8", "25", "26", "1", "19", "25", "28", "1", "21", "1", "22", "29", "11", "1", "24", "16", "12", "19", "8", "1", "27", "18", "40", "32", "9", "1", "30", "1", "31", "41", "46", "49", "51", "1", "34", "45", "17", "1", "36", "1", "37", "49" ]
[ "nonn", "look" ]
14
3
3
[ "A008864", "A122585", "A151799", "A362254" ]
null
Alois P. Heinz, Apr 13 2023
2023-05-17T16:38:17
oeisdata/seq/A362/A362254.seq
2525051f83cc7705e7899d372c4f6742
A362255
a(0) = a(1) = a(2) = 1, for n > 2, a(n) = a(n-1) + a(n-k) + k with k = 2.
[ "1", "1", "1", "4", "7", "10", "16", "25", "37", "55", "82", "121", "178", "262", "385", "565", "829", "1216", "1783", "2614", "3832", "5617", "8233", "12067", "17686", "25921", "37990", "55678", "81601", "119593", "175273", "256876", "376471", "551746", "808624", "1185097", "1736845", "2545471", "3730570", "5467417", "8012890", "11743462", "17210881" ]
[ "nonn", "easy" ]
7
0
4
[ "A001595", "A111314", "A362255", "A362256" ]
null
Michael De Vlieger, Apr 13 2023
2023-04-19T02:47:14
oeisdata/seq/A362/A362255.seq
4c82e0be3a7e182e41cca23c0b4a0e3d
A362256
a(0) = a(1) = a(2) = 1, for n > 2, a(n) = a(n-1) + a(n-k) + k with k = 3.
[ "1", "1", "1", "5", "9", "13", "17", "25", "37", "53", "73", "101", "141", "197", "273", "377", "521", "721", "997", "1377", "1901", "2625", "3625", "5005", "6909", "9537", "13165", "18173", "25085", "34625", "47793", "65969", "91057", "125685", "173481", "239453", "330513", "456201", "629685", "869141", "1199657", "1655861", "2285549", "3154693" ]
[ "nonn", "easy" ]
6
0
4
[ "A001595", "A111314", "A362255", "A362256" ]
null
Michael De Vlieger, Apr 13 2023
2023-04-19T02:47:46
oeisdata/seq/A362/A362256.seq
c73e66a3d96386e27fa6eb6424fdb8c6
A362257
a(n) = 2*Q(n) - n, where Q(n) is Hofstadter's Q-sequence A005185.
[ "1", "0", "1", "2", "1", "2", "3", "2", "3", "2", "1", "4", "3", "2", "5", "2", "3", "4", "3", "4", "3", "2", "1", "8", "3", "2", "5", "4", "3", "2", "9", "2", "1", "6", "7", "2", "3", "6", "3", "4", "5", "4", "5", "4", "3", "2", "1", "16", "-1", "0", "9", "4", "-1", "6", "5", "0", "7", "2", "5", "4", "3", "2", "17", "2", "-3", "10", "3", "-2", "9", "10", "3", "4", "7", "4", "5", "2", "7", "2", "3", "6", "7", "4", "3", "8" ]
[ "sign" ]
18
1
4
[ "A005185", "A239913", "A362257" ]
null
Nathan Fox and Alexis Ducote, Apr 13 2023
2023-04-14T02:09:28
oeisdata/seq/A362/A362257.seq
8b883958894f0b0bb67cd4b8390b8fe4
A362258
Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, up to rotations and reflections, 0 <= k <= n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "4", "1", "1", "2", "4", "13", "20", "1", "1", "4", "8", "33", "125", "277", "1", "1", "6", "12", "72", "403", "2505", "7855", "1", "1", "9", "22", "204", "1438", "12069", "101587", "487662" ]
[ "nonn", "tabl", "more" ]
10
0
13
[ "A000012", "A227690", "A361221", "A362142", "A362258", "A362259", "A362260", "A362261", "A362262", "A362263" ]
null
Pontus von Brömssen, Apr 15 2023
2023-04-16T08:37:54
oeisdata/seq/A362/A362258.seq
21c6132f5137b53710e24612faab2842
A362259
Maximum number of ways in which a set of integer-sided squares can tile an n X n square, up to rotations and reflections.
[ "1", "1", "1", "1", "4", "20", "277", "7855", "487662" ]
[ "nonn", "more" ]
5
0
5
[ "A224239", "A236679", "A361222", "A362143", "A362258", "A362259" ]
null
Pontus von Brömssen, Apr 15 2023
2023-04-16T08:38:16
oeisdata/seq/A362/A362259.seq
3954405b9e14fb217794f809648aaa1e
A362260
Maximum over 0 <= k <= n/2 of the number of permutations of two symbols occurring k and n-2*k times, respectively, where a permutation and its reversal are counted only once.
[ "1", "1", "1", "1", "2", "2", "4", "6", "9", "12", "19", "28", "44", "66", "110", "170", "255", "396", "651", "1001", "1519", "2520", "4032", "6216", "9752", "15912", "25236", "38760", "63090", "101850", "160050", "248710", "408760", "653752", "1021735", "1634776", "2656511", "4218786", "6562556", "10737090", "17299646", "27313650", "43249115" ]
[ "nonn" ]
12
0
5
[ "A001224", "A073028", "A102541", "A361224", "A362258", "A362260" ]
null
Pontus von Brömssen, Apr 15 2023
2023-10-26T09:54:41
oeisdata/seq/A362/A362260.seq
233105eccc61ad6e484a56756ccdd001
A362261
Maximum number of ways in which a set of integer-sided squares can tile an n X 3 rectangle, up to rotations and reflections.
[ "1", "1", "1", "1", "2", "4", "8", "12", "22", "40", "73", "146", "292", "560", "1120", "2532", "5040", "10080", "22176", "44352", "88704", "192272", "384384", "768768", "1647360", "3294720", "6589440", "14003120", "28006240", "56012480", "126028080", "266053680", "532107360", "1182438400", "2483130720", "4966261440", "10925775168" ]
[ "nonn" ]
5
0
5
[ "A359019", "A361225", "A362144", "A362258", "A362261" ]
null
Pontus von Brömssen, Apr 15 2023
2023-04-16T08:38:09
oeisdata/seq/A362/A362261.seq
694a2826726169039601c44a562def2d
A362262
Maximum number of ways in which a set of integer-sided squares can tile an n X 4 rectangle, up to rotations and reflections.
[ "1", "1", "2", "2", "4", "13", "33", "72", "204", "476", "1348", "3454", "9511", "25088", "68579", "186048", "503538", "1387536", "3732666", "10420102" ]
[ "nonn", "more" ]
5
0
3
[ "A359020", "A362145", "A362258", "A362262" ]
null
Pontus von Brömssen, Apr 15 2023
2023-04-16T08:39:21
oeisdata/seq/A362/A362262.seq
9849b691d124e45bd47c0a1cb7180869
A362263
Maximum number of ways in which a set of integer-sided squares can tile an n X 5 rectangle, up to rotations and reflections.
[ "1", "1", "2", "4", "13", "20", "125", "403", "1438", "4718", "17700", "65811", "266345", "1036625", "3817494", "15399048" ]
[ "nonn", "more" ]
5
0
3
[ "A359021", "A362146", "A362258", "A362263" ]
null
Pontus von Brömssen, Apr 15 2023
2023-04-16T08:37:59
oeisdata/seq/A362/A362263.seq
fe685290723cd7da1e51785f1159b1d8
A362264
Numbers > 9 with increasingly large digit average of their square, in base 10.
[ "10", "11", "12", "13", "17", "63", "83", "313", "94863", "3162083", "994927133" ]
[ "nonn", "base", "more", "hard" ]
17
0
1
[ "A068809", "A068947", "A164841", "A362264" ]
null
M. F. Hasler, Apr 13 2023
2023-04-24T09:40:34
oeisdata/seq/A362/A362264.seq
362f19794703e5773bd9715aabb81940
A362265
Indices m for which A362363(m) = 0, meaning the large spiral point in A362249 falls on the East base spiral.
[ "1", "2", "5", "6", "7", "9", "12", "15", "17", "18", "19", "20", "21", "23", "25", "27", "28", "30", "35", "37", "39", "40", "41", "42", "43", "45", "47", "49", "51", "52", "54", "56", "61", "63", "65", "67", "68", "69", "70", "71", "72", "73", "75", "77", "79", "81", "83", "86", "88", "90", "97", "99", "101", "103", "105", "106", "107", "108", "109", "110", "111", "113", "115", "117", "119", "121", "123", "125", "126", "128", "130" ]
[ "nonn" ]
34
1
2
[ "A000290", "A001844", "A002061", "A362249", "A362265" ]
null
Tamas Sandor Nagy and Thomas Scheuerle, Apr 13 2023
2023-05-28T08:45:59
oeisdata/seq/A362/A362265.seq
dc5d036b39853e58a2887b79b19aff5d
A362266
Triangle read by rows: T(n,k) = LCM({p_j-1 : j=1..n})/(p_k-1) for prime p.
[ "1", "2", "1", "4", "2", "1", "12", "6", "3", "2", "60", "30", "15", "10", "6", "60", "30", "15", "10", "6", "5", "240", "120", "60", "40", "24", "20", "15", "720", "360", "180", "120", "72", "60", "45", "40", "7920", "3960", "1980", "1320", "792", "660", "495", "440", "360", "55440", "27720", "13860", "9240", "5544", "4620", "3465", "3080", "2520", "1980" ]
[ "nonn", "tabl" ]
26
1
2
[ "A006093", "A058254", "A362266" ]
null
Michael De Vlieger, Jul 10 2023
2023-07-15T05:44:38
oeisdata/seq/A362/A362266.seq
6ef55ff16db13a24d4a61e2c4a1e2f4f
A362267
For n >= 0, a(n) is the least integer i >= 0 such that n + p_1 + ... + p_i = q, q prime number, or a(n) = -1 if no such i exists. Here p_1 is the least prime >= n, p_1 < p_2 < ... < p_i are prime numbers (A000040).
[ "1", "1", "0", "0", "15", "0", "1", "0", "1", "12", "13", "0", "3", "0", "1", "4", "29", "1", "1", "0", "1", "2", "25", "0", "1", "4", "7", "8", "13", "0", "1", "0", "7", "6", "1", "2", "1", "0", "1", "4", "21", "0", "7", "0", "5", "10", "19", "0", "1", "6", "1", "2", "85", "0", "1", "4", "17", "6", "5", "0", "11", "0", "15", "4", "1", "20", "3", "0", "1", "14", "3", "0", "3", "0", "5", "22", "17", "2", "1", "0", "1", "6", "11", "0" ]
[ "sign" ]
23
0
5
[ "A000040", "A007504", "A161463", "A362267" ]
null
Ctibor O. Zizka, Jul 05 2023
2023-07-06T22:05:14
oeisdata/seq/A362/A362267.seq
f36109dd200b415fd583879236bb7de2
A362268
Numbers whose prime factors counted with multiplicity satisfy: (maximum) - (minimum) = (mean).
[ "20", "60", "180", "189", "400", "540", "1200", "1372", "1620", "2541", "2835", "3185", "3600", "4860", "5577", "6860", "8000", "10800", "14365", "14580", "16093", "23465", "24000", "28812", "32400", "34300", "34375", "35721", "40733", "42525", "43740", "46529", "72000", "78793", "97200", "123101", "131220", "135401", "139755", "144060" ]
[ "nonn" ]
7
1
1
[ "A362047", "A362268" ]
null
Chai Wah Wu, Apr 13 2023
2023-04-14T02:11:37
oeisdata/seq/A362/A362268.seq
5d6188637942baa1e3b2235d61ea7a0c
A362269
a(1) = 1, then subtract, add, and multiply 2, 3, 4; 5, 6, 7; ... in that order.
[ "1", "-1", "2", "8", "3", "9", "63", "55", "64", "640", "629", "641", "8333", "8319", "8334", "133344", "133327", "133345", "2533555", "2533535", "2533556", "55738232", "55738209", "55738233", "1393455825", "1393455799", "1393455826", "39016763128", "39016763099", "39016763129" ]
[ "sign" ]
29
1
3
[ "A077382", "A077383", "A362269", "A362270", "A362271", "A362272" ]
null
James C. McMahon, Apr 13 2023
2023-10-09T12:54:57
oeisdata/seq/A362/A362269.seq
175f4e4f7a425f1c0d7b7bc773e0879c
A362270
a(1) = 1, then subtract, multiply, and add 2, 3, 4; 5, 6, 7; ... in that order.
[ "1", "-1", "-3", "1", "-4", "-24", "-17", "-25", "-225", "-215", "-226", "-2712", "-2699", "-2713", "-40695", "-40679", "-40696", "-732528", "-732509", "-732529", "-15383109", "-15383087", "-15383110", "-369194640", "-369194615", "-369194641", "-9968255307", "-9968255279", "-9968255308", "-299047659240", "-299047659209", "-299047659241", "-9868572754953" ]
[ "sign" ]
15
1
3
[ "A077382", "A077383", "A362269", "A362270", "A362271", "A362272" ]
null
James C. McMahon, Apr 13 2023
2023-10-09T14:26:55
oeisdata/seq/A362/A362270.seq
5ca403706281e06359d3f8a905ce217c
A362271
a(1) = 1, then add, subtract and multiply 2, 3, 4; 5, 6, 7; ... in that order.
[ "1", "3", "0", "0", "5", "-1", "-7", "1", "-8", "-80", "-69", "-81", "-1053", "-1039", "-1054", "-16864", "-16847", "-16865", "-320435", "-320415", "-320436", "-7049592", "-7049569", "-7049593", "-176239825", "-176239799", "-176239826", "-4934715128", "-4934715099", "-4934715129", "-152976168999", "-152976168967", "-152976169000" ]
[ "sign" ]
18
1
2
[ "A077382", "A077383", "A362269", "A362270", "A362271", "A362272" ]
null
James C. McMahon, Apr 13 2023
2023-10-10T05:04:22
oeisdata/seq/A362/A362271.seq
a2c638fe698763a2c84ac0f8017f375c
A362272
a(1) = 1, then multiply, subtract, and add 2, 3, 4; 5, 6, 7; ... in that order.
[ "1", "2", "-1", "3", "15", "9", "16", "128", "119", "129", "1419", "1407", "1420", "19880", "19865", "19881", "337977", "337959", "337978", "6759560", "6759539", "6759561", "155469903", "155469879", "155469904", "4042217504", "4042217477", "4042217505", "117224307645", "117224307615", "117224307646", "3751177844672", "3751177844639" ]
[ "sign" ]
22
1
2
[ "A077382", "A077383", "A362269", "A362270", "A362271", "A362272" ]
null
James C. McMahon, Apr 19 2023
2023-10-10T05:04:33
oeisdata/seq/A362/A362272.seq
d288fa3f10aba9b0308c8615c292244e
A362273
Expansion of e.g.f. 1/(1 - x * exp(-x * exp(-x))).
[ "1", "1", "0", "3", "8", "-15", "264", "-35", "-1968", "87633", "-499600", "2375901", "48964200", "-830424023", "9884072184", "-11730111315", "-1407884197216", "36601422429345", "-416600839315872", "191233500832189", "136472124267672120", "-3513232740127917639", "46653752740647748520" ]
[ "sign" ]
17
0
4
[ "A000949", "A362244", "A362273", "A362274", "A362275" ]
null
Seiichi Manyama, Apr 13 2023
2023-04-15T06:27:52
oeisdata/seq/A362/A362273.seq
a827f26461c00fd05b86b66318d3ed36
A362274
Expansion of e.g.f. 1/(1-x*exp(x*exp(x))).
[ "1", "1", "4", "27", "232", "2465", "31416", "467173", "7940080", "151824177", "3225664720", "75386002901", "1921987809336", "53085088574713", "1578989028324904", "50320957240554645", "1710595789688360416", "61783832256587799137", "2362794061464082513440", "95380148553556615501717" ]
[ "nonn" ]
13
0
3
[ "A000949", "A362245", "A362273", "A362274", "A362275" ]
null
Seiichi Manyama, Apr 13 2023
2023-04-15T06:27:58
oeisdata/seq/A362/A362274.seq
6f51c8f373b55fb5dd43221bf5b70b19
A362275
Expansion of e.g.f. exp(x*exp(-x*exp(-x))).
[ "1", "1", "-1", "4", "-3", "-44", "595", "-5214", "36953", "-176840", "-498969", "31239550", "-605916971", "9001842708", "-110410388101", "998140500826", "-1114748107215", "-247879285927184", "8410011463871695", "-201620611378992906", "4024515940445770541", "-66832538504513547380" ]
[ "sign" ]
11
0
4
[ "A000949", "A362247", "A362273", "A362274", "A362275" ]
null
Seiichi Manyama, Apr 13 2023
2023-04-16T01:33:20
oeisdata/seq/A362/A362275.seq
6367f42cbe7536f87da130abe62bb956
A362276
a(n) = n! * Sum_{k=0..floor(n/2)} (-n/2)^k * binomial(n-k,k)/(n-k)!.
[ "1", "1", "-1", "-8", "25", "326", "-1709", "-31016", "228257", "5311900", "-50337449", "-1429574464", "16573668409", "555724876552", "-7619288730325", "-294582728145824", "4662562423032961", "204200579987319824", "-3664348770051277073", "-179294278761195862400", "3597007651803106610201" ]
[ "sign" ]
17
0
4
[ "A277614", "A362276", "A362277" ]
null
Seiichi Manyama, Apr 13 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362276.seq
af63c1bdc82e4e91e9d3687b7a4ac873
A362277
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * binomial(n-j,j)/(n-j)!.
[ "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "-1", "-2", "1", "1", "1", "-2", "-5", "-2", "1", "1", "1", "-3", "-8", "1", "6", "1", "1", "1", "-4", "-11", "10", "41", "16", "1", "1", "1", "-5", "-14", "25", "106", "31", "-20", "1", "1", "1", "-6", "-17", "46", "201", "-44", "-461", "-132", "1", "1", "1", "-7", "-20", "73", "326", "-299", "-1952", "-895", "28", "1", "1", "1", "-8", "-23", "106", "481", "-824", "-5123", "-1028", "6481", "1216", "1" ]
[ "sign", "tabl" ]
26
0
14
[ "A000012", "A001464", "A293604", "A359762", "A362176", "A362177", "A362276", "A362277", "A362278", "A362279", "A362282", "A362302" ]
null
Seiichi Manyama, Apr 13 2023
2023-04-16T09:49:00
oeisdata/seq/A362/A362277.seq
fcc80dfdeefca4e1090e855554b9d6b1
A362278
Expansion of e.g.f. exp(x - 3*x^2/2).
[ "1", "1", "-2", "-8", "10", "106", "-44", "-1952", "-1028", "45820", "73576", "-1301024", "-3729032", "43107832", "188540080", "-1621988864", "-10106292464", "67749173008", "583170088672", "-3075285253760", "-36315980308064", "148201134917536", "2436107894325568", "-7345167010231808" ]
[ "sign", "easy" ]
20
0
3
[ "A115327", "A362277", "A362278" ]
null
Seiichi Manyama, Apr 13 2023
2023-04-18T16:42:36
oeisdata/seq/A362/A362278.seq
d4a597112ab37c8c6ef4a019595cc906
A362279
Expansion of e.g.f. exp(x - 5*x^2/2).
[ "1", "1", "-4", "-14", "46", "326", "-824", "-10604", "18236", "442396", "-378224", "-22498024", "-1695704", "1348185736", "1458406496", "-92914595024", "-202295082224", "7230872519696", "24425954508736", "-626352572263904", "-2946818250593824", "59688438975796576", "369104355288148096" ]
[ "sign", "easy" ]
14
0
3
[ "A115331", "A362277", "A362279" ]
null
Seiichi Manyama, Apr 13 2023
2023-04-16T09:47:48
oeisdata/seq/A362/A362279.seq
c51930e2b93ad0525063019e841f834f
A362280
a(n) is the number of n X n matrices using all the integers from 1 to n^2 with trace equal to the antitrace.
[ "1", "8", "32640", "606108303360", "288646869784585568256000", "3978466023641262138239999300075520000000", "4808293482959682489757553576215163849442438886195200000000000", "669887741948823664389458168162886859168459418141304785844082510440658108416000000000000" ]
[ "nonn", "hard", "more" ]
27
1
2
[ "A000142", "A001044", "A052928", "A362209", "A362280", "A362291" ]
null
Stefano Spezia and Michael S. Branicky, Apr 14 2023
2023-04-25T09:22:39
oeisdata/seq/A362/A362280.seq
bd8c914bf99eb090e842096041a56d36
A362281
a(n) = n! * Sum_{k=0..floor(n/2)} n^k * binomial(n-k,k)/(n-k)!.
[ "1", "1", "5", "19", "241", "1601", "32581", "308995", "8655809", "106673761", "3805452901", "57704760851", "2500580809585", "45018720191329", "2295683481085541", "47848514992963651", "2806491306922172161", "66464103165835330625", "4407449313521981148229", "116893033842508769526931" ]
[ "nonn" ]
21
0
3
[ "A277614", "A362281", "A362282" ]
null
Seiichi Manyama, Apr 14 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362281.seq
b7ab35a9b906bf5efe452ce895e2c932
A362282
a(n) = n! * Sum_{k=0..floor(n/2)} (-n)^k * binomial(n-k,k)/(n-k)!.
[ "1", "1", "-3", "-17", "145", "1401", "-19619", "-267833", "5214273", "91975825", "-2292948899", "-49586832129", "1506939887377", "38595456391753", "-1383612408628995", "-40951481342092649", "1691614670048805121", "56809502720559644577", "-2656760323700732460227", "-99810124102484722532465" ]
[ "sign" ]
19
0
3
[ "A362276", "A362277", "A362281", "A362282" ]
null
Seiichi Manyama, Apr 14 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362282.seq
68c7acbe1d4814e7085ed1d7cadcd858
A362283
Expansion of e.g.f. exp( sqrt(-LambertW(-x^2)) ).
[ "1", "1", "1", "4", "13", "106", "601", "7456", "60649", "1012348", "10748161", "225641296", "2957978101", "74847384184", "1168123938073", "34598428916416", "626497273410961", "21261683280971536", "438222313050326209", "16765636110497697088", "387549609831150094621", "16502188154766906299296" ]
[ "nonn" ]
13
0
4
[ "A000272", "A034940", "A277614", "A362283", "A362293" ]
null
Seiichi Manyama, Apr 14 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362283.seq
41af0ef484de5137a323bae235879e6c
A362284
a(n) is the least number k such that A138705(k) = n, or -1 if no such k exists.
[ "0", "1", "5", "10", "23", "6", "8", "20", "50", "18", "69", "66", "100", "45", "56", "42", "30", "40", "96", "99", "72", "234", "36", "348", "156", "200", "168", "120", "405", "390", "216", "315", "90", "198", "280", "270", "792", "210", "180", "624", "1120", "360", "576", "1188", "1134", "420", "750", "1140", "504", "1728", "660", "600", "690", "540", "630", "1380", "810" ]
[ "nonn" ]
15
1
3
[ "A000367", "A002445", "A027641", "A027642", "A138705", "A362284", "A362285", "A362286" ]
null
Amiram Eldar, Apr 14 2023
2023-08-28T08:21:28
oeisdata/seq/A362/A362284.seq
bd90f6c2c1ae7e6145c4c1eb21820c5d
A362285
Indices of records of A138705.
[ "0", "1", "5", "6", "8", "18", "30", "36", "90", "180", "360", "420", "504", "540", "630", "810", "840", "1080", "1260", "1680", "1890", "2520", "3240", "3780", "4200", "5040", "7560", "10080", "12600", "21420", "30240", "32760", "37800", "42840", "50400", "60480", "64260", "65520", "83160", "98280", "128520" ]
[ "nonn", "more" ]
8
1
3
[ "A000367", "A002445", "A027641", "A027642", "A100195", "A138705", "A362284", "A362285", "A362286" ]
null
Amiram Eldar, Apr 14 2023
2023-04-14T03:46:33
oeisdata/seq/A362/A362285.seq
d3deb2a82d8f0a3062fc1a81596145db
A362286
Record values in A138705.
[ "1", "2", "3", "6", "7", "10", "17", "23", "33", "39", "42", "46", "49", "54", "55", "57", "66", "73", "78", "83", "85", "95", "100", "105", "118", "133", "157", "162", "183", "201", "220", "224", "234", "242", "262", "272", "273", "287", "309", "314", "366" ]
[ "nonn", "more" ]
8
1
2
[ "A000367", "A002445", "A027641", "A027642", "A100195", "A138705", "A362284", "A362285", "A362286" ]
null
Amiram Eldar, Apr 14 2023
2023-04-14T03:46:44
oeisdata/seq/A362/A362286.seq
75db7ade5697353372f5cea1695e52fa
A362287
Hypertotient numbers: numbers k such that the set that includes k and the numbers less than k and relatively prime to k can be partitioned into two disjoint subsets of equal sum.
[ "3", "4", "6", "7", "8", "9", "11", "12", "14", "16", "18", "19", "20", "22", "23", "24", "26", "27", "28", "31", "32", "34", "36", "38", "40", "42", "43", "44", "46", "47", "48", "49", "50", "52", "54", "56", "58", "59", "60", "62", "64", "66", "67", "68", "70", "71", "72", "74", "76", "78", "79", "80", "81", "82", "83", "84", "86", "88", "90", "92", "94", "96", "98", "100", "102", "103" ]
[ "nonn" ]
8
1
1
[ "A000010", "A332556", "A362287" ]
null
Amiram Eldar, Apr 14 2023
2023-04-16T02:17:43
oeisdata/seq/A362/A362287.seq
b17fe5332eea585ca6b221e7da80f6da
A362288
a(n) = Product_{k=0..n} binomial(n,k)^k.
[ "1", "1", "2", "27", "9216", "312500000", "4251528000000000", "95432797246104853383515625", "14719075154533285649961930052505436160000", "65577306173662530591576256095315195684570038194755952705536" ]
[ "nonn" ]
15
0
3
[ "A001142", "A067055", "A167008", "A255268", "A272093", "A362288" ]
null
Vaclav Kotesovec, Apr 14 2023
2023-04-17T02:02:32
oeisdata/seq/A362/A362288.seq
a947dd568d3f21cc78c982147bad7214
A362289
a(n) is the largest denominator when the greedy algorithm for Egyptian fractions is applied to 1/n + 1/(n+1).
[ "2", "3", "12", "180", "30", "1428", "56", "2520", "90", "2310", "132", "100292556", "182", "9240", "240", "119952", "306", "614444040", "380", "23100", "462", "42190274940", "552", "77390453400", "650", "201474", "756", "23370247110", "870", "200880", "992", "14523137084239067683872", "1122", "2206260", "1260", "104845560637757648698080" ]
[ "nonn" ]
30
1
1
[ "A050210", "A362289" ]
null
Sebastian F. Orellana, Apr 14 2023
2023-04-15T23:32:12
oeisdata/seq/A362/A362289.seq
88cdbd0b323bdfd9fb9100d1603e89c3
A362290
a(n) is the number of parts into which the inner region of the parabola y = x^2 is divided by n squares inscribed in the parabola as described in the comments.
[ "4", "8", "13", "19", "27", "35", "44", "54", "64", "76", "88", "100", "113", "127", "141", "155", "171", "187", "203", "219", "236", "254", "272", "290", "308", "328", "348", "368", "388", "408", "429", "451", "473", "495", "517", "539", "563", "587", "611", "635", "659", "683", "708", "734", "760", "786", "812", "838", "864", "892", "920", "948", "976", "1004", "1032", "1060", "1089", "1119", "1149" ]
[ "nonn" ]
41
1
1
null
null
Nicolay Avilov, Apr 14 2023
2023-07-15T06:30:05
oeisdata/seq/A362/A362290.seq
782dd89ee8e3dd1a14d276a0e2cf2a83
A362291
Number of pairs of disjoint subsets of 1..n^2 of size 2*floor(n/2) having equal sum.
[ "1", "2", "68", "26098", "1408886", "12369296230", "673890139470", "33193434883028584" ]
[ "nonn", "hard", "more" ]
21
1
2
[ "A052928", "A362280", "A362291" ]
null
Michael S. Branicky, Apr 14 2023
2023-04-25T09:42:15
oeisdata/seq/A362/A362291.seq
efe22202accaa232110fa2d4735e8e5c
A362292
a(n) = (n+1/3)^n * (3*n)!/n!.
[ "1", "8", "1960", "2240000", "7037430400", "47023181004800", "573855569801113600", "11561744236447268864000", "357878145625000000000000000", "16126894605060719806880153600000", "1014615361149039162308699493990400000", "86191463407361600308443922239271731200000" ]
[ "nonn", "easy" ]
12
0
2
[ "A000169", "A034940", "A362292" ]
null
Seiichi Manyama, Apr 14 2023
2023-04-15T06:27:44
oeisdata/seq/A362/A362292.seq
e861336e485f43f1c7e83cb2ce98e8d3
A362293
Expansion of e.g.f. exp( (-LambertW(-x^3))^(1/3) ).
[ "1", "1", "1", "1", "9", "41", "121", "2241", "18481", "91729", "2577681", "30833441", "215554681", "8126363961", "127462383049", "1150296157921", "54416525377761", "1056352067669921", "11684649751431841", "665061201610232769", "15390714465319910761", "201615391902487799881" ]
[ "nonn" ]
22
0
5
[ "A000272", "A362283", "A362292", "A362293", "A362300" ]
null
Seiichi Manyama, Apr 14 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362293.seq
3227135c291995098f0613fc2493c682
A362294
Erroneous version of A005441.
[ "1", "1", "4", "4", "9", "8", "55", "21", "105", "62", "429", "196" ]
[ "dead" ]
7
2
3
null
null
null
2023-04-14T10:52:47
oeisdata/seq/A362/A362294.seq
d8fbf0a4371df269f391e5efbe9749c2
A362295
Sums of two Fibonacci numbers that are also sums of two squares.
[ "0", "1", "2", "4", "5", "8", "9", "10", "13", "16", "18", "26", "29", "34", "36", "37", "58", "68", "89", "90", "97", "144", "145", "146", "149", "157", "178", "233", "234", "241", "288", "377", "466", "521", "610", "612", "613", "754", "1000", "1021", "1042", "1076", "1220", "1597", "1600", "1602", "1618", "1741", "2592", "2597", "2605", "2817", "3194", "4181", "4194", "4325", "6770", "6773", "6778", "6786" ]
[ "nonn" ]
22
1
3
[ "A000045", "A001481", "A059389", "A084176", "A111378", "A362295" ]
null
Robert Israel, Apr 14 2023
2024-09-29T06:24:04
oeisdata/seq/A362/A362295.seq
cf502da9714249806e4d9d9a9186e9a1
A362296
Greatest common divisor of composite numbers between the n-th and (n+1)st primes.
[ "4", "6", "1", "12", "1", "18", "1", "1", "30", "1", "1", "42", "1", "1", "1", "60", "1", "1", "72", "1", "1", "1", "1", "1", "102", "1", "108", "1", "1", "1", "1", "138", "1", "150", "1", "1", "1", "1", "1", "180", "1", "192", "1", "198", "1", "1", "1", "228", "1", "1", "240", "1", "1", "1", "1", "270", "1", "1", "282", "1", "1", "1", "312", "1", "1", "1", "1", "348", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
24
2
1
[ "A056831", "A061214", "A362296" ]
null
Chai Wah Wu, Apr 15 2023
2023-04-16T15:55:24
oeisdata/seq/A362/A362296.seq
007c89cc180fe1ccdb151190a3269f7b
A362297
Array read by antidiagonals for k,n>=0: T(n,k) = number of tilings of a 2k X n rectangle using dominos and 2 X 2 right triangles.
[ "1", "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "19", "7", "1", "1", "1", "97", "55", "19", "1", "1", "1", "508", "445", "472", "40", "1", "1", "1", "2683", "3625", "13249", "2023", "97", "1", "1", "1", "14209", "29575", "392299", "109771", "13249", "217", "1", "1", "1", "75316", "241375", "11877025", "6078148", "2102272", "66325", "508", "1", "1", "1", "399331", "1970125", "362823607", "338504101", "358815535", "22650721", "392299", "1159", "1" ]
[ "nonn", "tabl" ]
23
0
9
[ "A006130", "A351322", "A352431", "A352432", "A352433", "A362297", "A362298", "A362299" ]
null
Gerhard Kirchner, Apr 19 2023
2023-04-29T00:07:54
oeisdata/seq/A362/A362297.seq
691beb73eac8472f6ad42ed6a4f24cca
A362298
Number of tilings of a 4 X n rectangle using dominos and 2 X 2 right triangles.
[ "1", "1", "19", "55", "472", "2023", "13249", "66325", "392299", "2088856", "11877025", "64803157", "362823607", "1998759703", "11123273896", "61509329983", "341492705365", "1891193243713", "10489893539203", "58127214942544", "322296397820593", "1786338231961609", "9903234373856059", "54893955008138983" ]
[ "nonn", "easy" ]
11
0
3
[ "A006130", "A351322", "A352432", "A352433", "A362297", "A362298", "A362299" ]
null
Gerhard Kirchner, Apr 19 2023
2023-04-28T20:15:39
oeisdata/seq/A362/A362298.seq
520f7d1b613705b9a1efcd438a1d9aaf
A362299
Number of tilings of a 3 X 2n rectangle using dominos and 2 X 2 right triangles.
[ "1", "7", "55", "445", "3625", "29575", "241375", "1970125", "16080625", "131254375", "1071334375", "8744528125", "71375265625", "582584734375", "4755218359375", "38813412578125", "316805850390625", "2585857315234375", "21106485396484375", "172276994236328125", "1406172661416015625" ]
[ "nonn", "easy" ]
16
0
2
[ "A006130", "A351322", "A352432", "A352433", "A362297", "A362298", "A362299" ]
null
Gerhard Kirchner, Apr 19 2023
2024-07-20T17:18:38
oeisdata/seq/A362/A362299.seq
1e82dd7255d38459ab22388a0a33dee2
A362300
a(n) = n! * Sum_{k=0..floor(n/3)} (n/3)^k * binomial(n-2*k,k)/(n-2*k)!.
[ "1", "1", "1", "7", "33", "101", "1681", "14211", "72577", "1906633", "23242401", "166218911", "5966236321", "95016917997", "873707885233", "39767572858651", "781865428682241", "8787169718273681", "484500265577706817", "11335266937098816183", "150554918241183405601", "9749671976020428623221" ]
[ "nonn" ]
31
0
4
[ "A277614", "A362043", "A362293", "A362300", "A362314", "A362319" ]
null
Seiichi Manyama, Apr 15 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362300.seq
ec122f054266b19e856aa17d95911cdc