sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A363401
a(n) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} binomial(k, j) * ((2 - (n mod 2)) * j + 1)^n. Row sums of A363400.
[ "1", "5", "68", "302", "33104", "64272", "43575104", "30313712", "111402371328", "25258008320", "468857355838464", "32779942009344", "2941165554120118272", "61149815860711424", "25734702989598729256960", "155090406558662064128", "299529317622247725531725824", "513370937392454603833344" ]
[ "nonn" ]
7
0
2
[ "A363400", "A363401" ]
null
Peter Luschny, Jun 02 2023
2023-06-02T08:39:37
oeisdata/seq/A363/A363401.seq
f5d85ca9857c9e9b33213f08517a05d7
A363402
a(n) = n * (4^n - 2^n) / Clausen(n, 0).
[ "0", "2", "12", "56", "480", "992", "4032", "16256", "261120", "784896", "1047552", "4192256", "33546240", "67100672", "268419072", "1073709056", "34359214080", "17179738112", "206157643776", "274877382656", "2199021158400", "4398044413952", "17592181850112", "70368735789056", "1125899839733760", "5629499366440960" ]
[ "nonn" ]
5
0
2
[ "A160014", "A363395", "A363402", "A363403" ]
null
Peter Luschny, Jun 08 2023
2023-06-08T08:50:19
oeisdata/seq/A363/A363402.seq
87691ea6460a9b60190da9ddfba8d7f4
A363403
a(n) = (4^n - 2^n) / Clausen(n, 1).
[ "0", "1", "2", "28", "8", "496", "96", "8128", "2176", "130816", "15872", "2096128", "6144", "33550336", "44736512", "536854528", "8421376", "8589869056", "86114304", "137438691328", "3331850240", "2199022206976", "127479578624", "35184367894528", "103104380928", "562949936644096", "750599926710272", "9007199187632128" ]
[ "nonn" ]
5
0
3
[ "A160014", "A363395", "A363402", "A363403" ]
null
Peter Luschny, Jun 08 2023
2023-06-08T08:50:13
oeisdata/seq/A363/A363403.seq
ea60eeabd620173a5da04518057b44a7
A363404
G.f. satisfies A(x) = exp( Sum_{k>=1} (A(x^k) + A(w*x^k) + A(w^2*x^k))/3 * x^k/k ), where w = exp(2*Pi*i/3).
[ "1", "1", "1", "1", "2", "2", "2", "4", "5", "5", "10", "12", "13", "26", "34", "36", "73", "96", "104", "210", "288", "315", "638", "881", "974", "1975", "2777", "3089", "6276", "8895", "9970", "20272", "29000", "32668", "66508", "95703", "108347", "220771", "319483", "363141", "740615", "1076331", "1227826", "2505979", "3655912", "4183309", "8544123", "12504292", "14347462" ]
[ "nonn" ]
17
0
5
[ "A195865", "A363336", "A363404", "A363405" ]
null
Seiichi Manyama, May 31 2023
2023-06-01T11:11:46
oeisdata/seq/A363/A363404.seq
a008c8607e9c98a980085e3a6707dda8
A363405
G.f. satisfies A(x) = exp( Sum_{k>=1} (A(x^k) + A(i*x^k) + A(-x^k) + A(i^3*x^k))/4 * x^k/k ), where i = sqrt(-1).
[ "1", "1", "1", "1", "1", "2", "2", "2", "2", "4", "5", "5", "5", "10", "12", "13", "13", "26", "34", "36", "37", "74", "97", "105", "107", "215", "293", "320", "328", "658", "905", "998", "1025", "2058", "2878", "3194", "3292", "6611", "9316", "10412", "10748", "21594", "30697", "34470", "35663", "71668", "102446", "115575", "119761", "240740", "345940", "391726", "406571", "817453", "1179322", "1339851" ]
[ "nonn" ]
20
0
6
[ "A195865", "A363337", "A363404", "A363405" ]
null
Seiichi Manyama, May 31 2023
2023-06-01T11:11:42
oeisdata/seq/A363/A363405.seq
23fc158a1e0f51f2d252a8700b426cee
A363406
Start with list L = 1,2,3,4,.... For n = 1,2,3,..., iterate as follows: let j = L(1) and k = L(j+1), get a(n) = j + k, and remove j and k from L.
[ "3", "9", "13", "17", "23", "27", "33", "37", "43", "47", "51", "57", "61", "67", "71", "75", "81", "85", "91", "95", "99", "105", "109", "115", "119", "125", "129", "133", "139", "143", "149", "153", "157", "163", "167", "173", "177", "183", "187", "191", "197", "201", "207", "211", "215", "221", "225", "231", "235", "241", "245", "249", "255", "259", "265", "269", "273", "279", "283", "289", "293", "297" ]
[ "nonn" ]
42
1
1
[ "A004641", "A363406" ]
null
Ali Sada and David James Sycamore, May 31 2023
2024-12-20T12:36:19
oeisdata/seq/A363/A363406.seq
81d07554130c82dfadb678163dcac38d
A363407
Sum of divisors of 4*n-3 of form 4*k+3.
[ "0", "0", "3", "0", "0", "10", "0", "0", "14", "0", "0", "18", "7", "0", "22", "0", "0", "26", "0", "18", "30", "0", "0", "34", "0", "0", "60", "0", "0", "42", "11", "0", "46", "26", "0", "50", "0", "0", "54", "0", "30", "84", "0", "0", "62", "0", "0", "100", "0", "0", "70", "0", "30", "74", "38", "0", "93", "0", "0", "82", "0", "42", "86", "34", "0", "90", "0", "0", "140", "0", "0", "132", "0", "0", "140", "50", "0", "106", "0", "0", "110", "0", "54", "114", "0", "42", "156" ]
[ "nonn" ]
17
1
3
[ "A050452", "A359240", "A363407", "A364084" ]
null
Seiichi Manyama, Jul 08 2023
2023-07-08T08:04:51
oeisdata/seq/A363/A363407.seq
59c833817fe5446a10ce92ab8b569aed
A363408
Squares whose base-3 expansion has no 2.
[ "0", "1", "4", "9", "36", "81", "121", "256", "324", "361", "729", "841", "1089", "2304", "2916", "3025", "3249", "6561", "6889", "7569", "9801", "20449", "20736", "26244", "26569", "27225", "29241", "59049", "60025", "62001", "68121", "68644", "88209", "177241", "184041", "186624", "203401", "236196", "237169", "239121", "245025", "263169", "531441", "534361", "540225", "558009" ]
[ "nonn", "base" ]
15
1
3
[ "A000290", "A005836", "A176189", "A363408", "A363428" ]
null
Robert Israel, May 31 2023
2023-06-11T14:17:14
oeisdata/seq/A363/A363408.seq
f5ad6a39f01723386d2844156e67eeca
A363409
a(n) = the real part of Product_{k = 1..n} (1 + k*sqrt(-2)).
[ "1", "1", "-3", "-21", "27", "927", "387", "-78111", "-211167", "10887129", "61228629", "-2278564101", "-20995423317", "669639978711", "9055735268283", "-263207953694367", "-4900375484030367", "133357760824723281", "3278778524907635277", "-84617763517115570709", "-2669012118280627019109" ]
[ "sign", "easy" ]
19
0
3
[ "A105750", "A363409", "A363410", "A363416" ]
null
Peter Bala, Jun 01 2023
2024-01-29T08:42:52
oeisdata/seq/A363/A363409.seq
d131196efa73d41c8e144c9f6dc9509e
A363410
a(n)= 1/sqrt(2) * the imaginary part of Product_{k = 1..n} (1 + k*sqrt(-2)).
[ "0", "1", "3", "-6", "-90", "45", "5607", "8316", "-616572", "-2517075", "106354215", "779869134", "-26562900078", "-299503403199", "9075456298755", "144911485323000", "-4066415773786872", "-87372799002303111", "2313066895842715947", "64609858869087786210", "-1627745411473223627970" ]
[ "sign", "easy" ]
18
0
3
[ "A105750", "A105751", "A363409", "A363410", "A363416" ]
null
Peter Bala, Jun 01 2023
2023-06-10T07:33:31
oeisdata/seq/A363/A363410.seq
43d3936b7b687bf22b89ce346dfdb140
A363411
a(n) = the real part of Product_{k = 0..n} 1 + k*sqrt(-3).
[ "1", "1", "-5", "-32", "112", "2212", "-5348", "-292880", "276976", "64180144", "60400144", "-21123205376", "-68151050240", "9766562233792", "57568265355328", "-6044149831446272", "-54001800190537472", "4827069458763086080", "59568915131392086784", "-4835221290238425841664", "-77896195282519949963264" ]
[ "sign", "easy" ]
18
0
3
[ "A105750", "A363409", "A363411", "A363416" ]
null
Peter Bala, Jun 01 2023
2025-03-27T04:38:11
oeisdata/seq/A363/A363411.seq
f385b025e24c7824c257b8edff094eb7
A363412
a(n) = 1/sqrt(3) * the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-3).
[ "0", "1", "3", "-12", "-140", "420", "13692", "-23744", "-2366784", "126000", "641927440", "1306329024", "-252172135488", "-1138135788608", "135593735484480", "999117715814400", "-95707279587325952", "-1013737882826462976", "85873512374909086464", "1217682899871358735360", "-95486742904897158097920" ]
[ "sign", "easy" ]
19
0
3
[ "A105750", "A105751", "A363409", "A363412", "A363416" ]
null
Peter Bala, Jun 01 2023
2025-03-27T04:42:07
oeisdata/seq/A363/A363412.seq
225cf866c232d7c50be9d5602301b339
A363413
a(n) = the real part of Product_{k = 0..n} 1 + k*sqrt(-4).
[ "1", "1", "-7", "-43", "245", "4045", "-20795", "-729335", "3118985", "217496825", "-667140175", "-97338843875", "149451128125", "61156245509125", "18055448952125", "-51399370203595375", "-123577855227019375", "55722247285947360625", "266112415762709595625", "-75739843360243364046875", "-560236984557463079546875" ]
[ "sign", "easy" ]
13
0
3
[ "A105750", "A363409", "A363413", "A363416" ]
null
Peter Bala, Jun 01 2023
2023-06-10T05:27:19
oeisdata/seq/A363/A363413.seq
ca0879650ae4308da5ebe463bd5631a1
A363414
a(n) = (1/2) * the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-4).
[ "0", "1", "3", "-18", "-190", "1035", "25305", "-120260", "-5954940", "22115925", "2197084175", "-5141457750", "-1173207584250", "769657081375", "856957094209125", "1127788828491000", "-821262134429035000", "-2922085673288364375", "1000078365473764126875", "6056214264965246443750", "-1508740652939902034493750" ]
[ "sign", "easy" ]
16
0
3
[ "A105750", "A105751", "A363409", "A363414", "A363416" ]
null
Peter Bala, Jun 01 2023
2023-06-10T05:28:11
oeisdata/seq/A363/A363414.seq
58180fe7f86fbaf8b0ce8156e3a3a296
A363415
a(n) = the real part of Product_{k = 0..n} 1 + k*sqrt(-5).
[ "1", "1", "-9", "-54", "426", "6426", "-50274", "-1465884", "10992996", "552727476", "-3792193524", "-312571718424", "1853425616616", "248005863100296", "-1173524207653224", "-263102748395914224", "865735128320476176", "359884863190774985616", "-584551982838131141904", "-616984573598760535235424", "-155177934223071790979424" ]
[ "sign", "easy" ]
15
0
3
[ "A105750", "A363409", "A363415", "A363416" ]
null
Peter Bala, Jun 01 2023
2025-03-27T05:43:54
oeisdata/seq/A363/A363415.seq
dc055cb5dba2ef70ecc926f239d23c9b
A363416
a(n) = 1/sqrt(5) * the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-5).
[ "0", "1", "3", "-24", "-240", "1890", "40446", "-311472", "-12038544", "86898420", "5614173180", "-36099955584", "-3786960576672", "20307572439336", "3492389655843480", "-14110473458954880", "-4223754447793582464", "10493742733654512528", "6488421280167604253616", "-4618066393756887442560", "-12344309538368967592151040" ]
[ "sign", "easy" ]
16
0
3
[ "A105750", "A105751", "A363409", "A363415", "A363416" ]
null
Peter Bala, Jun 01 2023
2023-06-10T05:17:30
oeisdata/seq/A363/A363416.seq
31d67a25d002734309d14a8e59c3a1e9
A363417
a(n) = Sum_{j=0..2^n - 1} b(j) for n >= 0 where b(n) = (A023416(n) + 1)*b(A053645(n)) + [A036987(n) = 0]*b(A266341(n)) for n > 0 with b(0) = 1.
[ "1", "2", "6", "23", "106", "566", "3415", "22872", "167796", "1334596", "11414192", "104270906", "1011793389", "10379989930", "112134625986", "1271209859403", "15077083642150", "186588381229340", "2403775013224000", "32168379148440968", "446341838086450308", "6410107231501731012", "95136428354649665256" ]
[ "nonn" ]
43
0
2
[ "A000523", "A023416", "A036987", "A053645", "A266341", "A284005", "A329369", "A341392", "A347205", "A363417" ]
null
Mikhail Kurkov, Jun 11 2023 [verification needed]
2024-04-21T22:11:00
oeisdata/seq/A363/A363417.seq
14120e071dba4a57cd136e483c62fd3b
A363418
Square array read by ascending antidiagonals: T(n,k) = [x^(n*k)] ((1 + x)/(1 - x))^k for n, k >= 1.
[ "2", "2", "8", "2", "16", "38", "2", "24", "146", "192", "2", "32", "326", "1408", "1002", "2", "40", "578", "4672", "14002", "5336", "2", "48", "902", "11008", "69002", "142000", "28814", "2", "56", "1298", "21440", "216002", "1038984", "1459810", "157184", "2", "64", "1766", "36992", "525002", "4320608", "15856206", "15158272", "864146" ]
[ "nonn", "tabl", "easy" ]
25
1
1
[ "A002003", "A035607", "A103885", "A333715", "A362724", "A362733", "A363418", "A363419" ]
null
Peter Bala, Jun 12 2023
2024-01-05T14:28:00
oeisdata/seq/A363/A363418.seq
90dd44ecb0bf8a2f7a5eaed22a3045a3
A363419
Square array read by ascending antidiagonals: T(n,k) = 1/n * [x^k] 1/((1 - x)*(1 - x^2))^(n*k) for n, k >= 1.
[ "1", "1", "5", "1", "7", "19", "1", "9", "46", "85", "1", "11", "82", "327", "376", "1", "13", "127", "793", "2376", "1715", "1", "15", "181", "1547", "7876", "17602", "7890", "1", "17", "244", "2653", "19376", "79686", "132056", "36693", "1", "19", "316", "4175", "40001", "247205", "816684", "1000263", "171820", "1", "21", "397", "6177", "73501", "614389", "3195046", "8450585", "7632433", "809380" ]
[ "nonn", "tabl", "easy" ]
11
0
3
[ "A348410", "A362724", "A362733", "A363418", "A363419" ]
null
Peter Bala, Jun 13 2023
2023-06-23T15:55:47
oeisdata/seq/A363/A363419.seq
4f66db5d557523ca825d58190fb0ca03
A363420
Let D be the largest digit of a(n) + a(n+1). The successive Ds reproduce the successive digits of the sequence. By construction, we do not accept any zero in the sequence. This is the lexicographically earliest sequence of distinct terms > 0 with this property.
[ "1", "9", "81", "2", "8", "4", "14", "26", "74", "66", "36", "24", "3", "11", "5", "21", "12", "34", "68", "46", "57", "43", "58", "47", "55", "45", "56", "64", "39", "65", "41", "7", "17", "19", "6", "31", "13", "18", "27", "51", "53", "22", "23", "28", "15", "35", "16", "44", "62", "42", "61", "29", "32", "73", "67", "33", "37", "63", "54", "946", "25", "38", "75", "925", "76", "127", "873" ]
[ "base", "nonn" ]
13
1
2
[ "A332803", "A363420" ]
null
Eric Angelini, Jul 03 2023
2023-08-02T11:52:28
oeisdata/seq/A363/A363420.seq
7372dd672d9367c22a4ad7abeed41e57
A363421
a(n) = Sum_{k=0..n}(n^[not(k | n)] - n^[k | n]), where '[ ]' denotes the Iverson bracket.
[ "1", "0", "-1", "0", "-3", "8", "-5", "24", "7", "32", "27", "80", "11", "120", "91", "112", "105", "224", "119", "288", "171", "280", "315", "440", "207", "480", "475", "520", "459", "728", "435", "840", "651", "832", "891", "952", "665", "1224", "1147", "1216", "975", "1520", "1107", "1680", "1419", "1496", "1755", "2024", "1363", "2112", "1911", "2200", "2091" ]
[ "sign" ]
40
0
5
[ "A000005", "A113704", "A363421", "A363734", "A363735" ]
null
Peter Luschny, Jun 27 2023
2023-08-06T08:15:56
oeisdata/seq/A363/A363421.seq
b7ee2e75bf2ac774f12af30667a416e9
A363422
Numbers k which satisfy k = concat(a,b,...) and a*b*... = reverse(k), for some two or more a,b,...
[ "351", "621", "886", "5931", "86673", "97533", "425322", "430762", "920781", "3524751", "4495491", "4834872", "5594151", "5941971", "6218001", "6801381", "6916671", "8630841", "32331001", "44235301", "57982563", "67968432", "68577483", "69617484", "71673981", "88873491", "89943354", "119910901", "338752611" ]
[ "nonn", "base" ]
23
1
1
[ "A265737", "A267939", "A281555", "A363422" ]
null
David L. Reens, Jun 01 2023
2023-07-27T12:16:40
oeisdata/seq/A363/A363422.seq
5417aa4677a954f572314ee70e60baf3
A363423
G.f. satisfies A(x) = exp( Sum_{k>=1} A(3*x^k) * x^k/k ).
[ "1", "1", "4", "40", "1126", "92440", "22559276", "16468584194", "36033333480881", "236450784546518006", "4654297351684653345788", "274836259327539399144691019", "48686693681325683653963188907344", "25874153864215746591981599665978198380" ]
[ "nonn" ]
15
0
3
[ "A000081", "A179470", "A359018", "A363423", "A363424" ]
null
Seiichi Manyama, Jun 01 2023
2023-06-02T10:19:17
oeisdata/seq/A363/A363423.seq
7bbd1d91bc3e9ca678f7053efb741078
A363424
G.f. satisfies A(x) = exp( Sum_{k>=1} A(4*x^k) * x^k/k ).
[ "1", "1", "5", "85", "5535", "1422815", "1458410395", "5975113492155", "97902240525033630", "6416219161308006188750", "1681979772433159156954845846", "1763685303864317080584539713676102", "7397434088431352859937186709876628421294" ]
[ "nonn" ]
14
0
3
[ "A000081", "A179470", "A359186", "A363423", "A363424" ]
null
Seiichi Manyama, Jun 01 2023
2023-06-02T10:19:14
oeisdata/seq/A363/A363424.seq
ba98dc19c92db9fd70ce4baf8399e568
A363425
G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(2*x^k) * x^k/k ).
[ "1", "1", "2", "10", "89", "1521", "50300", "3271556", "422093896", "108481853032", "55651639993132", "57043042723263188", "116881250986006852062", "478862542730584327952230", "3923320929876295358082556380", "64283613915707884845087288240332" ]
[ "nonn" ]
14
0
3
[ "A004111", "A179470", "A318368", "A363425", "A363426", "A363427" ]
null
Seiichi Manyama, Jun 01 2023
2023-06-02T10:19:10
oeisdata/seq/A363/A363425.seq
af4c15f3f783679be354b0b279521d7f
A363426
G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(3*x^k) * x^k/k ).
[ "1", "1", "3", "30", "840", "68934", "16821865", "12280119400", "26868936914550", "176313989066991255", "3470564614854890465955", "204936840860491674903711726", "36304151491699938200267389259775", "19293550877461959142221066537253871070" ]
[ "nonn" ]
13
0
3
[ "A004111", "A363338", "A363423", "A363425", "A363426", "A363427" ]
null
Seiichi Manyama, Jun 01 2023
2023-06-02T10:19:07
oeisdata/seq/A363/A363426.seq
aeba86ed383b8e02f3317cd07a90ce7a
A363427
G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(4*x^k) * x^k/k ).
[ "1", "1", "4", "68", "4422", "1136646", "1165077220", "4773325045092", "78210934437541505", "5125710024629047469249", "1343679254641311248179226112", "1408951161809404147369817577873792", "5909570902737024213107077083032728540592" ]
[ "nonn" ]
14
0
3
[ "A004111", "A363339", "A363424", "A363425", "A363426", "A363427" ]
null
Seiichi Manyama, Jun 01 2023
2023-06-02T10:19:03
oeisdata/seq/A363/A363427.seq
1a9370c01984554ab8368915b2406efb
A363428
Squares whose base-3 expansion has no 0.
[ "1", "4", "16", "25", "49", "121", "400", "484", "1444", "1849", "3364", "5476", "10201", "10609", "10816", "12769", "17161", "19321", "19600", "155236", "169744", "274576", "286225", "344569", "346921", "450241", "502681", "863041", "885481", "984064", "1042441", "4008004", "4190209", "4596736", "7203856", "7263025", "7706176", "12752041", "14326225", "14341369", "23833924" ]
[ "nonn", "base" ]
17
1
2
[ "A000290", "A032924", "A363408", "A363428" ]
null
Robert Israel, Jun 01 2023
2023-06-19T10:43:13
oeisdata/seq/A363/A363428.seq
9aa31c492a078ffe50026e868bdc288a
A363429
Number of set partitions of [n] such that each block has at most one even element.
[ "1", "1", "2", "5", "10", "37", "77", "372", "799", "4736", "10427", "73013", "163967", "1322035", "3017562", "27499083", "63625324", "646147067", "1512354975", "16926317722", "40012800675", "489109544320", "1166271373797", "15455199988077", "37134022033885", "530149003318273", "1282405154139046", "19619325078384593" ]
[ "nonn" ]
14
0
3
[ "A000110", "A110132", "A124421", "A134980", "A363429", "A363430" ]
null
Alois P. Heinz, Jun 01 2023
2023-06-01T16:48:18
oeisdata/seq/A363/A363429.seq
c593285efd12ba1580c523efccaf5931
A363430
Number of set partitions of [n] such that each block has at most one odd element.
[ "1", "1", "2", "3", "10", "17", "77", "141", "799", "1540", "10427", "20878", "163967", "338233", "3017562", "6376149", "63625324", "137144475", "1512354975", "3315122947", "40012800675", "88981537570", "1166271373797", "2626214876310", "37134022033885", "84540738911653", "1282405154139046", "2948058074576995" ]
[ "nonn" ]
13
0
3
[ "A000110", "A110138", "A124423", "A134980", "A363429", "A363430" ]
null
Alois P. Heinz, Jun 01 2023
2023-06-01T16:59:53
oeisdata/seq/A363/A363430.seq
bc2932dd365eb5e0385e5887d646f3da
A363431
Number of 123-avoiding stabilized-interval-free permutations of size n.
[ "1", "1", "1", "2", "5", "14", "44", "150", "496", "1758", "6018", "21782", "76414", "280448", "1001752", "3714032", "13450270", "50259604", "183995056", "691863078", "2555043320", "9657267848", "35921300392", "136360740016", "510267869416", "1944193285228", "7312488701868", "27950641500876", "105590010259396", "404724123141348", "1534775681029994" ]
[ "nonn" ]
14
0
4
[ "A075834", "A363431" ]
null
Juan B. Gil, Jun 22 2023
2023-09-01T04:46:04
oeisdata/seq/A363/A363431.seq
a802a13f8ab8bde1b4dee2bdc142338e
A363432
Number of 231-avoiding stabilized-interval-free permutations of size n.
[ "1", "1", "1", "1", "2", "6", "18", "54", "170", "551", "1817", "6092", "20722", "71325", "248055", "870402", "3077861", "10959008", "39261382", "141430953", "512002865", "1861872379", "6798330676", "24915934639", "91630864177", "338048560865", "1250793108398", "4640542045919", "17260221009367", "64349394615738", "240434325753052" ]
[ "nonn" ]
10
0
5
[ "A000108", "A075834", "A363432" ]
null
Juan B. Gil, Jun 22 2023
2023-07-29T03:18:37
oeisdata/seq/A363/A363432.seq
f1ef791a22f931cd192f18b81d62c0f2
A363433
Number of (123,231)-avoiding stabilized-interval-free permutations of size n.
[ "1", "1", "1", "1", "1", "2", "3", "3", "5", "5", "7", "7", "10", "9", "13", "12", "16", "15", "20", "18", "24", "22", "28", "26", "33", "30", "38", "35", "43", "40", "49", "45", "55", "51", "61", "57", "68", "63", "75", "70", "82", "77", "90", "84", "98", "92", "106", "100", "115", "108", "124", "117", "133", "126", "143", "135", "153", "145", "163", "155", "174", "165", "185", "176", "196" ]
[ "nonn", "easy" ]
19
0
6
[ "A075834", "A363431", "A363432", "A363433" ]
null
Juan B. Gil, Jun 30 2023
2023-11-18T18:08:54
oeisdata/seq/A363/A363433.seq
5c663f4db7ae2d9da1242194a75675a0
A363434
Total number of blocks containing only elements of the same parity in all partitions of [n].
[ "0", "1", "2", "7", "24", "97", "412", "1969", "9898", "54461", "313944", "1947613", "12603100", "86760255", "620559230", "4682462777", "36586620348", "299664171115", "2534306825064", "22355119509231", "203115201624030", "1917124624702475", "18598998656476220", "186822424157036439", "1925326063016510832" ]
[ "nonn" ]
23
0
3
[ "A000035", "A124424", "A363434", "A363435", "A363451", "A363452", "A363453" ]
null
Alois P. Heinz, Jun 01 2023
2023-09-10T09:47:38
oeisdata/seq/A363/A363434.seq
d64ffb97a754b9050b17c428e58fff7d
A363435
Number of partitions of [2n] having exactly n blocks with all elements of the same parity.
[ "1", "0", "5", "42", "569", "9470", "191804", "4534502", "122544881", "3721101192", "125331498349", "4634063018948", "186515332107196", "8114659545679752", "379362605925991692", "18961051425453713478", "1008752282616284996865", "56905048753221935350268", "3392250956149146382053539" ]
[ "nonn" ]
21
0
3
[ "A124424", "A363434", "A363435", "A363451" ]
null
Alois P. Heinz, Jun 01 2023
2023-10-21T03:26:58
oeisdata/seq/A363/A363435.seq
21477be4fd818145b5c50d0384138a65
A363436
Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.
[ "0", "0", "0", "0", "1", "0", "0", "4", "2", "0", "0", "9", "8", "3", "0", "0", "16", "18", "12", "4", "0", "0", "25", "32", "27", "16", "5", "0", "0", "36", "50", "48", "36", "20", "6", "0", "0", "49", "72", "75", "64", "45", "24", "7", "0", "0", "64", "98", "108", "100", "80", "54", "28", "8", "0", "0", "81", "128", "147", "144", "125", "96", "63", "32", "9", "0", "0", "100", "162", "192", "196", "180", "150", "112", "72", "36", "10", "0" ]
[ "nonn", "easy", "tabl" ]
28
0
8
[ "A000007", "A000290", "A000578", "A001105", "A001477", "A002415", "A004247", "A008586", "A008591", "A008598", "A008607", "A016742", "A016766", "A016802", "A016850", "A033428", "A033429", "A033581", "A033582", "A033583", "A033584", "A044102", "A064761", "A064762", "A064763", "A135453", "A139098", "A144555", "A152691", "A152742", "A195321", "A195322", "A195323", "A195824", "A244630", "A244631", "A244632", "A244633", "A244634", "A244635", "A244636", "A363436" ]
null
Stefano Spezia, Jul 08 2023
2023-08-02T14:40:59
oeisdata/seq/A363/A363436.seq
38dee17a71a2d8e65b8dad926c5975c3
A363437
Decimal expansion of the volume of the regular tetrahedron inscribed in the unit-radius sphere.
[ "5", "1", "3", "2", "0", "0", "2", "3", "9", "2", "7", "9", "6", "6", "7", "3", "4", "6", "2", "3", "0", "3", "5", "4", "4", "7", "1", "5", "5", "7", "2", "9", "5", "5", "1", "6", "1", "3", "1", "2", "0", "1", "5", "5", "6", "6", "8", "4", "5", "5", "7", "2", "2", "3", "1", "2", "7", "6", "4", "6", "5", "1", "2", "4", "3", "0", "2", "0", "2", "3", "7", "5", "3", "8", "0", "3", "8", "5", "1", "9", "6", "1", "7", "2", "1", "9", "1", "4", "6", "2", "7", "4", "2", "8", "8", "8", "4", "6", "6", "8", "6", "6", "8", "5", "2" ]
[ "nonn", "cons" ]
8
0
1
[ "A020781", "A020829", "A118273", "A122553", "A137914", "A156546", "A187110", "A210974", "A232812", "A236555", "A339259", "A363437", "A363438" ]
null
Amiram Eldar, Jun 02 2023
2025-02-07T13:43:24
oeisdata/seq/A363/A363437.seq
e13da09d82d5a11b48a3c0629ad194ca
A363438
Decimal expansion of the volume of the regular dodecahedron inscribed in the unit-radius sphere.
[ "2", "7", "8", "5", "1", "6", "3", "8", "6", "3", "1", "2", "2", "6", "2", "2", "9", "6", "7", "2", "9", "2", "5", "5", "4", "9", "1", "2", "7", "3", "5", "9", "4", "6", "9", "8", "7", "8", "9", "9", "3", "2", "1", "7", "7", "2", "0", "7", "6", "3", "3", "1", "9", "9", "2", "6", "3", "7", "0", "2", "4", "1", "4", "7", "4", "1", "6", "2", "5", "5", "1", "5", "0", "3", "2", "9", "1", "0", "6", "4", "9", "3", "0", "9", "4", "4", "4", "8", "5", "1", "3", "4", "7", "6", "6", "4", "8", "0", "8", "8", "0", "6", "5", "4", "2" ]
[ "nonn", "cons" ]
7
1
1
[ "A001622", "A102769", "A118273", "A122553", "A131595", "A179296", "A232810", "A237603", "A239798", "A339259", "A341906", "A363437", "A363438" ]
null
Amiram Eldar, Jun 02 2023
2025-02-07T13:44:09
oeisdata/seq/A363/A363438.seq
e78e1868783c6253c2be3f05e6fe29b4
A363439
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * (3*x)^k/k ).
[ "1", "3", "18", "108", "702", "4698", "32913", "236844", "1747170", "13131639", "100239444", "774932832", "6055105590", "47742847875", "379381851684", "3035174325246", "24426965179593", "197622494260479", "1606332527049645", "13111628672610153", "107428845309125157" ]
[ "nonn" ]
14
0
2
[ "A000081", "A179469", "A363423", "A363439", "A363440" ]
null
Seiichi Manyama, Jun 02 2023
2023-06-03T09:01:51
oeisdata/seq/A363/A363439.seq
49b26ff7c3b326789fd88e73c2c881b0
A363440
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * (4*x)^k/k ).
[ "1", "4", "32", "256", "2208", "19712", "183808", "1763328", "17332992", "173621248", "1766188288", "18196260864", "189474570240", "1990887063552", "21082432966656", "224766598100992", "2410570956881920", "25988893875994624", "281505478557407232", "3062014088362049536" ]
[ "nonn" ]
12
0
2
[ "A000081", "A179469", "A363424", "A363439", "A363440" ]
null
Seiichi Manyama, Jun 02 2023
2023-06-03T09:01:48
oeisdata/seq/A363/A363440.seq
01b7ded2ecab60cf39fb033e086f8974
A363441
G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * (2*x)^k/k ).
[ "1", "2", "4", "16", "52", "208", "840", "3520", "15008", "65344", "288408", "1288416", "5813744", "26460800", "121333200", "559991712", "2599385536", "12127405952", "56837861376", "267473333120", "1263354463056", "5987210061184", "28461008374480", "135672151034304", "648406644570048" ]
[ "nonn" ]
14
0
2
[ "A004111", "A179469", "A363425", "A363441", "A363442", "A363443" ]
null
Seiichi Manyama, Jun 02 2023
2023-06-03T09:01:40
oeisdata/seq/A363/A363441.seq
2c6edfe9352f0905f835411e5adc2171
A363442
G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * (3*x)^k/k ).
[ "1", "3", "9", "54", "270", "1620", "9828", "61884", "397062", "2597508", "17232831", "115722918", "784996434", "5371325217", "37029240315", "256948639344", "1793271890988", "12579466538187", "88645665923244", "627235978623318", "4454619888380355", "31743030458459169", "226890102674671245" ]
[ "nonn" ]
15
0
2
[ "A004111", "A363426", "A363439", "A363441", "A363442", "A363443" ]
null
Seiichi Manyama, Jun 02 2023
2023-06-03T09:01:57
oeisdata/seq/A363/A363442.seq
a533f2e1a3467a6bcff808ead33fe5a7
A363443
G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * (4*x)^k/k ).
[ "1", "4", "16", "128", "864", "6912", "55936", "470016", "4025600", "35144704", "311190784", "2789206016", "25254028288", "230652174336", "2122466561024", "19659305379840", "183146187440128", "1714933158969344", "16131631511164928", "152366562180972544" ]
[ "nonn" ]
15
0
2
[ "A004111", "A363427", "A363440", "A363441", "A363442", "A363443" ]
null
Seiichi Manyama, Jun 02 2023
2023-06-03T09:01:54
oeisdata/seq/A363/A363443.seq
3f63e626e367a81f7e16de73097d44e2
A363444
a(n) = n for n <= 3; for n > 3, a(n) is the smallest positive number that has not yet appeared that includes as factors the distinct prime factors of a(n-2) and a(n-1) that are not shared between a(n-2) and a(n-1).
[ "1", "2", "3", "6", "4", "9", "12", "8", "15", "30", "10", "18", "45", "20", "24", "60", "5", "36", "90", "25", "42", "210", "35", "48", "420", "70", "21", "120", "140", "63", "150", "280", "84", "75", "350", "126", "105", "40", "168", "315", "50", "252", "525", "80", "294", "630", "55", "462", "840", "110", "231", "1050", "220", "693", "1260", "330", "77", "1470", "660", "154", "735", "990", "308", "945", "1320", "616", "1155" ]
[ "nonn" ]
16
1
2
[ "A098550", "A336957", "A351495", "A359804", "A362600", "A362754", "A363444" ]
null
Scott R. Shannon, Jun 02 2023
2023-06-07T00:08:36
oeisdata/seq/A363/A363444.seq
00e7b7b822d16493f5c3524112bba59b
A363445
Turn sequence of a fractal-like curve which is also the perimeter around an aperiodic tiling based on the "hat" monotile. See the comments section for details.
[ "3", "-2", "3", "-2", "3", "2", "0", "2", "-3", "2", "3", "2", "-3", "2", "3", "-2", "3", "-2", "3", "-2", "0", "2", "-3", "2", "3", "-2", "0", "2", "-3", "2", "3", "-2", "0", "2", "-3", "2", "3", "2", "-3", "-2", "3", "-2", "0", "2", "-3", "2", "3", "-2", "0", "2", "-3", "2", "3", "2", "-3", "-2", "3", "-2", "3", "-2", "3", "-2", "0", "2", "-3", "-2", "3", "-2", "0", "2", "-3", "2", "3", "-2", "0", "2", "-3", "2", "3", "2", "-3", "-2", "3", "-2", "0", "2", "-3", "-2" ]
[ "sign" ]
73
1
1
[ "A003500", "A003699", "A033890", "A052530", "A061278", "A108946", "A363348", "A363445" ]
null
Thomas Scheuerle, Jul 09 2023
2025-01-06T22:05:10
oeisdata/seq/A363/A363445.seq
7e3565c374765a7ea469bd05bc12c174
A363446
Increasing sequence such that a(1) = 1 and a(n) is the least integer such that every segment of the sequence a(1),a(2),...,a(n) has a unique sum of elements.
[ "1", "2", "4", "5", "8", "10", "14", "21", "25", "26", "28", "31", "36", "38", "55", "56", "66", "68", "88", "91", "92", "94", "102", "125", "127", "136", "140", "158", "162", "164", "180", "182", "201", "217", "220", "226", "228", "240", "241", "259", "261", "275", "314", "331", "337", "342", "356", "366", "380", "391", "408", "432", "441", "444", "456", "469", "478", "548", "560", "565", "574", "577", "580", "586", "628", "639", "696", "701", "707", "730", "731", "732", "733", "752", "759", "773", "849", "877", "890", "922" ]
[ "nonn" ]
44
1
2
[ "A101274", "A276661", "A363446" ]
null
Bartlomiej Pawlik, Jul 09 2023
2023-08-05T21:56:14
oeisdata/seq/A363/A363446.seq
965dfe31e9756440cbfcc4daf49cd6b2
A363447
a(0) = 0; a(n) = a(a(n-1))-1 mod (n+1) for all n >= 1.
[ "0", "1", "0", "3", "2", "5", "4", "1", "0", "9", "8", "11", "10", "7", "0", "15", "14", "17", "16", "13", "6", "3", "2", "23", "22", "1", "0", "27", "26", "29", "28", "25", "0", "33", "32", "35", "34", "31", "24", "21", "2", "41", "40", "1", "0", "45", "44", "47", "46", "43", "0", "51", "50", "53", "52", "49", "42", "39", "20", "5", "4", "1", "0", "63", "62", "65", "64", "61", "0", "69", "68", "71" ]
[ "nonn", "easy", "look" ]
18
0
4
[ "A145465", "A268176", "A363447" ]
null
Curtis Bechtel, Jun 02 2023
2024-07-17T20:28:36
oeisdata/seq/A363/A363447.seq
9e8b5c885c89b658b66c0c336fa29d41
A363448
Number of noncrossing partitions of the n-set with no pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing partition.
[ "1", "1", "1", "4", "9", "26", "77", "232", "725", "2299", "7415", "24223", "79983", "266553", "895333", "3028093", "10303085", "35243330", "121128329", "418080561", "1448564695", "5036434577", "17566314287", "61445833012", "215503978367", "757666696926", "2669811026147", "9427368738487", "33353695100085", "118217920021287" ]
[ "nonn", "hard" ]
83
0
4
[ "A000108", "A363448", "A363449" ]
null
Julien Rouyer, Jun 02 2023
2025-01-27T11:35:05
oeisdata/seq/A363/A363448.seq
e52eb6945f6722643d1e1a0530fbb78f
A363449
Number of noncrossing partitions of the n-set with some pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing-partition.
[ "0", "0", "1", "1", "5", "16", "55", "197", "705", "2563", "9381", "34563", "128029", "476347", "1779107", "6666752", "25054585", "94401460", "356510371", "1349182629", "5115555725", "19429832443", "73916249353", "281613780638", "1074400168957", "4104279704526", "15697542046005", "60106182177517", "230394256650275", "884024296630081", "3395269379129779" ]
[ "nonn", "hard" ]
61
0
5
[ "A000108", "A363448", "A363449" ]
null
Julien Rouyer, Jun 02 2023
2024-07-21T19:58:14
oeisdata/seq/A363/A363449.seq
5755a87731fe4cbd46ba040e67df590c
A363450
Partial sums of A180405.
[ "2", "3", "7", "13", "16", "23", "31", "41", "52", "67", "79", "97", "111", "127", "149", "173", "192", "223", "251", "271", "294", "331", "367", "397", "423", "457", "486", "521", "563", "601", "641", "673", "712", "757", "809", "853", "907", "953", "1009", "1069", "1112", "1163", "1213", "1277", "1361", "1409", "1458", "1511", "1579", "1637", "1699", "1777", "1847", "1913", "1970" ]
[ "nonn", "easy" ]
23
1
1
[ "A180405", "A363379", "A363450" ]
null
Neal Gersh Tolunsky, Jun 02 2023
2023-06-06T08:17:47
oeisdata/seq/A363/A363450.seq
1ea127aac862b202d79b5f1d5eaad543
A363451
Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements.
[ "1", "0", "2", "2", "9", "23", "99", "353", "1778", "7927", "45273", "238797", "1526331", "9215950", "65020448", "439742641", "3388075807", "25270974635", "210763775071", "1713657668021", "15359474721088", "134902169999841", "1291589459223627", "12165062702520422", "123780591852786693", "1242763745129587332" ]
[ "nonn" ]
18
0
3
[ "A000110", "A363434", "A363435", "A363451", "A363454" ]
null
Alois P. Heinz, Jun 02 2023
2023-10-20T08:52:02
oeisdata/seq/A363/A363451.seq
3cb40748fcf91faa796b593a37b17bd3
A363452
Total number of blocks containing only odd elements in all partitions of [n].
[ "0", "1", "1", "5", "12", "62", "206", "1189", "4949", "31775", "156972", "1110280", "6301550", "48637701", "310279615", "2591820857", "18293310174", "164218811718", "1267153412532", "12152174863961", "101557600812015", "1035203191874931", "9299499328238110", "100314319611860936", "962663031508255416" ]
[ "nonn" ]
19
0
4
[ "A000110", "A094577", "A124420", "A363434", "A363452", "A363453" ]
null
Alois P. Heinz, Jun 02 2023
2023-12-08T07:12:15
oeisdata/seq/A363/A363452.seq
9e29b64cbf26b4d624968a5c66d1af03
A363453
Total number of blocks containing only even elements in all partitions of [n].
[ "0", "0", "1", "2", "12", "35", "206", "780", "4949", "22686", "156972", "837333", "6301550", "38122554", "310279615", "2090641920", "18293310174", "135445359397", "1267153412532", "10202944645270", "101557600812015", "881921432827544", "9299499328238110", "86508104545175503", "962663031508255416" ]
[ "nonn" ]
21
0
4
[ "A000110", "A094577", "A124422", "A363434", "A363452", "A363453" ]
null
Alois P. Heinz, Jun 02 2023
2023-12-08T07:11:44
oeisdata/seq/A363/A363453.seq
b0cbf4386cad47aab8a0342305ee7243
A363454
Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements and no block contains both odd and even elements.
[ "1", "0", "1", "1", "2", "4", "11", "28", "87", "266", "952", "3381", "13513", "53915", "237113", "1046732", "5016728", "24186664", "125121009", "652084528", "3615047527", "20211789423", "119384499720", "711572380960", "4455637803543", "28162688795697", "186152008588691", "1242276416218540", "8636436319397292" ]
[ "nonn" ]
17
0
5
[ "A000110", "A047797", "A124419", "A124425", "A363451", "A363454" ]
null
Alois P. Heinz, Jun 02 2023
2023-06-02T21:57:23
oeisdata/seq/A363/A363454.seq
6da3acd4e7c5225004f8f0d7363bddcd
A363455
The number of distinct primorial numbers (A002110) larger than 1 in the representation of A025487(n) as a product of primorial numbers.
[ "0", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "2", "1", "2", "2", "2", "1", "2", "2", "2", "1", "1", "2", "1", "2", "3", "2", "2", "2", "2", "1", "2", "3", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "3", "2", "2", "2", "2", "2", "1", "3", "2", "1", "3", "2", "3", "2", "2", "2", "2", "2", "1", "3", "2", "2", "3", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "2", "1", "1", "3", "2", "2", "3", "2", "3", "3" ]
[ "nonn" ]
8
1
6
[ "A002110", "A006939", "A025487", "A051282", "A071625", "A100778", "A304886", "A363455", "A363456" ]
null
Amiram Eldar, Jun 03 2023
2023-06-03T07:26:45
oeisdata/seq/A363/A363455.seq
b5132b922d91a4fdb6d83954d51c328e
A363456
Positions of the terms of the Chernoff sequence (A006939) in A025487.
[ "1", "2", "6", "27", "150", "900", "5697", "37226", "246280", "1648592", "11204274" ]
[ "nonn", "more" ]
8
0
2
[ "A006939", "A025487", "A098718", "A098719", "A293635", "A306802", "A346043", "A346407", "A363455", "A363456" ]
null
Amiram Eldar, Jun 03 2023
2025-04-22T21:55:07
oeisdata/seq/A363/A363456.seq
84fd491b43333d6e919483967e982ae4
A363457
Positions of products of distinct primorial numbers (A129912) in the sequence of products of primorial numbers (A025487).
[ "1", "2", "4", "6", "9", "13", "20", "22", "27", "29", "43", "54", "55", "66", "72", "89", "93", "112", "114", "123", "140", "147", "150", "175", "186", "223", "232", "242", "246", "274", "279", "285", "290", "332", "371", "376", "425", "433", "439", "442", "488", "500", "518", "535", "539", "570", "619", "624", "656", "718", "747", "761", "783", "789", "816", "831", "860" ]
[ "nonn" ]
11
1
2
[ "A002110", "A025487", "A051282", "A129912", "A363455", "A363457" ]
null
Amiram Eldar, Jun 03 2023
2025-04-27T03:22:50
oeisdata/seq/A363/A363457.seq
2af87ea5f3e5eedeb35fa85d0b49b510
A363458
Numbers k such that k and k+1 are both in A363457.
[ "1", "54", "242883", "246962", "261643", "266001", "353893", "380287", "425818", "457055", "542950", "581942", "595440", "831264", "917311", "980235", "1256341", "1719654", "6239931", "8237549", "8378312", "10995744", "11650985", "15123420", "15194370", "15442721", "19628056", "20034738", "20308106", "26218271", "36099782" ]
[ "nonn" ]
5
1
2
[ "A002110", "A025487", "A129912", "A363457", "A363458" ]
null
Amiram Eldar, Jun 03 2023
2023-06-03T07:27:58
oeisdata/seq/A363/A363458.seq
c8b719bcdab3cbc3208f118b7dc01a7c
A363459
Sum of the first n prime powers A246655.
[ "2", "5", "9", "14", "21", "29", "38", "49", "62", "78", "95", "114", "137", "162", "189", "218", "249", "281", "318", "359", "402", "449", "498", "551", "610", "671", "735", "802", "873", "946", "1025", "1106", "1189", "1278", "1375", "1476", "1579", "1686", "1795", "1908", "2029", "2154", "2281", "2409", "2540", "2677", "2816", "2965", "3116", "3273", "3436" ]
[ "nonn" ]
22
1
1
[ "A000961", "A007504", "A024918", "A057820", "A246655", "A363459" ]
null
Bartlomiej Pawlik, Jun 03 2023
2025-06-22T06:31:14
oeisdata/seq/A363/A363459.seq
55f0ec203b12e1d2d8b30145fdbd7204
A363460
a(n) is the permanent of the n X n matrix formed by placing 1..n^2 in L-shaped gnomons in alternating directions.
[ "1", "1", "11", "556", "74964", "21700112", "11500685084", "10057140949968", "13496937368200000", "26331147893897760544", "71606290155732170272320", "262516365211410942628577408", "1262517559940020030446967822592", "7786463232979127181938238723356160", "60414239829783205320232261233394491136" ]
[ "nonn" ]
19
0
3
[ "A006527", "A037270", "A060736", "A061349", "A081344", "A220603", "A220604", "A363376", "A363460" ]
null
Stefano Spezia, Jun 03 2023
2023-06-08T08:52:20
oeisdata/seq/A363/A363460.seq
36dc0ad805eb2e14322da04ac2694014
A363461
Least n-untouchable number.
[ "2", "208", "388", "298", "838" ]
[ "nonn", "more" ]
7
1
1
[ "A005114", "A152454", "A283152", "A284147", "A284156", "A284187", "A363461" ]
null
Jinyuan Wang, Jun 03 2023
2023-06-22T05:59:29
oeisdata/seq/A363/A363461.seq
8b5bb55decb588bada16bd997b827957
A363462
Numbers k for which the arithmetic derivative k' (A003415) is a Fibonacci number (A000045).
[ "1", "2", "3", "5", "6", "7", "11", "13", "15", "17", "18", "19", "22", "23", "29", "31", "37", "38", "41", "43", "47", "53", "59", "61", "67", "71", "73", "75", "79", "83", "89", "93", "97", "101", "103", "106", "107", "109", "113", "127", "131", "137", "139", "145", "149", "151", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227", "229" ]
[ "nonn" ]
16
1
2
[ "A000040", "A000045", "A003415", "A362141", "A363462" ]
null
Marius A. Burtea, Jul 05 2023
2023-08-05T22:02:29
oeisdata/seq/A363/A363462.seq
7120258ae2cf1d35c55d37f6934ad8d7
A363463
a(n) is the smallest number k with exactly n of its divisors in A052294.
[ "1", "3", "6", "12", "18", "48", "36", "192", "72", "84", "144", "3072", "168", "5985", "576", "336", "504", "26505", "672", "45045", "840", "1344", "6510", "129675", "2016", "1680", "11970", "4620", "4032", "389025", "3360", "888615", "6552", "13020", "53010", "6720", "8736", "855855", "90090", "23940", "13104", "2411955", "17472", "2417415", "26040" ]
[ "nonn", "base" ]
9
0
2
[ "A052294", "A363463" ]
null
Marius A. Burtea, Jul 08 2023
2023-08-05T22:02:48
oeisdata/seq/A363/A363463.seq
9449bb65ef6f87009b00b854553cc884
A363464
Numbers k in A052294 with arithmetic derivative k' (A003415) in A052294.
[ "6", "9", "10", "14", "18", "20", "21", "22", "24", "25", "33", "34", "35", "38", "40", "42", "44", "48", "49", "52", "62", "65", "66", "68", "69", "70", "76", "80", "84", "88", "91", "93", "94", "96", "100", "104", "110", "115", "117", "118", "121", "132", "133", "134", "138", "140", "143", "144", "145", "148", "152", "155", "158", "164", "174", "182", "185", "186", "188", "192" ]
[ "nonn", "base" ]
21
1
1
[ "A000120", "A003415", "A052294", "A057733", "A081092", "A092506", "A104070", "A123250", "A363464" ]
null
Marius A. Burtea, Jul 08 2023
2023-08-05T22:04:21
oeisdata/seq/A363/A363464.seq
40720ce9c3a0a566047101fcbae11337
A363465
G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^3 / (k*x^(2*k)) ).
[ "1", "1", "1", "4", "10", "35", "113", "405", "1447", "5369", "20143", "76908", "296800", "1157784", "4554142", "18050308", "72003513", "288880549", "1164867528", "4718481975", "19190711729", "78338352168", "320851617424", "1318115448886", "5430133003281", "22427330328214", "92847100210382", "385217596191075", "1601483701650310" ]
[ "nonn" ]
6
1
4
[ "A007562", "A052751", "A363387", "A363465", "A363466", "A363467" ]
null
Ilya Gutkovskiy, Jun 03 2023
2023-06-03T14:22:13
oeisdata/seq/A363/A363465.seq
b6da575543f79dbf9122f52bd528d8a1
A363466
G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^4 / (k*x^(3*k)) ).
[ "1", "1", "1", "5", "15", "61", "240", "1019", "4387", "19462", "87649", "401077", "1856698", "8685295", "40978465", "194806667", "932141498", "4486014160", "21699575863", "105443142514", "514469464550", "2519437043753", "12379461876092", "61013509071216", "301553269618318", "1494229881209940", "7421627743464582", "36942997716584746" ]
[ "nonn" ]
6
1
4
[ "A007562", "A052773", "A363387", "A363465", "A363466", "A363468" ]
null
Ilya Gutkovskiy, Jun 03 2023
2023-06-03T14:22:16
oeisdata/seq/A363/A363466.seq
73e85ae395bb280a57daaefb5c8417c5
A363467
G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 / (k*x^(2*k)) ).
[ "1", "1", "1", "3", "9", "25", "88", "292", "1031", "3685", "13433", "49608", "185465", "699963", "2664650", "10217130", "39428179", "153009240", "596761737", "2337875430", "9195732624", "36301739221", "143780858517", "571191310205", "2275409450019", "9087376470138", "36377539265376", "145937953205705", "586645566919856" ]
[ "nonn" ]
6
1
4
[ "A007560", "A052755", "A363388", "A363465", "A363467", "A363468" ]
null
Ilya Gutkovskiy, Jun 03 2023
2023-06-03T14:22:30
oeisdata/seq/A363/A363467.seq
08c812890d872ce965a8d244960357e1
A363468
G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 / (k*x^(3*k)) ).
[ "1", "1", "1", "4", "14", "48", "201", "812", "3455", "14961", "65954", "294884", "1334526", "6098879", "28114885", "130561444", "610244889", "2868547475", "13552299256", "64316483918", "306473091394", "1465727378317", "7033293786125", "33851816310445", "163384902125185", "790589562321385", "3834540111072545", "18638976010097900" ]
[ "nonn" ]
6
1
4
[ "A007560", "A052775", "A363388", "A363466", "A363467", "A363468" ]
null
Ilya Gutkovskiy, Jun 03 2023
2023-06-03T14:22:34
oeisdata/seq/A363/A363468.seq
6d03c8f51eef8ab664f3812517529c79
A363469
Multiplicative order of 2 modulo 2*prime(n)+1.
[ "4", "3", "10", "4", "11", "18", "12", "12", "23", "58", "6", "20", "82", "28", "36", "106", "24", "20", "36", "60", "42", "52", "83", "178", "12", "84", "66", "28", "18", "226", "8", "131", "20", "30", "132", "100", "12", "36", "132", "346", "179", "110", "191", "42", "156", "18", "138", "148", "12", "72", "466", "239", "66", "251", "204", "40", "210", "180", "36", "562", "54", "586" ]
[ "nonn" ]
20
1
1
[ "A002326", "A363469" ]
null
Alain Rocchelli, Jun 03 2023
2023-06-10T08:09:48
oeisdata/seq/A363/A363469.seq
5fcd5a4849c08177cac473d5130b1a56
A363470
G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} A(-x^k) * x^k/k ).
[ "1", "2", "-1", "-6", "7", "42", "-58", "-366", "513", "3406", "-4846", "-33310", "48304", "339446", "-499133", "-3565468", "5294439", "38312242", "-57332347", "-419177900", "631252549", "4654229300", "-7045498256", "-52310262192", "79531957334", "593986308994", "-906439292326", "-6803984285256" ]
[ "sign" ]
17
0
2
[ "A000151", "A200438", "A363470", "A363471" ]
null
Seiichi Manyama, Jun 03 2023
2023-06-04T11:47:23
oeisdata/seq/A363/A363470.seq
1549af6c993e05da8900e85f10a7b857
A363471
G.f. satisfies A(x) = exp( 3 * Sum_{k>=1} A(-x^k) * x^k/k ).
[ "1", "3", "-3", "-26", "48", "444", "-920", "-9126", "19587", "204214", "-449496", "-4841001", "10856283", "119585034", "-271813440", "-3044796399", "6991433415", "79341313335", "-183641493481", "-2105713558467", "4905239040894", "56722082044512", "-132833292089826", "-1546827734185557" ]
[ "sign" ]
16
0
2
[ "A006964", "A200402", "A363470", "A363471" ]
null
Seiichi Manyama, Jun 03 2023
2023-06-04T11:47:29
oeisdata/seq/A363/A363471.seq
e2b85158f342e2497c9fb94c9d264498
A363472
Total number of blocks in all partitions of [n] where each block has at least one odd element and at least one even element.
[ "0", "0", "1", "1", "5", "13", "55", "193", "941", "4081", "22351", "113761", "694565", "4030153", "27107095", "175738753", "1289775821", "9209233921", "73147903471", "568928274961", "4857161139365", "40796613003433", "372190216061335", "3352314486348433", "32518958606637101", "312271731474218881" ]
[ "nonn" ]
29
0
5
[ "A124425", "A362495", "A363454", "A363472" ]
null
Alois P. Heinz, Jun 05 2023
2023-06-05T14:53:07
oeisdata/seq/A363/A363472.seq
f061e9853a1ed79e8a78e403664ed60b
A363473
Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).
[ "1", "2", "4", "3", "6", "9", "5", "10", "15", "8", "7", "14", "21", "12", "25", "11", "22", "33", "20", "35", "18", "13", "26", "39", "28", "55", "30", "49", "17", "34", "51", "44", "65", "42", "77", "16", "19", "38", "57", "52", "85", "66", "91", "24", "27", "23", "46", "69", "68", "95", "78", "119", "40", "45", "50", "29", "58", "87", "76", "115", "102", "133", "56", "63", "70", "121", "31", "62", "93", "92", "145", "114", "161", "88", "99", "110", "143", "36" ]
[ "nonn", "easy", "tabl" ]
39
1
2
[ "A000040", "A001747", "A001749", "A001750", "A008578", "A061395", "A112773", "A138636", "A253560", "A272470", "A363473" ]
null
Werner Schulte, Jan 05 2024
2024-01-07T14:03:47
oeisdata/seq/A363/A363473.seq
d3542cbedfd5ef67d9a9e4e383b5be9c
A363474
G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} (-1)^(k+1) * A(-x^k) * x^k/k ).
[ "1", "2", "-3", "-14", "22", "138", "-213", "-1536", "2474", "18928", "-31451", "-248992", "420804", "3416514", "-5844716", "-48349920", "83503128", "700674606", "-1219159874", "-10345673158", "18109290380", "155082913608", "-272798814028", "-2353889042848", "4157686512816", "36104006239798" ]
[ "sign" ]
15
0
2
[ "A005753", "A306768", "A363470", "A363474", "A363475" ]
null
Seiichi Manyama, Jun 03 2023
2023-06-05T08:54:55
oeisdata/seq/A363/A363474.seq
865d70b1ade2732cee0b93a74fbb20b3
A363475
G.f. satisfies A(x) = exp( 3 * Sum_{k>=1} (-1)^(k+1) * A(-x^k) * x^k/k ).
[ "1", "3", "-6", "-44", "96", "918", "-2073", "-22278", "52629", "597627", "-1451736", "-17065641", "42205373", "508415817", "-1273766637", "-15623442097", "39528583206", "491601500847", "-1253383246330", "-15759867676416", "40430096479776", "512914242127868", "-1322511998532891" ]
[ "sign" ]
14
0
2
[ "A052757", "A306768", "A363471", "A363474", "A363475" ]
null
Seiichi Manyama, Jun 03 2023
2023-06-05T08:47:17
oeisdata/seq/A363/A363475.seq
198b9bab7a3bf1f5938931e25778af27
A363476
a(n) = Fibonacci(n)^2 * Fibonacci(n+1)^3.
[ "0", "1", "8", "108", "1125", "12800", "140608", "1565109", "17333064", "192329500", "2132531225", "23651979264", "262296652032", "2908947562937", "32260582549000", "357775937196300", "3967793428038237", "44003514081895936", "488006404120114496", "5412074146674562125", "60020821224245910600" ]
[ "nonn", "easy" ]
18
0
3
[ "A000045", "A066258", "A197424", "A363476" ]
null
Feryal Alayont, Jun 03 2023
2023-06-20T22:29:03
oeisdata/seq/A363/A363476.seq
76eecaaa50f77ed6d2a5ccb9103436fa
A363477
Numbers that are integer averages of first k odd primes for some k.
[ "3", "4", "5", "133", "169", "1117", "2406", "3564", "6141", "7429", "8220", "8475", "14193", "33543", "121049", "211785", "877650", "5948070", "8494543", "27820975", "41428418", "130490020", "139053727", "200325407", "291720414", "893706168", "977748014", "2103851425", "2173904606", "5996888467", "15790305181" ]
[ "nonn" ]
15
1
1
[ "A050248", "A071148", "A097961", "A363477" ]
null
Ya-Ping Lu, Jun 07 2023
2023-06-16T13:46:02
oeisdata/seq/A363/A363477.seq
abd1fc2e84861e2d59cbb2db5501d444
A363478
E.g.f. satisfies A(x) = exp(x * (1 + x) * A(x)^3).
[ "1", "1", "9", "142", "3481", "115476", "4849639", "246746662", "14756605329", "1014635520424", "78869009859751", "6839463570354306", "654661145565724345", "68559809182824171148", "7797979656027302949159", "957275139494698134599806", "126152927575064012671549729" ]
[ "nonn" ]
18
0
3
[ "A362771", "A362773", "A363478" ]
null
Seiichi Manyama, Aug 17 2023
2025-02-16T08:34:05
oeisdata/seq/A363/A363478.seq
493b5cc94ec7bcd43df52913c89b0f5d
A363479
E.g.f. satisfies A(x) = exp(x * A(x)^3 * (1 + x * A(x)^3)).
[ "1", "1", "9", "160", "4381", "162816", "7663669", "437164288", "29317265625", "2260685099008", "197088986941921", "19170218777296896", "2058199476739788661", "241779221463040000000", "30847476924400409437389", "4247859315849037948911616", "627960846411135123552180529" ]
[ "nonn" ]
13
0
3
[ "A088695", "A361094", "A363358", "A363479" ]
null
Seiichi Manyama, Aug 17 2023
2023-08-17T08:16:16
oeisdata/seq/A363/A363479.seq
aafbe2aeac946437bb31f5926ce5caa1
A363480
G.f. satisfies A(x) = exp( Sum_{k>=1} A(2*x^k)^2 * x^k/k ).
[ "1", "1", "5", "49", "923", "32603", "2198413", "288677317", "74816592016", "38536646525164", "39578607089767640", "81176446754286348780", "332742981886258629407221", "2726830211640382050679262877", "44684572695377447660556579448947" ]
[ "nonn" ]
8
0
3
[ "A005750", "A179470", "A363480", "A363481" ]
null
Seiichi Manyama, Jun 04 2023
2023-06-04T12:07:10
oeisdata/seq/A363/A363480.seq
4829dd1141b7c7d57b8adbf3fdba0bb5
A363481
G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} A(2*x^k) * x^k/k ).
[ "1", "2", "11", "108", "1969", "67542", "4473663", "582167944", "150236569819", "77226088637142", "79235069050108841", "162432444097491547308", "665648716390456030366881", "5454326724964994060395500598", "89374602386639273949112262243227" ]
[ "nonn" ]
14
0
2
[ "A000151", "A179469", "A179470", "A363480", "A363481" ]
null
Seiichi Manyama, Jun 04 2023
2023-06-05T08:53:44
oeisdata/seq/A363/A363481.seq
9ec4d842b3091d6b8d3dc45386d9295b
A363482
Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-5))))).
[ "13", "23", "7", "49", "13", "83", "103", "5", "149", "1", "29", "233", "53", "23", "67", "373", "59", "1", "499", "109", "593", "643", "139", "107", "1", "863", "71", "197", "1049", "223", "1", "179", "53", "1399", "59", "1553", "71", "1", "257", "1", "1973", "2063", "431", "173", "67", "349", "2543", "1", "2749", "571", "2963", "439", "1", "3299", "683", "3533", "281", "151", "557", "1", "4153" ]
[ "nonn", "changed" ]
29
3
1
[ "A006530", "A038901", "A051403", "A362086", "A363102", "A363482" ]
null
Mohammed Bouras, Jun 04 2023
2025-07-13T19:53:25
oeisdata/seq/A363/A363482.seq
a765067202be92a1b37c45e7007170f8
A363483
a(n) is the least k that has exactly n divisors whose arithmetic derivative is odd.
[ "1", "2", "15", "6", "18", "405", "30", "162", "945", "90", "1458", "295245", "210", "450", "25515", "810", "10395", "455625", "630", "1062882", "31185", "7290", "4050", "156905298045", "1890", "354375", "18600435", "3150", "280665", "114383962274805", "5670", "36450", "135135", "590490", "1506635235", "3189375", "6930", "101250", "922640625", "5314410", "22050" ]
[ "nonn" ]
10
0
2
[ "A353235", "A363483" ]
null
Robert Israel, Jun 05 2023
2023-06-11T14:17:44
oeisdata/seq/A363/A363483.seq
5cff8f162c00e96d5354ff2ccbb73439
A363484
Number of integer partitions of n covering an initial interval of positive integers with a unique mode.
[ "0", "1", "1", "1", "2", "3", "2", "5", "6", "6", "8", "11", "12", "17", "20", "21", "27", "35", "38", "50", "56", "65", "76", "95", "105", "125", "146", "167", "198", "233", "252", "305", "351", "394", "457", "522", "585", "681", "778", "878", "994", "1135", "1269", "1446", "1638", "1828", "2067", "2339", "2613", "2940", "3301", "3684", "4143", "4634", "5156", "5771" ]
[ "nonn" ]
8
0
5
[ "A000009", "A000041", "A002865", "A008284", "A025147", "A096765", "A097979", "A105039", "A117989", "A243737", "A362607", "A362608", "A362609", "A362610", "A362612", "A362614", "A362615", "A363262", "A363263", "A363264", "A363484", "A363485" ]
null
Gus Wiseman, Jun 05 2023
2023-06-07T08:31:52
oeisdata/seq/A363/A363484.seq
c96ce05340d397d35ddaa1f8a6f77e93
A363485
Number of integer partitions of n covering an initial interval of positive integers with more than one mode.
[ "0", "0", "0", "1", "0", "0", "2", "0", "0", "2", "2", "1", "3", "1", "2", "6", "5", "3", "8", "4", "8", "11", "13", "9", "17", "17", "19", "25", "24", "23", "44", "35", "39", "54", "55", "63", "83", "79", "86", "104", "119", "125", "157", "164", "178", "220", "237", "251", "297", "324", "357", "413", "439", "486", "562", "607", "673", "765", "828", "901", "1040", "1117", "1220" ]
[ "nonn" ]
6
0
7
[ "A000009", "A000041", "A002865", "A008284", "A025147", "A071178", "A096765", "A105039", "A117989", "A243737", "A362607", "A362608", "A362609", "A362610", "A362611", "A362612", "A362614", "A362615", "A363263", "A363264", "A363484", "A363485" ]
null
Gus Wiseman, Jun 06 2023
2023-06-07T08:31:48
oeisdata/seq/A363/A363485.seq
2c3971f2c24c80b04ae9307fe04a1451
A363486
Low mode in the multiset of prime indices of n.
[ "0", "1", "2", "1", "3", "1", "4", "1", "2", "1", "5", "1", "6", "1", "2", "1", "7", "2", "8", "1", "2", "1", "9", "1", "3", "1", "2", "1", "10", "1", "11", "1", "2", "1", "3", "1", "12", "1", "2", "1", "13", "1", "14", "1", "2", "1", "15", "1", "4", "3", "2", "1", "16", "2", "3", "1", "2", "1", "17", "1", "18", "1", "2", "1", "3", "1", "19", "1", "2", "1", "20", "1", "21", "1", "3", "1", "4", "1", "22", "1", "2", "1" ]
[ "nonn" ]
16
1
3
[ "A000040", "A000961", "A001222", "A056239", "A112798", "A124943", "A124944", "A215366", "A241131", "A326567", "A326568", "A327473", "A327476", "A356862", "A359178", "A360013", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362612", "A362613", "A362614", "A362615", "A362616", "A363486", "A363487", "A363723", "A363941", "A363942", "A363943", "A363944" ]
null
Gus Wiseman, Jun 23 2023
2023-07-05T21:37:45
oeisdata/seq/A363/A363486.seq
4fbca8ed7157eec249a4b71fb275fef7
A363487
High mode in the multiset of prime indices of n.
[ "0", "1", "2", "1", "3", "2", "4", "1", "2", "3", "5", "1", "6", "4", "3", "1", "7", "2", "8", "1", "4", "5", "9", "1", "3", "6", "2", "1", "10", "3", "11", "1", "5", "7", "4", "2", "12", "8", "6", "1", "13", "4", "14", "1", "2", "9", "15", "1", "4", "3", "7", "1", "16", "2", "5", "1", "8", "10", "17", "1", "18", "11", "2", "1", "6", "5", "19", "1", "9", "4", "20", "1", "21", "12", "3", "1", "5", "6", "22", "1", "2" ]
[ "nonn" ]
9
1
3
[ "A000040", "A000961", "A001222", "A056239", "A112798", "A124943", "A124944", "A215366", "A241131", "A326567", "A326568", "A327473", "A327476", "A356862", "A359178", "A359908", "A360013", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362612", "A362613", "A362614", "A362615", "A362616", "A363486", "A363487", "A363723", "A363729", "A363941", "A363942", "A363943", "A363944" ]
null
Gus Wiseman, Jul 04 2023
2023-07-05T21:37:39
oeisdata/seq/A363/A363487.seq
63825edc228eae8f838f64f0ef9bc9b4
A363488
Even numbers whose prime factorization has at least as many 2's as non-2's.
[ "2", "4", "6", "8", "10", "12", "14", "16", "20", "22", "24", "26", "28", "32", "34", "36", "38", "40", "44", "46", "48", "52", "56", "58", "60", "62", "64", "68", "72", "74", "76", "80", "82", "84", "86", "88", "92", "94", "96", "100", "104", "106", "112", "116", "118", "120", "122", "124", "128", "132", "134", "136", "140", "142", "144", "146", "148", "152", "156", "158", "160" ]
[ "nonn" ]
8
1
1
[ "A000079", "A001222", "A025065", "A027336", "A056239", "A067538", "A072978", "A112798", "A124943", "A124944", "A215366", "A238495", "A316413", "A326567", "A326568", "A344296", "A359889", "A359908", "A360005", "A360013", "A360015", "A363486", "A363487", "A363488", "A363941", "A363942", "A363943", "A363944", "A363945", "A363949", "A364056" ]
null
Gus Wiseman, Jul 06 2023
2023-07-08T23:06:34
oeisdata/seq/A363/A363488.seq
24cd55eb40579c6dc1028b42a5730912
A363489
Rounded mean of the multiset of prime indices of n.
[ "0", "1", "2", "1", "3", "2", "4", "1", "2", "2", "5", "1", "6", "2", "2", "1", "7", "2", "8", "2", "3", "3", "9", "1", "3", "4", "2", "2", "10", "2", "11", "1", "4", "4", "4", "2", "12", "4", "4", "2", "13", "2", "14", "2", "2", "5", "15", "1", "4", "2", "4", "3", "16", "2", "4", "2", "5", "6", "17", "2", "18", "6", "3", "1", "4", "3", "19", "3", "6", "3", "20", "1", "21", "6", "3", "3", "4", "3", "22", "1", "2", "7" ]
[ "nonn" ]
10
1
3
[ "A000040", "A001222", "A056239", "A067538", "A088529", "A088530", "A112798", "A124010", "A316413", "A326567", "A326568", "A327473", "A327476", "A327482", "A359889", "A360005", "A363489", "A363943", "A363944", "A363945", "A363946", "A363947", "A363948", "A363949", "A363951", "A364059", "A364060", "A364061" ]
null
Gus Wiseman, Jul 07 2023
2023-07-08T23:06:29
oeisdata/seq/A363/A363489.seq
f07f73ca49f2127be74c6274f7dbcd47
A363490
Lexicographically earliest infinite sequence of distinct terms > 0 such that one digit of a(n) is strictly smaller than one digit of a(n+1).
[ "1", "2", "3", "4", "5", "6", "7", "8", "19", "12", "13", "14", "15", "16", "17", "18", "20", "10", "11", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70" ]
[ "base", "nonn" ]
19
1
2
[ "A294069", "A363490" ]
null
Eric Angelini, Jun 05 2023
2023-06-24T13:28:08
oeisdata/seq/A363/A363490.seq
06eb15916b7b45a8b738e280573c4718
A363491
Numbers k such that 2^k - 5 is a semiprime.
[ "7", "13", "14", "16", "19", "28", "30", "31", "40", "42", "51", "54", "55", "58", "62", "68", "85", "88", "96", "111", "112", "116", "128", "148", "160", "162", "188", "192", "198", "220", "222", "236", "242", "276", "300", "318", "319", "320", "332", "372", "373", "398", "420", "428", "432", "458", "460", "482", "505", "520", "532", "542", "546", "556", "650", "692", "714" ]
[ "nonn" ]
11
1
1
[ "A001358", "A085724", "A363374", "A363491" ]
null
Kevin P. Thompson, Jun 05 2023
2025-04-22T16:05:19
oeisdata/seq/A363/A363491.seq
3b2e584b114bd6738768d4ea73102613
A363492
Numbers k such that the partition number p(k) = A000041(k) can be written as a product of smaller partition numbers.
[ "0", "1", "7", "8", "9", "10", "11", "12", "14", "15", "16", "17", "18", "19", "21", "24", "39" ]
[ "nonn", "more" ]
10
1
3
[ "A000041", "A034878", "A194345", "A363492", "A363636" ]
null
Pontus von Brömssen, Jun 05 2023
2023-07-15T06:35:42
oeisdata/seq/A363/A363492.seq
404de9ec84009121380984a7104feceb
A363493
Number T(n,k) of partitions of [n] having exactly k parity changes within their blocks, n>=0, 0<=k<=max(0,n-1), read by rows.
[ "1", "1", "1", "1", "2", "2", "1", "4", "6", "4", "1", "10", "18", "17", "6", "1", "25", "61", "68", "38", "10", "1", "75", "210", "292", "202", "83", "14", "1", "225", "778", "1252", "1116", "576", "170", "22", "1", "780", "3008", "5670", "5928", "3899", "1490", "341", "30", "1", "2704", "12219", "26114", "32382", "25320", "12655", "3856", "678", "46", "1", "10556", "52268", "126073", "177666", "163695", "98282", "39230", "9418", "1319", "62", "1" ]
[ "nonn", "tabf" ]
31
0
5
[ "A000012", "A000110", "A027383", "A124419", "A152874", "A363493", "A363495", "A363496", "A363511", "A363519", "A363588" ]
null
Alois P. Heinz, Jun 05 2023
2023-09-05T09:38:00
oeisdata/seq/A363/A363493.seq
ff55467a9ff5eff0794ba471c6f4a665
A363494
Expansion of Lenstra's profinite constant l ("el").
[ "0", "0", "1", "0", "2", "1", "0", "0", "0", "9", "4", "10", "10", "8", "6", "7", "4", "10", "18", "13", "16", "4", "0", "16", "1", "7", "4", "23", "11", "17", "13", "1", "5", "33", "26" ]
[ "nonn", "more" ]
7
1
5
null
null
Jeffrey Shallit, Jun 05 2023
2023-06-18T02:52:26
oeisdata/seq/A363/A363494.seq
d6691421a367c8010bf26e79d37670a0
A363495
Number of partitions of [2n+1] having exactly n parity changes within their blocks.
[ "1", "2", "17", "202", "3899", "98282", "3270604", "134513166", "6744026175", "400657370384", "27819913699591", "2222485356153758", "202085549223540498", "20700107045049813072", "2369116259054858660518", "300712325745715659503258", "42064844140178917094949029", "6448050588990736076081469470" ]
[ "nonn" ]
14
0
2
[ "A363493", "A363495" ]
null
Alois P. Heinz, Jun 05 2023
2023-06-06T17:05:33
oeisdata/seq/A363/A363495.seq
7a27989c1a8d6cbe619a319615365606
A363496
Total number of parity changes within the blocks of all partitions of [n].
[ "0", "0", "1", "4", "17", "74", "356", "1808", "9923", "57442", "354407", "2296028", "15704028", "112266048", "841442105", "6564854864", "53413489773", "450789496454", "3950844987040", "35809477617544", "335901221506491", "3250110998386534", "32453151223493139", "333520967584364248", "3528754456836294712" ]
[ "nonn" ]
15
0
4
[ "A000110", "A077613", "A363493", "A363496", "A363549" ]
null
Alois P. Heinz, Jun 05 2023
2023-06-12T17:25:36
oeisdata/seq/A363/A363496.seq
4c7d1a5c3fcdade426b0828ee34a1f37
A363497
a(n) = Sum_{k=0..n} floor(sqrt(k))^3.
[ "0", "1", "2", "3", "11", "19", "27", "35", "43", "70", "97", "124", "151", "178", "205", "232", "296", "360", "424", "488", "552", "616", "680", "744", "808", "933", "1058", "1183", "1308", "1433", "1558", "1683", "1808", "1933", "2058", "2183", "2399", "2615", "2831", "3047", "3263", "3479", "3695", "3911", "4127", "4343", "4559", "4775", "4991", "5334" ]
[ "nonn", "easy" ]
45
0
3
[ "A000196", "A022554", "A174060", "A363497", "A363498", "A363499" ]
null
Hans J. H. Tuenter, Jun 05 2023
2023-06-15T07:44:10
oeisdata/seq/A363/A363497.seq
0775772cf9766ddb68ed80d8de86b52b
A363498
a(n) = Sum_{k=0..n} floor(sqrt(k))^4.
[ "0", "1", "2", "3", "19", "35", "51", "67", "83", "164", "245", "326", "407", "488", "569", "650", "906", "1162", "1418", "1674", "1930", "2186", "2442", "2698", "2954", "3579", "4204", "4829", "5454", "6079", "6704", "7329", "7954", "8579", "9204", "9829", "11125", "12421", "13717", "15013", "16309", "17605", "18901", "20197", "21493", "22789" ]
[ "nonn", "easy" ]
31
0
3
[ "A000196", "A022554", "A174060", "A363497", "A363498", "A363499" ]
null
Hans J. H. Tuenter, Jun 05 2023
2023-07-20T20:17:09
oeisdata/seq/A363/A363498.seq
38178768414a5034e95ecc8ff977051f
A363499
a(n) = Sum_{k=0..n} floor(sqrt(k))^5.
[ "0", "1", "2", "3", "35", "67", "99", "131", "163", "406", "649", "892", "1135", "1378", "1621", "1864", "2888", "3912", "4936", "5960", "6984", "8008", "9032", "10056", "11080", "14205", "17330", "20455", "23580", "26705", "29830", "32955", "36080", "39205", "42330", "45455", "53231", "61007", "68783", "76559", "84335", "92111", "99887" ]
[ "nonn", "easy" ]
35
0
3
[ "A000196", "A022554", "A174060", "A363497", "A363498", "A363499" ]
null
Hans J. H. Tuenter, Jun 05 2023
2023-07-20T07:22:48
oeisdata/seq/A363/A363499.seq
757542cf2430cd277664126da47291bb
A363500
Numbers k between twin primes p, q where k+p and k+q are also twin primes, and k*p and k*q are between twin primes.
[ "6", "109505970", "1519435260", "22606027290", "25980888360", "33995114580", "42029719620", "45284475810", "56527358160", "63402770550", "73924546080", "82625597670", "121883654550", "150444654360", "192416460810", "210205659510", "258719413680", "270709718160", "284455564050", "309050171430" ]
[ "nonn" ]
54
1
1
[ "A066388", "A363500", "A364263" ]
null
Bryce Case, Jr. and Antonio Gimenez, Jun 05 2023
2024-06-28T22:24:20
oeisdata/seq/A363/A363500.seq
a56173be70aba9a2db44a93674b7ef06