sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A364101 | Sum of divisors of 5*n-2 of form 5*k+4. | [
"0",
"4",
"0",
"9",
"0",
"18",
"0",
"19",
"0",
"28",
"0",
"29",
"9",
"38",
"0",
"39",
"0",
"48",
"0",
"63",
"0",
"67",
"0",
"59",
"0",
"68",
"19",
"69",
"0",
"78",
"9",
"79",
"0",
"126",
"0",
"89",
"0",
"98",
"0",
"108",
"29",
"108",
"0",
"109",
"0",
"137",
"0",
"167",
"9",
"128",
"0",
"129",
"0",
"138",
"39",
"139",
"0",
"181",
"0",
"149",
"0",
"216",
"0",
"159",
"19",
"168",
"9",
"169",
"49",
"207",
"0",
"179",
"0",
"188",
"0",
"266",
"0",
"198",
"0"
]
| [
"nonn"
]
| 14 | 1 | 2 | [
"A284103",
"A359269",
"A364100",
"A364101",
"A364102",
"A364103",
"A364105"
]
| null | Seiichi Manyama, Jul 04 2023 | 2023-07-17T00:59:54 | oeisdata/seq/A364/A364101.seq | 2d0a3dde90c7f194440f222e4141b5ba |
A364102 | Sum of divisors of 5*n-3 of form 5*k+4. | [
"0",
"0",
"4",
"0",
"0",
"9",
"4",
"0",
"14",
"0",
"4",
"19",
"0",
"0",
"37",
"0",
"0",
"29",
"4",
"0",
"34",
"0",
"18",
"48",
"0",
"0",
"48",
"0",
"0",
"49",
"23",
"0",
"63",
"0",
"4",
"59",
"14",
"0",
"92",
"0",
"0",
"78",
"4",
"0",
"74",
"0",
"33",
"79",
"0",
"19",
"111",
"0",
"0",
"89",
"38",
"0",
"94",
"0",
"4",
"108",
"0",
"0",
"171",
"0",
"14",
"109",
"4",
"0",
"142",
"0",
"48",
"119",
"0",
"0",
"128",
"29",
"0",
"138",
"67",
"0",
"134",
"0",
"4",
"139",
"0",
"0"
]
| [
"nonn"
]
| 14 | 1 | 3 | [
"A284103",
"A359270",
"A364100",
"A364101",
"A364102",
"A364103",
"A364106"
]
| null | Seiichi Manyama, Jul 04 2023 | 2023-07-17T00:59:51 | oeisdata/seq/A364/A364102.seq | 8d8ef4f562a26a96e29039894876e8e2 |
A364103 | Sum of divisors of 5*n-4 of form 5*k+4. | [
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"13",
"0",
"0",
"0",
"18",
"0",
"0",
"0",
"23",
"9",
"0",
"0",
"28",
"0",
"0",
"0",
"33",
"0",
"23",
"0",
"38",
"0",
"0",
"0",
"43",
"0",
"0",
"28",
"48",
"0",
"0",
"0",
"67",
"0",
"0",
"0",
"91",
"0",
"0",
"0",
"63",
"0",
"0",
"0",
"68",
"38",
"33",
"0",
"73",
"0",
"0",
"0",
"78",
"0",
"43",
"0",
"83",
"0",
"0",
"0",
"126",
"0",
"0",
"48",
"93",
"19",
"0",
"0",
"98",
"0",
"0",
"0",
"156",
"0",
"43",
"0",
"108",
"0",
"0",
"0",
"113",
"58"
]
| [
"nonn"
]
| 15 | 1 | 4 | [
"A284103",
"A359241",
"A364100",
"A364101",
"A364102",
"A364103",
"A364107"
]
| null | Seiichi Manyama, Jul 04 2023 | 2023-07-17T00:59:47 | oeisdata/seq/A364/A364103.seq | 54173a7babe7fba9c1a85c92985bb209 |
A364104 | Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k-1)). | [
"1",
"2",
"3",
"4",
"6",
"6",
"7",
"8",
"10",
"10",
"13",
"12",
"14",
"14",
"15",
"16",
"21",
"18",
"19",
"22",
"22",
"22",
"27",
"24",
"26",
"26",
"27",
"28",
"37",
"30",
"34",
"32",
"34",
"34",
"41",
"36",
"38",
"40",
"39",
"40",
"49",
"46",
"43",
"44",
"49",
"46",
"57",
"48",
"50",
"50",
"51",
"52",
"68",
"54",
"55",
"58",
"58",
"58",
"72",
"60",
"66",
"62",
"63",
"70",
"79",
"66",
"67",
"68",
"70",
"70",
"83",
"72",
"77",
"76",
"82",
"76",
"96"
]
| [
"nonn"
]
| 18 | 1 | 2 | [
"A359233",
"A363028",
"A363155",
"A364096",
"A364100",
"A364104",
"A364105",
"A364106",
"A364107"
]
| null | Seiichi Manyama, Jul 05 2023 | 2023-07-12T01:01:12 | oeisdata/seq/A364/A364104.seq | 6e2190d9913fa2ad2e0bfaded287abe8 |
A364105 | Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k-1)). | [
"0",
"1",
"0",
"2",
"0",
"4",
"0",
"4",
"0",
"6",
"0",
"6",
"2",
"8",
"0",
"8",
"0",
"10",
"0",
"13",
"0",
"14",
"0",
"12",
"0",
"14",
"4",
"14",
"0",
"16",
"2",
"16",
"0",
"26",
"0",
"18",
"0",
"20",
"0",
"22",
"6",
"22",
"0",
"22",
"0",
"28",
"0",
"34",
"2",
"26",
"0",
"26",
"0",
"28",
"8",
"28",
"0",
"37",
"0",
"30",
"0",
"44",
"0",
"32",
"4",
"34",
"2",
"34",
"10",
"42",
"0",
"36",
"0",
"38",
"0",
"54",
"0",
"40",
"0",
"40",
"0",
"54",
"12",
"46",
"2",
"44",
"0",
"44",
"0"
]
| [
"nonn"
]
| 13 | 1 | 4 | [
"A359269",
"A364101",
"A364104",
"A364105",
"A364106",
"A364107"
]
| null | Seiichi Manyama, Jul 05 2023 | 2023-07-12T01:01:15 | oeisdata/seq/A364/A364105.seq | 6dccb7fc1e3fb2f46fa1b1528aa08774 |
A364106 | Expansion of Sum_{k>0} k * x^(3*k) / (1 - x^(5*k-1)). | [
"0",
"0",
"1",
"0",
"0",
"2",
"1",
"0",
"3",
"0",
"1",
"4",
"0",
"0",
"8",
"0",
"0",
"6",
"1",
"0",
"7",
"0",
"4",
"10",
"0",
"0",
"10",
"0",
"0",
"10",
"5",
"0",
"13",
"0",
"1",
"12",
"3",
"0",
"19",
"0",
"0",
"16",
"1",
"0",
"15",
"0",
"7",
"16",
"0",
"4",
"23",
"0",
"0",
"18",
"8",
"0",
"19",
"0",
"1",
"22",
"0",
"0",
"35",
"0",
"3",
"22",
"1",
"0",
"29",
"0",
"10",
"24",
"0",
"0",
"26",
"6",
"0",
"28",
"14",
"0",
"27",
"0",
"1",
"28",
"0",
"0",
"48",
"4",
"7",
"30",
"1",
"0"
]
| [
"nonn"
]
| 13 | 1 | 6 | [
"A359270",
"A364102",
"A364104",
"A364105",
"A364106",
"A364107"
]
| null | Seiichi Manyama, Jul 05 2023 | 2023-07-12T01:01:19 | oeisdata/seq/A364/A364106.seq | d77e42618f47a5d59c50683e1e6d45ba |
A364107 | Expansion of Sum_{k>0} k * x^(4*k) / (1 - x^(5*k-1)). | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"5",
"2",
"0",
"0",
"6",
"0",
"0",
"0",
"7",
"0",
"5",
"0",
"8",
"0",
"0",
"0",
"9",
"0",
"0",
"6",
"10",
"0",
"0",
"0",
"14",
"0",
"0",
"0",
"19",
"0",
"0",
"0",
"13",
"0",
"0",
"0",
"14",
"8",
"7",
"0",
"15",
"0",
"0",
"0",
"16",
"0",
"9",
"0",
"17",
"0",
"0",
"0",
"26",
"0",
"0",
"10",
"19",
"4",
"0",
"0",
"20",
"0",
"0",
"0",
"32",
"0",
"9",
"0",
"22",
"0",
"0",
"0",
"23",
"12",
"0",
"0",
"33",
"0",
"0",
"0"
]
| [
"nonn"
]
| 13 | 1 | 8 | [
"A359241",
"A364103",
"A364104",
"A364105",
"A364106",
"A364107"
]
| null | Seiichi Manyama, Jul 05 2023 | 2023-07-12T01:01:21 | oeisdata/seq/A364/A364107.seq | bfdd90f24a41bd835134d7f45eabefb1 |
A364108 | a(n) is the larger coefficient of the pair (x, y) such that (x^2-y^2)/r, 2*x*y/r, (x^2+y^2)/r are the 2 legs and hypotenuse of the least Pythagorean triple having area A006991(n). | [
"5",
"2",
"16",
"325",
"8",
"4",
"4",
"50",
"24336",
"4901",
"3",
"1600",
"9",
"777925",
"1250",
"13",
"25",
"72",
"14561856",
"1873180325",
"125",
"12079525",
"39200",
"9",
"192",
"7",
"3600",
"2816",
"26",
"169000000",
"85",
"338",
"17956",
"1444",
"14112",
"1445",
"44715091781",
"50",
"8780605285453456",
"2725",
"10",
"37",
"716311250",
"144",
"306317326339867638016"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A006991",
"A364108",
"A364109",
"A364110"
]
| null | Michel Marcus, Jul 05 2023 | 2023-07-05T15:03:52 | oeisdata/seq/A364/A364108.seq | 4b844bc0f134ac12d981e304c10b5138 |
A364109 | a(n) is the lesser coefficient of the pair (x, y) such that (x^2-y^2)/r, 2*x*y/r, (x^2+y^2)/r are the 2 legs and hypotenuse of the least Pythagorean triple having area A006991(n). | [
"4",
"1",
"9",
"36",
"1",
"1",
"3",
"49",
"17689",
"4900",
"2",
"81",
"8",
"1764",
"289",
"12",
"16",
"49",
"2289169",
"1158313156",
"44",
"10227204",
"22801",
"4",
"169",
"2",
"121",
"2809",
"1",
"166952241",
"36",
"49",
"169",
"75",
"529",
"76",
"3975302500",
"1",
"7551929273974569",
"1764",
"1",
"12",
"19298449",
"25",
"305111826865145547009",
"143811",
"14161",
"3136",
"1",
"1"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A006991",
"A364108",
"A364109",
"A364110"
]
| null | Michel Marcus, Jul 05 2023 | 2023-07-05T15:03:56 | oeisdata/seq/A364/A364109.seq | bfbe7e38c04b09c520cb0556de3e1b38 |
A364110 | a(n) = sqrt((x^2 - y^2)*x*y/c) where x is A364108(n), y is A364109(n) and c is A006991(n). | [
"6",
"1",
"60",
"9690",
"6",
"2",
"2",
"105",
"72306780",
"90090",
"1",
"103320",
"6",
"4737551070",
"118575",
"10",
"60",
"462",
"12111037689240",
"297855654284978790",
"1170",
"9147755349330",
"121068780",
"6",
"1976",
"3",
"281820",
"63600",
"15",
"495683115837000",
"462",
"4641",
"3353350",
"49210",
"3974124",
"49062",
"59085715926389725950",
"35"
]
| [
"nonn"
]
| 9 | 1 | 1 | [
"A006991",
"A364108",
"A364109",
"A364110"
]
| null | Michel Marcus, Jul 05 2023 | 2023-07-05T15:04:00 | oeisdata/seq/A364/A364110.seq | e0f9f5be81cdc24213d834fb95d0bcfc |
A364111 | a(n) = Sum_{k = 0..n} binomial(n+k-1,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k). | [
"1",
"4",
"76",
"2560",
"106060",
"4864504",
"237354880",
"12079462560",
"633885607500",
"34050190896040",
"1863047125801576",
"103465470769890112",
"5817117095161011328",
"330450303019252600240",
"18937657945720403830240",
"1093557503049551583194560",
"63566414131528881235953228",
"3716526456851323626808570632"
]
| [
"nonn",
"easy"
]
| 16 | 0 | 2 | [
"A002895",
"A362676",
"A364111"
]
| null | Peter Bala, Jul 07 2023 | 2023-07-13T04:10:26 | oeisdata/seq/A364/A364111.seq | f357000712b09c665feac814573b06ec |
A364112 | Expansion of e.g.f. 3*x/(exp(-3*x)+exp(-x)+exp(x)). | [
"0",
"1",
"2",
"-5",
"-28",
"85",
"806",
"-3185",
"-41656",
"207913",
"3428810",
"-20824925",
"-413027284",
"2961364861",
"68560259054",
"-567040692425",
"-15005357203312",
"140642298254929",
"4187120881320338",
"-43861384856264885",
"-1450918780756640140",
"16798626454194814117",
"611263061851828001462",
"-7751163512199032905505"
]
| [
"sign"
]
| 23 | 0 | 3 | [
"A002111",
"A083007",
"A158073",
"A364112"
]
| null | F. Chapoton, Jul 13 2023 | 2025-06-02T15:26:54 | oeisdata/seq/A364/A364112.seq | 9882913d601ce773d7f5b2e8a887b901 |
A364113 | Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n for n, k >= 0. | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"5",
"19",
"1",
"1",
"7",
"73",
"147",
"1",
"1",
"9",
"163",
"1445",
"1251",
"1",
"1",
"11",
"289",
"5623",
"33001",
"11253",
"1",
"1",
"13",
"451",
"14409",
"235251",
"819005",
"104959",
"1",
"1",
"15",
"649",
"29531",
"908001",
"11009257",
"21460825",
"1004307",
"1",
"1",
"17",
"883",
"52717",
"2511251",
"65898009",
"554159719",
"584307365",
"9793891",
"1"
]
| [
"nonn",
"tabl",
"easy"
]
| 17 | 0 | 5 | [
"A005258",
"A005259",
"A108625",
"A143007",
"A364113",
"A364114",
"A364115",
"A364116",
"A364117",
"A364298"
]
| null | Peter Bala, Jul 07 2023 | 2023-07-22T21:19:56 | oeisdata/seq/A364/A364113.seq | 47a217060044ce908051743c066433ec |
A364114 | a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^3 for n >= 0. | [
"1",
"7",
"163",
"5623",
"235251",
"11009257",
"554159719",
"29359663991",
"1615702377331",
"91558286583757",
"5310712888211413",
"313940484249068761",
"18853030977961798359",
"1147317139889540758509",
"70618205829113737707663",
"4389482803713232076789623",
"275190242843266217113413491"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 2 | [
"A005258",
"A005259",
"A364113",
"A364114",
"A364115",
"A364116"
]
| null | Peter Bala, Jul 07 2023 | 2023-07-12T11:04:00 | oeisdata/seq/A364/A364114.seq | eb542e1b0eb02a92bba72bf0da94a6b3 |
A364115 | a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^4 for n >= 0. | [
"1",
"9",
"289",
"14409",
"908001",
"65898009",
"5246665201",
"445752724041",
"39731504675041",
"3674479246416009",
"349918540195094289",
"34125049533650776281",
"3394306634561379583281",
"343284252364774351717641",
"35215197976859176290014289",
"3657148830889736882170190409"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 2 | [
"A005258",
"A005259",
"A364113",
"A364114",
"A364115",
"A364116"
]
| null | Peter Bala, Jul 08 2023 | 2023-07-12T11:03:39 | oeisdata/seq/A364/A364115.seq | c897991f404b5ec0f53a55a4fad18689 |
A364116 | a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^n for n >= 0. | [
"1",
"3",
"73",
"5623",
"908001",
"251831261",
"106898093065",
"64439674636863",
"52344140654486017",
"55113399257643294769",
"73004404532578627776801",
"118810038754810358401521065",
"233027150139808176596750408337",
"542098915811219991386976197616441"
]
| [
"nonn",
"easy"
]
| 16 | 0 | 2 | [
"A005258",
"A005259",
"A108625",
"A143007",
"A364113",
"A364114",
"A364115",
"A364116",
"A364117",
"A364301"
]
| null | Peter Bala, Jul 08 2023 | 2023-07-22T21:18:59 | oeisdata/seq/A364/A364116.seq | 86d92a6471e08478700db6da92fb1d8e |
A364117 | a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^(n+1) for n >= 0. | [
"1",
"5",
"163",
"14409",
"2511251",
"730485013",
"320259339415",
"197591579213969",
"163325387776051459",
"174310058440646865021",
"233402385203650889753429",
"383208210107883180333696265",
"757120215942256247847040802463",
"1772210276849283299764079883683173"
]
| [
"nonn",
"easy"
]
| 8 | 0 | 2 | [
"A364113",
"A364116",
"A364117"
]
| null | Peter Bala, Jul 08 2023 | 2023-07-12T11:04:12 | oeisdata/seq/A364/A364117.seq | 9979a3a602fade523918468717c575d1 |
A364118 | a(n) = 3*A364114(n) - 11*A364114(n-1). | [
"10",
"412",
"15076",
"643900",
"30440010",
"1541377330",
"81983235064",
"4524150828092",
"256902133600630",
"14924997512212912",
"883403610976880740",
"53105747607145638706",
"3234568078911042493578",
"199234128948556264779390",
"12391648147019445115584576",
"777286417688953098495554620"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 1 | [
"A212334",
"A357506",
"A357507",
"A357568",
"A364114",
"A364118",
"A364119"
]
| null | Peter Bala, Jul 12 2023 | 2023-07-12T11:03:49 | oeisdata/seq/A364/A364118.seq | 724b7badd983716dad9903f0b62ecea5 |
A364119 | a(n) = 7*A364115(n) - 17*A364115(n-1). | [
"46",
"1870",
"95950",
"6111054",
"445850046",
"35606390254",
"3031075759870",
"270542736416590",
"25045919145436366",
"2386963634176587870",
"232926731552238831054",
"23180020599857593886190",
"2345286553765877009107710",
"240670553547813070050900126",
"25001383450621552178261089950"
]
| [
"nonn",
"easy"
]
| 6 | 1 | 1 | [
"A212334",
"A357506",
"A357507",
"A357568",
"A364115",
"A364118",
"A364119"
]
| null | Peter Bala, Jul 12 2023 | 2023-07-12T11:04:22 | oeisdata/seq/A364/A364119.seq | 6ea3f9afec718cf942b1b4a9f39708b8 |
A364120 | Digitsum of a(n) + digitsum of a(n+1) divides a(n+2). This is the lexicographically earliest sequence of distinct positive terms with this property. | [
"1",
"2",
"3",
"5",
"8",
"13",
"12",
"7",
"10",
"16",
"24",
"26",
"14",
"39",
"17",
"20",
"30",
"15",
"9",
"45",
"18",
"36",
"54",
"72",
"90",
"108",
"126",
"144",
"162",
"180",
"198",
"27",
"81",
"216",
"234",
"252",
"270",
"288",
"135",
"189",
"243",
"297",
"324",
"351",
"306",
"342",
"360",
"378",
"405",
"432",
"396",
"459",
"468",
"504",
"486",
"513",
"540",
"414",
"450",
"522",
"558",
"567",
"576",
"612",
"594",
"621",
"648",
"675",
"684"
]
| [
"base",
"nonn"
]
| 29 | 1 | 2 | [
"A007953",
"A364120",
"A364187",
"A364188"
]
| null | Eric Angelini and M. F. Hasler, Jul 12 2023 | 2023-12-20T08:04:20 | oeisdata/seq/A364/A364120.seq | 819fad9a3dd72bd9246fc379293394ff |
A364121 | Stolarsky representation of n. | [
"0",
"1",
"11",
"10",
"111",
"101",
"110",
"1111",
"100",
"1011",
"1101",
"1110",
"11111",
"1010",
"1001",
"10111",
"1100",
"11011",
"11101",
"11110",
"111111",
"1000",
"10101",
"10011",
"10110",
"101111",
"11010",
"11001",
"110111",
"11100",
"111011",
"111101",
"111110",
"1111111",
"10100",
"10001",
"101011",
"10010",
"100111",
"101101"
]
| [
"nonn",
"base"
]
| 10 | 1 | 3 | [
"A001622",
"A007064",
"A007088",
"A043562",
"A055641",
"A055642",
"A200648",
"A200649",
"A200650",
"A200651",
"A200714",
"A268643",
"A364121"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:41:43 | oeisdata/seq/A364/A364121.seq | ee9730da8289ca30c55da0be91828a33 |
A364122 | Numbers whose Stolarsky representation (A364121) is palindromic. | [
"1",
"2",
"3",
"5",
"6",
"8",
"13",
"15",
"18",
"21",
"23",
"34",
"36",
"40",
"45",
"50",
"55",
"66",
"71",
"89",
"91",
"95",
"108",
"113",
"120",
"128",
"136",
"144",
"159",
"176",
"196",
"204",
"233",
"235",
"239",
"261",
"273",
"286",
"291",
"298",
"319",
"327",
"338",
"351",
"364",
"377",
"400",
"426",
"464",
"490",
"518",
"550",
"563",
"610",
"612",
"616",
"654",
"667"
]
| [
"nonn",
"base"
]
| 8 | 1 | 2 | [
"A000045",
"A002113",
"A006995",
"A014190",
"A094202",
"A200648",
"A200649",
"A200650",
"A200651",
"A200714",
"A331191",
"A351712",
"A351717",
"A352087",
"A352105",
"A352319",
"A352341",
"A364121",
"A364122"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:41:57 | oeisdata/seq/A364/A364122.seq | de957d3fc0994c51b54a175a632b64e9 |
A364123 | Stolarsky-Niven numbers: numbers that are divisible by the number of 1's in their Stolarsky representation (A364121). | [
"2",
"4",
"6",
"8",
"9",
"12",
"14",
"16",
"20",
"22",
"24",
"27",
"30",
"36",
"38",
"40",
"42",
"44",
"48",
"54",
"56",
"57",
"60",
"65",
"69",
"72",
"75",
"80",
"84",
"85",
"90",
"92",
"96",
"98",
"100",
"102",
"104",
"108",
"112",
"116",
"120",
"124",
"126",
"132",
"136",
"138",
"145",
"147",
"150",
"153",
"155",
"159",
"160",
"175",
"180",
"185",
"190",
"195",
"196",
"205"
]
| [
"nonn",
"base"
]
| 7 | 1 | 1 | [
"A005349",
"A047263",
"A049445",
"A064150",
"A064438",
"A064481",
"A118363",
"A200649",
"A328208",
"A328212",
"A331085",
"A331728",
"A333426",
"A334308",
"A342426",
"A342726",
"A344341",
"A351714",
"A351719",
"A352089",
"A352107",
"A352320",
"A352342",
"A352508",
"A364121",
"A364123",
"A364124",
"A364125",
"A364126"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:42:18 | oeisdata/seq/A364/A364123.seq | e43cb5015066c1f22ef4bb8e62853777 |
A364124 | Numbers k such that k and k+1 are both Stolarsky-Niven numbers (A364123). | [
"8",
"56",
"84",
"159",
"195",
"224",
"384",
"399",
"405",
"995",
"1140",
"1224",
"1245",
"1295",
"1309",
"1419",
"1420",
"1455",
"1474",
"1507",
"2585",
"2597",
"2600",
"2680",
"2681",
"2727",
"2744",
"2750",
"2799",
"2855",
"3122",
"3311",
"3339",
"3345",
"3618",
"3707",
"3795",
"4004",
"6770",
"6774",
"6984",
"6985",
"7014",
"7074",
"7154",
"7405"
]
| [
"nonn",
"base"
]
| 7 | 1 | 1 | [
"A328205",
"A328209",
"A328213",
"A330927",
"A330931",
"A331086",
"A331820",
"A333427",
"A334309",
"A342427",
"A344342",
"A351715",
"A351720",
"A352090",
"A352108",
"A352321",
"A352343",
"A352509",
"A364123",
"A364124",
"A364125",
"A364126"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:42:30 | oeisdata/seq/A364/A364124.seq | 753713326426a71f8bc8f01cad9b8d3e |
A364125 | Starts of runs of 3 consecutive integers that are Stolarsky-Niven numbers (A364123). | [
"1419",
"2680",
"6984",
"18765",
"20383",
"28390",
"48697",
"55560",
"69056",
"121913",
"125340",
"125341",
"125739",
"133614",
"135189",
"136409",
"140789",
"147563",
"150138",
"155518",
"157068",
"171819",
"317933",
"318188",
"319395",
"323685",
"339723",
"340846",
"349326",
"356290",
"371041",
"389010",
"392903",
"393809",
"400608"
]
| [
"nonn",
"base"
]
| 8 | 1 | 1 | [
"A154701",
"A328206",
"A328210",
"A328214",
"A330932",
"A331087",
"A331822",
"A333428",
"A334310",
"A342428",
"A344343",
"A351716",
"A351721",
"A352091",
"A352109",
"A352322",
"A352344",
"A352510",
"A364123",
"A364124",
"A364125",
"A364126"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:42:42 | oeisdata/seq/A364/A364125.seq | 86325e4f2e2e17cc2dcf25bb48d196b9 |
A364126 | Starts of runs of 4 consecutive integers that are Stolarsky-Niven numbers (A364123). | [
"125340",
"945591",
"14998632",
"16160505",
"19304934",
"42053801",
"42064137",
"46049955",
"57180537",
"103562368",
"108489885",
"122495982",
"135562299",
"139343337",
"147991452",
"164002374",
"271566942",
"296019657",
"301748706",
"310980030",
"314537247",
"316725570",
"333478935",
"336959907",
"349815255"
]
| [
"nonn",
"base"
]
| 8 | 1 | 1 | [
"A141769",
"A328207",
"A328211",
"A328215",
"A330933",
"A331824",
"A334311",
"A342429",
"A344344",
"A352092",
"A352110",
"A352345",
"A352511",
"A364123",
"A364124",
"A364125",
"A364126"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:42:54 | oeisdata/seq/A364/A364126.seq | 9bf4161fd233ea66864fb67f0ce42b4a |
A364127 | The number of trailing 0's in the Stolarsky representation of n (A364121). | [
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"2",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"3",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"2",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"3",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"4",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"2",
"0",
"0",
"1",
"0",
"2",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"3",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1"
]
| [
"nonn",
"base"
]
| 8 | 2 | 8 | [
"A001622",
"A055588",
"A094214",
"A122840",
"A364121",
"A364127"
]
| null | Amiram Eldar, Jul 07 2023 | 2023-07-07T05:43:06 | oeisdata/seq/A364/A364127.seq | 0fd5f2fe9a45568e5e7fb83d09104b24 |
A364128 | Decimal expansion of a constant related to A053529 and A179973. | [
"4",
"4",
"3",
"2",
"3",
"8",
"9",
"5",
"4",
"7",
"3",
"0",
"9",
"2",
"8",
"5",
"0",
"9",
"4",
"0",
"7",
"7",
"7",
"5",
"1",
"2",
"0",
"7",
"2",
"8",
"3",
"3",
"1",
"8",
"5",
"1",
"5",
"0",
"2",
"0",
"7",
"2",
"1",
"9",
"2",
"4",
"3",
"9",
"1",
"5",
"3",
"0",
"8",
"7",
"0",
"7",
"7",
"6",
"2",
"9",
"2",
"8",
"7",
"8",
"5",
"3",
"4",
"5",
"9",
"1",
"5",
"9",
"1",
"4",
"4",
"7",
"8",
"7",
"3",
"5",
"9",
"3",
"2",
"5",
"5",
"7",
"6",
"1",
"1",
"6",
"9",
"2",
"9",
"1",
"3",
"8",
"2",
"8",
"7",
"1",
"6",
"4",
"8",
"5",
"8",
"8"
]
| [
"nonn",
"cons",
"base"
]
| 22 | 0 | 1 | [
"A004086",
"A025016",
"A053529",
"A055642",
"A179973",
"A364128"
]
| null | Alois P. Heinz, Jul 09 2023 | 2023-07-10T21:48:40 | oeisdata/seq/A364/A364128.seq | d4a3e71aa7d98f8dc6c5dcefb130ff7a |
A364129 | Order of Aut^3(C_n) = Aut(Aut(Aut(C_n))), where C_n is the cyclic group of order n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"6",
"6",
"1",
"8",
"8",
"8",
"1",
"2",
"8",
"12",
"2",
"4",
"336",
"8",
"6",
"2",
"12",
"12",
"8",
"8",
"64",
"24",
"8",
"64",
"12",
"12",
"2",
"64",
"1152",
"192",
"12",
"12",
"24",
"64",
"4",
"10",
"1152",
"12",
"8",
"768",
"64",
"16",
"2",
"128",
"336",
"24",
"12",
"12",
"1152",
"192",
"8",
"576",
"768",
"768",
"24",
"24",
"768",
"48",
"64",
"16",
"336",
"336",
"12",
"128",
"24",
"192",
"64",
"16",
"6144"
]
| [
"nonn",
"hard"
]
| 41 | 1 | 8 | [
"A000010",
"A258615",
"A364129",
"A364917",
"A364944"
]
| null | Jianing Song, Aug 13 2023 | 2023-08-18T08:25:57 | oeisdata/seq/A364/A364129.seq | cf1a55df2fee059bc7a1f6261d8cb078 |
A364130 | An infinite 2d grid is filled with the positive integers by placing them clockwise in the narrow von Neumann's neighborhood of square s, the lowest number with open neighbors. a(n) is then the n-th term when the grid is read as a clockwise square spiral. | [
"1",
"2",
"8",
"3",
"15",
"4",
"22",
"5",
"10",
"37",
"6",
"31",
"32",
"9",
"12",
"84",
"85",
"16",
"18",
"154",
"155",
"23",
"26",
"11",
"38",
"58",
"57",
"7",
"50",
"51",
"52",
"33",
"64",
"13",
"96",
"97",
"98",
"86",
"17",
"19",
"172",
"173",
"174",
"156",
"24",
"27",
"73",
"39",
"59",
"431",
"430",
"429",
"43",
"386",
"387",
"388",
"389",
"53",
"34",
"65",
"14",
"123",
"124"
]
| [
"nonn",
"easy"
]
| 26 | 1 | 2 | [
"A090915",
"A174344",
"A217010",
"A268038",
"A337822",
"A361207",
"A364130"
]
| null | John Tyler Rascoe, Jul 09 2023 | 2023-11-17T21:37:41 | oeisdata/seq/A364/A364130.seq | a410e49632e7022e5ad5d7aa9f154e14 |
A364131 | Numbers k for which A348717(k) is a multiple of A348717(sigma(k)). | [
"1",
"2",
"4",
"9",
"16",
"25",
"64",
"81",
"289",
"324",
"400",
"484",
"729",
"1681",
"2401",
"3481",
"4096",
"5041",
"7921",
"10201",
"15625",
"17161",
"27889",
"28561",
"29929",
"39204",
"65536",
"83521",
"85849",
"146689",
"262144",
"279841",
"458329",
"491401",
"531441",
"552049",
"579121",
"597529",
"683929",
"703921",
"707281",
"734449",
"829921",
"1190281",
"1203409",
"1352569",
"1394761",
"1423249",
"1481089"
]
| [
"nonn"
]
| 34 | 1 | 2 | [
"A000203",
"A008848",
"A023194",
"A348717",
"A350072",
"A364131"
]
| null | Antti Karttunen, Jul 11 2023 | 2023-07-15T21:59:55 | oeisdata/seq/A364/A364131.seq | a50ddb63e447e65606a79aba4da568c6 |
A364132 | a(n) is the smallest positive integer such that from the set {1, 2, ..., a(n)} one can choose an increasing sequence (s(1), s(2), ..., s(n)) in which every segment has a unique sum of elements. | [
"1",
"2",
"4",
"5",
"7",
"10",
"12",
"13",
"15",
"18",
"21",
"24",
"25",
"29",
"30",
"33",
"36",
"38",
"41",
"47",
"50",
"52"
]
| [
"nonn",
"hard",
"more"
]
| 23 | 1 | 2 | [
"A276661",
"A363446",
"A364132",
"A364153"
]
| null | Bartlomiej Pawlik, Jul 10 2023 | 2023-08-06T08:18:48 | oeisdata/seq/A364/A364132.seq | 0ba890b334a52b925ecd19633749ac86 |
A364133 | Index k of A007814(A000127(k)) at record terms. | [
"1",
"2",
"3",
"4",
"5",
"10",
"1034",
"1619",
"19940",
"151012",
"185354",
"937444",
"17714660",
"30594058",
"53467077",
"401540691",
"1127208901",
"34761279059",
"1529978475530",
"12645510928325"
]
| [
"nonn",
"more"
]
| 35 | 0 | 2 | [
"A000127",
"A007814",
"A364133"
]
| null | Nicolas Bělohoubek, Jul 10 2023 | 2023-09-03T10:30:29 | oeisdata/seq/A364/A364133.seq | fc1198f8380f2ed4fb98fa7de0333f5d |
A364134 | Number of tilings of a (k*(3k-1)/2, k*(3k+1)/2)-benzel by bones. | [
"1",
"2",
"42705",
"7501790059160666750"
]
| [
"nonn",
"more"
]
| 91 | 1 | 2 | null | null | James Propp, Jul 22 2023 | 2023-07-23T08:49:42 | oeisdata/seq/A364/A364134.seq | d6a63e231335b4bb63c6271257b79e7f |
A364135 | Let d_r d_{r-1} ... d_1 d_0 be the decimal expansion of n; a(n) is the number of nonnegative integer solutions x_r ... x_0 to the Diophantine equation d_r*x_r + ... + d_0*x_0 = n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"12",
"7",
"5",
"4",
"4",
"3",
"3",
"3",
"3",
"1",
"11",
"12",
"4",
"7",
"3",
"5",
"2",
"4",
"2",
"1",
"11",
"6",
"12",
"3",
"3",
"7",
"2",
"2",
"5",
"1",
"11",
"11",
"4",
"12",
"3",
"4",
"2",
"7",
"2",
"1",
"11",
"6",
"4",
"3",
"12",
"2",
"2",
"2",
"2",
"1",
"11",
"11",
"11",
"6",
"3",
"12",
"2",
"3",
"4",
"1",
"11",
"6",
"4",
"3",
"3",
"2",
"12",
"2",
"2",
"1",
"11",
"11"
]
| [
"base",
"look",
"nonn"
]
| 51 | 1 | 11 | [
"A007954",
"A034838",
"A052423",
"A055642",
"A364135"
]
| null | Ctibor O. Zizka, Jul 10 2023 | 2024-02-17T12:38:57 | oeisdata/seq/A364/A364135.seq | dad14108d2739d0238c4525bf548fd5e |
A364136 | a(n) is the number of distinct products of nonempty submultisets of the digits of n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"2",
"2",
"3",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"2",
"2",
"3",
"3",
"2",
"3",
"3",
"3",
"3",
"3",
"2",
"2",
"3",
"3",
"3",
"2",
"3",
"3",
"3",
"3",
"2",
"2",
"3",
"3",
"3",
"3",
"2",
"3",
"3",
"3",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"2",
"3",
"3",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"2",
"3",
"2"
]
| [
"base",
"nonn"
]
| 16 | 0 | 11 | [
"A000005",
"A007954",
"A051801",
"A055642",
"A360391",
"A364136"
]
| null | Ctibor O. Zizka, Jul 10 2023 | 2024-03-09T11:17:26 | oeisdata/seq/A364/A364136.seq | eac029acb09aee46896e4da5e95e27b7 |
A364137 | a(1) = 1; for n > 1, a(n) is the smallest positive number such that the sum of all terms a(1) + ... + a(n) has the same number of distinct prime factors as the product of all terms a(1) * ... * a(n). | [
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"4",
"2",
"3",
"2",
"2",
"2",
"6",
"1",
"1",
"2",
"1",
"1",
"4",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"4",
"1",
"2",
"3",
"1",
"3",
"2",
"1",
"1",
"1",
"3",
"2",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"2",
"2",
"3",
"1",
"3",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"9",
"1",
"1",
"1",
"6",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"2",
"3",
"1",
"1",
"1",
"1",
"2",
"2",
"6",
"3",
"1",
"1",
"1",
"6",
"1"
]
| [
"nonn"
]
| 16 | 1 | 2 | [
"A001221",
"A027748",
"A364137",
"A364138",
"A364262"
]
| null | Scott R. Shannon, Jul 10 2023 | 2023-07-18T17:16:19 | oeisdata/seq/A364/A364137.seq | 033e493b4d6a028276cbeafd1d5cb947 |
A364138 | a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the sum of all terms a(1) + ... + a(n) has the same number of distinct prime factors as the product of all terms a(1) * ... * a(n). | [
"1",
"2",
"3",
"4",
"8",
"6",
"9",
"12",
"15",
"10",
"20",
"24",
"16",
"40",
"25",
"27",
"18",
"30",
"36",
"48",
"45",
"21",
"42",
"84",
"144",
"80",
"28",
"60",
"72",
"90",
"120",
"50",
"64",
"126",
"150",
"108",
"147",
"35",
"70",
"105",
"7",
"98",
"162",
"180",
"168",
"96",
"54",
"100",
"200",
"75",
"63",
"32",
"160",
"240",
"140",
"220",
"300",
"330",
"210",
"630",
"810",
"360",
"960",
"264",
"336",
"420",
"672"
]
| [
"nonn"
]
| 12 | 1 | 2 | [
"A001221",
"A027748",
"A364137",
"A364138",
"A364262"
]
| null | Scott R. Shannon, Jul 10 2023 | 2023-07-18T17:16:24 | oeisdata/seq/A364/A364138.seq | 97531537fcd462daa6f618f32ea413ab |
A364139 | a(1) = 1; for n > 1, a(n) is the smallest positive number such that the sum of all terms a(1) + ... + a(n) has the same number of prime factors, counted with multiplicity, as the product of all terms a(1) * ... * a(n). | [
"1",
"2",
"3",
"2",
"73",
"15",
"8096",
"36661237",
"6155",
"92464579",
"113213",
"2195269558",
"5412938",
"656672315917",
"27764211",
"296739271898493",
"1339787907",
"4052257753377273867",
"1371296237557",
"68893436230026358982",
"12176387510074",
"35378806473679275300836",
"4512548469598236",
"28260736731720477851055640182"
]
| [
"nonn"
]
| 26 | 1 | 2 | [
"A001222",
"A027746",
"A364137",
"A364139",
"A364140"
]
| null | Scott R. Shannon, Jul 10 2023 | 2024-01-08T09:03:48 | oeisdata/seq/A364/A364139.seq | c80faf7fbeab214de61610eacc0b803e |
A364140 | a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the sum of all terms a(1) + ... + a(n) has the same number of prime factors, counted with multiplicity, as the product of all terms a(1) * ... * a(n). | [
"1",
"2",
"3",
"10",
"227",
"77",
"16064",
"33464399",
"8113",
"3195015179",
"61429",
"90914613323",
"71605",
"2447722577897",
"50167831",
"66088461368723",
"515670637",
"33285732506297618",
"94923365102",
"101280524367151708435",
"8787480069869",
"13576059753826090424581"
]
| [
"nonn",
"more"
]
| 19 | 1 | 2 | [
"A001222",
"A027746",
"A364138",
"A364139",
"A364140"
]
| null | Scott R. Shannon, Jul 10 2023 | 2023-07-21T17:27:21 | oeisdata/seq/A364/A364140.seq | 8a7c81c9702653c6ded0f40d436ed5c3 |
A364141 | Products k of 4 distinct primes (or tetraprimes) such that k has no squarefree neighbors. | [
"3774",
"5565",
"6726",
"8151",
"10659",
"10934",
"11726",
"11935",
"12426",
"13035",
"13195",
"13674",
"13755",
"14763",
"15042",
"15249",
"15351",
"15785",
"16215",
"16226",
"17630",
"17765",
"17974",
"17985",
"18249",
"18278",
"18915",
"18998",
"19565",
"20085",
"21385",
"21574",
"21855",
"22015",
"23023",
"23345",
"23374",
"23426",
"24038",
"24605",
"25185"
]
| [
"nonn"
]
| 14 | 1 | 1 | [
"A013929",
"A046386",
"A364141"
]
| null | Massimo Kofler, Jul 10 2023 | 2023-08-05T22:37:16 | oeisdata/seq/A364/A364141.seq | 3fd860b5992c0016a743bf72ed55b7fe |
A364142 | Sophie Germain primes p such that both p and the corresponding safe prime 2*p+1 have distinct digits. | [
"2",
"3",
"23",
"29",
"41",
"53",
"83",
"89",
"173",
"179",
"239",
"251",
"281",
"293",
"359",
"419",
"431",
"491",
"641",
"653",
"683",
"719",
"743",
"761",
"953",
"1289",
"1409",
"1439",
"1583",
"1973",
"2039",
"2063",
"2069",
"2351",
"2543",
"2693",
"2741",
"2819",
"2903",
"2963",
"3491",
"3761",
"3821",
"4019",
"4073",
"4271",
"4793",
"4871",
"5231",
"6173",
"6329",
"6491",
"6983",
"7043",
"7103"
]
| [
"nonn",
"base",
"fini",
"full"
]
| 11 | 1 | 1 | [
"A005384",
"A005385",
"A010784",
"A364142"
]
| null | Zak Seidov and Robert Israel, Jul 10 2023 | 2023-08-02T13:47:29 | oeisdata/seq/A364/A364142.seq | 6c16159f513e60739cf9b91f96063f26 |
A364143 | a(n) is the minimal number of consecutive squares needed to sum to A216446(n). | [
"2",
"5",
"3",
"2",
"2",
"3",
"10",
"2",
"7",
"9",
"12",
"11",
"6",
"11",
"14",
"3",
"11",
"29",
"14",
"7",
"23",
"4",
"49",
"8",
"24",
"5",
"17",
"12",
"38",
"46",
"27",
"34",
"6",
"14",
"22",
"66",
"11",
"66",
"14",
"11",
"6",
"77",
"36",
"63",
"96",
"11",
"50",
"3",
"19",
"96",
"52",
"41",
"66",
"33",
"11",
"3",
"14",
"121",
"66",
"89",
"34",
"127",
"51",
"2",
"86",
"54",
"181",
"48",
"8"
]
| [
"nonn",
"base"
]
| 27 | 1 | 1 | [
"A034705",
"A180436",
"A216446",
"A267600",
"A364143"
]
| null | Darío Clavijo, Jul 10 2023 | 2023-08-08T18:04:30 | oeisdata/seq/A364/A364143.seq | 252bd46a9b45856984e05ce04fa13d3d |
A364144 | Number of distinct representations for n in base 2, using digits -1,0,1, whose sum of digits is 0. | [
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"3",
"2",
"4",
"2",
"4",
"3",
"4",
"1",
"3",
"3",
"5",
"2",
"6",
"4",
"6",
"2",
"5",
"4",
"7",
"3",
"6",
"4",
"5",
"1",
"3",
"3",
"6",
"3",
"7",
"5",
"8",
"2",
"7",
"6",
"10",
"4",
"10",
"6",
"8",
"2",
"6",
"5",
"9",
"4",
"10",
"7",
"10",
"3",
"8",
"6",
"10",
"4",
"8",
"5",
"6",
"1",
"3",
"3",
"6",
"3",
"8",
"6",
"9",
"3",
"8",
"7",
"13",
"5",
"12",
"8",
"11",
"2",
"8",
"7",
"13",
"6"
]
| [
"nonn",
"base"
]
| 19 | 0 | 4 | [
"A028310",
"A052955",
"A364144"
]
| null | Jeffrey Shallit, Jul 10 2023 | 2023-07-13T12:59:44 | oeisdata/seq/A364/A364144.seq | 4730c0b5d5d9f331137feb492776e9fa |
A364145 | a(n) is the sum of the first 2*n nonzero n-bonacci numbers. | [
"0",
"2",
"7",
"28",
"116",
"480",
"1968",
"8000",
"32320",
"130048",
"521984",
"2092032",
"8377344",
"33529856",
"134164480",
"536756224",
"2147237888",
"8589410304",
"34358624256",
"137436594176",
"549750833152",
"2199012769792",
"8796071002112",
"35184325951488",
"140737391886336",
"562949752094720"
]
| [
"nonn",
"easy"
]
| 17 | 0 | 2 | [
"A000045",
"A000073",
"A000078",
"A092921",
"A144406",
"A364145"
]
| null | Muhammad Adam Dombrowski and Greg Dresden, Jul 10 2023 | 2023-08-02T13:51:43 | oeisdata/seq/A364/A364145.seq | 918782d2fd45cffcaf43735a2ac0f690 |
A364146 | Numbers k such that k! belongs to A038040. | [
"0",
"1",
"3",
"4",
"5",
"6",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"21",
"22",
"25",
"26",
"28",
"29",
"31",
"32",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"49",
"50",
"52",
"53",
"54",
"55",
"57",
"58",
"59",
"64",
"66",
"67",
"70",
"71",
"76",
"77",
"78",
"79",
"80",
"81",
"82",
"83",
"85",
"90",
"91",
"92",
"95",
"96",
"97",
"98",
"99",
"101",
"103",
"106",
"108",
"115",
"121",
"122",
"123",
"124",
"125",
"126",
"127"
]
| [
"nonn"
]
| 13 | 1 | 3 | [
"A000005",
"A000142",
"A036438",
"A038040",
"A364146"
]
| null | Max Alekseyev, Jul 10 2023 | 2023-07-11T11:35:49 | oeisdata/seq/A364/A364146.seq | f9d387a2b181ff794978b312614c5eb7 |
A364147 | Prime numbers that are the exact average of five consecutive odd semiprimes. | [
"101",
"677",
"743",
"811",
"907",
"1039",
"1109",
"1129",
"1301",
"1373",
"1381",
"1567",
"1789",
"1931",
"1949",
"1979",
"2029",
"2447",
"2621",
"2663",
"2731",
"2879",
"2909",
"2971",
"3119",
"3187",
"3221",
"3319",
"3529",
"3631",
"3677",
"3803",
"3823",
"3943",
"4201",
"4253",
"4549",
"4597",
"4637",
"4643",
"4649",
"4801",
"4951",
"5119",
"5189",
"5431",
"5987",
"6053",
"6151",
"6311"
]
| [
"nonn"
]
| 12 | 1 | 1 | [
"A000040",
"A046315",
"A363074",
"A363187",
"A363188",
"A364147",
"A364148",
"A364149"
]
| null | Elmo R. Oliveira, Jul 10 2023 | 2023-08-12T00:43:34 | oeisdata/seq/A364/A364147.seq | a1bfbe42ae25c86f399c5e4850b65f3a |
A364148 | Prime numbers that are the exact average of six consecutive odd semiprimes. | [
"23",
"79",
"109",
"491",
"599",
"797",
"809",
"853",
"953",
"1021",
"1171",
"1289",
"1361",
"1531",
"1543",
"1559",
"1811",
"1951",
"1987",
"2143",
"2179",
"2239",
"2273",
"2309",
"2381",
"2399",
"3169",
"3271",
"3343",
"3371",
"3433",
"3613",
"3701",
"4051",
"4157",
"4297",
"4327",
"4357",
"4457",
"4603",
"4789",
"4871",
"5227",
"5233",
"5443",
"5479",
"5623",
"5711",
"5737",
"5927",
"6073"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A000040",
"A046315",
"A363074",
"A363187",
"A363188",
"A364147",
"A364148",
"A364149"
]
| null | Elmo R. Oliveira, Jul 10 2023 | 2023-08-08T19:09:18 | oeisdata/seq/A364/A364148.seq | 71db458ae63e6930b0de537e21c54c49 |
A364149 | Prime numbers that are the exact average of seven consecutive odd semiprimes. | [
"31",
"41",
"617",
"677",
"937",
"947",
"1637",
"1931",
"1979",
"2221",
"2341",
"2447",
"2647",
"2857",
"3373",
"3583",
"3673",
"3823",
"3967",
"4027",
"4049",
"4229",
"4259",
"4339",
"4421",
"4649",
"4861",
"4931",
"5051",
"5179",
"5399",
"5407",
"5507",
"5521",
"5573",
"5987",
"6047",
"6131",
"6143",
"6311",
"6337",
"6703",
"6737",
"7417",
"7717",
"7723",
"7901",
"8059",
"8069",
"8231",
"8647"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A000040",
"A046315",
"A363074",
"A363187",
"A363188",
"A364147",
"A364148",
"A364149"
]
| null | Elmo R. Oliveira, Jul 10 2023 | 2023-08-08T19:09:38 | oeisdata/seq/A364/A364149.seq | 521994ec3dcd9796eba13ee58895981b |
A364150 | a(n) is the smallest positive integer which can be represented as the sum of distinct positive quarter-squares in exactly n ways, or -1 if no such integer exists. | [
"1",
"6",
"12",
"16",
"21",
"22",
"27",
"33",
"31",
"32",
"36",
"37",
"41",
"-1",
"42",
"43",
"47",
"-1",
"49",
"48",
"-1",
"54",
"52",
"-1",
"60",
"59",
"57",
"-1",
"58",
"61",
"62",
"63",
"65",
"64",
"-1",
"-1",
"69",
"67",
"70",
"-1",
"68",
"72",
"-1",
"75",
"-1",
"73",
"76",
"74",
"-1",
"-1",
"-1",
"77",
"80",
"78",
"79",
"81",
"-1",
"82",
"-1",
"-1"
]
| [
"sign"
]
| 6 | 1 | 2 | [
"A002620",
"A097563",
"A197081",
"A364150"
]
| null | Ilya Gutkovskiy, Jul 10 2023 | 2023-07-16T10:34:39 | oeisdata/seq/A364/A364150.seq | 470e08a8b68b55e6eabe67d205820c09 |
A364151 | Tetrahedral numbers that are products of smaller tetrahedral numbers. | [
"1",
"560",
"19600",
"43680",
"45760",
"893200",
"1521520",
"7207200",
"29269240",
"2845642800",
"22778408800",
"26595476600",
"59777945920",
"199910480000",
"239526427140",
"249466897680",
"283345302240",
"3280499995500",
"20894643369600",
"115333903584900",
"408688050971200",
"706949015272500",
"4613394351142500"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A000292",
"A068143",
"A196568",
"A363636",
"A364151",
"A364152",
"A374498"
]
| null | Pontus von Brömssen, Jul 15 2023 | 2024-07-11T13:16:31 | oeisdata/seq/A364/A364151.seq | bdfa95e4953d08e91cb444125218fa32 |
A364152 | Least n-simplex number (i.e., number of the form C(m,n) = binomial(m,n), m >= n), that can be written as a product of two or more smaller n-simplex numbers, or 0 if no such number exists. | [
"4",
"36",
"560",
"20475",
"126"
]
| [
"nonn",
"more"
]
| 9 | 1 | 1 | [
"A018252",
"A028387",
"A068143",
"A364151",
"A364152"
]
| null | Pontus von Brömssen, Jul 15 2023 | 2024-07-14T15:16:03 | oeisdata/seq/A364/A364152.seq | f3bc2d7d34d8f125113c2845678e6c00 |
A364153 | a(n) is the smallest positive integer such that from the set {1, 2, ..., a(n)} one can choose a sequence (s(1), s(2), ..., s(n)) in which every segment has a unique sum. | [
"1",
"2",
"3",
"5",
"6",
"7",
"9",
"10",
"12",
"13",
"14",
"17",
"18"
]
| [
"nonn",
"hard",
"more"
]
| 17 | 1 | 2 | [
"A276661",
"A363446",
"A364132",
"A364153"
]
| null | Bartlomiej Pawlik, Jul 11 2023 | 2023-08-28T08:21:35 | oeisdata/seq/A364/A364153.seq | 6f4980d76fb75f6b1d141e3334e3517b |
A364154 | Lexicographically earliest sequence of distinct positive integers such that a(n) is least novel multiple m of the product of all primes less than the greatest prime factor of a(n-1) which do not divide a(n-1); a(1) = 1. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"30",
"8",
"9",
"10",
"12",
"11",
"210",
"13",
"2310",
"14",
"15",
"16",
"17",
"30030",
"18",
"19",
"510510",
"20",
"21",
"40",
"24",
"22",
"105",
"26",
"1155",
"28",
"45",
"32",
"23",
"9699690",
"25",
"36",
"27",
"34",
"15015",
"38",
"255255",
"42",
"35",
"48",
"29",
"223092870",
"31",
"6469693230",
"33",
"70",
"39",
"770",
"51",
"10010"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A002110",
"A083720",
"A351495",
"A359804",
"A363195",
"A364154"
]
| null | David James Sycamore, Jul 11 2023 | 2023-07-15T08:48:57 | oeisdata/seq/A364/A364154.seq | 74e623c7446377ef7cdc32e26ec3b5d3 |
A364155 | Number of tilings of a 4 X n rectangle using dominoes and trominoes (of any shape). | [
"1",
"1",
"17",
"145",
"1352",
"12688",
"115958",
"1075397",
"9935791",
"91795006",
"848550447",
"7841290657",
"72469286374",
"669744449380",
"6189592846538",
"57202915584686",
"528655401099501",
"4885709752947038",
"45152583446359974",
"417289539653241534",
"3856491950197255757",
"35640791884109598908"
]
| [
"nonn",
"easy"
]
| 39 | 0 | 3 | [
"A364155",
"A364457"
]
| null | Alois P. Heinz, Jul 28 2023 | 2025-06-25T17:54:49 | oeisdata/seq/A364/A364155.seq | ee2a963d0a10f745d91166dff6612275 |
A364156 | Ceiling of the mean of the prime factors of n (with multiplicity). | [
"0",
"2",
"3",
"2",
"5",
"3",
"7",
"2",
"3",
"4",
"11",
"3",
"13",
"5",
"4",
"2",
"17",
"3",
"19",
"3",
"5",
"7",
"23",
"3",
"5",
"8",
"3",
"4",
"29",
"4",
"31",
"2",
"7",
"10",
"6",
"3",
"37",
"11",
"8",
"3",
"41",
"4",
"43",
"5",
"4",
"13",
"47",
"3",
"7",
"4",
"10",
"6",
"53",
"3",
"8",
"4",
"11",
"16",
"59",
"3",
"61",
"17",
"5",
"2",
"9",
"6",
"67",
"7",
"13",
"5",
"71",
"3",
"73",
"20",
"5",
"8",
"9",
"6"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A026905",
"A027746",
"A051293",
"A067629",
"A078175",
"A112798",
"A123528",
"A123529",
"A124943",
"A124944",
"A126594",
"A316413",
"A326567",
"A326568",
"A327473",
"A327476",
"A327482",
"A363895",
"A363943",
"A363948",
"A363950",
"A364037",
"A364156"
]
| null | Gus Wiseman, Jul 18 2023 | 2023-07-23T03:34:53 | oeisdata/seq/A364/A364156.seq | 531d657830568a0de9625a4595035bb1 |
A364157 | Numbers whose rounded-down (floor) mean of prime factors (with multiplicity) is 2. | [
"2",
"4",
"6",
"8",
"12",
"16",
"18",
"24",
"32",
"36",
"40",
"48",
"54",
"64",
"72",
"80",
"96",
"108",
"120",
"128",
"144",
"160",
"162",
"192",
"216",
"224",
"240",
"256",
"288",
"320",
"324",
"360",
"384",
"432",
"448",
"480",
"486",
"512",
"576",
"640",
"648",
"672",
"720",
"768",
"800",
"864",
"896",
"960",
"972",
"1024",
"1080",
"1152",
"1280",
"1296",
"1344"
]
| [
"nonn"
]
| 6 | 1 | 1 | [
"A001222",
"A007694",
"A026905",
"A027746",
"A056239",
"A067538",
"A078175",
"A112798",
"A123528",
"A123529",
"A126594",
"A316413",
"A326567",
"A326568",
"A327473",
"A327476",
"A360013",
"A360015",
"A363488",
"A363745",
"A363895",
"A363943",
"A363944",
"A363945",
"A363949",
"A363950",
"A363954",
"A364037",
"A364157"
]
| null | Gus Wiseman, Jul 18 2023 | 2023-07-18T23:25:37 | oeisdata/seq/A364/A364157.seq | ca85069335eabf9611492fa8e3fda6cb |
A364158 | Numbers whose multiset of prime factors has low (i.e. least) co-mode 2. | [
"1",
"2",
"4",
"6",
"8",
"10",
"14",
"16",
"18",
"22",
"26",
"30",
"32",
"34",
"36",
"38",
"42",
"46",
"50",
"54",
"58",
"62",
"64",
"66",
"70",
"74",
"78",
"82",
"86",
"90",
"94",
"98",
"100",
"102",
"106",
"108",
"110",
"114",
"118",
"122",
"126",
"128",
"130",
"134",
"138",
"142",
"146",
"150",
"154",
"158",
"162",
"166",
"170",
"174",
"178",
"182",
"186",
"190",
"194"
]
| [
"nonn"
]
| 15 | 1 | 2 | [
"A001222",
"A027746",
"A124943",
"A215366",
"A241131",
"A327473",
"A327476",
"A356862",
"A359178",
"A360005",
"A360015",
"A362605",
"A362606",
"A362607",
"A362608",
"A362609",
"A362610",
"A362611",
"A362613",
"A362614",
"A362615",
"A363486",
"A363487",
"A363488",
"A363941",
"A364158",
"A364159",
"A364191",
"A364192"
]
| null | Gus Wiseman, Jul 14 2023 | 2023-10-18T04:46:38 | oeisdata/seq/A364/A364158.seq | df6f6d84aeb7d90ebddfec7981544ae1 |
A364159 | Number of integer partitions of n - 1 containing fewer 1's than any other part. | [
"0",
"1",
"1",
"2",
"2",
"3",
"4",
"5",
"7",
"9",
"11",
"15",
"20",
"23",
"32",
"40",
"50",
"61",
"82",
"95",
"126",
"149",
"188",
"228",
"292",
"337",
"430",
"510",
"633",
"748",
"933",
"1083",
"1348",
"1579",
"1925",
"2262",
"2761",
"3197",
"3893",
"4544",
"5458",
"6354",
"7634",
"8835",
"10577",
"12261",
"14546",
"16864",
"19990",
"23043",
"27226",
"31428"
]
| [
"nonn"
]
| 11 | 0 | 4 | [
"A027336",
"A124943",
"A237984",
"A241131",
"A327472",
"A356862",
"A359178",
"A360015",
"A362605",
"A362606",
"A362607",
"A362608",
"A362609",
"A362610",
"A362611",
"A362613",
"A362614",
"A362615",
"A363486",
"A363487",
"A364061",
"A364062",
"A364158",
"A364159",
"A364191",
"A364192"
]
| null | Gus Wiseman, Jul 16 2023 | 2023-10-18T04:46:55 | oeisdata/seq/A364/A364159.seq | 3fd1da3ffaaf753a5b0cb54204aa4618 |
A364160 | Numbers whose least prime factor has the greatest exponent. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"12",
"13",
"16",
"17",
"19",
"20",
"23",
"24",
"25",
"27",
"28",
"29",
"31",
"32",
"37",
"40",
"41",
"43",
"44",
"45",
"47",
"48",
"49",
"52",
"53",
"56",
"59",
"60",
"61",
"63",
"64",
"67",
"68",
"71",
"72",
"73",
"76",
"79",
"80",
"81",
"83",
"84",
"88",
"89",
"92",
"96",
"97",
"99",
"101",
"103",
"104",
"107",
"109",
"112",
"113",
"116"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A001222",
"A027746",
"A056239",
"A098859",
"A112798",
"A241131",
"A327473",
"A327476",
"A356862",
"A359178",
"A360013",
"A360014",
"A360015",
"A362605",
"A362606",
"A362610",
"A362611",
"A362612",
"A362613",
"A362614",
"A362615",
"A362616",
"A363486",
"A363487",
"A364061",
"A364062",
"A364160",
"A364193"
]
| null | Gus Wiseman, Jul 14 2023 | 2024-09-18T08:43:08 | oeisdata/seq/A364/A364160.seq | 7d544c44738c4080e27229b064261fa3 |
A364161 | G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)). | [
"1",
"1",
"2",
"5",
"15",
"47",
"153",
"514",
"1769",
"6205",
"22102",
"79733",
"290721",
"1069688",
"3966739",
"14810348",
"55627778",
"210046102",
"796864028",
"3035912900",
"11610468138",
"44556451207",
"171529074168",
"662238211929",
"2563524741603",
"9947573055828",
"38687704042595"
]
| [
"nonn"
]
| 21 | 0 | 3 | [
"A001003",
"A119370",
"A218251",
"A364161",
"A364833",
"A365247"
]
| null | Seiichi Manyama, Aug 28 2023 | 2023-08-29T05:09:51 | oeisdata/seq/A364/A364161.seq | 816fb2198e98f39963147f550285c5b5 |
A364162 | Number of chordless cycles (of length > 3) in the complement of the n X n queen graph. | [
"0",
"0",
"1",
"180",
"2263",
"13280",
"48772",
"139880",
"335746",
"717172",
"1394367",
"2530308",
"4334037",
"7090956",
"11152386",
"16974892",
"25106088",
"36230756",
"51149185",
"70840252",
"96432435",
"129263544",
"170864696",
"223022704"
]
| [
"nonn",
"more"
]
| 11 | 1 | 4 | [
"A361184",
"A361188",
"A364162"
]
| null | Eric W. Weisstein, Jul 11 2023 | 2025-02-16T08:34:06 | oeisdata/seq/A364/A364162.seq | 5bd26c47f5dce04c9dac0837d0e1814e |
A364163 | Least number k such that average of {prime(i) | k - n <= i <= k + n} is prime(k), or -1 if no such number exists. | [
"1",
"3",
"22",
"7",
"94",
"16",
"20",
"10",
"12",
"166",
"727",
"40",
"37",
"71",
"702",
"56",
"41",
"76",
"33",
"424",
"314",
"133",
"71",
"726",
"241",
"35",
"618",
"205",
"78",
"138",
"1096",
"1096",
"111",
"49",
"512",
"2006",
"5790",
"504",
"2634",
"1497",
"199",
"1344",
"181",
"2404",
"2237",
"162",
"241",
"470",
"667",
"81",
"106",
"2940",
"209",
"209",
"5549"
]
| [
"sign"
]
| 24 | 0 | 2 | [
"A000720",
"A082080",
"A363168",
"A364163"
]
| null | Jean-Marc Rebert, Jul 12 2023 | 2024-09-07T08:54:33 | oeisdata/seq/A364/A364163.seq | 25fd2cfc47db7f59d4ecb7992d0b1e12 |
A364164 | a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that has the same number of distinct prime factors as the sum of all previous terms. | [
"1",
"2",
"3",
"6",
"10",
"12",
"14",
"15",
"18",
"4",
"20",
"30",
"21",
"42",
"60",
"66",
"22",
"24",
"70",
"78",
"84",
"90",
"26",
"28",
"33",
"34",
"35",
"36",
"102",
"105",
"5",
"38",
"110",
"39",
"7",
"210",
"114",
"120",
"126",
"330",
"390",
"420",
"130",
"132",
"138",
"140",
"462",
"510",
"150",
"546",
"570",
"154",
"40",
"44",
"45",
"156",
"8",
"165",
"630",
"660",
"168",
"170",
"174",
"9",
"46",
"48",
"690"
]
| [
"nonn"
]
| 10 | 1 | 2 | [
"A001221",
"A352867",
"A355647",
"A355649",
"A355702",
"A363162",
"A364164"
]
| null | Scott R. Shannon, Jul 12 2023 | 2023-07-12T11:05:50 | oeisdata/seq/A364/A364164.seq | 080286ee224d190e36707378727c210a |
A364165 | a(n) is the least prime factor of the concatenation of 2^n and 3^n. | [
"11",
"23",
"7",
"827",
"41",
"19",
"7",
"1282187",
"2566561",
"1163",
"7",
"79",
"41",
"167",
"7",
"11",
"17",
"17",
"7",
"29",
"41",
"209715210460353203",
"7",
"838860894143178827",
"2566561",
"11",
"7",
"35393",
"29",
"179",
"7",
"19",
"673",
"85899345925559060566555523",
"7",
"47",
"41",
"29",
"7",
"661",
"5441",
"79",
"7",
"23"
]
| [
"nonn",
"base"
]
| 9 | 0 | 1 | [
"A000079",
"A000244",
"A268111",
"A364165"
]
| null | Robert Israel, Jul 12 2023 | 2024-05-23T16:12:02 | oeisdata/seq/A364/A364165.seq | 3959bdb9a057544cbbb924e80c5b1890 |
A364166 | Indices k such that A002375(k) = A002375(k+1) = number of decompositions of 2k into a sum of two odd primes. | [
"1",
"3",
"7",
"8",
"9",
"11",
"12",
"17",
"37",
"58",
"88",
"103",
"112",
"118",
"160",
"196",
"226",
"247",
"277",
"283",
"343",
"382",
"415",
"455",
"463",
"502",
"523",
"532",
"553",
"592",
"598",
"613",
"652",
"667",
"670",
"682",
"697",
"751",
"770",
"817",
"895",
"901",
"1012",
"1018",
"1048",
"1123",
"1153",
"1198",
"1318",
"1393",
"1420",
"1708",
"1831",
"1942",
"1972"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A002375",
"A364166"
]
| null | M. F. Hasler, Jul 12 2023 | 2023-08-02T14:02:22 | oeisdata/seq/A364/A364166.seq | 025df74193c9dc5f1eaca8d19792da50 |
A364167 | Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3). | [
"1",
"2",
"18",
"234",
"3570",
"59586",
"1053570",
"19392490",
"367677090",
"7131417282",
"140834140722",
"2822214963882",
"57243994984722",
"1172991472484610",
"24245748916730658",
"504935751379031082",
"10584721220759172162",
"223163804001804187266",
"4729176407109705542994",
"100676187744957784842090"
]
| [
"nonn",
"easy"
]
| 41 | 0 | 2 | [
"A144097",
"A153231",
"A363311",
"A364167"
]
| null | Seiichi Manyama, Jul 13 2023 | 2023-07-23T07:46:43 | oeisdata/seq/A364/A364167.seq | 07b61225f207f1421955e42bcc6c20e7 |
A364168 | Numbers that can be written in more than one way in the form (j+2k)^2-(j+k)^2-j^2 with j,k>0. | [
"15",
"27",
"32",
"35",
"36",
"39",
"51",
"55",
"60",
"63",
"64",
"75",
"84",
"87",
"91",
"95",
"96",
"99",
"100",
"108",
"111",
"115",
"119",
"123",
"128",
"132",
"135",
"140",
"143",
"144",
"147",
"155",
"156",
"159",
"160",
"171",
"175",
"180",
"183",
"187",
"192",
"195",
"196",
"203",
"204",
"207",
"215",
"219",
"220",
"224",
"228",
"231",
"235",
"240",
"243",
"247",
"252",
"255"
]
| [
"nonn"
]
| 95 | 1 | 1 | [
"A000005",
"A000290",
"A014601",
"A027750",
"A364168"
]
| null | Darío Clavijo, Jul 12 2023 | 2025-06-02T14:45:32 | oeisdata/seq/A364/A364168.seq | ca87ac97b914b12ac0e231030fc62aa9 |
A364169 | Smallest integer m = b*c which satisfies (b + c)*n = m - 1. | [
"6",
"21",
"40",
"105",
"126",
"301",
"204",
"273",
"550",
"1221",
"936",
"697",
"690",
"3165",
"2176",
"4641",
"1242",
"1333",
"4200",
"8841",
"1786",
"3213",
"2508",
"15025",
"9126",
"18981",
"3700",
"6105",
"13950",
"3901",
"3876",
"4161",
"6106",
"5781",
"23976",
"49321",
"8178",
"6765",
"32800",
"67281",
"6930",
"18565",
"7440",
"11001",
"49726",
"8925",
"9072",
"26977"
]
| [
"nonn",
"easy",
"look"
]
| 68 | 1 | 1 | [
"A009112",
"A364169",
"A364171"
]
| null | Jose Aranda, Jul 12 2023 | 2023-10-25T20:21:36 | oeisdata/seq/A364/A364169.seq | 19ee12f9cb1e88293d4da2b02227d6de |
A364170 | Related to expression as an alternating sum of k-th powers. | [
"1",
"3",
"6",
"10",
"26",
"170",
"7226",
"13053770",
"42600227803226",
"453694852221687377444001770",
"51459754733114686962148583993443846186613037940783226",
"662026589298079856793872781777756720070052610825509991367405555066143474558289627235647952526950580741770"
]
| [
"nonn",
"easy"
]
| 14 | 1 | 2 | null | null | Jeffrey Shallit, Jul 12 2023 | 2023-08-02T14:38:11 | oeisdata/seq/A364/A364170.seq | d3ef3acf84dffe75d7658d690f542eea |
A364171 | a(n) = m is the least m = b*c > a(n-1) such that (b+c)*n = m-1 where 1 < b <= c < m. | [
"6",
"21",
"40",
"105",
"126",
"301",
"456",
"657",
"910",
"1221",
"1596",
"2041",
"2562",
"3165",
"3856",
"4641",
"5526",
"6517",
"7620",
"8841",
"10186",
"11661",
"13272",
"15025",
"16926",
"18981",
"21196",
"23577",
"26130",
"28861",
"31776",
"34881",
"38182",
"41685",
"45396",
"49321",
"53466",
"57837",
"62440",
"67281",
"72366",
"77701"
]
| [
"nonn"
]
| 63 | 1 | 1 | [
"A062158",
"A364169",
"A364171",
"A364202"
]
| null | Jose Aranda, Jul 12 2023 | 2023-07-28T15:52:48 | oeisdata/seq/A364/A364171.seq | d18f9845e3a0099e9ca8c5e664d15c3c |
A364172 | a(n) = (6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!). | [
"1",
"45",
"6237",
"1021020",
"178719453",
"32427545670",
"6016814703900",
"1133540594837892",
"215925912619400925",
"41477110789150966020",
"8019784929635201045862",
"1558875476359831844951100",
"304331361887290342345862940",
"59629409730107012112361325820"
]
| [
"nonn",
"easy"
]
| 17 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295437",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364172",
"A364173",
"A364185"
]
| null | Peter Bala, Jul 12 2023 | 2023-07-16T05:50:50 | oeisdata/seq/A364/A364172.seq | a313bee03a011c620d2cbcd435fe2e48 |
A364173 | a(n) = (9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!). | [
"1",
"128",
"43758",
"17039360",
"7012604550",
"2976412336128",
"1288415796384780",
"565399665327996928",
"250622090889055155270",
"111950839825145979207680",
"50312973039218473430585508",
"22723567527558510746926055424",
"10304958075870392958137083227804"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295440",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364172",
"A364173",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:51:09 | oeisdata/seq/A364/A364173.seq | 163fafe25a062a7a1903b20cede8b4ca |
A364174 | a(n) = (9*n)!*(5*n/2)!*(3*n/2)!/((5*n)!*(9*n/2)!*(3*n)!*(n/2)!). | [
"1",
"48",
"4862",
"549120",
"65132550",
"7945986048",
"987291797996",
"124259864002560",
"15789207515217990",
"2021092963752345600",
"260227401685879140612",
"33665720694993527504896",
"4372592850984736084611996",
"569819472537519480058675200",
"74468439316740019538310543000"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295442",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364172",
"A364174",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:51:37 | oeisdata/seq/A364/A364174.seq | 08b3ab4382d983c451fd069864274c1b |
A364175 | a(n) = (6*n)!*(2*n/3)!/((3*n)!*(2*n)!*(5*n/3)!). | [
"1",
"36",
"3564",
"408408",
"49697388",
"6249195036",
"802241960520",
"104466877291260",
"13746018177013356",
"1823169705017624880",
"243331037661693468564",
"32641262295291161362656",
"4396944340992842923469640",
"594371374049863341847620936",
"80586283761263090599592845140"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295445",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364172",
"A364175",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:52:03 | oeisdata/seq/A364/A364175.seq | ce7b54f63687be6346f0ba95ba10fd55 |
A364176 | a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(6*n)!*(5*n)!*n!). | [
"1",
"7168",
"168043980",
"4488240824320",
"126694219977836700",
"3688258943632086663168",
"109504706026534324525391988",
"3295939064766794222800490987520",
"100204869963549181630558779565943580",
"3070025447039504554088467623457608171520",
"94632263448378916462441320194245442445186480"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295456",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364176",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:52:22 | oeisdata/seq/A364/A364176.seq | 74a804d967ff4aaeab0167c07745a0de |
A364177 | a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(5*n)!*(4*n)!*(3*n)!). | [
"1",
"35840",
"5545451340",
"991901222174720",
"188242272043069768860",
"36901030731039027064995840",
"7383354803839076831124554790900",
"1498315221854950975184507333477662720",
"307213802011837003346320048243705086348060"
]
| [
"nonn",
"easy"
]
| 15 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295458",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364177",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:46:23 | oeisdata/seq/A364/A364177.seq | 0c2f8a5cc469122059f90f0214d931cd |
A364178 | a(n) = (10*n)!*(3*n)!*(n/2)!/((6*n)!*(5*n)!*(3*n/2)!*n!). | [
"1",
"168",
"83980",
"48664320",
"29966636700",
"19075222663168",
"12398706131799988",
"8175717823943147520",
"5447952226877283703580",
"3659442300478634742251520",
"2473617870747229982625186480",
"1680586987551894402985233481728",
"1146602219745194113307246953503300"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295470",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364178",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:52:53 | oeisdata/seq/A364/A364178.seq | 4ffe3127fcee97781f748e643ef197f3 |
A364179 | a(n) = (10*n)!*(n/2)!/((5*n)!*(4*n)!*(3*n/2)!). | [
"1",
"840",
"2771340",
"10754814720",
"44524428808860",
"190847602744995840",
"835982760936614190900",
"3716634993696885851422720",
"16702642470437308383606668060",
"75679458912906782280286032887808",
"345116202503279265243707597937393840",
"1581997780375359530321517073184807976960"
]
| [
"nonn",
"easy"
]
| 13 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295471",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364179",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:53:25 | oeisdata/seq/A364/A364179.seq | dae854addba289fc61fb70e8c4237740 |
A364180 | a(n) = (10*n)!*(n/2)!/((5*n)!*(7*n/2)!*(2*n)!). | [
"1",
"1152",
"5542680",
"31473008640",
"190818980609400",
"1198265754978353152",
"7691041400616850556280",
"50107639155283424528302080",
"330014847932376708502470210680",
"2191489080600524699617120065945600",
"14647137653300940580784413641872332680"
]
| [
"nonn",
"easy"
]
| 13 | 0 | 2 | [
"A061164",
"A276100",
"A276101",
"A276102",
"A295431",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364180",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:49:06 | oeisdata/seq/A364/A364180.seq | ea90a4aa411fe7a9a782ede66c06b123 |
A364181 | a(n) = (10*n)!*(3*n/2)!/((5*n)!*(9*n/2)!*(2*n)!). | [
"1",
"384",
"461890",
"638582784",
"935387159850",
"1414457284624384",
"2182519096151533552",
"3414991108739243704320",
"5398397695681095146608490",
"8600772808890306913527398400",
"13787702861800799166026014363140",
"22213518902232966637201617101783040",
"35936545440404705429404600374145350960"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295475",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364181",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:49:26 | oeisdata/seq/A364/A364181.seq | b98132a0d96a4721c96d34a3fbf307bb |
A364182 | a(n) = (12*n)!*(n/2)!/((6*n)!*(4*n)!*(5*n/2)!). | [
"1",
"7392",
"267711444",
"11489451294720",
"527048385075849780",
"25051434899696246587392",
"1217325447549161369383451760",
"60050961586064738516089033457664",
"2994861478939539397101967737771147060",
"150602318360773064327512837557840362078208"
]
| [
"nonn",
"easy"
]
| 17 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295477",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364182",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-18T04:08:46 | oeisdata/seq/A364/A364182.seq | aaeab2ba764c1bbb27f6c671ff42ecb2 |
A364183 | a(n) = (12*n)!*(2*n)!*(n/2)!/((6*n)!*(4*n)!*(7*n/2)!*n!). | [
"1",
"4224",
"76488984",
"1626105446400",
"36856530424884600",
"864687003650148532224",
"20728451893251973782071160",
"504292670666772382512278667264",
"12401082728528113445556802226795640",
"307453669544695584297743425538327838720",
"7671567513095586883562392061857092727662984"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295479",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364183",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:49:52 | oeisdata/seq/A364/A364183.seq | 87bd313c67f1ac59f690db7cb3829795 |
A364184 | a(n) = (12*n)!*(2*n)!*(3*n/2)!/((6*n)!*(9*n/2)!*(4*n)!*n!). | [
"1",
"1408",
"6374082",
"32993443840",
"180669266788650",
"1020694137466257408",
"5882199787281395215344",
"34369110490167819009785856",
"202857467914154836183288657770",
"1206640354461153104738279049134080",
"7221430962039777689508936047385667332"
]
| [
"nonn",
"easy"
]
| 13 | 0 | 2 | [
"A276100",
"A276101",
"A276102",
"A295431",
"A295481",
"A347854",
"A347855",
"A347856",
"A347857",
"A347858",
"A364173",
"A364184",
"A364185"
]
| null | Peter Bala, Jul 13 2023 | 2023-07-16T05:50:12 | oeisdata/seq/A364/A364184.seq | dd5918a5b86bf949bcb75574cfc21914 |
A364185 | Leading digit of 11^n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"7",
"8",
"8",
"9",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"4",
"5",
"6",
"6",
"7",
"8",
"8",
"9",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"4",
"5",
"5",
"6",
"7",
"7",
"8",
"9",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"5",
"5",
"6",
"7",
"7",
"8",
"9",
"1",
"1",
"1",
"1"
]
| [
"nonn",
"base",
"easy"
]
| 17 | 0 | 9 | [
"A000030",
"A001020",
"A008571",
"A008952",
"A060956",
"A111395",
"A362871",
"A363093",
"A363249",
"A364185"
]
| null | Seiichi Manyama, Jul 15 2023 | 2023-07-16T10:35:11 | oeisdata/seq/A364/A364185.seq | 6c7a0d26163425957816261eaf4213ae |
A364186 | Primes p such that p divides 2^((p-1)/x) - 1, where x is the smallest odd prime factor of p - 1. | [
"31",
"43",
"109",
"127",
"157",
"223",
"229",
"251",
"277",
"283",
"307",
"397",
"431",
"433",
"439",
"457",
"499",
"601",
"641",
"643",
"691",
"727",
"733",
"739",
"811",
"911",
"919",
"953",
"971",
"997",
"1013",
"1021",
"1051",
"1069",
"1093",
"1103",
"1163",
"1181",
"1327",
"1399",
"1423",
"1459",
"1471",
"1579",
"1597",
"1627",
"1657",
"1699",
"1709"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A014752",
"A059858",
"A270802",
"A360652",
"A364186"
]
| null | Arkadiusz Wesolowski, Jul 15 2023 | 2023-07-27T12:21:34 | oeisdata/seq/A364/A364186.seq | 513dda2917da2deaeafd1fc9634b5dc4 |
A364187 | The sum of the digits present in a(n) and a(n+1) exactly divides the sum [a(n) + a(n+1)]. This is the lexicographically earliest sequence of distinct positive terms with this property. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"27",
"21",
"15",
"12",
"24",
"30",
"10",
"11",
"13",
"14",
"22",
"20",
"16",
"32",
"28",
"26",
"34",
"38",
"46",
"44",
"40",
"23",
"25",
"29",
"31",
"17",
"19",
"35",
"37",
"47",
"43",
"41",
"49",
"59",
"76",
"50",
"55",
"53",
"52",
"56",
"70",
"60"
]
| [
"base",
"nonn"
]
| 24 | 1 | 2 | [
"A007953",
"A364120",
"A364187",
"A364188"
]
| null | Eric Angelini and M. F. Hasler, Jul 12 2023 | 2023-12-20T08:04:24 | oeisdata/seq/A364/A364187.seq | e4839013410726c8b5f29a4811b8ef16 |
A364188 | The sum of the digits present in a(n) and a(n+1) divides exactly the product of the same digits. This is the lexicographically earliest sequence of distinct positive terms with this property. | [
"1",
"10",
"2",
"13",
"8",
"19",
"5",
"14",
"12",
"3",
"6",
"17",
"20",
"4",
"15",
"9",
"18",
"16",
"7",
"25",
"21",
"30",
"11",
"24",
"28",
"33",
"40",
"22",
"26",
"31",
"23",
"27",
"32",
"34",
"29",
"37",
"38",
"41",
"43",
"35",
"44",
"50",
"36",
"45",
"47",
"46",
"42",
"39",
"48",
"53",
"52",
"49",
"56",
"54",
"60",
"51",
"63",
"57",
"58",
"61",
"65",
"59",
"64",
"55",
"68",
"70",
"62",
"67",
"69",
"66",
"72",
"80",
"71",
"76",
"74",
"73",
"83",
"79",
"84"
]
| [
"nonn"
]
| 19 | 1 | 2 | [
"A007953",
"A364120",
"A364187",
"A364188"
]
| null | Eric Angelini and M. F. Hasler, Jul 12 2023 | 2023-12-20T08:04:15 | oeisdata/seq/A364/A364188.seq | 31047b0da9f3c899d76cb93c63dc0151 |
A364189 | a(n) is the smallest k such that A000005(j) = A000005(j-m) for j = k..k+n-1 for some m > 0. | [
"3",
"7",
"17",
"31",
"71",
"232",
"412",
"1756",
"2759",
"3763",
"4881",
"4881",
"26812",
"125804",
"566658",
"566658",
"1601927",
"1601927",
"18641185",
"42401324",
"131296837",
"136407785"
]
| [
"nonn",
"more"
]
| 63 | 1 | 1 | [
"A000005",
"A364189"
]
| null | Jon E. Schoenfield, Aug 07 2023 | 2023-08-07T14:22:41 | oeisdata/seq/A364/A364189.seq | 163b219f77f974113af970b402946bc8 |
A364190 | The sum of the digits present in a(n) and a(n+1) divides the product [a(n)*a(n+1)]. This is the lexicographically earliest sequence of distinct positive terms with this property. | [
"1",
"10",
"4",
"15",
"3",
"6",
"12",
"9",
"11",
"14",
"2",
"20",
"8",
"26",
"5",
"32",
"21",
"13",
"18",
"16",
"7",
"22",
"25",
"30",
"24",
"28",
"31",
"40",
"33",
"23",
"50",
"41",
"95",
"44",
"38",
"17",
"27",
"19",
"34",
"37",
"66",
"42",
"35",
"48",
"39",
"60",
"36",
"45",
"51",
"29",
"78",
"47",
"138",
"55",
"64",
"105",
"52",
"57",
"43",
"70",
"58",
"46",
"49",
"75",
"63",
"54",
"72",
"65",
"96",
"81",
"84",
"79"
]
| [
"base",
"nonn"
]
| 25 | 1 | 2 | [
"A007953",
"A364120",
"A364187",
"A364188",
"A364190"
]
| null | Eric Angelini, Jul 12 2023 | 2025-03-21T09:57:59 | oeisdata/seq/A364/A364190.seq | 2c619ff603a6f81fafcd1eea3da5821d |
A364191 | Low co-mode in the multiset of prime indices of n. | [
"0",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"2",
"1",
"5",
"2",
"6",
"1",
"2",
"1",
"7",
"1",
"8",
"3",
"2",
"1",
"9",
"2",
"3",
"1",
"2",
"4",
"10",
"1",
"11",
"1",
"2",
"1",
"3",
"1",
"12",
"1",
"2",
"3",
"13",
"1",
"14",
"5",
"3",
"1",
"15",
"2",
"4",
"1",
"2",
"6",
"16",
"1",
"3",
"4",
"2",
"1",
"17",
"2",
"18",
"1",
"4",
"1",
"3",
"1",
"19",
"7",
"2",
"1",
"20",
"2",
"21",
"1",
"2",
"8",
"4",
"1",
"22",
"3",
"2",
"1"
]
| [
"nonn"
]
| 16 | 1 | 3 | [
"A001222",
"A056239",
"A067695",
"A112798",
"A124943",
"A241131",
"A327473",
"A327476",
"A356862",
"A359178",
"A359612",
"A360005",
"A360015",
"A362605",
"A362606",
"A362607",
"A362608",
"A362609",
"A362610",
"A362611",
"A362613",
"A362614",
"A362615",
"A363486",
"A363487",
"A363488",
"A363941",
"A363942",
"A363952",
"A364061",
"A364158",
"A364159",
"A364191",
"A364192"
]
| null | Gus Wiseman, Jul 16 2023 | 2023-10-18T04:50:18 | oeisdata/seq/A364/A364191.seq | c5ced27e209709365fbc7ccc0638cd09 |
A364192 | High (i.e., greatest) co-mode in the multiset of prime indices of n. | [
"0",
"1",
"2",
"1",
"3",
"2",
"4",
"1",
"2",
"3",
"5",
"2",
"6",
"4",
"3",
"1",
"7",
"1",
"8",
"3",
"4",
"5",
"9",
"2",
"3",
"6",
"2",
"4",
"10",
"3",
"11",
"1",
"5",
"7",
"4",
"2",
"12",
"8",
"6",
"3",
"13",
"4",
"14",
"5",
"3",
"9",
"15",
"2",
"4",
"1",
"7",
"6",
"16",
"1",
"5",
"4",
"8",
"10",
"17",
"3",
"18",
"11",
"4",
"1",
"6",
"5",
"19",
"7",
"9",
"4",
"20",
"2",
"21",
"12",
"2",
"8",
"5",
"6",
"22",
"3",
"2"
]
| [
"nonn"
]
| 14 | 1 | 3 | [
"A001222",
"A056239",
"A067695",
"A112798",
"A241131",
"A327473",
"A327476",
"A356862",
"A359178",
"A359612",
"A360005",
"A360015",
"A362605",
"A362606",
"A362607",
"A362608",
"A362609",
"A362610",
"A362611",
"A362612",
"A362613",
"A362614",
"A362615",
"A363486",
"A363487",
"A363740",
"A363941",
"A363942",
"A363952",
"A363953",
"A364061",
"A364062",
"A364158",
"A364159",
"A364191",
"A364192"
]
| null | Gus Wiseman, Jul 16 2023 | 2023-10-18T04:50:42 | oeisdata/seq/A364/A364192.seq | 53752b4258d8ff77631b980b590e4e7c |
A364193 | Number of integer partitions of n where the least part is the unique mode. | [
"0",
"1",
"2",
"2",
"4",
"4",
"7",
"9",
"13",
"17",
"24",
"32",
"43",
"58",
"75",
"97",
"130",
"167",
"212",
"274",
"346",
"438",
"556",
"695",
"865",
"1082",
"1342",
"1655",
"2041",
"2511",
"3067",
"3756",
"4568",
"5548",
"6728",
"8130",
"9799",
"11810",
"14170",
"16980",
"20305",
"24251",
"28876",
"34366",
"40781",
"48342",
"57206",
"67597",
"79703"
]
| [
"nonn"
]
| 7 | 0 | 3 | [
"A000041",
"A002865",
"A008284",
"A070003",
"A098859",
"A102750",
"A171979",
"A237984",
"A240303",
"A327472",
"A356862",
"A359178",
"A360015",
"A362605",
"A362606",
"A362607",
"A362608",
"A362609",
"A362610",
"A362611",
"A362612",
"A362613",
"A362614",
"A362615",
"A362616",
"A363486",
"A363487",
"A363723",
"A363952",
"A363953",
"A364160",
"A364193"
]
| null | Gus Wiseman, Jul 16 2023 | 2023-07-17T17:59:34 | oeisdata/seq/A364/A364193.seq | abc383ee3e1940acfd715d5648bda04b |
A364194 | a(n) = Sum_{k=1..n} k^3*sigma(k), where sigma is A000203. | [
"1",
"25",
"133",
"581",
"1331",
"3923",
"6667",
"14347",
"23824",
"41824",
"57796",
"106180",
"136938",
"202794",
"283794",
"410770",
"499204",
"726652",
"863832",
"1199832",
"1496184",
"1879512",
"2171520",
"3000960",
"3485335",
"4223527",
"5010847",
"6240159",
"6971829",
"8915829",
"9869141",
"11933525",
"13658501"
]
| [
"nonn",
"easy"
]
| 34 | 1 | 2 | [
"A000203",
"A000537",
"A143128",
"A282211",
"A319086",
"A320895",
"A356125",
"A364194",
"A364269"
]
| null | Seiichi Manyama, Oct 20 2023 | 2023-10-22T00:47:05 | oeisdata/seq/A364/A364194.seq | 2e079a87a379ba8566ef1feba0e33743 |
A364195 | Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^2). | [
"1",
"2",
"24",
"412",
"8280",
"181904",
"4232048",
"102479184",
"2555884896",
"65207430848",
"1693785940992",
"44643489969792",
"1190986788639232",
"32097745138518528",
"872595854798515456",
"23900545715576753408",
"658934625866433496576",
"18271554709525993556992",
"509241947434834351042560"
]
| [
"nonn",
"easy"
]
| 11 | 0 | 2 | [
"A217364",
"A349310",
"A363006",
"A363304",
"A363305",
"A363311",
"A364195",
"A364196"
]
| null | Seiichi Manyama, Jul 13 2023 | 2023-07-13T08:36:47 | oeisdata/seq/A364/A364195.seq | ff33ec40a1705c5079d154a5337c5110 |
A364196 | Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^3). | [
"1",
"2",
"26",
"490",
"10850",
"263010",
"6756570",
"180732778",
"4980586114",
"140426468098",
"4031581757786",
"117456808452906",
"3463846465750114",
"103200018840208098",
"3101624265076611482",
"93922235608046966058",
"2862850624269320061954",
"87768126789137804695298",
"2704569471624358219362714"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 2 | [
"A217364",
"A363006",
"A363305",
"A364195",
"A364196"
]
| null | Seiichi Manyama, Jul 13 2023 | 2023-07-13T08:36:51 | oeisdata/seq/A364/A364196.seq | 7242544af09903ec70d2e53965463e8e |
A364197 | a(n+1) = a(|n-a(n)^2|) + 1, a(0) = 0. | [
"0",
"1",
"1",
"2",
"2",
"1",
"3",
"3",
"2",
"3",
"1",
"4",
"2",
"3",
"3",
"2",
"5",
"4",
"2",
"4",
"3",
"5",
"3",
"4",
"4",
"3",
"6",
"2",
"5",
"3",
"4",
"4",
"3",
"5",
"3",
"4",
"5",
"5",
"3",
"4",
"5",
"3",
"4",
"7",
"4",
"6",
"4",
"5",
"4",
"4",
"6",
"4",
"5",
"3",
"5",
"4",
"5",
"5",
"4",
"5",
"4",
"5",
"6",
"7",
"4",
"5",
"6",
"5",
"5",
"8",
"2",
"7",
"4",
"6",
"6",
"4",
"6",
"6",
"4",
"7",
"5",
"5",
"6",
"5",
"5",
"6",
"5",
"6",
"5",
"8",
"4",
"7",
"5",
"6",
"6",
"5",
"3",
"7",
"5",
"7"
]
| [
"nonn"
]
| 30 | 0 | 4 | [
"A002516",
"A003056",
"A004001",
"A005185",
"A281130",
"A330772",
"A339929",
"A340134",
"A340224",
"A364197",
"A364198"
]
| null | Rok Cestnik, Jul 13 2023 | 2023-08-18T23:51:10 | oeisdata/seq/A364/A364197.seq | 517992306efa325d76be41b574f82d96 |
A364198 | Index of first occurrence of n in A364197. | [
"0",
"1",
"3",
"6",
"11",
"16",
"26",
"43",
"69",
"115",
"141",
"158",
"208",
"293",
"358",
"440",
"541",
"642",
"743",
"1117",
"1378",
"1612",
"1826",
"2052",
"2494",
"2856",
"3181",
"3703",
"4107",
"4862",
"5347",
"5924",
"6454",
"7645",
"8322",
"8999",
"9784",
"10941",
"12458",
"13580",
"14542",
"15839",
"16864",
"18309",
"19876",
"21696",
"23311",
"25408",
"28377",
"30314"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A364197",
"A364198"
]
| null | Rok Cestnik, Jul 13 2023 | 2023-07-23T02:08:39 | oeisdata/seq/A364/A364198.seq | afd09e8ac2086d02c519fc7fed10f04a |
A364199 | Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)). | [
"0",
"1",
"1",
"-6",
"-13",
"110",
"363",
"-4214",
"-18581",
"276678",
"1525355",
"-27753022",
"-183611829",
"3948004606",
"30473073547",
"-756031185030",
"-6669149100757",
"187521633674294",
"1860949703300139",
"-58481734930175438",
"-644853406058229365",
"22398157925324204142",
"271672536688626976331",
"-10334883450918076967446"
]
| [
"sign"
]
| 12 | 0 | 4 | [
"A002111",
"A036968",
"A156179",
"A364199"
]
| null | F. Chapoton, Jul 13 2023 | 2023-07-15T05:51:28 | oeisdata/seq/A364/A364199.seq | 59486c5a42f5a8dfeec4c734ab7a8b5d |
A364200 | Minimal number of terms of mixed-sign Egyptian fraction f such that H(n) + f is an integer, where H(n) is the n-th harmonic number. | [
"0",
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"3",
"2",
"2",
"3",
"4",
"3",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"4",
"5",
"5",
"5",
"4",
"5",
"5",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6"
]
| [
"nonn",
"more"
]
| 21 | 1 | 5 | [
"A363937",
"A364200"
]
| null | Denis Ivanov, Jul 13 2023 | 2023-09-22T05:29:58 | oeisdata/seq/A364/A364200.seq | a568e2860ca4e588cc28c5a3284313d3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.