sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A364101
Sum of divisors of 5*n-2 of form 5*k+4.
[ "0", "4", "0", "9", "0", "18", "0", "19", "0", "28", "0", "29", "9", "38", "0", "39", "0", "48", "0", "63", "0", "67", "0", "59", "0", "68", "19", "69", "0", "78", "9", "79", "0", "126", "0", "89", "0", "98", "0", "108", "29", "108", "0", "109", "0", "137", "0", "167", "9", "128", "0", "129", "0", "138", "39", "139", "0", "181", "0", "149", "0", "216", "0", "159", "19", "168", "9", "169", "49", "207", "0", "179", "0", "188", "0", "266", "0", "198", "0" ]
[ "nonn" ]
14
1
2
[ "A284103", "A359269", "A364100", "A364101", "A364102", "A364103", "A364105" ]
null
Seiichi Manyama, Jul 04 2023
2023-07-17T00:59:54
oeisdata/seq/A364/A364101.seq
2d0a3dde90c7f194440f222e4141b5ba
A364102
Sum of divisors of 5*n-3 of form 5*k+4.
[ "0", "0", "4", "0", "0", "9", "4", "0", "14", "0", "4", "19", "0", "0", "37", "0", "0", "29", "4", "0", "34", "0", "18", "48", "0", "0", "48", "0", "0", "49", "23", "0", "63", "0", "4", "59", "14", "0", "92", "0", "0", "78", "4", "0", "74", "0", "33", "79", "0", "19", "111", "0", "0", "89", "38", "0", "94", "0", "4", "108", "0", "0", "171", "0", "14", "109", "4", "0", "142", "0", "48", "119", "0", "0", "128", "29", "0", "138", "67", "0", "134", "0", "4", "139", "0", "0" ]
[ "nonn" ]
14
1
3
[ "A284103", "A359270", "A364100", "A364101", "A364102", "A364103", "A364106" ]
null
Seiichi Manyama, Jul 04 2023
2023-07-17T00:59:51
oeisdata/seq/A364/A364102.seq
8d8ef4f562a26a96e29039894876e8e2
A364103
Sum of divisors of 5*n-4 of form 5*k+4.
[ "0", "0", "0", "4", "0", "0", "0", "13", "0", "0", "0", "18", "0", "0", "0", "23", "9", "0", "0", "28", "0", "0", "0", "33", "0", "23", "0", "38", "0", "0", "0", "43", "0", "0", "28", "48", "0", "0", "0", "67", "0", "0", "0", "91", "0", "0", "0", "63", "0", "0", "0", "68", "38", "33", "0", "73", "0", "0", "0", "78", "0", "43", "0", "83", "0", "0", "0", "126", "0", "0", "48", "93", "19", "0", "0", "98", "0", "0", "0", "156", "0", "43", "0", "108", "0", "0", "0", "113", "58" ]
[ "nonn" ]
15
1
4
[ "A284103", "A359241", "A364100", "A364101", "A364102", "A364103", "A364107" ]
null
Seiichi Manyama, Jul 04 2023
2023-07-17T00:59:47
oeisdata/seq/A364/A364103.seq
54173a7babe7fba9c1a85c92985bb209
A364104
Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k-1)).
[ "1", "2", "3", "4", "6", "6", "7", "8", "10", "10", "13", "12", "14", "14", "15", "16", "21", "18", "19", "22", "22", "22", "27", "24", "26", "26", "27", "28", "37", "30", "34", "32", "34", "34", "41", "36", "38", "40", "39", "40", "49", "46", "43", "44", "49", "46", "57", "48", "50", "50", "51", "52", "68", "54", "55", "58", "58", "58", "72", "60", "66", "62", "63", "70", "79", "66", "67", "68", "70", "70", "83", "72", "77", "76", "82", "76", "96" ]
[ "nonn" ]
18
1
2
[ "A359233", "A363028", "A363155", "A364096", "A364100", "A364104", "A364105", "A364106", "A364107" ]
null
Seiichi Manyama, Jul 05 2023
2023-07-12T01:01:12
oeisdata/seq/A364/A364104.seq
6e2190d9913fa2ad2e0bfaded287abe8
A364105
Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k-1)).
[ "0", "1", "0", "2", "0", "4", "0", "4", "0", "6", "0", "6", "2", "8", "0", "8", "0", "10", "0", "13", "0", "14", "0", "12", "0", "14", "4", "14", "0", "16", "2", "16", "0", "26", "0", "18", "0", "20", "0", "22", "6", "22", "0", "22", "0", "28", "0", "34", "2", "26", "0", "26", "0", "28", "8", "28", "0", "37", "0", "30", "0", "44", "0", "32", "4", "34", "2", "34", "10", "42", "0", "36", "0", "38", "0", "54", "0", "40", "0", "40", "0", "54", "12", "46", "2", "44", "0", "44", "0" ]
[ "nonn" ]
13
1
4
[ "A359269", "A364101", "A364104", "A364105", "A364106", "A364107" ]
null
Seiichi Manyama, Jul 05 2023
2023-07-12T01:01:15
oeisdata/seq/A364/A364105.seq
6dccb7fc1e3fb2f46fa1b1528aa08774
A364106
Expansion of Sum_{k>0} k * x^(3*k) / (1 - x^(5*k-1)).
[ "0", "0", "1", "0", "0", "2", "1", "0", "3", "0", "1", "4", "0", "0", "8", "0", "0", "6", "1", "0", "7", "0", "4", "10", "0", "0", "10", "0", "0", "10", "5", "0", "13", "0", "1", "12", "3", "0", "19", "0", "0", "16", "1", "0", "15", "0", "7", "16", "0", "4", "23", "0", "0", "18", "8", "0", "19", "0", "1", "22", "0", "0", "35", "0", "3", "22", "1", "0", "29", "0", "10", "24", "0", "0", "26", "6", "0", "28", "14", "0", "27", "0", "1", "28", "0", "0", "48", "4", "7", "30", "1", "0" ]
[ "nonn" ]
13
1
6
[ "A359270", "A364102", "A364104", "A364105", "A364106", "A364107" ]
null
Seiichi Manyama, Jul 05 2023
2023-07-12T01:01:19
oeisdata/seq/A364/A364106.seq
d77e42618f47a5d59c50683e1e6d45ba
A364107
Expansion of Sum_{k>0} k * x^(4*k) / (1 - x^(5*k-1)).
[ "0", "0", "0", "1", "0", "0", "0", "3", "0", "0", "0", "4", "0", "0", "0", "5", "2", "0", "0", "6", "0", "0", "0", "7", "0", "5", "0", "8", "0", "0", "0", "9", "0", "0", "6", "10", "0", "0", "0", "14", "0", "0", "0", "19", "0", "0", "0", "13", "0", "0", "0", "14", "8", "7", "0", "15", "0", "0", "0", "16", "0", "9", "0", "17", "0", "0", "0", "26", "0", "0", "10", "19", "4", "0", "0", "20", "0", "0", "0", "32", "0", "9", "0", "22", "0", "0", "0", "23", "12", "0", "0", "33", "0", "0", "0" ]
[ "nonn" ]
13
1
8
[ "A359241", "A364103", "A364104", "A364105", "A364106", "A364107" ]
null
Seiichi Manyama, Jul 05 2023
2023-07-12T01:01:21
oeisdata/seq/A364/A364107.seq
bfdd90f24a41bd835134d7f45eabefb1
A364108
a(n) is the larger coefficient of the pair (x, y) such that (x^2-y^2)/r, 2*x*y/r, (x^2+y^2)/r are the 2 legs and hypotenuse of the least Pythagorean triple having area A006991(n).
[ "5", "2", "16", "325", "8", "4", "4", "50", "24336", "4901", "3", "1600", "9", "777925", "1250", "13", "25", "72", "14561856", "1873180325", "125", "12079525", "39200", "9", "192", "7", "3600", "2816", "26", "169000000", "85", "338", "17956", "1444", "14112", "1445", "44715091781", "50", "8780605285453456", "2725", "10", "37", "716311250", "144", "306317326339867638016" ]
[ "nonn" ]
11
1
1
[ "A006991", "A364108", "A364109", "A364110" ]
null
Michel Marcus, Jul 05 2023
2023-07-05T15:03:52
oeisdata/seq/A364/A364108.seq
4b844bc0f134ac12d981e304c10b5138
A364109
a(n) is the lesser coefficient of the pair (x, y) such that (x^2-y^2)/r, 2*x*y/r, (x^2+y^2)/r are the 2 legs and hypotenuse of the least Pythagorean triple having area A006991(n).
[ "4", "1", "9", "36", "1", "1", "3", "49", "17689", "4900", "2", "81", "8", "1764", "289", "12", "16", "49", "2289169", "1158313156", "44", "10227204", "22801", "4", "169", "2", "121", "2809", "1", "166952241", "36", "49", "169", "75", "529", "76", "3975302500", "1", "7551929273974569", "1764", "1", "12", "19298449", "25", "305111826865145547009", "143811", "14161", "3136", "1", "1" ]
[ "nonn" ]
10
1
1
[ "A006991", "A364108", "A364109", "A364110" ]
null
Michel Marcus, Jul 05 2023
2023-07-05T15:03:56
oeisdata/seq/A364/A364109.seq
bfbe7e38c04b09c520cb0556de3e1b38
A364110
a(n) = sqrt((x^2 - y^2)*x*y/c) where x is A364108(n), y is A364109(n) and c is A006991(n).
[ "6", "1", "60", "9690", "6", "2", "2", "105", "72306780", "90090", "1", "103320", "6", "4737551070", "118575", "10", "60", "462", "12111037689240", "297855654284978790", "1170", "9147755349330", "121068780", "6", "1976", "3", "281820", "63600", "15", "495683115837000", "462", "4641", "3353350", "49210", "3974124", "49062", "59085715926389725950", "35" ]
[ "nonn" ]
9
1
1
[ "A006991", "A364108", "A364109", "A364110" ]
null
Michel Marcus, Jul 05 2023
2023-07-05T15:04:00
oeisdata/seq/A364/A364110.seq
e0f9f5be81cdc24213d834fb95d0bcfc
A364111
a(n) = Sum_{k = 0..n} binomial(n+k-1,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k).
[ "1", "4", "76", "2560", "106060", "4864504", "237354880", "12079462560", "633885607500", "34050190896040", "1863047125801576", "103465470769890112", "5817117095161011328", "330450303019252600240", "18937657945720403830240", "1093557503049551583194560", "63566414131528881235953228", "3716526456851323626808570632" ]
[ "nonn", "easy" ]
16
0
2
[ "A002895", "A362676", "A364111" ]
null
Peter Bala, Jul 07 2023
2023-07-13T04:10:26
oeisdata/seq/A364/A364111.seq
f357000712b09c665feac814573b06ec
A364112
Expansion of e.g.f. 3*x/(exp(-3*x)+exp(-x)+exp(x)).
[ "0", "1", "2", "-5", "-28", "85", "806", "-3185", "-41656", "207913", "3428810", "-20824925", "-413027284", "2961364861", "68560259054", "-567040692425", "-15005357203312", "140642298254929", "4187120881320338", "-43861384856264885", "-1450918780756640140", "16798626454194814117", "611263061851828001462", "-7751163512199032905505" ]
[ "sign" ]
23
0
3
[ "A002111", "A083007", "A158073", "A364112" ]
null
F. Chapoton, Jul 13 2023
2025-06-02T15:26:54
oeisdata/seq/A364/A364112.seq
9882913d601ce773d7f5b2e8a887b901
A364113
Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n for n, k >= 0.
[ "1", "1", "1", "1", "3", "1", "1", "5", "19", "1", "1", "7", "73", "147", "1", "1", "9", "163", "1445", "1251", "1", "1", "11", "289", "5623", "33001", "11253", "1", "1", "13", "451", "14409", "235251", "819005", "104959", "1", "1", "15", "649", "29531", "908001", "11009257", "21460825", "1004307", "1", "1", "17", "883", "52717", "2511251", "65898009", "554159719", "584307365", "9793891", "1" ]
[ "nonn", "tabl", "easy" ]
17
0
5
[ "A005258", "A005259", "A108625", "A143007", "A364113", "A364114", "A364115", "A364116", "A364117", "A364298" ]
null
Peter Bala, Jul 07 2023
2023-07-22T21:19:56
oeisdata/seq/A364/A364113.seq
47a217060044ce908051743c066433ec
A364114
a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^3 for n >= 0.
[ "1", "7", "163", "5623", "235251", "11009257", "554159719", "29359663991", "1615702377331", "91558286583757", "5310712888211413", "313940484249068761", "18853030977961798359", "1147317139889540758509", "70618205829113737707663", "4389482803713232076789623", "275190242843266217113413491" ]
[ "nonn", "easy" ]
12
0
2
[ "A005258", "A005259", "A364113", "A364114", "A364115", "A364116" ]
null
Peter Bala, Jul 07 2023
2023-07-12T11:04:00
oeisdata/seq/A364/A364114.seq
eb542e1b0eb02a92bba72bf0da94a6b3
A364115
a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^4 for n >= 0.
[ "1", "9", "289", "14409", "908001", "65898009", "5246665201", "445752724041", "39731504675041", "3674479246416009", "349918540195094289", "34125049533650776281", "3394306634561379583281", "343284252364774351717641", "35215197976859176290014289", "3657148830889736882170190409" ]
[ "nonn", "easy" ]
12
0
2
[ "A005258", "A005259", "A364113", "A364114", "A364115", "A364116" ]
null
Peter Bala, Jul 08 2023
2023-07-12T11:03:39
oeisdata/seq/A364/A364115.seq
c897991f404b5ec0f53a55a4fad18689
A364116
a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^n for n >= 0.
[ "1", "3", "73", "5623", "908001", "251831261", "106898093065", "64439674636863", "52344140654486017", "55113399257643294769", "73004404532578627776801", "118810038754810358401521065", "233027150139808176596750408337", "542098915811219991386976197616441" ]
[ "nonn", "easy" ]
16
0
2
[ "A005258", "A005259", "A108625", "A143007", "A364113", "A364114", "A364115", "A364116", "A364117", "A364301" ]
null
Peter Bala, Jul 08 2023
2023-07-22T21:18:59
oeisdata/seq/A364/A364116.seq
86d92a6471e08478700db6da92fb1d8e
A364117
a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^(n+1) for n >= 0.
[ "1", "5", "163", "14409", "2511251", "730485013", "320259339415", "197591579213969", "163325387776051459", "174310058440646865021", "233402385203650889753429", "383208210107883180333696265", "757120215942256247847040802463", "1772210276849283299764079883683173" ]
[ "nonn", "easy" ]
8
0
2
[ "A364113", "A364116", "A364117" ]
null
Peter Bala, Jul 08 2023
2023-07-12T11:04:12
oeisdata/seq/A364/A364117.seq
9979a3a602fade523918468717c575d1
A364118
a(n) = 3*A364114(n) - 11*A364114(n-1).
[ "10", "412", "15076", "643900", "30440010", "1541377330", "81983235064", "4524150828092", "256902133600630", "14924997512212912", "883403610976880740", "53105747607145638706", "3234568078911042493578", "199234128948556264779390", "12391648147019445115584576", "777286417688953098495554620" ]
[ "nonn", "easy" ]
10
1
1
[ "A212334", "A357506", "A357507", "A357568", "A364114", "A364118", "A364119" ]
null
Peter Bala, Jul 12 2023
2023-07-12T11:03:49
oeisdata/seq/A364/A364118.seq
724b7badd983716dad9903f0b62ecea5
A364119
a(n) = 7*A364115(n) - 17*A364115(n-1).
[ "46", "1870", "95950", "6111054", "445850046", "35606390254", "3031075759870", "270542736416590", "25045919145436366", "2386963634176587870", "232926731552238831054", "23180020599857593886190", "2345286553765877009107710", "240670553547813070050900126", "25001383450621552178261089950" ]
[ "nonn", "easy" ]
6
1
1
[ "A212334", "A357506", "A357507", "A357568", "A364115", "A364118", "A364119" ]
null
Peter Bala, Jul 12 2023
2023-07-12T11:04:22
oeisdata/seq/A364/A364119.seq
6ea3f9afec718cf942b1b4a9f39708b8
A364120
Digitsum of a(n) + digitsum of a(n+1) divides a(n+2). This is the lexicographically earliest sequence of distinct positive terms with this property.
[ "1", "2", "3", "5", "8", "13", "12", "7", "10", "16", "24", "26", "14", "39", "17", "20", "30", "15", "9", "45", "18", "36", "54", "72", "90", "108", "126", "144", "162", "180", "198", "27", "81", "216", "234", "252", "270", "288", "135", "189", "243", "297", "324", "351", "306", "342", "360", "378", "405", "432", "396", "459", "468", "504", "486", "513", "540", "414", "450", "522", "558", "567", "576", "612", "594", "621", "648", "675", "684" ]
[ "base", "nonn" ]
29
1
2
[ "A007953", "A364120", "A364187", "A364188" ]
null
Eric Angelini and M. F. Hasler, Jul 12 2023
2023-12-20T08:04:20
oeisdata/seq/A364/A364120.seq
819fad9a3dd72bd9246fc379293394ff
A364121
Stolarsky representation of n.
[ "0", "1", "11", "10", "111", "101", "110", "1111", "100", "1011", "1101", "1110", "11111", "1010", "1001", "10111", "1100", "11011", "11101", "11110", "111111", "1000", "10101", "10011", "10110", "101111", "11010", "11001", "110111", "11100", "111011", "111101", "111110", "1111111", "10100", "10001", "101011", "10010", "100111", "101101" ]
[ "nonn", "base" ]
10
1
3
[ "A001622", "A007064", "A007088", "A043562", "A055641", "A055642", "A200648", "A200649", "A200650", "A200651", "A200714", "A268643", "A364121" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:41:43
oeisdata/seq/A364/A364121.seq
ee9730da8289ca30c55da0be91828a33
A364122
Numbers whose Stolarsky representation (A364121) is palindromic.
[ "1", "2", "3", "5", "6", "8", "13", "15", "18", "21", "23", "34", "36", "40", "45", "50", "55", "66", "71", "89", "91", "95", "108", "113", "120", "128", "136", "144", "159", "176", "196", "204", "233", "235", "239", "261", "273", "286", "291", "298", "319", "327", "338", "351", "364", "377", "400", "426", "464", "490", "518", "550", "563", "610", "612", "616", "654", "667" ]
[ "nonn", "base" ]
8
1
2
[ "A000045", "A002113", "A006995", "A014190", "A094202", "A200648", "A200649", "A200650", "A200651", "A200714", "A331191", "A351712", "A351717", "A352087", "A352105", "A352319", "A352341", "A364121", "A364122" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:41:57
oeisdata/seq/A364/A364122.seq
de957d3fc0994c51b54a175a632b64e9
A364123
Stolarsky-Niven numbers: numbers that are divisible by the number of 1's in their Stolarsky representation (A364121).
[ "2", "4", "6", "8", "9", "12", "14", "16", "20", "22", "24", "27", "30", "36", "38", "40", "42", "44", "48", "54", "56", "57", "60", "65", "69", "72", "75", "80", "84", "85", "90", "92", "96", "98", "100", "102", "104", "108", "112", "116", "120", "124", "126", "132", "136", "138", "145", "147", "150", "153", "155", "159", "160", "175", "180", "185", "190", "195", "196", "205" ]
[ "nonn", "base" ]
7
1
1
[ "A005349", "A047263", "A049445", "A064150", "A064438", "A064481", "A118363", "A200649", "A328208", "A328212", "A331085", "A331728", "A333426", "A334308", "A342426", "A342726", "A344341", "A351714", "A351719", "A352089", "A352107", "A352320", "A352342", "A352508", "A364121", "A364123", "A364124", "A364125", "A364126" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:42:18
oeisdata/seq/A364/A364123.seq
e43cb5015066c1f22ef4bb8e62853777
A364124
Numbers k such that k and k+1 are both Stolarsky-Niven numbers (A364123).
[ "8", "56", "84", "159", "195", "224", "384", "399", "405", "995", "1140", "1224", "1245", "1295", "1309", "1419", "1420", "1455", "1474", "1507", "2585", "2597", "2600", "2680", "2681", "2727", "2744", "2750", "2799", "2855", "3122", "3311", "3339", "3345", "3618", "3707", "3795", "4004", "6770", "6774", "6984", "6985", "7014", "7074", "7154", "7405" ]
[ "nonn", "base" ]
7
1
1
[ "A328205", "A328209", "A328213", "A330927", "A330931", "A331086", "A331820", "A333427", "A334309", "A342427", "A344342", "A351715", "A351720", "A352090", "A352108", "A352321", "A352343", "A352509", "A364123", "A364124", "A364125", "A364126" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:42:30
oeisdata/seq/A364/A364124.seq
753713326426a71f8bc8f01cad9b8d3e
A364125
Starts of runs of 3 consecutive integers that are Stolarsky-Niven numbers (A364123).
[ "1419", "2680", "6984", "18765", "20383", "28390", "48697", "55560", "69056", "121913", "125340", "125341", "125739", "133614", "135189", "136409", "140789", "147563", "150138", "155518", "157068", "171819", "317933", "318188", "319395", "323685", "339723", "340846", "349326", "356290", "371041", "389010", "392903", "393809", "400608" ]
[ "nonn", "base" ]
8
1
1
[ "A154701", "A328206", "A328210", "A328214", "A330932", "A331087", "A331822", "A333428", "A334310", "A342428", "A344343", "A351716", "A351721", "A352091", "A352109", "A352322", "A352344", "A352510", "A364123", "A364124", "A364125", "A364126" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:42:42
oeisdata/seq/A364/A364125.seq
86325e4f2e2e17cc2dcf25bb48d196b9
A364126
Starts of runs of 4 consecutive integers that are Stolarsky-Niven numbers (A364123).
[ "125340", "945591", "14998632", "16160505", "19304934", "42053801", "42064137", "46049955", "57180537", "103562368", "108489885", "122495982", "135562299", "139343337", "147991452", "164002374", "271566942", "296019657", "301748706", "310980030", "314537247", "316725570", "333478935", "336959907", "349815255" ]
[ "nonn", "base" ]
8
1
1
[ "A141769", "A328207", "A328211", "A328215", "A330933", "A331824", "A334311", "A342429", "A344344", "A352092", "A352110", "A352345", "A352511", "A364123", "A364124", "A364125", "A364126" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:42:54
oeisdata/seq/A364/A364126.seq
9bf4161fd233ea66864fb67f0ce42b4a
A364127
The number of trailing 0's in the Stolarsky representation of n (A364121).
[ "0", "0", "1", "0", "0", "1", "0", "2", "0", "0", "1", "0", "1", "0", "0", "2", "0", "0", "1", "0", "3", "0", "0", "1", "0", "1", "0", "0", "2", "0", "0", "1", "0", "2", "0", "0", "1", "0", "0", "1", "0", "3", "0", "0", "1", "0", "1", "0", "0", "2", "0", "0", "1", "0", "4", "0", "0", "1", "0", "0", "1", "0", "2", "0", "0", "1", "0", "2", "0", "0", "1", "0", "0", "1", "0", "3", "0", "0", "1", "0", "1", "0", "0", "2", "0", "0", "1" ]
[ "nonn", "base" ]
8
2
8
[ "A001622", "A055588", "A094214", "A122840", "A364121", "A364127" ]
null
Amiram Eldar, Jul 07 2023
2023-07-07T05:43:06
oeisdata/seq/A364/A364127.seq
0fd5f2fe9a45568e5e7fb83d09104b24
A364128
Decimal expansion of a constant related to A053529 and A179973.
[ "4", "4", "3", "2", "3", "8", "9", "5", "4", "7", "3", "0", "9", "2", "8", "5", "0", "9", "4", "0", "7", "7", "7", "5", "1", "2", "0", "7", "2", "8", "3", "3", "1", "8", "5", "1", "5", "0", "2", "0", "7", "2", "1", "9", "2", "4", "3", "9", "1", "5", "3", "0", "8", "7", "0", "7", "7", "6", "2", "9", "2", "8", "7", "8", "5", "3", "4", "5", "9", "1", "5", "9", "1", "4", "4", "7", "8", "7", "3", "5", "9", "3", "2", "5", "5", "7", "6", "1", "1", "6", "9", "2", "9", "1", "3", "8", "2", "8", "7", "1", "6", "4", "8", "5", "8", "8" ]
[ "nonn", "cons", "base" ]
22
0
1
[ "A004086", "A025016", "A053529", "A055642", "A179973", "A364128" ]
null
Alois P. Heinz, Jul 09 2023
2023-07-10T21:48:40
oeisdata/seq/A364/A364128.seq
d4a3e71aa7d98f8dc6c5dcefb130ff7a
A364129
Order of Aut^3(C_n) = Aut(Aut(Aut(C_n))), where C_n is the cyclic group of order n.
[ "1", "1", "1", "1", "1", "1", "1", "6", "1", "1", "2", "6", "6", "1", "8", "8", "8", "1", "2", "8", "12", "2", "4", "336", "8", "6", "2", "12", "12", "8", "8", "64", "24", "8", "64", "12", "12", "2", "64", "1152", "192", "12", "12", "24", "64", "4", "10", "1152", "12", "8", "768", "64", "16", "2", "128", "336", "24", "12", "12", "1152", "192", "8", "576", "768", "768", "24", "24", "768", "48", "64", "16", "336", "336", "12", "128", "24", "192", "64", "16", "6144" ]
[ "nonn", "hard" ]
41
1
8
[ "A000010", "A258615", "A364129", "A364917", "A364944" ]
null
Jianing Song, Aug 13 2023
2023-08-18T08:25:57
oeisdata/seq/A364/A364129.seq
cf1a55df2fee059bc7a1f6261d8cb078
A364130
An infinite 2d grid is filled with the positive integers by placing them clockwise in the narrow von Neumann's neighborhood of square s, the lowest number with open neighbors. a(n) is then the n-th term when the grid is read as a clockwise square spiral.
[ "1", "2", "8", "3", "15", "4", "22", "5", "10", "37", "6", "31", "32", "9", "12", "84", "85", "16", "18", "154", "155", "23", "26", "11", "38", "58", "57", "7", "50", "51", "52", "33", "64", "13", "96", "97", "98", "86", "17", "19", "172", "173", "174", "156", "24", "27", "73", "39", "59", "431", "430", "429", "43", "386", "387", "388", "389", "53", "34", "65", "14", "123", "124" ]
[ "nonn", "easy" ]
26
1
2
[ "A090915", "A174344", "A217010", "A268038", "A337822", "A361207", "A364130" ]
null
John Tyler Rascoe, Jul 09 2023
2023-11-17T21:37:41
oeisdata/seq/A364/A364130.seq
a410e49632e7022e5ad5d7aa9f154e14
A364131
Numbers k for which A348717(k) is a multiple of A348717(sigma(k)).
[ "1", "2", "4", "9", "16", "25", "64", "81", "289", "324", "400", "484", "729", "1681", "2401", "3481", "4096", "5041", "7921", "10201", "15625", "17161", "27889", "28561", "29929", "39204", "65536", "83521", "85849", "146689", "262144", "279841", "458329", "491401", "531441", "552049", "579121", "597529", "683929", "703921", "707281", "734449", "829921", "1190281", "1203409", "1352569", "1394761", "1423249", "1481089" ]
[ "nonn" ]
34
1
2
[ "A000203", "A008848", "A023194", "A348717", "A350072", "A364131" ]
null
Antti Karttunen, Jul 11 2023
2023-07-15T21:59:55
oeisdata/seq/A364/A364131.seq
a50ddb63e447e65606a79aba4da568c6
A364132
a(n) is the smallest positive integer such that from the set {1, 2, ..., a(n)} one can choose an increasing sequence (s(1), s(2), ..., s(n)) in which every segment has a unique sum of elements.
[ "1", "2", "4", "5", "7", "10", "12", "13", "15", "18", "21", "24", "25", "29", "30", "33", "36", "38", "41", "47", "50", "52" ]
[ "nonn", "hard", "more" ]
23
1
2
[ "A276661", "A363446", "A364132", "A364153" ]
null
Bartlomiej Pawlik, Jul 10 2023
2023-08-06T08:18:48
oeisdata/seq/A364/A364132.seq
0ba890b334a52b925ecd19633749ac86
A364133
Index k of A007814(A000127(k)) at record terms.
[ "1", "2", "3", "4", "5", "10", "1034", "1619", "19940", "151012", "185354", "937444", "17714660", "30594058", "53467077", "401540691", "1127208901", "34761279059", "1529978475530", "12645510928325" ]
[ "nonn", "more" ]
35
0
2
[ "A000127", "A007814", "A364133" ]
null
Nicolas Bělohoubek, Jul 10 2023
2023-09-03T10:30:29
oeisdata/seq/A364/A364133.seq
fc1198f8380f2ed4fb98fa7de0333f5d
A364134
Number of tilings of a (k*(3k-1)/2, k*(3k+1)/2)-benzel by bones.
[ "1", "2", "42705", "7501790059160666750" ]
[ "nonn", "more" ]
91
1
2
null
null
James Propp, Jul 22 2023
2023-07-23T08:49:42
oeisdata/seq/A364/A364134.seq
d6a63e231335b4bb63c6271257b79e7f
A364135
Let d_r d_{r-1} ... d_1 d_0 be the decimal expansion of n; a(n) is the number of nonnegative integer solutions x_r ... x_0 to the Diophantine equation d_r*x_r + ... + d_0*x_0 = n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "12", "7", "5", "4", "4", "3", "3", "3", "3", "1", "11", "12", "4", "7", "3", "5", "2", "4", "2", "1", "11", "6", "12", "3", "3", "7", "2", "2", "5", "1", "11", "11", "4", "12", "3", "4", "2", "7", "2", "1", "11", "6", "4", "3", "12", "2", "2", "2", "2", "1", "11", "11", "11", "6", "3", "12", "2", "3", "4", "1", "11", "6", "4", "3", "3", "2", "12", "2", "2", "1", "11", "11" ]
[ "base", "look", "nonn" ]
51
1
11
[ "A007954", "A034838", "A052423", "A055642", "A364135" ]
null
Ctibor O. Zizka, Jul 10 2023
2024-02-17T12:38:57
oeisdata/seq/A364/A364135.seq
dad14108d2739d0238c4525bf548fd5e
A364136
a(n) is the number of distinct products of nonempty submultisets of the digits of n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "3", "3", "2", "2", "3", "2", "3", "3", "3", "3", "3", "3", "2", "2", "3", "3", "2", "3", "3", "3", "3", "3", "2", "2", "3", "3", "3", "2", "3", "3", "3", "3", "2", "2", "3", "3", "3", "3", "2", "3", "3", "3", "2", "2", "3", "3", "3", "3", "3", "2", "3", "3", "2", "2", "3", "3", "3", "3", "3", "3", "2", "3", "2" ]
[ "base", "nonn" ]
16
0
11
[ "A000005", "A007954", "A051801", "A055642", "A360391", "A364136" ]
null
Ctibor O. Zizka, Jul 10 2023
2024-03-09T11:17:26
oeisdata/seq/A364/A364136.seq
eac029acb09aee46896e4da5e95e27b7
A364137
a(1) = 1; for n > 1, a(n) is the smallest positive number such that the sum of all terms a(1) + ... + a(n) has the same number of distinct prime factors as the product of all terms a(1) * ... * a(n).
[ "1", "2", "1", "1", "2", "1", "1", "2", "2", "4", "2", "3", "2", "2", "2", "6", "1", "1", "2", "1", "1", "4", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "1", "4", "1", "2", "3", "1", "3", "2", "1", "1", "1", "3", "2", "3", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "4", "2", "2", "3", "1", "3", "1", "1", "1", "1", "3", "1", "1", "9", "1", "1", "1", "6", "1", "1", "1", "1", "1", "1", "4", "1", "2", "3", "1", "1", "1", "1", "2", "2", "6", "3", "1", "1", "1", "6", "1" ]
[ "nonn" ]
16
1
2
[ "A001221", "A027748", "A364137", "A364138", "A364262" ]
null
Scott R. Shannon, Jul 10 2023
2023-07-18T17:16:19
oeisdata/seq/A364/A364137.seq
033e493b4d6a028276cbeafd1d5cb947
A364138
a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the sum of all terms a(1) + ... + a(n) has the same number of distinct prime factors as the product of all terms a(1) * ... * a(n).
[ "1", "2", "3", "4", "8", "6", "9", "12", "15", "10", "20", "24", "16", "40", "25", "27", "18", "30", "36", "48", "45", "21", "42", "84", "144", "80", "28", "60", "72", "90", "120", "50", "64", "126", "150", "108", "147", "35", "70", "105", "7", "98", "162", "180", "168", "96", "54", "100", "200", "75", "63", "32", "160", "240", "140", "220", "300", "330", "210", "630", "810", "360", "960", "264", "336", "420", "672" ]
[ "nonn" ]
12
1
2
[ "A001221", "A027748", "A364137", "A364138", "A364262" ]
null
Scott R. Shannon, Jul 10 2023
2023-07-18T17:16:24
oeisdata/seq/A364/A364138.seq
97531537fcd462daa6f618f32ea413ab
A364139
a(1) = 1; for n > 1, a(n) is the smallest positive number such that the sum of all terms a(1) + ... + a(n) has the same number of prime factors, counted with multiplicity, as the product of all terms a(1) * ... * a(n).
[ "1", "2", "3", "2", "73", "15", "8096", "36661237", "6155", "92464579", "113213", "2195269558", "5412938", "656672315917", "27764211", "296739271898493", "1339787907", "4052257753377273867", "1371296237557", "68893436230026358982", "12176387510074", "35378806473679275300836", "4512548469598236", "28260736731720477851055640182" ]
[ "nonn" ]
26
1
2
[ "A001222", "A027746", "A364137", "A364139", "A364140" ]
null
Scott R. Shannon, Jul 10 2023
2024-01-08T09:03:48
oeisdata/seq/A364/A364139.seq
c80faf7fbeab214de61610eacc0b803e
A364140
a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the sum of all terms a(1) + ... + a(n) has the same number of prime factors, counted with multiplicity, as the product of all terms a(1) * ... * a(n).
[ "1", "2", "3", "10", "227", "77", "16064", "33464399", "8113", "3195015179", "61429", "90914613323", "71605", "2447722577897", "50167831", "66088461368723", "515670637", "33285732506297618", "94923365102", "101280524367151708435", "8787480069869", "13576059753826090424581" ]
[ "nonn", "more" ]
19
1
2
[ "A001222", "A027746", "A364138", "A364139", "A364140" ]
null
Scott R. Shannon, Jul 10 2023
2023-07-21T17:27:21
oeisdata/seq/A364/A364140.seq
8a7c81c9702653c6ded0f40d436ed5c3
A364141
Products k of 4 distinct primes (or tetraprimes) such that k has no squarefree neighbors.
[ "3774", "5565", "6726", "8151", "10659", "10934", "11726", "11935", "12426", "13035", "13195", "13674", "13755", "14763", "15042", "15249", "15351", "15785", "16215", "16226", "17630", "17765", "17974", "17985", "18249", "18278", "18915", "18998", "19565", "20085", "21385", "21574", "21855", "22015", "23023", "23345", "23374", "23426", "24038", "24605", "25185" ]
[ "nonn" ]
14
1
1
[ "A013929", "A046386", "A364141" ]
null
Massimo Kofler, Jul 10 2023
2023-08-05T22:37:16
oeisdata/seq/A364/A364141.seq
3fd860b5992c0016a743bf72ed55b7fe
A364142
Sophie Germain primes p such that both p and the corresponding safe prime 2*p+1 have distinct digits.
[ "2", "3", "23", "29", "41", "53", "83", "89", "173", "179", "239", "251", "281", "293", "359", "419", "431", "491", "641", "653", "683", "719", "743", "761", "953", "1289", "1409", "1439", "1583", "1973", "2039", "2063", "2069", "2351", "2543", "2693", "2741", "2819", "2903", "2963", "3491", "3761", "3821", "4019", "4073", "4271", "4793", "4871", "5231", "6173", "6329", "6491", "6983", "7043", "7103" ]
[ "nonn", "base", "fini", "full" ]
11
1
1
[ "A005384", "A005385", "A010784", "A364142" ]
null
Zak Seidov and Robert Israel, Jul 10 2023
2023-08-02T13:47:29
oeisdata/seq/A364/A364142.seq
6c16159f513e60739cf9b91f96063f26
A364143
a(n) is the minimal number of consecutive squares needed to sum to A216446(n).
[ "2", "5", "3", "2", "2", "3", "10", "2", "7", "9", "12", "11", "6", "11", "14", "3", "11", "29", "14", "7", "23", "4", "49", "8", "24", "5", "17", "12", "38", "46", "27", "34", "6", "14", "22", "66", "11", "66", "14", "11", "6", "77", "36", "63", "96", "11", "50", "3", "19", "96", "52", "41", "66", "33", "11", "3", "14", "121", "66", "89", "34", "127", "51", "2", "86", "54", "181", "48", "8" ]
[ "nonn", "base" ]
27
1
1
[ "A034705", "A180436", "A216446", "A267600", "A364143" ]
null
Darío Clavijo, Jul 10 2023
2023-08-08T18:04:30
oeisdata/seq/A364/A364143.seq
252bd46a9b45856984e05ce04fa13d3d
A364144
Number of distinct representations for n in base 2, using digits -1,0,1, whose sum of digits is 0.
[ "1", "1", "1", "2", "1", "2", "2", "3", "1", "3", "2", "4", "2", "4", "3", "4", "1", "3", "3", "5", "2", "6", "4", "6", "2", "5", "4", "7", "3", "6", "4", "5", "1", "3", "3", "6", "3", "7", "5", "8", "2", "7", "6", "10", "4", "10", "6", "8", "2", "6", "5", "9", "4", "10", "7", "10", "3", "8", "6", "10", "4", "8", "5", "6", "1", "3", "3", "6", "3", "8", "6", "9", "3", "8", "7", "13", "5", "12", "8", "11", "2", "8", "7", "13", "6" ]
[ "nonn", "base" ]
19
0
4
[ "A028310", "A052955", "A364144" ]
null
Jeffrey Shallit, Jul 10 2023
2023-07-13T12:59:44
oeisdata/seq/A364/A364144.seq
4730c0b5d5d9f331137feb492776e9fa
A364145
a(n) is the sum of the first 2*n nonzero n-bonacci numbers.
[ "0", "2", "7", "28", "116", "480", "1968", "8000", "32320", "130048", "521984", "2092032", "8377344", "33529856", "134164480", "536756224", "2147237888", "8589410304", "34358624256", "137436594176", "549750833152", "2199012769792", "8796071002112", "35184325951488", "140737391886336", "562949752094720" ]
[ "nonn", "easy" ]
17
0
2
[ "A000045", "A000073", "A000078", "A092921", "A144406", "A364145" ]
null
Muhammad Adam Dombrowski and Greg Dresden, Jul 10 2023
2023-08-02T13:51:43
oeisdata/seq/A364/A364145.seq
918782d2fd45cffcaf43735a2ac0f690
A364146
Numbers k such that k! belongs to A038040.
[ "0", "1", "3", "4", "5", "6", "10", "11", "12", "13", "14", "15", "16", "17", "21", "22", "25", "26", "28", "29", "31", "32", "35", "36", "37", "38", "39", "40", "41", "49", "50", "52", "53", "54", "55", "57", "58", "59", "64", "66", "67", "70", "71", "76", "77", "78", "79", "80", "81", "82", "83", "85", "90", "91", "92", "95", "96", "97", "98", "99", "101", "103", "106", "108", "115", "121", "122", "123", "124", "125", "126", "127" ]
[ "nonn" ]
13
1
3
[ "A000005", "A000142", "A036438", "A038040", "A364146" ]
null
Max Alekseyev, Jul 10 2023
2023-07-11T11:35:49
oeisdata/seq/A364/A364146.seq
f9d387a2b181ff794978b312614c5eb7
A364147
Prime numbers that are the exact average of five consecutive odd semiprimes.
[ "101", "677", "743", "811", "907", "1039", "1109", "1129", "1301", "1373", "1381", "1567", "1789", "1931", "1949", "1979", "2029", "2447", "2621", "2663", "2731", "2879", "2909", "2971", "3119", "3187", "3221", "3319", "3529", "3631", "3677", "3803", "3823", "3943", "4201", "4253", "4549", "4597", "4637", "4643", "4649", "4801", "4951", "5119", "5189", "5431", "5987", "6053", "6151", "6311" ]
[ "nonn" ]
12
1
1
[ "A000040", "A046315", "A363074", "A363187", "A363188", "A364147", "A364148", "A364149" ]
null
Elmo R. Oliveira, Jul 10 2023
2023-08-12T00:43:34
oeisdata/seq/A364/A364147.seq
a1bfbe42ae25c86f399c5e4850b65f3a
A364148
Prime numbers that are the exact average of six consecutive odd semiprimes.
[ "23", "79", "109", "491", "599", "797", "809", "853", "953", "1021", "1171", "1289", "1361", "1531", "1543", "1559", "1811", "1951", "1987", "2143", "2179", "2239", "2273", "2309", "2381", "2399", "3169", "3271", "3343", "3371", "3433", "3613", "3701", "4051", "4157", "4297", "4327", "4357", "4457", "4603", "4789", "4871", "5227", "5233", "5443", "5479", "5623", "5711", "5737", "5927", "6073" ]
[ "nonn" ]
8
1
1
[ "A000040", "A046315", "A363074", "A363187", "A363188", "A364147", "A364148", "A364149" ]
null
Elmo R. Oliveira, Jul 10 2023
2023-08-08T19:09:18
oeisdata/seq/A364/A364148.seq
71db458ae63e6930b0de537e21c54c49
A364149
Prime numbers that are the exact average of seven consecutive odd semiprimes.
[ "31", "41", "617", "677", "937", "947", "1637", "1931", "1979", "2221", "2341", "2447", "2647", "2857", "3373", "3583", "3673", "3823", "3967", "4027", "4049", "4229", "4259", "4339", "4421", "4649", "4861", "4931", "5051", "5179", "5399", "5407", "5507", "5521", "5573", "5987", "6047", "6131", "6143", "6311", "6337", "6703", "6737", "7417", "7717", "7723", "7901", "8059", "8069", "8231", "8647" ]
[ "nonn" ]
8
1
1
[ "A000040", "A046315", "A363074", "A363187", "A363188", "A364147", "A364148", "A364149" ]
null
Elmo R. Oliveira, Jul 10 2023
2023-08-08T19:09:38
oeisdata/seq/A364/A364149.seq
521994ec3dcd9796eba13ee58895981b
A364150
a(n) is the smallest positive integer which can be represented as the sum of distinct positive quarter-squares in exactly n ways, or -1 if no such integer exists.
[ "1", "6", "12", "16", "21", "22", "27", "33", "31", "32", "36", "37", "41", "-1", "42", "43", "47", "-1", "49", "48", "-1", "54", "52", "-1", "60", "59", "57", "-1", "58", "61", "62", "63", "65", "64", "-1", "-1", "69", "67", "70", "-1", "68", "72", "-1", "75", "-1", "73", "76", "74", "-1", "-1", "-1", "77", "80", "78", "79", "81", "-1", "82", "-1", "-1" ]
[ "sign" ]
6
1
2
[ "A002620", "A097563", "A197081", "A364150" ]
null
Ilya Gutkovskiy, Jul 10 2023
2023-07-16T10:34:39
oeisdata/seq/A364/A364150.seq
470e08a8b68b55e6eabe67d205820c09
A364151
Tetrahedral numbers that are products of smaller tetrahedral numbers.
[ "1", "560", "19600", "43680", "45760", "893200", "1521520", "7207200", "29269240", "2845642800", "22778408800", "26595476600", "59777945920", "199910480000", "239526427140", "249466897680", "283345302240", "3280499995500", "20894643369600", "115333903584900", "408688050971200", "706949015272500", "4613394351142500" ]
[ "nonn" ]
13
1
2
[ "A000292", "A068143", "A196568", "A363636", "A364151", "A364152", "A374498" ]
null
Pontus von Brömssen, Jul 15 2023
2024-07-11T13:16:31
oeisdata/seq/A364/A364151.seq
bdfa95e4953d08e91cb444125218fa32
A364152
Least n-simplex number (i.e., number of the form C(m,n) = binomial(m,n), m >= n), that can be written as a product of two or more smaller n-simplex numbers, or 0 if no such number exists.
[ "4", "36", "560", "20475", "126" ]
[ "nonn", "more" ]
9
1
1
[ "A018252", "A028387", "A068143", "A364151", "A364152" ]
null
Pontus von Brömssen, Jul 15 2023
2024-07-14T15:16:03
oeisdata/seq/A364/A364152.seq
f3bc2d7d34d8f125113c2845678e6c00
A364153
a(n) is the smallest positive integer such that from the set {1, 2, ..., a(n)} one can choose a sequence (s(1), s(2), ..., s(n)) in which every segment has a unique sum.
[ "1", "2", "3", "5", "6", "7", "9", "10", "12", "13", "14", "17", "18" ]
[ "nonn", "hard", "more" ]
17
1
2
[ "A276661", "A363446", "A364132", "A364153" ]
null
Bartlomiej Pawlik, Jul 11 2023
2023-08-28T08:21:35
oeisdata/seq/A364/A364153.seq
6f4980d76fb75f6b1d141e3334e3517b
A364154
Lexicographically earliest sequence of distinct positive integers such that a(n) is least novel multiple m of the product of all primes less than the greatest prime factor of a(n-1) which do not divide a(n-1); a(1) = 1.
[ "1", "2", "3", "4", "5", "6", "7", "30", "8", "9", "10", "12", "11", "210", "13", "2310", "14", "15", "16", "17", "30030", "18", "19", "510510", "20", "21", "40", "24", "22", "105", "26", "1155", "28", "45", "32", "23", "9699690", "25", "36", "27", "34", "15015", "38", "255255", "42", "35", "48", "29", "223092870", "31", "6469693230", "33", "70", "39", "770", "51", "10010" ]
[ "nonn" ]
17
1
2
[ "A002110", "A083720", "A351495", "A359804", "A363195", "A364154" ]
null
David James Sycamore, Jul 11 2023
2023-07-15T08:48:57
oeisdata/seq/A364/A364154.seq
74e623c7446377ef7cdc32e26ec3b5d3
A364155
Number of tilings of a 4 X n rectangle using dominoes and trominoes (of any shape).
[ "1", "1", "17", "145", "1352", "12688", "115958", "1075397", "9935791", "91795006", "848550447", "7841290657", "72469286374", "669744449380", "6189592846538", "57202915584686", "528655401099501", "4885709752947038", "45152583446359974", "417289539653241534", "3856491950197255757", "35640791884109598908" ]
[ "nonn", "easy" ]
39
0
3
[ "A364155", "A364457" ]
null
Alois P. Heinz, Jul 28 2023
2025-06-25T17:54:49
oeisdata/seq/A364/A364155.seq
ee2a963d0a10f745d91166dff6612275
A364156
Ceiling of the mean of the prime factors of n (with multiplicity).
[ "0", "2", "3", "2", "5", "3", "7", "2", "3", "4", "11", "3", "13", "5", "4", "2", "17", "3", "19", "3", "5", "7", "23", "3", "5", "8", "3", "4", "29", "4", "31", "2", "7", "10", "6", "3", "37", "11", "8", "3", "41", "4", "43", "5", "4", "13", "47", "3", "7", "4", "10", "6", "53", "3", "8", "4", "11", "16", "59", "3", "61", "17", "5", "2", "9", "6", "67", "7", "13", "5", "71", "3", "73", "20", "5", "8", "9", "6" ]
[ "nonn" ]
13
1
2
[ "A026905", "A027746", "A051293", "A067629", "A078175", "A112798", "A123528", "A123529", "A124943", "A124944", "A126594", "A316413", "A326567", "A326568", "A327473", "A327476", "A327482", "A363895", "A363943", "A363948", "A363950", "A364037", "A364156" ]
null
Gus Wiseman, Jul 18 2023
2023-07-23T03:34:53
oeisdata/seq/A364/A364156.seq
531d657830568a0de9625a4595035bb1
A364157
Numbers whose rounded-down (floor) mean of prime factors (with multiplicity) is 2.
[ "2", "4", "6", "8", "12", "16", "18", "24", "32", "36", "40", "48", "54", "64", "72", "80", "96", "108", "120", "128", "144", "160", "162", "192", "216", "224", "240", "256", "288", "320", "324", "360", "384", "432", "448", "480", "486", "512", "576", "640", "648", "672", "720", "768", "800", "864", "896", "960", "972", "1024", "1080", "1152", "1280", "1296", "1344" ]
[ "nonn" ]
6
1
1
[ "A001222", "A007694", "A026905", "A027746", "A056239", "A067538", "A078175", "A112798", "A123528", "A123529", "A126594", "A316413", "A326567", "A326568", "A327473", "A327476", "A360013", "A360015", "A363488", "A363745", "A363895", "A363943", "A363944", "A363945", "A363949", "A363950", "A363954", "A364037", "A364157" ]
null
Gus Wiseman, Jul 18 2023
2023-07-18T23:25:37
oeisdata/seq/A364/A364157.seq
ca85069335eabf9611492fa8e3fda6cb
A364158
Numbers whose multiset of prime factors has low (i.e. least) co-mode 2.
[ "1", "2", "4", "6", "8", "10", "14", "16", "18", "22", "26", "30", "32", "34", "36", "38", "42", "46", "50", "54", "58", "62", "64", "66", "70", "74", "78", "82", "86", "90", "94", "98", "100", "102", "106", "108", "110", "114", "118", "122", "126", "128", "130", "134", "138", "142", "146", "150", "154", "158", "162", "166", "170", "174", "178", "182", "186", "190", "194" ]
[ "nonn" ]
15
1
2
[ "A001222", "A027746", "A124943", "A215366", "A241131", "A327473", "A327476", "A356862", "A359178", "A360005", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362613", "A362614", "A362615", "A363486", "A363487", "A363488", "A363941", "A364158", "A364159", "A364191", "A364192" ]
null
Gus Wiseman, Jul 14 2023
2023-10-18T04:46:38
oeisdata/seq/A364/A364158.seq
df6f6d84aeb7d90ebddfec7981544ae1
A364159
Number of integer partitions of n - 1 containing fewer 1's than any other part.
[ "0", "1", "1", "2", "2", "3", "4", "5", "7", "9", "11", "15", "20", "23", "32", "40", "50", "61", "82", "95", "126", "149", "188", "228", "292", "337", "430", "510", "633", "748", "933", "1083", "1348", "1579", "1925", "2262", "2761", "3197", "3893", "4544", "5458", "6354", "7634", "8835", "10577", "12261", "14546", "16864", "19990", "23043", "27226", "31428" ]
[ "nonn" ]
11
0
4
[ "A027336", "A124943", "A237984", "A241131", "A327472", "A356862", "A359178", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362613", "A362614", "A362615", "A363486", "A363487", "A364061", "A364062", "A364158", "A364159", "A364191", "A364192" ]
null
Gus Wiseman, Jul 16 2023
2023-10-18T04:46:55
oeisdata/seq/A364/A364159.seq
3fd1da3ffaaf753a5b0cb54204aa4618
A364160
Numbers whose least prime factor has the greatest exponent.
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "12", "13", "16", "17", "19", "20", "23", "24", "25", "27", "28", "29", "31", "32", "37", "40", "41", "43", "44", "45", "47", "48", "49", "52", "53", "56", "59", "60", "61", "63", "64", "67", "68", "71", "72", "73", "76", "79", "80", "81", "83", "84", "88", "89", "92", "96", "97", "99", "101", "103", "104", "107", "109", "112", "113", "116" ]
[ "nonn" ]
13
1
2
[ "A001222", "A027746", "A056239", "A098859", "A112798", "A241131", "A327473", "A327476", "A356862", "A359178", "A360013", "A360014", "A360015", "A362605", "A362606", "A362610", "A362611", "A362612", "A362613", "A362614", "A362615", "A362616", "A363486", "A363487", "A364061", "A364062", "A364160", "A364193" ]
null
Gus Wiseman, Jul 14 2023
2024-09-18T08:43:08
oeisdata/seq/A364/A364160.seq
7d544c44738c4080e27229b064261fa3
A364161
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)).
[ "1", "1", "2", "5", "15", "47", "153", "514", "1769", "6205", "22102", "79733", "290721", "1069688", "3966739", "14810348", "55627778", "210046102", "796864028", "3035912900", "11610468138", "44556451207", "171529074168", "662238211929", "2563524741603", "9947573055828", "38687704042595" ]
[ "nonn" ]
21
0
3
[ "A001003", "A119370", "A218251", "A364161", "A364833", "A365247" ]
null
Seiichi Manyama, Aug 28 2023
2023-08-29T05:09:51
oeisdata/seq/A364/A364161.seq
816fb2198e98f39963147f550285c5b5
A364162
Number of chordless cycles (of length > 3) in the complement of the n X n queen graph.
[ "0", "0", "1", "180", "2263", "13280", "48772", "139880", "335746", "717172", "1394367", "2530308", "4334037", "7090956", "11152386", "16974892", "25106088", "36230756", "51149185", "70840252", "96432435", "129263544", "170864696", "223022704" ]
[ "nonn", "more" ]
11
1
4
[ "A361184", "A361188", "A364162" ]
null
Eric W. Weisstein, Jul 11 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364162.seq
5bd26c47f5dce04c9dac0837d0e1814e
A364163
Least number k such that average of {prime(i) | k - n <= i <= k + n} is prime(k), or -1 if no such number exists.
[ "1", "3", "22", "7", "94", "16", "20", "10", "12", "166", "727", "40", "37", "71", "702", "56", "41", "76", "33", "424", "314", "133", "71", "726", "241", "35", "618", "205", "78", "138", "1096", "1096", "111", "49", "512", "2006", "5790", "504", "2634", "1497", "199", "1344", "181", "2404", "2237", "162", "241", "470", "667", "81", "106", "2940", "209", "209", "5549" ]
[ "sign" ]
24
0
2
[ "A000720", "A082080", "A363168", "A364163" ]
null
Jean-Marc Rebert, Jul 12 2023
2024-09-07T08:54:33
oeisdata/seq/A364/A364163.seq
25fd2cfc47db7f59d4ecb7992d0b1e12
A364164
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that has the same number of distinct prime factors as the sum of all previous terms.
[ "1", "2", "3", "6", "10", "12", "14", "15", "18", "4", "20", "30", "21", "42", "60", "66", "22", "24", "70", "78", "84", "90", "26", "28", "33", "34", "35", "36", "102", "105", "5", "38", "110", "39", "7", "210", "114", "120", "126", "330", "390", "420", "130", "132", "138", "140", "462", "510", "150", "546", "570", "154", "40", "44", "45", "156", "8", "165", "630", "660", "168", "170", "174", "9", "46", "48", "690" ]
[ "nonn" ]
10
1
2
[ "A001221", "A352867", "A355647", "A355649", "A355702", "A363162", "A364164" ]
null
Scott R. Shannon, Jul 12 2023
2023-07-12T11:05:50
oeisdata/seq/A364/A364164.seq
080286ee224d190e36707378727c210a
A364165
a(n) is the least prime factor of the concatenation of 2^n and 3^n.
[ "11", "23", "7", "827", "41", "19", "7", "1282187", "2566561", "1163", "7", "79", "41", "167", "7", "11", "17", "17", "7", "29", "41", "209715210460353203", "7", "838860894143178827", "2566561", "11", "7", "35393", "29", "179", "7", "19", "673", "85899345925559060566555523", "7", "47", "41", "29", "7", "661", "5441", "79", "7", "23" ]
[ "nonn", "base" ]
9
0
1
[ "A000079", "A000244", "A268111", "A364165" ]
null
Robert Israel, Jul 12 2023
2024-05-23T16:12:02
oeisdata/seq/A364/A364165.seq
3959bdb9a057544cbbb924e80c5b1890
A364166
Indices k such that A002375(k) = A002375(k+1) = number of decompositions of 2k into a sum of two odd primes.
[ "1", "3", "7", "8", "9", "11", "12", "17", "37", "58", "88", "103", "112", "118", "160", "196", "226", "247", "277", "283", "343", "382", "415", "455", "463", "502", "523", "532", "553", "592", "598", "613", "652", "667", "670", "682", "697", "751", "770", "817", "895", "901", "1012", "1018", "1048", "1123", "1153", "1198", "1318", "1393", "1420", "1708", "1831", "1942", "1972" ]
[ "nonn" ]
6
1
2
[ "A002375", "A364166" ]
null
M. F. Hasler, Jul 12 2023
2023-08-02T14:02:22
oeisdata/seq/A364/A364166.seq
025df74193c9dc5f1eaca8d19792da50
A364167
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).
[ "1", "2", "18", "234", "3570", "59586", "1053570", "19392490", "367677090", "7131417282", "140834140722", "2822214963882", "57243994984722", "1172991472484610", "24245748916730658", "504935751379031082", "10584721220759172162", "223163804001804187266", "4729176407109705542994", "100676187744957784842090" ]
[ "nonn", "easy" ]
41
0
2
[ "A144097", "A153231", "A363311", "A364167" ]
null
Seiichi Manyama, Jul 13 2023
2023-07-23T07:46:43
oeisdata/seq/A364/A364167.seq
07b61225f207f1421955e42bcc6c20e7
A364168
Numbers that can be written in more than one way in the form (j+2k)^2-(j+k)^2-j^2 with j,k>0.
[ "15", "27", "32", "35", "36", "39", "51", "55", "60", "63", "64", "75", "84", "87", "91", "95", "96", "99", "100", "108", "111", "115", "119", "123", "128", "132", "135", "140", "143", "144", "147", "155", "156", "159", "160", "171", "175", "180", "183", "187", "192", "195", "196", "203", "204", "207", "215", "219", "220", "224", "228", "231", "235", "240", "243", "247", "252", "255" ]
[ "nonn" ]
95
1
1
[ "A000005", "A000290", "A014601", "A027750", "A364168" ]
null
Darío Clavijo, Jul 12 2023
2025-06-02T14:45:32
oeisdata/seq/A364/A364168.seq
ca87ac97b914b12ac0e231030fc62aa9
A364169
Smallest integer m = b*c which satisfies (b + c)*n = m - 1.
[ "6", "21", "40", "105", "126", "301", "204", "273", "550", "1221", "936", "697", "690", "3165", "2176", "4641", "1242", "1333", "4200", "8841", "1786", "3213", "2508", "15025", "9126", "18981", "3700", "6105", "13950", "3901", "3876", "4161", "6106", "5781", "23976", "49321", "8178", "6765", "32800", "67281", "6930", "18565", "7440", "11001", "49726", "8925", "9072", "26977" ]
[ "nonn", "easy", "look" ]
68
1
1
[ "A009112", "A364169", "A364171" ]
null
Jose Aranda, Jul 12 2023
2023-10-25T20:21:36
oeisdata/seq/A364/A364169.seq
19ee12f9cb1e88293d4da2b02227d6de
A364170
Related to expression as an alternating sum of k-th powers.
[ "1", "3", "6", "10", "26", "170", "7226", "13053770", "42600227803226", "453694852221687377444001770", "51459754733114686962148583993443846186613037940783226", "662026589298079856793872781777756720070052610825509991367405555066143474558289627235647952526950580741770" ]
[ "nonn", "easy" ]
14
1
2
null
null
Jeffrey Shallit, Jul 12 2023
2023-08-02T14:38:11
oeisdata/seq/A364/A364170.seq
d3ef3acf84dffe75d7658d690f542eea
A364171
a(n) = m is the least m = b*c > a(n-1) such that (b+c)*n = m-1 where 1 < b <= c < m.
[ "6", "21", "40", "105", "126", "301", "456", "657", "910", "1221", "1596", "2041", "2562", "3165", "3856", "4641", "5526", "6517", "7620", "8841", "10186", "11661", "13272", "15025", "16926", "18981", "21196", "23577", "26130", "28861", "31776", "34881", "38182", "41685", "45396", "49321", "53466", "57837", "62440", "67281", "72366", "77701" ]
[ "nonn" ]
63
1
1
[ "A062158", "A364169", "A364171", "A364202" ]
null
Jose Aranda, Jul 12 2023
2023-07-28T15:52:48
oeisdata/seq/A364/A364171.seq
d18f9845e3a0099e9ca8c5e664d15c3c
A364172
a(n) = (6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!).
[ "1", "45", "6237", "1021020", "178719453", "32427545670", "6016814703900", "1133540594837892", "215925912619400925", "41477110789150966020", "8019784929635201045862", "1558875476359831844951100", "304331361887290342345862940", "59629409730107012112361325820" ]
[ "nonn", "easy" ]
17
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295437", "A347854", "A347855", "A347856", "A347857", "A347858", "A364172", "A364173", "A364185" ]
null
Peter Bala, Jul 12 2023
2023-07-16T05:50:50
oeisdata/seq/A364/A364172.seq
a313bee03a011c620d2cbcd435fe2e48
A364173
a(n) = (9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!).
[ "1", "128", "43758", "17039360", "7012604550", "2976412336128", "1288415796384780", "565399665327996928", "250622090889055155270", "111950839825145979207680", "50312973039218473430585508", "22723567527558510746926055424", "10304958075870392958137083227804" ]
[ "nonn", "easy" ]
10
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295440", "A347854", "A347855", "A347856", "A347857", "A347858", "A364172", "A364173", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:51:09
oeisdata/seq/A364/A364173.seq
163fafe25a062a7a1903b20cede8b4ca
A364174
a(n) = (9*n)!*(5*n/2)!*(3*n/2)!/((5*n)!*(9*n/2)!*(3*n)!*(n/2)!).
[ "1", "48", "4862", "549120", "65132550", "7945986048", "987291797996", "124259864002560", "15789207515217990", "2021092963752345600", "260227401685879140612", "33665720694993527504896", "4372592850984736084611996", "569819472537519480058675200", "74468439316740019538310543000" ]
[ "nonn", "easy" ]
10
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295442", "A347854", "A347855", "A347856", "A347857", "A347858", "A364172", "A364174", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:51:37
oeisdata/seq/A364/A364174.seq
08b3ab4382d983c451fd069864274c1b
A364175
a(n) = (6*n)!*(2*n/3)!/((3*n)!*(2*n)!*(5*n/3)!).
[ "1", "36", "3564", "408408", "49697388", "6249195036", "802241960520", "104466877291260", "13746018177013356", "1823169705017624880", "243331037661693468564", "32641262295291161362656", "4396944340992842923469640", "594371374049863341847620936", "80586283761263090599592845140" ]
[ "nonn", "easy" ]
10
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295445", "A347854", "A347855", "A347856", "A347857", "A347858", "A364172", "A364175", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:52:03
oeisdata/seq/A364/A364175.seq
ce7b54f63687be6346f0ba95ba10fd55
A364176
a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(6*n)!*(5*n)!*n!).
[ "1", "7168", "168043980", "4488240824320", "126694219977836700", "3688258943632086663168", "109504706026534324525391988", "3295939064766794222800490987520", "100204869963549181630558779565943580", "3070025447039504554088467623457608171520", "94632263448378916462441320194245442445186480" ]
[ "nonn", "easy" ]
10
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295456", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364176", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:52:22
oeisdata/seq/A364/A364176.seq
74a804d967ff4aaeab0167c07745a0de
A364177
a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(5*n)!*(4*n)!*(3*n)!).
[ "1", "35840", "5545451340", "991901222174720", "188242272043069768860", "36901030731039027064995840", "7383354803839076831124554790900", "1498315221854950975184507333477662720", "307213802011837003346320048243705086348060" ]
[ "nonn", "easy" ]
15
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295458", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364177", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:46:23
oeisdata/seq/A364/A364177.seq
0c2f8a5cc469122059f90f0214d931cd
A364178
a(n) = (10*n)!*(3*n)!*(n/2)!/((6*n)!*(5*n)!*(3*n/2)!*n!).
[ "1", "168", "83980", "48664320", "29966636700", "19075222663168", "12398706131799988", "8175717823943147520", "5447952226877283703580", "3659442300478634742251520", "2473617870747229982625186480", "1680586987551894402985233481728", "1146602219745194113307246953503300" ]
[ "nonn", "easy" ]
14
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295470", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364178", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:52:53
oeisdata/seq/A364/A364178.seq
4ffe3127fcee97781f748e643ef197f3
A364179
a(n) = (10*n)!*(n/2)!/((5*n)!*(4*n)!*(3*n/2)!).
[ "1", "840", "2771340", "10754814720", "44524428808860", "190847602744995840", "835982760936614190900", "3716634993696885851422720", "16702642470437308383606668060", "75679458912906782280286032887808", "345116202503279265243707597937393840", "1581997780375359530321517073184807976960" ]
[ "nonn", "easy" ]
13
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295471", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364179", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:53:25
oeisdata/seq/A364/A364179.seq
dae854addba289fc61fb70e8c4237740
A364180
a(n) = (10*n)!*(n/2)!/((5*n)!*(7*n/2)!*(2*n)!).
[ "1", "1152", "5542680", "31473008640", "190818980609400", "1198265754978353152", "7691041400616850556280", "50107639155283424528302080", "330014847932376708502470210680", "2191489080600524699617120065945600", "14647137653300940580784413641872332680" ]
[ "nonn", "easy" ]
13
0
2
[ "A061164", "A276100", "A276101", "A276102", "A295431", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364180", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:49:06
oeisdata/seq/A364/A364180.seq
ea90a4aa411fe7a9a782ede66c06b123
A364181
a(n) = (10*n)!*(3*n/2)!/((5*n)!*(9*n/2)!*(2*n)!).
[ "1", "384", "461890", "638582784", "935387159850", "1414457284624384", "2182519096151533552", "3414991108739243704320", "5398397695681095146608490", "8600772808890306913527398400", "13787702861800799166026014363140", "22213518902232966637201617101783040", "35936545440404705429404600374145350960" ]
[ "nonn", "easy" ]
12
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295475", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364181", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:49:26
oeisdata/seq/A364/A364181.seq
b98132a0d96a4721c96d34a3fbf307bb
A364182
a(n) = (12*n)!*(n/2)!/((6*n)!*(4*n)!*(5*n/2)!).
[ "1", "7392", "267711444", "11489451294720", "527048385075849780", "25051434899696246587392", "1217325447549161369383451760", "60050961586064738516089033457664", "2994861478939539397101967737771147060", "150602318360773064327512837557840362078208" ]
[ "nonn", "easy" ]
17
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295477", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364182", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-18T04:08:46
oeisdata/seq/A364/A364182.seq
aaeab2ba764c1bbb27f6c671ff42ecb2
A364183
a(n) = (12*n)!*(2*n)!*(n/2)!/((6*n)!*(4*n)!*(7*n/2)!*n!).
[ "1", "4224", "76488984", "1626105446400", "36856530424884600", "864687003650148532224", "20728451893251973782071160", "504292670666772382512278667264", "12401082728528113445556802226795640", "307453669544695584297743425538327838720", "7671567513095586883562392061857092727662984" ]
[ "nonn", "easy" ]
12
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295479", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364183", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:49:52
oeisdata/seq/A364/A364183.seq
87bd313c67f1ac59f690db7cb3829795
A364184
a(n) = (12*n)!*(2*n)!*(3*n/2)!/((6*n)!*(9*n/2)!*(4*n)!*n!).
[ "1", "1408", "6374082", "32993443840", "180669266788650", "1020694137466257408", "5882199787281395215344", "34369110490167819009785856", "202857467914154836183288657770", "1206640354461153104738279049134080", "7221430962039777689508936047385667332" ]
[ "nonn", "easy" ]
13
0
2
[ "A276100", "A276101", "A276102", "A295431", "A295481", "A347854", "A347855", "A347856", "A347857", "A347858", "A364173", "A364184", "A364185" ]
null
Peter Bala, Jul 13 2023
2023-07-16T05:50:12
oeisdata/seq/A364/A364184.seq
dd5918a5b86bf949bcb75574cfc21914
A364185
Leading digit of 11^n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "3", "3", "3", "4", "4", "5", "5", "6", "6", "7", "8", "8", "9", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "3", "3", "3", "4", "4", "4", "5", "6", "6", "7", "8", "8", "9", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "3", "3", "3", "4", "4", "4", "5", "5", "6", "7", "7", "8", "9", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "3", "3", "3", "4", "4", "5", "5", "6", "7", "7", "8", "9", "1", "1", "1", "1" ]
[ "nonn", "base", "easy" ]
17
0
9
[ "A000030", "A001020", "A008571", "A008952", "A060956", "A111395", "A362871", "A363093", "A363249", "A364185" ]
null
Seiichi Manyama, Jul 15 2023
2023-07-16T10:35:11
oeisdata/seq/A364/A364185.seq
6c7a0d26163425957816261eaf4213ae
A364186
Primes p such that p divides 2^((p-1)/x) - 1, where x is the smallest odd prime factor of p - 1.
[ "31", "43", "109", "127", "157", "223", "229", "251", "277", "283", "307", "397", "431", "433", "439", "457", "499", "601", "641", "643", "691", "727", "733", "739", "811", "911", "919", "953", "971", "997", "1013", "1021", "1051", "1069", "1093", "1103", "1163", "1181", "1327", "1399", "1423", "1459", "1471", "1579", "1597", "1627", "1657", "1699", "1709" ]
[ "nonn" ]
10
1
1
[ "A014752", "A059858", "A270802", "A360652", "A364186" ]
null
Arkadiusz Wesolowski, Jul 15 2023
2023-07-27T12:21:34
oeisdata/seq/A364/A364186.seq
513dda2917da2deaeafd1fc9634b5dc4
A364187
The sum of the digits present in a(n) and a(n+1) exactly divides the sum [a(n) + a(n+1)]. This is the lexicographically earliest sequence of distinct positive terms with this property.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "27", "21", "15", "12", "24", "30", "10", "11", "13", "14", "22", "20", "16", "32", "28", "26", "34", "38", "46", "44", "40", "23", "25", "29", "31", "17", "19", "35", "37", "47", "43", "41", "49", "59", "76", "50", "55", "53", "52", "56", "70", "60" ]
[ "base", "nonn" ]
24
1
2
[ "A007953", "A364120", "A364187", "A364188" ]
null
Eric Angelini and M. F. Hasler, Jul 12 2023
2023-12-20T08:04:24
oeisdata/seq/A364/A364187.seq
e4839013410726c8b5f29a4811b8ef16
A364188
The sum of the digits present in a(n) and a(n+1) divides exactly the product of the same digits. This is the lexicographically earliest sequence of distinct positive terms with this property.
[ "1", "10", "2", "13", "8", "19", "5", "14", "12", "3", "6", "17", "20", "4", "15", "9", "18", "16", "7", "25", "21", "30", "11", "24", "28", "33", "40", "22", "26", "31", "23", "27", "32", "34", "29", "37", "38", "41", "43", "35", "44", "50", "36", "45", "47", "46", "42", "39", "48", "53", "52", "49", "56", "54", "60", "51", "63", "57", "58", "61", "65", "59", "64", "55", "68", "70", "62", "67", "69", "66", "72", "80", "71", "76", "74", "73", "83", "79", "84" ]
[ "nonn" ]
19
1
2
[ "A007953", "A364120", "A364187", "A364188" ]
null
Eric Angelini and M. F. Hasler, Jul 12 2023
2023-12-20T08:04:15
oeisdata/seq/A364/A364188.seq
31047b0da9f3c899d76cb93c63dc0151
A364189
a(n) is the smallest k such that A000005(j) = A000005(j-m) for j = k..k+n-1 for some m > 0.
[ "3", "7", "17", "31", "71", "232", "412", "1756", "2759", "3763", "4881", "4881", "26812", "125804", "566658", "566658", "1601927", "1601927", "18641185", "42401324", "131296837", "136407785" ]
[ "nonn", "more" ]
63
1
1
[ "A000005", "A364189" ]
null
Jon E. Schoenfield, Aug 07 2023
2023-08-07T14:22:41
oeisdata/seq/A364/A364189.seq
163b219f77f974113af970b402946bc8
A364190
The sum of the digits present in a(n) and a(n+1) divides the product [a(n)*a(n+1)]. This is the lexicographically earliest sequence of distinct positive terms with this property.
[ "1", "10", "4", "15", "3", "6", "12", "9", "11", "14", "2", "20", "8", "26", "5", "32", "21", "13", "18", "16", "7", "22", "25", "30", "24", "28", "31", "40", "33", "23", "50", "41", "95", "44", "38", "17", "27", "19", "34", "37", "66", "42", "35", "48", "39", "60", "36", "45", "51", "29", "78", "47", "138", "55", "64", "105", "52", "57", "43", "70", "58", "46", "49", "75", "63", "54", "72", "65", "96", "81", "84", "79" ]
[ "base", "nonn" ]
25
1
2
[ "A007953", "A364120", "A364187", "A364188", "A364190" ]
null
Eric Angelini, Jul 12 2023
2025-03-21T09:57:59
oeisdata/seq/A364/A364190.seq
2c619ff603a6f81fafcd1eea3da5821d
A364191
Low co-mode in the multiset of prime indices of n.
[ "0", "1", "2", "1", "3", "1", "4", "1", "2", "1", "5", "2", "6", "1", "2", "1", "7", "1", "8", "3", "2", "1", "9", "2", "3", "1", "2", "4", "10", "1", "11", "1", "2", "1", "3", "1", "12", "1", "2", "3", "13", "1", "14", "5", "3", "1", "15", "2", "4", "1", "2", "6", "16", "1", "3", "4", "2", "1", "17", "2", "18", "1", "4", "1", "3", "1", "19", "7", "2", "1", "20", "2", "21", "1", "2", "8", "4", "1", "22", "3", "2", "1" ]
[ "nonn" ]
16
1
3
[ "A001222", "A056239", "A067695", "A112798", "A124943", "A241131", "A327473", "A327476", "A356862", "A359178", "A359612", "A360005", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362613", "A362614", "A362615", "A363486", "A363487", "A363488", "A363941", "A363942", "A363952", "A364061", "A364158", "A364159", "A364191", "A364192" ]
null
Gus Wiseman, Jul 16 2023
2023-10-18T04:50:18
oeisdata/seq/A364/A364191.seq
c5ced27e209709365fbc7ccc0638cd09
A364192
High (i.e., greatest) co-mode in the multiset of prime indices of n.
[ "0", "1", "2", "1", "3", "2", "4", "1", "2", "3", "5", "2", "6", "4", "3", "1", "7", "1", "8", "3", "4", "5", "9", "2", "3", "6", "2", "4", "10", "3", "11", "1", "5", "7", "4", "2", "12", "8", "6", "3", "13", "4", "14", "5", "3", "9", "15", "2", "4", "1", "7", "6", "16", "1", "5", "4", "8", "10", "17", "3", "18", "11", "4", "1", "6", "5", "19", "7", "9", "4", "20", "2", "21", "12", "2", "8", "5", "6", "22", "3", "2" ]
[ "nonn" ]
14
1
3
[ "A001222", "A056239", "A067695", "A112798", "A241131", "A327473", "A327476", "A356862", "A359178", "A359612", "A360005", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362612", "A362613", "A362614", "A362615", "A363486", "A363487", "A363740", "A363941", "A363942", "A363952", "A363953", "A364061", "A364062", "A364158", "A364159", "A364191", "A364192" ]
null
Gus Wiseman, Jul 16 2023
2023-10-18T04:50:42
oeisdata/seq/A364/A364192.seq
53752b4258d8ff77631b980b590e4e7c
A364193
Number of integer partitions of n where the least part is the unique mode.
[ "0", "1", "2", "2", "4", "4", "7", "9", "13", "17", "24", "32", "43", "58", "75", "97", "130", "167", "212", "274", "346", "438", "556", "695", "865", "1082", "1342", "1655", "2041", "2511", "3067", "3756", "4568", "5548", "6728", "8130", "9799", "11810", "14170", "16980", "20305", "24251", "28876", "34366", "40781", "48342", "57206", "67597", "79703" ]
[ "nonn" ]
7
0
3
[ "A000041", "A002865", "A008284", "A070003", "A098859", "A102750", "A171979", "A237984", "A240303", "A327472", "A356862", "A359178", "A360015", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362612", "A362613", "A362614", "A362615", "A362616", "A363486", "A363487", "A363723", "A363952", "A363953", "A364160", "A364193" ]
null
Gus Wiseman, Jul 16 2023
2023-07-17T17:59:34
oeisdata/seq/A364/A364193.seq
abc383ee3e1940acfd715d5648bda04b
A364194
a(n) = Sum_{k=1..n} k^3*sigma(k), where sigma is A000203.
[ "1", "25", "133", "581", "1331", "3923", "6667", "14347", "23824", "41824", "57796", "106180", "136938", "202794", "283794", "410770", "499204", "726652", "863832", "1199832", "1496184", "1879512", "2171520", "3000960", "3485335", "4223527", "5010847", "6240159", "6971829", "8915829", "9869141", "11933525", "13658501" ]
[ "nonn", "easy" ]
34
1
2
[ "A000203", "A000537", "A143128", "A282211", "A319086", "A320895", "A356125", "A364194", "A364269" ]
null
Seiichi Manyama, Oct 20 2023
2023-10-22T00:47:05
oeisdata/seq/A364/A364194.seq
2e079a87a379ba8566ef1feba0e33743
A364195
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^2).
[ "1", "2", "24", "412", "8280", "181904", "4232048", "102479184", "2555884896", "65207430848", "1693785940992", "44643489969792", "1190986788639232", "32097745138518528", "872595854798515456", "23900545715576753408", "658934625866433496576", "18271554709525993556992", "509241947434834351042560" ]
[ "nonn", "easy" ]
11
0
2
[ "A217364", "A349310", "A363006", "A363304", "A363305", "A363311", "A364195", "A364196" ]
null
Seiichi Manyama, Jul 13 2023
2023-07-13T08:36:47
oeisdata/seq/A364/A364195.seq
ff33ec40a1705c5079d154a5337c5110
A364196
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^3).
[ "1", "2", "26", "490", "10850", "263010", "6756570", "180732778", "4980586114", "140426468098", "4031581757786", "117456808452906", "3463846465750114", "103200018840208098", "3101624265076611482", "93922235608046966058", "2862850624269320061954", "87768126789137804695298", "2704569471624358219362714" ]
[ "nonn", "easy" ]
10
0
2
[ "A217364", "A363006", "A363305", "A364195", "A364196" ]
null
Seiichi Manyama, Jul 13 2023
2023-07-13T08:36:51
oeisdata/seq/A364/A364196.seq
7242544af09903ec70d2e53965463e8e
A364197
a(n+1) = a(|n-a(n)^2|) + 1, a(0) = 0.
[ "0", "1", "1", "2", "2", "1", "3", "3", "2", "3", "1", "4", "2", "3", "3", "2", "5", "4", "2", "4", "3", "5", "3", "4", "4", "3", "6", "2", "5", "3", "4", "4", "3", "5", "3", "4", "5", "5", "3", "4", "5", "3", "4", "7", "4", "6", "4", "5", "4", "4", "6", "4", "5", "3", "5", "4", "5", "5", "4", "5", "4", "5", "6", "7", "4", "5", "6", "5", "5", "8", "2", "7", "4", "6", "6", "4", "6", "6", "4", "7", "5", "5", "6", "5", "5", "6", "5", "6", "5", "8", "4", "7", "5", "6", "6", "5", "3", "7", "5", "7" ]
[ "nonn" ]
30
0
4
[ "A002516", "A003056", "A004001", "A005185", "A281130", "A330772", "A339929", "A340134", "A340224", "A364197", "A364198" ]
null
Rok Cestnik, Jul 13 2023
2023-08-18T23:51:10
oeisdata/seq/A364/A364197.seq
517992306efa325d76be41b574f82d96
A364198
Index of first occurrence of n in A364197.
[ "0", "1", "3", "6", "11", "16", "26", "43", "69", "115", "141", "158", "208", "293", "358", "440", "541", "642", "743", "1117", "1378", "1612", "1826", "2052", "2494", "2856", "3181", "3703", "4107", "4862", "5347", "5924", "6454", "7645", "8322", "8999", "9784", "10941", "12458", "13580", "14542", "15839", "16864", "18309", "19876", "21696", "23311", "25408", "28377", "30314" ]
[ "nonn" ]
14
0
3
[ "A364197", "A364198" ]
null
Rok Cestnik, Jul 13 2023
2023-07-23T02:08:39
oeisdata/seq/A364/A364198.seq
afd09e8ac2086d02c519fc7fed10f04a
A364199
Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)).
[ "0", "1", "1", "-6", "-13", "110", "363", "-4214", "-18581", "276678", "1525355", "-27753022", "-183611829", "3948004606", "30473073547", "-756031185030", "-6669149100757", "187521633674294", "1860949703300139", "-58481734930175438", "-644853406058229365", "22398157925324204142", "271672536688626976331", "-10334883450918076967446" ]
[ "sign" ]
12
0
4
[ "A002111", "A036968", "A156179", "A364199" ]
null
F. Chapoton, Jul 13 2023
2023-07-15T05:51:28
oeisdata/seq/A364/A364199.seq
59486c5a42f5a8dfeec4c734ab7a8b5d
A364200
Minimal number of terms of mixed-sign Egyptian fraction f such that H(n) + f is an integer, where H(n) is the n-th harmonic number.
[ "0", "1", "1", "1", "2", "2", "3", "3", "3", "2", "2", "3", "4", "3", "4", "4", "4", "4", "4", "5", "5", "4", "5", "5", "5", "4", "5", "5", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6" ]
[ "nonn", "more" ]
21
1
5
[ "A363937", "A364200" ]
null
Denis Ivanov, Jul 13 2023
2023-09-22T05:29:58
oeisdata/seq/A364/A364200.seq
a568e2860ca4e588cc28c5a3284313d3