sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A365501
|
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared whose binary string value contains all the binary distinct prime factors of a(n-1). Overlapping factor strings is allowed.
|
[
"1",
"2",
"4",
"5",
"10",
"11",
"22",
"23",
"46",
"47",
"94",
"95",
"77",
"55",
"27",
"3",
"6",
"12",
"13",
"26",
"29",
"58",
"59",
"118",
"119",
"71",
"142",
"143",
"45",
"43",
"86",
"87",
"61",
"122",
"123",
"83",
"166",
"167",
"334",
"335",
"269",
"538",
"539",
"92",
"93",
"31",
"62",
"124",
"125",
"20",
"21",
"7",
"14",
"28",
"30",
"44",
"54",
"19",
"38",
"39",
"52",
"53",
"106",
"107",
"214",
"215",
"171",
"51",
"35",
"110",
"75"
] |
[
"nonn",
"base"
] | 8 | 1 | 2 |
[
"A027748",
"A064413",
"A365500",
"A365501",
"A365703"
] | null |
Scott R. Shannon, Sep 06 2023
| 2023-10-07T23:52:50 |
oeisdata/seq/A365/A365501.seq
|
dae6055116c03773d829c29d907083d8
|
A365502
|
In the Collatz problem, total stopping times for iteration of the 3x+1 function corresponding to the starting points given by A248037.
|
[
"1",
"5",
"11",
"13",
"70",
"278",
"319",
"329",
"349",
"374",
"384",
"416",
"429",
"592",
"966",
"1134",
"1404"
] |
[
"nonn",
"hard",
"more"
] | 10 | 1 | 2 |
[
"A006666",
"A014682",
"A248037",
"A365502",
"A365503"
] | null |
Paolo Xausa, Sep 06 2023
| 2023-09-25T09:04:39 |
oeisdata/seq/A365/A365502.seq
|
5c00f6b702e9437c54f1d5d260c343d5
|
A365503
|
In the Collatz (3x+1) problem, number of odd iterates before reaching 1 corresponding to the starting points given by A248037.
|
[
"0",
"2",
"5",
"6",
"41",
"164",
"189",
"195",
"207",
"222",
"228",
"248",
"256",
"357",
"583",
"686",
"850"
] |
[
"nonn",
"hard",
"more"
] | 7 | 1 | 2 |
[
"A006667",
"A014682",
"A248037",
"A365502",
"A365503"
] | null |
Paolo Xausa, Sep 06 2023
| 2023-09-25T09:04:47 |
oeisdata/seq/A365/A365503.seq
|
9f05b0a5b507c3a70dc1e649d61d7d00
|
A365504
|
a(n) is the least integer that can be expressed as the sum of a prime number and the n-th power of a nonnegative integer in exactly n ways, or -1 if no such integer exists.
|
[
"2",
"3",
"67",
"1298",
"254179"
] |
[
"nonn",
"more"
] | 6 | 1 | 1 |
[
"A365288",
"A365289",
"A365291",
"A365504",
"A365505"
] | null |
Ilya Gutkovskiy, Sep 07 2023
| 2023-09-25T09:06:55 |
oeisdata/seq/A365/A365504.seq
|
d9d0e022af9db0c38cac5fbf5ef44027
|
A365505
|
a(n) is the least integer that can be expressed as the sum of a prime number and the n-th power of a positive integer in exactly n ways, or -1 if no such integer exists.
|
[
"3",
"6",
"128",
"1298",
"375534"
] |
[
"nonn",
"more"
] | 5 | 1 | 1 |
[
"A064283",
"A365290",
"A365292",
"A365504",
"A365505"
] | null |
Ilya Gutkovskiy, Sep 07 2023
| 2023-09-25T09:07:04 |
oeisdata/seq/A365/A365505.seq
|
3db0e5d055d1d9173b69453cc5f0e3ac
|
A365506
|
a(n) is the smallest perfect power that can be represented as the sum of n distinct perfect powers in exactly n ways, or -1 if no such number exists.
|
[
"1",
"36",
"125",
"81",
"128"
] |
[
"nonn",
"more"
] | 7 | 1 | 2 |
[
"A001597",
"A363040",
"A365506"
] | null |
Ilya Gutkovskiy, Sep 07 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365506.seq
|
43d294b4a3d69cc684cae31c6099a66d
|
A365507
|
a(n) is the least positive integer that can be expressed as the sum of one or more consecutive n-almost primes in exactly n ways, or -1 if no such integer exists.
|
[
"2",
"10",
"105",
"2410",
"45010",
"708408"
] |
[
"nonn",
"more"
] | 6 | 1 | 1 |
[
"A054859",
"A091538",
"A186337",
"A365507"
] | null |
Ilya Gutkovskiy, Sep 07 2023
| 2023-09-25T09:07:25 |
oeisdata/seq/A365/A365507.seq
|
f9f60beb4615ae128f4181e1e5fa517d
|
A365508
|
Number of n-vertex binary trees that do not contain 0[0(0[0(00)])] as a subtree.
|
[
"1",
"2",
"5",
"14",
"41",
"123",
"375",
"1157",
"3603",
"11304",
"35683",
"113219",
"360805",
"1154140"
] |
[
"nonn",
"more"
] | 28 | 1 | 2 |
[
"A007051",
"A036766",
"A365508",
"A365509",
"A365510"
] | null |
Torsten Muetze, Sep 07 2023
| 2023-12-08T12:29:34 |
oeisdata/seq/A365/A365508.seq
|
546c8353883290c37395e82062d35017
|
A365509
|
Number of n-vertex binary trees that do not contain 0(0[0(0(00))]) as a subtree.
|
[
"1",
"2",
"5",
"14",
"41",
"124",
"383",
"1202",
"3819",
"12255",
"39651",
"129190",
"423469",
"1395425"
] |
[
"nonn",
"more"
] | 24 | 1 | 2 |
[
"A007051",
"A036766",
"A365508",
"A365509",
"A365510"
] | null |
Torsten Muetze, Sep 07 2023
| 2023-12-08T12:29:41 |
oeisdata/seq/A365/A365509.seq
|
283504585404fb6b97cca55f065f0f79
|
A365510
|
Number of n-vertex binary trees that do not contain 0((00)[0(00)]) as a subtree.
|
[
"1",
"2",
"5",
"14",
"41",
"123",
"376",
"1168",
"3678",
"11716",
"37688",
"122261",
"399533",
"1314023"
] |
[
"nonn",
"more"
] | 20 | 1 | 2 |
[
"A007051",
"A159768",
"A365508",
"A365509",
"A365510"
] | null |
Torsten Muetze, Sep 07 2023
| 2023-12-08T12:29:38 |
oeisdata/seq/A365/A365510.seq
|
d38d6e5c750f280c5787cbdd9c231f41
|
A365511
|
Number of ways to travel from (0,0,0) to (2*n,2*n,2*n) with n positive integer steps in each direction, changing directions at each step.
|
[
"1",
"6",
"810",
"174000",
"46819500",
"14378702688",
"4817350825056",
"1716615248325120",
"640480159385995500",
"247630745402467284000",
"98500241916182188189536",
"40099260132768751505660160",
"16642069286080355216946537600",
"7020218653006514588616480000000",
"3002947242700351209440983200000000"
] |
[
"nonn"
] | 9 | 0 | 2 |
[
"A088218",
"A110706",
"A365511"
] | null |
Greg Dresden and Snezhana Tuneska, Sep 07 2023
| 2023-09-30T21:47:08 |
oeisdata/seq/A365/A365511.seq
|
641f61a5080a44beb21a9ba90ea42596
|
A365512
|
a(n) is the least odd prime p such that A000120(n*p) = A000120(n) * A000120(p).
|
[
"3",
"3",
"5",
"3",
"3",
"5",
"17",
"3",
"3",
"3",
"17",
"5",
"17",
"17",
"17",
"3",
"3",
"3",
"5",
"3",
"3",
"17",
"257",
"5",
"5",
"17",
"257",
"17",
"257",
"17",
"257",
"3",
"3",
"3",
"5",
"3",
"3",
"5",
"257",
"3",
"3",
"3",
"257",
"17",
"17",
"257",
"257",
"5",
"5",
"5",
"5",
"17",
"257",
"257",
"257",
"17",
"257",
"257",
"257",
"17",
"257",
"257",
"257",
"3",
"3",
"3",
"5",
"3",
"3",
"5",
"257",
"3",
"3",
"3",
"17",
"5",
"257",
"257",
"257",
"3"
] |
[
"nonn",
"base"
] | 19 | 1 | 1 |
[
"A000120",
"A070939",
"A365475",
"A365512"
] | null |
Robert Israel, Sep 07 2023
| 2023-09-08T07:09:51 |
oeisdata/seq/A365/A365512.seq
|
0b937e6827477bebecf23a510de2d5b2
|
A365513
|
Lexicographically earliest permutation of the nonnegative integers with the property that the successive sizes of the gaps between nonprime terms and the successive sizes of the gaps between nonprime digits show the same pattern.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"14",
"11",
"15",
"16",
"18",
"20",
"21",
"13",
"22",
"24",
"25",
"26",
"17",
"27",
"19",
"28",
"30",
"23",
"29",
"31",
"37",
"32",
"41",
"43",
"47",
"33",
"34",
"53",
"59",
"61",
"35",
"36",
"67",
"38",
"71",
"39",
"73",
"79",
"83",
"40",
"89",
"42",
"97",
"101",
"103",
"107",
"44",
"45",
"46",
"109",
"48"
] |
[
"base",
"nonn"
] | 18 | 1 | 3 |
[
"A284516",
"A365513"
] | null |
Eric Angelini, Sep 07 2023
| 2024-12-21T21:18:12 |
oeisdata/seq/A365/A365513.seq
|
5d1a284936379798abd9840081cec5f0
|
A365514
|
Lucas-V pseudoprimes: composites c such that V_{c+1} == 2Q (mod c), where V_k is a Lucas sequence with parameters P and Q.
|
[
"913",
"150267335403",
"430558874533",
"14760229232131",
"936916995253453"
] |
[
"nonn",
"hard",
"more"
] | 9 | 1 | 1 |
[
"A217120",
"A365514"
] | null |
Felix Fröhlich, Sep 07 2023
| 2023-09-25T09:44:47 |
oeisdata/seq/A365/A365514.seq
|
931569ca47a827631d0dcae3c330f15c
|
A365515
|
Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence starting from 0.
|
[
"0",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"3",
"3",
"0",
"1",
"4",
"7",
"4",
"0",
"1",
"5",
"13",
"12",
"5",
"0",
"1",
"6",
"21",
"32",
"20",
"6",
"0",
"1",
"7",
"31",
"55",
"71",
"30",
"7",
"0",
"1",
"8",
"43",
"108",
"153",
"124",
"44",
"8",
"0",
"1",
"9",
"57",
"154",
"366",
"368",
"218",
"65",
"9",
"0",
"1",
"10",
"73",
"256",
"668",
"926",
"856",
"375",
"80",
"10",
"0",
"1",
"11",
"91",
"333",
"1153",
"2214",
"2286",
"1424",
"572",
"96",
"11"
] |
[
"nonn",
"tabl"
] | 23 | 1 | 6 |
[
"A001477",
"A002061",
"A025582",
"A051912",
"A347570",
"A365300",
"A365301",
"A365302",
"A365303",
"A365304",
"A365305",
"A365515",
"A369817",
"A369818",
"A369819"
] | null |
Chai Wah Wu, Sep 07 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365515.seq
|
ec99cff4bc790f5ad2a12ca71d8fb2b3
|
A365516
|
Expansion of g.f. A(x) satisfying A(x) = (1 + 2*x*A(x))^2 / (1 + 2*x*A(x) - 2*x^3*A(x)^3).
|
[
"1",
"2",
"4",
"10",
"32",
"112",
"400",
"1464",
"5520",
"21296",
"83456",
"331136",
"1328320",
"5379200",
"21959936",
"90271904",
"373347840",
"1552438016",
"6486311680",
"27217331456",
"114649525760",
"484640538112",
"2055185596416",
"8740711936000",
"37273693649920",
"159340373710848",
"682708771254272",
"2931290431277056"
] |
[
"nonn"
] | 27 | 0 | 2 |
[
"A303063",
"A365095",
"A365516",
"A365574"
] | null |
Paul D. Hanna, Sep 07 2023
| 2023-10-07T22:23:32 |
oeisdata/seq/A365/A365516.seq
|
10111429dcd49779fc29ecffe9613591
|
A365517
|
Numbers k such that the sum of the squarefree part of k and the squarefree kernel of k is a perfect square.
|
[
"2",
"8",
"9",
"12",
"32",
"48",
"81",
"98",
"108",
"128",
"150",
"192",
"225",
"252",
"363",
"392",
"432",
"512",
"578",
"600",
"729",
"768",
"972",
"1008",
"1100",
"1225",
"1350",
"1568",
"1728",
"1805",
"1922",
"2025",
"2028",
"2048",
"2268",
"2312",
"2366",
"2400",
"2940",
"3072",
"3174",
"3267",
"3750",
"3888",
"4032",
"4400",
"4802",
"5400",
"5625"
] |
[
"nonn"
] | 29 | 1 | 1 |
[
"A000290",
"A007913",
"A007947",
"A365517"
] | null |
David James Sycamore, Sep 07 2023
| 2025-05-25T09:26:25 |
oeisdata/seq/A365/A365517.seq
|
73b1bf7c4d14e45269f3ae9eff5e2dbf
|
A365518
|
Odd primes whose base-2 representation has no proper substrings that are base-2 representations of odd primes.
|
[
"3",
"5",
"17",
"73",
"257",
"521",
"577",
"1033",
"1153",
"2081",
"2113",
"4129",
"16417",
"18433",
"32801",
"32833",
"65537",
"74017",
"133121",
"147457",
"262153",
"262433",
"262657",
"270337",
"270601",
"271393",
"295937",
"524353",
"524801",
"525313",
"532489",
"1048609",
"1049089",
"1056833",
"1065089",
"1082369",
"1179649",
"1183753",
"2101249",
"2367553",
"4194433"
] |
[
"nonn",
"base"
] | 9 | 1 | 1 |
[
"A365512",
"A365518"
] | null |
Robert Israel, Sep 07 2023
| 2023-09-08T13:18:46 |
oeisdata/seq/A365/A365518.seq
|
73fb8b1920e30be1236e7dd7b5211fd9
|
A365519
|
Moebius inversion of A015134.
|
[
"1",
"1",
"1",
"2",
"2",
"1",
"3",
"4",
"3",
"2",
"13",
"4",
"6",
"3",
"8",
"8",
"8",
"9",
"21",
"8",
"24",
"13",
"11",
"16",
"10",
"6",
"9",
"12",
"62",
"8",
"33",
"16",
"24",
"24",
"24",
"36",
"18",
"63",
"24",
"32",
"42",
"24",
"21",
"48",
"24",
"33",
"69",
"64",
"21",
"10",
"32",
"24",
"26",
"27",
"144",
"48",
"40",
"62",
"61",
"32",
"62",
"99",
"72",
"32",
"48",
"24",
"33",
"96",
"88",
"24"
] |
[
"nonn"
] | 35 | 1 | 4 |
[
"A008683",
"A015134",
"A365519"
] | null |
Jay Anderson, Sep 07 2023
| 2024-01-20T03:54:47 |
oeisdata/seq/A365/A365519.seq
|
ecd1ab65e9d39e931199181e5a51a6bb
|
A365520
|
Number of 1-factorizations of complete graph K_{2n} that all share one arbitrary pairing in common.
|
[
"1",
"1",
"2",
"416",
"11672064",
"266965735243776",
"9500592190171594780311552"
] |
[
"nonn",
"more"
] | 27 | 1 | 3 |
[
"A000438",
"A001147",
"A365520"
] | null |
Brian Lathrop, Sep 08 2023
| 2023-10-19T07:35:58 |
oeisdata/seq/A365/A365520.seq
|
d89b9029b3d882949b28dbbf75a61747
|
A365521
|
a(1) = 1; for n > 1, a(n) is the prime factor of n that has not appeared for the longest time in {a(1),...,a(n-2),a(n-1)}.
|
[
"1",
"2",
"3",
"2",
"5",
"3",
"7",
"2",
"3",
"5",
"11",
"2",
"13",
"7",
"3",
"2",
"17",
"3",
"19",
"5",
"7",
"11",
"23",
"2",
"5",
"13",
"3",
"7",
"29",
"2",
"31",
"2",
"11",
"17",
"5",
"3",
"37",
"19",
"13",
"2",
"41",
"7",
"43",
"11",
"5",
"23",
"47",
"3",
"7",
"2",
"17",
"13",
"53",
"3",
"11",
"7",
"19",
"29",
"59",
"5",
"61",
"31",
"3",
"2",
"13",
"11",
"67",
"17",
"23",
"7",
"71",
"3",
"73",
"37",
"5",
"19"
] |
[
"nonn",
"easy"
] | 41 | 1 | 2 |
[
"A006530",
"A034699",
"A088387",
"A088388",
"A365521"
] | null |
Jianglin Luo, Sep 08 2023
| 2024-01-20T09:49:05 |
oeisdata/seq/A365/A365521.seq
|
3e0f679d42d679713ea7f610913a09b6
|
A365522
|
Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.
|
[
"6",
"3",
"8",
"7",
"0",
"4",
"5",
"2",
"8",
"7",
"7",
"9",
"8",
"1",
"8",
"3",
"6",
"5",
"5",
"9",
"7",
"4",
"7",
"6",
"7",
"4",
"6",
"0",
"5",
"1",
"2",
"1",
"6",
"6",
"0",
"5",
"7",
"7",
"8",
"3",
"1",
"7",
"2",
"4",
"0",
"1",
"9",
"5",
"1",
"2",
"3",
"6",
"1",
"6",
"3",
"4",
"6",
"7",
"4",
"5",
"9",
"9",
"2",
"0",
"3",
"7",
"5",
"7",
"5",
"7",
"5",
"7",
"5",
"9",
"7",
"7",
"7",
"2",
"5",
"9",
"8",
"0",
"3",
"8",
"1",
"2",
"1",
"5",
"3",
"1",
"5",
"8",
"1",
"6",
"5",
"7",
"0",
"5",
"4",
"4",
"0",
"2",
"5",
"1",
"6",
"5",
"6",
"2",
"7",
"0",
"9",
"8",
"6",
"7",
"5"
] |
[
"nonn",
"cons",
"changed"
] | 20 | 0 | 1 |
[
"A000217",
"A000796",
"A002194",
"A002391",
"A051865",
"A244639",
"A244641",
"A244645",
"A244646",
"A244647",
"A244648",
"A244649",
"A365522"
] | null |
Claude H. R. Dequatre, Sep 08 2023
| 2025-07-14T10:08:00 |
oeisdata/seq/A365/A365522.seq
|
1185d9eed09801e1f9baffb38cb7c881
|
A365523
|
Decimal expansion of 6*log(2) - 4.
|
[
"1",
"5",
"8",
"8",
"8",
"3",
"0",
"8",
"3",
"3",
"5",
"9",
"6",
"7",
"1",
"8",
"5",
"6",
"5",
"0",
"3",
"3",
"9",
"2",
"7",
"2",
"8",
"7",
"4",
"9",
"0",
"5",
"9",
"4",
"0",
"8",
"4",
"5",
"3",
"0",
"0",
"0",
"8",
"0",
"6",
"1",
"6",
"1",
"5",
"3",
"1",
"5",
"2",
"4",
"7",
"2",
"4",
"0",
"8",
"0",
"0",
"5",
"6",
"9",
"6",
"0",
"3",
"6",
"1",
"7",
"3",
"1",
"8",
"1",
"8",
"1",
"6",
"8",
"2",
"9",
"3",
"6",
"3",
"5",
"1",
"7",
"9",
"9",
"6",
"1",
"9",
"7",
"8",
"5",
"1",
"2",
"1",
"2",
"5",
"2",
"5",
"2",
"0",
"0",
"8",
"8",
"8",
"6",
"1",
"2"
] |
[
"nonn",
"cons"
] | 15 | 0 | 2 |
[
"A000217",
"A000384",
"A002162",
"A016687",
"A365523"
] | null |
Claude H. R. Dequatre, Sep 08 2023
| 2024-11-21T09:27:10 |
oeisdata/seq/A365/A365523.seq
|
127f7d838b347aac98617d2dc83fb552
|
A365524
|
Decimal expansion of 4*log(2) - 5/2.
|
[
"2",
"7",
"2",
"5",
"8",
"8",
"7",
"2",
"2",
"2",
"3",
"9",
"7",
"8",
"1",
"2",
"3",
"7",
"6",
"6",
"8",
"9",
"2",
"8",
"4",
"8",
"5",
"8",
"3",
"2",
"7",
"0",
"6",
"2",
"7",
"2",
"3",
"0",
"2",
"0",
"0",
"0",
"5",
"3",
"7",
"4",
"4",
"1",
"0",
"2",
"1",
"0",
"1",
"6",
"4",
"8",
"2",
"7",
"2",
"0",
"0",
"3",
"7",
"9",
"7",
"3",
"5",
"7",
"4",
"4",
"8",
"7",
"8",
"7",
"8",
"7",
"7",
"8",
"8",
"6",
"2",
"4",
"2",
"3",
"4",
"5",
"3",
"3",
"0",
"7",
"9",
"8",
"5",
"6",
"7",
"4",
"7",
"5",
"0",
"1",
"6",
"8",
"0",
"0",
"5",
"9",
"2",
"4",
"0",
"8"
] |
[
"nonn",
"cons"
] | 19 | 0 | 1 |
[
"A000217",
"A000326",
"A002162",
"A016639",
"A358517",
"A365524"
] | null |
Claude H. R. Dequatre, Sep 08 2023
| 2025-03-28T02:10:40 |
oeisdata/seq/A365/A365524.seq
|
06421ac25f8c8f0c8fbc087bf262b87d
|
A365525
|
a(n) = Sum_{k=0..floor(n/4)} Stirling2(n,4*k).
|
[
"1",
"0",
"0",
"0",
"1",
"10",
"65",
"350",
"1702",
"7806",
"34855",
"157630",
"770529",
"4432220",
"31307432",
"259090260",
"2316320073",
"21172354778",
"193091210857",
"1744478148866",
"15627203762926",
"139526376391986",
"1251976261264071",
"11417796498945894",
"107280845105151601"
] |
[
"nonn"
] | 27 | 0 | 6 |
[
"A024430",
"A099948",
"A143815",
"A365525",
"A365526",
"A365527",
"A365528"
] | null |
Seiichi Manyama, Sep 08 2023
| 2025-06-10T07:32:47 |
oeisdata/seq/A365/A365525.seq
|
31c3bd8d22509576519e1f110f063f61
|
A365526
|
a(n) = Sum_{k=0..floor((n-1)/4)} Stirling2(n,4*k+1).
|
[
"0",
"1",
"1",
"1",
"1",
"2",
"16",
"141",
"1051",
"6953",
"42571",
"247886",
"1401676",
"7868005",
"45210257",
"277899961",
"1917140421",
"15186484134",
"135259346092",
"1295096363273",
"12821558136891",
"128268683204737",
"1283599391456735",
"12817818177339530",
"127998022119881272"
] |
[
"nonn"
] | 16 | 0 | 6 |
[
"A099948",
"A365525",
"A365526",
"A365527"
] | null |
Seiichi Manyama, Sep 08 2023
| 2024-09-11T14:28:41 |
oeisdata/seq/A365/A365526.seq
|
075138b47e6e9dc4516b92670eaff543
|
A365527
|
a(n) = Sum_{k=0..floor((n-2)/4)} Stirling2(n,4*k+2).
|
[
"0",
"0",
"1",
"3",
"7",
"15",
"32",
"84",
"393",
"2901",
"23339",
"180565",
"1327404",
"9364732",
"64197317",
"433372411",
"2928720335",
"20264399483",
"147807954692",
"1170622475408",
"10229966924581",
"97922117830589",
"1001744359476291",
"10661002700183905",
"115706501336004984"
] |
[
"nonn"
] | 13 | 0 | 4 |
[
"A099948",
"A365525",
"A365526",
"A365527"
] | null |
Seiichi Manyama, Sep 08 2023
| 2023-09-13T02:09:54 |
oeisdata/seq/A365/A365527.seq
|
b01b2afa640741b05a953ea2efac16d3
|
A365528
|
a(n) = Sum_{k=0..floor(n/5)} Stirling2(n,5*k).
|
[
"1",
"0",
"0",
"0",
"0",
"1",
"15",
"140",
"1050",
"6951",
"42526",
"246785",
"1381105",
"7547826",
"40827787",
"223429571",
"1289945660",
"8411093621",
"66070626548",
"624900235273",
"6667243384356",
"74991482322466",
"854627237256694",
"9698297591786441",
"108934902927646609"
] |
[
"nonn"
] | 18 | 0 | 7 |
[
"A024430",
"A143815",
"A365525",
"A365528",
"A365529",
"A365530",
"A365531",
"A365532"
] | null |
Seiichi Manyama, Sep 08 2023
| 2025-06-10T07:33:45 |
oeisdata/seq/A365/A365528.seq
|
2c363423488e3375d64154a6c30a272e
|
A365529
|
a(n) = Sum_{k=0..floor((n-1)/5)} Stirling2(n,5*k+1).
|
[
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"22",
"267",
"2647",
"22828",
"179489",
"1323719",
"9323744",
"63502440",
"422172752",
"2763863468",
"18017811013",
"119078265944",
"822495346707",
"6206943675825",
"53413341096271",
"529613886789747",
"5863983528090106",
"69211078916780252",
"839908976768680556"
] |
[
"nonn"
] | 8 | 0 | 7 |
[
"A365528",
"A365529",
"A365530",
"A365531",
"A365532"
] | null |
Seiichi Manyama, Sep 08 2023
| 2023-09-08T07:23:02 |
oeisdata/seq/A365/A365529.seq
|
8cf26630ae3d07ee5cbaff40c21cccfe
|
A365530
|
a(n) = Sum_{k=0..floor((n-2)/5)} Stirling2(n,5*k+2).
|
[
"0",
"0",
"1",
"3",
"7",
"15",
"31",
"64",
"155",
"717",
"6391",
"65010",
"629444",
"5719597",
"49340838",
"408864186",
"3284672489",
"25770192646",
"198718943490",
"1516391860879",
"11554571944615",
"89144035246500",
"711587142257776",
"6054854693784594",
"56609279400922224",
"590143167134961765"
] |
[
"nonn"
] | 8 | 0 | 4 |
[
"A365528",
"A365529",
"A365530",
"A365531",
"A365532"
] | null |
Seiichi Manyama, Sep 08 2023
| 2023-09-08T07:22:57 |
oeisdata/seq/A365/A365530.seq
|
9430a975b432f1c8d0b891eac551f06a
|
A365531
|
a(n) = Sum_{k=0..floor((n-3)/5)} Stirling2(n,5*k+3).
|
[
"0",
"0",
"0",
"1",
"6",
"25",
"90",
"301",
"967",
"3061",
"10080",
"40381",
"245553",
"2161238",
"21701381",
"219007491",
"2149071359",
"20442363031",
"189226358659",
"1712836890912",
"15232581945180",
"133717667932475",
"1164901223314180",
"10143255631462661",
"89207257764369032",
"804712211338739040"
] |
[
"nonn"
] | 8 | 0 | 5 |
[
"A365528",
"A365529",
"A365530",
"A365531",
"A365532"
] | null |
Seiichi Manyama, Sep 08 2023
| 2023-09-08T07:22:52 |
oeisdata/seq/A365/A365531.seq
|
a6a18ef58eb1e625336a68ed94fa3dd0
|
A365532
|
a(n) = Sum_{k=0..floor((n-4)/5)} Stirling2(n,5*k+4).
|
[
"0",
"0",
"0",
"0",
"1",
"10",
"65",
"350",
"1701",
"7771",
"34150",
"146905",
"633776",
"2892032",
"15526876",
"109484545",
"992589171",
"10223409493",
"108982611518",
"1156117871286",
"12062817285396",
"123603289559039",
"1245986248828926",
"12391614409960544",
"121996350285087172"
] |
[
"nonn"
] | 8 | 0 | 6 |
[
"A365528",
"A365529",
"A365530",
"A365531",
"A365532"
] | null |
Seiichi Manyama, Sep 08 2023
| 2023-09-08T07:22:46 |
oeisdata/seq/A365/A365532.seq
|
fedef83c91caaf4bf9473f8f8ed106e6
|
A365533
|
a(n) is the nim-value of the SALIQUANT game where the option is to subtract a nondivisor from 2*n.
|
[
"0",
"1",
"1",
"3",
"2",
"4",
"6",
"7",
"4",
"7",
"5",
"10",
"12",
"10",
"13",
"15",
"8",
"13",
"9",
"17",
"17",
"16",
"11",
"22",
"22",
"19",
"25",
"24",
"14",
"22",
"30",
"31",
"16",
"33",
"32",
"31",
"18",
"28",
"19",
"37",
"20",
"38",
"21",
"38",
"37",
"34",
"23",
"46",
"45",
"37",
"42",
"51",
"26",
"40",
"27",
"52",
"28",
"43",
"29",
"52",
"60",
"61",
"52",
"63",
"58",
"49",
"66",
"59",
"34",
"52",
"35",
"67",
"36",
"55",
"62"
] |
[
"nonn"
] | 14 | 1 | 4 |
[
"A173540",
"A365533"
] | null |
Michel Marcus, Sep 08 2023
| 2023-09-09T11:19:39 |
oeisdata/seq/A365/A365533.seq
|
1aafec0f19b54808cf9ba44bd330a295
|
A365534
|
Number of convergent Boolean relation matrices on [n].
|
[
"1",
"2",
"15",
"465",
"61068",
"32453533",
"67904955351"
] |
[
"nonn",
"more"
] | 26 | 0 | 2 |
[
"A002416",
"A070322",
"A365534"
] | null |
Geoffrey Critzer, Sep 08 2023
| 2023-10-21T06:17:07 |
oeisdata/seq/A365/A365534.seq
|
c24ef3296305cc2e05bfa270dc7e85ce
|
A365535
|
Composite numbers k such that the core and the kernel of k are equal.
|
[
"6",
"8",
"10",
"14",
"15",
"21",
"22",
"24",
"26",
"27",
"30",
"32",
"33",
"34",
"35",
"38",
"39",
"40",
"42",
"46",
"51",
"54",
"55",
"56",
"57",
"58",
"62",
"65",
"66",
"69",
"70",
"74",
"77",
"78",
"82",
"85",
"86",
"87",
"88",
"91",
"93",
"94",
"95",
"96",
"102",
"104",
"105",
"106",
"110",
"111",
"114",
"115",
"118",
"119",
"120",
"122",
"123",
"125",
"128",
"129",
"130",
"133",
"134",
"135",
"136",
"138"
] |
[
"nonn"
] | 25 | 1 | 1 |
[
"A002808",
"A005117",
"A006881",
"A007913",
"A007947",
"A072587",
"A097054",
"A120944",
"A268335",
"A362594",
"A365535"
] | null |
David James Sycamore and Michael De Vlieger, Sep 08 2023
| 2023-09-15T10:20:58 |
oeisdata/seq/A365/A365535.seq
|
32a6f999964399d10a33f02613427a13
|
A365536
|
a(n) = n for n <= 2. Thereafter a(n) is the least novel multiple of the greatest prior term which is coprime to a(n-1).
|
[
"1",
"2",
"3",
"4",
"6",
"5",
"12",
"10",
"9",
"20",
"18",
"15",
"8",
"30",
"7",
"60",
"14",
"45",
"28",
"90",
"21",
"40",
"42",
"25",
"84",
"50",
"63",
"100",
"126",
"75",
"56",
"150",
"35",
"36",
"70",
"27",
"200",
"189",
"400",
"378",
"125",
"756",
"250",
"567",
"800",
"1134",
"375",
"112",
"750",
"49",
"1600",
"1701",
"3200",
"3402",
"500",
"5103",
"6400",
"10206",
"625",
"20412"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A000351",
"A000420",
"A002473",
"A126706",
"A365536"
] | null |
David James Sycamore, Sep 08 2023
| 2025-07-01T23:01:59 |
oeisdata/seq/A365/A365536.seq
|
9aebc1365509de62541516c6ba674c3d
|
A365537
|
a(n) is the first semiprime k such that k-1 and k+1 each have exactly n prime factors (counted with multiplicity).
|
[
"4",
"34",
"51",
"55",
"1169",
"6641",
"18751",
"204929",
"101249",
"2490751",
"6581249",
"68068351",
"262986751",
"1842131969",
"9601957889",
"13858918399",
"145046192129",
"75389157377",
"18444674957311",
"39806020354049",
"124758724247551",
"878616032837633",
"551785225781249"
] |
[
"nonn"
] | 22 | 1 | 1 |
[
"A001222",
"A001358",
"A365537"
] | null |
Zak Seidov and Robert Israel, Sep 08 2023
| 2023-12-26T03:51:54 |
oeisdata/seq/A365/A365537.seq
|
ef802c50859d9fa5147ac80ae0b31d53
|
A365538
|
a(0) = 1; otherwise, for i >= 0, a(4i+0) = a(4i+1) = a(2i), a(4i+2) = 2*a(2i+1), a(4i+3) = 0.
|
[
"1",
"1",
"2",
"0",
"2",
"2",
"0",
"0",
"2",
"2",
"4",
"0",
"0",
"0",
"0",
"0",
"2",
"2",
"4",
"0",
"4",
"4",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"2",
"4",
"0",
"4",
"4",
"0",
"0",
"4",
"4",
"8",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] |
[
"nonn",
"tabf",
"easy"
] | 32 | 0 | 3 |
[
"A003714",
"A003754",
"A004780",
"A280873",
"A365538"
] | null |
Roland Kneer, Oct 23 2023
| 2024-02-07T20:38:13 |
oeisdata/seq/A365/A365538.seq
|
8a476225b1e8414aea8f7380714e5b07
|
A365539
|
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 + x^k)/((1 - x)^2*(1 - x^k)), with k > 0.
|
[
"1",
"4",
"1",
"9",
"2",
"1",
"16",
"5",
"2",
"1",
"25",
"8",
"3",
"2",
"1",
"36",
"13",
"6",
"3",
"2",
"1",
"49",
"18",
"9",
"4",
"3",
"2",
"1",
"64",
"25",
"12",
"7",
"4",
"3",
"2",
"1",
"81",
"32",
"17",
"10",
"5",
"4",
"3",
"2",
"1",
"100",
"41",
"22",
"13",
"8",
"5",
"4",
"3",
"2",
"1",
"121",
"50",
"27",
"16",
"11",
"6",
"5",
"4",
"3",
"2",
"1",
"144",
"61",
"34",
"21",
"14",
"9",
"6",
"5",
"4",
"3",
"2",
"1"
] |
[
"nonn",
"tabl"
] | 14 | 0 | 2 |
[
"A000027",
"A000290",
"A000982",
"A008810",
"A008811",
"A008812",
"A008813",
"A008814",
"A008815",
"A008816",
"A008817",
"A365539",
"A365540"
] | null |
Stefano Spezia, Sep 08 2023
| 2023-09-09T11:24:12 |
oeisdata/seq/A365/A365539.seq
|
72c32ab914e9921c43e0822efd3b23b7
|
A365540
|
Antidiagonal sums of A365539.
|
[
"0",
"1",
"5",
"12",
"24",
"39",
"61",
"86",
"118",
"155",
"199",
"246",
"304",
"365",
"433",
"508",
"592",
"679",
"777",
"878",
"990",
"1109",
"1235",
"1364",
"1508",
"1657",
"1813",
"1976",
"2150",
"2327",
"2519",
"2714",
"2920",
"3133",
"3353",
"3580",
"3824",
"4071",
"4325",
"4586",
"4862",
"5141",
"5435",
"5732",
"6040",
"6359",
"6685",
"7014",
"7362"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A000005",
"A114003",
"A365539",
"A365540"
] | null |
Stefano Spezia, Sep 08 2023
| 2023-09-09T11:24:22 |
oeisdata/seq/A365/A365540.seq
|
118cc62e03e0953630a12ace2a8a66a8
|
A365541
|
Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.
|
[
"1",
"2",
"2",
"2",
"4",
"4",
"7",
"4",
"4",
"8",
"8",
"14",
"14",
"14",
"8",
"8",
"16",
"16",
"28",
"28",
"37",
"28",
"28",
"16",
"16",
"32",
"32",
"56",
"56",
"74",
"74",
"74",
"56",
"56",
"32",
"32",
"64",
"64",
"112",
"112",
"148",
"148",
"175",
"148",
"148",
"112",
"112",
"64",
"64",
"128",
"128",
"224",
"224",
"296",
"296",
"350",
"350",
"350",
"296",
"296",
"224",
"224",
"128",
"128"
] |
[
"nonn",
"tabf"
] | 9 | 2 | 2 |
[
"A000009",
"A005408",
"A007865",
"A008967",
"A046663",
"A068911",
"A085489",
"A088809",
"A093971",
"A095944",
"A151897",
"A167762",
"A238628",
"A288728",
"A326083",
"A364272",
"A364534",
"A365376",
"A365377",
"A365381",
"A365541",
"A365543",
"A365544",
"A365661",
"A365663"
] | null |
Gus Wiseman, Sep 15 2023
| 2023-09-17T12:08:03 |
oeisdata/seq/A365/A365541.seq
|
4dc201cdafabd037fc6a38450d97ec14
|
A365542
|
Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n.
|
[
"0",
"1",
"2",
"6",
"10",
"28",
"48",
"116",
"224",
"480",
"920",
"2000",
"3840",
"7984",
"15936",
"32320",
"63968",
"130176",
"258304",
"521920",
"1041664",
"2089472",
"4171392",
"8377856",
"16726528",
"33509632",
"67004416",
"134129664",
"268111360",
"536705024",
"1072961536",
"2146941952",
"4293509120",
"8588414976"
] |
[
"nonn"
] | 13 | 1 | 3 |
[
"A007865",
"A088314",
"A088809",
"A124506",
"A151897",
"A179822",
"A326080",
"A326083",
"A364350",
"A364534",
"A364839",
"A364914",
"A365042",
"A365045",
"A365046",
"A365073",
"A365314",
"A365315",
"A365322",
"A365380",
"A365542"
] | null |
Gus Wiseman, Sep 09 2023
| 2023-09-13T08:35:52 |
oeisdata/seq/A365/A365542.seq
|
cefc27ff400a7bacc307f7bd01545c3b
|
A365543
|
Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.
|
[
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"2",
"2",
"3",
"5",
"3",
"3",
"3",
"5",
"7",
"5",
"5",
"5",
"5",
"7",
"11",
"7",
"8",
"6",
"8",
"7",
"11",
"15",
"11",
"11",
"11",
"11",
"11",
"11",
"15",
"22",
"15",
"17",
"15",
"14",
"15",
"17",
"15",
"22",
"30",
"22",
"23",
"23",
"22",
"22",
"23",
"23",
"22",
"30",
"42",
"30",
"33",
"30",
"33",
"25",
"33",
"30",
"33",
"30",
"42"
] |
[
"nonn",
"tabl"
] | 14 | 0 | 4 |
[
"A000009",
"A000041",
"A000124",
"A002219",
"A046663",
"A088809",
"A093971",
"A108917",
"A122768",
"A299701",
"A304792",
"A364272",
"A364349",
"A364911",
"A365381",
"A365541",
"A365543",
"A365658",
"A365661",
"A365663"
] | null |
Gus Wiseman, Sep 16 2023
| 2025-04-05T23:17:53 |
oeisdata/seq/A365/A365543.seq
|
54ff882067c79c64aaaa409aa124a88b
|
A365544
|
Number of subsets of {1..n} containing two distinct elements summing to n.
|
[
"0",
"0",
"0",
"2",
"4",
"14",
"28",
"74",
"148",
"350",
"700",
"1562",
"3124",
"6734",
"13468",
"28394",
"56788",
"117950",
"235900",
"484922",
"969844",
"1979054",
"3958108",
"8034314",
"16068628",
"32491550",
"64983100",
"131029082",
"262058164",
"527304974",
"1054609948",
"2118785834",
"4237571668",
"8503841150",
"17007682300"
] |
[
"nonn",
"easy"
] | 17 | 0 | 4 |
[
"A000009",
"A004526",
"A007865",
"A008967",
"A068911",
"A085489",
"A088809",
"A093971",
"A095944",
"A140106",
"A151897",
"A167762",
"A238628",
"A288728",
"A326083",
"A364272",
"A364534",
"A365376",
"A365377",
"A365381",
"A365541",
"A365544"
] | null |
Gus Wiseman, Sep 20 2023
| 2024-08-30T21:28:21 |
oeisdata/seq/A365/A365544.seq
|
643a63b9f85e4f470b573fe7019cac59
|
A365545
|
Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.
|
[
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"3",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"3",
"0",
"1",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"4",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"2",
"0",
"0",
"4",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"5",
"0",
"0",
"0",
"5",
"0",
"1",
"0",
"2",
"0",
"0",
"0",
"0",
"5",
"2",
"0",
"0",
"5",
"0",
"1",
"0"
] |
[
"nonn",
"tabl"
] | 6 | 0 | 18 |
[
"A000009",
"A000041",
"A006827",
"A046663",
"A126796",
"A188431",
"A284640",
"A304792",
"A325781",
"A325799",
"A364272",
"A364350",
"A364839",
"A365543",
"A365545",
"A365658",
"A365661",
"A365663",
"A365830",
"A365831",
"A365918",
"A365921",
"A365922",
"A365923",
"A365924"
] | null |
Gus Wiseman, Sep 24 2023
| 2023-09-25T12:55:53 |
oeisdata/seq/A365/A365545.seq
|
a98521df81111f8f18cdf401653dfb4a
|
A365546
|
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^2.
|
[
"1",
"1",
"3",
"23",
"298",
"5314",
"120776",
"3341568",
"108992472",
"4095073848",
"174169888536",
"8272115427432",
"433956083676336",
"24921123498835056",
"1555004372522100384",
"104757005524567577088",
"7578056156152486855680",
"585874671534300791384064"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A138013",
"A365438",
"A365546"
] | null |
Seiichi Manyama, Nov 08 2023
| 2023-11-08T07:51:11 |
oeisdata/seq/A365/A365546.seq
|
561d53dc89c0b50a025da43cb3a1a944
|
A365547
|
Triangular array read by rows. T(n,k) is the number of convergent Boolean relation matrices on [n] containing exactly k strongly connected components, n>=0, 0<=k<=n.
|
[
"1",
"0",
"2",
"0",
"3",
"12",
"0",
"139",
"126",
"200",
"0",
"25575",
"17517",
"9288",
"8688",
"0",
"18077431",
"8457840",
"3545350",
"1435920",
"936992",
"0",
"47024942643",
"14452288791",
"4277647665",
"1422744780",
"485315280",
"242016192"
] |
[
"nonn",
"tabl"
] | 13 | 0 | 3 |
[
"A003024",
"A070322",
"A365534",
"A365547"
] | null |
Geoffrey Critzer, Sep 08 2023
| 2023-09-11T11:24:53 |
oeisdata/seq/A365/A365547.seq
|
a04db7e3353baed8d4c76699f8e34691
|
A365548
|
Number of unigraphic graphs on n nodes that are connected.
|
[
"1",
"1",
"2",
"6",
"16",
"42",
"96",
"234",
"546",
"1292"
] |
[
"nonn",
"more"
] | 8 | 1 | 3 |
[
"A122423",
"A309757",
"A365548"
] | null |
Eric W. Weisstein, Sep 08 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365548.seq
|
5cef244596b2ce52efebb7a7e2c36e99
|
A365549
|
The number of exponentially odd divisors of the square root of the largest square dividing n.
|
[
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1"
] |
[
"nonn",
"easy",
"mult"
] | 15 | 1 | 4 |
[
"A000188",
"A005117",
"A013662",
"A046951",
"A278908",
"A307848",
"A322483",
"A323308",
"A358260",
"A365549"
] | null |
Amiram Eldar, Sep 08 2023
| 2025-04-27T00:45:29 |
oeisdata/seq/A365/A365549.seq
|
f12e1fe636155e7ac3ccddc21ed59c71
|
A365550
|
The number of square coreful divisors of n.
|
[
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0"
] |
[
"nonn",
"easy",
"mult"
] | 8 | 1 | 16 |
[
"A001694",
"A005361",
"A046951",
"A325837",
"A365550"
] | null |
Amiram Eldar, Sep 08 2023
| 2023-09-10T02:04:16 |
oeisdata/seq/A365/A365550.seq
|
783ca6422cc77476c39fa8642df83c83
|
A365551
|
The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.
|
[
"1",
"2",
"2",
"3",
"2",
"4",
"2",
"3",
"3",
"4",
"2",
"6",
"2",
"4",
"4",
"4",
"2",
"6",
"2",
"6",
"4",
"4",
"2",
"6",
"3",
"4",
"3",
"6",
"2",
"8",
"2",
"4",
"4",
"4",
"4",
"9",
"2",
"4",
"4",
"6",
"2",
"8",
"2",
"6",
"6",
"4",
"2",
"8",
"3",
"6",
"4",
"6",
"2",
"6",
"4",
"6",
"4",
"4",
"2",
"12",
"2",
"4",
"6",
"5",
"4",
"8",
"2",
"6",
"4",
"8",
"2",
"9",
"2",
"4",
"6",
"6",
"4",
"8",
"2",
"8",
"4",
"4",
"2",
"12",
"4",
"4",
"4"
] |
[
"nonn",
"easy",
"mult"
] | 12 | 1 | 2 |
[
"A049599",
"A282446",
"A322483",
"A353898",
"A356191",
"A365551"
] | null |
Amiram Eldar, Sep 08 2023
| 2023-09-09T11:34:01 |
oeisdata/seq/A365/A365551.seq
|
cc46565e1971949655138a062803cbc0
|
A365552
|
The number of exponentially odd divisors of the powerful part of n.
|
[
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"3",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"4",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"2",
"1",
"1",
"1"
] |
[
"nonn",
"easy",
"mult"
] | 9 | 1 | 4 |
[
"A013661",
"A057521",
"A095691",
"A322483",
"A365552"
] | null |
Amiram Eldar, Sep 08 2023
| 2023-09-09T06:48:16 |
oeisdata/seq/A365/A365552.seq
|
c5f77d4d380c009cc3377e8f5c3894f8
|
A365553
|
Starting with a plane on which two parallel lines and two additional lines have been drawn such that the four lines form two noncongruent isosceles triangles, a(n) is the total number of intersections on the plane after the n-th step, where each step consists of drawing lines that connect every intersection of two lines. If more than 2 lines intersect at the same point it is only counted once.
|
[
"5",
"6",
"8",
"20",
"861"
] |
[
"nonn",
"hard",
"more"
] | 12 | 1 | 1 |
[
"A050534",
"A364725",
"A365553"
] | null |
Colin Linzer, Sep 08 2023
| 2023-10-29T20:36:01 |
oeisdata/seq/A365/A365553.seq
|
7b689bacad23b5b9407e015b2e66f471
|
A365554
|
Number of increasing paths from the bottom to the top of the n-hypercube (as a graded poset) which first encounter a vector of isolated zeros at stage k, weighted by k.
|
[
"2",
"10",
"60",
"396",
"2976",
"25056",
"234720",
"2423520",
"27371520",
"335819520",
"4449150720",
"63318931200",
"963548006400",
"15614378035200",
"268480048435200",
"4882321001779200",
"93627018326016000",
"1888394741194752000",
"39963486306078720000",
"885457095215616000000"
] |
[
"nonn"
] | 60 | 2 | 1 |
[
"A067331",
"A365554"
] | null |
Brian Darrow, Jr. and Joe Fields, Feb 20 2024
| 2024-02-24T15:31:44 |
oeisdata/seq/A365/A365554.seq
|
8db87d7ed51390146a58f2fa46b5742a
|
A365555
|
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/3).
|
[
"1",
"2",
"18",
"274",
"5938",
"167122",
"5786418",
"237857874",
"11319677618",
"612109819602",
"37069480301618",
"2485356833141074",
"182753029186750898",
"14623552941626800082",
"1265002802597606144818",
"117633823750542653153874",
"11701922865351577653913778"
] |
[
"nonn"
] | 31 | 0 | 2 |
[
"A094419",
"A346985",
"A354252",
"A365555",
"A365556",
"A365557"
] | null |
Seiichi Manyama, Sep 09 2023
| 2024-06-21T18:37:16 |
oeisdata/seq/A365/A365555.seq
|
6f3cfa0e52945ce746d539c18eb4b3b2
|
A365556
|
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(2/3).
|
[
"1",
"4",
"44",
"764",
"18204",
"551644",
"20291804",
"877970524",
"43680345564",
"2456429581404",
"154072160204764",
"10663000409493084",
"807124301044917724",
"66329628496719183964",
"5881222650127663682524",
"559616682597652939940444",
"56879286407092006924382684"
] |
[
"nonn"
] | 24 | 0 | 2 |
[
"A094419",
"A346985",
"A354252",
"A365555",
"A365556",
"A365557"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-17T11:20:24 |
oeisdata/seq/A365/A365556.seq
|
c1f1a15795f9bc5cbfdc4bf420f665a1
|
A365557
|
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(5/6).
|
[
"1",
"5",
"60",
"1105",
"27505",
"862900",
"32665935",
"1448431605",
"73618245530",
"4219213176975",
"269178309769385",
"18919087590749230",
"1452439246800583805",
"120926788470961893425",
"10852505784073190637460",
"1044349665968997385498605",
"107273533723839304683589205"
] |
[
"nonn"
] | 24 | 0 | 2 |
[
"A094419",
"A346985",
"A354252",
"A365555",
"A365556",
"A365557"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-17T11:20:29 |
oeisdata/seq/A365/A365557.seq
|
fbfdf2b08904c6b8ca1f5ea936b71013
|
A365558
|
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(2/3).
|
[
"1",
"2",
"12",
"112",
"1432",
"23272",
"458952",
"10644552",
"283851272",
"8555351112",
"287585280392",
"10666369505992",
"432674936431112",
"19054822031194952",
"905387807689821832",
"46166008179076287432",
"2514469578906179506952",
"145691888630159515550792"
] |
[
"nonn"
] | 18 | 0 | 2 |
[
"A032033",
"A346982",
"A365558"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-16T11:50:11 |
oeisdata/seq/A365/A365558.seq
|
0024d7310964043616abd3dc9c3847d2
|
A365559
|
Number of free n-polysticks (or polyedges) in 3 dimensions.
|
[
"1",
"2",
"7",
"28",
"160",
"1085",
"8403",
"69824",
"607988",
"5448444",
"49846437",
"462977928"
] |
[
"nonn",
"hard",
"more"
] | 17 | 1 | 2 |
[
"A019988",
"A365559",
"A365560",
"A365561",
"A365563",
"A365565",
"A365566",
"A366766"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2025-03-09T13:04:07 |
oeisdata/seq/A365/A365559.seq
|
ca9e81d550c54c8a8394b2ab2de01dd8
|
A365560
|
Number of fixed n-polysticks (or polyedges) in 3 dimensions.
|
[
"3",
"15",
"95",
"681",
"5277",
"43086",
"365313",
"3186444",
"28414802",
"257908020",
"2375037477",
"22136623447",
"208438845633",
"1979867655945",
"18948498050586",
"182549617674339",
"1768943859449895",
"17230208981859485"
] |
[
"nonn",
"hard",
"more"
] | 21 | 1 | 1 |
[
"A096267",
"A365559",
"A365560",
"A365562",
"A365564",
"A366767"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2025-06-27T19:40:42 |
oeisdata/seq/A365/A365560.seq
|
e11374b961a413bf1564e770a49df5df
|
A365561
|
Number of free n-polysticks (or polyedges) in 4 dimensions.
|
[
"1",
"2",
"7",
"31",
"199",
"1651",
"16648"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 2 |
[
"A019988",
"A365559",
"A365561",
"A365562",
"A365563",
"A365565",
"A365566",
"A366766"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2023-11-03T17:01:35 |
oeisdata/seq/A365/A365561.seq
|
81888402e6e0a26973fe1483121adb81
|
A365562
|
Number of fixed n-polysticks (or polyedges) in 4 dimensions.
|
[
"4",
"28",
"252",
"2600",
"29248",
"349132",
"4351944",
"56062681",
"741132648",
"10003860384",
"137367013012",
"1913480724898",
"26980497086268",
"384428067086544",
"5527398761722192"
] |
[
"nonn",
"hard",
"more"
] | 13 | 1 | 1 |
[
"A096267",
"A365560",
"A365561",
"A365562",
"A365564",
"A366767"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2025-06-30T01:23:41 |
oeisdata/seq/A365/A365562.seq
|
b68c32c42ebdd180701ad6b22956a84e
|
A365563
|
Number of free n-polysticks (or polyedges) in 5 dimensions.
|
[
"1",
"2",
"7",
"31",
"205",
"1768"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 2 |
[
"A019988",
"A365559",
"A365561",
"A365563",
"A365564",
"A365565",
"A365566",
"A366766"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2023-11-11T08:50:09 |
oeisdata/seq/A365/A365563.seq
|
b2bdc053905c040a3c943d1559151a5b
|
A365564
|
Number of fixed n-polysticks (or polyedges) in 5 dimensions.
|
[
"5",
"45",
"525",
"7065",
"104097",
"1632915",
"26817465",
"456137580",
"7975932715",
"142619162000",
"2597695379665",
"48053332283700",
"900703198101845"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 1 |
[
"A096267",
"A365560",
"A365562",
"A365563",
"A365564"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2025-06-30T01:24:01 |
oeisdata/seq/A365/A365564.seq
|
ce3a99a988d05c71fd3604cd9c5de504
|
A365565
|
Number of free n-polysticks (or polyedges) in arbitrary dimension.
|
[
"1",
"2",
"7",
"31",
"205",
"1779"
] |
[
"nonn",
"hard",
"more"
] | 4 | 1 | 2 |
[
"A005519",
"A019988",
"A365559",
"A365561",
"A365563",
"A365565",
"A365566"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2023-09-09T11:25:59 |
oeisdata/seq/A365/A365565.seq
|
ba0d5fb8b1a92fbac76bf18a0f13bd77
|
A365566
|
Triangle read by rows: T(n,d) is the number of inequivalent properly d-dimensional n-polysticks (or polyedges), 1 <= d <= n.
|
[
"1",
"1",
"1",
"1",
"4",
"2",
"1",
"15",
"12",
"3",
"1",
"54",
"105",
"39",
"6",
"1",
"221",
"863",
"566",
"117",
"11"
] |
[
"nonn",
"tabl",
"hard",
"more",
"changed"
] | 8 | 1 | 5 |
[
"A000055",
"A049430",
"A365565",
"A365566",
"A385582",
"A385583"
] | null |
Pontus von Brömssen, Sep 09 2023
| 2025-07-17T22:54:10 |
oeisdata/seq/A365/A365566.seq
|
d02417efa45bebd62c4c9c31cee38c35
|
A365567
|
Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(3/4).
|
[
"1",
"3",
"24",
"297",
"5001",
"106578",
"2748399",
"83182347",
"2890153626",
"113364686403",
"4954547485149",
"238734066994272",
"12573018414279501",
"718498413957515103",
"44278797576715884024",
"2927171415480872824197",
"206625238881832412874501",
"15511299587628626891270178"
] |
[
"nonn"
] | 19 | 0 | 2 |
[
"A094417",
"A346983",
"A354242",
"A365567"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-16T11:50:23 |
oeisdata/seq/A365/A365567.seq
|
7238fdcbffe832634de2b9ec55e25b57
|
A365568
|
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(2/5).
|
[
"1",
"2",
"16",
"212",
"3964",
"95804",
"2840140",
"99760124",
"4050900268",
"186700658972",
"9628444876108",
"549349531209404",
"34355463031007596",
"2336935606239856988",
"171779270567736231052",
"13568895740353218626300",
"1146225546710339427328684",
"103113032296428007394503580"
] |
[
"nonn"
] | 19 | 0 | 2 |
[
"A094418",
"A346984",
"A365568",
"A365569",
"A365570"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-16T11:51:02 |
oeisdata/seq/A365/A365568.seq
|
99f3483ed12581e84d3c0dee60acdcbc
|
A365569
|
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(3/5).
|
[
"1",
"3",
"27",
"387",
"7659",
"193491",
"5948091",
"215446563",
"8984708235",
"423944899443",
"22328393101659",
"1298429924941251",
"82625791930962219",
"5711012035686681363",
"426058604580805219323",
"34121803137713388036963",
"2919847869159667841599947",
"265868538017899566748612275"
] |
[
"nonn"
] | 20 | 0 | 2 |
[
"A094418",
"A346984",
"A365568",
"A365569",
"A365570"
] | null |
Seiichi Manyama, Sep 09 2023
| 2024-11-03T11:28:11 |
oeisdata/seq/A365/A365569.seq
|
06818e9cf5b47ddb30bdc5d01a3dd698
|
A365570
|
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(4/5).
|
[
"1",
"4",
"40",
"616",
"12856",
"338728",
"10781176",
"402250216",
"17213590840",
"831013114792",
"44675458306168",
"2646758624166760",
"171319908334752184",
"12028779733435667752",
"910538645035885918456",
"73918475291961325824232",
"6406179168820339231897144"
] |
[
"nonn"
] | 18 | 0 | 2 |
[
"A094418",
"A346984",
"A365568",
"A365569",
"A365570"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-16T11:51:27 |
oeisdata/seq/A365/A365570.seq
|
f0e2a6fce6386759f5f2925bac95296c
|
A365571
|
Number of total dominating sets in the n-Pell graph.
|
[
"0",
"1",
"12",
"1020",
"95379792",
"114938420132076398539"
] |
[
"nonn",
"more"
] | 9 | 0 | 3 |
[
"A365091",
"A365571",
"A379571",
"A382548"
] | null |
Eric W. Weisstein, Sep 09 2023
| 2025-06-12T03:41:38 |
oeisdata/seq/A365/A365571.seq
|
585b19a25d0e03d58ce0dfdd0e4d4a08
|
A365572
|
Number of total dominating sets in the n-Lucas cube graph.
|
[
"0",
"3",
"7",
"45",
"473",
"51200",
"87877088"
] |
[
"nonn",
"more"
] | 5 | 1 | 2 | null | null |
Eric W. Weisstein, Sep 09 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365572.seq
|
c7d35ae6d3f52e50a6a8f93263e7ebab
|
A365573
|
Number of primes between prime(n) and prime(n)+log(prime(n)), exclusive.
|
[
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"2",
"2",
"1",
"0",
"0",
"1",
"0",
"1"
] |
[
"nonn"
] | 6 | 1 | 88 |
[
"A068985",
"A275235",
"A354841",
"A365573"
] | null |
Alain Rocchelli, Sep 09 2023
| 2023-09-27T13:43:32 |
oeisdata/seq/A365/A365573.seq
|
609b2b6ef1205ef488fc5cf1ff640a35
|
A365574
|
Expansion of g.f. A(x) satisfying [x^(n-1)] (1 + (n+1)*x*A(x))^n / A(x)^n = n*(n+2)^(n-2) for n > 1.
|
[
"1",
"2",
"3",
"4",
"16",
"104",
"515",
"2090",
"8170",
"34704",
"160014",
"751282",
"3479758",
"16012684",
"74362915",
"350282602",
"1665651094",
"7952638460",
"38067823370",
"182874936368",
"882344022104",
"4274341269824",
"20773195676078",
"101228332620524",
"494521566769160",
"2421729829067636",
"11886902458813596"
] |
[
"nonn"
] | 23 | 0 | 2 |
[
"A303063",
"A365095",
"A365516",
"A365574"
] | null |
Paul D. Hanna, Sep 11 2023
| 2023-10-07T22:23:46 |
oeisdata/seq/A365/A365574.seq
|
4602f7784a127b835f76deefd6bd35b1
|
A365575
|
Expansion of e.g.f. 1 / (1 + 3 * log(1-x))^(2/3).
|
[
"1",
"2",
"12",
"114",
"1482",
"24468",
"490020",
"11538840",
"312363720",
"9556741440",
"326076452640",
"12275391192480",
"505400508041760",
"22590511357965120",
"1089423938332883520",
"56379459359942190720",
"3116574045158647605120",
"183271869976364873222400"
] |
[
"nonn"
] | 14 | 0 | 2 |
[
"A347015",
"A354263",
"A365575"
] | null |
Seiichi Manyama, Sep 09 2023
| 2023-11-11T05:35:52 |
oeisdata/seq/A365/A365575.seq
|
cc10f289879d6b66e9e1a6dcdb798c7c
|
A365576
|
a(1)=2; thereafter a(n) is the number of strongly connected components in the digraph of the sequence thus far, where jumps from location i to i+-a(i) are permitted (within 1..n-1).
|
[
"2",
"1",
"2",
"2",
"3",
"2",
"2",
"3",
"3",
"4",
"5",
"4",
"5",
"6",
"7",
"8",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"27",
"28",
"29",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"50",
"51",
"52",
"53"
] |
[
"nonn"
] | 33 | 1 | 1 |
[
"A360744",
"A362248",
"A364392",
"A364882",
"A365576"
] | null |
Neal Gersh Tolunsky, Sep 09 2023
| 2023-09-20T10:00:03 |
oeisdata/seq/A365/A365576.seq
|
bf1e2d9d4d35ee883e4e1428f0e1162f
|
A365577
|
Sequence of the short legs of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its short leg the sum of the legs of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.
|
[
"3",
"7",
"31",
"511",
"131071",
"8589934591",
"36893488147419103231",
"680564733841876926926749214863536422911",
"231584178474632390847141970017375815706539969331281128078915168015826259279871"
] |
[
"nonn",
"changed"
] | 76 | 1 | 1 |
[
"A365577",
"A385972",
"A385973"
] | null |
Miguel-Ángel Pérez García-Ortega, Sep 20 2023
| 2025-07-14T10:03:27 |
oeisdata/seq/A365/A365577.seq
|
1c8f53b4ea2a49e5ba612fcf9697d5dd
|
A365579
|
Number of dominating sets in the n-Pell graph.
|
[
"1",
"3",
"19",
"2133",
"222368133",
"357428378648758026479"
] |
[
"nonn",
"more"
] | 10 | 0 | 2 |
[
"A365571",
"A365579",
"A381557",
"A381789"
] | null |
Eric W. Weisstein, Sep 10 2023
| 2025-06-12T03:41:43 |
oeisdata/seq/A365/A365579.seq
|
d8463035c6261931c9f3996a15ef0188
|
A365580
|
Number of dominating sets in the n-Lucas cube graph
|
[
"1",
"5",
"9",
"73",
"1015",
"117147",
"215629181"
] |
[
"nonn",
"more"
] | 6 | 1 | 2 | null | null |
Eric W. Weisstein, Sep 10 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365580.seq
|
8c797c51fb587b9e510b468d6e8cc274
|
A365581
|
Number of dominating sets in the n-double cone graph.
|
[
"113",
"377",
"1465",
"5617",
"21425",
"82697",
"320225",
"1244825",
"4858529",
"19024217",
"74709913",
"294150497",
"1160734753",
"4589261321",
"18175460993",
"72087537961",
"286271974993",
"1138057489337",
"4528446220985",
"18033325101905",
"71861106931793",
"286523603727881",
"1142979289706465"
] |
[
"nonn"
] | 16 | 3 | 1 | null | null |
Eric W. Weisstein, Sep 10 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365581.seq
|
fe3835434048444fb9cca2aa50a13424
|
A365582
|
a(n) is the number at the third vertex of an equilateral triangle whose first and second vertices are at the numbers 1 and n, respectively, on a triangular array of integers.
|
[
"1",
"0",
"2",
"-1",
"1",
"4",
"-2",
"0",
"3",
"7",
"-3",
"-1",
"2",
"6",
"11",
"-4",
"-2",
"1",
"5",
"10",
"16",
"-5",
"-3",
"0",
"4",
"9",
"15",
"22",
"-6",
"-4",
"-1",
"3",
"8",
"14",
"21",
"29",
"-7",
"-5",
"-2",
"2",
"7",
"13",
"20",
"28",
"37",
"-8",
"-6",
"-3",
"1",
"6",
"12",
"19",
"27",
"36",
"46",
"-9",
"-7",
"-4",
"0",
"5",
"11",
"18",
"26",
"35",
"45",
"56",
"-10",
"-8",
"-5",
"-1",
"4",
"10",
"17",
"25",
"34",
"44",
"55",
"67"
] |
[
"sign"
] | 62 | 1 | 3 |
[
"A002024",
"A365582"
] | null |
Robert J. Fortier, Sep 20 2023
| 2023-10-22T17:10:05 |
oeisdata/seq/A365/A365582.seq
|
f2ce5ed3cb0d1074f15fa734d58154c8
|
A365583
|
Numbers k with property that k can be represented by the digits present in k using the operations specified in the comment, and requiring fewer digits than the number of digits in k.
|
[
"1024",
"1253",
"1287",
"1296",
"1331",
"2048",
"2163",
"2187",
"2435",
"2500",
"2564",
"2568",
"2916",
"3025",
"3125",
"3216",
"3375",
"3437",
"3645",
"3729",
"4088",
"4096",
"4256",
"4375",
"4625",
"5129",
"5243",
"6250",
"6254",
"7128",
"7293",
"7343",
"7776",
"8256",
"9025",
"9216",
"9375",
"9512",
"10003",
"10004"
] |
[
"nonn",
"base"
] | 30 | 1 | 1 |
[
"A043537",
"A362769",
"A365583"
] | null |
Valentin Miakinen, Walter Robinson, Sep 20 2023
| 2023-10-14T19:51:18 |
oeisdata/seq/A365/A365583.seq
|
4075eb27ed451a6c7a3d99561918ab44
|
A365584
|
Expansion of e.g.f. 1 / (1 + 4 * log(1-x))^(3/4).
|
[
"1",
"3",
"24",
"300",
"5100",
"109692",
"2854344",
"87164088",
"3055516800",
"120916282368",
"5331444120576",
"259168711406976",
"13769882994784896",
"793844510730348672",
"49353915922852214016",
"3291455140392403401984",
"234388011123877880424960",
"17750517946502792294592000"
] |
[
"nonn"
] | 14 | 0 | 2 |
[
"A347016",
"A354241",
"A354264",
"A365567",
"A365584"
] | null |
Seiichi Manyama, Sep 10 2023
| 2023-11-11T05:04:16 |
oeisdata/seq/A365/A365584.seq
|
06ec408fc9ac142f5b4450e306d81c15
|
A365585
|
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).
|
[
"1",
"2",
"16",
"214",
"4030",
"98020",
"2923580",
"103306320",
"4219788720",
"195631761360",
"10148327972160",
"582405469831920",
"36635844203963760",
"2506613821744700640",
"185327181909308762400",
"14724431257109269113600",
"1251088847268683450630400",
"113202071235423519573369600"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A346987",
"A365568",
"A365585",
"A365586",
"A365587",
"A365588"
] | null |
Seiichi Manyama, Sep 10 2023
| 2023-09-11T01:46:06 |
oeisdata/seq/A365/A365585.seq
|
f3ffb7e1b39ad890bdd2e9d562f01f24
|
A365586
|
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5).
|
[
"1",
"3",
"27",
"390",
"7770",
"197520",
"6108720",
"222585360",
"9337369920",
"443180705520",
"23478556469040",
"1373311758143520",
"87902002849402080",
"6111187336982764800",
"458573390187299798400",
"36939974397639066086400",
"3179423992959428231894400",
"291190738388834303603395200"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A346987",
"A365569",
"A365585",
"A365586",
"A365587",
"A365588"
] | null |
Seiichi Manyama, Sep 10 2023
| 2023-09-13T02:10:19 |
oeisdata/seq/A365/A365586.seq
|
9132195ad268a0bd1d31b597a8ba3636
|
A365587
|
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).
|
[
"1",
"4",
"40",
"620",
"13020",
"345120",
"11049960",
"414711720",
"17851113720",
"866838536640",
"46873882199520",
"2793214943693280",
"181854240448514400",
"12842833148474299200",
"977822088984613771200",
"79842750450344086867200",
"6959878576257689846265600"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A346987",
"A365570",
"A365585",
"A365586",
"A365587",
"A365588"
] | null |
Seiichi Manyama, Sep 10 2023
| 2023-09-13T02:10:32 |
oeisdata/seq/A365/A365587.seq
|
08054c73b4f3206239a1dec05f1e018d
|
A365588
|
Expansion of e.g.f. 1 / (1 + 5 * log(1-x)).
|
[
"1",
"5",
"55",
"910",
"20080",
"553870",
"18333050",
"707959800",
"31244562600",
"1551289408800",
"85579293493200",
"5193226343508000",
"343790892166398000",
"24655487205067386000",
"1904221630155352038000",
"157574022827034258192000",
"13908505761692419540320000"
] |
[
"nonn"
] | 22 | 0 | 2 |
[
"A094418",
"A320079",
"A346987",
"A365585",
"A365586",
"A365587",
"A365588"
] | null |
Seiichi Manyama, Sep 10 2023
| 2023-11-11T05:09:21 |
oeisdata/seq/A365/A365588.seq
|
63a853fd29611225254d8aa55e198352
|
A365589
|
Numbers that have at least one prime digit and at least one nonprime digit.
|
[
"12",
"13",
"15",
"17",
"20",
"21",
"24",
"26",
"28",
"29",
"30",
"31",
"34",
"36",
"38",
"39",
"42",
"43",
"45",
"47",
"50",
"51",
"54",
"56",
"58",
"59",
"62",
"63",
"65",
"67",
"70",
"71",
"74",
"76",
"78",
"79",
"82",
"83",
"85",
"87",
"92",
"93",
"95",
"97",
"102",
"103",
"105",
"107",
"112",
"113",
"115",
"117",
"120",
"121",
"122",
"123",
"124",
"125",
"126",
"127",
"128",
"129",
"130",
"131",
"132"
] |
[
"nonn",
"base"
] | 40 | 1 | 1 |
[
"A085556",
"A118950",
"A365472",
"A365589"
] | null |
James C. McMahon, Sep 10 2023
| 2023-10-22T22:58:51 |
oeisdata/seq/A365/A365589.seq
|
cdecb3cfe9d273a41116cfbd7c789f7d
|
A365590
|
Number of n X n Boolean relation matrices such that each of the diagonal blocks of its Frobenius normal form is either a 1 block or a 0 block.
|
[
"1",
"2",
"13",
"243",
"11998",
"1477763",
"436610299",
"300960642300",
"474171878424571",
"1680899431189662775",
"13241419272545722904788",
"229482664065433754849099977",
"8677282817864146616211588609715",
"710901968198799834001047038898570250"
] |
[
"nonn"
] | 16 | 0 | 2 |
[
"A355612",
"A365534",
"A365590",
"A365593"
] | null |
Geoffrey Critzer, Sep 10 2023
| 2023-09-11T11:24:57 |
oeisdata/seq/A365/A365590.seq
|
9d3181d1065b90a0a7e84d0536382221
|
A365591
|
Numbers k such that Sum_{i=1..k} prime(i) + i is prime.
|
[
"1",
"5",
"8",
"17",
"28",
"33",
"40",
"41",
"49",
"52",
"64",
"65",
"69",
"77",
"92",
"93",
"108",
"109",
"120",
"121",
"136",
"137",
"140",
"144",
"165",
"200",
"201",
"204",
"225",
"229",
"265",
"269",
"272",
"280",
"292",
"312",
"325",
"332",
"337",
"344",
"356",
"361",
"369",
"376",
"388",
"457",
"464",
"473",
"480",
"529",
"541",
"548",
"553",
"556",
"573",
"577"
] |
[
"nonn",
"easy"
] | 40 | 1 | 2 |
[
"A000217",
"A007504",
"A014688",
"A365591"
] | null |
Saish S. Kambali, Sep 10 2023
| 2023-09-17T06:11:54 |
oeisdata/seq/A365/A365591.seq
|
3c766ac49cfa910b112f02adec4f7830
|
A365592
|
Near-repdigit primes with at least two 1's as the repeated digit.
|
[
"113",
"1117",
"11113",
"11117",
"11119",
"111119",
"11111117",
"11111119",
"111111113",
"11111111113",
"11111111111111119",
"1111111111111111111",
"11111111111111111111111",
"11111111111111111111117",
"111111111111111111111113",
"11111111111111111111111111117"
] |
[
"base",
"nonn"
] | 15 | 1 | 1 |
[
"A105976",
"A105978",
"A105980",
"A105982",
"A107979",
"A365592",
"A365596",
"A365597",
"A365598"
] | null |
Robert Price, Sep 10 2023
| 2023-09-11T11:52:48 |
oeisdata/seq/A365/A365592.seq
|
35bac7c6cc8b8ff2e4bdea3a59ce3070
|
A365593
|
Number of n X n Boolean relation matrices such that every block of its Frobenius normal form is either a 0 block or a 1 block.
|
[
"1",
"2",
"13",
"219",
"9322",
"982243",
"249233239",
"148346645212",
"202688186994599",
"624913864623500599",
"4289324010827093793808",
"64841661094150427710360745",
"2140002760057211517052090865983",
"153082134018816602622335941790247946",
"23590554099141037133024176892280338280237"
] |
[
"nonn"
] | 22 | 0 | 2 |
[
"A003024",
"A355612",
"A365534",
"A365590",
"A365593",
"A366141"
] | null |
Geoffrey Critzer, Sep 10 2023
| 2023-09-30T21:46:16 |
oeisdata/seq/A365/A365593.seq
|
b881f0bcad220c6014fd070df5672535
|
A365594
|
The denominators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.
|
[
"3",
"42",
"154",
"3817",
"1141283",
"119706444",
"1396550916",
"20958700652",
"2359646218028",
"324742403298918",
"107268957934572210",
"41877140987048387615",
"19073758392921536694655",
"10024177256513161424322680",
"376301673554116445531842536",
"10673126660749797308728534491"
] |
[
"nonn",
"frac"
] | 48 | 1 | 1 |
[
"A068985",
"A323339",
"A323340",
"A365594",
"A365595"
] | null |
Raul Prisacariu, Sep 10 2023
| 2025-04-13T07:11:29 |
oeisdata/seq/A365/A365594.seq
|
953b62fd856b09b0817d77cd10e13fd6
|
A365595
|
The numerators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.
|
[
"1",
"1",
"1",
"9",
"1126",
"53825",
"302989",
"2285199",
"133296721",
"9731109349",
"1737376806937",
"372236638394027",
"94229801087550639",
"27818002500902930641",
"591930814558449521261",
"9591188150350759241842",
"2816408483135723327055984",
"1394771058490469072473603553",
"385768133102988434073147277769"
] |
[
"nonn",
"frac"
] | 40 | 1 | 4 |
[
"A068985",
"A323339",
"A323340",
"A365594",
"A365595"
] | null |
Raul Prisacariu, Sep 10 2023
| 2025-04-13T07:11:24 |
oeisdata/seq/A365/A365595.seq
|
4047ec380bd5b828bf08fc8944854bcd
|
A365596
|
Near-repdigit primes with at least two 3's as the repeated digit.
|
[
"331",
"337",
"3331",
"33331",
"333331",
"333337",
"3333331",
"33333331",
"333333333333333331",
"3333333333333333333333333333333333333331",
"3333333333333333333333333333333333333333333337",
"33333333333333333333333333333333333333333333333331"
] |
[
"base",
"nonn"
] | 15 | 1 | 1 |
[
"A105976",
"A105978",
"A105979",
"A105980",
"A105982",
"A365592",
"A365596",
"A365597",
"A365598"
] | null |
Robert Price, Sep 10 2023
| 2023-09-11T11:53:42 |
oeisdata/seq/A365/A365596.seq
|
0d8857d2d304c89bea1f931a7a074d27
|
A365597
|
Near-repdigit primes with at least two 7's as the repeated digit.
|
[
"773",
"77773",
"777777773",
"777777777773",
"7777777777771",
"777777777777773",
"77777777777777777771",
"777777777777777777773",
"77777777777777777777771",
"7777777777777777777777777777771"
] |
[
"base",
"nonn"
] | 14 | 1 | 1 |
[
"A105976",
"A105978",
"A105979",
"A105980",
"A105982",
"A365592",
"A365596",
"A365597",
"A365598"
] | null |
Robert Price, Sep 10 2023
| 2023-09-11T11:53:02 |
oeisdata/seq/A365/A365597.seq
|
cb8ecd14131e76d81e1affb401ea086c
|
A365598
|
Near-repdigit primes with at least two 9's as the repeated digit, and ending in a distinct digit.
|
[
"991",
"997",
"99991",
"9999991",
"99999999999999997",
"999999999999999999999999999999991",
"999999999999999999999999999999999999999999991"
] |
[
"base",
"nonn"
] | 24 | 1 | 1 |
[
"A105975",
"A105976",
"A105978",
"A105979",
"A105980",
"A105982",
"A365592",
"A365596",
"A365597",
"A365598"
] | null |
Robert Price, Sep 10 2023
| 2025-06-21T20:00:46 |
oeisdata/seq/A365/A365598.seq
|
4229b503966c62f3b2b6beb52d117c53
|
A365599
|
Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(2/3).
|
[
"1",
"2",
"8",
"54",
"498",
"5868",
"83940",
"1413480",
"27375240",
"599437440",
"14641665120",
"394657325280",
"11635613604000",
"372469741813440",
"12864889063033920",
"476870475257550720",
"18882021780125953920",
"795381867831610978560",
"35515223076159203880960"
] |
[
"nonn"
] | 15 | 0 | 2 |
[
"A335531",
"A347020",
"A365575",
"A365599"
] | null |
Seiichi Manyama, Sep 11 2023
| 2023-11-11T05:42:20 |
oeisdata/seq/A365/A365599.seq
|
61871f42f03dd63a3ccb4b5212ca9219
|
A365600
|
Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(3/4).
|
[
"1",
"3",
"18",
"174",
"2292",
"38292",
"774624",
"18399840",
"501868416",
"15456483840",
"530462128896",
"20073406663296",
"830293158570624",
"37267057695192192",
"1803930663341528064",
"93672204405378891264",
"5193925606670524254720",
"306280622206497897745920"
] |
[
"nonn"
] | 13 | 0 | 2 |
[
"A347021",
"A354147",
"A354240",
"A365584",
"A365600"
] | null |
Seiichi Manyama, Sep 11 2023
| 2023-11-10T08:04:08 |
oeisdata/seq/A365/A365600.seq
|
a16d15e8581be871e8bb9e4a8b54412b
|
A365601
|
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(2/5).
|
[
"1",
"2",
"12",
"130",
"1990",
"39500",
"962540",
"27807120",
"928991280",
"35233882320",
"1495508048160",
"70233555485520",
"3615667144284720",
"202470393271792800",
"12252576455326384800",
"796817209624497196800",
"55418456683474326892800",
"4104671046431448576787200"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A347022",
"A365585",
"A365601",
"A365602",
"A365603",
"A365604"
] | null |
Seiichi Manyama, Sep 11 2023
| 2023-09-13T02:12:51 |
oeisdata/seq/A365/A365601.seq
|
23e3e7e45972be6f768bfc0581c9b064
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.