sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A365501
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared whose binary string value contains all the binary distinct prime factors of a(n-1). Overlapping factor strings is allowed.
[ "1", "2", "4", "5", "10", "11", "22", "23", "46", "47", "94", "95", "77", "55", "27", "3", "6", "12", "13", "26", "29", "58", "59", "118", "119", "71", "142", "143", "45", "43", "86", "87", "61", "122", "123", "83", "166", "167", "334", "335", "269", "538", "539", "92", "93", "31", "62", "124", "125", "20", "21", "7", "14", "28", "30", "44", "54", "19", "38", "39", "52", "53", "106", "107", "214", "215", "171", "51", "35", "110", "75" ]
[ "nonn", "base" ]
8
1
2
[ "A027748", "A064413", "A365500", "A365501", "A365703" ]
null
Scott R. Shannon, Sep 06 2023
2023-10-07T23:52:50
oeisdata/seq/A365/A365501.seq
dae6055116c03773d829c29d907083d8
A365502
In the Collatz problem, total stopping times for iteration of the 3x+1 function corresponding to the starting points given by A248037.
[ "1", "5", "11", "13", "70", "278", "319", "329", "349", "374", "384", "416", "429", "592", "966", "1134", "1404" ]
[ "nonn", "hard", "more" ]
10
1
2
[ "A006666", "A014682", "A248037", "A365502", "A365503" ]
null
Paolo Xausa, Sep 06 2023
2023-09-25T09:04:39
oeisdata/seq/A365/A365502.seq
5c00f6b702e9437c54f1d5d260c343d5
A365503
In the Collatz (3x+1) problem, number of odd iterates before reaching 1 corresponding to the starting points given by A248037.
[ "0", "2", "5", "6", "41", "164", "189", "195", "207", "222", "228", "248", "256", "357", "583", "686", "850" ]
[ "nonn", "hard", "more" ]
7
1
2
[ "A006667", "A014682", "A248037", "A365502", "A365503" ]
null
Paolo Xausa, Sep 06 2023
2023-09-25T09:04:47
oeisdata/seq/A365/A365503.seq
9f05b0a5b507c3a70dc1e649d61d7d00
A365504
a(n) is the least integer that can be expressed as the sum of a prime number and the n-th power of a nonnegative integer in exactly n ways, or -1 if no such integer exists.
[ "2", "3", "67", "1298", "254179" ]
[ "nonn", "more" ]
6
1
1
[ "A365288", "A365289", "A365291", "A365504", "A365505" ]
null
Ilya Gutkovskiy, Sep 07 2023
2023-09-25T09:06:55
oeisdata/seq/A365/A365504.seq
d9d0e022af9db0c38cac5fbf5ef44027
A365505
a(n) is the least integer that can be expressed as the sum of a prime number and the n-th power of a positive integer in exactly n ways, or -1 if no such integer exists.
[ "3", "6", "128", "1298", "375534" ]
[ "nonn", "more" ]
5
1
1
[ "A064283", "A365290", "A365292", "A365504", "A365505" ]
null
Ilya Gutkovskiy, Sep 07 2023
2023-09-25T09:07:04
oeisdata/seq/A365/A365505.seq
3db0e5d055d1d9173b69453cc5f0e3ac
A365506
a(n) is the smallest perfect power that can be represented as the sum of n distinct perfect powers in exactly n ways, or -1 if no such number exists.
[ "1", "36", "125", "81", "128" ]
[ "nonn", "more" ]
7
1
2
[ "A001597", "A363040", "A365506" ]
null
Ilya Gutkovskiy, Sep 07 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365506.seq
43d294b4a3d69cc684cae31c6099a66d
A365507
a(n) is the least positive integer that can be expressed as the sum of one or more consecutive n-almost primes in exactly n ways, or -1 if no such integer exists.
[ "2", "10", "105", "2410", "45010", "708408" ]
[ "nonn", "more" ]
6
1
1
[ "A054859", "A091538", "A186337", "A365507" ]
null
Ilya Gutkovskiy, Sep 07 2023
2023-09-25T09:07:25
oeisdata/seq/A365/A365507.seq
f9f60beb4615ae128f4181e1e5fa517d
A365508
Number of n-vertex binary trees that do not contain 0[0(0[0(00)])] as a subtree.
[ "1", "2", "5", "14", "41", "123", "375", "1157", "3603", "11304", "35683", "113219", "360805", "1154140" ]
[ "nonn", "more" ]
28
1
2
[ "A007051", "A036766", "A365508", "A365509", "A365510" ]
null
Torsten Muetze, Sep 07 2023
2023-12-08T12:29:34
oeisdata/seq/A365/A365508.seq
546c8353883290c37395e82062d35017
A365509
Number of n-vertex binary trees that do not contain 0(0[0(0(00))]) as a subtree.
[ "1", "2", "5", "14", "41", "124", "383", "1202", "3819", "12255", "39651", "129190", "423469", "1395425" ]
[ "nonn", "more" ]
24
1
2
[ "A007051", "A036766", "A365508", "A365509", "A365510" ]
null
Torsten Muetze, Sep 07 2023
2023-12-08T12:29:41
oeisdata/seq/A365/A365509.seq
283504585404fb6b97cca55f065f0f79
A365510
Number of n-vertex binary trees that do not contain 0((00)[0(00)]) as a subtree.
[ "1", "2", "5", "14", "41", "123", "376", "1168", "3678", "11716", "37688", "122261", "399533", "1314023" ]
[ "nonn", "more" ]
20
1
2
[ "A007051", "A159768", "A365508", "A365509", "A365510" ]
null
Torsten Muetze, Sep 07 2023
2023-12-08T12:29:38
oeisdata/seq/A365/A365510.seq
d38d6e5c750f280c5787cbdd9c231f41
A365511
Number of ways to travel from (0,0,0) to (2*n,2*n,2*n) with n positive integer steps in each direction, changing directions at each step.
[ "1", "6", "810", "174000", "46819500", "14378702688", "4817350825056", "1716615248325120", "640480159385995500", "247630745402467284000", "98500241916182188189536", "40099260132768751505660160", "16642069286080355216946537600", "7020218653006514588616480000000", "3002947242700351209440983200000000" ]
[ "nonn" ]
9
0
2
[ "A088218", "A110706", "A365511" ]
null
Greg Dresden and Snezhana Tuneska, Sep 07 2023
2023-09-30T21:47:08
oeisdata/seq/A365/A365511.seq
641f61a5080a44beb21a9ba90ea42596
A365512
a(n) is the least odd prime p such that A000120(n*p) = A000120(n) * A000120(p).
[ "3", "3", "5", "3", "3", "5", "17", "3", "3", "3", "17", "5", "17", "17", "17", "3", "3", "3", "5", "3", "3", "17", "257", "5", "5", "17", "257", "17", "257", "17", "257", "3", "3", "3", "5", "3", "3", "5", "257", "3", "3", "3", "257", "17", "17", "257", "257", "5", "5", "5", "5", "17", "257", "257", "257", "17", "257", "257", "257", "17", "257", "257", "257", "3", "3", "3", "5", "3", "3", "5", "257", "3", "3", "3", "17", "5", "257", "257", "257", "3" ]
[ "nonn", "base" ]
19
1
1
[ "A000120", "A070939", "A365475", "A365512" ]
null
Robert Israel, Sep 07 2023
2023-09-08T07:09:51
oeisdata/seq/A365/A365512.seq
0b937e6827477bebecf23a510de2d5b2
A365513
Lexicographically earliest permutation of the nonnegative integers with the property that the successive sizes of the gaps between nonprime terms and the successive sizes of the gaps between nonprime digits show the same pattern.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "11", "15", "16", "18", "20", "21", "13", "22", "24", "25", "26", "17", "27", "19", "28", "30", "23", "29", "31", "37", "32", "41", "43", "47", "33", "34", "53", "59", "61", "35", "36", "67", "38", "71", "39", "73", "79", "83", "40", "89", "42", "97", "101", "103", "107", "44", "45", "46", "109", "48" ]
[ "base", "nonn" ]
18
1
3
[ "A284516", "A365513" ]
null
Eric Angelini, Sep 07 2023
2024-12-21T21:18:12
oeisdata/seq/A365/A365513.seq
5d1a284936379798abd9840081cec5f0
A365514
Lucas-V pseudoprimes: composites c such that V_{c+1} == 2Q (mod c), where V_k is a Lucas sequence with parameters P and Q.
[ "913", "150267335403", "430558874533", "14760229232131", "936916995253453" ]
[ "nonn", "hard", "more" ]
9
1
1
[ "A217120", "A365514" ]
null
Felix Fröhlich, Sep 07 2023
2023-09-25T09:44:47
oeisdata/seq/A365/A365514.seq
931569ca47a827631d0dcae3c330f15c
A365515
Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence starting from 0.
[ "0", "0", "1", "0", "1", "2", "0", "1", "3", "3", "0", "1", "4", "7", "4", "0", "1", "5", "13", "12", "5", "0", "1", "6", "21", "32", "20", "6", "0", "1", "7", "31", "55", "71", "30", "7", "0", "1", "8", "43", "108", "153", "124", "44", "8", "0", "1", "9", "57", "154", "366", "368", "218", "65", "9", "0", "1", "10", "73", "256", "668", "926", "856", "375", "80", "10", "0", "1", "11", "91", "333", "1153", "2214", "2286", "1424", "572", "96", "11" ]
[ "nonn", "tabl" ]
23
1
6
[ "A001477", "A002061", "A025582", "A051912", "A347570", "A365300", "A365301", "A365302", "A365303", "A365304", "A365305", "A365515", "A369817", "A369818", "A369819" ]
null
Chai Wah Wu, Sep 07 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365515.seq
ec99cff4bc790f5ad2a12ca71d8fb2b3
A365516
Expansion of g.f. A(x) satisfying A(x) = (1 + 2*x*A(x))^2 / (1 + 2*x*A(x) - 2*x^3*A(x)^3).
[ "1", "2", "4", "10", "32", "112", "400", "1464", "5520", "21296", "83456", "331136", "1328320", "5379200", "21959936", "90271904", "373347840", "1552438016", "6486311680", "27217331456", "114649525760", "484640538112", "2055185596416", "8740711936000", "37273693649920", "159340373710848", "682708771254272", "2931290431277056" ]
[ "nonn" ]
27
0
2
[ "A303063", "A365095", "A365516", "A365574" ]
null
Paul D. Hanna, Sep 07 2023
2023-10-07T22:23:32
oeisdata/seq/A365/A365516.seq
10111429dcd49779fc29ecffe9613591
A365517
Numbers k such that the sum of the squarefree part of k and the squarefree kernel of k is a perfect square.
[ "2", "8", "9", "12", "32", "48", "81", "98", "108", "128", "150", "192", "225", "252", "363", "392", "432", "512", "578", "600", "729", "768", "972", "1008", "1100", "1225", "1350", "1568", "1728", "1805", "1922", "2025", "2028", "2048", "2268", "2312", "2366", "2400", "2940", "3072", "3174", "3267", "3750", "3888", "4032", "4400", "4802", "5400", "5625" ]
[ "nonn" ]
29
1
1
[ "A000290", "A007913", "A007947", "A365517" ]
null
David James Sycamore, Sep 07 2023
2025-05-25T09:26:25
oeisdata/seq/A365/A365517.seq
73b1bf7c4d14e45269f3ae9eff5e2dbf
A365518
Odd primes whose base-2 representation has no proper substrings that are base-2 representations of odd primes.
[ "3", "5", "17", "73", "257", "521", "577", "1033", "1153", "2081", "2113", "4129", "16417", "18433", "32801", "32833", "65537", "74017", "133121", "147457", "262153", "262433", "262657", "270337", "270601", "271393", "295937", "524353", "524801", "525313", "532489", "1048609", "1049089", "1056833", "1065089", "1082369", "1179649", "1183753", "2101249", "2367553", "4194433" ]
[ "nonn", "base" ]
9
1
1
[ "A365512", "A365518" ]
null
Robert Israel, Sep 07 2023
2023-09-08T13:18:46
oeisdata/seq/A365/A365518.seq
73fb8b1920e30be1236e7dd7b5211fd9
A365519
Moebius inversion of A015134.
[ "1", "1", "1", "2", "2", "1", "3", "4", "3", "2", "13", "4", "6", "3", "8", "8", "8", "9", "21", "8", "24", "13", "11", "16", "10", "6", "9", "12", "62", "8", "33", "16", "24", "24", "24", "36", "18", "63", "24", "32", "42", "24", "21", "48", "24", "33", "69", "64", "21", "10", "32", "24", "26", "27", "144", "48", "40", "62", "61", "32", "62", "99", "72", "32", "48", "24", "33", "96", "88", "24" ]
[ "nonn" ]
35
1
4
[ "A008683", "A015134", "A365519" ]
null
Jay Anderson, Sep 07 2023
2024-01-20T03:54:47
oeisdata/seq/A365/A365519.seq
ecd1ab65e9d39e931199181e5a51a6bb
A365520
Number of 1-factorizations of complete graph K_{2n} that all share one arbitrary pairing in common.
[ "1", "1", "2", "416", "11672064", "266965735243776", "9500592190171594780311552" ]
[ "nonn", "more" ]
27
1
3
[ "A000438", "A001147", "A365520" ]
null
Brian Lathrop, Sep 08 2023
2023-10-19T07:35:58
oeisdata/seq/A365/A365520.seq
d89b9029b3d882949b28dbbf75a61747
A365521
a(1) = 1; for n > 1, a(n) is the prime factor of n that has not appeared for the longest time in {a(1),...,a(n-2),a(n-1)}.
[ "1", "2", "3", "2", "5", "3", "7", "2", "3", "5", "11", "2", "13", "7", "3", "2", "17", "3", "19", "5", "7", "11", "23", "2", "5", "13", "3", "7", "29", "2", "31", "2", "11", "17", "5", "3", "37", "19", "13", "2", "41", "7", "43", "11", "5", "23", "47", "3", "7", "2", "17", "13", "53", "3", "11", "7", "19", "29", "59", "5", "61", "31", "3", "2", "13", "11", "67", "17", "23", "7", "71", "3", "73", "37", "5", "19" ]
[ "nonn", "easy" ]
41
1
2
[ "A006530", "A034699", "A088387", "A088388", "A365521" ]
null
Jianglin Luo, Sep 08 2023
2024-01-20T09:49:05
oeisdata/seq/A365/A365521.seq
3e0f679d42d679713ea7f610913a09b6
A365522
Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.
[ "6", "3", "8", "7", "0", "4", "5", "2", "8", "7", "7", "9", "8", "1", "8", "3", "6", "5", "5", "9", "7", "4", "7", "6", "7", "4", "6", "0", "5", "1", "2", "1", "6", "6", "0", "5", "7", "7", "8", "3", "1", "7", "2", "4", "0", "1", "9", "5", "1", "2", "3", "6", "1", "6", "3", "4", "6", "7", "4", "5", "9", "9", "2", "0", "3", "7", "5", "7", "5", "7", "5", "7", "5", "9", "7", "7", "7", "2", "5", "9", "8", "0", "3", "8", "1", "2", "1", "5", "3", "1", "5", "8", "1", "6", "5", "7", "0", "5", "4", "4", "0", "2", "5", "1", "6", "5", "6", "2", "7", "0", "9", "8", "6", "7", "5" ]
[ "nonn", "cons", "changed" ]
20
0
1
[ "A000217", "A000796", "A002194", "A002391", "A051865", "A244639", "A244641", "A244645", "A244646", "A244647", "A244648", "A244649", "A365522" ]
null
Claude H. R. Dequatre, Sep 08 2023
2025-07-14T10:08:00
oeisdata/seq/A365/A365522.seq
1185d9eed09801e1f9baffb38cb7c881
A365523
Decimal expansion of 6*log(2) - 4.
[ "1", "5", "8", "8", "8", "3", "0", "8", "3", "3", "5", "9", "6", "7", "1", "8", "5", "6", "5", "0", "3", "3", "9", "2", "7", "2", "8", "7", "4", "9", "0", "5", "9", "4", "0", "8", "4", "5", "3", "0", "0", "0", "8", "0", "6", "1", "6", "1", "5", "3", "1", "5", "2", "4", "7", "2", "4", "0", "8", "0", "0", "5", "6", "9", "6", "0", "3", "6", "1", "7", "3", "1", "8", "1", "8", "1", "6", "8", "2", "9", "3", "6", "3", "5", "1", "7", "9", "9", "6", "1", "9", "7", "8", "5", "1", "2", "1", "2", "5", "2", "5", "2", "0", "0", "8", "8", "8", "6", "1", "2" ]
[ "nonn", "cons" ]
15
0
2
[ "A000217", "A000384", "A002162", "A016687", "A365523" ]
null
Claude H. R. Dequatre, Sep 08 2023
2024-11-21T09:27:10
oeisdata/seq/A365/A365523.seq
127f7d838b347aac98617d2dc83fb552
A365524
Decimal expansion of 4*log(2) - 5/2.
[ "2", "7", "2", "5", "8", "8", "7", "2", "2", "2", "3", "9", "7", "8", "1", "2", "3", "7", "6", "6", "8", "9", "2", "8", "4", "8", "5", "8", "3", "2", "7", "0", "6", "2", "7", "2", "3", "0", "2", "0", "0", "0", "5", "3", "7", "4", "4", "1", "0", "2", "1", "0", "1", "6", "4", "8", "2", "7", "2", "0", "0", "3", "7", "9", "7", "3", "5", "7", "4", "4", "8", "7", "8", "7", "8", "7", "7", "8", "8", "6", "2", "4", "2", "3", "4", "5", "3", "3", "0", "7", "9", "8", "5", "6", "7", "4", "7", "5", "0", "1", "6", "8", "0", "0", "5", "9", "2", "4", "0", "8" ]
[ "nonn", "cons" ]
19
0
1
[ "A000217", "A000326", "A002162", "A016639", "A358517", "A365524" ]
null
Claude H. R. Dequatre, Sep 08 2023
2025-03-28T02:10:40
oeisdata/seq/A365/A365524.seq
06421ac25f8c8f0c8fbc087bf262b87d
A365525
a(n) = Sum_{k=0..floor(n/4)} Stirling2(n,4*k).
[ "1", "0", "0", "0", "1", "10", "65", "350", "1702", "7806", "34855", "157630", "770529", "4432220", "31307432", "259090260", "2316320073", "21172354778", "193091210857", "1744478148866", "15627203762926", "139526376391986", "1251976261264071", "11417796498945894", "107280845105151601" ]
[ "nonn" ]
27
0
6
[ "A024430", "A099948", "A143815", "A365525", "A365526", "A365527", "A365528" ]
null
Seiichi Manyama, Sep 08 2023
2025-06-10T07:32:47
oeisdata/seq/A365/A365525.seq
31c3bd8d22509576519e1f110f063f61
A365526
a(n) = Sum_{k=0..floor((n-1)/4)} Stirling2(n,4*k+1).
[ "0", "1", "1", "1", "1", "2", "16", "141", "1051", "6953", "42571", "247886", "1401676", "7868005", "45210257", "277899961", "1917140421", "15186484134", "135259346092", "1295096363273", "12821558136891", "128268683204737", "1283599391456735", "12817818177339530", "127998022119881272" ]
[ "nonn" ]
16
0
6
[ "A099948", "A365525", "A365526", "A365527" ]
null
Seiichi Manyama, Sep 08 2023
2024-09-11T14:28:41
oeisdata/seq/A365/A365526.seq
075138b47e6e9dc4516b92670eaff543
A365527
a(n) = Sum_{k=0..floor((n-2)/4)} Stirling2(n,4*k+2).
[ "0", "0", "1", "3", "7", "15", "32", "84", "393", "2901", "23339", "180565", "1327404", "9364732", "64197317", "433372411", "2928720335", "20264399483", "147807954692", "1170622475408", "10229966924581", "97922117830589", "1001744359476291", "10661002700183905", "115706501336004984" ]
[ "nonn" ]
13
0
4
[ "A099948", "A365525", "A365526", "A365527" ]
null
Seiichi Manyama, Sep 08 2023
2023-09-13T02:09:54
oeisdata/seq/A365/A365527.seq
b01b2afa640741b05a953ea2efac16d3
A365528
a(n) = Sum_{k=0..floor(n/5)} Stirling2(n,5*k).
[ "1", "0", "0", "0", "0", "1", "15", "140", "1050", "6951", "42526", "246785", "1381105", "7547826", "40827787", "223429571", "1289945660", "8411093621", "66070626548", "624900235273", "6667243384356", "74991482322466", "854627237256694", "9698297591786441", "108934902927646609" ]
[ "nonn" ]
18
0
7
[ "A024430", "A143815", "A365525", "A365528", "A365529", "A365530", "A365531", "A365532" ]
null
Seiichi Manyama, Sep 08 2023
2025-06-10T07:33:45
oeisdata/seq/A365/A365528.seq
2c363423488e3375d64154a6c30a272e
A365529
a(n) = Sum_{k=0..floor((n-1)/5)} Stirling2(n,5*k+1).
[ "0", "1", "1", "1", "1", "1", "2", "22", "267", "2647", "22828", "179489", "1323719", "9323744", "63502440", "422172752", "2763863468", "18017811013", "119078265944", "822495346707", "6206943675825", "53413341096271", "529613886789747", "5863983528090106", "69211078916780252", "839908976768680556" ]
[ "nonn" ]
8
0
7
[ "A365528", "A365529", "A365530", "A365531", "A365532" ]
null
Seiichi Manyama, Sep 08 2023
2023-09-08T07:23:02
oeisdata/seq/A365/A365529.seq
8cf26630ae3d07ee5cbaff40c21cccfe
A365530
a(n) = Sum_{k=0..floor((n-2)/5)} Stirling2(n,5*k+2).
[ "0", "0", "1", "3", "7", "15", "31", "64", "155", "717", "6391", "65010", "629444", "5719597", "49340838", "408864186", "3284672489", "25770192646", "198718943490", "1516391860879", "11554571944615", "89144035246500", "711587142257776", "6054854693784594", "56609279400922224", "590143167134961765" ]
[ "nonn" ]
8
0
4
[ "A365528", "A365529", "A365530", "A365531", "A365532" ]
null
Seiichi Manyama, Sep 08 2023
2023-09-08T07:22:57
oeisdata/seq/A365/A365530.seq
9430a975b432f1c8d0b891eac551f06a
A365531
a(n) = Sum_{k=0..floor((n-3)/5)} Stirling2(n,5*k+3).
[ "0", "0", "0", "1", "6", "25", "90", "301", "967", "3061", "10080", "40381", "245553", "2161238", "21701381", "219007491", "2149071359", "20442363031", "189226358659", "1712836890912", "15232581945180", "133717667932475", "1164901223314180", "10143255631462661", "89207257764369032", "804712211338739040" ]
[ "nonn" ]
8
0
5
[ "A365528", "A365529", "A365530", "A365531", "A365532" ]
null
Seiichi Manyama, Sep 08 2023
2023-09-08T07:22:52
oeisdata/seq/A365/A365531.seq
a6a18ef58eb1e625336a68ed94fa3dd0
A365532
a(n) = Sum_{k=0..floor((n-4)/5)} Stirling2(n,5*k+4).
[ "0", "0", "0", "0", "1", "10", "65", "350", "1701", "7771", "34150", "146905", "633776", "2892032", "15526876", "109484545", "992589171", "10223409493", "108982611518", "1156117871286", "12062817285396", "123603289559039", "1245986248828926", "12391614409960544", "121996350285087172" ]
[ "nonn" ]
8
0
6
[ "A365528", "A365529", "A365530", "A365531", "A365532" ]
null
Seiichi Manyama, Sep 08 2023
2023-09-08T07:22:46
oeisdata/seq/A365/A365532.seq
fedef83c91caaf4bf9473f8f8ed106e6
A365533
a(n) is the nim-value of the SALIQUANT game where the option is to subtract a nondivisor from 2*n.
[ "0", "1", "1", "3", "2", "4", "6", "7", "4", "7", "5", "10", "12", "10", "13", "15", "8", "13", "9", "17", "17", "16", "11", "22", "22", "19", "25", "24", "14", "22", "30", "31", "16", "33", "32", "31", "18", "28", "19", "37", "20", "38", "21", "38", "37", "34", "23", "46", "45", "37", "42", "51", "26", "40", "27", "52", "28", "43", "29", "52", "60", "61", "52", "63", "58", "49", "66", "59", "34", "52", "35", "67", "36", "55", "62" ]
[ "nonn" ]
14
1
4
[ "A173540", "A365533" ]
null
Michel Marcus, Sep 08 2023
2023-09-09T11:19:39
oeisdata/seq/A365/A365533.seq
1aafec0f19b54808cf9ba44bd330a295
A365534
Number of convergent Boolean relation matrices on [n].
[ "1", "2", "15", "465", "61068", "32453533", "67904955351" ]
[ "nonn", "more" ]
26
0
2
[ "A002416", "A070322", "A365534" ]
null
Geoffrey Critzer, Sep 08 2023
2023-10-21T06:17:07
oeisdata/seq/A365/A365534.seq
c24ef3296305cc2e05bfa270dc7e85ce
A365535
Composite numbers k such that the core and the kernel of k are equal.
[ "6", "8", "10", "14", "15", "21", "22", "24", "26", "27", "30", "32", "33", "34", "35", "38", "39", "40", "42", "46", "51", "54", "55", "56", "57", "58", "62", "65", "66", "69", "70", "74", "77", "78", "82", "85", "86", "87", "88", "91", "93", "94", "95", "96", "102", "104", "105", "106", "110", "111", "114", "115", "118", "119", "120", "122", "123", "125", "128", "129", "130", "133", "134", "135", "136", "138" ]
[ "nonn" ]
25
1
1
[ "A002808", "A005117", "A006881", "A007913", "A007947", "A072587", "A097054", "A120944", "A268335", "A362594", "A365535" ]
null
David James Sycamore and Michael De Vlieger, Sep 08 2023
2023-09-15T10:20:58
oeisdata/seq/A365/A365535.seq
32a6f999964399d10a33f02613427a13
A365536
a(n) = n for n <= 2. Thereafter a(n) is the least novel multiple of the greatest prior term which is coprime to a(n-1).
[ "1", "2", "3", "4", "6", "5", "12", "10", "9", "20", "18", "15", "8", "30", "7", "60", "14", "45", "28", "90", "21", "40", "42", "25", "84", "50", "63", "100", "126", "75", "56", "150", "35", "36", "70", "27", "200", "189", "400", "378", "125", "756", "250", "567", "800", "1134", "375", "112", "750", "49", "1600", "1701", "3200", "3402", "500", "5103", "6400", "10206", "625", "20412" ]
[ "nonn" ]
14
1
2
[ "A000351", "A000420", "A002473", "A126706", "A365536" ]
null
David James Sycamore, Sep 08 2023
2025-07-01T23:01:59
oeisdata/seq/A365/A365536.seq
9aebc1365509de62541516c6ba674c3d
A365537
a(n) is the first semiprime k such that k-1 and k+1 each have exactly n prime factors (counted with multiplicity).
[ "4", "34", "51", "55", "1169", "6641", "18751", "204929", "101249", "2490751", "6581249", "68068351", "262986751", "1842131969", "9601957889", "13858918399", "145046192129", "75389157377", "18444674957311", "39806020354049", "124758724247551", "878616032837633", "551785225781249" ]
[ "nonn" ]
22
1
1
[ "A001222", "A001358", "A365537" ]
null
Zak Seidov and Robert Israel, Sep 08 2023
2023-12-26T03:51:54
oeisdata/seq/A365/A365537.seq
ef802c50859d9fa5147ac80ae0b31d53
A365538
a(0) = 1; otherwise, for i >= 0, a(4i+0) = a(4i+1) = a(2i), a(4i+2) = 2*a(2i+1), a(4i+3) = 0.
[ "1", "1", "2", "0", "2", "2", "0", "0", "2", "2", "4", "0", "0", "0", "0", "0", "2", "2", "4", "0", "4", "4", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "2", "4", "0", "4", "4", "0", "0", "4", "4", "8", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "tabf", "easy" ]
32
0
3
[ "A003714", "A003754", "A004780", "A280873", "A365538" ]
null
Roland Kneer, Oct 23 2023
2024-02-07T20:38:13
oeisdata/seq/A365/A365538.seq
8a476225b1e8414aea8f7380714e5b07
A365539
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 + x^k)/((1 - x)^2*(1 - x^k)), with k > 0.
[ "1", "4", "1", "9", "2", "1", "16", "5", "2", "1", "25", "8", "3", "2", "1", "36", "13", "6", "3", "2", "1", "49", "18", "9", "4", "3", "2", "1", "64", "25", "12", "7", "4", "3", "2", "1", "81", "32", "17", "10", "5", "4", "3", "2", "1", "100", "41", "22", "13", "8", "5", "4", "3", "2", "1", "121", "50", "27", "16", "11", "6", "5", "4", "3", "2", "1", "144", "61", "34", "21", "14", "9", "6", "5", "4", "3", "2", "1" ]
[ "nonn", "tabl" ]
14
0
2
[ "A000027", "A000290", "A000982", "A008810", "A008811", "A008812", "A008813", "A008814", "A008815", "A008816", "A008817", "A365539", "A365540" ]
null
Stefano Spezia, Sep 08 2023
2023-09-09T11:24:12
oeisdata/seq/A365/A365539.seq
72c32ab914e9921c43e0822efd3b23b7
A365540
Antidiagonal sums of A365539.
[ "0", "1", "5", "12", "24", "39", "61", "86", "118", "155", "199", "246", "304", "365", "433", "508", "592", "679", "777", "878", "990", "1109", "1235", "1364", "1508", "1657", "1813", "1976", "2150", "2327", "2519", "2714", "2920", "3133", "3353", "3580", "3824", "4071", "4325", "4586", "4862", "5141", "5435", "5732", "6040", "6359", "6685", "7014", "7362" ]
[ "nonn" ]
9
0
3
[ "A000005", "A114003", "A365539", "A365540" ]
null
Stefano Spezia, Sep 08 2023
2023-09-09T11:24:22
oeisdata/seq/A365/A365540.seq
118cc62e03e0953630a12ace2a8a66a8
A365541
Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.
[ "1", "2", "2", "2", "4", "4", "7", "4", "4", "8", "8", "14", "14", "14", "8", "8", "16", "16", "28", "28", "37", "28", "28", "16", "16", "32", "32", "56", "56", "74", "74", "74", "56", "56", "32", "32", "64", "64", "112", "112", "148", "148", "175", "148", "148", "112", "112", "64", "64", "128", "128", "224", "224", "296", "296", "350", "350", "350", "296", "296", "224", "224", "128", "128" ]
[ "nonn", "tabf" ]
9
2
2
[ "A000009", "A005408", "A007865", "A008967", "A046663", "A068911", "A085489", "A088809", "A093971", "A095944", "A151897", "A167762", "A238628", "A288728", "A326083", "A364272", "A364534", "A365376", "A365377", "A365381", "A365541", "A365543", "A365544", "A365661", "A365663" ]
null
Gus Wiseman, Sep 15 2023
2023-09-17T12:08:03
oeisdata/seq/A365/A365541.seq
4dc201cdafabd037fc6a38450d97ec14
A365542
Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n.
[ "0", "1", "2", "6", "10", "28", "48", "116", "224", "480", "920", "2000", "3840", "7984", "15936", "32320", "63968", "130176", "258304", "521920", "1041664", "2089472", "4171392", "8377856", "16726528", "33509632", "67004416", "134129664", "268111360", "536705024", "1072961536", "2146941952", "4293509120", "8588414976" ]
[ "nonn" ]
13
1
3
[ "A007865", "A088314", "A088809", "A124506", "A151897", "A179822", "A326080", "A326083", "A364350", "A364534", "A364839", "A364914", "A365042", "A365045", "A365046", "A365073", "A365314", "A365315", "A365322", "A365380", "A365542" ]
null
Gus Wiseman, Sep 09 2023
2023-09-13T08:35:52
oeisdata/seq/A365/A365542.seq
cefc27ff400a7bacc307f7bd01545c3b
A365543
Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.
[ "1", "1", "1", "2", "1", "2", "3", "2", "2", "3", "5", "3", "3", "3", "5", "7", "5", "5", "5", "5", "7", "11", "7", "8", "6", "8", "7", "11", "15", "11", "11", "11", "11", "11", "11", "15", "22", "15", "17", "15", "14", "15", "17", "15", "22", "30", "22", "23", "23", "22", "22", "23", "23", "22", "30", "42", "30", "33", "30", "33", "25", "33", "30", "33", "30", "42" ]
[ "nonn", "tabl" ]
14
0
4
[ "A000009", "A000041", "A000124", "A002219", "A046663", "A088809", "A093971", "A108917", "A122768", "A299701", "A304792", "A364272", "A364349", "A364911", "A365381", "A365541", "A365543", "A365658", "A365661", "A365663" ]
null
Gus Wiseman, Sep 16 2023
2025-04-05T23:17:53
oeisdata/seq/A365/A365543.seq
54ff882067c79c64aaaa409aa124a88b
A365544
Number of subsets of {1..n} containing two distinct elements summing to n.
[ "0", "0", "0", "2", "4", "14", "28", "74", "148", "350", "700", "1562", "3124", "6734", "13468", "28394", "56788", "117950", "235900", "484922", "969844", "1979054", "3958108", "8034314", "16068628", "32491550", "64983100", "131029082", "262058164", "527304974", "1054609948", "2118785834", "4237571668", "8503841150", "17007682300" ]
[ "nonn", "easy" ]
17
0
4
[ "A000009", "A004526", "A007865", "A008967", "A068911", "A085489", "A088809", "A093971", "A095944", "A140106", "A151897", "A167762", "A238628", "A288728", "A326083", "A364272", "A364534", "A365376", "A365377", "A365381", "A365541", "A365544" ]
null
Gus Wiseman, Sep 20 2023
2024-08-30T21:28:21
oeisdata/seq/A365/A365544.seq
643a63b9f85e4f470b573fe7019cac59
A365545
Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.
[ "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "2", "0", "1", "0", "1", "0", "0", "2", "0", "1", "0", "1", "0", "0", "0", "3", "0", "1", "0", "0", "1", "1", "0", "0", "3", "0", "1", "0", "0", "0", "3", "0", "0", "0", "4", "0", "1", "0", "1", "0", "0", "2", "2", "0", "0", "4", "0", "1", "0", "1", "0", "0", "0", "5", "0", "0", "0", "5", "0", "1", "0", "2", "0", "0", "0", "0", "5", "2", "0", "0", "5", "0", "1", "0" ]
[ "nonn", "tabl" ]
6
0
18
[ "A000009", "A000041", "A006827", "A046663", "A126796", "A188431", "A284640", "A304792", "A325781", "A325799", "A364272", "A364350", "A364839", "A365543", "A365545", "A365658", "A365661", "A365663", "A365830", "A365831", "A365918", "A365921", "A365922", "A365923", "A365924" ]
null
Gus Wiseman, Sep 24 2023
2023-09-25T12:55:53
oeisdata/seq/A365/A365545.seq
a98521df81111f8f18cdf401653dfb4a
A365546
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^2.
[ "1", "1", "3", "23", "298", "5314", "120776", "3341568", "108992472", "4095073848", "174169888536", "8272115427432", "433956083676336", "24921123498835056", "1555004372522100384", "104757005524567577088", "7578056156152486855680", "585874671534300791384064" ]
[ "nonn" ]
11
0
3
[ "A138013", "A365438", "A365546" ]
null
Seiichi Manyama, Nov 08 2023
2023-11-08T07:51:11
oeisdata/seq/A365/A365546.seq
561d53dc89c0b50a025da43cb3a1a944
A365547
Triangular array read by rows. T(n,k) is the number of convergent Boolean relation matrices on [n] containing exactly k strongly connected components, n>=0, 0<=k<=n.
[ "1", "0", "2", "0", "3", "12", "0", "139", "126", "200", "0", "25575", "17517", "9288", "8688", "0", "18077431", "8457840", "3545350", "1435920", "936992", "0", "47024942643", "14452288791", "4277647665", "1422744780", "485315280", "242016192" ]
[ "nonn", "tabl" ]
13
0
3
[ "A003024", "A070322", "A365534", "A365547" ]
null
Geoffrey Critzer, Sep 08 2023
2023-09-11T11:24:53
oeisdata/seq/A365/A365547.seq
a04db7e3353baed8d4c76699f8e34691
A365548
Number of unigraphic graphs on n nodes that are connected.
[ "1", "1", "2", "6", "16", "42", "96", "234", "546", "1292" ]
[ "nonn", "more" ]
8
1
3
[ "A122423", "A309757", "A365548" ]
null
Eric W. Weisstein, Sep 08 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365548.seq
5cef244596b2ce52efebb7a7e2c36e99
A365549
The number of exponentially odd divisors of the square root of the largest square dividing n.
[ "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "2", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "2", "2", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "2", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
15
1
4
[ "A000188", "A005117", "A013662", "A046951", "A278908", "A307848", "A322483", "A323308", "A358260", "A365549" ]
null
Amiram Eldar, Sep 08 2023
2025-04-27T00:45:29
oeisdata/seq/A365/A365549.seq
f12e1fe636155e7ac3ccddc21ed59c71
A365550
The number of square coreful divisors of n.
[ "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "easy", "mult" ]
8
1
16
[ "A001694", "A005361", "A046951", "A325837", "A365550" ]
null
Amiram Eldar, Sep 08 2023
2023-09-10T02:04:16
oeisdata/seq/A365/A365550.seq
783ca6422cc77476c39fa8642df83c83
A365551
The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.
[ "1", "2", "2", "3", "2", "4", "2", "3", "3", "4", "2", "6", "2", "4", "4", "4", "2", "6", "2", "6", "4", "4", "2", "6", "3", "4", "3", "6", "2", "8", "2", "4", "4", "4", "4", "9", "2", "4", "4", "6", "2", "8", "2", "6", "6", "4", "2", "8", "3", "6", "4", "6", "2", "6", "4", "6", "4", "4", "2", "12", "2", "4", "6", "5", "4", "8", "2", "6", "4", "8", "2", "9", "2", "4", "6", "6", "4", "8", "2", "8", "4", "4", "2", "12", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
12
1
2
[ "A049599", "A282446", "A322483", "A353898", "A356191", "A365551" ]
null
Amiram Eldar, Sep 08 2023
2023-09-09T11:34:01
oeisdata/seq/A365/A365551.seq
cc46565e1971949655138a062803cbc0
A365552
The number of exponentially odd divisors of the powerful part of n.
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "3", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "4", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "3", "3", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
9
1
4
[ "A013661", "A057521", "A095691", "A322483", "A365552" ]
null
Amiram Eldar, Sep 08 2023
2023-09-09T06:48:16
oeisdata/seq/A365/A365552.seq
c5f77d4d380c009cc3377e8f5c3894f8
A365553
Starting with a plane on which two parallel lines and two additional lines have been drawn such that the four lines form two noncongruent isosceles triangles, a(n) is the total number of intersections on the plane after the n-th step, where each step consists of drawing lines that connect every intersection of two lines. If more than 2 lines intersect at the same point it is only counted once.
[ "5", "6", "8", "20", "861" ]
[ "nonn", "hard", "more" ]
12
1
1
[ "A050534", "A364725", "A365553" ]
null
Colin Linzer, Sep 08 2023
2023-10-29T20:36:01
oeisdata/seq/A365/A365553.seq
7b689bacad23b5b9407e015b2e66f471
A365554
Number of increasing paths from the bottom to the top of the n-hypercube (as a graded poset) which first encounter a vector of isolated zeros at stage k, weighted by k.
[ "2", "10", "60", "396", "2976", "25056", "234720", "2423520", "27371520", "335819520", "4449150720", "63318931200", "963548006400", "15614378035200", "268480048435200", "4882321001779200", "93627018326016000", "1888394741194752000", "39963486306078720000", "885457095215616000000" ]
[ "nonn" ]
60
2
1
[ "A067331", "A365554" ]
null
Brian Darrow, Jr. and Joe Fields, Feb 20 2024
2024-02-24T15:31:44
oeisdata/seq/A365/A365554.seq
8db87d7ed51390146a58f2fa46b5742a
A365555
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/3).
[ "1", "2", "18", "274", "5938", "167122", "5786418", "237857874", "11319677618", "612109819602", "37069480301618", "2485356833141074", "182753029186750898", "14623552941626800082", "1265002802597606144818", "117633823750542653153874", "11701922865351577653913778" ]
[ "nonn" ]
31
0
2
[ "A094419", "A346985", "A354252", "A365555", "A365556", "A365557" ]
null
Seiichi Manyama, Sep 09 2023
2024-06-21T18:37:16
oeisdata/seq/A365/A365555.seq
6f3cfa0e52945ce746d539c18eb4b3b2
A365556
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(2/3).
[ "1", "4", "44", "764", "18204", "551644", "20291804", "877970524", "43680345564", "2456429581404", "154072160204764", "10663000409493084", "807124301044917724", "66329628496719183964", "5881222650127663682524", "559616682597652939940444", "56879286407092006924382684" ]
[ "nonn" ]
24
0
2
[ "A094419", "A346985", "A354252", "A365555", "A365556", "A365557" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-17T11:20:24
oeisdata/seq/A365/A365556.seq
c1f1a15795f9bc5cbfdc4bf420f665a1
A365557
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(5/6).
[ "1", "5", "60", "1105", "27505", "862900", "32665935", "1448431605", "73618245530", "4219213176975", "269178309769385", "18919087590749230", "1452439246800583805", "120926788470961893425", "10852505784073190637460", "1044349665968997385498605", "107273533723839304683589205" ]
[ "nonn" ]
24
0
2
[ "A094419", "A346985", "A354252", "A365555", "A365556", "A365557" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-17T11:20:29
oeisdata/seq/A365/A365557.seq
fbfdf2b08904c6b8ca1f5ea936b71013
A365558
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(2/3).
[ "1", "2", "12", "112", "1432", "23272", "458952", "10644552", "283851272", "8555351112", "287585280392", "10666369505992", "432674936431112", "19054822031194952", "905387807689821832", "46166008179076287432", "2514469578906179506952", "145691888630159515550792" ]
[ "nonn" ]
18
0
2
[ "A032033", "A346982", "A365558" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-16T11:50:11
oeisdata/seq/A365/A365558.seq
0024d7310964043616abd3dc9c3847d2
A365559
Number of free n-polysticks (or polyedges) in 3 dimensions.
[ "1", "2", "7", "28", "160", "1085", "8403", "69824", "607988", "5448444", "49846437", "462977928" ]
[ "nonn", "hard", "more" ]
17
1
2
[ "A019988", "A365559", "A365560", "A365561", "A365563", "A365565", "A365566", "A366766" ]
null
Pontus von Brömssen, Sep 09 2023
2025-03-09T13:04:07
oeisdata/seq/A365/A365559.seq
ca9e81d550c54c8a8394b2ab2de01dd8
A365560
Number of fixed n-polysticks (or polyedges) in 3 dimensions.
[ "3", "15", "95", "681", "5277", "43086", "365313", "3186444", "28414802", "257908020", "2375037477", "22136623447", "208438845633", "1979867655945", "18948498050586", "182549617674339", "1768943859449895", "17230208981859485" ]
[ "nonn", "hard", "more" ]
21
1
1
[ "A096267", "A365559", "A365560", "A365562", "A365564", "A366767" ]
null
Pontus von Brömssen, Sep 09 2023
2025-06-27T19:40:42
oeisdata/seq/A365/A365560.seq
e11374b961a413bf1564e770a49df5df
A365561
Number of free n-polysticks (or polyedges) in 4 dimensions.
[ "1", "2", "7", "31", "199", "1651", "16648" ]
[ "nonn", "hard", "more" ]
8
1
2
[ "A019988", "A365559", "A365561", "A365562", "A365563", "A365565", "A365566", "A366766" ]
null
Pontus von Brömssen, Sep 09 2023
2023-11-03T17:01:35
oeisdata/seq/A365/A365561.seq
81888402e6e0a26973fe1483121adb81
A365562
Number of fixed n-polysticks (or polyedges) in 4 dimensions.
[ "4", "28", "252", "2600", "29248", "349132", "4351944", "56062681", "741132648", "10003860384", "137367013012", "1913480724898", "26980497086268", "384428067086544", "5527398761722192" ]
[ "nonn", "hard", "more" ]
13
1
1
[ "A096267", "A365560", "A365561", "A365562", "A365564", "A366767" ]
null
Pontus von Brömssen, Sep 09 2023
2025-06-30T01:23:41
oeisdata/seq/A365/A365562.seq
b68c32c42ebdd180701ad6b22956a84e
A365563
Number of free n-polysticks (or polyedges) in 5 dimensions.
[ "1", "2", "7", "31", "205", "1768" ]
[ "nonn", "hard", "more" ]
8
1
2
[ "A019988", "A365559", "A365561", "A365563", "A365564", "A365565", "A365566", "A366766" ]
null
Pontus von Brömssen, Sep 09 2023
2023-11-11T08:50:09
oeisdata/seq/A365/A365563.seq
b2bdc053905c040a3c943d1559151a5b
A365564
Number of fixed n-polysticks (or polyedges) in 5 dimensions.
[ "5", "45", "525", "7065", "104097", "1632915", "26817465", "456137580", "7975932715", "142619162000", "2597695379665", "48053332283700", "900703198101845" ]
[ "nonn", "hard", "more" ]
8
1
1
[ "A096267", "A365560", "A365562", "A365563", "A365564" ]
null
Pontus von Brömssen, Sep 09 2023
2025-06-30T01:24:01
oeisdata/seq/A365/A365564.seq
ce3a99a988d05c71fd3604cd9c5de504
A365565
Number of free n-polysticks (or polyedges) in arbitrary dimension.
[ "1", "2", "7", "31", "205", "1779" ]
[ "nonn", "hard", "more" ]
4
1
2
[ "A005519", "A019988", "A365559", "A365561", "A365563", "A365565", "A365566" ]
null
Pontus von Brömssen, Sep 09 2023
2023-09-09T11:25:59
oeisdata/seq/A365/A365565.seq
ba0d5fb8b1a92fbac76bf18a0f13bd77
A365566
Triangle read by rows: T(n,d) is the number of inequivalent properly d-dimensional n-polysticks (or polyedges), 1 <= d <= n.
[ "1", "1", "1", "1", "4", "2", "1", "15", "12", "3", "1", "54", "105", "39", "6", "1", "221", "863", "566", "117", "11" ]
[ "nonn", "tabl", "hard", "more", "changed" ]
8
1
5
[ "A000055", "A049430", "A365565", "A365566", "A385582", "A385583" ]
null
Pontus von Brömssen, Sep 09 2023
2025-07-17T22:54:10
oeisdata/seq/A365/A365566.seq
d02417efa45bebd62c4c9c31cee38c35
A365567
Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(3/4).
[ "1", "3", "24", "297", "5001", "106578", "2748399", "83182347", "2890153626", "113364686403", "4954547485149", "238734066994272", "12573018414279501", "718498413957515103", "44278797576715884024", "2927171415480872824197", "206625238881832412874501", "15511299587628626891270178" ]
[ "nonn" ]
19
0
2
[ "A094417", "A346983", "A354242", "A365567" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-16T11:50:23
oeisdata/seq/A365/A365567.seq
7238fdcbffe832634de2b9ec55e25b57
A365568
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(2/5).
[ "1", "2", "16", "212", "3964", "95804", "2840140", "99760124", "4050900268", "186700658972", "9628444876108", "549349531209404", "34355463031007596", "2336935606239856988", "171779270567736231052", "13568895740353218626300", "1146225546710339427328684", "103113032296428007394503580" ]
[ "nonn" ]
19
0
2
[ "A094418", "A346984", "A365568", "A365569", "A365570" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-16T11:51:02
oeisdata/seq/A365/A365568.seq
99f3483ed12581e84d3c0dee60acdcbc
A365569
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(3/5).
[ "1", "3", "27", "387", "7659", "193491", "5948091", "215446563", "8984708235", "423944899443", "22328393101659", "1298429924941251", "82625791930962219", "5711012035686681363", "426058604580805219323", "34121803137713388036963", "2919847869159667841599947", "265868538017899566748612275" ]
[ "nonn" ]
20
0
2
[ "A094418", "A346984", "A365568", "A365569", "A365570" ]
null
Seiichi Manyama, Sep 09 2023
2024-11-03T11:28:11
oeisdata/seq/A365/A365569.seq
06818e9cf5b47ddb30bdc5d01a3dd698
A365570
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(4/5).
[ "1", "4", "40", "616", "12856", "338728", "10781176", "402250216", "17213590840", "831013114792", "44675458306168", "2646758624166760", "171319908334752184", "12028779733435667752", "910538645035885918456", "73918475291961325824232", "6406179168820339231897144" ]
[ "nonn" ]
18
0
2
[ "A094418", "A346984", "A365568", "A365569", "A365570" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-16T11:51:27
oeisdata/seq/A365/A365570.seq
f0e2a6fce6386759f5f2925bac95296c
A365571
Number of total dominating sets in the n-Pell graph.
[ "0", "1", "12", "1020", "95379792", "114938420132076398539" ]
[ "nonn", "more" ]
9
0
3
[ "A365091", "A365571", "A379571", "A382548" ]
null
Eric W. Weisstein, Sep 09 2023
2025-06-12T03:41:38
oeisdata/seq/A365/A365571.seq
585b19a25d0e03d58ce0dfdd0e4d4a08
A365572
Number of total dominating sets in the n-Lucas cube graph.
[ "0", "3", "7", "45", "473", "51200", "87877088" ]
[ "nonn", "more" ]
5
1
2
null
null
Eric W. Weisstein, Sep 09 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365572.seq
c7d35ae6d3f52e50a6a8f93263e7ebab
A365573
Number of primes between prime(n) and prime(n)+log(prime(n)), exclusive.
[ "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "2", "2", "1", "0", "0", "1", "0", "1" ]
[ "nonn" ]
6
1
88
[ "A068985", "A275235", "A354841", "A365573" ]
null
Alain Rocchelli, Sep 09 2023
2023-09-27T13:43:32
oeisdata/seq/A365/A365573.seq
609b2b6ef1205ef488fc5cf1ff640a35
A365574
Expansion of g.f. A(x) satisfying [x^(n-1)] (1 + (n+1)*x*A(x))^n / A(x)^n = n*(n+2)^(n-2) for n > 1.
[ "1", "2", "3", "4", "16", "104", "515", "2090", "8170", "34704", "160014", "751282", "3479758", "16012684", "74362915", "350282602", "1665651094", "7952638460", "38067823370", "182874936368", "882344022104", "4274341269824", "20773195676078", "101228332620524", "494521566769160", "2421729829067636", "11886902458813596" ]
[ "nonn" ]
23
0
2
[ "A303063", "A365095", "A365516", "A365574" ]
null
Paul D. Hanna, Sep 11 2023
2023-10-07T22:23:46
oeisdata/seq/A365/A365574.seq
4602f7784a127b835f76deefd6bd35b1
A365575
Expansion of e.g.f. 1 / (1 + 3 * log(1-x))^(2/3).
[ "1", "2", "12", "114", "1482", "24468", "490020", "11538840", "312363720", "9556741440", "326076452640", "12275391192480", "505400508041760", "22590511357965120", "1089423938332883520", "56379459359942190720", "3116574045158647605120", "183271869976364873222400" ]
[ "nonn" ]
14
0
2
[ "A347015", "A354263", "A365575" ]
null
Seiichi Manyama, Sep 09 2023
2023-11-11T05:35:52
oeisdata/seq/A365/A365575.seq
cc10f289879d6b66e9e1a6dcdb798c7c
A365576
a(1)=2; thereafter a(n) is the number of strongly connected components in the digraph of the sequence thus far, where jumps from location i to i+-a(i) are permitted (within 1..n-1).
[ "2", "1", "2", "2", "3", "2", "2", "3", "3", "4", "5", "4", "5", "6", "7", "8", "8", "9", "10", "11", "12", "13", "14", "15", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "27", "28", "29", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "50", "51", "52", "53" ]
[ "nonn" ]
33
1
1
[ "A360744", "A362248", "A364392", "A364882", "A365576" ]
null
Neal Gersh Tolunsky, Sep 09 2023
2023-09-20T10:00:03
oeisdata/seq/A365/A365576.seq
bf1e2d9d4d35ee883e4e1428f0e1162f
A365577
Sequence of the short legs of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its short leg the sum of the legs of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.
[ "3", "7", "31", "511", "131071", "8589934591", "36893488147419103231", "680564733841876926926749214863536422911", "231584178474632390847141970017375815706539969331281128078915168015826259279871" ]
[ "nonn", "changed" ]
76
1
1
[ "A365577", "A385972", "A385973" ]
null
Miguel-Ángel Pérez García-Ortega, Sep 20 2023
2025-07-14T10:03:27
oeisdata/seq/A365/A365577.seq
1c8f53b4ea2a49e5ba612fcf9697d5dd
A365579
Number of dominating sets in the n-Pell graph.
[ "1", "3", "19", "2133", "222368133", "357428378648758026479" ]
[ "nonn", "more" ]
10
0
2
[ "A365571", "A365579", "A381557", "A381789" ]
null
Eric W. Weisstein, Sep 10 2023
2025-06-12T03:41:43
oeisdata/seq/A365/A365579.seq
d8463035c6261931c9f3996a15ef0188
A365580
Number of dominating sets in the n-Lucas cube graph
[ "1", "5", "9", "73", "1015", "117147", "215629181" ]
[ "nonn", "more" ]
6
1
2
null
null
Eric W. Weisstein, Sep 10 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365580.seq
8c797c51fb587b9e510b468d6e8cc274
A365581
Number of dominating sets in the n-double cone graph.
[ "113", "377", "1465", "5617", "21425", "82697", "320225", "1244825", "4858529", "19024217", "74709913", "294150497", "1160734753", "4589261321", "18175460993", "72087537961", "286271974993", "1138057489337", "4528446220985", "18033325101905", "71861106931793", "286523603727881", "1142979289706465" ]
[ "nonn" ]
16
3
1
null
null
Eric W. Weisstein, Sep 10 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365581.seq
fe3835434048444fb9cca2aa50a13424
A365582
a(n) is the number at the third vertex of an equilateral triangle whose first and second vertices are at the numbers 1 and n, respectively, on a triangular array of integers.
[ "1", "0", "2", "-1", "1", "4", "-2", "0", "3", "7", "-3", "-1", "2", "6", "11", "-4", "-2", "1", "5", "10", "16", "-5", "-3", "0", "4", "9", "15", "22", "-6", "-4", "-1", "3", "8", "14", "21", "29", "-7", "-5", "-2", "2", "7", "13", "20", "28", "37", "-8", "-6", "-3", "1", "6", "12", "19", "27", "36", "46", "-9", "-7", "-4", "0", "5", "11", "18", "26", "35", "45", "56", "-10", "-8", "-5", "-1", "4", "10", "17", "25", "34", "44", "55", "67" ]
[ "sign" ]
62
1
3
[ "A002024", "A365582" ]
null
Robert J. Fortier, Sep 20 2023
2023-10-22T17:10:05
oeisdata/seq/A365/A365582.seq
f2ce5ed3cb0d1074f15fa734d58154c8
A365583
Numbers k with property that k can be represented by the digits present in k using the operations specified in the comment, and requiring fewer digits than the number of digits in k.
[ "1024", "1253", "1287", "1296", "1331", "2048", "2163", "2187", "2435", "2500", "2564", "2568", "2916", "3025", "3125", "3216", "3375", "3437", "3645", "3729", "4088", "4096", "4256", "4375", "4625", "5129", "5243", "6250", "6254", "7128", "7293", "7343", "7776", "8256", "9025", "9216", "9375", "9512", "10003", "10004" ]
[ "nonn", "base" ]
30
1
1
[ "A043537", "A362769", "A365583" ]
null
Valentin Miakinen, Walter Robinson, Sep 20 2023
2023-10-14T19:51:18
oeisdata/seq/A365/A365583.seq
4075eb27ed451a6c7a3d99561918ab44
A365584
Expansion of e.g.f. 1 / (1 + 4 * log(1-x))^(3/4).
[ "1", "3", "24", "300", "5100", "109692", "2854344", "87164088", "3055516800", "120916282368", "5331444120576", "259168711406976", "13769882994784896", "793844510730348672", "49353915922852214016", "3291455140392403401984", "234388011123877880424960", "17750517946502792294592000" ]
[ "nonn" ]
14
0
2
[ "A347016", "A354241", "A354264", "A365567", "A365584" ]
null
Seiichi Manyama, Sep 10 2023
2023-11-11T05:04:16
oeisdata/seq/A365/A365584.seq
06ec408fc9ac142f5b4450e306d81c15
A365585
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).
[ "1", "2", "16", "214", "4030", "98020", "2923580", "103306320", "4219788720", "195631761360", "10148327972160", "582405469831920", "36635844203963760", "2506613821744700640", "185327181909308762400", "14724431257109269113600", "1251088847268683450630400", "113202071235423519573369600" ]
[ "nonn" ]
12
0
2
[ "A346987", "A365568", "A365585", "A365586", "A365587", "A365588" ]
null
Seiichi Manyama, Sep 10 2023
2023-09-11T01:46:06
oeisdata/seq/A365/A365585.seq
f3ffb7e1b39ad890bdd2e9d562f01f24
A365586
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5).
[ "1", "3", "27", "390", "7770", "197520", "6108720", "222585360", "9337369920", "443180705520", "23478556469040", "1373311758143520", "87902002849402080", "6111187336982764800", "458573390187299798400", "36939974397639066086400", "3179423992959428231894400", "291190738388834303603395200" ]
[ "nonn" ]
12
0
2
[ "A346987", "A365569", "A365585", "A365586", "A365587", "A365588" ]
null
Seiichi Manyama, Sep 10 2023
2023-09-13T02:10:19
oeisdata/seq/A365/A365586.seq
9132195ad268a0bd1d31b597a8ba3636
A365587
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).
[ "1", "4", "40", "620", "13020", "345120", "11049960", "414711720", "17851113720", "866838536640", "46873882199520", "2793214943693280", "181854240448514400", "12842833148474299200", "977822088984613771200", "79842750450344086867200", "6959878576257689846265600" ]
[ "nonn" ]
12
0
2
[ "A346987", "A365570", "A365585", "A365586", "A365587", "A365588" ]
null
Seiichi Manyama, Sep 10 2023
2023-09-13T02:10:32
oeisdata/seq/A365/A365587.seq
08054c73b4f3206239a1dec05f1e018d
A365588
Expansion of e.g.f. 1 / (1 + 5 * log(1-x)).
[ "1", "5", "55", "910", "20080", "553870", "18333050", "707959800", "31244562600", "1551289408800", "85579293493200", "5193226343508000", "343790892166398000", "24655487205067386000", "1904221630155352038000", "157574022827034258192000", "13908505761692419540320000" ]
[ "nonn" ]
22
0
2
[ "A094418", "A320079", "A346987", "A365585", "A365586", "A365587", "A365588" ]
null
Seiichi Manyama, Sep 10 2023
2023-11-11T05:09:21
oeisdata/seq/A365/A365588.seq
63a853fd29611225254d8aa55e198352
A365589
Numbers that have at least one prime digit and at least one nonprime digit.
[ "12", "13", "15", "17", "20", "21", "24", "26", "28", "29", "30", "31", "34", "36", "38", "39", "42", "43", "45", "47", "50", "51", "54", "56", "58", "59", "62", "63", "65", "67", "70", "71", "74", "76", "78", "79", "82", "83", "85", "87", "92", "93", "95", "97", "102", "103", "105", "107", "112", "113", "115", "117", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "130", "131", "132" ]
[ "nonn", "base" ]
40
1
1
[ "A085556", "A118950", "A365472", "A365589" ]
null
James C. McMahon, Sep 10 2023
2023-10-22T22:58:51
oeisdata/seq/A365/A365589.seq
cdecb3cfe9d273a41116cfbd7c789f7d
A365590
Number of n X n Boolean relation matrices such that each of the diagonal blocks of its Frobenius normal form is either a 1 block or a 0 block.
[ "1", "2", "13", "243", "11998", "1477763", "436610299", "300960642300", "474171878424571", "1680899431189662775", "13241419272545722904788", "229482664065433754849099977", "8677282817864146616211588609715", "710901968198799834001047038898570250" ]
[ "nonn" ]
16
0
2
[ "A355612", "A365534", "A365590", "A365593" ]
null
Geoffrey Critzer, Sep 10 2023
2023-09-11T11:24:57
oeisdata/seq/A365/A365590.seq
9d3181d1065b90a0a7e84d0536382221
A365591
Numbers k such that Sum_{i=1..k} prime(i) + i is prime.
[ "1", "5", "8", "17", "28", "33", "40", "41", "49", "52", "64", "65", "69", "77", "92", "93", "108", "109", "120", "121", "136", "137", "140", "144", "165", "200", "201", "204", "225", "229", "265", "269", "272", "280", "292", "312", "325", "332", "337", "344", "356", "361", "369", "376", "388", "457", "464", "473", "480", "529", "541", "548", "553", "556", "573", "577" ]
[ "nonn", "easy" ]
40
1
2
[ "A000217", "A007504", "A014688", "A365591" ]
null
Saish S. Kambali, Sep 10 2023
2023-09-17T06:11:54
oeisdata/seq/A365/A365591.seq
3c766ac49cfa910b112f02adec4f7830
A365592
Near-repdigit primes with at least two 1's as the repeated digit.
[ "113", "1117", "11113", "11117", "11119", "111119", "11111117", "11111119", "111111113", "11111111113", "11111111111111119", "1111111111111111111", "11111111111111111111111", "11111111111111111111117", "111111111111111111111113", "11111111111111111111111111117" ]
[ "base", "nonn" ]
15
1
1
[ "A105976", "A105978", "A105980", "A105982", "A107979", "A365592", "A365596", "A365597", "A365598" ]
null
Robert Price, Sep 10 2023
2023-09-11T11:52:48
oeisdata/seq/A365/A365592.seq
35bac7c6cc8b8ff2e4bdea3a59ce3070
A365593
Number of n X n Boolean relation matrices such that every block of its Frobenius normal form is either a 0 block or a 1 block.
[ "1", "2", "13", "219", "9322", "982243", "249233239", "148346645212", "202688186994599", "624913864623500599", "4289324010827093793808", "64841661094150427710360745", "2140002760057211517052090865983", "153082134018816602622335941790247946", "23590554099141037133024176892280338280237" ]
[ "nonn" ]
22
0
2
[ "A003024", "A355612", "A365534", "A365590", "A365593", "A366141" ]
null
Geoffrey Critzer, Sep 10 2023
2023-09-30T21:46:16
oeisdata/seq/A365/A365593.seq
b881f0bcad220c6014fd070df5672535
A365594
The denominators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.
[ "3", "42", "154", "3817", "1141283", "119706444", "1396550916", "20958700652", "2359646218028", "324742403298918", "107268957934572210", "41877140987048387615", "19073758392921536694655", "10024177256513161424322680", "376301673554116445531842536", "10673126660749797308728534491" ]
[ "nonn", "frac" ]
48
1
1
[ "A068985", "A323339", "A323340", "A365594", "A365595" ]
null
Raul Prisacariu, Sep 10 2023
2025-04-13T07:11:29
oeisdata/seq/A365/A365594.seq
953b62fd856b09b0817d77cd10e13fd6
A365595
The numerators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.
[ "1", "1", "1", "9", "1126", "53825", "302989", "2285199", "133296721", "9731109349", "1737376806937", "372236638394027", "94229801087550639", "27818002500902930641", "591930814558449521261", "9591188150350759241842", "2816408483135723327055984", "1394771058490469072473603553", "385768133102988434073147277769" ]
[ "nonn", "frac" ]
40
1
4
[ "A068985", "A323339", "A323340", "A365594", "A365595" ]
null
Raul Prisacariu, Sep 10 2023
2025-04-13T07:11:24
oeisdata/seq/A365/A365595.seq
4047ec380bd5b828bf08fc8944854bcd
A365596
Near-repdigit primes with at least two 3's as the repeated digit.
[ "331", "337", "3331", "33331", "333331", "333337", "3333331", "33333331", "333333333333333331", "3333333333333333333333333333333333333331", "3333333333333333333333333333333333333333333337", "33333333333333333333333333333333333333333333333331" ]
[ "base", "nonn" ]
15
1
1
[ "A105976", "A105978", "A105979", "A105980", "A105982", "A365592", "A365596", "A365597", "A365598" ]
null
Robert Price, Sep 10 2023
2023-09-11T11:53:42
oeisdata/seq/A365/A365596.seq
0d8857d2d304c89bea1f931a7a074d27
A365597
Near-repdigit primes with at least two 7's as the repeated digit.
[ "773", "77773", "777777773", "777777777773", "7777777777771", "777777777777773", "77777777777777777771", "777777777777777777773", "77777777777777777777771", "7777777777777777777777777777771" ]
[ "base", "nonn" ]
14
1
1
[ "A105976", "A105978", "A105979", "A105980", "A105982", "A365592", "A365596", "A365597", "A365598" ]
null
Robert Price, Sep 10 2023
2023-09-11T11:53:02
oeisdata/seq/A365/A365597.seq
cb8ecd14131e76d81e1affb401ea086c
A365598
Near-repdigit primes with at least two 9's as the repeated digit, and ending in a distinct digit.
[ "991", "997", "99991", "9999991", "99999999999999997", "999999999999999999999999999999991", "999999999999999999999999999999999999999999991" ]
[ "base", "nonn" ]
24
1
1
[ "A105975", "A105976", "A105978", "A105979", "A105980", "A105982", "A365592", "A365596", "A365597", "A365598" ]
null
Robert Price, Sep 10 2023
2025-06-21T20:00:46
oeisdata/seq/A365/A365598.seq
4229b503966c62f3b2b6beb52d117c53
A365599
Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(2/3).
[ "1", "2", "8", "54", "498", "5868", "83940", "1413480", "27375240", "599437440", "14641665120", "394657325280", "11635613604000", "372469741813440", "12864889063033920", "476870475257550720", "18882021780125953920", "795381867831610978560", "35515223076159203880960" ]
[ "nonn" ]
15
0
2
[ "A335531", "A347020", "A365575", "A365599" ]
null
Seiichi Manyama, Sep 11 2023
2023-11-11T05:42:20
oeisdata/seq/A365/A365599.seq
61871f42f03dd63a3ccb4b5212ca9219
A365600
Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(3/4).
[ "1", "3", "18", "174", "2292", "38292", "774624", "18399840", "501868416", "15456483840", "530462128896", "20073406663296", "830293158570624", "37267057695192192", "1803930663341528064", "93672204405378891264", "5193925606670524254720", "306280622206497897745920" ]
[ "nonn" ]
13
0
2
[ "A347021", "A354147", "A354240", "A365584", "A365600" ]
null
Seiichi Manyama, Sep 11 2023
2023-11-10T08:04:08
oeisdata/seq/A365/A365600.seq
a16d15e8581be871e8bb9e4a8b54412b
A365601
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(2/5).
[ "1", "2", "12", "130", "1990", "39500", "962540", "27807120", "928991280", "35233882320", "1495508048160", "70233555485520", "3615667144284720", "202470393271792800", "12252576455326384800", "796817209624497196800", "55418456683474326892800", "4104671046431448576787200" ]
[ "nonn" ]
11
0
2
[ "A347022", "A365585", "A365601", "A365602", "A365603", "A365604" ]
null
Seiichi Manyama, Sep 11 2023
2023-09-13T02:12:51
oeisdata/seq/A365/A365601.seq
23e3e7e45972be6f768bfc0581c9b064