sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A365602
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(3/5).
[ "1", "3", "21", "246", "3990", "82800", "2092560", "62343600", "2139137760", "83064002160", "3600715721040", "172353630085920", "9028586395211040", "513740204261763840", "31553316959017737600", "2080500578006553619200", "146577866381052082876800", "10988979300484733769667200" ]
[ "nonn" ]
12
0
2
[ "A347022", "A365586", "A365601", "A365602", "A365603", "A365604" ]
null
Seiichi Manyama, Sep 11 2023
2023-09-13T02:12:40
oeisdata/seq/A365/A365602.seq
44e346af1685be0bb38e3596296b3966
A365603
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(4/5).
[ "1", "4", "32", "404", "6924", "150000", "3927480", "120582360", "4246964280", "168767136000", "7468938047520", "364284571992480", "19412919898230240", "1122216138563359680", "69941868616009932480", "4675040053248335097600", "333605090142406849939200", "25312518953112479346316800" ]
[ "nonn" ]
12
0
2
[ "A347022", "A365587", "A365601", "A365602", "A365603", "A365604" ]
null
Seiichi Manyama, Sep 11 2023
2023-09-13T02:12:26
oeisdata/seq/A365/A365603.seq
63e582c9cd6ddd1e2a1592b751db77b8
A365604
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).
[ "1", "5", "45", "610", "11020", "248870", "6744350", "213233400", "7704814200", "313199930400", "14146162064400", "702826758144000", "38093116667766000", "2236695336601458000", "141433354184701746000", "9582086196220281456000", "692463727252196674560000" ]
[ "nonn" ]
14
0
2
[ "A094418", "A320080", "A347022", "A365588", "A365601", "A365602", "A365603", "A365604" ]
null
Seiichi Manyama, Sep 11 2023
2023-09-13T02:12:13
oeisdata/seq/A365/A365604.seq
778e5749d2b73a0eff4c0b345aef2dfe
A365605
Characteristic function of numbers without an inferior odd divisor > 1.
[ "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0" ]
[ "nonn" ]
35
1
null
[ "A342081", "A365605" ]
null
Christian Krause, Sep 11 2023
2023-10-08T18:42:11
oeisdata/seq/A365/A365605.seq
a37b1fb763862f04ea20e8dd599aca12
A365606
Number of degree 2 vertices in the n-Sierpinski carpet graph.
[ "8", "20", "84", "500", "3540", "26996", "212052", "1684724", "13442772", "107437172", "859182420", "6872514548", "54977282004", "439809752948", "3518452514388", "28147543587572", "225180119118036", "1801440264196724", "14411520047331156", "115292154179921396", "922337214843187668", "7378697662956950900", "59029581136289955924" ]
[ "nonn", "easy" ]
22
1
1
[ "A001018", "A009964", "A083233", "A271939", "A291066", "A332705", "A359452", "A359453", "A365606", "A365607", "A365608" ]
null
Allan Bickle, Sep 12 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365606.seq
a764e2e8e8e4863f64ae6f7811e10f79
A365607
Number of degree 3 vertices in the n-Sierpinski carpet graph.
[ "0", "40", "328", "2536", "19912", "158056", "1260616", "10073320", "80551624", "644308072", "5154149704", "41232252904", "329855188936", "2638833008488", "21110638558792", "168885031942888", "1351080025960648", "10808639518937704", "86469114085259080", "691752906483344872", "5534023233270575560", "44272185810376054120" ]
[ "nonn", "easy" ]
24
1
2
[ "A001018", "A009964", "A083233", "A271939", "A291066", "A332705", "A359452", "A359453", "A365606", "A365607", "A365608" ]
null
Allan Bickle, Sep 12 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365607.seq
295e8b96fa47a82b21176cb0df0df70c
A365608
Number of degree 4 vertices in the n-Sierpinski carpet graph.
[ "0", "4", "100", "1060", "9316", "77092", "624484", "5019172", "40223332", "321996580", "2576602468", "20614709284", "164923342948", "1319403749668", "10555281015652", "84442401180196", "675539668606564", "5404318726347556", "43234553943265636", "345876443943580708", "2767011588741012580", "22136092821505201444", "177088742906772914020" ]
[ "nonn", "easy" ]
23
1
2
[ "A001018", "A009964", "A083233", "A271939", "A291066", "A332705", "A359452", "A359453", "A365606", "A365607", "A365608" ]
null
Allan Bickle, Sep 12 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365608.seq
6f3512c2dc28356288af5d7d2325bd44
A365609
G.f. satisfies A(x) = 1 + x^2*A(x)^4*(1 + x*A(x)).
[ "1", "0", "1", "1", "4", "9", "27", "78", "231", "715", "2193", "6954", "21999", "70840", "228896", "746650", "2447757", "8072208", "26745627", "89002364", "297344960", "996865397", "3352918429", "11310307593", "38256171642", "129718262583", "440855654827", "1501451066767", "5123671576890", "17516503865294" ]
[ "nonn" ]
25
0
5
[ "A001005", "A025250", "A055113", "A217358", "A365609", "A365690" ]
null
Seiichi Manyama, Sep 17 2023
2023-09-17T10:11:10
oeisdata/seq/A365/A365609.seq
ec01162d55ac7fd8ec5e99150b34b399
A365610
Least prime in which the frequency of every digit is n, or -1 if no such number exists.
[ "2", "11", "-1", "10010101", "1000011011", "-1", "10000101011101", "1000000010111111", "-1", "10000000011111011101", "1000000000101101111111", "-1", "10000000000001111011111111", "1000000000000111111101110111", "-1", "10000000000000011101111111011111", "1000000000000000010111111111111111", "-1" ]
[ "sign", "base" ]
24
1
1
[ "A000040", "A004022", "A087395", "A365610" ]
null
Jean-Marc Rebert, Sep 12 2023
2023-09-21T14:59:45
oeisdata/seq/A365/A365610.seq
9d297a6102f8f2fd11b8148bdc85d2b9
A365611
Numbers k such that 10^100000+k is prime.
[ "342909", "346579", "829767", "871899", "1475997", "1751769", "2155489", "2483527", "2503087", "2686179", "2688933", "3667159", "3938473", "3979761", "4293973", "4858267", "5113299", "5169411", "5354043", "5717979", "6080631", "6308469", "6512023", "6596557", "7115409", "7235803", "7867333", "8743093", "8955391" ]
[ "nonn" ]
10
1
1
[ "A000040", "A365611", "A365612" ]
null
Robert Price, Sep 12 2023
2023-09-18T15:39:28
oeisdata/seq/A365/A365611.seq
db5292963d3c8ab9d9ee528ae5e99d82
A365612
Prime gaps: differences between consecutive primes, starting at 10^100000.
[ "3670", "483188", "42132", "604098", "275772", "403720", "328038", "19560", "183092", "2754", "978226", "271314", "41288", "314212", "564294", "255032", "56112", "184632", "363936", "362652", "227838", "203554", "84534", "518852", "120394", "631530", "875760", "212298", "224628", "45968", "39600", "21462", "138004" ]
[ "nonn" ]
11
1
1
[ "A001223", "A365611", "A365612" ]
null
Robert Price, Sep 12 2023
2023-09-18T15:39:21
oeisdata/seq/A365/A365612.seq
92b66b17893070d073371579de1a235a
A365613
a(n) = number of partitions p of n such that the greatest multiplicity of the parts of p is a part of p.
[ "0", "1", "0", "1", "3", "2", "4", "4", "9", "11", "18", "19", "30", "36", "51", "64", "90", "107", "150", "182", "239", "294", "385", "466", "602", "733", "928", "1129", "1420", "1714", "2137", "2578", "3177", "3826", "4690", "5617", "6845", "8181", "9898", "11803", "14211", "16878", "20234", "23974", "28596", "33795", "40161", "47311", "56025", "65845" ]
[ "nonn" ]
10
0
5
[ "A000041", "A365613", "A365614", "A365615", "A365616" ]
null
Clark Kimberling, Sep 17 2023
2023-09-22T05:23:55
oeisdata/seq/A365/A365613.seq
56ca7d7e44ebed2325ca83459727d5da
A365614
a(n) = number of partitions p of n such that the least multiplicity of the parts of p is a part of p.
[ "0", "1", "0", "1", "3", "4", "6", "10", "13", "20", "27", "36", "52", "71", "94", "126", "170", "216", "286", "367", "473", "603", "771", "963", "1229", "1529", "1910", "2371", "2959", "3623", "4492", "5487", "6740", "8200", "10016", "12099", "14724", "17722", "21402", "25687", "30914", "36892", "44224", "52630", "62781", "74497", "88540", "104646" ]
[ "nonn" ]
9
0
5
[ "A000041", "A365613", "A365614", "A365615", "A365616" ]
null
Clark Kimberling, Sep 17 2023
2023-09-22T05:24:44
oeisdata/seq/A365/A365614.seq
66f4d82c738b3b734ba762e6d0bcd207
A365615
a(n) = number of partitions p of n such that the least multiplicity of the parts of p is not a part of p.
[ "1", "0", "2", "2", "2", "3", "5", "5", "9", "10", "15", "20", "25", "30", "41", "50", "61", "81", "99", "123", "154", "189", "231", "292", "346", "429", "526", "639", "759", "942", "1112", "1355", "1609", "1943", "2294", "2784", "3253", "3915", "4613", "5498", "6424", "7691", "8950", "10631", "12394", "14637", "17018", "20108", "23255", "27351", "31699" ]
[ "nonn" ]
11
0
3
[ "A000041", "A365613", "A365614", "A365615", "A365616" ]
null
Clark Kimberling, Sep 17 2023
2023-09-22T05:25:00
oeisdata/seq/A365/A365615.seq
e6333fd2a4974b47aee3ed633f9bbc62
A365616
a(n) = number of partitions p of n such that the greatest multiplicity of the parts of p is not a part of p.
[ "1", "0", "2", "2", "2", "5", "7", "11", "13", "19", "24", "37", "47", "65", "84", "112", "141", "190", "235", "308", "388", "498", "617", "789", "973", "1225", "1508", "1881", "2298", "2851", "3467", "4264", "5172", "6317", "7620", "9266", "11132", "13456", "16117", "19382", "23127", "27705", "32940", "39287", "46579", "55339", "65397", "77443", "91248" ]
[ "nonn" ]
8
0
3
[ "A000041", "A365613", "A365614", "A365615", "A365616" ]
null
Clark Kimberling, Sep 17 2023
2023-09-22T05:25:14
oeisdata/seq/A365/A365616.seq
77660308e895a5f8d6a02b5437e57659
A365617
Iterated Pochhammer symbol.
[ "1", "1", "2", "24", "421200", "13257209623458438290962108800" ]
[ "nonn" ]
53
0
3
[ "A000142", "A000407", "A038155", "A055462", "A112332", "A266083", "A365617" ]
null
Darío Clavijo, Sep 12 2023
2025-04-27T00:45:56
oeisdata/seq/A365/A365617.seq
294fea20575bfb548798579399b0d697
A365618
Table read by antidiagonals: T(n, k) = A000120(n) + A000120(k).
[ "0", "1", "1", "1", "2", "1", "2", "2", "2", "2", "1", "3", "2", "3", "1", "2", "2", "3", "3", "2", "2", "2", "3", "2", "4", "2", "3", "2", "3", "3", "3", "3", "3", "3", "3", "3", "1", "4", "3", "4", "2", "4", "3", "4", "1", "2", "2", "4", "4", "3", "3", "4", "4", "2", "2", "2", "3", "2", "5", "3", "4", "3", "5", "2", "3", "2", "3", "3", "3", "3", "4", "4", "4", "4", "3", "3", "3", "3", "2", "4", "3", "4", "2", "5", "4", "5", "2" ]
[ "nonn", "tabl", "base", "easy" ]
55
0
5
[ "A000120", "A365618", "A367055" ]
null
Mithra Karamchedu and Sophia Pi, Nov 03 2023
2024-01-20T09:11:12
oeisdata/seq/A365/A365618.seq
3ca8eed7ce29ad58c5616739cf19c125
A365619
a(n) is the least integer k such that A366110(k) = n, or 0 if there is no such k.
[ "0", "0", "0", "0", "0", "454", "0", "13", "0", "0", "0", "19", "0", "16", "0", "17", "15", "22", "6", "0", "0", "0", "0", "0", "0", "0", "0", "23", "0", "396", "0", "0", "0", "46", "0", "148", "40", "0", "8", "0", "0", "652", "0", "15980", "0", "0", "0", "25", "0", "0", "0", "0", "0", "50", "0", "0", "0", "0", "0", "136", "0", "0", "0", "27", "0", "64", "0", "0", "0", "100", "0", "29", "21", "0", "0", "0", "0", "15574", "0", "0", "0", "0", "0", "346" ]
[ "nonn" ]
14
1
6
[ "A152454", "A365619", "A366110" ]
null
Michel Marcus, Nov 02 2023
2023-11-04T14:01:23
oeisdata/seq/A365/A365619.seq
a22d533f7c3166a552fdfeb46956284a
A365620
Number of integer grid points on the circle around (0,0) with radius A088959(n).
[ "4", "12", "20", "36", "60", "108", "180", "252", "324", "540", "756", "972", "1620", "2268", "2916", "4860", "6804", "8748", "14580", "20412", "26244", "43740", "61236", "72900", "78732", "102060", "131220", "183708", "218700", "236196", "306180", "393660", "551124", "656100", "708588", "918540" ]
[ "nonn" ]
25
1
1
[ "A046109", "A071385", "A365620" ]
null
Günter Rote, Sep 12 2023
2023-09-25T08:55:42
oeisdata/seq/A365/A365620.seq
ad4e6bd884f3198ce67a0fddb33aad58
A365621
Minimum size of a set of polyominoes with n cells such that all other free polyominoes with n cells can be obtained by moving one cell of one of the polyominoes in the set.
[ "1", "1", "1", "1", "2", "3", "7" ]
[ "nonn", "more" ]
21
1
5
[ "A098891", "A365621", "A367123", "A367124", "A367127", "A367441" ]
null
Pontus von Brömssen, Nov 14 2023
2023-11-19T11:36:10
oeisdata/seq/A365/A365621.seq
3330f0a27e07f7158ac27bf18fc0819d
A365622
Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^5 ).
[ "1", "10", "150", "2670", "52250", "1086002", "23533790", "525825830", "12026993010", "280220428890", "6627397194022", "158692955007390", "3839595257256330", "93725694152075010", "2305406918530451950", "57085385625207424342", "1421808255906105290210" ]
[ "nonn" ]
21
0
2
[ "A032349", "A363006", "A365622", "A365843", "A365847" ]
null
Seiichi Manyama, Sep 20 2023
2023-09-20T10:00:46
oeisdata/seq/A365/A365622.seq
d80ea543caf781b9a9b6570eb50e352c
A365623
T(n,k) is the number of parking functions of length n with cars parking at most k spots away from their preferred spot; square array T(n,k), n>=0, k>=0, read by downward antidiagonals.
[ "1", "1", "1", "1", "1", "2", "1", "1", "3", "6", "1", "1", "3", "13", "24", "1", "1", "3", "16", "75", "120", "1", "1", "3", "16", "109", "541", "720", "1", "1", "3", "16", "125", "918", "4683", "5040", "1", "1", "3", "16", "125", "1171", "9277", "47293", "40320", "1", "1", "3", "16", "125", "1296", "12965", "109438", "545835", "362880", "1", "1", "3", "16", "125", "1296", "15511", "166836", "1475691", "7087261", "3628800" ]
[ "nonn", "tabl" ]
50
0
6
[ "A000142", "A000272", "A000670", "A264902", "A365623", "A365626", "A365627" ]
null
J. Carlos Martínez Mori, Sep 13 2023
2023-09-20T18:19:16
oeisdata/seq/A365/A365623.seq
f36ff3e5530d2cb7a854d879b3141d1a
A365624
a(n) is the length of the longest word w in the Thue-Morse sequence (A010060) in which every length-n factor of w is unique.
[ "2", "5", "8", "12", "16", "18", "24", "26", "32", "34", "36", "38", "48", "50", "52", "54", "64", "66", "68", "70", "72", "74", "76", "78", "96", "98", "100", "102", "104", "106", "108", "110", "128", "130", "132", "134", "136", "138", "140", "142", "144", "146", "148", "150", "152", "154", "156", "158", "192", "194", "196", "198", "200", "202", "204", "206" ]
[ "nonn" ]
39
1
1
[ "A005942", "A010060", "A365624", "A366408" ]
null
Gandhar Joshi, Sep 13 2023
2024-12-19T11:46:19
oeisdata/seq/A365/A365624.seq
4ee41ff5e16e05473f1735faa6ae2163
A365625
a(0) = 0, a(1) = 1. let i = a(n-2) and j = a(n-1), then if i,j have a digit in common a(n) is the least novel number having no digit in common with either i or j. If i,j have no common digit, a(n) is the least novel number having a digit in common with at least one of i or j. All digits are decimal.
[ "0", "1", "10", "2", "11", "12", "3", "13", "4", "14", "5", "15", "6", "16", "7", "17", "8", "18", "9", "19", "20", "21", "33", "22", "23", "40", "24", "31", "25", "26", "30", "27", "28", "34", "29", "32", "41", "35", "36", "42", "37", "38", "44", "39", "43", "50", "45", "61", "46", "52", "47", "48", "51", "49", "53", "54", "60", "55", "56", "70", "57", "62", "58", "59", "63", "64", "71", "65" ]
[ "nonn", "base", "fini" ]
12
0
3
[ "A001477", "A365625" ]
null
David James Sycamore, Sep 13 2023
2023-09-17T01:59:23
oeisdata/seq/A365/A365625.seq
81f4e3cdf6b1063f55e6fa244771af7c
A365626
Number of parking functions of length n with cars parking at most 3 spots away from their preferred spot.
[ "1", "1", "3", "16", "125", "1171", "12965", "166836", "2455121", "40675881", "749029635", "15173252268", "335303622765", "8026962584007", "206940524177025", "5716136927184348", "168418082791822545", "5272347013042009125", "174760355153742270543", "6114528211048906800708", "225195326302815011830005" ]
[ "nonn" ]
13
0
3
[ "A365623", "A365626" ]
null
J. Carlos Martínez Mori, Sep 13 2023
2023-09-14T13:45:44
oeisdata/seq/A365/A365626.seq
4b8be64c712157fe8afe72277973cb18
A365627
Number of parking functions of length n with cars parking at most 4 spots away from their preferred spot.
[ "1", "1", "3", "16", "125", "1296", "15511", "212978", "3321091", "58196400", "1134161181", "24333706866", "569786870013", "14455456239756", "394940662364775", "11560567008386106", "360947377705705971", "11973823441677468648", "420576028975783973061", "15593290472977894193850" ]
[ "nonn" ]
6
0
3
[ "A365623", "A365627" ]
null
J. Carlos Martínez Mori, Sep 13 2023
2023-09-20T17:53:07
oeisdata/seq/A365/A365627.seq
98565459e87c1298924313d078fbaea0
A365628
a(n) = binomial(primorial(n), n).
[ "1", "2", "15", "4060", "78738660", "545754554499462", "1018081517447240182211275", "1793004475784081302284255717158418120", "1943305407393725342965469143054357602760779899437185", "3772316402417100592416011698371929155605067111502494326520988270728160" ]
[ "nonn" ]
28
0
2
[ "A002110", "A007318", "A014062", "A060604", "A086687", "A365628" ]
null
Darío Clavijo, Sep 13 2023
2023-09-17T18:33:30
oeisdata/seq/A365/A365628.seq
cda7e8ee5bd0568696da42cd56638de7
A365629
Number of 4 X n mazes that can be navigated from the top left corner to the bottom right corner.
[ "1", "216", "28942", "3329245", "358911148", "37502829018", "3856945416544", "393396697543644", "39951066751274152", "4047887027105625168", "409638762069161924728", "41428094401248851559736", "4188336537335577744595384", "423360539638841208001947048", "42789587016771330584001089176" ]
[ "nonn", "easy", "changed" ]
44
1
2
[ "A349594", "A349596", "A365629", "A373036" ]
null
Eugene Nonko, Oct 25 2023
2025-07-15T10:23:51
oeisdata/seq/A365/A365629.seq
6592baeb267451f84dd95496a547fcb5
A365630
Number of partitions of n with exactly four part sizes.
[ "1", "2", "5", "10", "20", "30", "52", "77", "117", "162", "227", "309", "414", "535", "692", "873", "1100", "1369", "1661", "2030", "2438", "2925", "3450", "4108", "4759", "5570", "6440", "7457", "8491", "9798", "11020", "12593", "14125", "15995", "17820", "20074", "22182", "24833", "27379", "30422", "33351", "36996", "40346", "44445", "48336", "53048", "57494" ]
[ "nonn" ]
21
10
2
[ "A000005", "A002133", "A002134", "A060177", "A116608", "A365630", "A365631" ]
null
Seiichi Manyama, Sep 13 2023
2023-09-15T18:41:41
oeisdata/seq/A365/A365630.seq
9cbf02108d085affc30103adb31fd6e7
A365631
Number of partitions of n with exactly five part sizes.
[ "1", "2", "5", "10", "20", "36", "58", "95", "147", "222", "323", "462", "636", "889", "1184", "1584", "2060", "2686", "3403", "4353", "5433", "6768", "8319", "10230", "12363", "15011", "17943", "21467", "25403", "30044", "35231", "41294", "48002", "55718", "64328", "74086", "84880", "97071", "110607", "125692", "142313", "160728", "181112", "203438", "228124" ]
[ "nonn" ]
22
15
2
[ "A000005", "A002133", "A002134", "A060177", "A116608", "A364809", "A365630", "A365631" ]
null
Seiichi Manyama, Sep 13 2023
2023-09-16T17:03:43
oeisdata/seq/A365/A365631.seq
daf949049f5b1c6120329aefc874b2a7
A365632
The number of divisors of n that are terms of A072873.
[ "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "2", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
13
1
4
[ "A072873", "A327939", "A365632", "A365633", "A365634" ]
null
Amiram Eldar, Sep 14 2023
2023-09-20T05:41:08
oeisdata/seq/A365/A365632.seq
565883734d4a0e8c5e78dc492ac071b9
A365633
The sum of divisors of n that are terms of A072873.
[ "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "7", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "4", "3", "1", "1", "1", "7", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "7", "1", "1", "1", "3", "1", "4", "1", "3", "1", "1", "1", "3", "1", "1", "1", "15", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "7", "4", "1", "1", "3", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
12
1
4
[ "A072873", "A327939", "A332653", "A365632", "A365633" ]
null
Amiram Eldar, Sep 14 2023
2023-09-20T01:44:24
oeisdata/seq/A365/A365633.seq
0b17be19c3557a770926667e1a53605d
A365634
The number of divisors of n that are terms of A048102.
[ "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
13
1
4
[ "A048102", "A365632", "A365634", "A365635" ]
null
Amiram Eldar, Sep 14 2023
2024-09-05T16:23:07
oeisdata/seq/A365/A365634.seq
8b44a96a4c01f84027ae5fbee9aef088
A365635
The largest divisor of n that is a term of A048102.
[ "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "27", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "27", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "1", "1", "1", "4", "27", "1", "1", "4", "1", "1" ]
[ "nonn", "easy", "mult" ]
20
1
4
[ "A048102", "A048103", "A327939", "A365634", "A365635" ]
null
Amiram Eldar, Sep 14 2023
2023-09-20T01:44:30
oeisdata/seq/A365/A365635.seq
2ac7b104be908bca2217082f78b1fc10
A365636
a(n) is the smallest multiple of n that is a term of A072873.
[ "1", "4", "27", "4", "3125", "108", "823543", "16", "27", "12500", "285311670611", "108", "302875106592253", "3294172", "84375", "16", "827240261886336764177", "108", "1978419655660313589123979", "12500", "22235661", "1141246682444", "20880467999847912034355032910567", "432", "3125", "1211500426369012", "27", "3294172" ]
[ "nonn", "easy", "mult" ]
15
1
2
[ "A072873", "A365636", "A365637" ]
null
Amiram Eldar, Sep 14 2023
2024-02-16T05:27:26
oeisdata/seq/A365/A365636.seq
f2aa89cb358a592bf1cee4e40a62612a
A365637
a(n) is the smallest number k such that k*n is a term of A072873.
[ "1", "2", "9", "1", "625", "18", "117649", "2", "3", "1250", "25937424601", "9", "23298085122481", "235298", "5625", "1", "48661191875666868481", "6", "104127350297911241532841", "625", "1058841", "51874849202", "907846434775996175406740561329", "18", "125", "46596170244962", "1", "117649", "88540901833145211536614766025207452637361" ]
[ "nonn", "easy", "mult" ]
16
1
2
[ "A072873", "A365636", "A365637" ]
null
Amiram Eldar, Sep 14 2023
2025-04-27T00:46:00
oeisdata/seq/A365/A365637.seq
b4b3ab4b9e8509bc4c5ab0bc631fff68
A365638
Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.
[ "1", "1", "1", "2", "4", "2", "8", "24", "24", "6", "64", "256", "384", "192", "24", "1024", "5120", "10240", "7680", "1920", "120", "32768", "196608", "491520", "491520", "184320", "23040", "720", "2097152", "14680064", "44040192", "55050240", "27525120", "5160960", "322560", "5040", "268435456", "2147483648", "7516192768", "11274289152", "7046430720", "1761607680", "165150720", "5160960", "40320" ]
[ "nonn", "easy", "tabl" ]
27
0
4
[ "A002866", "A006125", "A008279", "A052670", "A095340", "A103904", "A117260", "A122027", "A224886", "A259105", "A350608", "A350609", "A350610", "A365638", "A379614" ]
null
Thomas Scheuerle, Sep 14 2023
2024-12-31T15:37:01
oeisdata/seq/A365/A365638.seq
da6489f427ce82763365c995f539ff20
A365639
Numbers k such that k! + k^3 + 1 is prime.
[ "0", "1", "2", "4", "6", "16", "28", "42" ]
[ "nonn", "hard", "more" ]
23
1
3
[ "A000040", "A000142", "A000578", "A001093", "A038507", "A073308", "A080668", "A365639" ]
null
Darío Clavijo, Sep 14 2023
2024-03-06T01:00:18
oeisdata/seq/A365/A365639.seq
249d348f43c7baf20f4813c3953c854a
A365640
Prime powers of the form 2^k + 1.
[ "2", "3", "5", "9", "17", "257", "65537" ]
[ "nonn" ]
63
1
1
[ "A000961", "A019434", "A092506", "A365640" ]
null
Juri-Stepan Gerasimov, Nov 10 2023
2023-11-16T05:56:52
oeisdata/seq/A365/A365640.seq
d9bbfa4f636d72e051f43458be7c58e2
A365641
The minimum number of ways to label each triangle of a triangulation of an n-gon with one of its vertices so that different triangles get different labels (minimum taken over all triangulations).
[ "1", "3", "7", "14", "25", "41", "63", "92", "128", "173", "228", "293", "369", "458", "561", "676", "807", "955", "1119", "1300" ]
[ "nonn", "more" ]
13
2
2
null
null
Günter Rote, Sep 14 2023
2023-09-25T08:56:23
oeisdata/seq/A365/A365641.seq
2ce3aae36270416b34f28b0c77a17c51
A365642
a(1) = 1, a(2) = 2; a(n) = smallest k such that rad(k) | (a(n-2)+a(n-1)) and k != a(m), m < n, where rad(n) = A007947(n).
[ "1", "2", "3", "5", "4", "9", "13", "8", "7", "15", "11", "16", "27", "43", "10", "53", "21", "32", "2809", "81", "17", "14", "31", "25", "28", "148877", "45", "19", "64", "83", "49", "6", "55", "61", "29", "12", "41", "7890481", "18", "179", "197", "47", "122", "169", "97", "38", "75", "113", "94", "23", "39", "62", "101", "163", "22", "37", "59", "24", "6889", "223", "56", "93", "149" ]
[ "nonn" ]
12
1
2
[ "A007947", "A365642" ]
null
Michael De Vlieger, Nov 15 2023
2023-11-19T10:33:34
oeisdata/seq/A365/A365642.seq
42f4617bb992a2b27d0d29803e0104ee
A365643
Number of permutations whose reverse-complement shares the same recording tableau in the Robinson-Schensted correspondence.
[ "1", "1", "2", "2", "12", "24", "136", "344", "2872", "7108", "80672", "211056", "3032376" ]
[ "nonn", "more" ]
30
0
3
[ "A059304", "A365643" ]
null
Dang-Son Nguyen, Sep 14 2023
2023-12-29T16:42:56
oeisdata/seq/A365/A365643.seq
e457534c71800dfb86ba7546296c3911
A365644
Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.
[ "0", "0", "0", "0", "1", "0", "0", "11", "2", "0", "0", "111", "22", "3", "0", "0", "1111", "222", "33", "4", "0", "0", "11111", "2222", "333", "44", "5", "0", "0", "111111", "22222", "3333", "444", "55", "6", "0", "0", "1111111", "222222", "33333", "4444", "555", "66", "7", "0", "0", "11111111", "2222222", "333333", "44444", "5555", "666", "77", "8", "0" ]
[ "nonn", "base", "easy", "tabl" ]
9
0
8
[ "A000004", "A001477", "A002275", "A002276", "A002277", "A002278", "A002279", "A002280", "A002281", "A002282", "A002283", "A008593", "A053422", "A105279", "A132583", "A177769", "A365644", "A365645", "A365646" ]
null
Stefano Spezia, Sep 14 2023
2023-09-17T02:47:55
oeisdata/seq/A365/A365644.seq
4d45082edd3b15f5fac06341f4d088b0
A365645
a(n) = n*(1 + n)*(10^n - 1)/18.
[ "0", "1", "33", "666", "11110", "166665", "2333331", "31111108", "399999996", "4999999995", "61111111105", "733333333326", "8666666666658", "101111111111101", "1166666666666655", "13333333333333320", "151111111111111096", "1699999999999999983", "18999999999999999981", "211111111111111111090", "2333333333333333333310" ]
[ "nonn", "easy" ]
12
0
3
[ "A365644", "A365645" ]
null
Stefano Spezia, Sep 14 2023
2023-09-17T05:40:05
oeisdata/seq/A365/A365645.seq
e1eacd4092b934258167ca33b3acec86
A365646
a(n) is the permanent of the n X n matrix M(n) whose generic M[i, j] = j*(10^i - 1)/9 with 1 <= i, j <= n.
[ "1", "1", "44", "43956", "781361856", "217042789550400", "868170290030441798400", "47267044397174696636039097600", "33612120124091913005718848881499750400", "302509080814318135934642422882028113666502246400", "33612120087118580872578956587618207930922159448149975040000" ]
[ "nonn" ]
13
0
3
[ "A365644", "A365646" ]
null
Stefano Spezia, Sep 14 2023
2023-09-17T10:01:45
oeisdata/seq/A365/A365646.seq
0cec8541c3e7286d35d3429504a9dd99
A365647
Dirichlet convolution of Dedekind psi function with reduced totient function.
[ "1", "4", "6", "11", "10", "24", "14", "26", "26", "40", "22", "64", "26", "56", "56", "58", "34", "104", "38", "106", "78", "88", "46", "148", "74", "104", "102", "148", "58", "224", "62", "128", "122", "136", "128", "272", "74", "152", "144", "244", "82", "312", "86", "232", "232", "184", "94", "326", "146", "296", "188", "274", "106", "408", "200", "340", "210", "232", "118" ]
[ "nonn" ]
10
1
2
[ "A000040", "A001615", "A002322", "A365647", "A365648" ]
null
Torlach Rush, Sep 14 2023
2023-09-20T15:59:16
oeisdata/seq/A365/A365647.seq
62e3863d46f2e859db72e394fd7165e4
A365648
Dirichlet convolution of sigma with reduced totient function.
[ "1", "4", "6", "12", "10", "24", "14", "30", "27", "40", "22", "70", "26", "56", "56", "70", "34", "108", "38", "116", "78", "88", "46", "172", "75", "104", "108", "162", "58", "224", "62", "158", "122", "136", "128", "310", "74", "152", "144", "284", "82", "312", "86", "254", "242", "184", "94", "396", "147", "300", "188", "300", "106", "432", "200", "396", "210", "232", "118" ]
[ "nonn" ]
12
1
2
[ "A000040", "A000203", "A002322", "A365647", "A365648" ]
null
Torlach Rush, Sep 14 2023
2023-09-20T15:59:47
oeisdata/seq/A365/A365648.seq
95415a19233cd6c243573131d9f5d257
A365649
Dirichlet convolution of sigma with Dedekind psi function.
[ "1", "6", "8", "22", "12", "48", "16", "66", "41", "72", "24", "176", "28", "96", "96", "178", "36", "246", "40", "264", "128", "144", "48", "528", "97", "168", "176", "352", "60", "576", "64", "450", "192", "216", "192", "902", "76", "240", "224", "792", "84", "768", "88", "528", "492", "288", "96", "1424", "177", "582", "288", "616", "108", "1056", "288", "1056", "320" ]
[ "nonn", "easy", "mult" ]
13
1
2
[ "A000040", "A000203", "A001615", "A365647", "A365648", "A365649" ]
null
Torlach Rush, Sep 14 2023
2023-09-20T16:00:11
oeisdata/seq/A365/A365649.seq
31ef04a7075994cf02ec00512d70769b
A365650
Number of free n-polyominoids, allowing both corner- and edge-connections.
[ "1", "4", "36", "660", "16687" ]
[ "nonn", "hard", "more" ]
11
1
2
[ "A000105", "A030222", "A075679", "A365650", "A365651", "A365652", "A366766" ]
null
Pontus von Brömssen, Sep 17 2023
2023-11-04T18:24:35
oeisdata/seq/A365/A365650.seq
ba56a695280120eeaefa8083f1c87479
A365651
Number of fixed n-polyominoids, allowing both corner- and edge-connections.
[ "3", "48", "1072", "27732", "781200" ]
[ "nonn", "hard", "more" ]
10
1
1
[ "A001168", "A006770", "A075678", "A365650", "A365651", "A365653", "A366767" ]
null
Pontus von Brömssen, Sep 17 2023
2023-12-04T16:43:38
oeisdata/seq/A365/A365651.seq
e0e3d8a881055bef8799fa0ab3070f71
A365652
Number of free n-polyominoids, allowing corner-connections only.
[ "1", "2", "19", "293", "6590", "168753" ]
[ "nonn", "hard", "more" ]
12
1
2
[ "A075679", "A365650", "A365652", "A365653", "A366766" ]
null
Pontus von Brömssen, Sep 17 2023
2023-11-04T18:24:49
oeisdata/seq/A365/A365652.seq
6541e6d31efd321460da6cd9b46dd526
A365653
Number of fixed n-polyominoids, allowing corner-connections only.
[ "3", "30", "554", "12453", "308313", "8055534" ]
[ "nonn", "hard", "more" ]
10
1
1
[ "A075678", "A365651", "A365652", "A365653", "A366767" ]
null
Pontus von Brömssen, Sep 17 2023
2023-12-04T16:43:51
oeisdata/seq/A365/A365653.seq
b3fc45fcc1aba04b2645ce590782b612
A365654
Number of free n-polyominoids, allowing right-angled connections only ("hard" polyominoids).
[ "1", "1", "5", "16", "90", "537", "3826", "28655", "225534" ]
[ "nonn", "hard", "more" ]
32
1
3
[ "A075679", "A365559", "A365654", "A365655", "A366766" ]
null
Pontus von Brömssen, Sep 17 2023
2025-06-11T01:01:05
oeisdata/seq/A365/A365654.seq
6d2e3093a37e9911a68e9df3cc3f420c
A365655
Number of fixed n-polyominoids, allowing right-angled connections only ("hard" polyominoids).
[ "3", "12", "68", "438", "3054", "22417", "170610", "1334316" ]
[ "nonn", "hard", "more" ]
13
1
1
[ "A075678", "A365654", "A365655", "A366767" ]
null
Pontus von Brömssen, Sep 17 2023
2023-12-04T16:44:24
oeisdata/seq/A365/A365655.seq
6031f583fbc04cf28dcab16a7fb08be5
A365656
Array T(n,k) read by antidiagonals (downward): T(n,1) = A005117(n) (squarefree numbers > 1); for k > 1, columns are nonsquarefree numbers (in descending order) with exactly the same prime factors as T(n,1).
[ "1", "2", "4", "3", "8", "9", "5", "16", "27", "25", "6", "32", "81", "125", "12", "7", "64", "243", "625", "18", "49", "10", "128", "729", "3125", "24", "343", "20", "11", "256", "2187", "15625", "36", "2401", "40", "121", "13", "512", "6561", "78125", "48", "16807", "50", "1331", "169", "14", "1024", "19683", "390625", "54", "117649", "80", "14641", "2197", "28", "15" ]
[ "nonn", "tabf" ]
32
0
2
[ "A002260", "A005117", "A007947", "A065642", "A284311", "A284457", "A365656" ]
null
Michael De Vlieger, Nov 17 2023
2024-01-23T16:18:49
oeisdata/seq/A365/A365656.seq
b125fe58ae0571369d46356410b2c746
A365657
Integers k such that k^2 can be written as the sum of three positive fourth powers.
[ "481", "1924", "4329", "7696", "12025", "17316", "23569", "24961", "28721", "30784", "38961", "48100", "58201", "65441", "69121", "69264", "81289", "94276", "99844", "108225", "113241", "114884", "123136", "139009", "155844", "173641", "192400", "212121", "224649", "232804", "254449", "258489", "261764", "276484", "277056", "300625", "325156" ]
[ "nonn" ]
43
1
1
[ "A003828", "A365657", "A365688" ]
null
Jud McCranie, Sep 14 2023
2023-09-28T22:21:24
oeisdata/seq/A365/A365657.seq
674b522712c57d2fd02be603824f5cad
A365658
Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.
[ "1", "1", "1", "1", "0", "2", "1", "1", "1", "2", "1", "0", "2", "0", "4", "1", "1", "3", "0", "1", "5", "1", "0", "3", "0", "3", "0", "8", "1", "1", "3", "2", "2", "1", "2", "10", "1", "0", "5", "0", "3", "0", "5", "0", "16", "1", "1", "4", "0", "6", "2", "4", "2", "2", "20", "1", "0", "5", "0", "5", "0", "8", "0", "6", "0", "31", "1", "1", "6", "2", "3", "6", "6", "1", "4", "4", "4", "39", "1", "0", "6", "0", "6", "0", "12", "0", "8", "0", "13", "0", "55" ]
[ "nonn", "tabl" ]
13
1
6
[ "A000009", "A000041", "A000124", "A046663", "A108917", "A122768", "A126796", "A137719", "A299701", "A304792", "A364272", "A364916", "A365381", "A365543", "A365658", "A365660", "A365661" ]
null
Gus Wiseman, Sep 16 2023
2025-04-08T13:21:27
oeisdata/seq/A365/A365658.seq
16b281793562fba593cd8a22e598c96f
A365659
Number of strict integer partitions of n that either have (1) length 2, or (2) greatest part n/2.
[ "0", "0", "0", "1", "1", "2", "3", "3", "4", "4", "6", "5", "8", "6", "10", "7", "12", "8", "15", "9", "18", "10", "21", "11", "25", "12", "29", "13", "34", "14", "40", "15", "46", "16", "53", "17", "62", "18", "71", "19", "82", "20", "95", "21", "109", "22", "125", "23", "144", "24", "165", "25", "189", "26", "217", "27", "248", "28", "283", "29", "324" ]
[ "nonn" ]
14
0
6
[ "A000009", "A008967", "A046663", "A068911", "A095944", "A140106", "A238628", "A364272", "A364914", "A365046", "A365376", "A365377", "A365543", "A365544", "A365659" ]
null
Gus Wiseman, Sep 16 2023
2023-09-18T14:09:19
oeisdata/seq/A365/A365659.seq
5a3dc043b90db47dd90bb50dd605fb71
A365660
Number of integer partitions of 2n with exactly n distinct sums of nonempty submultisets.
[ "1", "1", "1", "3", "2", "6", "6", "16", "12", "20", "26", "59", "45", "79", "94", "186", "142", "231", "244", "442", "470", "616", "746", "1340", "1053", "1548", "1852", "2780", "2826", "3874", "4320", "6617", "6286", "7924", "9178", "13180", "13634", "17494", "20356", "28220", "29176", "37188", "41932", "56037" ]
[ "nonn", "more" ]
17
0
4
[ "A000009", "A000041", "A000124", "A002219", "A008967", "A046663", "A095944", "A122768", "A126796", "A299701", "A304792", "A364272", "A364349", "A364911", "A365376", "A365377", "A365543", "A365658", "A365660", "A365661", "A365663" ]
null
Gus Wiseman, Sep 16 2023
2023-09-21T11:11:01
oeisdata/seq/A365/A365660.seq
bcd0801c0cd24cf6e15c3b07ee874388
A365661
Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.
[ "1", "1", "1", "1", "0", "1", "2", "1", "1", "2", "2", "1", "0", "1", "2", "3", "1", "1", "1", "1", "3", "4", "2", "2", "1", "2", "2", "4", "5", "2", "2", "2", "2", "2", "2", "5", "6", "3", "2", "3", "1", "3", "2", "3", "6", "8", "3", "3", "4", "3", "3", "4", "3", "3", "8", "10", "5", "4", "5", "4", "3", "4", "5", "4", "5", "10", "12", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "12" ]
[ "nonn", "tabl" ]
11
0
7
[ "A000009", "A000124", "A002219", "A006827", "A046663", "A108796", "A108917", "A122768", "A237258", "A275972", "A299701", "A304792", "A364272", "A364349", "A364916", "A365311", "A365376", "A365381", "A365541", "A365543", "A365661", "A365663" ]
null
Gus Wiseman, Sep 16 2023
2025-04-05T23:17:49
oeisdata/seq/A365/A365661.seq
ea97f18a874d17ae5c6253e72b677f26
A365662
Number of ordered pairs of disjoint strict integer partitions of n.
[ "1", "0", "0", "2", "2", "6", "8", "14", "18", "32", "42", "66", "92", "136", "190", "280", "374", "532", "744", "1014", "1366", "1896", "2512", "3384", "4526", "6006", "7910", "10496", "13648", "17842", "23338", "30116", "38826", "50256", "64298", "82258", "105156", "133480", "169392", "214778", "270620", "340554", "428772", "536302", "670522" ]
[ "nonn" ]
14
0
4
[ "A000009", "A000041", "A000124", "A000244", "A000302", "A000712", "A001255", "A002219", "A006827", "A032302", "A046663", "A054440", "A064914", "A108796", "A122768", "A237258", "A260664", "A260669", "A276024", "A284640", "A304792", "A364272", "A364349", "A365661", "A365662", "A365663" ]
null
Gus Wiseman, Sep 19 2023
2025-04-24T06:23:37
oeisdata/seq/A365/A365662.seq
3d0dfa6683a8db4b6fde383301cacb25
A365663
Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.
[ "1", "1", "1", "1", "2", "1", "2", "2", "2", "2", "2", "2", "3", "2", "2", "3", "3", "3", "3", "3", "3", "3", "4", "3", "5", "3", "4", "3", "5", "5", "4", "5", "5", "4", "5", "5", "5", "6", "5", "6", "7", "6", "5", "6", "5", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "8", "9", "8", "8", "8", "11", "8", "8", "8", "9", "8", "10", "11", "10", "10", "10", "10", "10", "10", "10", "10", "11", "10", "12", "13", "11", "13", "11", "12", "15", "12", "11", "13", "11", "13", "12" ]
[ "nonn", "tabl" ]
23
2
5
[ "A000009", "A000124", "A002219", "A006827", "A025147", "A046663", "A108796", "A108917", "A122768", "A124506", "A237258", "A275972", "A299701", "A304792", "A321142", "A326083", "A364272", "A364349", "A364350", "A364839", "A364916", "A365311", "A365376", "A365381", "A365541", "A365543", "A365661", "A365663", "A365922" ]
null
Gus Wiseman, Sep 17 2023
2025-04-05T23:17:57
oeisdata/seq/A365/A365663.seq
32012be8e08cbc9b157e9c8a5ea4c858
A365664
Expansion of Sum_{0<i<j<k<l} q^(i+j+k+l)/( (1-q^i)*(1-q^j)*(1-q^k)*(1-q^l) )^2.
[ "1", "3", "9", "22", "51", "97", "188", "330", "568", "918", "1452", "2233", "3344", "4884", "7004", "9856", "13653", "18699", "25080", "33462", "43918", "57304", "73668", "94482", "119262", "150285", "187231", "232560", "285660", "350746", "425627", "516477", "620731", "745503", "887796", "1056669", "1247521", "1472460", "1726054", "2021327" ]
[ "nonn" ]
36
10
2
[ "A000203", "A001158", "A001160", "A002127", "A002128", "A010816", "A013955", "A060043", "A365630", "A365664", "A365665", "A365666" ]
null
Seiichi Manyama, Sep 15 2023
2025-01-07T01:59:10
oeisdata/seq/A365/A365664.seq
84c85f10092ea1b01f2971e245a6b58b
A365665
Expansion of Sum_{0<i<j<k<l<m} q^(i+j+k+l+m)/( (1-q^i)*(1-q^j)*(1-q^k)*(1-q^l)*(1-q^m) )^2.
[ "1", "3", "9", "22", "51", "108", "208", "390", "693", "1193", "1977", "3195", "4995", "7722", "11583", "17164", "24882", "35685", "50205", "70083", "96300", "131101", "176358", "235377", "310651", "407352", "529074", "682750", "874038", "1112085", "1405521", "1766259", "2206413", "2741431", "3389052", "4168089", "5103450", "6218469" ]
[ "nonn" ]
17
15
2
[ "A000203", "A002127", "A002128", "A010816", "A060043", "A365631", "A365664", "A365665", "A365667" ]
null
Seiichi Manyama, Sep 15 2023
2023-09-15T10:29:04
oeisdata/seq/A365/A365665.seq
4f14f1e36eb506aee2a12a065ea2faa0
A365666
Expansion of Sum_{0<i<j<k<l} q^(2*(i+j+k+l)-4)/( (1-q^(2*i-1))*(1-q^(2*j-1))*(1-q^(2*k-1))*(1-q^(2*l-1)) )^2.
[ "1", "2", "4", "8", "14", "24", "40", "64", "100", "144", "212", "304", "424", "588", "800", "1072", "1422", "1864", "2408", "3080", "3950", "4972", "6224", "7760", "9564", "11742", "14344", "17384", "20968", "25204", "30112", "35840", "42548", "50078", "58888", "69048", "80474", "93628", "108608", "125408", "144536", "166224", "190348" ]
[ "nonn" ]
14
16
2
[ "A002131", "A002132", "A015128", "A060046", "A060047", "A365666", "A365667" ]
null
Seiichi Manyama, Sep 15 2023
2023-09-15T10:10:19
oeisdata/seq/A365/A365666.seq
6ea6d9abf024441b5052d3a0fe790cdf
A365667
Expansion of Sum_{0<i<j<k<l<m} q^(2*(i+j+k+l+m)-5)/( (1-q^(2*i-1))*(1-q^(2*j-1))*(1-q^(2*k-1))*(1-q^(2*l-1))*(1-q^(2*m-1)) )^2.
[ "1", "2", "4", "8", "14", "24", "40", "64", "100", "154", "232", "332", "480", "680", "944", "1304", "1774", "2384", "3180", "4200", "5488", "7120", "9160", "11680", "14869", "18740", "23468", "29280", "36278", "44720", "54904", "67040", "81464", "98658", "118936", "142792", "170902", "203760", "242120", "286624", "338366", "398160", "467148" ]
[ "nonn" ]
13
25
2
[ "A002131", "A002132", "A015128", "A060046", "A060047", "A365666", "A365667" ]
null
Seiichi Manyama, Sep 15 2023
2023-09-15T10:33:06
oeisdata/seq/A365/A365667.seq
49e7eb28bc718c206782b0be10632e38
A365668
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 2 * A(x)).
[ "0", "1", "7", "73", "905", "12354", "179305", "2715192", "42414021", "678476755", "11058588574", "182999237590", "3066447596459", "51926183715280", "887204891847960", "15276037569668880", "264797324173666845", "4617195655522976361", "80930337327794271445", "1425171253004955494215", "25202145191953299213490" ]
[ "nonn" ]
48
0
3
[ "A001296", "A002294", "A064063", "A365668", "A365755", "A366014", "A366035", "A366036", "A366037" ]
null
Ilya Gutkovskiy, Sep 26 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365668.seq
a095880d615c248207c9cad7c17d4b2f
A365669
Number of distinct circles created after n iterations of constructing circles from all current vertices using only a compass, starting with one vertex.
[ "0", "1", "2", "6", "114", "42103152" ]
[ "nonn", "more", "hard" ]
8
1
3
[ "A359569", "A359570", "A359571", "A359619", "A359931", "A360350", "A361622", "A365669" ]
null
Scott R. Shannon, Sep 15 2023
2023-10-05T08:37:00
oeisdata/seq/A365/A365669.seq
2f518381893ddf9e92c5d290853d6982
A365670
Number of perfect powers k which are not prime powers, and 1 < k < 10^n.
[ "0", "1", "14", "72", "257", "873", "2838", "9085", "28979", "92145", "292832", "930124", "2953569", "9376798", "29760901", "94434276", "299569798", "950072891", "3012393832", "9549260877", "30264906899", "95902117819", "303839485659", "962486295193", "3048497625289", "9654373954803", "30571355398031", "96797106918709" ]
[ "nonn" ]
27
1
3
[ "A001597", "A024619", "A089579", "A131605", "A246655", "A267574", "A365670" ]
null
Peter Luschny, Sep 16 2023
2024-08-15T02:02:09
oeisdata/seq/A365/A365670.seq
1fdd4254fdfa8b4ac610856904167db5
A365671
a(n) = denominator(4^n * n! * [x^n] sqrt(x / (e^x - 1))).
[ "1", "1", "3", "1", "5", "3", "21", "3", "45", "5", "11", "1", "91", "35", "45", "3", "17", "3", "1995", "21", "3465", "165", "115", "45", "2925", "819", "189", "7", "145", "5", "341", "11", "1309", "119", "1", "1", "9139", "247", "65", "7", "2255", "495", "148995", "3465", "108675", "2415", "1645", "7", "270725", "5525", "21879", "429", "583", "33", "4389", "399", "4959" ]
[ "nonn", "frac" ]
6
0
3
[ "A126156", "A241885", "A365671" ]
null
Peter Luschny, Sep 29 2023
2023-09-29T14:24:53
oeisdata/seq/A365/A365671.seq
4971ee5135c0b06e9bad6bdde94feaf3
A365672
Triangle read by rows. T(n, k) = 1 if k = 0, equals T(n, k-1) if k = n, and otherwise is (n - k + 1) * (2 * (n - k) + 1) * T(n, k - 1) + T(n - 1, k).
[ "1", "1", "1", "1", "7", "7", "1", "22", "139", "139", "1", "50", "889", "5473", "5473", "1", "95", "3549", "58708", "357721", "357721", "1", "161", "10794", "360940", "5771821", "34988647", "34988647", "1", "252", "27426", "1595110", "50434901", "791512162", "4784061619", "4784061619" ]
[ "nonn", "tabl" ]
9
0
5
[ "A000384", "A126156", "A365672", "A365673" ]
null
Peter Luschny, Sep 29 2023
2023-10-01T07:13:10
oeisdata/seq/A365/A365672.seq
ca5b1a424f63819a74f16a11a1fa4308
A365673
Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "3", "4", "1", "1", "1", "4", "15", "8", "1", "1", "1", "5", "34", "105", "16", "1", "1", "1", "6", "61", "496", "945", "32", "1", "1", "1", "7", "96", "1385", "11056", "10395", "64", "1", "1", "1", "8", "139", "2976", "50521", "349504", "135135", "128", "1", "1", "1", "9", "190", "5473", "151416", "2702765", "14873104", "2027025", "256", "1" ]
[ "nonn", "tabl" ]
38
0
9
[ "A000012", "A000217", "A000290", "A000326", "A000364", "A000384", "A001147", "A001477", "A001498", "A002105", "A009766", "A011782", "A060058", "A080956", "A112934", "A126151", "A126156", "A258837", "A303943", "A305532", "A305533", "A317302", "A365672", "A365673", "A365674", "A366137", "A366138", "A366149", "A366150" ]
null
Peter Luschny, Sep 30 2023
2023-11-27T06:22:40
oeisdata/seq/A365/A365673.seq
2b28d9ffa96b3b88de52028e21ad0549
A365674
Triangle read by rows. T(n, k) = ((n - k + 1)*(n - k + 2)/2) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, T(n, 0) = 1 and T(n, n) = T(n, n - 1) for n > 0.
[ "1", "1", "1", "1", "4", "4", "1", "10", "34", "34", "1", "20", "154", "496", "496", "1", "35", "504", "3520", "11056", "11056", "1", "56", "1344", "16960", "112816", "349504", "349504", "1", "84", "3108", "63580", "748616", "4841200", "14873104", "14873104", "1", "120", "6468", "199408", "3739736", "42238560", "268304464", "819786496", "819786496" ]
[ "nonn", "tabl" ]
7
0
5
[ "A000217", "A002105", "A365673", "A365674" ]
null
Peter Luschny, Sep 30 2023
2023-09-30T20:58:06
oeisdata/seq/A365/A365674.seq
e4ae489e97c206a1f3fba4c30706116d
A365675
a(n) = Sum_{k=0..n} p(k) where the p(k) are the partial sums of row n of A365676.
[ "1", "1", "4", "8", "18", "30", "58", "90", "153", "233", "365", "533", "806", "1142", "1652", "2308", "3243", "4431", "6103", "8203", "11080", "14710", "19540", "25612", "33612", "43570", "56476", "72548", "93080", "118490", "150699", "190315", "240046", "301042", "376887", "469515", "583993", "723073", "893815", "1100615", "1352888" ]
[ "nonn" ]
8
0
3
[ "A000070", "A365675", "A365676" ]
null
Peter Luschny, Sep 16 2023
2023-09-17T02:02:48
oeisdata/seq/A365/A365675.seq
cdf378867627938ca970183c28655b47
A365676
Triangle read by rows: T(n, k) is the number of partitions of n having exactly k distinct part sizes, for 0 <= k <= n.
[ "1", "0", "1", "0", "2", "0", "0", "2", "1", "0", "0", "3", "2", "0", "0", "0", "2", "5", "0", "0", "0", "0", "4", "6", "1", "0", "0", "0", "0", "2", "11", "2", "0", "0", "0", "0", "0", "4", "13", "5", "0", "0", "0", "0", "0", "0", "3", "17", "10", "0", "0", "0", "0", "0", "0", "0", "4", "22", "15", "1", "0", "0", "0", "0", "0", "0", "0", "2", "27", "25", "2", "0", "0", "0", "0", "0", "0", "0", "0", "6", "29", "37", "5", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "tabl" ]
37
0
5
[ "A000005", "A000041", "A002133", "A002134", "A060177", "A116608", "A365630", "A365631", "A365676" ]
null
Peter Luschny, Sep 15 2023
2025-03-28T02:10:45
oeisdata/seq/A365/A365676.seq
dcdd89b388c730fc19210a6aa352b1d8
A365677
Number of increasing geometric progressions in {1,2,3,...,n} with rational ratio and length >= 3.
[ "0", "0", "0", "1", "1", "1", "1", "3", "5", "5", "5", "6", "6", "6", "6", "11", "11", "13", "13", "14", "14", "14", "14", "16", "20", "20", "24", "25", "25", "25", "25", "31", "31", "31", "31", "36", "36", "36", "36", "38", "38", "38", "38", "39", "41", "41", "41", "46", "52", "56", "56", "57", "57", "61", "61", "63", "63", "63", "63", "64", "64", "64", "66", "79", "79", "79", "79", "80", "80", "80", "80", "86", "86", "86", "90", "91", "91" ]
[ "nonn" ]
60
1
8
[ "A051336", "A078651", "A365677", "A366471" ]
null
Scott R. Shannon and N. J. A. Sloane, Oct 23 2023
2023-10-24T12:57:09
oeisdata/seq/A365/A365677.seq
1c99b110797b9aaceda1da037fe666ff
A365678
Primes p whose index has a submultiset of their decimal digits.
[ "17", "367", "491", "1327", "1823", "2039", "2131", "2143", "2153", "2693", "4621", "5417", "5701", "6481", "6883", "7459", "7691", "10723", "11483", "11593", "12491", "12497", "12853", "14723", "15287", "17093", "24781", "25849", "26951", "27091", "27179", "33569", "33967", "34367", "35171", "35809", "39451", "40283", "41263", "41543", "41983", "42437", "45971" ]
[ "base", "nonn" ]
20
1
1
[ "A000040", "A355418", "A365678" ]
null
Robert G. Wilson v, Sep 15 2023
2023-09-18T18:42:24
oeisdata/seq/A365/A365678.seq
fa610bc0efb2a9afefa793b25155984f
A365679
a(n) is the number of exterior top arches (no covering arch) for semi-meanders in generation n+1 that are generated by semi-meanders with n top arches and floor((n+2)/2) exterior top arches using the exterior arch splitting algorithm.
[ "4", "10", "14", "32", "40", "88", "104", "224", "256", "544", "608", "1280", "1408", "2944", "3200", "6656", "7168", "14848", "15872", "32768", "34816", "71680", "75776", "155648", "163840", "335872", "352256", "720896", "753664", "1540096", "1605632", "3276800", "3407872", "6946816", "7208960", "14680064" ]
[ "nonn" ]
22
2
1
[ "A259689", "A365679" ]
null
Roger Ford, Sep 15 2023
2024-07-28T09:20:00
oeisdata/seq/A365/A365679.seq
fc32d8ccb8b2d34cc6952217e16326b7
A365680
The number of exponentially squarefree divisors of n.
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "4", "2", "6", "2", "4", "4", "4", "2", "6", "2", "6", "4", "4", "2", "8", "3", "4", "4", "6", "2", "8", "2", "5", "4", "4", "4", "9", "2", "4", "4", "8", "2", "8", "2", "6", "6", "4", "2", "8", "3", "6", "4", "6", "2", "8", "4", "8", "4", "4", "2", "12", "2", "4", "6", "6", "4", "8", "2", "6", "4", "8", "2", "12", "2", "4", "6", "6", "4", "8", "2", "8", "4", "4", "2", "12", "4", "4" ]
[ "nonn", "easy", "mult" ]
12
1
2
[ "A000005", "A013928", "A046100", "A209061", "A252505", "A325837", "A353898", "A365680", "A365682", "A365683" ]
null
Amiram Eldar, Sep 15 2023
2023-09-16T02:21:29
oeisdata/seq/A365/A365680.seq
ff9a2dc82696a60387a1df9f525eea55
A365681
Numbers with a record number of exponentially squarefree divisors.
[ "1", "2", "4", "6", "12", "24", "36", "60", "120", "180", "360", "840", "1260", "2520", "6300", "7560", "12600", "27720", "69300", "83160", "138600", "332640", "360360", "900900", "1081080", "1801800", "4324320", "5405400", "12612600", "17297280", "18378360", "30630600", "73513440", "86486400", "91891800", "214414200", "294053760" ]
[ "nonn" ]
8
1
2
[ "A025487", "A306736", "A307845", "A318278", "A365680", "A365681" ]
null
Amiram Eldar, Sep 15 2023
2023-09-15T16:25:07
oeisdata/seq/A365/A365681.seq
4f9963ba31f17e2c0ffa0d2b02a0bcf7
A365682
The sum of exponentially squarefree divisors of n.
[ "1", "3", "4", "7", "6", "12", "8", "15", "13", "18", "12", "28", "14", "24", "24", "15", "18", "39", "20", "42", "32", "36", "24", "60", "31", "42", "40", "56", "30", "72", "32", "47", "48", "54", "48", "91", "38", "60", "56", "90", "42", "96", "44", "84", "78", "72", "48", "60", "57", "93", "72", "98", "54", "120", "72", "120", "80", "90", "60", "168", "62", "96", "104", "111", "84", "144" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A000203", "A046100", "A209061", "A365680", "A365682", "A365683" ]
null
Amiram Eldar, Sep 15 2023
2023-09-16T02:21:42
oeisdata/seq/A365/A365682.seq
0dc9d5b632d60b1a49ddb3ba4b6f1518
A365683
The largest exponentially squarefree divisor of n.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "8", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "24", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68" ]
[ "nonn", "easy", "mult", "changed" ]
11
1
2
[ "A070321", "A209061", "A365680", "A365682", "A365683" ]
null
Amiram Eldar, Sep 15 2023
2025-07-07T04:06:02
oeisdata/seq/A365/A365683.seq
fa48d84590bdef7e6dfb7c05cc072318
A365684
a(n) is the smallest multiple of n that is an exponentially squarefree number (A209061).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "32", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "96", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68" ]
[ "nonn", "easy", "mult" ]
11
1
2
[ "A067535", "A209061", "A365684", "A365685" ]
null
Amiram Eldar, Sep 15 2023
2023-09-16T02:21:58
oeisdata/seq/A365/A365684.seq
db1c897604ab9a03ec0574cc23838624
A365685
a(n) is the smallest number k such that k*n is an exponentially squarefree number (A209061).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "3", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
10
1
16
[ "A081221", "A209061", "A365684", "A365685" ]
null
Amiram Eldar, Sep 15 2023
2023-09-16T02:23:00
oeisdata/seq/A365/A365685.seq
ddca0ecacec178a3164626856f512d4b
A365686
Numbers k such that there exists a pair of integers (m,h) where 1 <= m < floor(sqrt(k)/2) <= h that satisfy Sum_{j=0..m} (k-j)^2 = Sum_{i=1..m} (h+i)^2.
[ "4", "12", "21", "24", "40", "60", "84", "110", "112", "120", "144", "180", "220", "264", "312", "315", "364", "420", "480", "544", "612", "684", "697", "760", "820", "840", "924", "1012", "1080", "1104", "1200", "1265", "1300", "1404", "1512", "1624", "1740", "1860", "1984", "2106", "2112", "2244", "2380", "2520", "2664", "2812", "2964", "3120", "3255" ]
[ "nonn" ]
85
1
1
[ "A000290", "A002378", "A046092", "A233035", "A365686" ]
null
Darío Clavijo, Sep 15 2023
2025-03-02T16:04:04
oeisdata/seq/A365/A365686.seq
bd67ed077f3e3c43ad489323d2388871
A365687
a(n) = number of fractions m/n, 0 <= m < n, gcd(m,n) = 1 whose partial fraction decomposition has integer part 0.
[ "1", "1", "2", "2", "4", "1", "6", "4", "6", "2", "10", "2", "12", "3", "4", "8", "16", "3", "18", "4", "6", "5", "22", "4", "20", "6", "18", "6", "28", "0", "30", "16", "10", "8", "12", "6", "36", "9", "12", "8", "40", "1", "42", "10", "12", "11", "46", "8", "42", "10", "16", "12", "52", "9", "20", "12", "18", "14", "58", "2", "60", "15", "18", "32", "24", "1", "66", "16", "22", "2", "70", "12", "72", "18", "20" ]
[ "nonn" ]
21
1
3
[ "A028236", "A070306", "A181629", "A365687" ]
null
William P. Orrick, Sep 15 2023
2023-11-30T12:38:18
oeisdata/seq/A365/A365687.seq
6fbc05b84c5cae03576b560c761074b8
A365688
Primitive solutions k to k^2 = u^4 + v^4 + w^4, with u, v, w > 0.
[ "481", "24961", "28721", "65441", "69121", "113241", "345761", "362401", "384161", "530881", "620321", "854401", "882889", "909321", "1094481", "1163249", "1305281", "1697761", "1855841", "2074281", "2294681", "2423601", "2568369", "2576641", "2619281", "2665721", "2696161", "2751489", "2997761", "3151281" ]
[ "nonn" ]
39
1
1
[ "A003828", "A365657", "A365688" ]
null
Jud McCranie, Sep 16 2023
2023-09-29T08:26:19
oeisdata/seq/A365/A365688.seq
9834ba0c2de5ef2890d74cbd9a14421f
A365689
Final decimal digit of n^((n+1)^(n+2)) = A030198(n).
[ "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6", "1", "8", "1", "0", "1", "2", "1", "4", "5", "6" ]
[ "nonn", "base", "easy" ]
42
0
3
[ "A030198", "A103562", "A120962", "A365689" ]
null
Marco Ripà, Sep 16 2023
2025-04-18T14:54:54
oeisdata/seq/A365/A365689.seq
10c6cbd5e108e8d4f4ce374c187c7787
A365690
G.f. satisfies A(x) = 1 + x^2*A(x)^4 / (1 - x*A(x)).
[ "1", "0", "1", "1", "5", "10", "38", "101", "353", "1070", "3659", "11843", "40505", "135873", "468104", "1604375", "5576315", "19386656", "67950717", "238676813", "842797959", "2983745508", "10603445402", "37777263153", "134985354179", "483438728094", "1735527037388", "6243193190117", "22503637842423" ]
[ "nonn" ]
10
0
5
[ "A004148", "A005043", "A025246", "A046736", "A365690", "A365691", "A365692" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:41:27
oeisdata/seq/A365/A365690.seq
d12811d4b4b3d3931f70316cc7e228e2
A365691
G.f. satisfies A(x) = 1 + x^2*A(x)^5 / (1 - x*A(x)).
[ "1", "0", "1", "1", "6", "12", "54", "147", "593", "1886", "7292", "25204", "96153", "348304", "1327716", "4946471", "18936366", "71827598", "276612103", "1062220253", "4115807184", "15947902376", "62148513732", "242485933208", "949828266722", "3726623622402", "14663689944397", "57798199213989" ]
[ "nonn" ]
10
0
5
[ "A004148", "A005043", "A025246", "A046736", "A365690", "A365691", "A365693" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:41:47
oeisdata/seq/A365/A365691.seq
74d9b72fb5d01f4dbd9d934c4b749491
A365692
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^2*A(x)^4).
[ "1", "1", "1", "2", "7", "23", "72", "238", "831", "2959", "10645", "38824", "143492", "535700", "2016020", "7641574", "29152015", "111841263", "431209723", "1669945778", "6493144143", "25338440143", "99204579648", "389570145288", "1534026813892", "6055885764548", "23962654178012", "95023123291680" ]
[ "nonn" ]
11
0
4
[ "A101785", "A365244", "A365690", "A365692", "A365693" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:42:00
oeisdata/seq/A365/A365692.seq
409fffe7546d594d7ecc85d52271a7c1
A365693
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^2*A(x)^5).
[ "1", "1", "1", "2", "8", "30", "103", "368", "1407", "5531", "21905", "87689", "355929", "1461022", "6046160", "25194331", "105661615", "445692621", "1889454880", "8045796200", "34398989998", "147606568810", "635481458969", "2744158752772", "11882687400375", "51584960268914", "224465280616995", "978851595046223" ]
[ "nonn" ]
9
0
4
[ "A101785", "A365244", "A365691", "A365692", "A365693" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:42:10
oeisdata/seq/A365/A365693.seq
1c4accce5f0546aa7ef89c18ccdefa75
A365694
G.f. satisfies A(x) = 1 + x^3*A(x)^2 / (1 - x*A(x)).
[ "1", "0", "0", "1", "1", "1", "3", "6", "10", "20", "42", "84", "170", "354", "740", "1549", "3269", "6945", "14811", "31711", "68177", "147091", "318313", "690837", "1503351", "3279445", "7169907", "15708485", "34482475", "75830981", "167042763", "368548926", "814341362", "1801867812", "3992172298", "8855912464", "19668236110" ]
[ "nonn" ]
17
0
7
[ "A023426", "A023432", "A054514", "A114997", "A365243", "A365694", "A365695" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:42:31
oeisdata/seq/A365/A365694.seq
411560109503f727e44cfa9b64a85be1
A365695
G.f. satisfies A(x) = 1 + x^3*A(x)^5 / (1 - x*A(x)).
[ "1", "0", "0", "1", "1", "1", "6", "12", "19", "62", "156", "318", "852", "2254", "5262", "13441", "35543", "88772", "226880", "596937", "1539188", "3980364", "10468270", "27410289", "71702956", "189169352", "499529048", "1318355542", "3493861461", "9278408639", "24647900618", "65620808508", "175037591303", "467277998136" ]
[ "nonn" ]
10
0
7
[ "A023426", "A023432", "A054514", "A114997", "A365694", "A365695" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:42:48
oeisdata/seq/A365/A365695.seq
e4e38de534b91c00b7c88cd4a550450a
A365696
G.f. satisfies A(x) = 1 + x^4*A(x)^2 / (1 - x*A(x)).
[ "1", "0", "0", "0", "1", "1", "1", "1", "3", "6", "10", "15", "26", "49", "92", "165", "294", "535", "994", "1852", "3437", "6379", "11905", "22344", "42058", "79260", "149601", "283038", "536806", "1020066", "1941317", "3699922", "7062308", "13500402", "25842489", "49528164", "95031920", "182545222", "351023451", "675678911", "1301838177" ]
[ "nonn" ]
11
0
9
[ "A023427", "A112805", "A215341", "A215342", "A357308", "A365696", "A365697" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-26T05:27:46
oeisdata/seq/A365/A365696.seq
800fcf960b9dea127092dd2514cb8071
A365697
G.f. satisfies A(x) = 1 + x^4*A(x)^3 / (1 - x*A(x)).
[ "1", "0", "0", "0", "1", "1", "1", "1", "4", "8", "13", "19", "38", "79", "153", "273", "509", "999", "1979", "3818", "7331", "14279", "28189", "55599", "109275", "215165", "426093", "846638", "1683215", "3348212", "6673679", "13333171", "26679522", "53437369", "107151335", "215154204", "432586412", "870678377", "1754094266" ]
[ "nonn" ]
9
0
9
[ "A023427", "A215341", "A215342", "A357308", "A365245", "A365696", "A365697" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:40:50
oeisdata/seq/A365/A365697.seq
774813828afb8396f0f926a44a4e4d83
A365698
G.f. satisfies A(x) = 1 + x^5 / (1 - x*A(x)).
[ "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "2", "4", "7", "11", "16", "22", "31", "47", "76", "126", "207", "331", "517", "801", "1251", "1987", "3206", "5212", "8465", "13677", "21997", "35341", "56937", "92169", "149860", "244274", "398383", "649379", "1058055", "1724575", "2814475", "4600923", "7533150", "12347908", "20252837", "33230545" ]
[ "nonn" ]
14
0
12
[ "A001006", "A023426", "A025246", "A212364", "A357308", "A365698", "A365699", "A365700", "A365701", "A365702" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T12:02:22
oeisdata/seq/A365/A365698.seq
f8a435748c191d01127ce1d362a8584b
A365699
G.f. satisfies A(x) = 1 + x^5*A(x)^2 / (1 - x*A(x)).
[ "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "3", "6", "10", "15", "21", "33", "57", "101", "175", "291", "477", "791", "1341", "2310", "3986", "6839", "11681", "19966", "34300", "59245", "102647", "177963", "308483", "534973", "929147", "1616981", "2818967", "4920299", "8594665", "15023561", "26283971", "46030771", "80695333", "141593087" ]
[ "nonn" ]
9
0
11
[ "A212364", "A365698", "A365699", "A365700", "A365701", "A365702" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:43:12
oeisdata/seq/A365/A365699.seq
49b98756c90a62bfc86389c48273f6aa
A365700
G.f. satisfies A(x) = 1 + x^5*A(x)^3 / (1 - x*A(x)).
[ "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "4", "8", "13", "19", "26", "46", "88", "163", "284", "466", "781", "1369", "2468", "4449", "7856", "13724", "24084", "42788", "76759", "137785", "246418", "439757", "786132", "1411148", "2541368", "4581906", "8259500", "14889781", "26871106", "48573823", "87934175", "159333544", "288857216" ]
[ "nonn" ]
14
0
11
[ "A212364", "A365698", "A365699", "A365700", "A365701", "A365702" ]
null
Seiichi Manyama, Sep 16 2023
2025-05-29T11:29:11
oeisdata/seq/A365/A365700.seq
a2b0ce89fe9ee38940cf7cc00575048b
A365701
G.f. satisfies A(x) = 1 + x^5*A(x)^4 / (1 - x*A(x)).
[ "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "5", "10", "16", "23", "31", "62", "128", "243", "423", "686", "1192", "2223", "4223", "7843", "13991", "24856", "45108", "83673", "156223", "288535", "527971", "966803", "1784663", "3319988", "6183424", "11483613", "21284475", "39499855", "73558147", "137347615", "256616567", "479231240" ]
[ "nonn" ]
9
0
11
[ "A212364", "A365698", "A365699", "A365700", "A365701", "A365702" ]
null
Seiichi Manyama, Sep 16 2023
2023-09-16T10:43:36
oeisdata/seq/A365/A365701.seq
0654a3c7f9c0f79f97bffd30987fb9c4