sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A377204
Expansion of 1/(1 - 4*x^2/(1-x))^(3/2).
[ "1", "0", "6", "6", "36", "66", "236", "546", "1626", "4106", "11388", "29646", "79838", "209718", "557328", "1465970", "3869448", "10166370", "26726080", "70092570", "183756378", "481048010", "1258494768", "3289100958", "8590288128", "22418099982", "58467588768", "152388145382", "396954437202", "1033452111702", "2689186662552" ]
[ "nonn" ]
42
0
3
[ "A026585", "A377186", "A377197", "A377204", "A377213", "A377215" ]
null
Seiichi Manyama, Oct 20 2024
2025-05-11T11:47:46
oeisdata/seq/A377/A377204.seq
dd24c58264fa9555b62e2c5785de35c5
A377205
Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(k^2*a(k)) < 1.
[ "2", "1", "1", "1", "1", "1", "3", "9", "171", "122014", "17661589931", "412924014578486602517", "1248808068140660770289141544749321839183623", "4529027355107615424925871833487047912228337079416162414871862143803627237910792872226" ]
[ "nonn" ]
16
1
1
[ "A000290", "A013661", "A374663", "A377205", "A377229", "A377230" ]
null
Alois P. Heinz, Oct 19 2024
2024-10-20T14:14:29
oeisdata/seq/A377/A377205.seq
c754128497a37ef69e9d64eaad61b7d8
A377206
a(n) = ceiling(log(1/n)/log(1 - 1/n)).
[ "1", "3", "5", "8", "10", "13", "16", "19", "22", "26", "29", "33", "36", "40", "43", "47", "51", "55", "59", "63", "67", "71", "75", "79", "84", "88", "92", "96", "101", "105", "110", "114", "119", "123", "128", "132", "137", "142", "146", "151", "156", "160", "165", "170", "175", "180", "184", "189", "194", "199", "204", "209", "214", "219", "224", "229", "234" ]
[ "easy", "nonn" ]
17
2
2
[ "A031435", "A094500", "A377206" ]
null
Walter Robinson, Oct 19 2024
2024-11-04T20:38:15
oeisdata/seq/A377/A377206.seq
d8305fbc8c7fb068a9bba88d0e74a45f
A377207
Number of n-digit numbers where every digit is either a 9 or adjacent to a 9.
[ "1", "18", "99", "342", "2691", "13788", "65709", "407772", "2115981", "11108358", "63181719", "334551402", "1802963871", "9931645728", "53256984129", "288681869232", "1572458030361", "8484410567898", "46019764248939", "249748559819262", "1351163694059451", "7326501636596868", "39716608228492149", "215099382176679492" ]
[ "nonn", "base", "easy" ]
20
1
2
null
null
Edwin McCravy, Oct 19 2024
2024-11-20T09:46:52
oeisdata/seq/A377/A377207.seq
9c11534133a0d62ba4f1d7707d2e18c7
A377208
a(n) is the number of iterations that n requires to reach a noninteger or a Fibonacci number under the map x -> x / z(x), where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k; a(n) = 0 if n is a Fibonacci number.
[ "0", "0", "0", "1", "0", "1", "1", "0", "1", "1", "1", "2", "0", "2", "1", "1", "1", "2", "1", "1", "0", "2", "1", "3", "1", "1", "2", "1", "1", "2", "1", "1", "1", "0", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "0", "2", "1", "2", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "2", "1", "1", "3", "1", "1", "1", "2", "1", "2", "1", "2", "3", "1", "1", "2", "1", "1", "1", "1", "0", "3", "1", "2", "2", "2", "1", "2", "1", "1", "2", "1" ]
[ "nonn", "easy", "base" ]
7
1
12
[ "A000005", "A000045", "A007895", "A328208", "A376615", "A377208", "A377209", "A377210" ]
null
Amiram Eldar, Oct 20 2024
2024-10-20T13:55:19
oeisdata/seq/A377/A377208.seq
687b2361e5c40ebe55acd8aa81c4fde3
A377209
Zeckendorf-Niven numbers (A328208) k such that k/z(k) is also a Zeckendorf-Niven number, where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k.
[ "1", "2", "3", "4", "5", "6", "8", "10", "12", "13", "16", "21", "24", "26", "30", "34", "36", "42", "48", "55", "60", "66", "68", "72", "78", "81", "89", "90", "108", "110", "120", "126", "135", "144", "152", "168", "178", "180", "192", "204", "207", "233", "240", "243", "264", "270", "276", "288", "300", "304", "312", "324", "330", "336", "360", "377", "380", "390", "396", "408" ]
[ "nonn", "easy", "base" ]
7
1
2
[ "A000045", "A007895", "A328208", "A376616", "A377209", "A377210" ]
null
Amiram Eldar, Oct 20 2024
2024-10-20T13:55:30
oeisdata/seq/A377/A377209.seq
ddda64086938ba86efc7a5220c73e293
A377210
Zeckendorf-Niven numbers (A328208) k such that m = k/z(k) and m/z(m) are also Zeckendorf-Niven numbers, where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k.
[ "1", "2", "3", "4", "5", "6", "8", "10", "12", "13", "16", "21", "24", "26", "30", "34", "42", "48", "55", "60", "68", "78", "89", "110", "120", "126", "144", "178", "180", "192", "204", "233", "243", "264", "270", "288", "300", "312", "324", "330", "360", "377", "466", "480", "534", "540", "576", "600", "610", "621", "672", "720", "754", "768", "864", "987", "1020", "1056" ]
[ "nonn", "easy", "base" ]
7
1
2
[ "A000045", "A007895", "A328208", "A376617", "A377209", "A377210" ]
null
Amiram Eldar, Oct 20 2024
2024-10-20T13:55:40
oeisdata/seq/A377/A377210.seq
81cdb4735a77163c3bca696a9263932e
A377211
a(n) is the least number k such that A377208(k) = n, or -1 if no such number exists.
[ "1", "4", "12", "24", "180", "1056", "2592", "15552", "46656", "544320", "20528640", "238085568", "3547348992", "46438023168", "599501979648" ]
[ "nonn", "base", "more" ]
10
0
2
[ "A000045", "A328208", "A376619", "A377208", "A377211" ]
null
Amiram Eldar, Oct 20 2024
2025-04-26T06:01:28
oeisdata/seq/A377/A377211.seq
93c90cb8e64f3f7af37abbab5461335c
A377212
a(n) is the least number k that is not a quadratic residue modulo prime(n) but is a quadratic residue modulo all previous primes.
[ "2", "3", "6", "21", "15", "91", "246", "429", "1005", "399", "3094", "3045", "21099", "41155", "43059", "404754", "214230", "569130", "182919", "2190279", "860574", "9361374", "8042479", "33440551", "36915670", "11993466", "287638530", "182528031", "697126530", "78278655", "3263415285", "6941299170", "25856763139", "32968406926", "13803374706" ]
[ "nonn" ]
19
2
1
[ "A000037", "A096636", "A144294", "A144295", "A377212" ]
null
Robert Israel, Oct 19 2024
2024-10-21T18:26:43
oeisdata/seq/A377/A377212.seq
0253d96fde2a3c5af9c32961e150b7cb
A377213
Expansion of 1/(1 - 4*x^3/(1-x))^(3/2).
[ "1", "0", "0", "6", "6", "6", "36", "66", "96", "266", "576", "1026", "2246", "4866", "9516", "19598", "41286", "83526", "170048", "351378", "716850", "1458098", "2984028", "6087270", "12380900", "25224222", "51356400", "104380510", "212164362", "431148222", "875353220", "1776567762", "3604752672", "7310374010", "14819370480", "30033014994" ]
[ "nonn" ]
18
0
4
[ "A360309", "A377197", "A377204", "A377213", "A377216" ]
null
Seiichi Manyama, Oct 20 2024
2025-05-08T12:31:59
oeisdata/seq/A377/A377213.seq
e08329b74ff0bcaab589a7a187cc7a39
A377214
Irregular triangle T(n, k), read by rows with 1 <= k <= p = A000040(n), for the very first solution to the transversal of primes problem.
[ "2", "3", "3", "5", "7", "5", "7", "11", "19", "23", "7", "11", "17", "23", "29", "41", "47", "11", "13", "29", "41", "53", "59", "71", "83", "89", "109", "113", "13", "17", "29", "41", "53", "71", "83", "103", "113", "127", "137", "151", "167", "17", "19", "37", "59", "73", "89", "103", "131", "151", "167", "179", "197", "211", "227", "251", "271", "283", "19", "23", "41", "59", "83", "107", "127", "139", "157", "181", "191", "227", "239", "263", "281", "293", "313", "337", "359" ]
[ "nonn", "tabf" ]
6
1
1
[ "A215637", "A377214" ]
null
Martin Renner, Oct 20 2024
2024-10-23T01:14:55
oeisdata/seq/A377/A377214.seq
1c1ddf472c4bf69b66850f40f72e98ee
A377215
Expansion of 1/(1 - 4*x^2/(1-x))^(5/2).
[ "1", "0", "10", "10", "80", "150", "640", "1550", "5190", "13870", "41912", "115650", "333490", "925970", "2607540", "7220062", "20053700", "55230870", "152005380", "416295350", "1137980678", "3100453710", "8429823180", "22862244210", "61882724100", "167159512794", "450739897980", "1213298505770", "3260824389510" ]
[ "nonn" ]
15
0
3
[ "A026585", "A377199", "A377204", "A377215", "A377216" ]
null
Seiichi Manyama, Oct 20 2024
2025-05-08T15:27:42
oeisdata/seq/A377/A377215.seq
e28436e9d10b089d8020d480cc6860c0
A377216
Expansion of 1/(1 - 4*x^3/(1-x))^(5/2).
[ "1", "0", "0", "10", "10", "10", "80", "150", "220", "710", "1620", "2950", "7010", "16110", "32560", "70682", "156810", "329290", "698540", "1507110", "3189742", "6725150", "14279520", "30141730", "63335960", "133297362", "279996460", "586364410", "1227337710", "2566307410", "5355970048", "11166535430", "23259949980", "48389451510" ]
[ "nonn" ]
15
0
4
[ "A360309", "A377199", "A377213", "A377215", "A377216" ]
null
Seiichi Manyama, Oct 20 2024
2025-05-10T23:13:23
oeisdata/seq/A377/A377216.seq
15ef51da7b29350bafc4b29ec10872c9
A377217
Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(6*n) = (3*n)!/n!^3 for n >= 0.
[ "1", "1", "2", "14", "127", "1364", "16219", "206715", "2770342", "38567069", "553153830", "8126285739", "121758839828", "1854687918895", "28649693078544", "447912211497740", "7076246388778874", "112821090561117084", "1813395701702453669" ]
[ "nonn", "easy" ]
15
0
3
[ "A006480", "A060542", "A229451", "A229452", "A377217", "A377218", "A377219" ]
null
Peter Bala, Oct 20 2024
2024-10-31T01:35:40
oeisdata/seq/A377/A377217.seq
6a8a356ab12bd469c830be6f25433139
A377218
Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(24*n) = (4*n)!/n!^4 for n >= 0.
[ "1", "1", "29", "2246", "239500", "30318701", "4271201506", "647359627557", "103476937050223", "17223017775652625", "2959285397777331751", "521687007046376376544", "93932798602803741121051", "17215649571517858590782737", "3203146941738318544432065500", "603763082812549420389330837978", "115095760617137117019641563685386" ]
[ "nonn", "easy" ]
13
0
3
[ "A008977", "A082368", "A333042", "A370294", "A377217", "A377218", "A377219" ]
null
Peter Bala, Oct 20 2024
2025-01-13T20:31:41
oeisdata/seq/A377/A377218.seq
d1a5f7c3a2c2c44ffa664f275805ef42
A377219
Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(120*n) = (5*n)!/n!^5 for n >= 0.
[ "1", "1", "353", "318986", "408941594", "633438203535", "1105336091531052", "2093867978990821853", "4212168629863126220194", "8871676970891643267231886", "19375253437183554713216237582", "43574669954100844749472466829032", "100404408695672206422230611142618195", "236114213302057579962294974098604849352", "564982003808755415617353442524468859709030" ]
[ "nonn", "easy" ]
14
0
3
[ "A008978", "A322252", "A333043", "A370295", "A377217", "A377218", "A377219" ]
null
Peter Bala, Oct 20 2024
2025-01-13T20:31:37
oeisdata/seq/A377/A377219.seq
c7380597172310ff192231a9940435b6
A377220
Expansion of (1/x) * series_reversion(x*E_4(x)), where E_4(x) denotes the Eisenstein series of weight 4 (see A004009).
[ "1", "-240", "113040", "-66534720", "43859560080", "-30976854078240", "22919806575299520", "-17536455012714130560", "13761543459443537811600", "-11015192093055645841813680", "8958361831335008460574345440", "-7381454927286057227098811282880", "6148958599311807793865548969813440", "-5169975617288319668409172392988655520" ]
[ "sign", "easy" ]
16
0
2
[ "A004009", "A108091", "A377220", "A377221", "A377222", "A377223" ]
null
Peter Bala, Nov 07 2024
2024-11-17T07:21:32
oeisdata/seq/A377/A377220.seq
2b757f25f7cadbe65e85505408c71173
A377221
Coefficients of the series whose 8th power is 1/x * series_reversion(x * E_4(x)), where E_4(x) is the Eisenstein series of weight 4.
[ "1", "-30", "10980", "-5822040", "3623245710", "-2467207358280", "1779938570782440", "-1336872265001920320", "1034337566576031632100", "-818707881037376263396710", "659829780447854309255690280", "-539628866179308154664183513160", "446708428717281359928910138018680", "-373580804664955058627213489276760840" ]
[ "sign", "easy" ]
17
0
2
[ "A004009", "A108091", "A377220", "A377221", "A377223" ]
null
Peter Bala, Nov 07 2024
2024-11-17T07:21:50
oeisdata/seq/A377/A377221.seq
1871572e95203859656823c1735e2f68
A377222
Expansion of (1/x) * series_reversion(x*E_6(x)), where E_6(x) is the Eisenstein series of weight 6.
[ "1", "504", "524664", "682155936", "993260754360", "1549502199011088", "2532317522698504800", "4279562991330657500736", "7417781163248322999957048", "13114370611008351235424557656", "23557650424885130928376974026832", "42873898555113763448790865162056672", "78885999686148803144416784491001491680" ]
[ "nonn", "easy" ]
8
0
2
[ "A109817", "A377220", "A377222", "A377223" ]
null
Peter Bala, Nov 08 2024
2024-11-17T07:22:05
oeisdata/seq/A377/A377222.seq
adfb1879a2802ce435ce386c93d041bf
A377223
Coefficients of the series whose 12th power is 1/x * series_reversion(x*E_6(x)), where E_6(x) is the Eisenstein series of weight 6.
[ "1", "42", "34020", "39770808", "54603156174", "82058923220904", "130685055490645992", "216707827984305135744", "370213729923354622242084", "647073665508052293475274898", "1151627718366568095339000345192", "2079918757332503030219456972007720", "3802403760868562402170776739039126584", "7022808067106759130277006634854345528104" ]
[ "nonn", "easy" ]
15
0
2
[ "A013973", "A109817", "A377221", "A377222", "A377223" ]
null
Peter Bala, Nov 08 2024
2024-11-17T07:22:18
oeisdata/seq/A377/A377223.seq
226faa40be6efdbe18fc869080ed7097
A377224
Number of ways to write n as x*(5*x+1) + y*(5*y+1)/2 + z*(5*z+1)/2, where x,y,z are integers with y*(5*y+1) <= z*(5*z+1).
[ "1", "0", "1", "1", "2", "1", "3", "1", "2", "3", "2", "3", "2", "2", "1", "3", "1", "3", "4", "1", "3", "2", "4", "2", "6", "2", "4", "5", "4", "3", "5", "3", "3", "4", "2", "2", "4", "1", "3", "3", "3", "3", "7", "1", "6", "6", "6", "3", "8", "4", "3", "7", "3", "7", "4", "4", "2", "4", "1", "5", "6", "1", "6", "7", "4", "4", "9", "6", "5", "8", "3", "6", "5", "3", "4", "5", "3", "3", "4", "1", "9", "6", "5", "3", "9", "5", "6", "9", "6", "8", "10", "3", "3", "9", "4", "7", "7", "4", "7", "5", "4" ]
[ "nonn" ]
20
0
5
[ "A057569", "A085787", "A306383", "A377224" ]
null
Zhi-Wei Sun, Nov 13 2024
2025-01-08T11:40:15
oeisdata/seq/A377/A377224.seq
6653066d302a2328fd604aa3a156bb6f
A377225
a(0) = 0, a(1) = 1, a(2) = -1, a(3) = 2, and for n > 3, a(n) is the least integer (in absolute value) not yet in the sequence sharing a factor with a(n-1); in case of a tie, preference is given to the positive value.
[ "0", "1", "-1", "2", "-2", "4", "-4", "6", "3", "-3", "-6", "8", "-8", "10", "5", "-5", "-10", "12", "9", "-9", "-12", "14", "7", "-7", "-14", "16", "-16", "18", "15", "-15", "-18", "20", "-20", "22", "11", "-11", "-22", "24", "21", "-21", "-24", "26", "13", "-13", "-26", "28", "-28", "30", "25", "-25", "-30", "27", "-27", "33", "-33", "36", "32", "-32", "34", "17", "-17", "-34" ]
[ "sign" ]
22
0
4
[ "A064413", "A377225", "A382014" ]
null
Rémy Sigrist, Oct 20 2024
2025-03-21T21:56:44
oeisdata/seq/A377/A377225.seq
4538d1bb4af57f7e84c30ad7c5116235
A377226
Take the sequence of the signed denominators of Leibniz series for Pi/4 (cf. A157142) and permute the terms so that a negative term follows every two positive terms and the absolute difference between two consecutive terms of the same sign is 4.
[ "1", "5", "-3", "9", "13", "-7", "17", "21", "-11", "25", "29", "-15", "33", "37", "-19", "41", "45", "-23", "49", "53", "-27", "57", "61", "-31", "65", "69", "-35", "73", "77", "-39", "81", "85", "-43", "89", "93", "-47", "97", "101", "-51", "105", "109", "-55", "113", "117", "-59", "121", "125", "-63", "129", "133", "-67", "137", "141", "-71", "145", "149", "-75", "153", "157", "-79", "161" ]
[ "sign", "easy" ]
18
0
2
[ "A003881", "A005408", "A049347", "A061347", "A131561", "A157142", "A377226", "A377227" ]
null
Stefano Spezia, Oct 20 2024
2024-10-21T04:40:06
oeisdata/seq/A377/A377226.seq
b11eb1e104aab01c0a401897f6d4b5e7
A377227
Decimal expansion of (log(2) + Pi)/4.
[ "9", "5", "8", "6", "8", "4", "9", "5", "8", "5", "3", "7", "4", "3", "4", "6", "3", "6", "9", "6", "9", "9", "6", "8", "8", "7", "6", "1", "8", "4", "4", "1", "9", "8", "6", "3", "0", "6", "8", "1", "6", "7", "3", "8", "3", "4", "3", "3", "8", "4", "0", "2", "6", "8", "7", "7", "3", "9", "0", "6", "1", "5", "0", "4", "5", "0", "3", "0", "2", "5", "0", "7", "0", "6", "3", "9", "7", "5", "9", "2", "8", "5", "5", "8", "4", "7", "4", "5", "3", "8", "0", "8", "4", "6", "3", "3", "9", "3", "8", "8" ]
[ "nonn", "cons" ]
7
0
1
[ "A000796", "A002162", "A377226", "A377227" ]
null
Stefano Spezia, Oct 20 2024
2024-10-20T17:58:25
oeisdata/seq/A377/A377227.seq
5abf61e0416767453d28fde9877043ed
A377228
Repdigits which are also Harshad numbers.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "111", "222", "333", "444", "555", "666", "777", "888", "999", "111111111", "222222222", "333333333", "444444444", "555555555", "666666666", "777777777", "888888888", "999999999", "111111111111111111111111111", "222222222222222222222222222", "333333333333333333333333333", "444444444444444444444444444" ]
[ "nonn", "base" ]
21
1
2
[ "A005349", "A010785", "A014950", "A377228" ]
null
John Bibby, Oct 20 2024
2025-01-07T19:07:10
oeisdata/seq/A377/A377228.seq
f1aee5e3fb7cde555c7cfab8fd7f6d66
A377229
Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(F(k)*a(k)) < 1, F = Fibonacci.
[ "2", "3", "4", "9", "44", "1486", "1357976", "1855074754595", "2975714380792664939835466", "46528348836004781630107949818181021469921360198769" ]
[ "nonn" ]
15
1
1
[ "A000045", "A079586", "A374663", "A376058", "A377205", "A377229", "A377230" ]
null
Alois P. Heinz, Oct 20 2024
2024-10-20T14:14:52
oeisdata/seq/A377/A377229.seq
d530122f93b7611c314a24864a05a6de
A377230
Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(T(k)*a(k)) < 1, T = A000217.
[ "2", "1", "2", "2", "3", "5", "23", "806", "519065", "220441054222", "222723684271305542570701", "41974171914555858099300698444579076459265512901", "1510140949639448391630842209382251970116940997822995817347241840058937174456186756365141648201" ]
[ "nonn" ]
9
1
1
[ "A000217", "A374663", "A377205", "A377229", "A377230" ]
null
Alois P. Heinz, Oct 20 2024
2024-10-20T14:13:51
oeisdata/seq/A377/A377230.seq
9026f7e45e3d065b39b790c37c19af0e
A377231
a(n) = digital root of 2^Fibonacci(n).
[ "1", "2", "2", "4", "8", "5", "4", "2", "8", "7", "2", "5", "1", "5", "5", "7", "8", "2", "7", "5", "8", "4", "5", "2", "1", "2", "2", "4", "8", "5", "4", "2", "8", "7", "2", "5", "1", "5", "5", "7", "8", "2", "7", "5", "8", "4", "5", "2", "1", "2", "2", "4", "8", "5", "4", "2", "8", "7", "2", "5", "1", "5", "5", "7", "8", "2", "7", "5", "8", "4", "5", "2", "1", "2", "2", "4", "8", "5", "4", "2", "8", "7", "2", "5", "1", "5", "5", "7", "8", "2", "7", "5", "8", "4", "5", "2" ]
[ "nonn", "easy", "base" ]
55
0
2
[ "A000301", "A010888", "A377231" ]
null
Robert Bruce Gray, Oct 20 2024
2024-12-09T11:01:08
oeisdata/seq/A377/A377231.seq
b28fdae13103d2eb7809d7eab4737b71
A377232
Odd numbers with binary representations corresponding to winning positions in Gordon Hamilton's Jumping Frogs game.
[ "1", "3", "7", "11", "13", "15", "23", "27", "29", "31", "39", "47", "55", "57", "59", "61", "63", "75", "79", "95", "103", "105", "107", "111", "115", "119", "121", "123", "125", "127", "143", "155", "159", "183", "191", "203", "207", "211", "215", "217", "219", "223", "231", "235", "237", "239", "241", "243", "247", "249", "251", "253", "255" ]
[ "nonn", "base" ]
26
1
2
[ "A004780", "A030101", "A377232" ]
null
Glen Whitney, Oct 21 2024
2024-10-24T10:28:13
oeisdata/seq/A377/A377232.seq
e0b38af52e2d2ca8a7786ac3a4746167
A377233
Expansion of 1/(1 - 9*x/(1-x))^(2/3).
[ "1", "6", "51", "456", "4191", "39174", "370329", "3529284", "33838854", "325978044", "3152058630", "30572797920", "297294956070", "2897207397420", "28286321963370", "276611636831640", "2708781551458665", "26559205696513590", "260695647288540915", "2561413004129212440", "25188928968792165495" ]
[ "nonn" ]
15
0
2
[ "A052268", "A361375", "A377233", "A377234", "A377235" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-04T04:24:25
oeisdata/seq/A377/A377233.seq
5583c3a12c0db099af22098ff7e7b56f
A377234
Expansion of 1/(1 - 9*x/(1-x))^(4/3).
[ "1", "12", "138", "1524", "16455", "175152", "1846164", "19320456", "201093843", "2084105820", "21524823858", "221678089716", "2277558628869", "23352604052952", "239024756624520", "2442818071519104", "24932208295715538", "254166614639215032", "2588333499216072516", "26333774228774140680", "267693203735009601870" ]
[ "nonn" ]
15
0
2
[ "A052268", "A361375", "A377233", "A377234", "A377235" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-04T04:23:32
oeisdata/seq/A377/A377234.seq
0a9f590afae0890edd6ccad9831a1016
A377235
Expansion of 1/(1 - 9*x/(1-x))^(5/3).
[ "1", "15", "195", "2355", "27285", "307833", "3409485", "37253805", "402847620", "4320615390", "46032234486", "487743084150", "5144152999650", "54041442437850", "565803538944450", "5906360704312770", "61495776957754725", "638808193722602175", "6622218378818049075", "68522901145021162275", "707856527414874575805" ]
[ "nonn" ]
16
0
2
[ "A052268", "A361375", "A377233", "A377234", "A377235" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-04T04:22:44
oeisdata/seq/A377/A377235.seq
b6b663cd2301f199a8789f25cd02d90c
A377236
The mod value of the consecutive pairs of terms in A377182.
[ "2", "3", "4", "6", "8", "9", "10", "12", "14", "15", "16", "18", "20", "21", "22", "24", "26", "27", "28", "30", "7", "25", "35", "40", "42", "11", "33", "19", "36", "38", "5", "34", "45", "46", "48", "50", "51", "52", "54", "56", "57", "58", "60", "62", "63", "64", "66", "68", "69", "70", "23", "49", "92", "98", "100", "37", "65", "74", "75", "76", "78", "80", "81", "82", "84", "86", "87", "88", "13", "77", "91", "99", "104", "105", "106", "108", "17", "93", "119", "120", "41", "85", "123", "29", "96", "116", "117", "118", "129" ]
[ "nonn" ]
7
1
1
[ "A027749", "A064413", "A270139", "A359557", "A377078", "A377182", "A377236" ]
null
Scott R. Shannon, Oct 21 2024
2024-10-21T08:59:59
oeisdata/seq/A377/A377236.seq
d53794a4748265340469a1c1e193cb8c
A377237
Expansion of 1/sqrt(1 - 4*x/sqrt(1 - 4*x)).
[ "1", "2", "10", "56", "326", "1936", "11644", "70672", "431942", "2654816", "16392564", "101611536", "631938524", "3941350816", "24643020344", "154415141152", "969445760070", "6096812777664", "38401653547204", "242213348616592", "1529642560685684", "9671100898555168", "61208631472013256", "387759384222157152" ]
[ "nonn" ]
11
0
2
[ "A011782", "A377237", "A377238", "A377239" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-03T04:58:50
oeisdata/seq/A377/A377237.seq
973b94f32bc6b43396de64c288fcfbc3
A377238
Expansion of 1/(1 - 9*x/(1 - 9*x)^(1/3))^(1/3).
[ "1", "3", "27", "288", "3267", "38232", "456030", "5511726", "67275765", "827544276", "10243778238", "127471232682", "1593323199828", "19992464465031", "251700257824749", "3178185350410386", "40235213754593325", "510553935341621550", "6492029680359751572", "82705296277037467728", "1055413999621027732986" ]
[ "nonn" ]
9
0
2
[ "A011782", "A377237", "A377238", "A377240" ]
null
Seiichi Manyama, Oct 21 2024
2024-10-21T08:57:54
oeisdata/seq/A377/A377238.seq
876a14374dbfad29e663776397fbaca6
A377239
Expansion of sqrt(1 + 4*x/sqrt(1 - 4*x)).
[ "1", "2", "2", "8", "22", "80", "268", "976", "3494", "12896", "47556", "177744", "666236", "2515104", "9525976", "36240032", "138269958", "529193152", "2030242708", "7807266512", "30082317460", "116126074400", "449014896040", "1738805527520", "6742758295900", "26180338089280", "101769629532968", "396031222808096", "1542673037902904" ]
[ "nonn" ]
8
0
2
[ "A377239", "A377240" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-03T04:14:11
oeisdata/seq/A377/A377239.seq
0c843f6a0dc6d9233ec97d97ece5f649
A377240
Expansion of (1 + 9*x/(1 - 9*x)^(1/3))^(1/3).
[ "1", "3", "0", "45", "108", "1782", "8424", "94527", "596322", "5765904", "41921874", "379715688", "2974945482", "26175549087", "213735748383", "1857916476288", "15539695570341", "134524740926700", "1141825482025200", "9881043227641251", "84668712937125633", "733670610133591773", "6327618171676167195" ]
[ "nonn" ]
8
0
2
[ "A377239", "A377240" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-03T04:43:54
oeisdata/seq/A377/A377240.seq
20b5ee0391fad23ece243119ffa0003a
A377241
Expansion of 1/sqrt(1 - 4*x*sqrt(1 + 4*x)).
[ "1", "2", "10", "40", "198", "912", "4540", "22032", "110598", "550240", "2783220", "14041104", "71469468", "363722912", "1860732856", "9526388000", "48933655494", "251617706688", "1296741709252", "6690068720016", "34571534145588", "178829630116896", "926198946642760", "4801277360678240", "24913966227624604" ]
[ "nonn" ]
9
0
2
[ "A377241", "A377242" ]
null
Seiichi Manyama, Oct 21 2024
2024-10-21T08:57:18
oeisdata/seq/A377/A377241.seq
b833ee97430b1673198b694716705157
A377242
Expansion of 1/(1 - 9*x*(1 + 9*x)^(1/3))^(1/3).
[ "1", "3", "27", "207", "2052", "18549", "188487", "1822257", "18757170", "187833654", "1950543018", "19946428524", "208533115953", "2161631202408", "22722158457018", "237747753079992", "2510341213633218", "26444343663932265", "280274270573324547", "2967476856390453393", "31551693369673358214" ]
[ "nonn" ]
8
0
2
[ "A377241", "A377242" ]
null
Seiichi Manyama, Oct 21 2024
2024-10-21T08:57:14
oeisdata/seq/A377/A377242.seq
1885e2c363882857f46d67492d2da4c9
A377243
Expansion of sqrt(1 - 4*x*sqrt(1 - 4*x)).
[ "1", "-2", "2", "8", "22", "48", "76", "48", "-154", "-352", "2116", "20912", "105788", "399456", "1232984", "3264864", "8078982", "22932800", "89940116", "425480496", "1972255060", "8297959136", "31541857576", "110645755936", "371840906716", "1259842096320", "4514251269672", "17350150918624", "69640154149816" ]
[ "sign" ]
8
0
2
[ "A377243", "A377244" ]
null
Seiichi Manyama, Oct 21 2024
2024-10-21T08:57:07
oeisdata/seq/A377/A377243.seq
a293b52762306e83da1ba9322aa729f3
A377244
Expansion of (1 - 9*x*(1 - 9*x)^(1/3))^(1/3).
[ "1", "-3", "0", "36", "351", "2592", "16443", "91368", "438858", "1766124", "6039765", "28371951", "345454146", "5042653380", "61953010137", "648331999074", "6013380216978", "50966902431432", "404617672580886", "3082831238643525", "23168405721857769", "176910812101877094", "1406600430681201138" ]
[ "sign" ]
7
0
2
[ "A377243", "A377244" ]
null
Seiichi Manyama, Oct 21 2024
2024-10-21T08:57:02
oeisdata/seq/A377/A377244.seq
ea79f59934bfc58bef8865ea320e926e
A377245
Number of equivalence classes of convex lattice polygons containing n lattice points, restricting the count to those polygons that are interior to another polygon.
[ "1", "3", "4", "5", "7", "11", "16", "21", "25", "37", "46", "60", "69", "95", "110", "146", "179", "218", "258", "328", "378", "480", "557", "680", "792", "965", "1090", "1320", "1549", "1814", "2091", "2487", "2839", "3360", "3809", "4406", "5062", "5893", "6594", "7642", "8705", "9955", "11254", "12852", "14395", "16556", "18588", "20894", "23535" ]
[ "nonn" ]
15
3
2
[ "A187015", "A322343", "A322344", "A371917", "A377245" ]
null
Justus Springer, Oct 21 2024
2024-12-20T08:54:47
oeisdata/seq/A377/A377245.seq
7fddc7cfca6f65545f3ecc55089d55ef
A377246
a(n) = (n!^2*n^(n-1)/4) * Sum_{k=4..n} A000276(k) / (n^k * (n-k)!).
[ "0", "0", "0", "108", "25200", "6566400", "2263917600", "1070863718400", "695561049469440", "612326076235776000", "716999439503394432000", "1094463733944478334976000", "2136344904330981293005056000", "5240068882948994816402679398400", "15901807526128013295439617984000000", "58888414506334327924778872791367680000", "262906951354695579633857525111586324480000" ]
[ "nonn" ]
5
1
4
[ "A000276", "A174637", "A377246" ]
null
Max Alekseyev, Oct 21 2024
2024-10-22T07:37:48
oeisdata/seq/A377/A377246.seq
8502f2f27cd81aafcd75e326559a67a2
A377247
a(n) is the largest k such that the sum of the first k divisors of n is at most n.
[ "1", "1", "1", "2", "1", "3", "1", "3", "2", "3", "1", "4", "1", "3", "3", "4", "1", "4", "1", "4", "3", "3", "1", "6", "2", "3", "3", "5", "1", "6", "1", "5", "3", "3", "3", "6", "1", "3", "3", "6", "1", "6", "1", "5", "5", "3", "1", "7", "2", "5", "3", "5", "1", "6", "3", "6", "3", "3", "1", "9", "1", "3", "5", "6", "3", "6", "1", "5", "3", "6", "1", "9", "1", "3", "5", "5", "3", "6", "1", "8", "4", "3", "1", "9", "3", "3", "3", "6" ]
[ "nonn" ]
9
1
4
[ "A081512", "A377247" ]
null
David A. Corneth, Oct 21 2024
2024-10-24T17:04:09
oeisdata/seq/A377/A377247.seq
e4bb96b20f5fa8e4e9116bcef6286b49
A377248
Numbers k such that 8191 * 2^k + 1 is prime.
[ "12", "20", "412", "712", "2092", "4704", "10176", "33396", "41124", "105604", "139780", "142924" ]
[ "nonn", "more" ]
23
1
1
[ "A000668", "A001771", "A002253", "A002254", "A061644", "A377248" ]
null
Arsen Vardanyan, Oct 21 2024
2024-11-22T10:09:08
oeisdata/seq/A377/A377248.seq
8124382f7326779e8e32a8f0952b6fd9
A377249
G.f. A(x) satisfies 1 - x = Sum_{n=-oo..+oo} (x^(2*n) - A(x))^n.
[ "1", "3", "5", "11", "20", "38", "67", "119", "211", "398", "830", "1940", "4902", "12784", "33165", "84136", "207240", "495964", "1157767", "2654461", "6029627", "13704225", "31463620", "73498385", "175220708", "425631952", "1048102141", "2599306042", "6453178098", "15967452038", "39281184601", "96019973309", "233425343306", "565413231173" ]
[ "nonn" ]
13
1
2
null
null
Paul D. Hanna, Nov 14 2024
2024-11-14T11:46:03
oeisdata/seq/A377/A377249.seq
8f6d95ea7d5853df7cca80c63b733b73
A377250
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)) such that [x^(2*n-1)] A(x)^n = 0 for n >= 2, with A(0) = A'(0) = 1.
[ "1", "1", "1", "-1", "-5", "12", "81", "-293", "-2361", "11365", "104562", "-630172", "-6493832", "47143346", "538611615", "-4581889465", "-57623005154", "562546009728", "7739224455922", "-85309456282000", "-1276419913050610", "15682410921426105", "253801993058469530", "-3439337745753797445", "-59903911856917937325", "887628418264985947932" ]
[ "sign" ]
17
0
5
[ "A377250", "A377251" ]
null
Paul D. Hanna, Oct 21 2024
2024-10-24T09:26:26
oeisdata/seq/A377/A377250.seq
8935cf9977fd58e228b63782ff737059
A377251
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)) such that [x^(2*n+1)] A(x)^n = 0 for n >= 0, with A(0) = A'(0) = 1.
[ "1", "1", "1", "0", "-2", "2", "21", "-44", "-435", "1416", "14642", "-65280", "-726906", "4134265", "50048353", "-346876041", "-4571655884", "37405303763", "535496468325", "-5053938786250", "-78293577768981", "837492552619032", "13979476317110420", "-167167608081868420", "-2993817113886726927", "39581544484714769732" ]
[ "sign" ]
17
0
5
[ "A377250", "A377251" ]
null
Paul D. Hanna, Oct 24 2024
2024-10-25T09:39:09
oeisdata/seq/A377/A377251.seq
aa077b50d3e002f1cba07add0d7d48b3
A377252
G.f. satisfies A(x) = A( x^3 + x^3*A(x) ) / x^2.
[ "1", "1", "1", "2", "4", "7", "12", "22", "42", "81", "157", "307", "606", "1206", "2416", "4865", "9839", "19981", "40737", "83343", "171028", "351940", "726099", "1501642", "3112400", "6464125", "13450825", "28038767", "58544953", "122431896", "256408712", "537732762", "1129175346", "2374028444", "4997020292", "10529562040", "22210529816", "46895830078", "99109479009" ]
[ "nonn" ]
12
1
4
[ "A091600", "A377252" ]
null
Paul D. Hanna, Nov 18 2024
2024-11-19T00:51:42
oeisdata/seq/A377/A377252.seq
5bae164241a4ef8f250bb20cf900704e
A377253
a(n) = cosh( n*arccosh(3^n) ).
[ "1", "3", "161", "78651", "344321281", "13556330774163", "4803014772895786721", "15315151467227056585562187", "439511508577232466840070997207041", "113517180330950376886852596699083807208099", "263873290425594499887783413858790664311869763220001", "5520415640853364978944256380321540917933730551194875050712027" ]
[ "nonn" ]
10
0
2
[ "A197320", "A377253" ]
null
Paul D. Hanna, Oct 27 2024
2024-10-28T04:10:42
oeisdata/seq/A377/A377253.seq
42bba2ae83e5286ae9520611be40da1b
A377254
G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} ( x^(2*n-1) + (-A(x))^n )^n.
[ "1", "0", "1", "1", "3", "5", "8", "21", "42", "98", "225", "519", "1225", "2888", "6890", "16502", "39726", "96280", "234271", "572113", "1403155", "3451023", "8513549", "21061621", "52228567", "129828588", "323392155", "807151015", "2018271738", "5055205432", "12682329400", "31864376429", "80171966381", "201982446435", "509500029850", "1286723944862" ]
[ "nonn" ]
11
1
5
null
null
Paul D. Hanna, Nov 18 2024
2024-11-23T06:01:01
oeisdata/seq/A377/A377254.seq
1c5da1e6c76298c09af30772e3acd717
A377255
G.f. A(x) satisfies A(x)^2 = A(x^2) + 2*A(x^3).
[ "1", "1", "0", "0", "1", "-1", "1", "-1", "1", "0", "-2", "4", "-6", "9", "-9", "4", "7", "-28", "58", "-89", "107", "-86", "-13", "233", "-597", "1064", "-1483", "1540", "-701", "-1725", "6342", "-13197", "20956", "-25817", "20555", "5544", "-64631", "164340", "-296076", "417478", "-432575", "178788", "560242", "-1985957", "4126485", "-6565542", "8076278", "-6271393", "-2464675", "22301182" ]
[ "sign" ]
9
1
11
[ "A377255", "A377256", "A377257", "A377258" ]
null
Paul D. Hanna, Nov 27 2024
2024-11-30T05:55:49
oeisdata/seq/A377/A377255.seq
6c721d6028f411066ad684897c74ef12
A377256
G.f. A(x) satisfies A(x)^3 = A(x^3) + 3*A(x^4).
[ "1", "1", "-1", "2", "-4", "10", "-24", "60", "-156", "415", "-1126", "3099", "-8630", "24266", "-68794", "196433", "-564358", "1630219", "-4731681", "13792091", "-40355104", "118483124", "-348949952", "1030616162", "-3051771509", "9058068276", "-26944245623", "80310259922", "-239820489258", "717388363313", "-2149431491830", "6449821500433" ]
[ "sign" ]
9
1
4
[ "A377255", "A377256", "A377257", "A377258" ]
null
Paul D. Hanna, Nov 28 2024
2024-11-30T06:27:49
oeisdata/seq/A377/A377256.seq
69b8b3d16af66b0b6379e673711f3211
A377257
G.f. A(x) satisfies A(x)^5 = A(x^5) + 5*A(x^6).
[ "1", "1", "-2", "6", "-21", "80", "-320", "1327", "-5641", "24452", "-107626", "479595", "-2158961", "9801964", "-44825612", "206274835", "-954379090", "4436725739", "-20712537332", "97058595375", "-456348299572", "2152172842439", "-10177774161826", "48252146708494", "-229284953354357", "1091812174888210", "-5209089231759676", "24897363431677317" ]
[ "sign" ]
7
1
3
[ "A377255", "A377256", "A377257", "A377258" ]
null
Paul D. Hanna, Nov 29 2024
2024-11-30T06:28:13
oeisdata/seq/A377/A377257.seq
e0c8fa7f5ca2863572f209c0827f1bf1
A377258
G.f. A(x) satisfies A(x)^7 = A(x^7) + 7*A(x^8).
[ "1", "1", "-3", "13", "-65", "351", "-1989", "11650", "-69900", "427168", "-2648444", "16612986", "-105215708", "671762688", "-4318480068", "27926208102", "-181520595372", "1185224306328", "-7769814296892", "51117268739082", "-337374433220892", "2233100488061696", "-14819687150440940", "98583271355649642", "-657222710894636084" ]
[ "sign" ]
7
1
3
[ "A377255", "A377256", "A377257", "A377258" ]
null
Paul D. Hanna, Dec 01 2024
2024-12-01T06:15:11
oeisdata/seq/A377/A377258.seq
6a02c020ee7841dcb53af25f080c7eac
A377259
Least k such that for every integer i > k there are at least n composite numbers less than i and relatively prime to i.
[ "30", "60", "90", "90", "120", "210", "210", "210", "210", "210", "210", "210", "210", "210", "240", "240", "240", "330", "420", "420", "420", "420", "420", "420", "420", "420", "420", "420", "420", "420", "420", "420", "420", "630", "630", "630", "630", "630", "630", "630", "630", "630", "630", "660", "660", "660", "660", "660", "660", "840", "840", "840", "840" ]
[ "nonn" ]
9
1
1
null
null
Jeffrey Shallit, Oct 21 2024
2024-10-23T11:48:18
oeisdata/seq/A377/A377259.seq
9b026541df5765f7680d8db991db95af
A377260
Expansion of 1/(1 - 9*x*(1 + x))^(4/3).
[ "1", "12", "138", "1512", "16191", "170856", "1785042", "18514548", "190978047", "1961435736", "20074741596", "204870399552", "2085761241018", "21191569851312", "214930928188116", "2176565295933000", "22012171108148025", "222351327936731700", "2243667436429422150", "22618648367553735000", "227826739721910301245" ]
[ "nonn" ]
9
0
2
[ "A180400", "A376568", "A377234", "A377260", "A377261" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-03T03:59:51
oeisdata/seq/A377/A377260.seq
71535c77abd83fde3b467b4a4c1f4ac1
A377261
Expansion of 1/(1 - 9*x*(1 + x))^(5/3).
[ "1", "15", "195", "2340", "26910", "301158", "3307590", "35830080", "384072975", "4082949585", "43113860361", "452742067440", "4732188244290", "49266375442110", "511157395433610", "5287689996408612", "54555878321808435", "561579617798527185", "5768783256563735265", "59149668761521664040", "605472238745163334116" ]
[ "nonn" ]
9
0
2
[ "A180400", "A376568", "A377235", "A377260", "A377261" ]
null
Seiichi Manyama, Oct 21 2024
2025-05-03T04:07:16
oeisdata/seq/A377/A377261.seq
d7ccf18947bc44a8d0e9683a87aae3b3
A377262
Expansion of 1/(1 - 9*x/(1 - 9*x)^(2/3))^(2/3).
[ "1", "6", "81", "1170", "17280", "258228", "3888891", "58901256", "896105025", "13682343420", "209537016021", "3217031912808", "49497615312768", "762991150126320", "11780319846487905", "182142574910406972", "2819755778582302380", "43701602632437073050", "677982394543585361805", "10527648812452161725310" ]
[ "nonn" ]
5
0
2
[ "A377238", "A377262" ]
null
Seiichi Manyama, Oct 22 2024
2024-10-22T08:00:49
oeisdata/seq/A377/A377262.seq
597e284fa6af3eaf739660ec2e04d2a4
A377263
Expansion of (1 - 9*x*(1 - 9*x)^(2/3))^(2/3).
[ "1", "-6", "27", "126", "513", "1296", "-1782", "-35964", "-68526", "2131110", "31341168", "257694210", "1423944765", "4790619126", "5675652099", "61932520134", "2351897164665", "36303263670942", "365306247890865", "2733496597694394", "16050141707838840", "82517222301874110", "544262710381797330" ]
[ "sign" ]
5
0
2
[ "A377244", "A377263" ]
null
Seiichi Manyama, Oct 22 2024
2024-10-22T08:00:40
oeisdata/seq/A377/A377263.seq
e32d41060d87b959a958c515f3aacea5
A377264
Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).
[ "1", "2", "3", "14", "69", "413", "7222", "90211", "2577626", "127385577", "5092018073", "655664812074", "78618294607139", "13276948495989478", "5995083279193033837", "1895278734817024984181", "1542333923096758721461086", "1867485777936169465836858947", "2020248742951852823878208914098", "7078136335206254534330825538868049" ]
[ "nonn" ]
32
0
2
[ "A006720", "A028940", "A157002", "A157003", "A160702", "A171416", "A173992", "A173993", "A254314", "A377264" ]
null
Thomas Scheuerle, Oct 22 2024
2024-11-04T16:24:31
oeisdata/seq/A377/A377264.seq
5dd2a32709ac664d49ac359bc1bf9480
A377265
Numbers n such that 2*n contains one more 1 than does n in its decimal representation.
[ "5", "6", "7", "8", "9", "50", "52", "53", "54", "60", "62", "63", "64", "65", "66", "67", "68", "69", "70", "72", "73", "74", "75", "76", "77", "78", "79", "80", "82", "83", "84", "85", "86", "87", "88", "89", "90", "92", "93", "94", "95", "96", "97", "98", "99", "205", "206", "207", "208", "209", "255", "256", "257", "258", "259", "305", "306", "307", "308", "309", "355", "356", "357", "358", "359", "405", "406", "407", "408" ]
[ "nonn", "base", "look" ]
11
1
1
[ "A268643", "A376165", "A377265" ]
null
Robert Israel, Oct 22 2024
2024-10-22T18:33:48
oeisdata/seq/A377/A377265.seq
92f204a9fd00d6f293f903f298298cb6
A377266
Primes p with the property that there exist nonnegative integers m,n such that m!*n! is congruent to either +1 or -1 mod p^2, with m + n = p - 1.
[ "2", "3", "5", "7", "11", "13", "17", "31", "47", "53", "59", "61", "71", "107", "137", "149", "173", "227", "251", "277", "313", "347", "349", "359", "367", "373", "409", "419", "443", "463", "467", "479", "491", "499", "521", "523", "541", "563", "577", "599", "607", "613", "617", "631", "643", "647", "677", "683", "739", "751", "757", "809", "811", "821", "823", "827", "829" ]
[ "nonn" ]
39
1
1
[ "A007540", "A157249", "A157250", "A377266" ]
null
Richard Peterson, Oct 22 2024
2024-12-30T16:55:03
oeisdata/seq/A377/A377266.seq
d943bc784fc483cfdc7f8e4a43c2f2de
A377267
G.f. A(x) satisfies A(x) = 1/(1 - 9*x*A(x))^(2/3).
[ "1", "6", "81", "1386", "26676", "551124", "11939967", "267647490", "6155681103", "144442697256", "3444310087155", "83222570083068", "2033143391152440", "50136558534943776", "1246312401751305306", "31197886757177379570", "785732617740674763684", "19896044539519213482690" ]
[ "nonn", "easy" ]
23
0
2
[ "A078532", "A245114", "A377262", "A377267" ]
null
Seiichi Manyama, Oct 22 2024
2025-06-22T14:11:38
oeisdata/seq/A377/A377267.seq
251650198e3a520fb8713910ea03cc0a
A377268
G.f. satisfies A(x) = (1 - 9*x*A(x))^(1/3).
[ "1", "-3", "0", "9", "27", "0", "-324", "-1215", "0", "18711", "75816", "0", "-1301265", "-5484996", "0", "100048689", "431943435", "0", "-8192222064", "-35942240565", "0", "700434986472", "3108770417700", "0", "-61805774132388", "-276711654879477", "0", "5586291123504300", "25180760594032407", "0", "-514555201693265040" ]
[ "sign", "easy" ]
15
0
2
[ "A104624", "A377268" ]
null
Seiichi Manyama, Oct 22 2024
2025-06-20T08:10:56
oeisdata/seq/A377/A377268.seq
860c570297cabbc59e798c889df6a642
A377269
G.f. A(x) satisfies A(x) = (1 - 9*x*A(x))^(2/3).
[ "1", "-6", "27", "-90", "189", "0", "-1782", "6318", "0", "-90882", "360126", "0", "-5985819", "24931800", "0", "-446371074", "1912892355", "0", "-35840971530", "156454458930", "0", "-3022929941616", "13367712796110", "0", "-264079216747476", "1179032268616902", "0", "-23685874363658232", "106533987128598645", "0" ]
[ "sign", "easy" ]
23
0
2
[ "A376636", "A377268", "A377269" ]
null
Seiichi Manyama, Oct 22 2024
2025-06-22T14:10:51
oeisdata/seq/A377/A377269.seq
54b2ca2857bf7a3b62f2332c519f80be
A377270
Smallest index k such that the k-th prime number in base-2 contains the n-th Fibonacci number in base-2 as a contiguous substring.
[ "1", "1", "1", "2", "3", "7", "6", "14", "33", "48", "24", "106", "51", "240", "362", "305", "251", "1269", "1047", "1752", "2456", "3773", "3121", "8959", "39089", "62223", "33299", "177305", "42613", "238782", "373418", "699763", "916051", "2715933", "2256419", "13103923", "7100513", "16902825", "13833549", "11323041", "66402079", "54299882" ]
[ "nonn", "base" ]
52
1
4
[ "A000040", "A000045", "A001605", "A004676", "A099000", "A377270", "A377483" ]
null
Charles Marsden, Oct 22 2024
2024-11-29T21:38:40
oeisdata/seq/A377/A377270.seq
64fb43ad7b808a980aec1376a87fd579
A377271
Numbers k such that k and k+1 are both terms in A377209.
[ "1", "2", "3", "4", "5", "12", "89", "1824", "3024", "7024", "15084", "17184", "18935", "22624", "28657", "29424", "31464", "37024", "38835", "40032", "42679", "44975", "47375", "66744", "66815", "78219", "89495", "107456", "112175", "119744", "144599", "148519", "169883", "171941", "172025", "188208", "207935", "226624", "244404", "248255" ]
[ "nonn", "base" ]
8
1
2
[ "A007895", "A328208", "A328209", "A376793", "A377209", "A377271", "A377272", "A377273" ]
null
Amiram Eldar, Oct 22 2024
2024-10-23T00:48:34
oeisdata/seq/A377/A377271.seq
8582ed5d8e1a43a620de70cc7c840cf0
A377272
Numbers k such that k and k+1 are both terms in A377210.
[ "1", "2", "3", "4", "5", "12", "47375", "2310399", "3525200", "6506367", "9388224", "17613504", "29373839", "41534800", "48191759", "48344120", "66927384", "68094999", "71982999", "92547279", "95497919", "110146959", "110395439", "126123920", "148865535", "152546030", "154451583", "171570069", "193628799", "232058519" ]
[ "nonn", "base" ]
7
1
2
[ "A007895", "A328208", "A328209", "A376795", "A377210", "A377271", "A377272" ]
null
Amiram Eldar, Oct 22 2024
2024-10-23T00:48:47
oeisdata/seq/A377/A377272.seq
330444dfed9061413ad8098c04f66c67
A377273
Starts of runs of 3 consecutive integers that are terms in A377209.
[ "1", "2", "3", "4", "231700599", "1069467839", "1156703470", "1241186868", "2533742848", "2684864798", "3037193808", "5056780650", "7073145000", "7557047134", "9623855878", "12090760318", "12120887700", "13816479742", "14430478270", "15811947072", "16864260048", "20905152190", "22735441078", "23224253128", "23269229774", "23766221400", "25175490262" ]
[ "nonn", "base" ]
9
1
2
[ "A007895", "A328208", "A328209", "A328210", "A376794", "A377209", "A377271", "A377273" ]
null
Amiram Eldar, Oct 22 2024
2024-10-23T00:48:58
oeisdata/seq/A377/A377273.seq
2fc1da70105b1e9d6d9d6c5119ccf225
A377274
Decimal expansion of the surface area of a truncated tetrahedron with unit edge length.
[ "1", "2", "1", "2", "4", "3", "5", "5", "6", "5", "2", "9", "8", "2", "1", "4", "1", "0", "5", "4", "6", "9", "2", "1", "2", "4", "3", "9", "0", "5", "4", "1", "1", "0", "6", "5", "6", "8", "5", "9", "9", "6", "3", "6", "7", "7", "6", "6", "7", "2", "6", "6", "4", "3", "9", "6", "3", "9", "0", "6", "4", "8", "8", "5", "6", "1", "6", "3", "5", "3", "1", "1", "1", "8", "3", "6", "1", "6", "0", "0", "2", "5", "9", "5", "6", "8", "0", "2", "3", "3" ]
[ "nonn", "cons", "easy" ]
10
2
2
[ "A002194", "A093577", "A377274", "A377275", "A377276", "A377277" ]
null
Paolo Xausa, Oct 23 2024
2024-10-25T09:25:41
oeisdata/seq/A377/A377274.seq
97e80201bb93ea59feb987c68093873b
A377275
Decimal expansion of the volume of a truncated tetrahedron with unit edge length.
[ "2", "7", "1", "0", "5", "7", "5", "9", "9", "4", "5", "4", "8", "4", "3", "2", "1", "7", "6", "8", "6", "9", "9", "0", "3", "3", "8", "8", "0", "6", "8", "5", "8", "7", "9", "8", "3", "9", "2", "5", "2", "0", "4", "4", "2", "7", "8", "0", "5", "8", "1", "7", "1", "4", "0", "2", "5", "5", "3", "0", "2", "8", "3", "1", "1", "4", "8", "9", "0", "3", "9", "1", "7", "0", "5", "2", "3", "7", "1", "8", "2", "4", "4", "6", "3", "2", "4", "2", "7", "7" ]
[ "nonn", "cons", "easy" ]
8
1
1
[ "A002193", "A020829", "A093577", "A377274", "A377275", "A377276", "A377277" ]
null
Paolo Xausa, Oct 23 2024
2024-10-25T09:25:56
oeisdata/seq/A377/A377275.seq
7a08b74638e67583717b9f7371846bd3
A377276
Decimal expansion of the circumradius of a truncated tetrahedron with unit edge length.
[ "1", "1", "7", "2", "6", "0", "3", "9", "3", "9", "9", "5", "5", "8", "5", "7", "3", "8", "8", "6", "4", "1", "4", "0", "7", "5", "2", "8", "3", "8", "6", "1", "1", "6", "5", "7", "0", "1", "4", "7", "0", "5", "7", "0", "8", "8", "3", "5", "2", "9", "3", "4", "2", "8", "8", "4", "0", "1", "4", "2", "5", "4", "7", "2", "7", "5", "4", "2", "5", "6", "1", "5", "8", "1", "8", "8", "3", "0", "9", "9", "3", "0", "3", "7", "0", "5", "2", "8", "8", "9" ]
[ "nonn", "cons", "easy" ]
9
1
3
[ "A010478", "A093577", "A187110", "A377274", "A377275", "A377276", "A377277" ]
null
Paolo Xausa, Oct 23 2024
2024-10-25T09:26:10
oeisdata/seq/A377/A377276.seq
704547ba714bcf7cf595af70e296262e
A377277
Decimal expansion of 12*arctan(sqrt(2)).
[ "1", "1", "4", "6", "3", "7", "9", "9", "4", "1", "7", "4", "9", "4", "1", "1", "1", "3", "3", "7", "9", "6", "6", "2", "8", "5", "2", "3", "0", "1", "8", "9", "0", "9", "3", "0", "5", "0", "9", "2", "0", "9", "7", "6", "3", "4", "0", "1", "2", "0", "0", "6", "5", "8", "9", "1", "5", "1", "6", "3", "7", "7", "5", "5", "1", "8", "6", "2", "9", "4", "4", "5", "5", "0", "8", "4", "7", "7", "1", "7", "4", "6", "4", "6", "4", "8", "6", "9", "9", "2" ]
[ "nonn", "cons", "easy" ]
11
2
3
[ "A195696", "A377277", "A377296" ]
null
Paolo Xausa, Oct 23 2024
2024-11-20T23:40:55
oeisdata/seq/A377/A377277.seq
da61e17edf649eadf47874e80c1cd02d
A377278
Denominators in a harmonic triangle; q-analog of A126615, here q = 2.
[ "1", "3", "3", "3", "21", "7", "3", "21", "105", "15", "3", "21", "105", "465", "31", "3", "21", "105", "465", "1953", "63", "3", "21", "105", "465", "1953", "8001", "127", "3", "21", "105", "465", "1953", "8001", "32385", "255", "3", "21", "105", "465", "1953", "8001", "32385", "130305", "511", "3", "21", "105", "465", "1953", "8001", "32385", "130305", "522753", "1023" ]
[ "nonn", "easy", "tabl", "frac" ]
8
1
2
[ "A000225", "A005329", "A006095", "A126615", "A204243", "A377278" ]
null
Werner Schulte, Oct 22 2024
2024-11-15T23:33:31
oeisdata/seq/A377/A377278.seq
8876aa3e68d302cb4c3876ade8f604c6
A377279
Number of fixed points of f(k) = floor(k^2 / n) mod n^2.
[ "1", "2", "3", "2", "3", "4", "3", "3", "4", "4", "3", "4", "3", "4", "5", "3", "4", "5", "2" ]
[ "nonn" ]
12
1
2
null
null
Allan C. Wechsler, Oct 22 2024
2025-02-06T23:47:00
oeisdata/seq/A377/A377279.seq
92537e8adc4490c991d587c5646a23ae
A377280
Given n cards, each time you reversing the order of the top 1, 2, 3, ..., n-1, n cards, then repeat reversing 1, 2, 3, ... cards. Do reversing at least once. the minimum number of steps required to return all the cards to their original position.
[ "1", "4", "9", "12", "25", "36", "28", "32", "81", "60", "121", "120", "117", "196", "75", "80", "204", "324", "228", "200", "147", "264", "529", "504", "200", "676", "540", "252", "841", "900", "186", "192", "1089", "748", "1225", "324", "740", "1140", "1521", "1080", "1681", "336", "1204", "484", "540", "460", "1692", "1152", "735", "2500", "2601", "624", "2809", "972", "1980", "784", "2508", "696", "1416", "3300" ]
[ "nonn" ]
36
1
2
[ "A003558", "A130517", "A377280" ]
null
Youhua Li, Oct 22 2024
2024-11-24T10:14:26
oeisdata/seq/A377/A377280.seq
459592d211951ae2eba9ccb9ef7271e2
A377281
Difference between the n-th prime and the next prime-power (exclusive).
[ "1", "1", "2", "1", "2", "3", "2", "4", "2", "2", "1", "4", "2", "4", "2", "6", "2", "3", "4", "2", "6", "2", "6", "8", "4", "2", "4", "2", "4", "8", "1", "6", "2", "10", "2", "6", "6", "4", "2", "6", "2", "10", "2", "4", "2", "12", "12", "4", "2", "4", "6", "2", "2", "5", "6", "6", "2", "6", "4", "2", "6", "14", "4", "2", "4", "14", "6", "6", "2", "4", "6", "2", "6", "6", "4", "6", "8", "4", "8", "10", "2", "10", "2", "6" ]
[ "nonn" ]
12
1
3
[ "A000015", "A000040", "A000961", "A001223", "A001597", "A013597", "A014210", "A014234", "A024619", "A031218", "A053289", "A053707", "A057820", "A059305", "A064113", "A080101", "A244508", "A246655", "A276781", "A304521", "A361102", "A366833", "A376596", "A376597", "A376598", "A377051", "A377054", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289" ]
null
Gus Wiseman, Oct 23 2024
2024-10-25T11:44:45
oeisdata/seq/A377/A377281.seq
034e4f8145e66476a2fcec7b743c1d14
A377282
Difference between n and the next prime-power (exclusive).
[ "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "3", "2", "1", "1", "2", "1", "4", "3", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "5", "4", "3", "2", "1", "4", "3", "2", "1", "2", "1", "4", "3", "2", "1", "2", "1", "4", "3", "2", "1", "6", "5", "4", "3", "2", "1", "2", "1", "3", "2", "1", "3", "2", "1", "4", "3", "2", "1", "2", "1", "6", "5", "4", "3", "2", "1", "2", "1", "2", "1", "6", "5", "4", "3", "2" ]
[ "nonn" ]
8
1
5
[ "A000015", "A000040", "A000961", "A001223", "A013597", "A013632", "A014210", "A014234", "A024619", "A031218", "A053289", "A053707", "A057820", "A059305", "A064113", "A065890", "A080101", "A095195", "A244508", "A276781", "A304521", "A361102", "A366833", "A376596", "A376597", "A376598", "A377051", "A377054", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289" ]
null
Gus Wiseman, Oct 23 2024
2024-10-25T11:45:12
oeisdata/seq/A377/A377282.seq
5703aa4d81cc08a1b0f96d47093ab5d3
A377283
Nonnegative integers k such that either k = 0 or there is a perfect power x in the range prime(k) < x < prime(k+1).
[ "0", "2", "4", "6", "9", "11", "15", "18", "22", "25", "30", "31", "34", "39", "44", "47", "48", "53", "54", "61", "66", "68", "72", "78", "85", "92", "97", "99", "105", "114", "122", "129", "137", "146", "154", "162", "168", "172", "181", "191", "200", "210", "217", "219", "228", "240", "251", "263", "269", "274", "283", "295", "306", "309", "319", "327", "329", "342", "357" ]
[ "nonn" ]
10
1
2
[ "A000015", "A000040", "A000961", "A001223", "A001597", "A007916", "A045542", "A053289", "A057820", "A065514", "A069623", "A076411", "A076412", "A081676", "A131605", "A188951", "A216765", "A345531", "A375706", "A377057", "A377283", "A377287", "A377431", "A377432", "A377434", "A377436", "A377466", "A377468", "A378035", "A378249", "A378250", "A378251", "A378356", "A378365" ]
null
Gus Wiseman, Nov 21 2024
2024-12-05T21:47:49
oeisdata/seq/A377/A377283.seq
129c316b51a92d012c4c8501a8934d72
A377284
Number of partitions of 1 into {1/1^n, 1/2^n, 1/3^n, ..., 1/n^n}.
[ "1", "2", "3", "19", "36", "522332", "6117036", "1183731130981" ]
[ "nonn", "more" ]
10
1
2
[ "A020473", "A377284", "A378270", "A378271" ]
null
Ilya Gutkovskiy, Dec 12 2024
2024-12-21T01:02:25
oeisdata/seq/A377/A377284.seq
35e68c233ca3e82a8857fcf9d8fe4623
A377285
Position of first 0 in the n-th differences of the strict partition numbers A000009, or 0 if 0 does not appear.
[ "0", "1", "1", "5", "5", "8", "20", "7", "22" ]
[ "nonn", "more" ]
26
0
4
[ "A000009", "A000041", "A002865", "A008284", "A047966", "A053445", "A087897", "A098859", "A116608", "A175804", "A225485", "A225486", "A293467", "A325242", "A325244", "A325268", "A325280", "A325282", "A376678", "A377037", "A377042", "A377050", "A377055", "A377285", "A378622", "A378970", "A378971", "A378972" ]
null
Gus Wiseman, Dec 12 2024
2024-12-15T12:58:39
oeisdata/seq/A377/A377285.seq
743c8ef5a0ed6bd41fb4097629f64079
A377286
Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.
[ "1", "3", "5", "7", "8", "10", "12", "13", "14", "16", "17", "19", "20", "21", "23", "24", "25", "26", "27", "28", "29", "32", "33", "34", "35", "36", "37", "38", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "55", "56", "57", "58", "59", "60", "62", "63", "64", "65", "66", "67", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82" ]
[ "nonn" ]
10
1
2
[ "A000015", "A000040", "A000961", "A001223", "A001597", "A002808", "A006093", "A008864", "A013597", "A014210", "A014234", "A024619", "A031218", "A046933", "A053707", "A057820", "A064113", "A065514", "A065890", "A075526", "A080101", "A095195", "A244508", "A246655", "A276781", "A304521", "A345531", "A361102", "A366833", "A376597", "A377051", "A377057", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289" ]
null
Gus Wiseman, Oct 25 2024
2024-10-27T13:03:43
oeisdata/seq/A377/A377286.seq
57aedc9bedb6de6c4e60937f99345e1d
A377287
Numbers k such that there is exactly one prime-power between prime(k)+1 and prime(k+1)-1.
[ "2", "6", "11", "15", "18", "22", "31", "39", "53", "54", "61", "68", "72", "97", "99", "114", "129", "146", "162", "172", "217", "219", "263", "283", "309", "329", "357", "409", "445", "487", "519", "564", "609", "656", "675", "705", "811", "847", "882", "886", "1000", "1028", "1163", "1252", "1294", "1381", "1423", "1457", "1523", "1715", "1821", "1877", "1900" ]
[ "nonn" ]
11
1
1
[ "A000015", "A000040", "A000961", "A001223", "A001597", "A002808", "A006093", "A008864", "A013597", "A014210", "A014234", "A024619", "A031218", "A046933", "A053607", "A053706", "A053707", "A057820", "A061398", "A064113", "A065514", "A065890", "A068360", "A075526", "A080101", "A095195", "A224363", "A244508", "A246655", "A276781", "A304521", "A345531", "A361102", "A366833", "A376597", "A377057", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289", "A377430", "A377431" ]
null
Gus Wiseman, Oct 25 2024
2024-10-28T12:05:24
oeisdata/seq/A377/A377287.seq
dd2290c13e5c75217bd6342500fd8cc7
A377288
Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.
[ "4", "9", "30", "327", "3512" ]
[ "nonn", "more" ]
13
1
1
[ "A000015", "A000040", "A000961", "A001223", "A001597", "A002808", "A006093", "A008864", "A013597", "A014210", "A014234", "A024619", "A031218", "A046933", "A053607", "A053706", "A053707", "A057820", "A061398", "A064113", "A065514", "A065890", "A068360", "A075526", "A080101", "A095195", "A224363", "A244508", "A246655", "A276781", "A304521", "A345531", "A361102", "A366833", "A376596", "A376597", "A377057", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289", "A377430", "A377431" ]
null
Gus Wiseman, Oct 25 2024
2024-11-09T02:33:29
oeisdata/seq/A377/A377288.seq
7c3dd2a811b8767fc2312f2bb4a5bea0
A377289
Difference between prime(n) and the previous prime-power (exclusive).
[ "1", "1", "1", "2", "2", "2", "1", "2", "4", "2", "2", "5", "4", "2", "4", "4", "6", "2", "3", "4", "2", "6", "2", "6", "8", "4", "2", "4", "2", "4", "2", "3", "6", "2", "10", "2", "6", "6", "4", "4", "6", "2", "10", "2", "4", "2", "12", "12", "4", "2", "4", "6", "2", "8", "1", "6", "6", "2", "6", "4", "2", "4", "14", "4", "2", "4", "14", "6", "4", "2", "4", "6", "6", "6", "6", "4", "6", "8", "4", "8", "10", "2", "10", "2" ]
[ "nonn" ]
12
1
4
[ "A000015", "A000040", "A000961", "A001223", "A002808", "A013597", "A014210", "A014234", "A024619", "A031218", "A053707", "A057820", "A059305", "A064113", "A065514", "A065890", "A075526", "A080101", "A244508", "A246655", "A276781", "A304521", "A361102", "A366833", "A376596", "A376597", "A377051", "A377054", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289" ]
null
Gus Wiseman, Oct 23 2024
2024-10-26T22:58:22
oeisdata/seq/A377/A377289.seq
ed1061d4155d529e59cd83191ce1d540
A377290
For each row n in array A374602(n, k), the period size, as a count of terms, that divides the row into congruent subsequences.
[ "1", "2", "2", "6", "4", "4", "14", "10", "8", "10", "6", "8", "14", "16", "34", "10", "8", "34", "8", "12", "22", "22", "32", "18", "18", "30", "14", "18", "16", "12", "38", "22", "28", "26", "42", "20", "74", "36", "14", "54", "12", "16", "34", "38", "54", "26", "58", "50", "24", "36", "102", "46", "32", "78", "14", "22", "38", "46", "118", "22", "30", "68", "36", "32", "130", "74", "34" ]
[ "nonn" ]
7
1
2
[ "A374602", "A377290", "A377291" ]
null
Charles L. Hohn, Oct 23 2024
2024-11-15T23:31:49
oeisdata/seq/A377/A377290.seq
da989ef97cbe91050a762b94676ab23a
A377291
For each row n in array A374602(n, k), the asymptotic geometric growth factor of every A377290(n) terms, represented by its nearest integer.
[ "6", "14", "7", "98", "16", "34", "1442", "398", "194", "119", "30", "62", "4354", "1154", "115598", "322", "23", "155234", "48", "98", "10402", "2702", "64514", "727", "482", "3040", "1154", "2114", "70", "142", "21314", "5474", "2498", "1442", "16793602", "674", "48497294", "158402", "47", "48670", "96", "194", "39202", "9998", "1684802", "2599" ]
[ "nonn" ]
7
1
1
[ "A000037", "A010516", "A156035", "A298675", "A354129", "A374602", "A374883", "A377290", "A377291" ]
null
Charles L. Hohn, Oct 23 2024
2024-11-15T23:32:00
oeisdata/seq/A377/A377291.seq
78870a0ac7d8f021d2b8910694a918f3
A377292
Terms of A118666 as produced by the program given there (without the final sorting).
[ "0", "1", "6", "7", "20", "18", "21", "19", "120", "108", "126", "106", "121", "109", "127", "107", "272", "360", "260", "380", "278", "366", "258", "378", "273", "361", "261", "381", "279", "367", "259", "379", "1632", "1904", "1560", "1800", "1652", "1892", "1548", "1820", "1638", "1910", "1566", "1806", "1650", "1890", "1546", "1818", "1633", "1905", "1561", "1801" ]
[ "nonn" ]
35
0
3
[ "A117998", "A118666", "A377292" ]
null
Darío Clavijo, Dec 27 2024
2025-01-04T22:24:40
oeisdata/seq/A377/A377292.seq
14437f3350fa03eeebd14200429cde99
A377293
Number of days where month plus day equals n, in a non-leap year in the Gregorian calendar.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "11", "11", "10", "10", "8", "8", "6", "6", "5", "3", "3", "1", "1" ]
[ "nonn", "dumb", "easy", "fini", "full" ]
25
2
2
[ "A008685", "A377293" ]
null
Manuel Biwer, Dec 27 2024
2025-02-16T11:02:04
oeisdata/seq/A377/A377293.seq
ad655769626599048d89b3ff75d6a443
A377294
a(n) is the least n-digit prime which is the sum of the squares of three consecutive numbers, or -1 if no such prime exists.
[ "5", "29", "149", "1877", "11909", "100469", "1026677", "10013789", "100676549", "1000611509", "10007613149", "100003082789", "1000092600389", "10000275414869", "100000426365677", "1000004865589109", "10000013191662677", "100000034139489269", "1000000221045632669", "10000000313838962309", "100000002116695737029" ]
[ "nonn", "base" ]
34
1
1
[ "A120328", "A376992", "A377294" ]
null
Jean-Marc Rebert, Oct 23 2024
2024-11-28T10:57:41
oeisdata/seq/A377/A377294.seq
465fc41af8a51a8fc2d767384c86eb51
A377295
a(n) is the least n-digit prime which is the sum of the squares of six consecutive nonnegative numbers, or -1 if no such prime exists.
[ "-1", "-1", "139", "1279", "15319", "102199", "1011079", "10054399", "100687891", "1000860859", "10004248351", "100048116199", "1000245990631", "10000171206199", "100000029166651", "1000000001958499", "10000010020185919", "100000022659152859", "1000000088358667051", "10000000476596855539", "100000000728055460899" ]
[ "sign", "base" ]
27
1
3
[ "A027865", "A027867", "A376992", "A377295" ]
null
Jean-Marc Rebert, Oct 23 2024
2024-12-23T21:58:22
oeisdata/seq/A377/A377295.seq
af9477925fd37d6649bf78ae6b243678
A377296
Decimal expansion of 24*arctan(sqrt(2)).
[ "2", "2", "9", "2", "7", "5", "9", "8", "8", "3", "4", "9", "8", "8", "2", "2", "2", "6", "7", "5", "9", "3", "2", "5", "7", "0", "4", "6", "0", "3", "7", "8", "1", "8", "6", "1", "0", "1", "8", "4", "1", "9", "5", "2", "6", "8", "0", "2", "4", "0", "1", "3", "1", "7", "8", "3", "0", "3", "2", "7", "5", "5", "1", "0", "3", "7", "2", "5", "8", "8", "9", "1", "0", "1", "6", "9", "5", "4", "3", "4", "9", "2", "9", "2", "9", "7", "3", "9", "8", "4" ]
[ "nonn", "cons", "easy" ]
14
2
1
[ "A195696", "A377277", "A377296" ]
null
Paolo Xausa, Oct 24 2024
2024-11-20T23:44:24
oeisdata/seq/A377/A377296.seq
9e5b375ccadbc86e4a7acf2e98cc6094
A377297
Decimal expansion of the smallest positive imaginary solution to Gamma(1+z) = Gamma(1-z).
[ "1", "8", "0", "5", "5", "4", "7", "0", "7", "1", "6", "0", "5", "1", "0", "6", "9", "1", "9", "8", "7", "6", "3", "6", "6", "6", "2", "2", "1", "3", "3", "7", "3", "5", "1", "1", "4", "4", "6", "2", "1", "2", "4", "9", "4", "7", "1", "2", "7", "5", "7", "5", "3", "5", "3", "9", "3", "1", "2", "9", "2", "3", "7", "3", "0", "2", "4", "8", "8", "4", "2", "2", "4", "7", "1", "9", "5", "3", "8", "5", "3", "2", "5", "6", "0", "7", "1", "2", "7", "5", "7", "5", "2", "6", "3", "2", "4", "3", "8", "0", "9", "8", "2", "5", "2" ]
[ "nonn", "cons" ]
27
1
2
[ "A377297", "A377302" ]
null
Jwalin Bhatt, Oct 23 2024
2024-11-22T11:14:21
oeisdata/seq/A377/A377297.seq
8af635e44b82a75c3eb2f9958fc1b10b
A377298
Decimal expansion of the surface area of a truncated cube with unit edge length.
[ "3", "2", "4", "3", "4", "6", "6", "4", "3", "6", "3", "6", "1", "4", "8", "9", "5", "1", "7", "2", "6", "7", "5", "1", "5", "7", "3", "7", "3", "5", "2", "8", "1", "2", "1", "6", "7", "6", "7", "2", "1", "6", "7", "3", "0", "1", "2", "1", "4", "4", "1", "3", "8", "1", "3", "4", "2", "3", "1", "7", "7", "0", "8", "1", "4", "7", "9", "2", "6", "5", "5", "7", "7", "5", "3", "6", "2", "8", "8", "4", "5", "4", "0", "3", "6", "6", "9", "4", "2", "7" ]
[ "nonn", "cons", "easy" ]
6
2
1
[ "A002193", "A002194", "A010469", "A010503", "A010524", "A294968", "A377296", "A377298", "A377299" ]
null
Paolo Xausa, Oct 25 2024
2024-10-25T09:26:38
oeisdata/seq/A377/A377298.seq
64dc439743cbefa9ae9ed1611ad3c7cd
A377299
Decimal expansion of the volume of a truncated cube with unit edge length.
[ "1", "3", "5", "9", "9", "6", "6", "3", "2", "9", "1", "0", "7", "4", "4", "4", "3", "5", "6", "1", "0", "7", "4", "5", "4", "7", "3", "7", "9", "6", "4", "5", "2", "5", "7", "6", "9", "9", "9", "9", "1", "8", "0", "2", "0", "8", "5", "0", "9", "2", "4", "2", "4", "3", "4", "1", "4", "9", "1", "1", "7", "2", "1", "1", "0", "6", "2", "3", "4", "1", "8", "2", "3", "2", "8", "2", "3", "1", "6", "6", "1", "8", "1", "3", "0", "1", "8", "0", "8", "4" ]
[ "nonn", "cons", "easy" ]
4
2
2
[ "A010503", "A131594", "A294968", "A377296", "A377298", "A377299" ]
null
Paolo Xausa, Oct 25 2024
2024-10-25T09:26:48
oeisdata/seq/A377/A377299.seq
d694fdd6f6e9adc54015fc07a2615d7a
A377300
G.f.: Sum_{k>=1} k * x^(k*(7*k - 7 + 2)/2) / (1 - x^k).
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "4", "3", "1", "6", "1", "3", "4", "3", "1", "6", "1", "3", "4", "3", "1", "6", "1", "3", "4", "3", "1", "6", "5", "3", "4", "3", "5", "6", "1", "3", "8", "3", "1", "6", "5", "3", "4", "3", "5", "6", "1", "3", "8", "3", "1", "6", "5", "3", "4", "3", "5", "11", "1", "3", "8", "3", "6", "6", "5", "3", "4", "8", "5", "6", "1", "3", "13" ]
[ "nonn" ]
10
1
9
[ "A334466", "A377300" ]
null
Vaclav Kotesovec, Oct 23 2024
2024-10-23T08:47:53
oeisdata/seq/A377/A377300.seq
0d9341e7543f18346e6b5ae3def3e711
A377301
G.f.: Sum_{k>=1} k * x^(k*(4*k-3)) / (1 - x^k).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "1", "3", "4", "3", "1", "6", "1", "3", "4", "3", "1", "6", "1", "3", "4", "3", "1", "6", "1", "3", "4", "3", "1", "6", "1", "3", "4", "7", "1", "6", "1", "7", "4", "3", "1", "10", "1", "3", "4", "7", "1", "6", "1", "7", "4", "3", "1", "10", "1", "3", "4", "7", "1", "6", "1", "7", "4", "3", "1", "10", "6", "3", "4", "7", "1", "11" ]
[ "nonn" ]
9
1
10
[ "A334466", "A377301" ]
null
Vaclav Kotesovec, Oct 23 2024
2024-10-23T08:48:54
oeisdata/seq/A377/A377301.seq
3c4b975837ab41cbb9e8d141927ff3af
A377302
Decimal expansion of the smallest positive real solution to Gamma(1+z) = Gamma(1-z).
[ "2", "3", "6", "1", "1", "9", "1", "0", "8", "7", "1", "6", "3", "4", "1", "6", "6", "3", "4", "4", "9", "7", "3", "4", "1", "0", "3", "9", "6", "3", "2", "4", "0", "3", "7", "4", "3", "5", "4", "8", "5", "2", "8", "7", "1", "5", "7", "2", "5", "8", "1", "3", "5", "9", "6", "1", "0", "1", "9", "0", "4", "4", "3", "1", "6", "9", "2", "1", "3", "7", "4", "1", "0", "3", "7", "9", "1", "0", "9", "6", "4", "9", "3", "2", "0", "2", "2", "5", "2", "9", "0", "7", "4", "7", "5", "2", "8", "4", "6", "8", "7", "1", "1", "4", "9" ]
[ "nonn", "cons" ]
26
1
1
[ "A377297", "A377302" ]
null
Jwalin Bhatt, Oct 23 2024
2024-11-22T11:14:29
oeisdata/seq/A377/A377302.seq
9acb00f5f52971d15ece05bf95896b1e
A377303
Decimal expansion of Mersenne prime 2^136279841 - 1.
[ "8", "8", "1", "6", "9", "4", "3", "2", "7", "5", "0", "3", "8", "3", "3", "2", "6", "5", "5", "5", "3", "9", "3", "9", "1", "0", "0", "3", "7", "8", "1", "1", "7", "3", "5", "8", "9", "7", "1", "2", "0", "7", "3", "5", "4", "5", "0", "9", "0", "6", "6", "0", "4", "1", "0", "6", "7", "1", "5", "6", "3", "7", "6", "4", "1", "2", "4", "2", "2", "6", "3", "0", "6", "9", "4", "7", "5", "6", "8", "4", "1", "4", "4", "1", "7", "2", "5" ]
[ "nonn", "cons", "fini" ]
26
41,024,320
1
[ "A000043", "A377303" ]
null
Chai Wah Wu, Oct 23 2024
2025-02-26T11:37:00
oeisdata/seq/A377/A377303.seq
77bc0dc14b3a29a31c532cd4fbc8636e