sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A377304
a(n) is the number of distinct cuboids whose edges are divisors of n.
[ "1", "4", "4", "10", "4", "20", "4", "20", "10", "20", "4", "56", "4", "20", "20", "35", "4", "56", "4", "56", "20", "20", "4", "120", "10", "20", "20", "56", "4", "120", "4", "56", "20", "20", "20", "165", "4", "20", "20", "120", "4", "120", "4", "56", "56", "20", "4", "220", "10", "56", "20", "56", "4", "120", "20", "120", "20", "20", "4", "364", "4", "20", "56", "84", "20", "120", "4", "56" ]
[ "nonn" ]
20
1
2
[ "A000005", "A086222", "A377304" ]
null
Felix Huber, Oct 25 2024
2024-11-17T07:41:34
oeisdata/seq/A377/A377304.seq
38516192eb9d9f9bcaaa098cce3e3ddc
A377305
Number of times A278603(n) has occurred among the terms of that sequence so far, i.e. among A278603(0..n).
[ "1", "1", "1", "2", "2", "1", "3", "3", "4", "2", "1", "1", "2", "3", "3", "2", "1", "1", "2", "3", "3", "2", "1", "1", "2", "3", "4", "4", "4", "4", "5", "5", "6", "5", "5", "4", "2", "1", "3", "5", "6", "6", "7", "6", "8", "7", "7", "6", "8", "8", "9", "7", "4", "2", "5", "8", "10", "9", "9", "7", "10", "10", "11", "8", "5", "4", "3", "2", "4", "5", "6", "9", "7", "6", "8", "10", "12", "11", "11", "9", "12", "12", "13", "11", "14", "13" ]
[ "nonn" ]
36
0
4
[ "A278603", "A377305" ]
null
Tamas Sandor Nagy, Oct 23 2024
2024-11-17T07:06:00
oeisdata/seq/A377/A377305.seq
691f112bd2c662ecd62b68473625b113
A377306
Numbers that are not the sum of the first k fourth powers.
[ "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69" ]
[ "nonn", "easy" ]
15
1
1
[ "A000330", "A000537", "A000538", "A133137", "A302058", "A376573", "A376745", "A377306" ]
null
Chai Wah Wu, Oct 23 2024
2024-10-28T06:13:17
oeisdata/seq/A377/A377306.seq
06a6b8258de6911753cdf2bb32dd52f5
A377307
Minimum number of consecutive pieces that must be added to the pattern given by the binary representation of n to produce a winning position in Gordon Hamilton's Jumping Frogs game, or -1 if there is no such position.
[ "1", "2", "3", "1", "4", "8", "3", "1", "5", "2", "10", "3", "4", "2", "1", "1", "6", "3", "8", "2", "6", "12", "6", "3", "5", "2", "1", "2", "4", "2", "1", "1", "7", "4", "3", "3", "9", "13", "10", "2", "7", "11", "12", "6", "7", "2", "3", "3", "6", "3", "3", "2", "4", "8", "1", "2", "5", "2", "2", "1", "1", "2", "1", "1", "8", "5", "4", "3", "10", "14", "3", "3", "8", "12", "13", "7", "8", "3", "5", "2", "8", "11", "10", "6" ]
[ "nonn" ]
18
0
2
[ "A377232", "A377307" ]
null
Glen Whitney, Oct 23 2024
2024-11-15T09:05:28
oeisdata/seq/A377/A377307.seq
50c80cdb6d8a697d8607793abb7af041
A377308
All winning positions of Gordon Hamilton's Jumping Frogs game, encoded as even numbers by their prime-factorization exponents.
[ "2", "4", "6", "8", "12", "16", "18", "20", "24", "30", "32", "42", "48", "50", "54", "56", "60", "64", "70", "84", "90", "96", "100", "120", "126", "128", "140", "150", "162", "176", "192", "198", "200", "210", "240", "252", "256", "260", "264", "270", "280", "294", "300", "330", "350", "384", "390", "392", "400", "416", "420", "462", "480", "486", "490", "500" ]
[ "nonn" ]
16
1
1
[ "A137502", "A377232", "A377308" ]
null
Glen Whitney, Oct 23 2024
2024-11-15T09:05:42
oeisdata/seq/A377/A377308.seq
02fb4940479de3cc7202d02016081386
A377309
Number of stones-and-bones tilings of an n-triangle.
[ "1", "0", "1", "3", "0", "30", "246", "0", "25321", "591103", "0", "603105309", "41333676318", "0", "410382321560202", "83918368144461643", "0", "8025244898075570226296", "4941312847984149589980261" ]
[ "nonn", "more" ]
11
0
4
[ "A334875", "A377309" ]
null
James Propp, Oct 23 2024
2024-10-25T09:37:33
oeisdata/seq/A377/A377309.seq
fbbe5b357bfbc3f46d91e708e0a50483
A377310
Divisibility sequence associated with elliptic curve y^2 + y = x^3 - x^2 - 2x + 2 and point (1, 0).
[ "0", "1", "1", "1", "-3", "-4", "-13", "23", "87", "415", "-152", "-8063", "-38727", "-142471", "2309453", "13609844", "187790979", "-1743980081", "-25547499185", "-575984295329", "1873521429456", "217675476797921", "5045023692031697", "65853623974941521", "-5934036772012185603", "-157454833217800083092" ]
[ "sign" ]
12
0
5
[ "A210098", "A277279", "A377310" ]
null
Michael Somos, Oct 23 2024
2025-05-05T18:01:37
oeisdata/seq/A377/A377310.seq
9a5c678b90a3f9594d8a30c616404cbd
A377311
Least positive integer k with k*n primitive practical.
[ "1", "1", "2", "5", "4", "1", "4", "11", "34", "2", "6", "17", "6", "2", "2", "17", "12", "17", "12", "1", "2", "3", "12", "31", "188", "3", "82", "1", "12", "1", "16", "37", "2", "6", "4", "41", "18", "6", "2", "47", "20", "1", "20", "2", "158", "6", "24", "67", "236", "94", "4", "2", "24", "41", "4", "59", "4", "6", "24", "79", "24", "8", "202", "67", "4", "1", "30", "3", "4", "2", "30", "97", "30", "9", "158", "3", "4", "1", "36", "97", "254", "10", "36", "101", "4", "10", "4", "1", "36", "79", "4", "3", "6", "12", "4", "127", "42", "118", "298", "47" ]
[ "nonn" ]
10
1
3
[ "A005153", "A210445", "A267124", "A377311" ]
null
Frank M Jackson, Oct 24 2024
2024-10-31T01:39:08
oeisdata/seq/A377/A377311.seq
3a74c43a8a043ba9a1967ad94c66fad4
A377312
Decimal expansion of Sum_{k,m>=1} (-1)^(k+m) * H(k) * H(m) / (k+m+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "3", "2", "3", "0", "7", "2", "9", "9", "7", "2", "9", "6", "1", "0", "1", "9", "5", "5", "8", "5", "5", "0", "1", "5", "8", "9", "7", "5", "6", "3", "7", "3", "9", "3", "5", "6", "9", "0", "0", "6", "5", "5", "7", "4", "4", "7", "2", "6", "6", "8", "4", "8", "7", "7", "2", "1", "6", "6", "8", "6", "4", "8", "7", "4", "6", "2", "6", "9", "7", "7", "9", "2", "1", "7", "4", "6", "8", "4", "3", "1", "6", "5", "0", "2", "8", "4", "0", "0", "7", "1", "9", "6", "7", "4", "6", "7", "1", "4", "8", "0", "6", "1", "8", "6", "3" ]
[ "nonn", "cons", "easy" ]
9
-1
1
[ "A001008", "A002117", "A002162", "A002805", "A013661", "A233090", "A253191", "A255986", "A377312" ]
null
Amiram Eldar, Oct 24 2024
2024-10-24T10:44:52
oeisdata/seq/A377/A377312.seq
a0f720440c6fafc65259994b9ba54cb8
A377313
Numbers that are not hexateron (5-simplex) numbers.
[ "2", "3", "4", "5", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71" ]
[ "nonn", "easy" ]
8
1
1
[ "A000389", "A377313" ]
null
Chai Wah Wu, Oct 24 2024
2024-10-25T09:22:52
oeisdata/seq/A377/A377313.seq
8440dee0e3ff3201d199f73d5ba69e86
A377314
a(n) = coefficient of the term that is independent of 2^(1/3) and 2^(2/3) in the expansion of (1 + 2^(1/3) + 2^(2/3))^n.
[ "1", "1", "5", "19", "73", "281", "1081", "4159", "16001", "61561", "236845", "911219", "3505753", "13487761", "51891761", "199644319", "768096001", "2955112721", "11369270485", "43741245619", "168286661033", "647452990441", "2490960200041", "9583526232479", "36870912288001", "141854275761481" ]
[ "nonn" ]
20
0
3
[ "A108368", "A377109", "A377117", "A377314", "A377315" ]
null
Clark Kimberling, Oct 26 2024
2025-05-30T10:40:18
oeisdata/seq/A377/A377314.seq
c3f625cacdec15f570c593d5396e107a
A377315
a(n) = coefficient of 2^(1/3) in the expansion of (1 + 2^(1/3) + 2^(2/3))^n.
[ "0", "1", "4", "15", "58", "223", "858", "3301", "12700", "48861", "187984", "723235", "2782518", "10705243", "41186518", "158457801", "609638200", "2345474521", "9023795964", "34717449655", "133569211378", "513883779063", "1977076420978", "7606449811501", "29264462476500", "112589813284981", "433169277095944" ]
[ "nonn", "easy" ]
9
0
3
[ "A108368", "A377109", "A377117", "A377314", "A377315" ]
null
Clark Kimberling, Oct 26 2024
2024-10-31T01:47:01
oeisdata/seq/A377/A377315.seq
7fbd3c531210239ec34d1d63fcb76f93
A377316
Orders k of groups G such that G is a non-split extension of Inn(G) by Z(G) for at least one group G of order k.
[ "8", "12", "16", "20", "24", "27", "28", "32", "36", "40", "44", "48", "52", "54", "56", "60", "63", "64", "68", "72", "76", "80", "81", "84", "88", "92", "96", "100", "104", "108", "112", "116", "117", "120", "124", "125", "126", "128", "132", "135", "136", "140", "144", "148", "152", "156", "160", "162", "164", "168", "171", "172", "176", "180", "184", "188", "189" ]
[ "nonn" ]
7
1
1
[ "A008586", "A377316" ]
null
Miles Englezou, Dec 27 2024
2025-01-07T20:27:40
oeisdata/seq/A377/A377316.seq
4cc43d54958243d8e38cc1e3392a2778
A377317
Numbers k such that prime(k), prime(k)+6, and prime(k)+12 are primes.
[ "3", "4", "5", "7", "11", "13", "15", "18", "19", "25", "26", "36", "39", "49", "54", "55", "58", "69", "73", "102", "107", "110", "111", "116", "118", "129", "160", "164", "182", "184", "187", "194", "199", "206", "210", "218", "225", "229", "234", "236", "252", "253", "260", "271", "272", "275", "284", "285", "291", "300", "321", "339", "351", "352", "358", "387", "388" ]
[ "nonn" ]
15
1
1
[ "A000040", "A000720", "A023241", "A377317", "A377318" ]
null
Kritsada Moomuang, Oct 24 2024
2024-11-10T22:43:26
oeisdata/seq/A377/A377317.seq
833c424140f10864c875f030ac5c0303
A377318
Numbers k such that prime(k), prime(k)+6, prime(k)+12, and prime(k)+18 are primes.
[ "3", "5", "13", "18", "54", "110", "116", "182", "234", "252", "271", "284", "351", "387", "464", "541", "551", "682", "709", "717", "741", "821", "829", "1171", "1417", "1448", "1510", "1594", "1711", "1726", "1842", "1853", "2009", "2086", "2209", "2297", "2408", "2600", "2680", "2876", "2924", "2930", "3253", "3303", "3437", "3977", "4384", "4431" ]
[ "nonn" ]
23
1
1
[ "A000040", "A000720", "A023271", "A377317", "A377318" ]
null
Kritsada Moomuang, Oct 24 2024
2025-06-17T18:04:37
oeisdata/seq/A377/A377318.seq
e960ef3cd65b1549308a20716447b249
A377319
a(n) is the smallest positive integer k such that n + k and n - k have the same number of divisors.
[ "1", "2", "1", "1", "2", "1", "3", "3", "1", "6", "3", "2", "3", "6", "1", "1", "3", "2", "9", "5", "2", "6", "3", "3", "6", "12", "1", "4", "6", "4", "1", "5", "2", "2", "6", "2", "3", "1", "1", "8", "3", "2", "11", "3", "4", "7", "3", "1", "6", "2", "3", "1", "1", "4", "7", "9", "1", "4", "7", "4", "3", "6", "5", "2", "2", "2", "3", "6", "1", "4", "4", "4", "3", "6", "4", "9", "6", "2", "5", "5", "2", "8", "1", "3", "3", "2", "3" ]
[ "nonn" ]
14
4
2
[ "A000005", "A067888", "A082467", "A171937", "A377319", "A377320", "A377321" ]
null
Felix Huber, Nov 17 2024
2024-12-03T23:33:13
oeisdata/seq/A377/A377319.seq
7f48982c60e168556efe6bfecd3d2e60
A377320
a(n) is the smallest positive integer k such that n + k and n - k have the same number of prime factors.
[ "1", "1", "1", "3", "2", "2", "2", "6", "1", "5", "3", "2", "3", "6", "1", "1", "3", "2", "9", "2", "2", "5", "3", "4", "6", "1", "1", "11", "6", "4", "1", "6", "2", "2", "2", "2", "3", "8", "1", "1", "3", "2", "4", "3", "4", "12", "1", "1", "3", "2", "3", "1", "1", "3", "2", "7", "1", "4", "7", "4", "3", "6", "5", "1", "2", "1", "3", "5", "1", "3", "4", "4", "3", "1", "4", "13", "6", "2", "5", "15", "2", "7", "1", "3", "3", "1", "3" ]
[ "nonn" ]
15
4
4
[ "A001222", "A082467", "A178139", "A377319", "A377320", "A377321" ]
null
Felix Huber, Nov 17 2024
2024-12-02T11:03:35
oeisdata/seq/A377/A377320.seq
75d9feff3b079c8bf0cabaad20aba838
A377321
a(n) is the smallest positive integer k such that n + k and n - k have the same number of distinct prime factors.
[ "1", "2", "1", "2", "1", "2", "1", "1", "1", "1", "3", "2", "2", "3", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "3", "4", "4", "1", "1", "2", "1", "2", "1", "3", "3", "1", "3", "3", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "4", "3", "1", "4", "6", "3", "1", "3", "3", "2", "2", "2", "2", "3", "1", "1", "2", "1", "1", "3", "2", "3", "1", "1", "1", "3", "2", "3", "1", "1", "3", "2", "2" ]
[ "nonn" ]
12
4
2
[ "A001221", "A082467", "A188348", "A377319", "A377320", "A377321" ]
null
Felix Huber, Nov 17 2024
2024-12-03T12:26:46
oeisdata/seq/A377/A377321.seq
c925aba8fe4650cd88b2bc4c22deb467
A377322
Number of cells that are a distance of n away in an order-5 hyperbolic square tiling.
[ "1", "4", "12", "28", "64", "148", "340", "780", "1792", "4116", "9452", "21708", "49856", "114500", "262964", "603932", "1387008", "3185444", "7315788", "16801660", "38587200", "88620532", "203528596", "467429932", "1073513728", "2465464116", "5662259500", "13004116524", "29865647552", "68590349988", "157526673524" ]
[ "nonn", "easy" ]
7
0
2
[ "A008574", "A054888", "A377322" ]
null
Lewis Chen, Oct 24 2024
2025-02-13T08:30:37
oeisdata/seq/A377/A377322.seq
c8e62c3229b1b227b7835081bde57455
A377323
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x).
[ "1", "1", "5", "53", "884", "20234", "589834", "20903700", "872660256", "41944510752", "2281437791448", "138539360885760", "9290720296262976", "681965664411820944", "54384461861952738528", "4682101594725064872768", "432815761314471190599936", "42757813607285233998385920", "4495579313771176952867958528" ]
[ "nonn" ]
10
0
3
[ "A365438", "A365546", "A367139", "A367152", "A377323", "A377325", "A377327" ]
null
Seiichi Manyama, Oct 24 2024
2024-10-25T09:28:47
oeisdata/seq/A377/A377323.seq
6c3b7b749e994aef0a4a0dd7967dd115
A377324
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x).
[ "1", "1", "5", "52", "839", "18436", "513797", "17366224", "690366875", "31565619916", "1632064968929", "94159057903384", "5996889060457055", "417920884113926740", "31634205840603000221", "2584579552124805784672", "226699825143636127509347", "21247444370267806167804316", "2119206766514801966851437113" ]
[ "nonn" ]
10
0
3
[ "A052752", "A367135", "A367180", "A367181", "A377324", "A377326", "A377328" ]
null
Seiichi Manyama, Oct 24 2024
2024-10-25T09:28:55
oeisdata/seq/A377/A377324.seq
338dfceda124574a369fff17f9a5450a
A377325
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x))/A(x).
[ "1", "1", "1", "5", "28", "244", "2566", "33438", "508544", "8926944", "176989488", "3917823216", "95719041408", "2559130965312", "74312569125744", "2329169772108528", "78371469374088960", "2817744760964392704", "107807187260426164992", "4373419962377871956736", "187507942522161269068800" ]
[ "nonn" ]
10
0
4
[ "A052802", "A138013", "A365438", "A367159", "A377323", "A377325" ]
null
Seiichi Manyama, Oct 24 2024
2024-10-25T09:29:02
oeisdata/seq/A377/A377325.seq
58b64b24cda227c72bea2fa9a6f64eeb
A377326
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)) - 1)/A(x).
[ "1", "1", "1", "4", "15", "96", "665", "6028", "60907", "725560", "9591549", "142574004", "2323440119", "41519079616", "803667844993", "16797423268252", "376458083887875", "9014414549836296", "229564623594841637", "6197477089425914692", "176767174407208663759", "5312208220728020517136", "167760328500471584529321" ]
[ "nonn" ]
10
0
4
[ "A052894", "A367162", "A367163", "A367180", "A377324", "A377326" ]
null
Seiichi Manyama, Oct 24 2024
2024-10-25T09:29:11
oeisdata/seq/A377/A377326.seq
fb7be2d0940b947730d629e3da009861
A377327
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^3).
[ "1", "1", "11", "251", "8858", "425534", "25928068", "1916213928", "166580610504", "16657218047328", "1883646389742624", "237695994684785592", "33113333472295201536", "5047818696187818951984", "835818979837614364874496", "149383091745519898076484480", "28663410267058615074689247360", "5877004345535507714104006175616" ]
[ "nonn" ]
6
0
3
[ "A365546", "A367139", "A367152", "A377323", "A377327" ]
null
Seiichi Manyama, Oct 25 2024
2024-10-25T09:29:19
oeisdata/seq/A377/A377327.seq
e7320e18b007836468a908d743d09371
A377328
E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)^3) - 1).
[ "1", "1", "11", "250", "8789", "420646", "25536083", "1880370598", "162872596937", "16227667154806", "1828467483194975", "229904271890603014", "31913005486577248877", "4847412341607090455110", "799762918909215143560907", "142427688272456020835132518", "27231132645610171996487568017", "5563389652463220933157357670806" ]
[ "nonn" ]
7
0
3
[ "A052752", "A367135", "A367181", "A377324", "A377328" ]
null
Seiichi Manyama, Oct 25 2024
2024-10-25T09:29:30
oeisdata/seq/A377/A377328.seq
4ea6169fb1a4518ad71ffb797d303cf0
A377329
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^2).
[ "1", "1", "9", "164", "4590", "174364", "8388634", "489088592", "33523741560", "2642134225416", "235430782725744", "23405320602599616", "2568397523286868080", "308376740778642665856", "40213392368801846121792", "5659917793199595766848000", "855188706536492203489860480", "138068648223418996408877210496" ]
[ "nonn" ]
5
0
3
[ "A365438", "A367080", "A367138", "A377329" ]
null
Seiichi Manyama, Oct 25 2024
2024-10-25T09:29:37
oeisdata/seq/A377/A377329.seq
08647fffd6f9e07b94746e6653ea08cb
A377330
E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)^2) - 1).
[ "1", "1", "9", "163", "4537", "171451", "8206517", "476071275", "32469361617", "2546397256651", "225784275815485", "22336278201427675", "2439097416667718297", "291422424985108052091", "37817207428965579915333", "5296739332085114983427083", "796419825874139713780172449", "127955324543685857975407200235" ]
[ "nonn" ]
9
0
3
[ "A052750", "A367134", "A367180", "A377330" ]
null
Seiichi Manyama, Oct 25 2024
2024-10-25T09:29:44
oeisdata/seq/A377/A377330.seq
8ff7909d268ce894a12f25b130cc2076
A377331
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k,n).
[ "1", "7", "58", "707", "11186", "219202", "5097205", "137036819", "4179577045", "142539843882", "5374034016858", "221930535785918", "9962431381720780", "482997720973917947", "25151350530268841003", "1400042027334939211235", "82960609980815501293708", "5213812927633674297808237", "346394632975721545946690108" ]
[ "nonn" ]
9
1
2
[ "A109974", "A205812", "A377331" ]
null
Vaclav Kotesovec, Oct 25 2024
2024-10-25T09:25:20
oeisdata/seq/A377/A377331.seq
f4b92696eb2dbc2d7fce2af1f2a0343d
A377332
Positive integers k such that there exists a fully symmetric k-celled polycube, i.e., such that A376971(k) > 0.
[ "1", "7", "8", "13", "18", "19", "20", "24", "25", "26", "27", "30", "31", "32", "33", "36", "37", "38", "39", "42", "43", "44", "45", "48", "49", "50", "51", "54", "55", "56", "57", "60", "61", "62", "63", "64", "66", "67", "68", "69", "72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100" ]
[ "nonn" ]
8
1
2
[ "A042948", "A376971", "A377332", "A377333", "A377337" ]
null
Pontus von Brömssen, Oct 25 2024
2024-11-01T11:47:57
oeisdata/seq/A377/A377332.seq
a7477f5348831d92dea4539bca744d91
A377333
Positive integers k such that there does not exist a fully symmetric k-celled polycube, i.e., such that A376971(k) = 0.
[ "2", "3", "4", "5", "6", "9", "10", "11", "12", "14", "15", "16", "17", "21", "22", "23", "28", "29", "34", "35", "40", "41", "46", "47", "52", "53", "58", "59", "65", "70", "71", "77" ]
[ "nonn", "fini", "full" ]
6
1
1
[ "A042964", "A376971", "A377332", "A377333", "A377337" ]
null
Pontus von Brömssen, Oct 25 2024
2024-11-01T11:47:51
oeisdata/seq/A377/A377333.seq
ac1c362877f516392a6806df16bebdbd
A377334
Number of n-celled polycubes with full symmetry and the rotation point of the symmetries in the center of a cell (that may or may not be part of the polycube).
[ "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "2", "1", "0", "0", "0", "1", "2", "1", "1", "0", "0", "1", "2", "1", "1", "0", "0", "1", "3", "1", "1", "0", "0", "4", "5", "4", "1", "0", "0", "5", "7", "4", "3", "0", "0", "8", "10", "6", "3", "0", "0", "12", "14", "8", "5", "0", "0", "22", "21", "21", "7", "0", "0", "32", "32", "20", "12", "2", "0", "50", "48", "36", "16", "1", "1" ]
[ "nonn" ]
6
1
19
[ "A351127", "A376971", "A377334", "A377335" ]
null
Pontus von Brömssen, Oct 25 2024
2024-11-01T11:47:47
oeisdata/seq/A377/A377334.seq
d36352c4a5bef55b306eec7392219cf1
A377335
Number of polycubes with 8*n cells, full symmetry, and the rotation point of the symmetries at the common corner of 8 cells (that may or may not be part of the polycube).
[ "1", "0", "0", "2", "0", "1", "5", "1", "2", "12", "4", "9", "33", "14", "29", "92", "44", "105", "272", "141", "326", "793", "438", "1069", "2337", "1362", "3313", "6938", "4213", "10636", "20772", "13089", "32842", "62398", "40630", "103676", "187926", "126201", "319378", "567076", "391551", "999680", "1714404", "1214219", "3077337", "5192627" ]
[ "nonn" ]
6
1
4
[ "A346800", "A376971", "A377334", "A377335" ]
null
Pontus von Brömssen, Oct 25 2024
2024-11-01T11:47:42
oeisdata/seq/A377/A377335.seq
8cc91ce78f7f85c5434c752ee42e076a
A377336
Square array read by antidiagonals: T(n,k) is the number of fully symmetric, k-celled, n-dimensional polyhypercubes; n >= 0, k >= 1.
[ "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "2", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn", "tabl" ]
10
0
58
[ "A013609", "A142886", "A171977", "A330891", "A376791", "A377336" ]
null
Pontus von Brömssen, Oct 25 2024
2024-11-16T07:39:22
oeisdata/seq/A377/A377336.seq
5b703505ae2231e70b9e0a31d2135f2f
A377337
Greatest positive integer k such that either k or k-1 is a multiple of A171977(n) but there does not exist any fully symmetric, k-celled, n-dimensional polyhypercube, or 0 if no such k exists.
[ "0", "0", "77", "24" ]
[ "nonn", "more" ]
6
1
3
[ "A171977", "A377333", "A377336", "A377337" ]
null
Pontus von Brömssen, Oct 25 2024
2024-11-01T23:53:19
oeisdata/seq/A377/A377337.seq
f60ec37cca3b1265990e45e96a3230bf
A377338
Numbers k such that A060715(k), the number of prime numbers between k and 2k exclusive, divides k.
[ "2", "3", "4", "5", "6", "8", "9", "12", "20", "24", "28", "36", "40", "50", "65", "114", "168", "174", "186", "210", "216", "228", "240", "246", "252", "504", "623", "672", "805", "812", "1328", "1584", "1608", "1616", "1680", "1704", "1736", "1784", "1792", "1800", "1808", "1832", "1888", "1904", "1912", "1944", "1992", "2016", "5121", "5427", "13790", "13800" ]
[ "nonn" ]
11
1
1
[ "A060715", "A377338" ]
null
Jean-Marc Rebert, Oct 25 2024
2024-11-28T10:59:20
oeisdata/seq/A377/A377338.seq
163614c7290cfc35ad7def07ab5415a8
A377339
E.g.f. satisfies A(x) = ( 1 + (exp(x*A(x)) - 1)/A(x) )^2.
[ "1", "2", "4", "20", "144", "1332", "15920", "225332", "3758272", "71711540", "1544139216", "37040248500", "979378764320", "28308318200372", "887957701803952", "30043664101434164", "1090686549233837952", "42290355849577306932", "1744321111108101722768", "76261355010301941319604" ]
[ "nonn" ]
20
0
2
[ "A377326", "A377339", "A377340", "A377347" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T14:46:24
oeisdata/seq/A377/A377339.seq
de0f2e510cc7e94f3a2814db67cc5d64
A377340
E.g.f. satisfies A(x) = ( 1 + (exp(x*A(x)) - 1)/A(x) )^3.
[ "1", "3", "9", "54", "531", "6498", "101925", "1920222", "42251391", "1067567850", "30411486441", "965077330374", "33764590958571", "1291198144146498", "53587639922183757", "2398901329112787630", "115225387686206361495", "5911249981088653607898", "322592377196349009882513" ]
[ "nonn" ]
19
0
2
[ "A377326", "A377339", "A377340", "A377348" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-27T01:39:39
oeisdata/seq/A377/A377340.seq
e6265a428855e511723e0932c1643b80
A377341
Decimal expansion of the surface area of a truncated octahedron with unit edge length.
[ "2", "6", "7", "8", "4", "6", "0", "9", "6", "9", "0", "8", "2", "6", "5", "2", "7", "5", "2", "2", "3", "2", "9", "3", "5", "6", "0", "9", "8", "0", "7", "0", "4", "6", "8", "4", "0", "3", "3", "1", "3", "6", "6", "3", "0", "4", "5", "7", "2", "4", "5", "6", "7", "5", "3", "6", "6", "6", "9", "6", "8", "3", "7", "5", "3", "4", "2", "3", "1", "9", "6", "2", "0", "2", "9", "0", "5", "6", "0", "0", "4", "4", "4", "9", "7", "3", "7", "5", "4", "2" ]
[ "nonn", "cons", "easy" ]
8
2
1
[ "A002194", "A010469", "A020797", "A152623", "A377341", "A377342" ]
null
Paolo Xausa, Oct 25 2024
2024-11-01T23:47:57
oeisdata/seq/A377/A377341.seq
b9b38784a261305a7bfa0d1f2ef9a9e0
A377342
Decimal expansion of the volume of a truncated octahedron with unit edge length.
[ "1", "1", "3", "1", "3", "7", "0", "8", "4", "9", "8", "9", "8", "4", "7", "6", "0", "3", "9", "0", "4", "1", "3", "5", "0", "9", "7", "9", "3", "6", "7", "7", "5", "8", "4", "6", "2", "8", "5", "5", "7", "3", "7", "5", "0", "0", "3", "0", "1", "5", "5", "8", "4", "5", "8", "5", "4", "1", "3", "4", "3", "7", "9", "0", "3", "9", "2", "5", "8", "5", "9", "8", "2", "7", "6", "9", "6", "8", "5", "6", "3", "1", "0", "8", "0", "3", "1", "0", "0", "2" ]
[ "nonn", "cons", "easy" ]
5
2
3
[ "A002193", "A010466", "A010487", "A020797", "A131594", "A152623", "A377341", "A377342" ]
null
Paolo Xausa, Oct 25 2024
2024-11-01T23:48:07
oeisdata/seq/A377/A377342.seq
6d36bb5b57a0f85dca24431955177537
A377343
Decimal expansion of the surface area of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
[ "6", "1", "7", "5", "5", "1", "7", "2", "4", "3", "9", "3", "0", "3", "6", "6", "8", "1", "0", "7", "9", "4", "9", "6", "2", "0", "7", "8", "8", "5", "8", "6", "8", "4", "5", "3", "4", "6", "1", "4", "9", "7", "2", "5", "5", "5", "0", "2", "4", "7", "9", "4", "4", "4", "1", "4", "7", "8", "9", "8", "4", "0", "6", "0", "9", "3", "1", "1", "9", "8", "5", "9", "4", "4", "4", "5", "0", "8", "8", "4", "9", "1", "1", "1", "7", "8", "4", "0", "4", "6" ]
[ "nonn", "cons", "easy" ]
4
2
1
[ "A135611", "A343199", "A377343", "A377344", "A377345", "A377346" ]
null
Paolo Xausa, Oct 26 2024
2024-11-01T23:48:18
oeisdata/seq/A377/A377343.seq
46998632bab7c081c16a6cc0ebcf6223
A377344
Decimal expansion of the volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
[ "4", "1", "7", "9", "8", "9", "8", "9", "8", "7", "3", "2", "2", "3", "3", "3", "0", "6", "8", "3", "2", "2", "3", "6", "4", "2", "1", "3", "8", "9", "3", "5", "7", "7", "3", "0", "9", "9", "9", "7", "5", "4", "0", "6", "2", "5", "5", "2", "7", "7", "2", "7", "3", "0", "2", "4", "4", "7", "3", "5", "1", "6", "3", "3", "1", "8", "7", "0", "2", "5", "4", "6", "9", "8", "4", "6", "9", "4", "9", "8", "5", "4", "3", "9", "0", "5", "4", "2", "5", "4" ]
[ "nonn", "cons", "easy" ]
4
2
1
[ "A002193", "A020775", "A377343", "A377344", "A377345", "A377346" ]
null
Paolo Xausa, Oct 26 2024
2024-11-01T23:48:28
oeisdata/seq/A377/A377344.seq
198426ef41d6a7d347d1342a0125e07e
A377345
Decimal expansion of the circumradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
[ "2", "3", "1", "7", "6", "1", "0", "9", "1", "2", "8", "9", "2", "7", "6", "6", "5", "1", "3", "7", "7", "9", "1", "4", "7", "4", "6", "3", "3", "4", "0", "2", "9", "4", "8", "0", "5", "3", "4", "5", "0", "5", "1", "8", "9", "4", "5", "2", "5", "2", "4", "7", "7", "7", "1", "3", "5", "1", "7", "8", "7", "7", "4", "1", "1", "9", "7", "5", "1", "3", "2", "9", "1", "0", "5", "0", "8", "5", "7", "9", "0", "6", "9", "2", "8", "9", "6", "3", "6", "2" ]
[ "nonn", "cons", "easy" ]
4
1
1
[ "A010524", "A377343", "A377344", "A377345", "A377346" ]
null
Paolo Xausa, Oct 26 2024
2024-11-01T23:48:38
oeisdata/seq/A377/A377345.seq
afe62271207848e7e7848b39512df9a1
A377346
Decimal expansion of the midradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
[ "2", "2", "6", "3", "0", "3", "3", "4", "3", "8", "4", "5", "3", "7", "1", "4", "6", "2", "3", "5", "9", "2", "0", "2", "5", "8", "0", "3", "4", "3", "2", "5", "3", "7", "1", "4", "2", "2", "2", "9", "0", "6", "7", "2", "0", "2", "6", "5", "0", "7", "5", "5", "4", "8", "3", "8", "1", "7", "6", "1", "2", "4", "0", "6", "0", "4", "0", "5", "6", "7", "4", "5", "9", "8", "9", "1", "5", "3", "0", "4", "7", "0", "7", "7", "5", "8", "7", "6", "2", "7" ]
[ "nonn", "cons", "easy" ]
4
1
1
[ "A010524", "A010527", "A230981", "A377343", "A377344", "A377345", "A377346" ]
null
Paolo Xausa, Oct 26 2024
2024-11-01T23:48:46
oeisdata/seq/A377/A377346.seq
5dc74ccf4d84dd161ad296f0c2bfee75
A377347
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^2) - 1)/A(x)^2.
[ "1", "1", "1", "7", "41", "391", "4509", "62847", "1038001", "19580071", "418681877", "9973993855", "262293996777", "7545559829991", "235715629493005", "7946944965054271", "287592204406672481", "11120005819664145895", "457514133092462477253", "19957535405566629526335", "920056233384401619083545" ]
[ "nonn" ]
9
0
4
[ "A052750", "A367134", "A367180", "A377326", "A377330", "A377347", "A377348" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T10:48:53
oeisdata/seq/A377/A377347.seq
b315e88e37dca5a51496f3455c842340
A377348
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x)^3.
[ "1", "1", "1", "10", "79", "946", "14653", "267478", "5817187", "145061146", "4089128425", "128703410254", "4470302200087", "169912192575490", "7014628977829237", "312570024564324358", "14952747796689292747", "764341021646724256426", "41578052013117358139809", "2398149800670737138081470" ]
[ "nonn" ]
8
0
4
[ "A052752", "A367135", "A367181", "A377324", "A377326", "A377328", "A377347", "A377348" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T10:48:49
oeisdata/seq/A377/A377348.seq
9cf1aaae841488b19993de42fbad348c
A377349
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^2)/A(x)^2.
[ "1", "1", "1", "8", "62", "744", "11102", "201704", "4323720", "106591584", "2974873656", "92674125840", "3188299718496", "120053825169888", "4911082489042992", "216879763758962688", "10283600782413709056", "521088305671611058176", "28101278301136842204288", "1606968565080853531472640" ]
[ "nonn" ]
10
0
4
[ "A365438", "A367080", "A367138", "A377325", "A377329", "A377349", "A377350" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T10:48:41
oeisdata/seq/A377/A377349.seq
aa22d88b13a59d4e66a8b29263eddbe2
A377350
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^3.
[ "1", "1", "1", "11", "108", "1584", "29808", "674988", "18091944", "557844408", "19468760904", "758698622472", "32653135227936", "1538316755200224", "78737559447563136", "4350956519444451840", "258163046132873143680", "16370486288763937324416", "1104824513292622360789248", "79068747951669626322531840" ]
[ "nonn" ]
8
0
4
[ "A365546", "A367139", "A367152", "A377323", "A377325", "A377327", "A377349", "A377350" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T10:48:45
oeisdata/seq/A377/A377350.seq
4d32e110d5e91c0472df9e191038b923
A377351
Lexicographically earliest sequence of positive integers such that the means of consecutive terms are all distinct.
[ "1", "2", "4", "7", "5", "10", "12", "18", "13", "16", "28", "23", "14", "25", "48", "32", "17", "46", "30", "45", "67", "60", "27", "71", "39", "85", "68", "99", "78", "44", "102", "87", "126", "57", "118", "69", "121", "74", "125", "119", "112", "136", "107", "110", "170", "120", "175", "142", "194", "75", "222", "152", "164", "180", "177", "184", "188", "135", "255", "210" ]
[ "nonn" ]
11
1
2
[ "A033808", "A377351", "A377388" ]
null
Rémy Sigrist, Oct 26 2024
2024-10-28T16:24:40
oeisdata/seq/A377/A377351.seq
c0d070fec5f8eded0bd7b67aaa9f55bc
A377352
The smallest deficient number that begins a run of at least n consecutive deficient numbers with the same number of distinct prime factors.
[ "1", "2", "2", "2", "2", "2", "2", "212", "295", "1132", "1132", "1132", "1132", "1039432", "1039432", "1039432", "45636009", "45636009", "45636009", "298472906", "2030958922" ]
[ "nonn", "more", "hard" ]
4
1
2
[ "A001221", "A005100", "A377352" ]
null
Shyam Sunder Gupta, Oct 26 2024
2024-11-15T19:18:46
oeisdata/seq/A377/A377352.seq
dd87f6015e8bd99a250ea3f138ccc9fe
A377353
The smallest deficient number that begins a run of at least n consecutive deficient numbers with the same number of prime factors (counted with multiplicity).
[ "1", "2", "33", "118", "118", "213", "213", "78021", "179535", "179535", "1134326", "2535721", "9124909", "9124909", "900907786", "1831102863", "7108728185", "12105333442" ]
[ "nonn", "more", "hard" ]
6
1
2
[ "A001222", "A005100", "A377353" ]
null
Shyam Sunder Gupta, Oct 26 2024
2024-11-15T23:10:13
oeisdata/seq/A377/A377353.seq
7c463f7c551e29440642ddb758eb430b
A377354
The smallest deficient number that begins a run of at least n consecutive deficient numbers with the same number of divisors.
[ "1", "2", "33", "141", "141", "213", "213", "229006", "229006", "229006", "16280531", "16280531", "376546931", "1288816390", "17187119903", "46039900402" ]
[ "nonn", "more", "hard" ]
5
1
2
[ "A000005", "A005100", "A377354" ]
null
Shyam Sunder Gupta, Oct 26 2024
2024-11-15T23:10:01
oeisdata/seq/A377/A377354.seq
6d48cab420e2756ef8a94eba4042ddbe
A377355
a(n) is the greatest k not yet in the sequence such that A374356(n) = A374356(k).
[ "0", "1", "3", "2", "6", "7", "4", "5", "12", "13", "15", "14", "8", "9", "11", "10", "24", "25", "27", "26", "30", "31", "28", "29", "16", "17", "19", "18", "22", "23", "20", "21", "48", "49", "51", "50", "54", "55", "52", "53", "60", "61", "63", "62", "56", "57", "59", "58", "32", "33", "35", "34", "38", "39", "36", "37", "44", "45", "47", "46", "40", "41", "43", "42", "96", "97", "99", "98" ]
[ "nonn", "base" ]
23
0
3
[ "A374356", "A377355" ]
null
Rémy Sigrist, Oct 27 2024
2024-10-31T01:28:08
oeisdata/seq/A377/A377355.seq
bf8a3cb6851171199b74e0a9a49fd7d3
A377356
a(n) = Product{i = 1..(n-1)} prime(i)^e_i, where prime(i)^e_i is the smallest power of prime(i) which exceeds prime(n).
[ "1", "4", "72", "1800", "529200", "64033200", "21643221600", "6254891042400", "2258015666306400", "17917354312141284000", "15068494976510819844000", "28961647344853795740168000", "39648495215104846368289992000", "66649120456591246745095476552000", "123234223724237215231681536144648000", "1905570801447880059127491593404692024000" ]
[ "nonn" ]
11
1
2
[ "A000040", "A001694", "A002110", "A007947", "A099795", "A377356" ]
null
David James Sycamore, Oct 26 2024
2024-11-01T23:55:15
oeisdata/seq/A377/A377356.seq
587f1579c6f15ae11ae3bf6216d88643
A377357
Numbers k with the property that the smallest subpart of the symmetric representation of sigma(k) equals the denominator of the harmonic means of the divisors of k.
[ "1", "2", "3", "4", "5", "6", "7", "8", "10", "11", "13", "16", "17", "19", "23", "26", "28", "29", "30", "31", "34", "37", "41", "43", "47", "52", "53", "58", "59", "61", "64", "67", "71", "73", "74" ]
[ "nonn", "more" ]
11
1
2
[ "A000396", "A008578", "A099378", "A196020", "A235791", "A236104", "A237270", "A237591", "A237593", "A279387", "A296508", "A377357" ]
null
Omar E. Pol, Oct 26 2024
2024-11-01T23:56:10
oeisdata/seq/A377/A377357.seq
47cb4d06ddec1cd221a7fff15751ca5c
A377358
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^2.
[ "1", "2", "4", "22", "194", "2268", "34272", "624804", "13432120", "332078160", "9286572624", "289821031344", "9985648515504", "376489542984384", "15418392593403360", "681562973789926560", "32345053760113660800", "1640243700728870131200", "88516191520113318169344", "5064936155664187593030912" ]
[ "nonn" ]
7
0
2
[ "A377325", "A377349", "A377358", "A377359" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T14:46:34
oeisdata/seq/A377/A377358.seq
8eaba973a0f6eeaf8b63065b97ecd29a
A377359
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^3.
[ "1", "3", "9", "57", "642", "9402", "177198", "4051338", "108926520", "3371293704", "118000461528", "4609447152120", "198791258476176", "9381618706074768", "480921576177145392", "26610634173004959312", "1580792845661466884352", "100345182367660427554560", "6778517964127816222982016" ]
[ "nonn" ]
9
0
2
[ "A377325", "A377350", "A377358", "A377359" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-26T14:46:51
oeisdata/seq/A377/A377359.seq
eb7a9b90dd0dacb9b48806aaa1187f8f
A377360
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^2.
[ "1", "2", "12", "130", "2082", "44488", "1192964", "38557860", "1459988440", "63414711072", "3108861424032", "169829819311392", "10230860299538400", "673850170929176928", "48176129912775680160", "3715759452364764485280", "307545698210584533055488", "27190399275422185989742080", "2557448587458299889542868480" ]
[ "nonn" ]
12
0
2
[ "A097629", "A138013", "A367080", "A376392", "A377360", "A377361" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-27T09:04:22
oeisdata/seq/A377/A377360.seq
6f2f1df5c670389b239fe0e992306c88
A377361
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^3.
[ "1", "3", "27", "435", "10308", "324942", "12831540", "610024398", "33948639024", "2165995595208", "155913776865216", "12501945620113320", "1105228405532295216", "106806396107364409440", "11201958792185117156640", "1267313834232739887340464", "153842580381390055963315200", "19946923686925035463312117632" ]
[ "nonn" ]
15
0
2
[ "A136719", "A138013", "A367152", "A376393", "A377360", "A377361" ]
null
Seiichi Manyama, Oct 26 2024
2024-10-27T09:04:26
oeisdata/seq/A377/A377361.seq
6e43030a64b6098601e12a9901dadb27
A377362
a(1) = 1; for n >= 2, a(n) = smallest m not in {a(1),...,a(n-1)} such that gcd(a(n-1)*m+1, a(k)) = 1 for all k = 1..n-1.
[ "1", "2", "3", "4", "6", "5", "8", "9", "10", "7", "16", "12", "13", "24", "14", "15", "18", "11", "30", "19", "22", "21", "20", "23", "26", "17", "36", "28", "25", "42", "31", "46", "43", "40", "33", "34", "27", "44", "29", "32", "38", "39", "48", "35", "56", "41", "62", "45", "50", "47", "54", "37", "60", "51", "68", "57", "58", "49", "52", "55", "66", "53", "74", "63", "76", "61", "70", "64", "67", "78", "59", "80" ]
[ "nonn" ]
9
1
2
null
null
Max Alekseyev, Oct 26 2024
2024-11-01T23:58:14
oeisdata/seq/A377/A377362.seq
9fc4f562873ff4de524fcc8171b4369e
A377363
Decimal expansion of 12/Pi^2.
[ "1", "2", "1", "5", "8", "5", "4", "2", "0", "3", "7", "0", "8", "0", "5", "3", "2", "5", "7", "3", "2", "6", "5", "5", "3", "5", "5", "8", "5", "1", "6", "7", "3", "1", "6", "6", "6", "8", "5", "2", "3", "0", "5", "2", "9", "6", "0", "6", "6", "9", "5", "8", "5", "8", "6", "1", "4", "7", "3", "0", "8", "3", "8", "2", "7", "3", "0", "0", "7", "7", "4", "5", "1", "5", "4", "6", "8", "2", "5", "2", "9", "4", "2", "9", "4", "5", "1", "1", "2", "8", "7", "1", "0", "7", "4", "6", "2", "0", "5", "1" ]
[ "nonn", "cons" ]
7
1
2
[ "A000583", "A000796", "A002388", "A005408", "A013661", "A059956", "A377363" ]
null
Stefano Spezia, Oct 26 2024
2024-10-31T01:37:20
oeisdata/seq/A377/A377363.seq
6a2b136c126a3dad46e741e2d84b280e
A377364
a(n) = least k such that 2n*3^k-2 is prime, or 0 if no prime is reached.
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "1", "1", "3", "2", "1", "1", "1", "4", "5", "1", "2", "1", "2", "1", "1", "1", "9", "2", "1", "4", "1", "1", "2", "1", "5", "1", "1", "11", "1", "2", "2", "4", "3", "1", "1", "1", "3", "2", "4", "1", "1", "5", "3", "1", "1", "3", "1", "2", "4", "1", "1", "1", "2", "2", "1", "5", "1", "3", "1", "2", "1", "1", "8", "3", "1", "1", "4", "2", "80", "1", "6", "1", "8", "2", "2" ]
[ "nonn" ]
5
1
4
[ "A000040", "A050412", "A354747", "A377364", "A377365", "A377366", "A377367" ]
null
Clark Kimberling, Oct 31 2024
2024-11-04T22:29:09
oeisdata/seq/A377/A377364.seq
064b502c0593be8982936b529f14b051
A377365
a(n) = least k such that 2n*5^k+1 is prime, or 0 if no prime is reached.
[ "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "4", "2", "1", "2", "1", "3", "8", "1", "1", "1036", "1", "3", "2", "1", "1", "2", "1", "1", "2", "4", "1", "2", "1", "3", "6", "2", "257", "2", "2", "1", "40", "1", "1", "4", "2", "1", "2", "10", "1", "4", "2", "1", "6", "1", "3", "2", "1", "15", "4", "1", "79", "48", "1", "1", "2", "1", "5", "6", "1", "1", "6", "4", "3", "2", "1", "1", "2", "3", "3", "2", "1", "1", "6" ]
[ "nonn" ]
6
1
2
[ "A000040", "A050412", "A354747", "A377364", "A377365", "A377366", "A377367" ]
null
Clark Kimberling, Oct 31 2024
2024-11-04T22:29:25
oeisdata/seq/A377/A377365.seq
70ffa3fc274557241a4d7924ce2cce0e
A377366
Rectangular array by antidiagonals: R(m,n) = least k such that 2n*prime(m)^k - 1 is prime.
[ "1", "1", "1", "1", "1", "4", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "4", "1", "2", "4", "2", "3", "1", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "6", "2", "1", "1", "1", "2", "1", "2", "1", "5", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "3", "1", "1", "2", "2", "1", "4", "10", "4", "6", "2", "1", "2", "1" ]
[ "nonn", "tabl" ]
4
1
6
[ "A000040", "A377366", "A377367" ]
null
Clark Kimberling, Oct 31 2024
2024-11-04T22:29:37
oeisdata/seq/A377/A377366.seq
b9cff6afe5cdabbd019b8f2ccca46868
A377367
Rectangular array by antidiagonals: R(m,n) = least k such that 2n*prime(m)^k + 1 is prime.
[ "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "2", "2", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "2", "4", "1", "1", "6", "4", "1", "1", "1", "10", "1", "1", "3", "1", "3", "1", "1", "2", "1", "1", "14", "1", "1", "2", "2", "3", "8", "3", "2", "1", "1", "1", "2", "1", "3", "3", "1", "11", "1", "1", "1", "1", "4", "2", "1", "1", "1", "2", "2", "4", "6", "5", "4", "1", "1" ]
[ "nonn", "tabl" ]
6
1
2
[ "A000040", "A377366", "A377367" ]
null
Clark Kimberling, Oct 31 2024
2024-11-04T22:29:50
oeisdata/seq/A377/A377367.seq
df78f238eb6154468ce61cfe46844f43
A377368
a(n) = A255978(n) + 1.
[ "1", "2", "2", "5", "6", "10", "17", "26", "42", "69", "110", "178", "289", "466", "754", "1221", "1974", "3194", "5169", "8362", "13530", "21893", "35422", "57314", "92737", "150050", "242786", "392837", "635622", "1028458", "1664081", "2692538", "4356618", "7049157", "11405774", "18454930", "29860705", "48315634", "78176338" ]
[ "nonn", "easy" ]
12
0
2
[ "A255978", "A377368" ]
null
Sean A. Irvine, Dec 27 2024
2024-12-30T16:55:58
oeisdata/seq/A377/A377368.seq
49fa9504aa43e17c054e544fa96d06e0
A377369
a(n) = total number of bits in the binary representation of the prime factorization of n (including exponents > 1).
[ "0", "2", "2", "4", "3", "4", "3", "4", "4", "5", "4", "6", "4", "5", "5", "5", "5", "6", "5", "7", "5", "6", "5", "6", "5", "6", "4", "7", "5", "7", "5", "5", "6", "7", "6", "8", "6", "7", "6", "7", "6", "7", "6", "8", "7", "7", "6", "7", "5", "7", "7", "8", "6", "6", "7", "7", "7", "7", "6", "9", "6", "7", "7", "5", "7", "8", "7", "9", "7", "8", "7", "8", "7", "8", "7", "9", "7", "8", "7", "8", "5", "8", "7", "9", "8", "8", "7", "8", "7", "9" ]
[ "nonn", "base" ]
23
1
2
[ "A050252", "A070939", "A377369" ]
null
Paolo Xausa, Dec 27 2024
2025-01-01T18:13:33
oeisdata/seq/A377/A377369.seq
84f2d3178a0e953a3dcb17ec4e822202
A377370
Smallest prime ending in n alternating decimal digits 0 and 1.
[ "11", "101", "101", "20101", "210101", "4010101", "61010101", "1601010101", "8101010101", "260101010101", "3110101010101", "11010101010101", "11010101010101", "1201010101010101", "6101010101010101", "180101010101010101", "1710101010101010101", "5010101010101010101", "41010101010101010101" ]
[ "nonn", "base" ]
41
1
1
[ "A036952", "A065720", "A377370" ]
null
James S. DeArmon, Dec 27 2024
2025-02-27T07:58:16
oeisdata/seq/A377/A377370.seq
bc9fc7dd8f2f99e2a398c5d27517b8b4
A377371
a(n) = k*(a(n-1)+n), k=-1 for prime n, otherwise k=1 (a(1)=1).
[ "1", "-3", "0", "4", "-9", "-3", "-4", "4", "13", "23", "-34", "-22", "9", "23", "38", "54", "-71", "-53", "34", "54", "75", "97", "-120", "-96", "-71", "-45", "-18", "10", "-39", "-9", "-22", "10", "43", "77", "112", "148", "-185", "-147", "-108", "-68", "27", "69", "-112", "-68", "-23", "23", "-70", "-22", "27", "77", "128", "180", "-233", "-179", "-124", "-68", "-11" ]
[ "sign", "easy" ]
14
1
2
null
null
Bill McEachen, Dec 27 2024
2024-12-30T17:08:47
oeisdata/seq/A377/A377371.seq
5722d4a7ef783c172fd82a61f2004dd4
A377372
a(n) is the smallest prime p such that the Diophantine equation x^3 + y^3 + z^3 = p^3, where 0 < x <= y <= z has exactly n positive integer solutions.
[ "2", "19", "41", "479", "1031", "1181", "577", "2999", "10711", "29033", "24919", "49069", "60919", "169019", "209563", "254993", "337537" ]
[ "nonn", "more" ]
31
0
1
[ "A316359", "A377372", "A377444", "A384439" ]
null
Zhining Yang, Dec 28 2024
2025-06-10T20:36:54
oeisdata/seq/A377/A377372.seq
700570606298741802a27a60543b1568
A377373
Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 2*x) ).
[ "1", "1", "3", "14", "93", "794", "8335", "103774", "1496313", "24525458", "450478131", "9166307798", "204692557333", "4977320639290", "130918278855351", "3703846153114574", "112155490349101041", "3619411771703973410", "124011196515200953819", "4496024219722304736070", "171963129575721708667341" ]
[ "nonn" ]
19
0
3
[ "A108919", "A376106", "A377373", "A377374" ]
null
Seiichi Manyama, Dec 28 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377373.seq
eefcfe1935bc8d7c6ba1d5b7fb55faff
A377374
Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 3*x) ).
[ "1", "2", "9", "65", "653", "8439", "133609", "2506727", "54408633", "1341637595", "37055451101", "1133391705819", "38034022035877", "1389484163236727", "54899323023464529", "2332723285215012479", "106076669681270501105", "5140202768545661266227", "264427503283923495485221", "14392750805365239040586051" ]
[ "nonn" ]
15
0
2
[ "A108919", "A376107", "A377373", "A377374" ]
null
Seiichi Manyama, Dec 28 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377374.seq
f41987c4b516b65bed51bbc4174c155d
A377375
Antidiagonal sums of A342819.
[ "0", "0", "0", "4", "11", "25", "42", "70", "101", "147", "196", "264", "335", "429", "526", "650", "777", "935", "1096", "1292", "1491", "1729", "1970", "2254", "2541", "2875", "3212", "3600", "3991", "4437", "4886", "5394", "5905", "6479", "7056", "7700", "8347", "9065", "9786", "10582", "11381", "12259", "13140", "14104", "15071", "16125", "17182", "18330", "19481", "20727" ]
[ "nonn", "easy" ]
9
0
4
[ "A342819", "A377375" ]
null
Stefano Spezia, Dec 28 2024
2024-12-29T09:04:11
oeisdata/seq/A377/A377375.seq
52410049119bc60058cd761624b88e84
A377376
Expansion of e.g.f. log( 1 - log(1 - x)^3 / 6 ).
[ "0", "0", "0", "1", "6", "35", "215", "1414", "9912", "73324", "565170", "4472226", "35725426", "283350132", "2225790476", "18624038224", "216679183120", "4293834561200", "111300845967440", "2963219043255360", "76258914698507280", "1895550595605889760", "45928558583373219600", "1093984400513512753840" ]
[ "nonn" ]
55
0
5
[ "A346966", "A377376", "A379674", "A380370" ]
null
Seiichi Manyama, Jan 23 2025
2025-01-23T08:31:31
oeisdata/seq/A377/A377376.seq
64804d419c0b40bd607eeda7da528d14
A377377
a(n) is the quotient of the practical number A005153(n) divided by its largest divisor that is primitive practical.
[ "1", "1", "2", "1", "4", "2", "8", "3", "1", "4", "1", "1", "16", "6", "2", "1", "8", "9", "2", "2", "32", "1", "12", "1", "4", "2", "1", "3", "16", "5", "1", "18", "4", "4", "3", "64", "2", "1", "24", "5", "2", "8", "27", "4", "2", "6", "32", "7", "3", "10", "1", "2", "1", "36", "1", "8", "1", "3", "8", "6", "128", "1", "3", "9", "1", "1", "2", "48", "7", "10", "1", "1", "1", "3", "16", "54", "1", "8", "1", "1", "1", "4", "12", "1", "1", "9", "1", "64", "1", "14", "6", "20", "2", "1", "4", "2", "72", "2", "16", "15", "2", "1", "1", "1", "6", "1", "16", "81", "1", "25", "12" ]
[ "nonn" ]
15
1
3
[ "A005153", "A267124", "A377377" ]
null
Frank M Jackson, Oct 26 2024
2024-11-03T19:33:14
oeisdata/seq/A377/A377377.seq
0750b7fa3622e813e106b0db6ecc20d4
A377378
a(n) = sum of row n of A376248.
[ "1", "3", "4", "7", "6", "25", "8", "15", "13", "47", "12", "90", "14", "77", "58", "31", "18", "90", "20", "250", "90", "161", "24", "301", "31", "215", "40", "554", "30", "490", "32", "63", "178", "347", "122", "301", "38", "425", "234", "1281", "42", "902", "44", "1786", "330", "605", "48", "966", "57", "250", "370", "2810", "54", "301", "218", "3909", "450", "935", "60", "2751" ]
[ "nonn", "easy" ]
6
1
2
[ "A000203", "A024619", "A244974", "A376248", "A377378" ]
null
Michael De Vlieger, Nov 14 2024
2024-11-17T07:09:22
oeisdata/seq/A377/A377378.seq
0eaa490b29508b326057826342778a24
A377379
a(n) = rad(n)^binomial(bigomega(n) + omega(n), omega(n) + 1), where rad = A007947, bigomega = A001222, and omega = A001221.
[ "1", "2", "3", "8", "5", "1296", "7", "64", "27", "10000", "11", "60466176", "13", "38416", "50625", "1024", "17", "60466176", "19", "10000000000", "194481", "234256", "23", "3656158440062976", "125", "456976", "729", "289254654976", "29", "14348907000000000000000", "31", "32768", "1185921", "1336336", "1500625", "3656158440062976" ]
[ "nonn", "easy" ]
5
1
2
[ "A001221", "A001222", "A007947", "A007955", "A010846", "A024619", "A243103", "A376248", "A377379" ]
null
Michael De Vlieger, Oct 27 2024
2024-10-29T11:21:48
oeisdata/seq/A377/A377379.seq
09411659a31115150f3b007738d5c6e1
A377380
a(n) is the first positive number k such that k is alternately a quadratic residue and nonresidue modulo the first n primes, but not the n+1'th.
[ "1", "2", "11", "41", "26", "5", "671", "89", "59", "1181", "1991", "3755", "21521", "34145", "25994", "137885", "61106", "1503029", "2617439", "1008551", "2897081", "22363295", "33603926", "36518450", "79865294", "185914490", "593068985", "2211452939", "2120224529", "1673286179", "2644173521", "1976870465" ]
[ "nonn" ]
11
1
2
[ "A096636", "A377212", "A377380" ]
null
Robert Israel, Oct 27 2024
2024-10-27T10:46:30
oeisdata/seq/A377/A377380.seq
4857b47fe08532a8196d6f0a304f9ea0
A377381
a(n) is the number of divisors of n that are interprime numbers (A024675).
[ "0", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "3", "0", "0", "1", "1", "0", "3", "0", "1", "1", "0", "0", "3", "0", "1", "1", "1", "0", "3", "0", "1", "0", "1", "0", "5", "0", "0", "1", "1", "0", "3", "0", "1", "3", "0", "0", "3", "0", "1", "0", "2", "0", "3", "0", "2", "0", "0", "0", "6", "0", "0", "2", "2", "0", "1", "0", "2", "1", "0", "0", "6", "0", "0", "1", "2", "0", "3", "0", "1", "2", "0", "0", "5", "0", "1", "0" ]
[ "nonn" ]
9
1
12
[ "A024675", "A377381" ]
null
Marius A. Burtea, Dec 05 2024
2024-12-21T01:03:20
oeisdata/seq/A377/A377381.seq
2a912929c62b0e4f5e7deb9c3cdc62af
A377382
a(n) is the smallest number k for which exactly n of its divisors are interprime numbers (A024675).
[ "1", "4", "52", "12", "162", "36", "60", "120", "240", "300", "180", "600", "360", "1560", "720", "1260", "1440", "1620", "2520", "2880", "3240", "5040", "10920", "6300", "9360", "10080", "12960", "12600", "15840", "20160", "22680", "25200", "31680", "39600", "27720", "59400", "50400", "70560", "56700", "79200", "55440", "65520", "83160", "100800" ]
[ "nonn" ]
8
0
2
[ "A024675", "A377381", "A377382" ]
null
Marius A. Burtea, Dec 05 2024
2024-12-21T01:03:30
oeisdata/seq/A377/A377382.seq
f9dcfb55258240f770d4a6b7cbd1638d
A377383
Numbers k in A020487 with arithmetic derivative k' (A003415) in A020487.
[ "4", "256", "500", "625", "2500", "4225", "11664", "12800", "14580", "81920", "250000", "262144", "364500", "531441", "800000", "2125764", "4734976", "11943936", "27541504", "64000000", "84050000", "107868672", "156250000", "162542848", "195312500", "253472000", "512635136", "544195584", "607642880", "701146368", "770786560" ]
[ "nonn" ]
6
1
1
[ "A000203", "A001157", "A003415", "A020487", "A377383" ]
null
Marius A. Burtea, Dec 05 2024
2024-12-21T01:03:38
oeisdata/seq/A377/A377383.seq
a76c95383dc9014fc79e7a951afe876e
A377384
a(n) is the number of iterations that n requires to reach a noninteger or a factorial number under the map x -> x / f(x), where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k; a(n) = 0 if n is a factorial number.
[ "0", "0", "1", "1", "1", "0", "1", "2", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "0", "1", "2", "3", "1", "1", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "base" ]
10
1
8
[ "A000005", "A000142", "A034968", "A118363", "A286607", "A376615", "A377208", "A377384", "A377385", "A377386" ]
null
Amiram Eldar, Oct 27 2024
2024-10-28T09:35:10
oeisdata/seq/A377/A377384.seq
fdfbbbc2fc859cbc659ccb167440205e
A377385
Factorial-base Niven numbers (A118363) k such that k/f(k) is also a factorial-base Niven number, where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k.
[ "1", "2", "4", "6", "8", "12", "16", "18", "24", "27", "36", "40", "48", "54", "72", "80", "96", "108", "120", "135", "144", "168", "175", "180", "192", "208", "210", "240", "280", "288", "336", "360", "384", "420", "432", "468", "480", "490", "572", "576", "594", "600", "630", "720", "732", "740", "750", "780", "784", "819", "840", "846", "861", "864", "888", "900", "924", "936", "945", "980", "984" ]
[ "nonn", "easy", "base" ]
9
1
2
[ "A000142", "A034968", "A118363", "A376616", "A377209", "A377384", "A377385", "A377386" ]
null
Amiram Eldar, Oct 27 2024
2024-10-28T09:35:05
oeisdata/seq/A377/A377385.seq
a86810aa485b240db5143cbc66e69cef
A377386
Factorial-base Niven numbers (A118363) k such that m = k/f(k) and m/f(m) are also factorial-base Niven numbers, where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k.
[ "1", "2", "4", "6", "8", "12", "16", "18", "24", "36", "40", "48", "54", "72", "80", "96", "108", "120", "135", "144", "180", "192", "240", "280", "288", "360", "384", "432", "480", "576", "594", "600", "720", "840", "864", "1200", "1215", "1225", "1296", "1344", "1440", "1680", "1728", "1800", "2160", "2240", "2352", "2400", "2520", "2592", "2704", "2730", "2880", "3000" ]
[ "nonn", "easy", "base" ]
8
1
2
[ "A000142", "A034968", "A118363", "A376617", "A377210", "A377384", "A377385", "A377386" ]
null
Amiram Eldar, Oct 27 2024
2024-10-28T09:35:00
oeisdata/seq/A377/A377386.seq
f080e32876c8aeda8ef94781479ee66d
A377387
a(n) is the least number k such that A377384(k) = n, or -1 if no such number exists.
[ "1", "3", "8", "27", "135", "1215", "15795", "328050", "4920750", "127764000", "5826168000", "126097171200" ]
[ "nonn", "base", "more" ]
10
0
2
[ "A118363", "A376619", "A377211", "A377384", "A377387" ]
null
Amiram Eldar, Oct 27 2024
2025-04-10T08:19:36
oeisdata/seq/A377/A377387.seq
9f9b219329495dd2e58470e983c0c492
A377388
Infinite sequence of integers a(1), a(2), ... such that for any n > 0, a(n) is as small as possible (in absolute value) and the means of consecutive terms are all distinct; in case of a tie, preference is given to the positive value.
[ "0", "1", "-2", "-3", "-5", "-8", "-6", "-11", "-13", "-21", "-16", "9", "-42", "-24", "-25", "-27", "-34", "-35", "-46", "10", "2", "90", "42", "31", "26", "11", "30", "18", "58", "41", "20", "86", "43", "60", "45", "103", "48", "54", "105", "83", "-48", "-151", "-155", "-59", "-87", "-79", "-146", "106", "-157", "-109", "-218", "-208", "-88", "-45", "-99", "-131", "27" ]
[ "sign" ]
10
1
3
[ "A377351", "A377388", "A377389" ]
null
Rémy Sigrist, Oct 27 2024
2024-10-28T16:24:26
oeisdata/seq/A377/A377388.seq
72fd5e7802bbf2c88d1c9023862bb489
A377389
Partial sums of A377388.
[ "0", "1", "-1", "-4", "-9", "-17", "-23", "-34", "-47", "-68", "-84", "-75", "-117", "-141", "-166", "-193", "-227", "-262", "-308", "-298", "-296", "-206", "-164", "-133", "-107", "-96", "-66", "-48", "10", "51", "71", "157", "200", "260", "305", "408", "456", "510", "615", "698", "650", "499", "344", "285", "198", "119", "-27", "79", "-78", "-187", "-405" ]
[ "sign" ]
9
1
4
[ "A377388", "A377389" ]
null
Rémy Sigrist, Oct 27 2024
2024-10-28T16:24:21
oeisdata/seq/A377/A377389.seq
60bd5058e853d64bad3daf19c8dd98b1
A377390
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - x*log(1-x))^2 ).
[ "1", "0", "4", "6", "232", "1380", "46308", "593880", "20639456", "434113344", "16557009840", "490894572960", "20995513516800", "801146038080960", "38632110899469696", "1791609186067646400", "97167945389675212800", "5275541489312858803200", "319879838094553691744256", "19820894989178283188198400" ]
[ "nonn" ]
14
0
3
[ "A371121", "A371229", "A377360", "A377390", "A377391" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T09:25:16
oeisdata/seq/A377/A377390.seq
2f52ef797278e611a88502795274a574
A377391
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - x*log(1-x))^3 ).
[ "1", "0", "6", "9", "528", "3150", "157032", "2060100", "102770112", "2276373456", "120136435200", "3868551141840", "221493499198848", "9438561453784320", "592954244405195904", "31417910131585330080", "2173884244961012121600", "137231093173511486016000", "10452538023125775799541760" ]
[ "nonn" ]
11
0
3
[ "A371121", "A371231", "A377361", "A377390", "A377391" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T09:24:06
oeisdata/seq/A377/A377391.seq
e3b582480504af0165dc470b0b70169e
A377392
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*(exp(x) - 1))^2 ).
[ "1", "0", "4", "6", "224", "1330", "42912", "548114", "18337440", "382829346", "14098368080", "413342914402", "17124811116624", "644015140354898", "30163665817167456", "1375047846420311730", "72583022771706823232", "3866142693873431519554", "228486372085027819754928", "13871056133441358772777154" ]
[ "nonn" ]
13
0
3
[ "A371119", "A371270", "A377392", "A377393" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T09:03:48
oeisdata/seq/A377/A377392.seq
6768d1337ce518e6cfa4ec6b390c653f
A377393
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*(exp(x) - 1))^3 ).
[ "1", "0", "6", "9", "516", "3075", "149418", "1956171", "95139432", "2099836899", "108189172830", "3465051871083", "194015893087404", "8207832658120563", "505114926236953074", "26525536061251639275", "1800555184934893332048", "112493970299385975997635", "8415880480577316204054630" ]
[ "nonn" ]
14
0
3
[ "A371119", "A371272", "A377392", "A377393" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T09:03:41
oeisdata/seq/A377/A377393.seq
37336c905311583746d8341463468b13
A377394
Expansion of e.g.f. (1 - log(1-x))^3.
[ "1", "3", "9", "30", "120", "582", "3354", "22488", "172320", "1487208", "14284296", "151179696", "1748521296", "21945019392", "297077918976", "4315269544704", "66952906801920", "1105127533048320", "19337110495511040", "357542547031249920", "6965984564179246080", "142638952766943744000", "3062533108375448064000" ]
[ "nonn", "easy" ]
13
0
2
[ "A052517", "A052748", "A377394" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T23:44:37
oeisdata/seq/A377/A377394.seq
9d5eafaaf17312abf0b465a73f2dac25
A377395
Expansion of e.g.f. (1 - log(1-x))^4.
[ "1", "4", "16", "68", "324", "1776", "11208", "80664", "654600", "5926080", "59283552", "649972704", "7754418528", "100047107520", "1388392475328", "20625806330496", "326648173136256", "5494182397387776", "97821610887785472", "1838137437962182656", "36354781509406470144", "754959568444846387200" ]
[ "nonn", "easy" ]
14
0
2
[ "A052517", "A052748", "A052753", "A377395" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T23:44:34
oeisdata/seq/A377/A377395.seq
8d2881c0b4978798790c6a0a9fb8aeab
A377396
Expansion of e.g.f. (1 + log(1+x))^3.
[ "1", "3", "3", "-6", "12", "-18", "-66", "1320", "-15504", "172200", "-1965384", "23636016", "-301995216", "4107704832", "-59444810496", "913681776384", "-14882950782720", "256316144325120", "-4656243408560640", "89018690328990720", "-1787202802367585280", "37603576325804544000", "-827595379013405184000" ]
[ "sign", "easy" ]
12
0
2
[ "A377396", "A377397" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T23:44:24
oeisdata/seq/A377/A377396.seq
ea6e83181d38193e37c64c7820fd4285
A377397
Expansion of e.g.f. (1 + log(1+x))^4.
[ "1", "4", "8", "-4", "-12", "96", "-552", "3048", "-16056", "66432", "90912", "-8770656", "191021280", "-3500236224", "61933890240", "-1104853705344", "20227532685696", "-383172326102016", "7539194121034752", "-154330467812868096", "3288353649760456704", "-72915884204679475200", "1681647873601487155200" ]
[ "sign", "easy" ]
12
0
2
[ "A377396", "A377397" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T23:44:20
oeisdata/seq/A377/A377397.seq
81c29c221fb5fa18cddf8c56baf4c243
A377398
Expansion of e.g.f. (2 - exp(x))^3.
[ "1", "-3", "3", "9", "3", "-63", "-357", "-1431", "-5037", "-16623", "-52917", "-164871", "-506877", "-1545183", "-4684677", "-14152311", "-42653517", "-128353743", "-385847637", "-1159115751", "-3480492957", "-10447770303", "-31355893797", "-94092847191", "-282328873197", "-847087282863", "-2541463175157" ]
[ "sign", "easy" ]
20
0
2
[ "A226515", "A377398", "A377399" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T23:44:30
oeisdata/seq/A377/A377398.seq
7693bd8079ea6acc1ca5971f44b83bc3
A377399
Expansion of e.g.f. (2 - exp(x))^4.
[ "1", "-4", "8", "8", "-40", "-184", "-232", "1928", "19160", "116936", "600728", "2826248", "12623960", "54550856", "230564888", "959736968", "3952166360", "16149893576", "65626404248", "265592398088", "1071642518360", "4314414017096", "17341238230808", "69615800073608", "279215943071960", "1119122403273416" ]
[ "sign", "easy" ]
19
0
2
[ "A226738", "A377399" ]
null
Seiichi Manyama, Oct 27 2024
2024-10-27T23:44:27
oeisdata/seq/A377/A377399.seq
daa022bf1b3b35a952c80f1653c751b5
A377400
Decimal expansion of e*(gamma - Ei(-1))/2.
[ "1", "0", "8", "2", "6", "9", "1", "1", "0", "7", "6", "6", "3", "4", "6", "8", "1", "7", "9", "7", "1", "0", "4", "9", "3", "1", "7", "4", "2", "4", "6", "2", "1", "5", "2", "8", "4", "1", "9", "0", "7", "1", "0", "3", "8", "3", "8", "7", "0", "7", "2", "1", "8", "4", "5", "1", "1", "5", "0", "6", "9", "5", "8", "5", "9", "4", "7", "4", "7", "1", "2", "1", "2", "8", "9", "8", "8", "9", "9", "3", "5", "8", "9", "8", "8", "4", "6", "3", "0", "1", "7", "5", "7", "0", "7", "7", "8", "3", "7", "8" ]
[ "nonn", "cons" ]
9
1
3
[ "A000142", "A001008", "A001113", "A001620", "A005843", "A060746", "A099285", "A347952", "A377400", "A377401" ]
null
Stefano Spezia, Oct 27 2024
2024-10-27T09:23:55
oeisdata/seq/A377/A377400.seq
8e7950aea8068aed608ee21dd6c9c1c5
A377401
a(n) = denominator((1/n!)*Sum_{k=1..n} 1/(2*k)).
[ "1", "2", "8", "72", "576", "14400", "28800", "470400", "22579200", "1828915200", "18289152000", "2212987392000", "26555848704000", "4487938430976000", "62831138033664000", "942467070504960000", "30158946256158720000", "8715935468029870080000", "52295612808179220480000", "18878716223752698593280000" ]
[ "nonn", "frac" ]
9
0
2
[ "A000142", "A005843", "A060746", "A377400", "A377401" ]
null
Stefano Spezia, Oct 27 2024
2024-10-29T15:41:32
oeisdata/seq/A377/A377401.seq
6336cda786b86335f970a8a265244452
A377402
Least k such that the ratio of the number of residues mod k coprime to k and the number of primitive roots mod k is greater than or equal to n for k such that at least one primitive root mod k exists. Equivalently, k such that floor(phi(k)/phi(phi(k)) is a record value for those k belonging to A033948.
[ "1", "3", "7", "211", "43891", "300690391" ]
[ "nonn", "more" ]
15
1
2
[ "A000010", "A010554", "A033948", "A046144", "A377402" ]
null
Miles Englezou, Oct 26 2024
2024-11-18T07:42:55
oeisdata/seq/A377/A377402.seq
f40030c0d241fccffc9cd2b2ce590080
A377403
For n >= 2, a(n) is the number of iterations needed for the map: x -> x / A085392(x) if A085392(x) > 1, otherwise x -> x + A151800(x), to (the first occurrence of) 2.
[ "0", "3", "1", "3", "1", "3", "2", "4", "1", "4", "2", "3", "1", "4", "3", "4", "2", "3", "2", "4", "1", "3", "3", "4", "1", "5", "2", "4", "2", "3", "4", "4", "1", "4", "3", "3", "1", "4", "3", "4", "2", "4", "2", "5", "1", "4", "4", "4", "2", "4", "2", "5", "3", "4", "3", "4", "1", "5", "3", "7", "1", "5", "5", "4", "2", "3", "2", "4", "2", "6", "4", "4", "1", "5", "2", "4", "2", "5", "4", "6", "1", "3", "3", "4", "1", "4", "3", "3", "3", "4", "2", "4", "1", "4", "5", "4", "2", "5", "3", "4", "2", "4", "3", "5", "1", "6", "4", "3", "2", "4", "4", "6", "2", "4", "2", "5", "1", "4", "4", "5" ]
[ "nonn" ]
19
2
2
[ "A001222", "A013634", "A020639", "A085392", "A107286", "A151800", "A377403" ]
null
Ctibor O. Zizka, Oct 27 2024
2024-10-31T01:40:11
oeisdata/seq/A377/A377403.seq
b6b35706f12738a5970da3e2ceb698e5