sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A377504
E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^3.
[ "1", "3", "36", "735", "21972", "871995", "43308378", "2588123811", "180990517032", "14507325973395", "1311719669172750", "132102208441613883", "14666354372331521676", "1779817542971018697003", "234399632982398657764578", "33297612755940733707395955", "5075234637265322738651060688", "826215756199826873368252279971" ]
[ "nonn" ]
10
0
2
[ "A006632", "A295238", "A364987", "A377503", "A377504", "A377528" ]
null
Seiichi Manyama, Oct 30 2024
2024-10-31T06:47:58
oeisdata/seq/A377/A377504.seq
f1b506abbf51239b73e52b91d8c52d00
A377505
a(n) is the number of positive integers that have Omega(n) prime factors and these are all <= n.
[ "1", "1", "2", "3", "3", "6", "4", "20", "10", "10", "5", "35", "6", "21", "21", "126", "7", "84", "8", "120", "36", "36", "9", "495", "45", "45", "165", "165", "10", "220", "11", "3003", "66", "66", "66", "1001", "12", "78", "78", "1365", "13", "455", "14", "560", "560", "105", "15", "11628", "120", "680", "120", "680", "16", "3876", "136", "3876", "136", "136", "17", "4845", "18" ]
[ "nonn" ]
21
1
3
[ "A000040", "A000720", "A001222", "A007318", "A037031", "A377505", "A377537" ]
null
Felix Huber, Dec 20 2024
2024-12-24T13:49:10
oeisdata/seq/A377/A377505.seq
520bcc4cb7d2ab33c6da99e83e90d297
A377506
a(n) is the nearest integer to 1/gamma(x_n), where x_n is the n-th extrema of gamma(x).
[ "1", "0", "0", "-1", "4", "-19", "107", "-716", "5498", "-47789", "463517", "-4962289", "58115593", "-739030560", "10140362326", "-149320366368", "2348685116841", "-39299792354491", "697018000148170", "-13061370974841665", "257854085426453001", "-5349016057902489052", "116324040001711961903", "-2646269955793816322943", "62852365790563502907461" ]
[ "sign" ]
33
1
5
[ "A374856", "A377506" ]
null
Jwalin Bhatt, Oct 30 2024
2025-01-12T17:29:24
oeisdata/seq/A377/A377506.seq
8a9583264c91835b4db825964dd9fddc
A377507
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^2 * x^k/k), where phi is the Euler totient function A000010.
[ "1", "1", "2", "12", "66", "690", "4860", "63000", "711900", "8876700", "131405400", "2160219600", "37553808600", "686750664600", "13805424032400", "278759396916000", "6445702905642000", "150985820419434000", "3825993309462324000", "99427990563910008000", "2724045313186016820000", "78032929885709378580000" ]
[ "nonn" ]
13
0
3
[ "A065464", "A127473", "A156302", "A318917", "A377507", "A377508", "A377509" ]
null
Vaclav Kotesovec, Oct 30 2024
2024-10-31T11:23:08
oeisdata/seq/A377/A377507.seq
f2d902548d3189e918e11068e90d98b1
A377508
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^3 * x^k/k), where phi is the Euler totient function A000010.
[ "1", "1", "2", "20", "122", "2122", "15532", "284104", "3837500", "52963964", "1125315224", "20981180464", "500475045688", "10373180665720", "264908485440848", "6624880728277088", "185812008437953808", "5449866267968244496", "167510440639938875680", "5447433174773217714496", "177500241844579492474016" ]
[ "nonn" ]
10
0
3
[ "A178933", "A318917", "A358714", "A377507", "A377508", "A377509" ]
null
Vaclav Kotesovec, Oct 30 2024
2024-10-31T11:23:12
oeisdata/seq/A377/A377508.seq
19238eb256c8e77c5b1a1b7ae1d00924
A377509
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^4 * x^k/k), where phi is the Euler totient function A000010.
[ "1", "1", "2", "36", "234", "7290", "54540", "1408680", "23119740", "341788860", "11790437400", "231972879600", "8206299070200", "191673262380600", "6154270418696400", "206515993375692000", "6574758436640394000", "269828090984990538000", "9531096165082736244000", "411037724983993923816000" ]
[ "nonn" ]
11
0
3
[ "A205797", "A318917", "A361148", "A377507", "A377508", "A377509" ]
null
Vaclav Kotesovec, Oct 30 2024
2024-10-31T11:23:16
oeisdata/seq/A377/A377509.seq
95b603414714fea81cba84e35115e88c
A377510
a(n) = number of iterations of x -> 2 x + 5 to reach a nonprime, starting with prime(n).
[ "1", "2", "1", "3", "1", "6", "1", "2", "1", "1", "5", "4", "1", "1", "1", "1", "1", "2", "4", "1", "4", "3", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "1", "3", "1", "3", "1", "2", "1", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "4", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1" ]
[ "nonn" ]
7
1
2
[ "A377120", "A377510", "A377511", "A377512", "A377513", "A377514" ]
null
Clark Kimberling, Oct 31 2024
2024-11-04T22:30:03
oeisdata/seq/A377/A377510.seq
6dbeb5bd383a1cd9bd8ee79e42358d08
A377511
a(n) = number of iterations of x -> 2 x + 7 to reach a nonprime, starting with prime(n).
[ "3", "2", "4", "1", "2", "1", "3", "1", "4", "1", "1", "1", "2", "1", "2", "3", "1", "1", "1", "2", "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "1", "2", "3", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "2", "3", "1", "1", "1", "1", "2", "1", "5", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
6
1
1
[ "A377120", "A377510", "A377511", "A377512", "A377513", "A377514" ]
null
Clark Kimberling, Oct 31 2024
2024-11-04T22:30:14
oeisdata/seq/A377/A377511.seq
d49b4bcc28e2b999e4128f750f7dd215
A377512
a(n) = number of iterations of x -> 2 x - 3 to reach a nonprime, starting with prime(n).
[ "4", "3", "2", "5", "3", "1", "4", "1", "2", "3", "2", "3", "1", "2", "1", "1", "2", "2", "1", "1", "2", "1", "3", "2", "1", "3", "1", "4", "3", "1", "2", "1", "1", "1", "3", "1", "3", "1", "1", "2", "2", "2", "1", "1", "2", "3", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "1", "1", "7", "1", "1", "2", "1", "3", "2", "1", "2", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "2", "2", "3", "1", "2", "1", "2" ]
[ "nonn" ]
4
1
1
[ "A377120", "A377510", "A377511", "A377512", "A377513", "A377514" ]
null
Clark Kimberling, Nov 05 2024
2024-11-13T17:26:20
oeisdata/seq/A377/A377512.seq
9aed4263967e5d657080fc46e455cad4
A377513
a(n) = number of iterations of x -> 2 x - 5 to reach a nonprime, starting with prime(n+4).
[ "8", "1", "7", "1", "2", "6", "1", "1", "1", "1", "3", "5", "2", "1", "1", "3", "1", "1", "1", "2", "1", "4", "1", "1", "1", "1", "1", "4", "2", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "1", "1", "7", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "4", "1", "1", "2", "1", "1", "1", "1" ]
[ "nonn" ]
4
1
1
[ "A377120", "A377510", "A377511", "A377512", "A377513", "A377514" ]
null
Clark Kimberling, Nov 05 2024
2024-11-13T17:26:27
oeisdata/seq/A377/A377513.seq
60d064759825a787e0525da1b655b48f
A377514
a(n) = number of iterations of x -> 2 x - 7 to reach a nonprime, starting with prime(n+4).
[ "1", "3", "1", "2", "1", "1", "1", "3", "1", "3", "1", "1", "1", "1", "2", "1", "3", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "3", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "2", "1", "3", "1", "1", "1", "1", "2", "1", "1", "4", "3", "2", "1", "1", "3", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "3" ]
[ "nonn" ]
7
1
2
[ "A377120", "A377510", "A377511", "A377512", "A377513", "A377514" ]
null
Clark Kimberling, Nov 05 2024
2025-06-21T19:59:52
oeisdata/seq/A377/A377514.seq
604fdd5d9167f590685f9528440e8cfa
A377515
The largest divisor of n that is a term in A276078.
[ "1", "2", "3", "2", "5", "6", "7", "2", "9", "10", "11", "6", "13", "14", "15", "2", "17", "18", "19", "10", "21", "22", "23", "6", "25", "26", "9", "14", "29", "30", "31", "2", "33", "34", "35", "18", "37", "38", "39", "10", "41", "42", "43", "22", "45", "46", "47", "6", "49", "50", "51", "26", "53", "18", "55", "14", "57", "58", "59", "30", "61", "62", "63", "2", "65", "66", "67", "34", "69", "70" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A000720", "A276078", "A327937", "A377515", "A377516", "A377517", "A377518" ]
null
Amiram Eldar, Oct 30 2024
2024-10-31T01:10:58
oeisdata/seq/A377/A377515.seq
708e147d0278656932a1f1aa374df554
A377516
The number of divisors of n that are terms in A276078.
[ "1", "2", "2", "2", "2", "4", "2", "2", "3", "4", "2", "4", "2", "4", "4", "2", "2", "6", "2", "4", "4", "4", "2", "4", "3", "4", "3", "4", "2", "8", "2", "2", "4", "4", "4", "6", "2", "4", "4", "4", "2", "8", "2", "4", "6", "4", "2", "4", "3", "6", "4", "4", "2", "6", "4", "4", "4", "4", "2", "8", "2", "4", "6", "2", "4", "8", "2", "4", "4", "8", "2", "6", "2", "4", "6", "4", "4", "8", "2", "4", "3", "4", "2", "8", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A000005", "A000720", "A013661", "A276078", "A377515", "A377516", "A377517", "A377519" ]
null
Amiram Eldar, Oct 30 2024
2024-10-31T01:11:13
oeisdata/seq/A377/A377516.seq
26222deac29006d0a15598efe59bc809
A377517
The sum of the divisors of n that are terms in A276078.
[ "1", "3", "4", "3", "6", "12", "8", "3", "13", "18", "12", "12", "14", "24", "24", "3", "18", "39", "20", "18", "32", "36", "24", "12", "31", "42", "13", "24", "30", "72", "32", "3", "48", "54", "48", "39", "38", "60", "56", "18", "42", "96", "44", "36", "78", "72", "48", "12", "57", "93", "72", "42", "54", "39", "72", "24", "80", "90", "60", "72", "62", "96", "104", "3", "84", "144", "68", "54" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A000203", "A000720", "A013661", "A046897", "A276078", "A377515", "A377516", "A377517", "A377520" ]
null
Amiram Eldar, Oct 30 2024
2024-10-31T01:11:21
oeisdata/seq/A377/A377517.seq
f9887b0446b602b1add019eec857cf58
A377518
The largest divisor of n that is a term in A207481.
[ "1", "2", "3", "4", "5", "6", "7", "4", "9", "10", "11", "12", "13", "14", "15", "4", "17", "18", "19", "20", "21", "22", "23", "12", "25", "26", "27", "28", "29", "30", "31", "4", "33", "34", "35", "36", "37", "38", "39", "20", "41", "42", "43", "44", "45", "46", "47", "12", "49", "50", "51", "52", "53", "54", "55", "28", "57", "58", "59", "60", "61", "62", "63", "4", "65", "66", "67", "68", "69" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A207481", "A368329", "A377515", "A377518", "A377519", "A377520" ]
null
Amiram Eldar, Oct 30 2024
2024-10-31T01:11:29
oeisdata/seq/A377/A377518.seq
10e56638932f290f631df4473eb65e94
A377519
The number of divisors of n that are terms in A207481.
[ "1", "2", "2", "3", "2", "4", "2", "3", "3", "4", "2", "6", "2", "4", "4", "3", "2", "6", "2", "6", "4", "4", "2", "6", "3", "4", "4", "6", "2", "8", "2", "3", "4", "4", "4", "9", "2", "4", "4", "6", "2", "8", "2", "6", "6", "4", "2", "6", "3", "6", "4", "6", "2", "8", "4", "6", "4", "4", "2", "12", "2", "4", "6", "3", "4", "8", "2", "6", "4", "8", "2", "9", "2", "4", "6", "6", "4", "8", "2", "6", "4", "4", "2", "12", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
6
1
2
[ "A000005", "A013661", "A207481", "A377516", "A377518", "A377519", "A377520" ]
null
Amiram Eldar, Oct 30 2024
2024-10-31T01:11:41
oeisdata/seq/A377/A377519.seq
1aac5a9ea7fd17815855652f2883a89a
A377520
The sum of the divisors of n that are terms in A207481.
[ "1", "3", "4", "7", "6", "12", "8", "7", "13", "18", "12", "28", "14", "24", "24", "7", "18", "39", "20", "42", "32", "36", "24", "28", "31", "42", "40", "56", "30", "72", "32", "7", "48", "54", "48", "91", "38", "60", "56", "42", "42", "96", "44", "84", "78", "72", "48", "28", "57", "93", "72", "98", "54", "120", "72", "56", "80", "90", "60", "168", "62", "96", "104", "7", "84", "144", "68" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A000203", "A013661", "A207481", "A284341", "A377517", "A377518", "A377519", "A377520" ]
null
Amiram Eldar, Oct 30 2024
2024-10-31T01:11:49
oeisdata/seq/A377/A377520.seq
a3750b332be13ff389021231afac16ad
A377521
Antidiagonal sums of A343053.
[ "0", "0", "0", "15", "48", "115", "217", "385", "611", "945", "1366", "1947", "2650", "3575", "4663", "6045", "7637", "9605", "11836", "14535", "17556", "21147", "25125", "29785", "34903", "40825", "47282", "54675", "62686", "71775", "81571", "92597", "104425", "117645", "131768", "147455", "164152", "182595", "202161", "223665", "246411", "271297", "297550" ]
[ "nonn", "easy" ]
15
0
4
[ "A343053", "A377521" ]
null
Stefano Spezia, Jan 03 2025
2025-01-05T04:22:03
oeisdata/seq/A377/A377521.seq
4e244114cfcbd7e1ec5880f37ca209f6
A377522
Decimal expansion of 1/3 - sqrt(3)/(4*Pi).
[ "1", "9", "5", "5", "0", "1", "1", "0", "9", "4", "7", "7", "8", "8", "5", "3", "2", "0", "9", "5", "5", "5", "0", "1", "7", "0", "8", "7", "5", "5", "0", "9", "0", "9", "7", "2", "9", "8", "3", "9", "8", "6", "7", "1", "3", "2", "4", "1", "6", "7", "3", "1", "7", "0", "1", "3", "3", "4", "9", "1", "8", "2", "8", "2", "6", "0", "5", "7", "5", "7", "5", "7", "4", "6", "6", "0", "1", "5", "8", "8", "4", "6", "2", "3", "2", "3", "8" ]
[ "nonn", "cons", "easy" ]
36
0
2
[ "A102519", "A132116", "A258147", "A343235", "A358981", "A377522", "A377523" ]
null
Joshua Searle, Oct 30 2024
2024-11-21T09:05:10
oeisdata/seq/A377/A377522.seq
50da059b8c6defe849b06aa3e449d8d6
A377523
Continued fraction expansion of 1/3 - sqrt(3)/(4*Pi).
[ "0", "5", "8", "1", "2", "4", "4", "1", "1", "2", "5", "4", "1", "6", "13", "37", "20", "2", "1", "3", "1", "37", "1", "5", "1", "1", "4", "3", "1", "2", "1", "1", "5", "2", "4", "10", "1", "3", "15", "3", "6", "2", "2", "7", "1", "1", "6", "4", "2", "2", "6", "1", "1100", "3", "13", "1", "2", "1", "5", "348", "1", "2", "1", "6", "1", "25", "1", "1", "1", "18", "2", "10", "1", "56", "1", "1", "1", "1", "2", "12", "1", "20" ]
[ "nonn", "cofr" ]
24
0
2
[ "A132116", "A343235", "A377522", "A377523" ]
null
Joshua Searle, Oct 30 2024
2024-11-20T10:00:28
oeisdata/seq/A377/A377523.seq
08d170efa0ca2a4dca62d3cbf7e2b0c3
A377524
Number of steps for n to reach the minimum of its final cycle under iterations of the map (A123684): x->(3x-1)/2 if x odd, x/2 otherwise; or -1 if this never happens.
[ "0", "1", "3", "2", "0", "4", "2", "3", "7", "1", "5", "5", "6", "3", "7", "4", "0", "8", "5", "2", "5", "6", "2", "6", "10", "7", "4", "4", "8", "8", "4", "5", "12", "1", "9", "9", "9", "6", "10", "3", "6", "6", "7", "7", "14", "3", "11", "7", "11", "11", "8", "8", "12", "5", "8", "5", "20", "9", "9", "9", "5", "5", "13", "6", "25", "13", "13", "2", "14", "10", "14", "10", "10", "10", "7", "7", "11", "11", "11", "4" ]
[ "nonn" ]
10
1
3
[ "A006666", "A123684", "A135730", "A377524" ]
null
Kevin Ge, Oct 28 2024
2024-11-12T09:03:17
oeisdata/seq/A377/A377524.seq
c47c9717e0843dbb2b32cd4ae01f6ed0
A377525
Records in A376281.
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "13", "14", "15", "17", "21", "23", "27", "29", "35", "39", "41", "45", "51", "53", "59", "61", "63", "75", "76", "81", "89", "93", "96", "105", "107", "117", "123", "129", "137", "155", "160", "161", "173", "185", "197", "200", "205", "217", "245", "251", "289", "311", "315", "337", "341", "357", "365", "377", "381", "405", "408" ]
[ "nonn" ]
22
1
2
[ "A376281", "A376687", "A377525", "A379336" ]
null
Michael De Vlieger, Jan 09 2025
2025-01-11T03:47:39
oeisdata/seq/A377/A377525.seq
6112840699353bc65fbb96ee694530a4
A377526
E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^5.
[ "1", "1", "12", "273", "9604", "460105", "27966126", "2062219117", "178897527768", "17853102321489", "2014988044093210", "253792946798597701", "35290880970687039732", "5370055269772474994713", "887591963820839894529654", "158357028389450319651183165", "30332317748593431632078480176", "6208425034878692992471996557217" ]
[ "nonn" ]
12
0
3
[ "A002294", "A006153", "A295238", "A364983", "A364987", "A377526" ]
null
Seiichi Manyama, Oct 30 2024
2024-11-11T13:28:15
oeisdata/seq/A377/A377526.seq
845209f572479bb349b90c7187f41d07
A377527
E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x)^2)^2.
[ "1", "2", "26", "618", "22256", "1081770", "66401532", "4931389358", "430108545680", "43104305664594", "4881518010253460", "616559703960596022", "85935621525038617752", "13102417265843584412474", "2169337115977056447577820", "387609934848899388554651550", "74340899731294447790784890912" ]
[ "nonn" ]
9
0
2
[ "A377503", "A377526", "A377527", "A377528", "A377529" ]
null
Seiichi Manyama, Oct 30 2024
2024-10-31T06:48:06
oeisdata/seq/A377/A377527.seq
bb62d73268f32a333a5bed76ee9995f8
A377528
E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^4.
[ "1", "4", "60", "1548", "58456", "2930020", "183763704", "13866109012", "1224251041248", "123885272536452", "14140672597851880", "1797709847594145364", "251941291752251706576", "38593132701417704324356", "6415647343472197357272984", "1150373241484390263973203540", "221318733487356013660505462464" ]
[ "nonn" ]
7
0
2
[ "A295238", "A377503", "A377504", "A377526", "A377527", "A377528" ]
null
Seiichi Manyama, Oct 30 2024
2024-10-31T06:48:01
oeisdata/seq/A377/A377528.seq
142877b11c863493d73e26e169880e76
A377529
Expansion of e.g.f. 1/(1 - x * exp(x))^2.
[ "1", "2", "10", "66", "560", "5770", "69852", "970886", "15228880", "266006610", "5119447700", "107617719022", "2453167135608", "60268223308826", "1587381621990556", "44619277892537910", "1333135910963656352", "42189279001183102882", "1409741875877923927332", "49597905017847180008126" ]
[ "nonn", "easy" ]
14
0
2
[ "A006153", "A377503", "A377527", "A377529", "A377530" ]
null
Seiichi Manyama, Oct 30 2024
2025-02-04T13:06:41
oeisdata/seq/A377/A377529.seq
9d87a42a8b6260168b4d86ee1daeeb19
A377530
Expansion of e.g.f. 1/(1 - x * exp(x))^3.
[ "1", "3", "18", "141", "1380", "16095", "217458", "3335745", "57225528", "1085066523", "22526087070", "508042140573", "12367076890644", "323130848000727", "9018976230237834", "267789942962863065", "8427492557547704688", "280194087519310655667", "9813332205452943323190", "361109786425470021564021" ]
[ "nonn", "easy" ]
15
0
2
[ "A006153", "A377504", "A377529", "A377530", "A377532", "A377534" ]
null
Seiichi Manyama, Oct 30 2024
2025-02-05T22:04:14
oeisdata/seq/A377/A377530.seq
c24df1592f3eb8073b4c19a09924a869
A377531
Expansion of e.g.f. 1/(1 - x^2 * exp(x))^2.
[ "1", "0", "4", "12", "96", "760", "7260", "80724", "1008112", "14079888", "216881460", "3652767580", "66773963784", "1316433381432", "27840054610732", "628626642921060", "15093709672205280", "383989133237230624", "10317497504580922212", "291958800400148127660", "8678485827979443326200" ]
[ "nonn", "easy" ]
9
0
3
[ "A358080", "A377531", "A377532" ]
null
Seiichi Manyama, Oct 31 2024
2024-10-31T13:28:16
oeisdata/seq/A377/A377531.seq
b988c72f382439634861b34467717f6b
A377532
Expansion of e.g.f. 1/(1 - x^2 * exp(x))^3.
[ "1", "0", "6", "18", "180", "1500", "15930", "191646", "2580648", "38683224", "636068430", "11392350090", "220658360076", "4594593295188", "102333126352002", "2427278515815510", "61079333377870800", "1625065147997303856", "45576552142354413078", "1343802083242003570818", "41552482139458105525620" ]
[ "nonn", "easy" ]
9
0
3
[ "A358080", "A377531", "A377532" ]
null
Seiichi Manyama, Oct 31 2024
2024-10-31T13:24:57
oeisdata/seq/A377/A377532.seq
5cba4d423826aae3f912a6619f06cc1d
A377533
Expansion of e.g.f. 1/(1 - x * exp(x^2))^2.
[ "1", "2", "6", "36", "264", "2280", "23760", "283920", "3830400", "57728160", "959212800", "17424348480", "343508014080", "7302340805760", "166504724305920", "4053311579116800", "104916366780825600", "2877212787562713600", "83332056329006284800", "2541707625791324390400", "81432631127484628992000" ]
[ "nonn", "easy" ]
8
0
2
[ "A358064", "A377533", "A377534" ]
null
Seiichi Manyama, Oct 31 2024
2024-10-31T13:30:42
oeisdata/seq/A377/A377533.seq
6dfa333f3e0c55f202e3db312201f26d
A377534
Expansion of e.g.f. 1/(1 - x * exp(x^2))^3.
[ "1", "3", "12", "78", "648", "6300", "72000", "939960", "13749120", "223035120", "3969907200", "76890733920", "1609732776960", "36214043785920", "871131980759040", "22310233170825600", "606026217929932800", "17401756135956192000", "526641334386809241600", "16753142420507766873600" ]
[ "nonn", "easy" ]
8
0
2
[ "A358064", "A377533", "A377534" ]
null
Seiichi Manyama, Oct 31 2024
2024-10-31T13:18:33
oeisdata/seq/A377/A377534.seq
0b6aa1ab1c1dfe72c9c67fabdacf5455
A377535
First term of n-th differences of the sequence x^(x-1) for x >= 1.
[ "1", "1", "6", "42", "416", "5210", "79212", "1417094", "29168624", "679100562", "17645739500", "506235093782", "15893604725352", "542039221415354", "19954673671286564", "788708093950072830", "33312472504166976992", "1497371019734704549538", "71368260385615670087388", "3595248209512068272420582", "190872048208819769608101080" ]
[ "nonn" ]
40
0
3
[ "A000169", "A038051", "A377535" ]
null
Harri Aaltonen, Oct 31 2024
2024-11-07T09:51:47
oeisdata/seq/A377/A377535.seq
c016cc875c19c0901450a1dac855c77a
A377536
Integers that are the arithmetic mean of two distinct Fibonacci numbers (A000045).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "12", "13", "17", "18", "21", "28", "29", "30", "34", "38", "45", "46", "47", "51", "55", "72", "73", "76", "89", "117", "118", "119", "123", "127", "144", "161", "189", "190", "191", "195", "199", "216", "233", "305", "306", "309", "322", "377", "494", "495", "496", "500", "504", "521", "538", "610", "682", "799", "800", "801", "805" ]
[ "nonn" ]
8
1
2
[ "A000045", "A084176", "A377536" ]
null
Felix Huber, Dec 18 2024
2024-12-23T22:18:25
oeisdata/seq/A377/A377536.seq
633791cd76f11a705dd0f196016a8bc3
A377537
a(n) is the number of positive integers that have n prime factors and these are all <= n.
[ "0", "1", "4", "5", "21", "28", "120", "165", "220", "286", "1365", "1820", "8568", "11628", "15504", "20349", "100947", "134596", "657800", "888030", "1184040", "1560780", "7888725", "10518300", "13884156", "18156204", "23535820", "30260340", "163011640", "211915132", "1121099408", "1471442973", "1917334783", "2481256778", "3190187286" ]
[ "nonn" ]
23
1
3
[ "A000040", "A000720", "A001222", "A037031", "A113645", "A343935", "A377537" ]
null
Felix Huber, Nov 04 2024
2024-11-13T17:16:29
oeisdata/seq/A377/A377537.seq
12544e484c474051ffc52e240be67971
A377538
Number of edge cuts in the n-Dorogovtsev-Goltsev-Mendes graph.
[ "4", "352", "127664128" ]
[ "nonn", "more", "bref" ]
8
1
1
null
null
Eric W. Weisstein, Oct 31 2024
2024-11-01T13:38:01
oeisdata/seq/A377/A377538.seq
f809b11184aeee201c68136276b612c3
A377539
The number of iterations of the map x -> x + A000005(x), starting from n, until reaching an even number, and always at least one iteration taken.
[ "1", "1", "4", "3", "3", "1", "2", "1", "1", "1", "6", "1", "5", "1", "4", "3", "4", "1", "3", "1", "2", "1", "2", "1", "1", "1", "16", "1", "16", "1", "15", "1", "14", "1", "13", "11", "13", "1", "12", "1", "12", "1", "11", "1", "10", "1", "2", "1", "1", "1", "9", "1", "9", "1", "8", "1", "7", "1", "7", "1", "6", "1", "5", "5", "5", "1", "5", "1", "4", "1", "4", "1", "3", "1", "2", "1", "2", "1", "2", "1", "1", "1", "38", "1", "37", "1", "36", "1", "36", "1", "35", "1", "35" ]
[ "nonn", "look" ]
40
1
3
[ "A000005", "A016754", "A062249", "A064491", "A157502", "A323158", "A377539" ]
null
Ctibor O. Zizka, Oct 31 2024
2025-01-15T09:17:06
oeisdata/seq/A377/A377539.seq
6d84121fa89425fb4c6bff8de2b4d750
A377540
Numbers k such that at least one of the numbers 6k-1 or 6k+1 is prime
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "22", "23", "25", "26", "27", "28", "29", "30", "32", "33", "35", "37", "38", "39", "40", "42", "43", "44", "45", "46", "47", "49", "51", "52", "53", "55", "56", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "70", "72", "73", "74", "75", "76", "77", "78", "80", "81", "82", "83", "84", "85", "87" ]
[ "nonn", "easy" ]
27
1
2
[ "A002476", "A007528", "A024898", "A024899", "A060461", "A171696", "A377540" ]
null
Michel Eduardo Beleza Yamagishi, Oct 31 2024
2024-11-05T15:20:37
oeisdata/seq/A377/A377540.seq
4d8edee1546b983997a87d3ee6ea0492
A377541
E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^2.
[ "1", "2", "10", "90", "1184", "20650", "450252", "11803526", "361892848", "12712357170", "503564718260", "22212233618542", "1079909444635848", "57379354040049002", "3308238701451609772", "205715613407117613270", "13724187813695296374752", "977841609869801208944482", "74108335568947966714172004" ]
[ "nonn" ]
29
0
2
[ "A161633", "A364980", "A377541", "A377545", "A377551" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:29:54
oeisdata/seq/A377/A377541.seq
c35aa97238b61ba2486a46d743fdb7a7
A377542
Decimal expansion of Gamma(1/4)^4/(16*Pi^2).
[ "1", "0", "9", "4", "2", "1", "9", "8", "0", "7", "6", "1", "3", "2", "3", "8", "3", "1", "9", "4", "1", "8", "3", "8", "4", "9", "7", "0", "3", "5", "2", "2", "3", "2", "2", "7", "1", "6", "2", "9", "6", "8", "6", "3", "6", "1", "4", "1", "2", "7", "8", "3", "3", "6", "1", "0", "5", "9", "6", "4", "3", "1", "0", "5", "2", "8", "9", "7", "2", "5", "9", "6", "9", "2", "2", "2", "9", "6", "6", "4", "7", "3", "8", "8", "5", "5", "1", "6", "5", "7", "4", "8", "3", "8", "7", "8", "0", "4", "3", "1" ]
[ "nonn", "cons", "easy" ]
13
1
3
[ "A002388", "A068465", "A068466", "A068467", "A254794", "A377542" ]
null
Stefano Spezia, Oct 31 2024
2025-03-30T20:23:48
oeisdata/seq/A377/A377542.seq
3a43f1beb849bd85878b04e65945d97f
A377543
a(n) = least prime > a(n - 1)*a(n - 3)/a(n - 2), with a(1) = 2, a(2) = 3, a(3) = 5.
[ "2", "3", "5", "5", "5", "7", "11", "11", "11", "13", "17", "17", "17", "19", "23", "23", "23", "29", "31", "29", "29", "37", "41", "37", "37", "43", "47", "41", "41", "53", "59", "47", "43", "59", "67", "53", "47", "61", "71", "59", "53", "67", "79", "67", "59", "71", "83", "71", "61", "73", "89", "79", "67", "79", "97", "83", "71", "83", "101", "89", "79", "97", "113", "97", "89" ]
[ "nonn" ]
5
1
1
[ "A000040", "A377543", "A377544" ]
null
Clark Kimberling, Nov 13 2024
2024-11-17T07:32:02
oeisdata/seq/A377/A377543.seq
b69c4d26a0c676243526047e889369b1
A377544
a(n) = least prime > (5/3)*a(n - 1)*a(n - 3)/a(n - 2), with a(1) = 2, a(2) = 3, a(3) = 5.
[ "2", "3", "5", "7", "11", "17", "19", "23", "37", "53", "59", "71", "107", "149", "167", "211", "317", "419", "467", "593", "887", "1171", "1307", "1657", "2477", "3257", "3637", "4621", "6899", "9059", "10133", "12889", "19207", "25169", "28151", "35809", "53377", "69941", "78203", "99487", "148301", "194309", "217253", "276359", "411967" ]
[ "nonn" ]
8
1
1
[ "A000040", "A377543", "A377544" ]
null
Clark Kimberling, Nov 13 2024
2025-01-19T05:24:51
oeisdata/seq/A377/A377544.seq
41b4a1e0021673820c4dadb55108344a
A377545
E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^3.
[ "1", "3", "18", "195", "3108", "65595", "1730538", "54891165", "2036187576", "86536398195", "4147191867630", "221314773837333", "13017260705093604", "836754118106509083", "58364080427471191506", "4390560359156841730605", "354356981533262814367728", "30543768949098926368973667", "2800395449868306713606542422" ]
[ "nonn" ]
8
0
2
[ "A161633", "A364981", "A377541", "A377545", "A377551" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:29:59
oeisdata/seq/A377/A377545.seq
a75cd796b5b17d8a46caf034d68a0450
A377546
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^2 ).
[ "1", "2", "18", "294", "7136", "231410", "9421932", "462459242", "26593896912", "1754278123266", "130611457831700", "10835721949072922", "991315043401627320", "99154012317212577218", "10765112531819005907484", "1260860266373297376720810", "158473050112495481401395872", "21275613503385328981848681986" ]
[ "nonn" ]
10
0
2
[ "A213644", "A364985", "A377546", "A377548" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:32:59
oeisdata/seq/A377/A377546.seq
fee1b376643f22a803e0c1168e77ccd9
A377547
E.g.f. satisfies A(x) = 1/(1 - x * A(x)^2 * exp(x*A(x)))^2.
[ "1", "2", "26", "642", "24032", "1213770", "77394732", "5969555438", "540660333488", "56259187813170", "6614835933664820", "867369682746517302", "125500890673265913192", "19863391924198865128970", "3413850970930399074000044", "633165846392393276109473790", "126051163243470714005823101792" ]
[ "nonn" ]
6
0
2
[ "A377547", "A377549" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:30:14
oeisdata/seq/A377/A377547.seq
4702d25c7264e46c5269fe6989881101
A377548
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^3 ).
[ "1", "3", "36", "789", "25644", "1112655", "60584058", "3975599271", "305587795320", "26941234079259", "2680537845979470", "297158198268036963", "36325021999771692036", "4854553774172042934279", "704185171457954845825026", "110192472149320674192100815", "18503193203651913813111781488", "3318723221891108953801703239731" ]
[ "nonn" ]
8
0
2
[ "A213644", "A365177", "A377546", "A377548" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:32:54
oeisdata/seq/A377/A377548.seq
391adc9afcdddf053d934f5d28d49195
A377549
E.g.f. satisfies A(x) = 1 + x*A(x)^5*exp(x*A(x)^2).
[ "1", "1", "12", "285", "10444", "520465", "32882406", "2519264797", "227003238792", "23526134771553", "2757165645132010", "360564513170510341", "52053350012338720332", "8222888925567102799441", "1410913077291231960911934", "261306906300110395598900685", "51955790654759866661097707536" ]
[ "nonn" ]
7
0
3
[ "A364980", "A364982", "A364985", "A365176", "A377547", "A377549" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:30:24
oeisdata/seq/A377/A377549.seq
84d2db903c844e5248ccb24639ae2b41
A377550
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^4).
[ "1", "1", "4", "45", "772", "17865", "525966", "18794881", "790175128", "38221092657", "2091074167450", "127675964340441", "8606833626646740", "634928943628432921", "50878715440232312374", "4400937219238706030865", "408700742920092110904496", "40558224679468186878237153", "4283310197644529184427059378" ]
[ "nonn" ]
8
0
3
[ "A161633", "A364980", "A364981", "A377550", "A377551", "A377552" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:30:18
oeisdata/seq/A377/A377550.seq
f97266f71046a1a81e63c39654379027
A377551
E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^4.
[ "1", "4", "28", "348", "6424", "156900", "4788024", "175678468", "7538078944", "370557062532", "20540717542120", "1267858489975044", "86252943572785488", "6412719306748404676", "517341051818833834648", "45012757582472804739780", "4201834386001491870902464", "418891045572216881436564228" ]
[ "nonn" ]
8
0
2
[ "A161633", "A377541", "A377545", "A377550", "A377551", "A377552" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:30:05
oeisdata/seq/A377/A377551.seq
4053197a55aead5ea85467c72fec61d5
A377552
E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)^2))^2.
[ "1", "2", "10", "114", "2000", "47050", "1399452", "50386406", "2130643216", "103530094866", "5684985037460", "348165567064942", "23530146364469208", "1739586913373486138", "139658209205202262876", "12099843726478251739830", "1125274333255817053205792", "111809642081518362872011042", "11821367007844973309548419876" ]
[ "nonn" ]
9
0
2
[ "A377550", "A377551", "A377552" ]
null
Seiichi Manyama, Oct 31 2024
2024-11-01T09:30:10
oeisdata/seq/A377/A377552.seq
6b9b3b22a583782d0553fd5957b75679
A377553
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x))^2 ).
[ "1", "2", "14", "174", "3176", "77010", "2336892", "85316714", "3644408336", "178412603778", "9851421767060", "605826315779322", "41068369222584024", "3042849619010389058", "244657525386435161756", "21217387476442659806250", "1974219906922046702054432", "196191093901292764305110274", "20739322455031604846405387556" ]
[ "nonn" ]
10
0
2
[ "A161633", "A364982", "A377553", "A377554" ]
null
Seiichi Manyama, Nov 01 2024
2024-11-01T09:32:50
oeisdata/seq/A377/A377553.seq
354913c451d72f41a46ce326b9b75b2a
A377554
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x))^3 ).
[ "1", "3", "30", "537", "14124", "493695", "21601458", "1137294039", "70064934600", "4947238170747", "394022075650590", "34951812094581723", "3417754921150904172", "365287875167708973831", "42368411854713294141834", "5300422308901745571018735", "711465905597330333014408848", "101995745742232833085109746803" ]
[ "nonn" ]
9
0
2
[ "A161633", "A364986", "A377553", "A377554" ]
null
Seiichi Manyama, Nov 01 2024
2024-11-01T09:30:28
oeisdata/seq/A377/A377554.seq
56c4da30966d64a1eb17b9cd160eccd8
A377555
E.g.f.: exp(Sum_{n>=1} A038500(n) * x^n).
[ "1", "1", "3", "25", "121", "861", "10051", "88453", "972945", "16663321", "205667011", "3069838641", "61038456073", "997387656565", "18623707785411", "426663334715101", "8606752819074721", "192052302116929713", "5139946157328092035", "122142504609497184841", "3172736666738570349081", "94751480557190553846541" ]
[ "nonn" ]
4
0
3
[ "A038500", "A161809", "A377555", "A377556" ]
null
Vaclav Kotesovec, Nov 01 2024
2024-11-01T07:14:16
oeisdata/seq/A377/A377555.seq
7d0e96e54639a3d7beddf58518a362b9
A377556
E.g.f.: exp(Sum_{n>=1} A006519(n) * x^n).
[ "1", "1", "5", "19", "193", "1181", "13021", "117895", "1868609", "20980153", "348219541", "4940639771", "98898110785", "1632238421269", "34910480911853", "672959412044431", "16733065940227201", "359936040496423025", "9469928134781142949", "229631546862609396643", "6716832478519734558401", "178344294076141938008461" ]
[ "nonn" ]
3
0
3
[ "A000123", "A006519", "A038500", "A161809", "A377555", "A377556" ]
null
Vaclav Kotesovec, Nov 01 2024
2024-11-01T07:14:09
oeisdata/seq/A377/A377556.seq
f1850a77eaebaeecbb14ad99f89b2876
A377557
Decimal expansion of 2*Pi^3/(81*sqrt(3)) + 13*zeta(3)/27.
[ "1", "0", "2", "0", "7", "8", "0", "0", "4", "4", "4", "3", "3", "3", "6", "3", "1", "0", "2", "8", "2", "3", "2", "5", "4", "7", "3", "9", "9", "0", "3", "9", "8", "1", "8", "2", "5", "3", "5", "3", "4", "1", "0", "9", "3", "7", "5", "1", "9", "0", "6", "9", "6", "6", "9", "7", "3", "5", "7", "2", "0", "7", "5", "2", "5", "3", "9", "1", "4", "6", "5", "9", "9", "2", "6", "5", "6", "2", "7", "1", "5", "5", "4", "4", "9", "8", "0", "6", "7", "2", "0", "3", "4", "2", "6", "7", "6", "1", "3", "7" ]
[ "nonn", "cons", "changed" ]
13
1
3
[ "A002117", "A002194", "A016777", "A016779", "A091925", "A233091", "A377557", "A377558", "A377559", "A377560" ]
null
Stefano Spezia, Nov 01 2024
2025-07-14T16:43:22
oeisdata/seq/A377/A377557.seq
2065b4bc70cf237b7c1df579b6274c88
A377558
Decimal expansion of Pi^3/64 + 7*zeta(3)/16.
[ "1", "0", "1", "0", "3", "7", "2", "9", "6", "8", "2", "6", "2", "0", "0", "7", "1", "9", "0", "1", "0", "4", "2", "0", "2", "8", "6", "8", "5", "8", "4", "7", "1", "8", "6", "7", "0", "9", "9", "4", "4", "5", "1", "6", "3", "6", "7", "4", "0", "9", "2", "3", "0", "6", "8", "5", "0", "5", "1", "2", "7", "2", "1", "3", "3", "3", "4", "0", "2", "9", "1", "3", "5", "6", "1", "6", "9", "1", "3", "6", "3", "3", "7", "9", "3", "5", "5", "4", "1", "4", "8", "3", "3", "8", "5", "0", "4", "2", "7", "2" ]
[ "nonn", "cons", "changed" ]
12
1
5
[ "A002117", "A016813", "A016815", "A091925", "A233091", "A377557", "A377558", "A377559", "A377560" ]
null
Stefano Spezia, Nov 01 2024
2025-07-14T16:43:18
oeisdata/seq/A377/A377558.seq
4f271d0f88f4f2a764f7925bd06045c1
A377559
Decimal expansion of Sum_{k>=0} 1/(5*k + 1)^3.
[ "1", "0", "0", "5", "9", "1", "2", "1", "4", "4", "4", "5", "7", "7", "4", "3", "7", "3", "2", "2", "3", "6", "7", "9", "2", "3", "6", "0", "1", "4", "7", "0", "0", "1", "4", "4", "8", "2", "5", "4", "9", "3", "6", "1", "1", "2", "0", "6", "4", "0", "2", "4", "5", "8", "2", "4", "7", "0", "3", "3", "3", "9", "6", "5", "0", "7", "1", "0", "0", "0", "5", "7", "4", "8", "0", "7", "3", "9", "3", "4", "6", "2", "0", "2", "7", "7", "4", "1", "1", "7", "8", "1", "0", "7", "3", "1", "2", "0", "3", "6" ]
[ "nonn", "cons" ]
5
1
4
[ "A016861", "A016863", "A233091", "A377557", "A377558", "A377559", "A377560" ]
null
Stefano Spezia, Nov 01 2024
2024-11-01T23:46:14
oeisdata/seq/A377/A377559.seq
126f437c273078b97eb1abfbbfa0e388
A377560
Decimal expansion of Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.
[ "1", "0", "0", "3", "6", "8", "5", "5", "1", "5", "3", "4", "7", "9", "5", "2", "6", "9", "7", "0", "6", "3", "2", "3", "0", "1", "3", "7", "0", "2", "4", "8", "6", "0", "5", "7", "3", "1", "5", "2", "7", "2", "7", "8", "4", "3", "5", "9", "3", "8", "9", "3", "3", "2", "7", "8", "6", "6", "5", "7", "9", "0", "8", "5", "3", "1", "5", "3", "9", "2", "7", "3", "2", "7", "3", "6", "5", "8", "9", "1", "5", "9", "3", "9", "5", "6", "2", "5", "8", "3", "4", "8", "5", "8", "4", "6", "1", "0", "4", "0" ]
[ "nonn", "cons" ]
4
1
4
[ "A002117", "A002194", "A016921", "A016923", "A091925", "A233091", "A377557", "A377558", "A377559", "A377560" ]
null
Stefano Spezia, Nov 01 2024
2024-11-01T23:46:41
oeisdata/seq/A377/A377560.seq
8516284d2be24d2f55b80618df7c75d9
A377561
Numbers k such that 24k - 1 and 24k + 1 are a pair of twin primes in A115591.
[ "8", "13", "62", "78", "113", "125", "132", "157", "207", "230", "315", "337", "428", "473", "493", "570", "652", "763", "788", "902", "928", "932", "987", "1075", "1113", "1135", "1147", "1158", "1225", "1245", "1322", "1327", "1387", "1432", "1483", "1602", "1607", "1672", "1702", "1753", "1767", "1845", "1880", "1973", "1992", "2083", "2155", "2212", "2220", "2233" ]
[ "nonn" ]
9
1
1
[ "A002822", "A115591", "A319250", "A367318", "A377561" ]
null
Jianing Song, Nov 01 2024
2024-11-04T11:13:32
oeisdata/seq/A377/A377561.seq
f07c358b9eace53ef5feb693b41c2a71
A377562
Numbers that have twice as many infinitary divisors as noninfinitary divisors.
[ "4", "9", "12", "18", "20", "25", "28", "32", "44", "45", "49", "50", "52", "60", "63", "68", "72", "75", "76", "84", "90", "92", "96", "98", "99", "108", "116", "117", "121", "124", "126", "132", "140", "147", "148", "150", "153", "156", "160", "164", "169", "171", "172", "175", "188", "198", "200", "204", "207", "212", "220", "224", "228", "234", "236", "242", "243", "244", "245" ]
[ "nonn", "easy" ]
10
1
1
[ "A000005", "A000225", "A036537", "A037445", "A060687", "A077609", "A083329", "A327839", "A335832", "A348341", "A377562", "A377563" ]
null
Amiram Eldar, Nov 01 2024
2024-11-01T23:51:15
oeisdata/seq/A377/A377562.seq
4dc3130b90ad1802afd81d02fe65bacd
A377563
Numbers that have fewer infinitary divisors than noninfinitary divisors.
[ "16", "36", "48", "80", "81", "100", "112", "144", "162", "176", "180", "196", "208", "225", "240", "252", "256", "272", "288", "300", "304", "324", "336", "368", "396", "400", "405", "432", "441", "450", "464", "468", "484", "496", "512", "528", "560", "567", "576", "588", "592", "612", "624", "625", "648", "656", "676", "684", "688", "700", "720", "752", "768", "784", "800" ]
[ "nonn", "easy" ]
7
1
1
[ "A000005", "A037445", "A062289", "A077609", "A083329", "A158582", "A327839", "A335832", "A348341", "A377562", "A377563" ]
null
Amiram Eldar, Nov 01 2024
2024-11-01T23:51:24
oeisdata/seq/A377/A377563.seq
11999d4901479f77312876967da89332
A377564
Primes that contain at least two different even digits and at least two different odd digits such that any permutation of the odd digits and any permutation of the even digits produces a prime. Permutations with leading 0s are disregarded; ie. if permutations of even digits in a prime p produce a number with a leading 0 that is not prime, p is still in the sequence.
[ "1249", "1429", "1487", "1847", "2309", "2617", "2671", "2903", "4019", "4091", "6037", "6073", "6217", "6271", "6389", "6709", "6907", "6983", "7481", "7841", "8039", "8093", "8369", "8963", "9241", "9421", "20129", "20177", "20389", "20717", "20771", "20921", "20983", "21013", "21031", "22109", "22901", "23011" ]
[ "nonn", "base" ]
14
1
1
[ "A000040", "A003459", "A376500", "A376501", "A376502", "A377564" ]
null
Enrique Navarrete, Nov 01 2024
2024-11-20T09:58:45
oeisdata/seq/A377/A377564.seq
af1a23ccbf48957636ff0e11cf7cde9d
A377565
a(n) is the least multiple of n with more decimal digits than n.
[ "10", "10", "12", "12", "10", "12", "14", "16", "18", "100", "110", "108", "104", "112", "105", "112", "102", "108", "114", "100", "105", "110", "115", "120", "100", "104", "108", "112", "116", "120", "124", "128", "132", "102", "105", "108", "111", "114", "117", "120", "123", "126", "129", "132", "135", "138", "141", "144", "147", "100", "102", "104", "106", "108" ]
[ "nonn", "base", "easy" ]
15
1
1
[ "A055642", "A097327", "A109940", "A377565" ]
null
Rémy Sigrist, Nov 01 2024
2024-11-02T12:31:41
oeisdata/seq/A377/A377565.seq
e39f031c0dd0d001f2636b76fa7a3cd0
A377566
Lexicographically earliest infinite sequence of distinct positive integers such that if j = a(n-1) is primorial, a(n) is the smallest prime not already a term, whereas if j is not primorial a(n) is the smallest novel number > j divisible by rad(j).
[ "1", "2", "3", "6", "5", "10", "20", "30", "7", "14", "28", "42", "84", "126", "168", "210", "11", "22", "44", "66", "132", "198", "264", "330", "660", "990", "1320", "1650", "1980", "2310", "13", "26", "52", "78", "156", "234", "312", "390", "780", "1170", "1560", "1950", "2340", "2730", "5460", "8190", "10920", "13650", "16380", "19110", "21840", "24570", "27300", "30030", "17" ]
[ "nonn" ]
23
1
2
[ "A000040", "A002110", "A005117", "A101301", "A377566" ]
null
David James Sycamore, Nov 03 2024
2024-11-04T20:46:00
oeisdata/seq/A377/A377566.seq
961e2ed7f183ecaef67ebe051ae2f164
A377567
Decimal expansion of 3*zeta(3)/2 + 12*log(2) - 10.
[ "1", "2", "0", "8", "5", "1", "5", "2", "1", "4", "5", "8", "7", "3", "5", "1", "4", "1", "1", "0", "6", "3", "9", "2", "6", "9", "9", "7", "6", "5", "2", "9", "3", "8", "0", "3", "0", "5", "3", "4", "8", "1", "0", "5", "0", "8", "3", "3", "8", "1", "1", "3", "7", "2", "1", "3", "6", "5", "6", "7", "4", "4", "6", "9", "3", "3", "4", "8", "0", "7", "7", "2", "3", "1", "5", "8", "0", "6", "2", "2", "2", "5", "5", "0", "0", "4", "3", "7", "3", "4", "3", "7", "1", "0", "2", "7", "1", "3", "7", "7" ]
[ "nonn", "cons" ]
13
0
2
[ "A002117", "A002162", "A060459", "A377567" ]
null
Stefano Spezia, Nov 03 2024
2024-11-04T01:47:38
oeisdata/seq/A377/A377567.seq
4c21251e05a00ffa5b3257881d20787f
A377568
Numbers k with the property that the maximum density of points in the integer lattice with all distances at least sqrt(k) is 1/k.
[ "1", "2", "4", "5", "8", "9", "10", "16", "18", "20", "32", "36", "49", "81" ]
[ "nonn", "fini", "full" ]
35
1
2
[ "A001481", "A377568" ]
null
Erich Friedman, Nov 04 2024
2024-11-17T07:29:37
oeisdata/seq/A377/A377568.seq
e9d41e92a0a343a432817de251e9599a
A377569
Number of simple graphs such that each connected component is nonseparable and the number of vertices minus the number of connected components equals n.
[ "1", "1", "2", "5", "16", "75", "560", "7772", "202546", "9955274", "911146844", "154541913254", "48588413940171", "28410569347709449", "31024350279787141361", "63532688288261802284578", "244915643061880269492533777", "1783405573307429828266152750816", "24605670701967180148649252153837623" ]
[ "nonn" ]
4
0
3
[ "A002218", "A377569" ]
null
Andrey Zabolotskiy, Nov 01 2024
2024-11-01T23:44:33
oeisdata/seq/A377/A377569.seq
cdecca1145d114ad3dfeba1d7e422f8e
A377570
a(n) = round((H(n) + e^H(n)*log(H(n)) + sigma(n))/2).
[ "1", "3", "5", "7", "8", "12", "12", "16", "17", "21", "19", "28", "23", "29", "30", "35", "30", "42", "34", "46", "43", "46", "41", "61", "48", "55", "55", "65", "53", "76", "57", "74", "68", "73", "71", "94", "69", "82", "81", "100", "77", "106", "81", "103", "101", "100", "89", "129", "97", "116", "107", "122", "102", "136", "114", "139", "121", "127", "114", "169", "118", "137" ]
[ "nonn" ]
33
1
2
[ "A000203", "A001008", "A002805", "A057641", "A377570" ]
null
Ahmad J. Masad, Nov 01 2024
2025-04-15T00:24:55
oeisdata/seq/A377/A377570.seq
cc239583fcc1340e9f42b7fa080aa7f1
A377571
a(n) is a n-digit number; for k = 1..n, its k-th digit is the most frequent k-th digit among n-digit prime numbers; in case of a tie, preference is given to the least digit.
[ "2", "13", "157", "1223", "12127", "104993", "1000597", "10289067", "100080553", "1000447633", "10015225131" ]
[ "nonn", "base", "more" ]
20
1
1
[ "A092800", "A152272", "A377571" ]
null
Rémy Sigrist, Nov 01 2024
2024-11-07T08:46:12
oeisdata/seq/A377/A377571.seq
c5130ae6ab816e17a8230373b6fb33e3
A377572
Total number of elements (with multiplicity) in all subsets of [n] having a square element sum.
[ "0", "1", "1", "3", "7", "12", "30", "61", "124", "247", "491", "980", "1962", "3949", "7916", "15863", "31815", "63692", "127570", "255529", "511627", "1024421", "2051038", "4105848", "8218842", "16450989", "32926094", "65897438", "131879440", "263915641", "528125412", "1056802576", "2114639286", "4231226460", "8466125334", "16939180972" ]
[ "nonn" ]
17
0
4
[ "A126024", "A281871", "A377572" ]
null
Alois P. Heinz, Nov 01 2024
2024-11-07T19:16:44
oeisdata/seq/A377/A377572.seq
3e1a92e6686c5d2b571f21bf1da873aa
A377573
Cogrowth sequence for the 14-element dihedral group D7 = <S,T | S^7, T^2, (ST)^2>.
[ "1", "0", "1", "0", "3", "0", "10", "1", "35", "9", "126", "55", "462", "286", "1717", "1365", "6451", "6188", "24463", "27132", "93518", "116281", "360031", "490337", "1394582", "2043275", "5430530", "8439210", "21242341", "34621041", "83411715", "141290436", "328589491", "574274008", "1297937234", "2326683921", "5138431851" ]
[ "nonn", "easy" ]
24
0
5
[ "A007582", "A007583", "A052964", "A072266", "A072844", "A377573", "D5", "D6", "D8" ]
null
Sean A. Irvine, Nov 01 2024
2024-11-06T23:44:45
oeisdata/seq/A377/A377573.seq
0c35f6d2ae32da9a559af3ab2b3aeada
A377574
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^2.
[ "1", "2", "14", "150", "2264", "44370", "1073772", "30998954", "1041094448", "39909978594", "1720526113460", "82422717484602", "4345035540566184", "250012958308399442", "15594180423126432428", "1048169467357831893930", "75535629221800163853152", "5810132660615400890909634", "475146028302302130377698404" ]
[ "nonn" ]
10
0
2
[ "A002999", "A006153", "A295238", "A377553", "A377574", "A377575", "A377576" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T07:41:49
oeisdata/seq/A377/A377574.seq
b7e697429eb0edfe4d6735a9b4da0cb5
A377575
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^3.
[ "1", "3", "30", "483", "11100", "334035", "12478698", "558058179", "29104042152", "1735547479587", "116539815603630", "8704631976941043", "716019297815418732", "64326542671867079955", "6267631435921525638738", "658359915933162131600355", "74168964857766293453918928", "8921104769819780822122624323" ]
[ "nonn" ]
9
0
2
[ "A006153", "A364983", "A377554", "A377574", "A377575", "A377576" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:11:30
oeisdata/seq/A377/A377575.seq
7bbaaf1c92414560eebe93d7d65c2a12
A377576
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^4.
[ "1", "4", "52", "1116", "34408", "1394340", "70298424", "4248802516", "299752943200", "24196951718532", "2200519882434280", "222683725755611604", "24824104612186789584", "3023063956714780554628", "399343825987950226379416", "56879649386095684434783060", "8689968793295620150120679104" ]
[ "nonn" ]
10
0
2
[ "A006153", "A364987", "A377574", "A377575", "A377576", "A377577" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:11:46
oeisdata/seq/A377/A377576.seq
e231aa579a6b04213a8238e94bf54a8d
A377577
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x)^2)^2.
[ "1", "2", "22", "426", "12344", "480010", "23500812", "1389576230", "96382531408", "7675512189714", "690344499939860", "69220070789605582", "7656687699685355256", "926243380308839330426", "121653259759077599227612", "17240419344948437264399670", "2622300119032920100004726432", "426102385668766701871015106338" ]
[ "nonn" ]
8
0
2
[ "A364987", "A377576", "A377577" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:12:46
oeisdata/seq/A377/A377577.seq
93c50165d00ecdae9c4abc150d9d69a0
A377578
E.g.f. satisfies A(x) = (1 + x * exp(x*A(x)))^3.
[ "1", "3", "12", "105", "1308", "21375", "441018", "10896123", "315264792", "10449447579", "390569672910", "16257117737223", "745842771924660", "37396841181068343", "2034701509480503906", "119398947940954110915", "7517149983020119420848", "505442237612562154098099", "36150074712773275030075926" ]
[ "nonn" ]
8
0
2
[ "A161632", "A364979", "A377578", "A377579" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:13:05
oeisdata/seq/A377/A377578.seq
65fb747c4145949fffd007c6339aca0d
A377579
E.g.f. satisfies A(x) = (1 + x * exp(x*A(x)))^4.
[ "1", "4", "20", "204", "3112", "61220", "1523064", "45456292", "1586426720", "63461164932", "2862300600040", "143766016251044", "7959047336014416", "481550056915454020", "31615435540393172888", "2238661916541220434660", "170070509857455107126464", "13798559748847266924993284", "1190848786811966457102586824" ]
[ "nonn" ]
9
0
2
[ "A161632", "A377578", "A377579", "A377580", "A377581" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:13:15
oeisdata/seq/A377/A377579.seq
f4c8c866a9bce3853701be614e5cea3c
A377580
E.g.f. satisfies A(x) = (1 + x * exp(x*A(x)^2))^2.
[ "1", "2", "6", "66", "920", "17450", "425772", "12443438", "428469456", "16947065682", "757343738900", "37752522755222", "2076633137032632", "124956870908294906", "8165077881669520476", "575775223046122068510", "43582446983541508540832", "3524622951250814296207010", "303306411871327203664657956" ]
[ "nonn" ]
9
0
2
[ "A377579", "A377580", "A377581" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:12:56
oeisdata/seq/A377/A377580.seq
366476a9776b0c9091c3468b0b41abb1
A377581
E.g.f. satisfies A(x) = 1 + x * exp(x*A(x)^4).
[ "1", "1", "2", "27", "340", "6485", "156486", "4532647", "155359016", "6116223465", "272369488330", "13537882005131", "742838308204092", "44605728508797469", "2909444391161677838", "204844046364505460655", "15484082153045052133456", "1250714994867101307618257", "107511883999692161772696210" ]
[ "nonn" ]
7
0
3
[ "A161631", "A364978", "A364979", "A377579", "A377580", "A377581" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:13:00
oeisdata/seq/A377/A377581.seq
99791bc81da670c5e1627283c1d8bc9b
A377582
Expansion of e.g.f. (1 + x * exp(x))^3.
[ "1", "3", "12", "51", "228", "1035", "4698", "21063", "92424", "395091", "1643790", "6664383", "26387100", "102286587", "389125506", "1455994935", "5368721808", "19541252259", "70312410774", "250408115823", "883617559140", "3092276105163", "10740749281482", "37053754521831", "127037475064728", "433073722098675" ]
[ "nonn", "easy" ]
12
0
2
[ "A001815", "A002999", "A052791", "A377530", "A377575", "A377582", "A377583" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:12:49
oeisdata/seq/A377/A377582.seq
511034722ca59283097ae404899777a5
A377583
Expansion of e.g.f. (1 + x * exp(x))^4.
[ "1", "4", "20", "108", "616", "3620", "21624", "129892", "778208", "4621572", "27080680", "156080804", "883304976", "4905620356", "26743018904", "143219056740", "754280089024", "3911369843204", "19995029207496", "100885122939172", "502952669726960", "2480084192804484", "12107351426245240", "58565261434872548" ]
[ "nonn", "easy" ]
14
0
2
[ "A002999", "A377399", "A377576", "A377582", "A377583" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-02T09:12:53
oeisdata/seq/A377/A377583.seq
b4b8fbcdd2ec1336315d373bf194762c
A377584
E.g.f.: exp(Sum_{k>=1} A326305(k) * x^k/k).
[ "1", "1", "1", "5", "23", "167", "907", "8647", "84625", "840401", "8917289", "122748749", "1753750759", "26047588855", "401961006787", "6422475692063", "124830139084193", "2445151343123873", "48495757104590545", "1038849234759346069", "23966120552360409271", "545230613480963786951", "13288745250263697838331" ]
[ "nonn" ]
3
0
4
[ "A326305", "A377584" ]
null
Vaclav Kotesovec, Nov 02 2024
2024-11-02T05:22:39
oeisdata/seq/A377/A377584.seq
a7fee78f99399b3626e8f73d9e00db00
A377585
E.g.f.: exp(Sum_{k>=1} A057660(k) * x^k).
[ "1", "1", "7", "61", "577", "7381", "96511", "1619857", "28368481", "560654857", "12100090231", "282510616741", "7098784113697", "190647458125021", "5461212525476527", "165494332157561401", "5306572876379307841", "178898083900878623377", "6336492991778941139431", "234867483921621706900237", "9096385945218131126509441" ]
[ "nonn" ]
5
0
3
[ "A057660", "A377585" ]
null
Vaclav Kotesovec, Nov 02 2024
2024-11-02T05:22:47
oeisdata/seq/A377/A377585.seq
abe0bce7feb0a73a6fa9b11449bdc7fd
A377586
Numbers of directed Hamiltonian paths in the complete 4-partite graph K_{n,n,n,n}.
[ "24", "13824", "53529984", "751480602624", "27917203599360000", "2267561150913576960000", "354252505303682314076160000", "97087054992658680467800719360000", "43551509948777170973522371396239360000", "30293653795894300342540281328749772800000000" ]
[ "nonn" ]
46
1
1
[ "A190918", "A234365", "A322013", "A322093", "A377586" ]
null
Zlatko Damijanic, Nov 02 2024
2024-12-03T20:21:12
oeisdata/seq/A377/A377586.seq
dbd18fe1ec8b81906ad2f1d838dbf99a
A377587
a(n) is the smallest odd integer m with m-2^k not squarefree for all 1<=k<=n
[ "11", "29", "533", "849", "434977", "10329791", "28819433", "129747557", "6915752957", "2569472629649", "23373845739407", "60690478781437" ]
[ "nonn", "more" ]
18
1
1
[ "A005117", "A013929", "A377587" ]
null
Christian Hercher, Nov 02 2024
2024-11-22T20:32:47
oeisdata/seq/A377/A377587.seq
3bfad12e2bc8e91034c799aa24531841
A377588
Decimal expansion of 7*zeta(3)/(2*Pi^2) - log(2) + 1/2.
[ "2", "3", "3", "1", "3", "1", "2", "1", "8", "2", "5", "7", "5", "6", "0", "4", "8", "1", "5", "0", "6", "2", "8", "9", "3", "0", "5", "1", "3", "7", "9", "9", "0", "3", "0", "4", "9", "8", "2", "5", "0", "6", "6", "3", "5", "2", "6", "9", "3", "7", "9", "8", "5", "3", "4", "2", "0", "9", "2", "6", "4", "4", "8", "5", "3", "3", "1", "3", "5", "8", "2", "9", "2", "5", "9", "4", "2", "1", "8", "6", "5", "8", "8", "3", "2", "6", "0", "8", "6", "1", "3", "3", "5", "8", "2", "4", "2", "5", "6", "0" ]
[ "nonn", "cons" ]
7
0
1
[ "A002117", "A002162", "A094642", "A164102", "A244009", "A377588", "A377589", "A377592" ]
null
Stefano Spezia, Nov 02 2024
2024-11-03T05:02:48
oeisdata/seq/A377/A377588.seq
d5245a3e4e379cdec0a254bf309bfb9f
A377589
Decimal expansion of 9*zeta(3)/(2*Pi^2) - log(2) + 1/3.
[ "1", "8", "8", "2", "5", "8", "3", "7", "9", "8", "2", "4", "4", "6", "6", "8", "9", "7", "9", "6", "0", "6", "2", "8", "7", "6", "0", "3", "5", "5", "9", "4", "2", "7", "4", "4", "9", "0", "3", "8", "4", "1", "9", "0", "2", "7", "8", "2", "6", "0", "8", "9", "3", "1", "7", "6", "6", "1", "4", "7", "3", "4", "1", "3", "0", "2", "6", "2", "0", "4", "3", "4", "3", "7", "2", "5", "0", "2", "7", "9", "3", "9", "2", "7", "7", "7", "2", "5", "3", "4", "1", "9", "2", "6", "5", "5", "5", "7", "3", "2" ]
[ "nonn", "cons" ]
6
0
2
[ "A002117", "A002162", "A094642", "A164102", "A244009", "A377588", "A377589", "A377592" ]
null
Stefano Spezia, Nov 02 2024
2024-11-03T05:05:11
oeisdata/seq/A377/A377589.seq
e6c0967cbc65f821c17f033ea81d81ba
A377590
Numbers k neither squarefree nor prime powers such that there exist no numbers m such that rad(m) | k and Omega(m) > Omega(k), where rad = A007947 and Omega = A001222.
[ "12", "24", "45", "48", "63", "75", "96", "135", "175", "189", "192", "225", "245", "275", "325", "384", "405", "425", "475", "539", "567", "575", "605", "637", "675", "768", "833", "847", "875", "931", "1127", "1183", "1215", "1225", "1375", "1421", "1519", "1536", "1573", "1625", "1701", "1715", "1813", "1859", "1925", "2009", "2023", "2025", "2057", "2107" ]
[ "nonn", "easy" ]
13
1
1
[ "A001222", "A007283", "A007947", "A020639", "A126706", "A303554", "A360769", "A377590" ]
null
Michael De Vlieger, Nov 02 2024
2025-06-21T19:59:44
oeisdata/seq/A377/A377590.seq
9927350ecebf1b78c60edfea964f8139
A377591
Powerful numbers k that are not prime powers such that there exist no numbers m such that rad(m) | k and Omega(m) > Omega(k), where rad = A007947 and Omega = A001222.
[ "225", "675", "1225", "2025", "3025", "5929", "6075", "6125", "8281", "8575", "14161", "15125", "18225", "20449", "30625", "34969", "41503", "42875", "43681", "48841", "54675", "57967", "60025", "61009", "64009", "65219", "75625", "89401", "99127", "101761", "104329", "107653", "116281", "142129", "152881", "153125", "162409", "164025" ]
[ "nonn", "easy" ]
6
1
1
[ "A001222", "A001694", "A007947", "A286708", "A363217", "A376846", "A377590", "A377591" ]
null
Michael De Vlieger, Nov 02 2024
2024-11-13T17:17:22
oeisdata/seq/A377/A377591.seq
ef30b14ec3578fee9ac109222151c89f
A377592
Decimal expansion of 9*zeta(3)/Pi^2 - 93*zeta(5)/(2*Pi^4) - log(2) + 1/4.
[ "1", "5", "8", "0", "0", "0", "9", "6", "3", "6", "2", "5", "5", "5", "7", "7", "3", "3", "2", "6", "8", "6", "2", "9", "3", "8", "5", "9", "7", "8", "4", "5", "8", "5", "4", "9", "0", "9", "1", "7", "8", "0", "2", "8", "4", "7", "9", "6", "2", "7", "6", "1", "1", "3", "0", "8", "8", "6", "1", "4", "1", "6", "3", "1", "6", "2", "1", "8", "5", "9", "2", "6", "5", "7", "1", "5", "5", "6", "8", "4", "3", "7", "3", "7", "0", "1", "6", "0", "8", "6", "6", "1", "9", "2", "7", "0", "2", "8", "0", "9" ]
[ "nonn", "cons" ]
6
0
2
[ "A002117", "A002162", "A002388", "A013663", "A092425", "A094642", "A244009", "A377588", "A377589", "A377592" ]
null
Stefano Spezia, Nov 02 2024
2024-11-03T05:04:08
oeisdata/seq/A377/A377592.seq
857b16a4dfa9528a98bae3e3032a0ebc
A377593
Number of aligned fixed polyominoes that will fit in a square of size n X n.
[ "1", "8", "151", "9472", "2081051", "1643823600", "4742607132499", "50303895480064088", "1966122506151835674303", "283294196554063138439927568", "150432366492029200690537003170367", "294212995394376069103067524948055548348", "2117957146063247996594586658579155551318256103", "56084287855193446153928896349599388059636859288133588", "5460061052459125116800111315595463810654508452342242195388707" ]
[ "nonn" ]
6
1
2
[ "A268404", "A268416", "A292357", "A377593" ]
null
John Mason, Nov 02 2024
2024-11-02T14:36:52
oeisdata/seq/A377/A377593.seq
527ec39d5c8160e048c145e06bc27e5b
A377594
Decimal expansion of 1/4 - 7*zeta(3)/(4*Pi^2).
[ "0", "3", "6", "8", "6", "0", "8", "0", "0", "5", "9", "1", "2", "4", "7", "1", "0", "4", "5", "3", "8", "2", "3", "9", "2", "8", "6", "7", "0", "1", "9", "1", "6", "5", "6", "3", "4", "7", "0", "9", "9", "6", "6", "1", "5", "1", "8", "5", "1", "8", "2", "4", "4", "6", "2", "2", "9", "1", "9", "6", "7", "7", "0", "9", "8", "6", "7", "3", "5", "2", "7", "4", "3", "8", "5", "4", "4", "1", "7", "0", "9", "2", "5", "5", "4", "3", "7", "9", "0", "5", "8", "3", "3", "8", "7", "8", "5", "2", "8", "2", "0" ]
[ "nonn", "cons" ]
9
0
2
[ "A000302", "A002117", "A005408", "A212002", "A377594" ]
null
Stefano Spezia, Nov 02 2024
2025-04-03T04:10:44
oeisdata/seq/A377/A377594.seq
1f2577f0ad044b53a27b5d6f03a843ba
A377595
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x).
[ "1", "2", "11", "103", "1377", "24101", "523813", "13636463", "414246017", "14396807161", "563682761541", "24559156435595", "1178780540094193", "61810491468265541", "3515914378433242997", "215647516162031069191", "14187967957218808201089", "996767406049512569338481", "74478502236949781909301253" ]
[ "nonn" ]
72
0
2
[ "A361598", "A362775", "A377595", "A377810" ]
null
Seiichi Manyama, Nov 14 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377595.seq
e935ae484b7a4bdf9f2be381e5bb9c9b
A377596
a(n) = (a(n-1) + a(n-2))^5 for n>=2 where a(0) = 0, a(1) = 1.
[ "0", "1", "1", "32", "39135393", "91801604643057285538237803582587890625" ]
[ "nonn", "easy" ]
96
0
4
[ "A112980", "A308507", "A377596" ]
null
Lyle Blosser, Nov 29 2024
2025-06-02T15:28:18
oeisdata/seq/A377/A377596.seq
4e24cdf817b49e623dfe172808dbde0c
A377597
Table read by antidiagonals: T(n,k) = (n*k)!/(n^k*k!), n >=1, k >= 0.
[ "1", "1", "1", "1", "1", "1", "1", "3", "2", "1", "1", "15", "40", "6", "1", "1", "105", "2240", "1260", "24", "1", "1", "945", "246400", "1247400", "72576", "120", "1", "1", "10395", "44844800", "3405402000", "1743565824", "6652800", "720", "1", "1", "135135", "12197785600", "19799007228000", "162193467211776", "4940103168000", "889574400", "5040", "1" ]
[ "nonn", "tabl" ]
14
1
8
[ "A001147", "A052502", "A052504", "A060706", "A110468", "A368213", "A377597" ]
null
Peter Kagey, Nov 02 2024
2024-11-04T22:28:09
oeisdata/seq/A377/A377597.seq
8898589bc3243f7561b93710bc822644
A377598
Positive integers D such that the generalized Pell equation X^2 - D Y^2 = -2 is solvable over the integers.
[ "2", "3", "6", "11", "18", "19", "22", "27", "38", "43", "51", "54", "59", "66", "67", "83", "86", "102", "107", "114", "118", "123", "131", "134", "139", "146", "162", "163", "166", "171", "178", "179", "187", "198", "211", "214", "227", "242", "243", "246", "251", "258", "262", "267", "278", "283", "291", "307", "326", "331", "339", "347", "354", "358", "363", "374", "379", "387", "402", "411", "418", "419" ]
[ "nonn" ]
14
1
1
[ "A031396", "A261246", "A377598" ]
null
Robin Visser, Nov 02 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377598.seq
f3a879faf4bc930ffed2af8916383e61
A377599
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x)^2 ) / (1-x).
[ "1", "2", "13", "145", "2277", "46461", "1172713", "35374697", "1243296169", "49940748073", "2258238723021", "113567169318285", "6289161888870061", "380364426242671469", "24948313525570134001", "1764095427822803465521", "133782341347522663175889", "10832097536377585282160337", "932693691617428946786304661" ]
[ "nonn" ]
82
0
2
[ "A361599", "A367789", "A377599", "A377608", "A377811" ]
null
Seiichi Manyama, Nov 14 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377599.seq
0c5e57af2844e5cb118195fc32ad210b
A377600
Positive integers D such that the generalized Pell equation X^2 - D Y^2 = -3 is solvable over the integers.
[ "1", "3", "4", "7", "12", "13", "19", "21", "28", "31", "39", "43", "52", "57", "61", "67", "73", "76", "84", "91", "93", "97", "103", "109", "111", "124", "127", "129", "133", "139", "147", "151", "157", "163", "172", "181", "183", "193", "199", "201", "211", "217", "228", "237", "241", "244", "247", "259", "268", "271", "273", "277", "283", "292", "301", "307", "309", "313", "327", "331", "337", "343", "364" ]
[ "nonn" ]
15
1
2
[ "A031396", "A244819", "A261246", "A377600", "A377607" ]
null
Robin Visser, Nov 02 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377600.seq
28261a25cdd13c352502c6af4cfaabc5
A377601
Number of permutations of the multiset {1^n, 2^n,..., n^n} excluding permutations where all objects of all types are contiguous.
[ "0", "0", "4", "1674", "63062976", "623360743125000", "2670177736637149247308080", "7363615666157189603982585462030330960", "18165723931630806756964027928179555634194028453959680", "53130688706387569792052442448845648519471103327391407016237759999637120" ]
[ "nonn", "easy" ]
37
0
3
[ "A000142", "A034841", "A377601" ]
null
Mohammad Bakhshandeh, Nov 02 2024
2024-11-07T15:02:56
oeisdata/seq/A377/A377601.seq
9689706577b295c82a41817fb0d5ba7f
A377602
Decimal expansion of the surface area of a snub cube (snub cuboctahedron) with unit edge length.
[ "1", "9", "8", "5", "6", "4", "0", "6", "4", "6", "0", "5", "5", "1", "0", "1", "8", "3", "4", "8", "2", "1", "9", "5", "7", "0", "7", "3", "2", "0", "4", "6", "9", "7", "8", "9", "3", "5", "5", "4", "2", "4", "4", "2", "0", "3", "0", "4", "8", "3", "0", "4", "5", "0", "2", "4", "4", "4", "6", "4", "5", "5", "8", "3", "5", "6", "1", "5", "4", "6", "4", "1", "3", "5", "2", "7", "0", "4", "0", "0", "2", "9", "6", "6", "4", "9", "1", "6", "9", "4" ]
[ "nonn", "cons", "easy" ]
9
2
2
[ "A002194", "A200243", "A377602", "A377603", "A377604", "A377605" ]
null
Paolo Xausa, Nov 02 2024
2025-02-11T14:36:52
oeisdata/seq/A377/A377602.seq
8ec92bb9986751aba88290fc953ad1ff
A377603
Decimal expansion of the volume of a snub cube (snub cuboctahedron) with unit edge length.
[ "7", "8", "8", "9", "4", "7", "7", "3", "9", "9", "9", "7", "5", "3", "9", "0", "2", "0", "6", "4", "5", "1", "0", "1", "4", "2", "7", "0", "4", "4", "2", "8", "0", "6", "1", "8", "4", "7", "3", "8", "7", "0", "7", "9", "8", "2", "9", "4", "7", "9", "0", "9", "9", "7", "6", "7", "8", "6", "2", "9", "8", "3", "3", "4", "0", "2", "3", "3", "7", "9", "1", "8", "2", "3", "0", "1", "2", "0", "0", "5", "6", "2", "7", "0", "7", "1", "2", "6", "9", "9" ]
[ "nonn", "cons", "easy" ]
8
1
1
[ "A058265", "A377602", "A377603", "A377604", "A377605" ]
null
Paolo Xausa, Nov 02 2024
2025-02-11T14:36:45
oeisdata/seq/A377/A377603.seq
13fbc60494be9626c3dc2df0e1608f09