sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A377604
Decimal expansion of the circumradius of a snub cube (snub cuboctahedron) with unit edge length.
[ "1", "3", "4", "3", "7", "1", "3", "3", "7", "3", "7", "4", "4", "6", "0", "1", "7", "0", "1", "2", "7", "1", "5", "2", "8", "7", "5", "3", "9", "7", "5", "0", "5", "8", "2", "4", "7", "6", "3", "7", "6", "0", "2", "6", "0", "9", "3", "5", "3", "5", "8", "6", "4", "9", "8", "8", "7", "7", "7", "6", "2", "0", "9", "6", "5", "8", "5", "5", "7", "0", "6", "9", "0", "8", "9", "3", "4", "8", "7", "9", "4", "5", "6", "9", "7", "3", "3", "1", "6", "8" ]
[ "nonn", "cons", "easy" ]
8
1
2
[ "A058265", "A377602", "A377603", "A377604", "A377605" ]
null
Paolo Xausa, Nov 03 2024
2024-11-04T09:16:19
oeisdata/seq/A377/A377604.seq
e1b5cd90485e6f5dcaa7c873d48acd7e
A377605
Decimal expansion of the midradius of a snub cube (snub cuboctahedron) with unit edge length.
[ "1", "2", "4", "7", "2", "2", "3", "1", "6", "7", "9", "9", "3", "6", "4", "3", "2", "5", "1", "7", "6", "9", "9", "1", "8", "9", "6", "0", "8", "9", "8", "0", "3", "0", "5", "8", "3", "4", "1", "6", "8", "7", "0", "1", "8", "0", "0", "1", "9", "5", "5", "8", "5", "2", "5", "7", "6", "3", "3", "8", "6", "0", "0", "6", "4", "6", "2", "7", "5", "1", "4", "7", "8", "3", "2", "6", "1", "5", "9", "1", "8", "8", "8", "4", "1", "5", "8", "6", "2", "1" ]
[ "nonn", "cons", "easy" ]
7
1
2
[ "A058265", "A377602", "A377603", "A377604", "A377605" ]
null
Paolo Xausa, Nov 03 2024
2025-02-11T14:38:34
oeisdata/seq/A377/A377605.seq
e90f87be834adeb61f9beed11dab3722
A377606
Decimal expansion of -30*arcsin((5 - 4*sqrt(5))/15).
[ "7", "9", "8", "2", "4", "0", "1", "4", "1", "6", "7", "8", "4", "8", "0", "7", "4", "1", "7", "2", "1", "6", "2", "1", "2", "8", "5", "0", "5", "6", "3", "1", "8", "8", "8", "0", "1", "0", "3", "9", "0", "6", "5", "7", "9", "2", "8", "4", "7", "8", "0", "2", "8", "0", "6", "9", "4", "0", "4", "9", "2", "0", "8", "2", "2", "4", "8", "6", "3", "1", "0", "6", "5", "0", "3", "0", "7", "6", "3", "0", "0", "4", "8", "4", "6", "4", "9", "3", "7", "1" ]
[ "nonn", "cons", "easy" ]
9
1
1
[ "A002163", "A010532", "A377606" ]
null
Paolo Xausa, Nov 03 2024
2024-11-21T07:44:46
oeisdata/seq/A377/A377606.seq
12691a23fb3c3e3182ca9ae1e6a4a0a6
A377607
Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 3 is solvable over the integers.
[ "1", "6", "13", "22", "33", "46", "61", "69", "73", "78", "94", "97", "109", "118", "141", "157", "166", "177", "181", "193", "213", "214", "222", "241", "249", "253", "262", "277", "286", "313", "321", "334", "337", "358", "366", "382", "393", "397", "409", "421", "429", "433", "438", "454", "457", "478", "481", "501", "502", "517", "526", "537", "541", "573", "598", "601", "613", "622", "649", "654", "661" ]
[ "nonn" ]
14
1
2
[ "A031396", "A243655", "A261246", "A377600", "A377607" ]
null
Robin Visser, Nov 02 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377607.seq
0c62f8f4e2d3eecc672b560e7df3b3e2
A377608
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x)^2.
[ "1", "3", "19", "202", "3085", "61886", "1544029", "46182900", "1612759369", "64455582394", "2902794546961", "145497909334856", "8035136800888333", "484821204654219798", "31735810390729211173", "2240132583683741633116", "169624462686462529305745", "13715713402047448280358002", "1179576532854283015832748697" ]
[ "nonn" ]
38
0
2
[ "A367789", "A377599", "A377608", "A377811" ]
null
Seiichi Manyama, Nov 14 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377608.seq
3cd6d37e2f36f354dd5bc4fa2adaee27
A377609
a(n) is the number of iterations of x -> 2*x - 1 until (# composites reached) = (# primes reached), starting with prime(n).
[ "7", "5", "1", "3", "1", "1", "1", "9", "1", "1", "5", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "19", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "7", "1", "1", "1", "1", "1", "1", "1", "1", "3", "3", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "3", "1", "1", "1", "13", "7", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "5", "1" ]
[ "nonn" ]
10
1
1
[ "A000040", "A000051", "A377609", "A377610", "A377624" ]
null
Clark Kimberling, Nov 05 2024
2024-11-14T12:11:10
oeisdata/seq/A377/A377609.seq
155b70b9cf4bc973810ef878e96fa9f8
A377610
a(n) is the number of iterations of x -> 2*x - 3 until (# composites reached) = (# primes reached), starting with prime(n+2).
[ "13", "9", "7", "21", "7", "1", "15", "1", "5", "23", "5", "13", "1", "3", "1", "1", "3", "19", "1", "1", "11", "1", "7", "9", "1", "19", "1", "17", "7", "1", "3", "1", "1", "1", "11", "1", "5", "1", "1", "11", "3", "5", "1", "1", "15", "15", "1", "1", "3", "1", "5", "5", "1", "5", "1", "1", "1", "1", "13", "1", "1", "9", "1", "5", "3", "1", "3", "1", "1", "1", "1", "23", "1", "1", "1", "1", "1", "1", "1", "9", "3" ]
[ "nonn" ]
8
1
1
[ "A062709", "A377609", "A377610" ]
null
Clark Kimberling, Nov 05 2024
2024-11-14T12:11:03
oeisdata/seq/A377/A377610.seq
1ecc9a7442e7044c70e0aeba27d155be
A377611
a(n) is the number of iterations of x -> 2*x - 5 until (# composites reached) = (# primes reached), starting with prime(n+4).
[ "25", "1", "19", "1", "11", "15", "1", "1", "1", "1", "13", "9", "3", "1", "1", "21", "1", "1", "1", "11", "1", "7", "1", "1", "1", "1", "1", "11", "17", "1", "3", "1", "1", "1", "1", "1", "13", "1", "1", "1", "5", "1", "1", "1", "3", "1", "3", "1", "1", "1", "9", "9", "1", "1", "1", "15", "1", "1", "1", "5", "1", "1", "1", "1", "1", "1", "11", "1", "1", "1", "1", "3", "3", "1", "3", "1", "1", "1", "7", "1", "1", "3" ]
[ "nonn" ]
8
1
1
[ "A377609", "A377611" ]
null
Clark Kimberling, Nov 05 2024
2024-11-14T12:11:07
oeisdata/seq/A377/A377611.seq
a7fb30b45df07e4b5d91bdc7039d02ec
A377612
a(n) is the number of iterations of x -> 2*x + 1 until (# composites reached) = (# primes reached), starting with prime(n).
[ "15", "7", "13", "1", "11", "1", "1", "1", "7", "7", "1", "1", "5", "1", "1", "11", "1", "1", "1", "1", "1", "1", "3", "23", "1", "1", "1", "1", "1", "11", "1", "3", "1", "1", "1", "1", "1", "1", "1", "3", "19", "1", "3", "1", "1", "1", "1", "1", "1", "1", "7", "3", "1", "3", "1", "1", "1", "1", "1", "3", "1", "7", "1", "1", "1", "1", "1", "1", "1", "1", "1", "17", "1", "1", "1", "1", "1", "1", "1", "1", "11", "1", "3" ]
[ "nonn" ]
8
1
1
[ "A377609", "A377612" ]
null
Clark Kimberling, Nov 05 2024
2024-11-14T12:10:59
oeisdata/seq/A377/A377612.seq
397adcec04eabdd4aa480c0c13514b65
A377613
a(n) is the number of iterations of x -> 2*x + 3 until (# composites reached) = (# primes reached), starting with prime(n).
[ "19", "1", "15", "15", "1", "13", "13", "15", "1", "3", "1", "1", "1", "7", "27", "3", "1", "1", "25", "1", "3", "1", "1", "5", "23", "1", "1", "1", "1", "7", "3", "1", "23", "3", "1", "1", "9", "1", "17", "5", "1", "1", "1", "3", "19", "7", "1", "3", "3", "3", "1", "1", "1", "1", "1", "1", "3", "1", "21", "1", "3", "1", "19", "1", "1", "1", "1", "3", "1", "3", "3", "1", "1", "1", "3", "3", "1", "17", "1", "3", "1" ]
[ "nonn" ]
8
1
1
[ "A154117", "A377609", "A377613" ]
null
Clark Kimberling, Nov 13 2024
2025-06-21T19:58:58
oeisdata/seq/A377/A377613.seq
50cf5ab7d93fb387f197ba864c0d8ccc
A377614
a(n) is the number of iterations of x -> 2*x + 5 until (# composites reached) = (# primes reached), starting with prime(n).
[ "1", "11", "1", "15", "1", "17", "1", "3", "1", "1", "15", "17", "1", "1", "1", "1", "1", "13", "13", "1", "19", "7", "1", "1", "13", "1", "15", "1", "7", "1", "1", "1", "1", "9", "1", "17", "1", "3", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "3", "1", "1", "1", "1", "5", "1", "1", "3", "1", "3", "1", "5", "1", "1", "1", "1", "1", "1", "1", "7", "7", "1", "1", "1", "1", "1", "7", "1", "1", "1" ]
[ "nonn" ]
4
1
2
[ "A377609", "A377614" ]
null
Clark Kimberling, Nov 13 2024
2024-11-17T07:32:27
oeisdata/seq/A377/A377614.seq
0ecd09385bc15da0deff0a131c43b5ca
A377615
a(n) is the number of iterations of x -> 2*x + 7 until (# composites reached) = (# primes reached), starting with prime(n).
[ "23", "7", "9", "1", "21", "1", "7", "1", "21", "1", "1", "1", "3", "1", "3", "19", "1", "1", "1", "5", "1", "1", "7", "1", "1", "1", "1", "1", "1", "17", "1", "9", "17", "1", "1", "1", "1", "1", "1", "5", "1", "1", "3", "1", "15", "1", "1", "1", "9", "1", "1", "1", "1", "3", "17", "1", "1", "1", "1", "15", "1", "11", "1", "1", "1", "5", "1", "1", "11", "1", "1", "1", "1", "1", "1", "23", "1", "1", "11", "1", "1", "1" ]
[ "nonn" ]
4
1
1
[ "A154251", "A377609", "A377615" ]
null
Clark Kimberling, Nov 13 2024
2024-11-17T07:32:36
oeisdata/seq/A377/A377615.seq
02b68ec74a98224cd475fd5adce7b50e
A377616
a(n) is the number of iterations of x -> 3*x + 2 until (# composites reached) = (# primes reached), starting with prime(n).
[ "1", "9", "5", "7", "1", "3", "3", "7", "5", "11", "1", "3", "1", "7", "1", "1", "5", "1", "1", "1", "1", "5", "13", "5", "11", "1", "3", "1", "1", "1", "5", "1", "1", "31", "7", "1", "1", "3", "9", "3", "1", "1", "1", "1", "3", "5", "1", "1", "3", "1", "5", "3", "1", "1", "3", "1", "3", "1", "1", "1", "1", "9", "1", "1", "3", "5", "1", "5", "1", "3", "3", "1", "3", "1", "1", "3", "1", "11", "1", "5", "29", "1", "1", "7" ]
[ "nonn" ]
8
1
2
[ "A377609", "A377616" ]
null
Clark Kimberling, Nov 17 2024
2024-11-21T11:16:26
oeisdata/seq/A377/A377616.seq
cdf9458285c7fd6a519feabab1bd4742
A377617
a(n) is the number of iterations of x -> 3*x + 4 until (# composites reached) = (# primes reached), starting with prime(n).
[ "1", "19", "13", "1", "11", "3", "1", "3", "17", "1", "3", "1", "3", "1", "1", "5", "7", "1", "1", "1", "13", "7", "1", "3", "1", "3", "5", "1", "5", "1", "1", "3", "1", "3", "1", "7", "1", "1", "1", "7", "5", "3", "5", "1", "1", "3", "1", "11", "1", "3", "1", "1", "3", "5", "1", "1", "7", "1", "1", "1", "3", "7", "1", "3", "1", "1", "3", "1", "1", "3", "3", "1", "1", "5", "1", "15", "5", "1", "1", "13", "1", "1", "5", "5" ]
[ "nonn" ]
8
1
2
[ "A377609", "A377617" ]
null
Clark Kimberling, Nov 17 2024
2024-11-21T11:16:55
oeisdata/seq/A377/A377617.seq
8350df8f31d89187db7fe2e4568bd88d
A377618
a(n) is the number of iterations of x -> 4*x - 1 until (# composites reached) = (# primes reached), starting with prime(n).
[ "5", "17", "3", "1", "15", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "5", "1", "1", "1", "5", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "5", "5", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "3", "1", "13", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "3", "1", "1" ]
[ "nonn" ]
8
1
1
[ "A136412", "A377609", "A377618" ]
null
Clark Kimberling, Nov 17 2024
2024-11-21T11:36:29
oeisdata/seq/A377/A377618.seq
786106926bb1c24e1f8c904aa666039a
A377619
a(n) is the number of iterations of x -> 5*x + 2 until (# composites reached) = (# primes reached), starting with prime(n).
[ "1", "3", "1", "5", "1", "7", "1", "11", "1", "1", "7", "1", "1", "1", "1", "1", "1", "9", "3", "1", "5", "5", "1", "1", "9", "1", "1", "1", "17", "1", "1", "1", "1", "1", "1", "3", "5", "1", "1", "1", "1", "3", "1", "3", "1", "9", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "7", "1", "1", "9", "1", "1", "1", "9", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
8
1
2
[ "A377609", "A377619" ]
null
Clark Kimberling, Nov 17 2024
2024-11-21T11:37:25
oeisdata/seq/A377/A377619.seq
2f6069be30aebb92f7766b5ef785361e
A377620
a(n) is the number of iterations of x -> 5*x + 4 until (# composites reached) = (# primes reached), starting with prime(n).
[ "1", "5", "7", "1", "7", "1", "11", "1", "1", "3", "1", "1", "1", "1", "3", "3", "1", "1", "1", "5", "1", "1", "7", "3", "1", "13", "1", "1", "1", "7", "1", "7", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "5", "5", "15", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "5", "1", "1", "1", "1" ]
[ "nonn" ]
7
1
2
[ "A377609", "A377620" ]
null
Clark Kimberling, Nov 20 2024
2024-12-05T09:26:31
oeisdata/seq/A377/A377620.seq
8c9a7fc0d8e087691b0d72b4f3b97692
A377621
a(n) is the number of iterations of x -> 6*x - 1 until (# composites reached) = (# primes reached), starting with prime(n).
[ "11", "7", "7", "3", "1", "1", "3", "5", "5", "5", "1", "1", "1", "3", "3", "5", "3", "1", "3", "1", "1", "1", "1", "1", "1", "1", "5", "3", "5", "3", "3", "1", "3", "1", "1", "1", "3", "5", "1", "1", "1", "1", "1", "1", "9", "3", "1", "1", "5", "7", "1", "9", "1", "1", "1", "1", "9", "1", "1", "1", "5", "1", "1", "1", "5", "3", "1", "1", "3", "1", "1", "5", "1", "7", "3", "9", "7", "3", "1", "1", "1", "1", "1", "1", "7", "3" ]
[ "nonn" ]
7
1
1
[ "A199412", "A377609", "A377621" ]
null
Clark Kimberling, Nov 20 2024
2024-12-05T09:26:26
oeisdata/seq/A377/A377621.seq
8845dc4a7e94c0514521b3b3121ff5e4
A377622
a(n) is the number of iterations of x -> 6*x - 5 until (# composites reached) = (# primes reached), starting with prime(n).
[ "7", "9", "1", "5", "13", "7", "9", "13", "1", "1", "5", "1", "7", "1", "7", "5", "7", "1", "5", "7", "5", "1", "1", "1", "7", "5", "5", "1", "1", "3", "3", "1", "1", "11", "1", "1", "3", "1", "3", "3", "5", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "7", "11", "5", "1", "9", "7", "1", "5", "3", "1", "1", "7", "1", "5", "3", "1", "1", "1", "5", "3", "1", "3", "1", "1", "1", "5", "1", "3", "1" ]
[ "nonn" ]
7
1
1
[ "A062394", "A377609", "A377622" ]
null
Clark Kimberling, Nov 20 2024
2024-12-05T09:26:22
oeisdata/seq/A377/A377622.seq
21b1c5ea635b30fe5d28b4b4eb0b8661
A377623
a(n) is the number of iterations of x -> 6*x + 1 until (# composites reached) = (# primes reached), starting with prime(n).
[ "15", "5", "5", "3", "3", "13", "7", "1", "5", "1", "1", "3", "1", "1", "7", "1", "1", "7", "1", "1", "3", "1", "7", "1", "1", "9", "5", "3", "1", "1", "1", "5", "3", "1", "1", "5", "1", "1", "1", "3", "1", "5", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "3", "3", "1", "5", "3", "1", "3", "5", "1", "5", "7", "1", "9", "1", "3", "1", "1", "1", "5", "5", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "9" ]
[ "nonn" ]
7
1
1
[ "A198849", "A377609", "A377623" ]
null
Clark Kimberling, Nov 20 2024
2024-12-05T09:26:14
oeisdata/seq/A377/A377623.seq
6b7601bc5820f2043be39cac1da6ff6b
A377624
a(n) is the number of iterations of x -> 6*x + 5 until (# composites reached) = (# primes reached), starting with prime(n).
[ "17", "5", "1", "3", "9", "11", "15", "1", "1", "3", "7", "5", "5", "7", "1", "1", "5", "1", "1", "7", "5", "5", "9", "1", "5", "1", "1", "9", "3", "13", "1", "1", "5", "9", "1", "11", "5", "7", "1", "1", "1", "13", "5", "7", "9", "1", "1", "1", "3", "1", "1", "9", "3", "3", "1", "3", "7", "1", "9", "1", "1", "1", "5", "5", "1", "13", "1", "3", "9", "3", "1", "1", "3", "17", "1", "1", "5", "1", "3", "9", "1", "5", "5", "1" ]
[ "nonn" ]
7
1
1
[ "A198796", "A377609", "A377624" ]
null
Clark Kimberling, Nov 20 2024
2024-12-05T09:26:09
oeisdata/seq/A377/A377624.seq
5996b424dfcaa51452c4c51f97ee035f
A377625
Nonnegative numbers whose nonadjacent form is antipalindromic.
[ "0", "3", "7", "15", "31", "51", "63", "75", "99", "127", "155", "195", "231", "255", "279", "315", "387", "455", "511", "567", "635", "723", "771", "819", "903", "975", "1023", "1071", "1143", "1227", "1275", "1323", "1427", "1539", "1651", "1799", "1935", "2047", "2159", "2295", "2443", "2555", "2667", "2835", "2979", "3075", "3171", "3315", "3495", "3591" ]
[ "nonn", "base" ]
11
1
2
[ "A233571", "A377625", "A379015", "A379040" ]
null
Rémy Sigrist, Dec 28 2024
2024-12-30T16:07:46
oeisdata/seq/A377/A377625.seq
483479d4bcb0da8a935dd79c2f0436b0
A377626
Cogrowth sequence of the 12-element group A4 = <S,T | S^3, T^2, (ST)^3>.
[ "1", "0", "1", "1", "1", "5", "4", "14", "21", "43", "91", "165", "354", "676", "1373", "2741", "5445", "10965", "21808", "43738", "87381", "174735", "349647", "698901", "1398318", "2796080", "5592445", "11185081", "22369145", "44740069", "89477724", "178957606", "357914197", "715826739", "1431658435", "2863308229", "5726626746" ]
[ "nonn", "easy" ]
11
0
6
[ "A007583", "A377626", "A377627", "A377656", "C2", "C6", "D6" ]
null
Sean A. Irvine, Nov 02 2024
2024-11-03T23:09:15
oeisdata/seq/A377/A377626.seq
e34f04b324fb450fc6d756304d3171e8
A377627
Cogrowth sequence of the 12-element group C6 X C2 = <S,T | S^6, T^2, [S,T]>.
[ "1", "1", "1", "2", "29", "211", "926", "3095", "9829", "37130", "164921", "728575", "2973350", "11450531", "43942081", "174174002", "708653429", "2884834891", "11582386286", "46006694735", "182670807229", "729520967450", "2926800830801", "11743814559415", "47006639297270", "187791199242011", "750176293590361" ]
[ "nonn", "easy" ]
17
0
4
[ "A007583", "A377626", "A377627", "A377656", "A377714", "A377840", "A4", "C2", "C4", "C8", "D6" ]
null
Sean A. Irvine, Nov 02 2024
2024-11-10T20:42:57
oeisdata/seq/A377/A377627.seq
3b37d2ddd33d2f7c5239f280e86883be
A377628
a(n) = a(n-1) + a(n-2) + 1 with a(0)=2 and a(1)=2.
[ "2", "2", "5", "8", "14", "23", "38", "62", "101", "164", "266", "431", "698", "1130", "1829", "2960", "4790", "7751", "12542", "20294", "32837", "53132", "85970", "139103", "225074", "364178", "589253", "953432", "1542686", "2496119", "4038806", "6534926", "10573733", "17108660", "27682394", "44791055", "72473450", "117264506" ]
[ "nonn", "easy" ]
20
0
1
[ "A000045", "A000071", "A022086", "A377628" ]
null
Enrique Navarrete, Nov 02 2024
2024-11-21T20:17:10
oeisdata/seq/A377/A377628.seq
5498e9c384b5b9cb8b42444c58b7aa8b
A377629
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^4 ).
[ "1", "4", "60", "1644", "66712", "3611620", "245284344", "20071928212", "1923688610400", "211438912978692", "26225665058289640", "3624147718351890004", "552229557439437084816", "91990834731657653530180", "16632301623786709606057368", "3243982650658692575922907860", "678932992008068232965498759104" ]
[ "nonn" ]
11
0
2
[ "A213644", "A377546", "A377548", "A377629", "A377631", "A377632" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-03T09:32:19
oeisdata/seq/A377/A377629.seq
56824d6b3664ed2cf05ed560fdf2137c
A377630
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x))^4 ).
[ "1", "4", "52", "1212", "41512", "1889700", "107684664", "7384011796", "592485333472", "54488274328836", "5652345176418280", "653054114586249684", "83175314479016845584", "11578838832843098353732", "1749242011108507789948312", "285034599164755404426493140", "49833544890911336997795542464" ]
[ "nonn" ]
10
0
2
[ "A161633", "A364989", "A377553", "A377554", "A377630", "A377633" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-03T09:32:15
oeisdata/seq/A377/A377630.seq
deab800517fd14037150e1d2fc132676
A377631
E.g.f. satisfies A(x) = 1/(1 - x * A(x)^4 * exp(x*A(x)^4)).
[ "1", "1", "12", "297", "11380", "593785", "39304206", "3155996557", "298106913336", "32391139027185", "3980284376962330", "545806093612966021", "82628400115183659012", "13688201250584241332809", "2463065653446247669021398", "478399017659163635014545405", "99757368661138669886988396016" ]
[ "nonn" ]
11
0
3
[ "A213644", "A364985", "A364989", "A365177", "A377629", "A377631", "A377632" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-03T09:32:27
oeisdata/seq/A377/A377631.seq
b6b4a903753f84683ce72b2dd5bc664b
A377632
E.g.f. satisfies A(x) = 1/(1 - x * A(x)^2 * exp(x*A(x)^2))^2.
[ "1", "2", "26", "666", "26000", "1372650", "91594812", "7398109838", "701939170256", "76538939053842", "9432015136260500", "1296420805666136502", "196648127058577395192", "32631136680788714502746", "5880120898119055583177756", "1143520026572037679360951710", "238712613798193658499743637152" ]
[ "nonn" ]
9
0
2
[ "A377629", "A377631", "A377632" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-03T09:32:23
oeisdata/seq/A377/A377632.seq
6d9577b530d266eaedeb92c98966a055
A377633
E.g.f. satisfies A(x) = (1 + x * A(x)^2 * exp(x*A(x)^2))^2.
[ "1", "2", "22", "474", "15512", "685450", "38251212", "2582466950", "204744089104", "18650699228754", "1919767092675860", "220378941471652942", "27916112634179586456", "3868191824049865945178", "582034397153512353488284", "94509039130326185624148150", "16472375319790734221438146592", "3067435511995844132675459958178" ]
[ "nonn" ]
9
0
2
[ "A364989", "A377630", "A377633" ]
null
Seiichi Manyama, Nov 02 2024
2024-11-03T09:31:49
oeisdata/seq/A377/A377633.seq
64b576ece8a95ab726e8d076543122fa
A377634
a(n) is the smallest k such that tau(k*2^n - 1) is equal to 2^n where tau = A000005.
[ "2", "4", "17", "130", "1283", "6889", "40037", "638521", "10126943", "186814849", "2092495862" ]
[ "nonn", "more" ]
23
1
1
[ "A000005", "A360438", "A377634" ]
null
Juri-Stepan Gerasimov, Dec 28 2024
2025-01-11T05:32:06
oeisdata/seq/A377/A377634.seq
733ca943d0c888a7ce6e0946c0debe32
A377635
Decimal expansion of 1/(exp(2) - 1).
[ "1", "5", "6", "5", "1", "7", "6", "4", "2", "7", "4", "9", "6", "6", "5", "6", "5", "1", "8", "1", "8", "0", "8", "0", "6", "2", "3", "4", "6", "5", "4", "2", "3", "9", "1", "6", "4", "5", "6", "0", "0", "6", "9", "7", "0", "6", "2", "0", "2", "2", "6", "3", "2", "7", "7", "7", "1", "5", "7", "6", "4", "8", "3", "7", "8", "3", "5", "4", "2", "1", "3", "5", "2", "3", "0", "9", "3", "7", "1", "9", "1", "3", "3", "7", "3", "3", "9", "6", "2", "0" ]
[ "nonn", "cons", "easy" ]
30
0
2
[ "A000796", "A001113", "A027641", "A027642", "A072334", "A073747", "A377635" ]
null
Paolo Xausa, Nov 05 2024
2024-11-21T17:55:58
oeisdata/seq/A377/A377635.seq
b5438ef14399c5ddf6fd4e91b9944bbd
A377636
Decimal expansion of 2*zeta(3)/Pi^2 - 11/18 + log(Pi)/3.
[ "0", "1", "4", "0", "5", "3", "1", "7", "3", "9", "7", "2", "5", "0", "1", "7", "7", "9", "8", "4", "5", "3", "7", "6", "9", "1", "6", "4", "4", "2", "4", "8", "0", "0", "0", "5", "9", "4", "7", "3", "2", "4", "3", "6", "1", "5", "5", "3", "7", "8", "4", "2", "3", "6", "0", "8", "3", "8", "7", "1", "6", "9", "8", "2", "5", "1", "9", "0", "4", "0", "2", "2", "4", "0", "9", "9", "9", "2", "7", "7", "1", "5", "7", "2", "4", "5", "3", "3", "2", "4", "6", "9", "4", "3", "8", "1", "4", "2", "5", "8", "8" ]
[ "nonn", "cons" ]
7
0
3
[ "A000302", "A002117", "A002388", "A005408", "A005843", "A053510", "A152648", "A377636" ]
null
Stefano Spezia, Nov 03 2024
2025-04-03T04:11:33
oeisdata/seq/A377/A377636.seq
c608945e384befd81cbd4eddfdd7f379
A377637
Number of edge cuts in the n-Andrasfai graph.
[ "1", "26", "3004", "2380610", "13332132940", "554096703882142" ]
[ "nonn", "more" ]
7
1
2
[ "A297004", "A377637" ]
null
Eric W. Weisstein, Nov 03 2024
2024-12-25T21:01:52
oeisdata/seq/A377/A377637.seq
fae447e79842d1dae13e9608cd271813
A377638
Number of edge cuts in the n-gear graph.
[ "1", "5", "45", "419", "3665", "30795", "253137", "2056059", "16589761", "133362635", "1069841265", "8572141979", "68638314785", "549385589355", "4396357712337", "35176668544059", "281439836584321", "2251639520143115", "18013667322023985", "144111852725650139", "1152906290230734305", "9223302635674623915" ]
[ "nonn", "easy" ]
14
0
2
[ "A356200", "A362516", "A377638" ]
null
Eric W. Weisstein, Nov 03 2024
2024-12-01T15:36:13
oeisdata/seq/A377/A377638.seq
f6b066725c52baab373309c7d51dd2b8
A377639
Number of edge cuts in the n-barbell graph.
[ "1", "7", "112", "6748", "1567168", "1434380032", "5313181564672", "80838493938673408", "5049534755835943518208", "1285872353198490183576174592", "1325820676430550921213458275827712", "5508138956812250711370615442510783971328", "91922764576982599075727039533520680008845099008" ]
[ "nonn" ]
14
1
2
[ "A001187", "A006125", "A377639" ]
null
Eric W. Weisstein, Nov 03 2024
2024-12-01T18:47:25
oeisdata/seq/A377/A377639.seq
01b4796097b077f28411bfdd85d04ec0
A377640
Number edge cuts in the n-cocktail party graph.
[ "0", "11", "1440", "2107526", "42988931520", "13507580252824616", "66106397544068778570240", "5070456260407959009146349277616", "6125036729796414112360988978198319006720", "116919909287476066493023898690514431465112835903616", "35352620147125599712871920668133699973012391980925543664619520" ]
[ "nonn" ]
13
1
2
[ "A297029", "A377640" ]
null
Eric W. Weisstein, Nov 03 2024
2025-06-12T18:49:56
oeisdata/seq/A377/A377640.seq
3411dd63224b6ab14ad76e4901566a6f
A377641
a(n) = 3^n + 2^(3*n + 1) - 2^(2*n + 1).
[ "11", "105", "923", "7761", "63731", "516825", "4163723", "33429921", "267930851", "2145445545", "17171657723", "137405930481", "1099379004371", "8795560934265", "70366611042923", "562941406533441", "4503565396772291", "36028659967430985", "288229827558159323", "2305840813677222801" ]
[ "nonn", "easy" ]
8
1
1
null
null
Eric W. Weisstein, Nov 03 2024
2024-11-04T09:30:51
oeisdata/seq/A377/A377641.seq
ae906c95cc4e4d0a2b15c56c7b34f292
A377642
a(n) = (1/(n-1)!) * Product_{i=1..n-1} (2^n-2^i).
[ "1", "2", "12", "224", "13440", "2666496", "1791885312", "4161269661696", "33955960439439360", "987107315743488737280", "103404624282172311371513856", "39408968779516596852827017445376", "55084280201257118417007491904448757760", "284322478318511376197290687371005495020093440" ]
[ "nonn", "easy" ]
42
1
2
[ "A000079", "A000142", "A002884", "A028365", "A048651", "A053601", "A270882", "A377642" ]
null
Nikita Babich, Nov 05 2024
2024-11-16T14:57:54
oeisdata/seq/A377/A377642.seq
dad10080ff17703598fd63ee11c71d2c
A377643
a(n) is the number of terms in the trajectory when the map x -> 2+sopfr(x) is iterated, starting from x = n until x = 8, with sopfr = A001414.
[ "7", "6", "5", "5", "4", "4", "3", "1", "2", "3", "6", "3", "5", "7", "4", "4", "6", "4", "5", "7", "4", "5", "5", "7", "4", "7", "7", "6", "7", "4", "6", "4", "5", "5", "8", "4", "6", "6", "5", "6", "8", "8", "7", "7", "6", "8", "6", "6", "5", "8", "6", "6", "6", "6", "5", "5", "8", "6", "7", "8", "6", "9", "5", "8", "8", "5", "8", "6", "7", "5", "7", "8", "6", "9", "5", "5", "8", "8", "9", "5", "8", "7", "9", "5", "8", "7", "6", "6", "7", "5", "6", "8", "5", "7", "8", "5", "7", "5", "6", "5" ]
[ "nonn" ]
14
1
1
[ "A001414", "A377643" ]
null
Rafik Khalfi, Nov 03 2024
2024-11-24T09:56:26
oeisdata/seq/A377/A377643.seq
228c66f895c4646a389d6fbcd08cdcb5
A377644
Decimal expansion of Li_3(2 - phi).
[ "4", "0", "2", "6", "8", "3", "9", "6", "2", "9", "5", "2", "1", "0", "9", "0", "2", "1", "1", "5", "9", "9", "5", "9", "4", "4", "8", "1", "8", "2", "5", "1", "1", "1", "4", "2", "2", "1", "9", "7", "3", "3", "8", "0", "7", "3", "7", "9", "3", "8", "3", "9", "5", "0", "1", "6", "9", "0", "8", "6", "9", "0", "2", "0", "9", "7", "1", "6", "0", "5", "0", "2", "1", "9", "7", "3", "3", "0", "9", "3", "3", "0", "6", "4", "3", "5", "6", "1", "8", "4", "5", "7", "8", "6", "6", "3", "6", "9", "0", "3" ]
[ "nonn", "cons" ]
5
0
1
[ "A001622", "A002117", "A013661", "A094214", "A132338", "A202543", "A377644" ]
null
Stefano Spezia, Nov 03 2024
2024-11-04T01:48:02
oeisdata/seq/A377/A377644.seq
690478c0f7b09e0474f1349051e0d396
A377645
Decimal expansion of 2*Pi^2*log(2) - 7*zeta(3).
[ "5", "2", "6", "7", "7", "7", "8", "6", "0", "5", "5", "9", "7", "0", "7", "3", "0", "9", "1", "8", "9", "6", "7", "9", "1", "1", "7", "7", "3", "2", "8", "0", "4", "2", "2", "0", "7", "2", "4", "4", "6", "5", "4", "0", "4", "9", "9", "9", "2", "3", "3", "4", "8", "5", "8", "1", "0", "2", "3", "6", "2", "8", "0", "9", "6", "4", "1", "3", "6", "7", "0", "3", "7", "3", "4", "1", "3", "4", "5", "8", "2", "2", "1", "0", "6", "7", "0", "9", "0", "9", "6", "5", "0", "5", "0", "3", "9", "9", "5", "6" ]
[ "nonn", "cons" ]
5
1
1
[ "A002117", "A002162", "A002388", "A016627", "A164102", "A377645" ]
null
Stefano Spezia, Nov 03 2024
2024-11-04T01:48:16
oeisdata/seq/A377/A377645.seq
273f3b92dc318409f35924244655256d
A377646
Expansion of e.g.f. (1 + x * (exp(x) - 1))^2.
[ "1", "0", "4", "6", "32", "130", "432", "1274", "3488", "9090", "22880", "56122", "134928", "319202", "745136", "1719930", "3931712", "8912386", "20053440", "44825978", "99614000", "220200162", "484441232", "1061157946", "2315254752", "5033163650", "10905189152", "23555209914", "50734299728", "108984793570" ]
[ "nonn", "easy" ]
41
0
3
[ "A375660", "A377646", "A377680", "A377681" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:15:22
oeisdata/seq/A377/A377646.seq
f8662d83b933131a746dec240a0e7cf3
A377647
Decimal expansion of Pi^4/15 + Pi^2*log(2)^2/4 - log(2)^4/4 - 21*log(2)*zeta(3)/4 - 6*Li_4(1/2).
[ "1", "4", "2", "5", "1", "4", "1", "9", "7", "9", "3", "5", "7", "1", "0", "9", "1", "5", "7", "0", "8", "7", "2", "1", "5", "0", "1", "2", "0", "9", "6", "5", "2", "1", "6", "0", "8", "9", "5", "4", "6", "3", "4", "1", "0", "7", "6", "4", "1", "0", "9", "2", "3", "7", "9", "9", "4", "8", "6", "5", "5", "8", "4", "5", "4", "9", "8", "7", "9", "0", "5", "8", "1", "7", "9", "7", "8", "7", "7", "9", "4", "4", "6", "0", "3", "6", "9", "8", "3", "3", "5", "8", "6", "8", "2", "8", "1", "0", "4", "3" ]
[ "nonn", "cons" ]
6
0
2
[ "A002117", "A002162", "A002388", "A092425", "A099218", "A377647" ]
null
Stefano Spezia, Nov 03 2024
2024-11-04T01:48:23
oeisdata/seq/A377/A377647.seq
7e01f3a59406a5138b111190d740942f
A377648
Parse Golomb's sequence (A001462) into distinct phrases [1], [2], [2, 3], [3], [4], [4, 4], [5], [5, 5], ...; a(n) is the length of n-th phrase.
[ "1", "1", "2", "1", "1", "2", "1", "2", "1", "2", "2", "1", "2", "1", "2", "2", "1", "2", "2", "1", "2", "2", "1", "2", "2", "1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2", "3", "2", "1", "2", "3", "1", "2", "3", "2", "1", "2", "3", "2", "1", "2", "3", "2", "1", "2", "3", "2", "1", "2", "3", "2", "1", "2", "3", "3", "1", "2", "3", "3", "1", "2", "3", "3", "1", "2", "3", "3", "1", "2", "3", "3" ]
[ "nonn" ]
6
1
3
[ "A001462", "A187199", "A377648" ]
null
Rémy Sigrist, Nov 03 2024
2024-11-04T12:51:13
oeisdata/seq/A377/A377648.seq
55d988bdbdd5f7f67c722cad093d12f3
A377649
Number of edge cuts in the complete bipartite graph K_n,n.
[ "1", "11", "307", "29219", "9874531", "12425270531", "60192210392707", "1137427102035774659", "84343238614611474677731", "24650360937055503837110148611", "28488029177253725394061756995395587", "130493124785564166325712467713764904289859", "2373201513573386990964332212910033418138729872611" ]
[ "nonn" ]
8
1
2
[ "A005333", "A048291", "A377649", "A379215" ]
null
Eric W. Weisstein, Nov 03 2024
2024-12-18T22:00:23
oeisdata/seq/A377/A377649.seq
90dc996dd2977b7cb3d932ae72f4f7bd
A377650
Number of edge cuts in the complete tripartite graph K_{n,n,n}.
[ "4", "1440", "18808672", "13140301136292", "552399762979005094984", "1425253513627334593833784280100" ]
[ "nonn", "more" ]
8
1
1
[ "A377649", "A377650" ]
null
Eric W. Weisstein, Nov 03 2024
2025-05-27T14:38:53
oeisdata/seq/A377/A377650.seq
0b29d9a27d4a485999d87739fc38ed1f
A377651
Number of edge cuts in the n-crown graph.
[ "0", "3", "57", "3013", "557565", "368668489", "913241498547", "8735037367292443" ]
[ "nonn", "more" ]
8
1
2
null
null
Eric W. Weisstein, Nov 03 2024
2025-05-28T10:51:38
oeisdata/seq/A377/A377651.seq
16e366848ebe1724e4fa900b2c9d848c
A377652
Number of edge cuts in the graph complement of the cycle graph bar C_n.
[ "0", "3", "26", "314", "6686", "258652", "18870260" ]
[ "nonn", "more" ]
11
3
2
[ "A377652", "A377767" ]
null
Eric W. Weisstein, Nov 03 2024
2024-11-23T00:29:39
oeisdata/seq/A377/A377652.seq
633c46fd4c30bd52d58f92020a63cb57
A377653
Number of edge cuts in the n-Lucas cube graph.
[ "0", "3", "7", "231", "30795", "1018597789", "68849933998950895" ]
[ "nonn", "more" ]
7
1
2
[ "A364745", "A377653", "A377760", "A378861" ]
null
Eric W. Weisstein, Nov 03 2024
2024-12-09T19:45:30
oeisdata/seq/A377/A377653.seq
ce4c66b3d01c3b679830fc1b8ae5d191
A377654
Numbers m^2 for which the center part (containing the diagonal) of its symmetric representation of sigma, SRS(m^2), has width 1 and area m.
[ "1", "9", "25", "49", "81", "121", "169", "289", "361", "441", "529", "625", "729", "841", "961", "1089", "1369", "1521", "1681", "1849", "2209", "2401", "2601", "2809", "3025", "3249", "3481", "3721", "4225", "4489", "4761", "5041", "5329", "6241", "6561", "6889", "7225", "7569", "7921", "8649", "9025", "9409", "10201", "10609", "11449", "11881", "12321", "12769", "13225", "14161", "14641", "15129", "15625" ]
[ "nonn" ]
5
1
2
[ "A001248", "A003056", "A016754", "A030514", "A030516", "A030629", "A030631", "A179645", "A237591", "A237593", "A244579", "A247687", "A249223", "A319529", "A341969", "A357581", "A377654" ]
null
Hartmut F. W. Hoft, Nov 03 2024
2024-11-17T07:39:37
oeisdata/seq/A377/A377654.seq
f4afa57ecb821e7b0652ac12fc912dcf
A377655
a(n) is the least prime p such that (2^p - 2)/p == n (mod p), or -1 if there is no such prime p.
[ "1093", "2", "3", "30577", "7", "41", "13", "43", "2633", "17", "11", "23", "31", "83", "233", "103", "59", "97", "25037", "53", "67", "3323", "14717" ]
[ "nonn", "more" ]
12
0
1
[ "A179077", "A377655", "A377669" ]
null
Robert Israel, Nov 03 2024
2024-11-04T18:32:48
oeisdata/seq/A377/A377655.seq
d7ef649ab0f2e5595b4b47b533150159
A377656
Cogrowth sequence of the 12-element dicyclic group Dic12 = <S,T | S^6, T^4, STST^3, S^3T^2>.
[ "1", "0", "0", "0", "1", "5", "7", "7", "19", "39", "95", "187", "323", "663", "1351", "2755", "5579", "10863", "21679", "43643", "87411", "175399", "349591", "697843", "1397787", "2796255", "5595135", "11187435", "22362691", "44735255", "89480167", "178966627", "357936619", "715798479", "1431613775", "2863328347", "5726658323" ]
[ "nonn", "easy" ]
10
0
6
[ "A007583", "A377626", "A377627", "A377656", "A4", "C2", "C6", "D6" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-03T23:09:23
oeisdata/seq/A377/A377656.seq
a753eedad628191fcc695dc9ccbb4a83
A377657
Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..k} tan(j*Pi/(1 + 2*k))^(2*n).
[ "1", "0", "2", "0", "3", "3", "0", "9", "10", "4", "0", "27", "90", "21", "5", "0", "81", "850", "371", "36", "6", "0", "243", "8050", "7077", "1044", "55", "7", "0", "729", "76250", "135779", "33300", "2365", "78", "8", "0", "2187", "722250", "2606261", "1070244", "113311", "4654", "105", "9", "0", "6561", "6841250", "50028755", "34420356", "5476405", "312390", "8295", "136", "10" ]
[ "nonn", "tabl" ]
23
0
3
[ "A000027", "A014105", "A091042", "A376478", "A376777", "A376778", "A377657", "A377658", "A377858" ]
null
Peter Luschny, Nov 10 2024
2024-11-13T17:22:00
oeisdata/seq/A377/A377657.seq
8e0a4f5bee7f2597a71196125995ddad
A377658
a(n) = Sum_{k=0 .. n} Sum_{j=0 .. k} tan(j*Pi/(1 + 2*k))^(2*(n - k)). Antidiagonal sums of A377657.
[ "1", "2", "6", "23", "143", "1344", "16476", "248509", "4519021", "97094158", "2419043330", "68973522675", "2228418011291", "80844520830828", "3266496719516152", "145973848760893369", "7172279845906943513", "385419654638220638810", "22543794177677289243966", "1429137150185034529444879", "97815341290407924477479399" ]
[ "nonn" ]
10
0
2
[ "A377657", "A377658" ]
null
Peter Luschny, Nov 11 2024
2024-11-13T07:50:43
oeisdata/seq/A377/A377658.seq
bdc6d090adacb55eae5f34170301165e
A377659
a(n) = Motzkin(n) - 2^(n - 1 + 0^n) = A001006(n) - A011782(n).
[ "0", "0", "0", "0", "1", "5", "19", "63", "195", "579", "1676", "4774", "13463", "37739", "105442", "294188", "820699", "2291243", "6405310", "17937140", "50327731", "141498983", "398666071", "1125566111", "3184339189", "9026625285", "25636264044", "72940663938", "207889060481", "593474349373", "1696848600299", "4858687934567" ]
[ "nonn" ]
35
0
6
[ "A001006", "A011782", "A125107", "A377659" ]
null
Peter Luschny, Nov 28 2024
2024-12-04T16:29:30
oeisdata/seq/A377/A377659.seq
e60080a80d9641249c7fda50a59b833f
A377660
Triangle read by rows: T(n, k) = (n - k)!*(n + k)!/n!.
[ "1", "1", "2", "2", "3", "12", "6", "8", "20", "120", "24", "30", "60", "210", "1680", "120", "144", "252", "672", "3024", "30240", "720", "840", "1344", "3024", "10080", "55440", "665280", "5040", "5760", "8640", "17280", "47520", "190080", "1235520", "17297280", "40320", "45360", "64800", "118800", "285120", "926640", "4324320", "32432400", "518918400" ]
[ "nonn", "tabl" ]
16
0
3
[ "A000142", "A001813", "A377660" ]
null
Peter Luschny, Dec 08 2024
2025-02-17T12:29:45
oeisdata/seq/A377/A377660.seq
faacc808651eb904973d57080e798368
A377661
Triangle read by rows: T(n, k) = e*Gamma(n - k + 1, 1)*binomial(n, k)^2.
[ "1", "2", "1", "5", "8", "1", "16", "45", "18", "1", "65", "256", "180", "32", "1", "326", "1625", "1600", "500", "50", "1", "1957", "11736", "14625", "6400", "1125", "72", "1", "13700", "95893", "143766", "79625", "19600", "2205", "98", "1", "109601", "876800", "1534288", "1022336", "318500", "50176", "3920", "128", "1" ]
[ "nonn", "tabl" ]
14
0
2
[ "A000522", "A001105", "A073107", "A377661", "A377662" ]
null
Peter Luschny, Nov 03 2024
2024-11-12T20:20:59
oeisdata/seq/A377/A377661.seq
343a5add41a667bd986c5d67f5891ee1
A377662
a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=k..n} n!/(k!*(j - k)!). Row sums of A377661.
[ "1", "3", "14", "80", "534", "4102", "35916", "354888", "3915750", "47754938", "637840356", "9256590928", "144977618044", "2436460447020", "43719637179224", "834042701945520", "16852447379512710", "359468276129261730", "8070500634880125300", "190211302604157871680", "4695001374741310892820" ]
[ "nonn" ]
12
0
2
[ "A073107", "A377661", "A377662" ]
null
Peter Luschny, Nov 07 2024
2025-03-30T20:23:40
oeisdata/seq/A377/A377662.seq
deaa5bcea67f03c2b77106c40231f803
A377663
a(n) = 2*n^3 - 3*n + 1.
[ "1", "0", "11", "46", "117", "236", "415", "666", "1001", "1432", "1971", "2630", "3421", "4356", "5447", "6706", "8145", "9776", "11611", "13662", "15941", "18460", "21231", "24266", "27577", "31176", "35075", "39286", "43821", "48692", "53911", "59490", "65441", "71776", "78507", "85646", "93205", "101196", "109631", "118522", "127881", "137720" ]
[ "nonn" ]
12
0
3
[ "A377663", "A377666" ]
null
Peter Luschny, Nov 14 2024
2024-11-14T23:49:04
oeisdata/seq/A377/A377663.seq
84473e5352952580b8b678f60f2c4e9a
A377664
a(n) = Sum_{j=0..n} binomial(n, j)*Euler(j, 0)*(2*n)^j. Main diagonal of A377666.
[ "1", "0", "-3", "46", "497", "-47524", "-737891", "218380506", "4534099905", "-3027853088648", "-79034002960099", "99913537539058310", "3145444161956190577", "-6725392006687056786732", "-248035037340684934103427", "829076907459643714597871026", "35061737998144136797680434945", "-172868475620109085260017037166096" ]
[ "sign" ]
7
0
3
[ "A377664", "A377666" ]
null
Peter Luschny, Nov 14 2024
2024-11-14T17:55:59
oeisdata/seq/A377/A377664.seq
c312b8e90eb042354d0d725d1ded3c12
A377665
a(n) = Sum_{j=0..n} binomial(n, j) * Euler(j, 0) * 10^j. Row 5 of A377666.
[ "1", "-4", "-9", "236", "981", "-47524", "-295029", "20208716", "167213961", "-14741279044", "-152462570049", "16429489441196", "203906790454941", "-25968596099278564", "-376012858170009069", "55254540434093713676", "914353480122881739921", "-152277985980992039230084", "-2834887281233334168196089" ]
[ "sign" ]
12
0
2
[ "A377665", "A377666" ]
null
Peter Luschny, Nov 13 2024
2025-03-31T01:44:58
oeisdata/seq/A377/A377665.seq
3bdc70da06a7593957759ce8d6c65966
A377666
Array read by ascending antidiagonals: A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 0) *(2*n)^j.
[ "1", "1", "1", "1", "0", "1", "1", "-1", "-1", "1", "1", "-2", "-3", "0", "1", "1", "-3", "-5", "11", "5", "1", "1", "-4", "-7", "46", "57", "0", "1", "1", "-5", "-9", "117", "205", "-361", "-61", "1", "1", "-6", "-11", "236", "497", "-3362", "-2763", "0", "1", "1", "-7", "-13", "415", "981", "-15123", "-22265", "24611", "1385", "1" ]
[ "sign", "tabl" ]
26
0
12
[ "A000012", "A122045", "A156201", "A212435", "A225147", "A363393", "A377663", "A377664", "A377665", "A377666" ]
null
Peter Luschny, Nov 05 2024
2025-03-31T01:45:17
oeisdata/seq/A377/A377666.seq
a4a2078ff7dceb76e2e028c7aaf9a899
A377667
Square array read by antidiagonals upwards: T(i,j) is the smallest number m such that the symmetric representation of sigma, SRS(m), has maximum width 3, consists of i parts and has 2*j occurrences of maximum width 3 in its width pattern (row m of A341969).
[ "60", "10728", "210", "315", "7620", "810", "495", "1155", "840456", "2070", "525", "28158", "945", "88410", "7290", "1275", "1995", "30555", "1575", "408150", "12810", "1287", "2625", "3003", "22365", "2835", "1313010", "45450", "6105", "3315", "10659", "18975", "382305", "11385" ]
[ "nonn", "tabl", "more" ]
13
1
1
[ "A237591", "A237593", "A249223", "A341969", "A376829", "A377667" ]
null
Hartmut F. W. Hoft, Nov 03 2024
2025-02-19T12:20:13
oeisdata/seq/A377/A377667.seq
1a22877e59199eb1c17b51c3debfc802
A377668
Square array read by antidiagonals upwards: T(i,j), i, j >= 1, is the smallest number m such that the symmetric presentation of sigma, SRS(m), has maximum width 3, consists of 2*i-1 parts and has 2*j-1 occurrences of maximum width 3 in its width pattern (row m of A341969).
[ "72", "2450", "648", "1225", "120050", "450", "3969", "581042", "211250", "20808", "9801", "30625" ]
[ "nonn", "tabl", "more" ]
12
1
1
[ "A237591", "A237593", "A249223", "A341969", "A376829", "A377667", "A377668" ]
null
Hartmut F. W. Hoft, Nov 03 2024
2025-02-19T12:20:17
oeisdata/seq/A377/A377668.seq
7d430587273fd06305060f36ecfc79e3
A377669
a(n) is the least prime p such that (3^p - 3)/p == n (mod p), or -1 if there is no such prime p.
[ "11", "2", "3", "5", "7", "23", "43", "5721619", "2311", "105830189", "31300663", "13", "113", "17", "821", "1181", "19", "37" ]
[ "nonn", "more" ]
10
0
1
[ "A179078", "A377655", "A377669" ]
null
Robert Israel, Nov 03 2024
2025-06-07T16:47:03
oeisdata/seq/A377/A377669.seq
11f2eea342a6ac27baf507e41b184485
A377670
Number of subwords of the form UDD in nondecreasing Dyck paths of length 2n.
[ "0", "0", "1", "4", "14", "45", "138", "411", "1200", "3454", "9836", "27779", "77938", "217493", "604222", "1672246", "4613030", "12689265", "34817418", "95320335", "260436588", "710278318", "1933906496", "5257545599", "14273273314", "38699274665", "104799960058", "283487736166", "766045036730", "2067997219629", "5577597593466", "15030365074659", "40470488092008" ]
[ "nonn", "easy" ]
42
0
4
[ "A000032", "A000045", "A375995", "A377670", "A377679" ]
null
Rigoberto Florez, Nov 03 2024
2025-03-05T02:06:24
oeisdata/seq/A377/A377670.seq
8ec2a429a0e0dbc60283da14d18fbe7d
A377671
Number of prime factors of n^n+n (counted with multiplicity).
[ "1", "2", "3", "4", "3", "5", "6", "7", "4", "7", "4", "5", "4", "8", "6", "8", "5", "7", "11", "7", "6", "10", "6", "8", "7", "10", "10", "12", "6", "7", "11", "11", "7", "13", "7", "11", "8", "7", "5", "12", "7", "7", "13", "9", "10", "18", "6", "11", "11", "11", "11", "12", "10", "11", "14", "14", "12", "11", "7", "10", "13", "7", "8", "21", "5", "14", "10", "8", "7", "15", "11", "10", "13", "8", "9", "17" ]
[ "nonn" ]
17
1
2
[ "A001222", "A066068", "A085723", "A372228", "A372546", "A377671", "A377672", "A377673", "A377674" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:07
oeisdata/seq/A377/A377671.seq
720e6fb4c4b69d2af9d71e4247c8f996
A377672
a(n) is the number of divisors of n^n + n.
[ "2", "4", "8", "12", "8", "32", "48", "48", "12", "128", "16", "24", "16", "256", "64", "80", "32", "96", "1536", "96", "64", "1024", "64", "96", "96", "512", "512", "3072", "64", "128", "2048", "384", "128", "8192", "128", "1152", "256", "128", "32", "2048", "128", "128", "6144", "288", "768", "262144", "64", "480", "1536", "1536", "2048", "3072", "1024", "1024" ]
[ "nonn" ]
10
1
1
[ "A000005", "A066068", "A344859", "A372228", "A372546", "A377671", "A377672", "A377673", "A377674" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:10
oeisdata/seq/A377/A377672.seq
20d30535480efa75095184f85c4a1335
A377673
a(n) is the sum of the divisors of n^n + n.
[ "3", "12", "72", "588", "5652", "117504", "1895712", "46503600", "839411118", "25440307200", "474527311344", "22404560101168", "489294047662728", "30902868417576960", "1096805935992340800", "38000593697802058224", "1318965178069293272496", "90596485743469636057920", "3578317312662511683264000" ]
[ "nonn" ]
10
1
1
[ "A000203", "A066068", "A366820", "A372228", "A372546", "A377671", "A377672", "A377673", "A377674" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:23
oeisdata/seq/A377/A377673.seq
73ca05723aa2073293f3f78f319381d4
A377674
a(n) = phi(n^n + n) where phi is the Euler totient function.
[ "1", "2", "8", "96", "1248", "12000", "259200", "5461344", "129140160", "2725643520", "127561104000", "2743415522496", "139778722137600", "2504616361228800", "111747349423990784", "8644660582219776000", "387774574486565683200", "12306643656809728412160", "816897235219321957908480" ]
[ "nonn" ]
10
1
2
[ "A000010", "A066068", "A366822", "A372228", "A372546", "A377671", "A377672", "A377673", "A377674" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:26
oeisdata/seq/A377/A377674.seq
02c7bdffa207b1b1add8ae8f479a2a76
A377675
Number of prime factors of n^n-n (counted with multiplicity).
[ "1", "4", "5", "7", "5", "9", "7", "12", "8", "9", "7", "13", "6", "11", "17", "16", "6", "17", "7", "15", "10", "10", "10", "19", "11", "18", "15", "14", "7", "22", "13", "21", "11", "14", "22", "24", "7", "15", "15", "26", "9", "20", "7", "17", "17", "12", "11", "30", "9", "24", "15", "20", "10", "29", "16", "27", "12", "13", "9", "29", "8", "18", "29", "27", "15", "24", "8", "23", "13", "25" ]
[ "nonn" ]
12
2
2
[ "A001222", "A061190", "A309941", "A372229", "A372599", "A377671", "A377675", "A377676", "A377677", "A377678" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:29
oeisdata/seq/A377/A377675.seq
501872e89c476850527cc0521d80ec40
A377676
a(n) is the number of divisors of n^n - n.
[ "2", "8", "18", "40", "24", "120", "48", "336", "80", "192", "72", "1920", "48", "288", "23040", "1728", "36", "10240", "72", "7680", "432", "240", "384", "32256", "640", "49152", "2016", "3840", "96", "193536", "1152", "22528", "1152", "4608", "1327104", "1638400", "96", "7680", "9216", "4128768", "384", "294912", "72", "23040", "30720", "576" ]
[ "nonn" ]
11
2
1
[ "A000005", "A061190", "A334167", "A372229", "A372599", "A377672", "A377675", "A377676", "A377677", "A377678" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:32
oeisdata/seq/A377/A377676.seq
6ce3f2cf5d4fec7d6e71607e9e855aad
A377677
a(n) is the sum of the divisors of n^n - n.
[ "3", "60", "728", "10416", "116064", "2837120", "36990720", "1452853584", "27615698352", "965243666880", "23861701899840", "1355882884941312", "20758574413420992", "1604569397488307712", "93340493714183159808", "3135286584767445151680", "90560273718863022770592", "8284620870197084160000000" ]
[ "nonn" ]
11
2
1
[ "A000203", "A061190", "A366819", "A377673", "A377675", "A377676", "A377677", "A377678" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:35
oeisdata/seq/A377/A377677.seq
49a3c34865c34dd34d5ccab6631660cd
A377678
a(n) = phi(n^n - n) where phi is the Euler totient function.
[ "1", "8", "72", "768", "12400", "217728", "7112448", "94371840", "2594586816", "69139840000", "2584376931840", "58779453358080", "4367959006806720", "100089965305451520", "3251736576000000000", "200445251536048619520", "12343971160877345120064", "422076038504126628593664" ]
[ "nonn" ]
10
2
2
[ "A000010", "A061190", "A366821", "A372229", "A372599", "A377674", "A377675", "A377676", "A377677", "A377678" ]
null
Sean A. Irvine, Nov 03 2024
2024-11-04T01:36:38
oeisdata/seq/A377/A377678.seq
8ef562ae5508c9174deeac1033378367
A377679
Number of subwords of the form DDD in nondecreasing Dyck paths of length 2n.
[ "0", "0", "0", "1", "6", "26", "97", "333", "1085", "3411", "10448", "31376", "92773", "270907", "783003", "2243815", "6383550", "18048494", "50755897", "142067625", "396014681", "1099863867", "3044737100", "8404071596", "23135752141", "63538808311", "174120317367", "476207551183" ]
[ "nonn", "easy", "changed" ]
28
0
5
[ "A000032", "A000045", "A375995", "A377670", "A377679" ]
null
Rigoberto Florez, Nov 03 2024
2025-07-18T01:53:08
oeisdata/seq/A377/A377679.seq
bbd00d4f811a5e937110725d2979eabf
A377680
Expansion of e.g.f. (1 + x * (exp(x) - 1))^3.
[ "1", "0", "6", "9", "84", "375", "1998", "11361", "60840", "299403", "1368930", "5906373", "24362748", "97019247", "375712470", "1422455625", "5286155088", "19340722707", "69831127242", "249265052301", "880927979940", "3086000399223", "10726216043070", "37020328044945", "126961071656184", "432900077950875" ]
[ "nonn", "easy" ]
8
0
3
[ "A375661", "A377646", "A377680", "A377681" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:15:18
oeisdata/seq/A377/A377680.seq
57252309f426f7886c2a8859f7af0573
A377681
Expansion of e.g.f. (1 + x * (exp(x) - 1))^4.
[ "1", "0", "8", "12", "160", "740", "5424", "37828", "262784", "1868868", "13200880", "89816804", "581630592", "3586158628", "21162503600", "120273982980", "662169758464", "3549104142980", "18595278255600", "95559668680612", "482965743234560", "2405973280450404", "11835507260403376", "57577781030368196" ]
[ "nonn", "easy" ]
8
0
3
[ "A377646", "A377680", "A377681" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:15:12
oeisdata/seq/A377/A377681.seq
f11091a7d6d7b71ea17b5adfebc4bf9e
A377682
Expansion of e.g.f. (1 - x * log(1 - x))^2.
[ "1", "0", "4", "6", "40", "180", "948", "5880", "42208", "344736", "3158640", "32091840", "358107264", "4353972480", "57290002560", "811116633600", "12295029657600", "198666240675840", "3408788192947200", "61898371424870400", "1185883197069312000", "23905764186329088000", "505813884019270041600" ]
[ "nonn", "easy" ]
11
0
3
[ "A377682", "A377683", "A377684", "A377685" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:15:01
oeisdata/seq/A377/A377682.seq
2a0bb9230bfc8aee10aab7bb617e3cd9
A377683
Expansion of e.g.f. (1 - x * log(1 - x))^3.
[ "1", "0", "6", "9", "96", "450", "3132", "22680", "179904", "1578528", "15282000", "162304560", "1879227072", "23579281440", "318874800384", "4625170411680", "71640771563520", "1180394962790400", "20616532017767424", "380509312545031680", "7400308896979660800", "151271976281858611200", "3242509236999683481600" ]
[ "nonn", "easy" ]
11
0
3
[ "A375672", "A377682", "A377683", "A377684" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:56
oeisdata/seq/A377/A377683.seq
ffc846c2f501bdc627cc5d71afaad472
A377684
Expansion of e.g.f. (1 - x * log(1 - x))^4.
[ "1", "0", "8", "12", "176", "840", "7416", "58800", "529728", "5152896", "54070560", "612342720", "7472424384", "97979207040", "1375839795456", "20619488373120", "328716465177600", "5556948993792000", "99324048442208256", "1871986425192990720", "37110785352536724480", "772059856808638218240", "16820447458491885035520" ]
[ "nonn", "easy" ]
10
0
3
[ "A377682", "A377683", "A377684" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:52
oeisdata/seq/A377/A377684.seq
f6094faeaeb6294dbc426ec7d6daffc3
A377685
E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^2.
[ "1", "0", "4", "6", "136", "900", "16308", "229320", "4691104", "99156960", "2481162480", "67862678400", "2063842827264", "68473763804160", "2468786906210688", "96048626176339200", "4010912604492410880", "178968539487145282560", "8496991445958129576960", "427734144995749047152640" ]
[ "nonn" ]
13
0
3
[ "A371117", "A371227", "A377390", "A377685", "A377686" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:09:01
oeisdata/seq/A377/A377685.seq
3b9bfe77bcebb1a587e897448aea1752
A377686
E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^3.
[ "1", "0", "6", "9", "312", "2070", "53892", "797580", "21541440", "508313232", "15840608400", "502075577520", "18473543511552", "722232734446080", "31135359390952320", "1435933667363963040", "71392285554374384640", "3782802775152784320000", "213512536856209839796224", "12767785967296083820561920" ]
[ "nonn" ]
11
0
3
[ "A371117", "A377391", "A377685", "A377686", "A377687" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:48
oeisdata/seq/A377/A377686.seq
4cd249a5921ca1034c3f4085d6670830
A377687
E.g.f. satisfies A(x) = 1 - x*log(1 - x*A(x)^3).
[ "1", "0", "2", "3", "80", "570", "12744", "198660", "4969152", "119968128", "3607836480", "115031711520", "4163170478400", "162622297300320", "6952158785424384", "319741032356928000", "15818989359665802240", "835755271882288128000", "47015148988105365288960", "2804276310235518168161280" ]
[ "nonn" ]
7
0
3
[ "A371227", "A377687", "A377690" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:44
oeisdata/seq/A377/A377687.seq
5dabe936f3abc71a90637b0785b0374e
A377688
E.g.f. satisfies A(x) = (1 + x * (exp(x*A(x)) - 1))^2.
[ "1", "0", "4", "6", "128", "850", "13872", "195314", "3586592", "74163618", "1694735840", "44196946882", "1244904944208", "38788984768274", "1302631536943856", "47297768099973330", "1840951270666885952", "76501162074673415746", "3382517582789739956928", "158445187728836733069986" ]
[ "nonn" ]
10
0
3
[ "A371115", "A371262", "A377688", "A377689" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:26
oeisdata/seq/A377/A377688.seq
6438999c155de4b088b9df20e113807c
A377689
E.g.f. satisfies A(x) = (1 + x * (exp(x*A(x)) - 1))^3.
[ "1", "0", "6", "9", "300", "1995", "48438", "720111", "17965944", "422161011", "12234150930", "380328463383", "13151800946628", "497667965729259", "20320277028840558", "899482574279597535", "42525760204244934768", "2153233176660303831267", "115738033009558749725610", "6600044862098481204272487" ]
[ "nonn" ]
10
0
3
[ "A371115", "A377688", "A377689", "A377690" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:18
oeisdata/seq/A377/A377689.seq
56997179cd389c8b2f3c269efc29d43d
A377690
E.g.f. satisfies A(x) = 1 + x * (exp(x*A(x)^3) - 1).
[ "1", "0", "2", "3", "76", "545", "11166", "175777", "4012856", "96530625", "2685888730", "83721921041", "2843440273092", "107065956887617", "4332658616388662", "190612061432096865", "8961290146870598896", "451334805268791262337", "24156272027391899229234", "1371678815491898403876913" ]
[ "nonn" ]
9
0
3
[ "A371262", "A377687", "A377690" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:22
oeisdata/seq/A377/A377690.seq
dab8adf3fe353c7243cc101b0867a185
A377691
E.g.f. satisfies A(x) = (1 - x * log(1 - x) * A(x))^3.
[ "1", "0", "6", "9", "312", "1530", "47952", "468720", "15273696", "238738752", "8404102080", "185234979600", "7145001364608", "204957002147040", "8705298805015680", "307822476591957600", "14400927608439260160", "604208707715034777600", "31065769175985079142400", "1504405685073556864627200" ]
[ "nonn" ]
12
0
3
[ "A052830", "A371141", "A377438", "A377691" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:35
oeisdata/seq/A377/A377691.seq
e48d70ce626c53d24145cfeb702c1243
A377692
E.g.f. satisfies A(x) = (1 - log(1 - x) * A(x))^2.
[ "1", "2", "12", "118", "1634", "29408", "654040", "17362056", "536410200", "18922946928", "750902659200", "33118793900784", "1607673329621712", "85192554602094912", "4894219487974911552", "303021216528999244416", "20116223556200658052992", "1425479651299747192856832", "107400336067263661850548224" ]
[ "nonn" ]
18
0
2
[ "A007840", "A052803", "A377445", "A377692", "A377693" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-05T03:12:18
oeisdata/seq/A377/A377692.seq
e0470844a51f056ae85a66380d421cd2
A377693
E.g.f. satisfies A(x) = (1 - log(1 - x) * A(x))^3.
[ "1", "3", "27", "408", "8814", "249702", "8789946", "370639896", "18233312640", "1025931258264", "65016004033944", "4583861319427200", "355955157532869552", "30192068409536580336", "2777615578746538933392", "275502517287785484635520", "29308962522270448504338048", "3329136621436554585165282048" ]
[ "nonn" ]
11
0
2
[ "A007840", "A367158", "A377446", "A377692", "A377693" ]
null
Seiichi Manyama, Nov 04 2024
2024-11-04T09:08:31
oeisdata/seq/A377/A377693.seq
169faf62272826e6499f820a2a78368f
A377694
Decimal expansion of the surface area of a truncated dodecahedron with unit edge length.
[ "1", "0", "0", "9", "9", "0", "7", "6", "0", "1", "5", "3", "1", "0", "1", "9", "8", "8", "5", "4", "4", "7", "4", "5", "9", "4", "8", "9", "8", "8", "6", "3", "6", "6", "5", "6", "5", "5", "4", "9", "1", "5", "0", "9", "0", "5", "7", "5", "1", "8", "5", "6", "7", "5", "9", "5", "1", "4", "5", "3", "7", "2", "2", "4", "0", "8", "5", "0", "5", "5", "6", "3", "7", "3", "9", "3", "9", "6", "7", "2", "7", "7", "3", "9", "0", "4", "3", "5", "4", "2" ]
[ "nonn", "cons", "easy" ]
7
3
4
[ "A002194", "A010476", "A131595", "A377694", "A377695", "A377696", "A377697", "A377698" ]
null
Paolo Xausa, Nov 04 2024
2024-11-06T04:40:31
oeisdata/seq/A377/A377694.seq
ac521bdcf33dea12b63018140d5dcfa8
A377695
Decimal expansion of the volume of a truncated dodecahedron with unit edge length.
[ "8", "5", "0", "3", "9", "6", "6", "4", "5", "5", "9", "3", "7", "0", "8", "8", "1", "5", "5", "4", "6", "7", "9", "6", "5", "1", "0", "1", "2", "6", "5", "4", "1", "5", "9", "6", "1", "0", "7", "1", "2", "1", "0", "9", "5", "4", "2", "3", "9", "2", "3", "7", "8", "7", "6", "6", "9", "7", "1", "7", "3", "7", "7", "2", "2", "6", "2", "2", "7", "0", "1", "4", "6", "0", "4", "0", "7", "0", "1", "2", "6", "1", "3", "5", "3", "2", "2", "8", "2", "1" ]
[ "nonn", "cons", "easy" ]
5
2
1
[ "A002163", "A102769", "A377694", "A377695", "A377696", "A377697", "A377698" ]
null
Paolo Xausa, Nov 04 2024
2024-11-06T04:40:37
oeisdata/seq/A377/A377695.seq
31c15704e8434226a3c63be6b78a1a3e
A377696
Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length.
[ "2", "9", "6", "9", "4", "4", "9", "0", "1", "5", "8", "6", "3", "3", "9", "8", "4", "6", "7", "0", "4", "2", "1", "6", "6", "6", "9", "5", "6", "9", "2", "5", "9", "7", "9", "6", "3", "6", "0", "0", "7", "4", "7", "7", "0", "0", "3", "2", "8", "0", "9", "6", "6", "9", "9", "8", "3", "7", "8", "6", "2", "7", "7", "6", "1", "2", "2", "1", "0", "6", "9", "2", "4", "4", "8", "8", "8", "3", "7", "5", "2", "0", "9", "0", "7", "9", "6", "4", "7", "1" ]
[ "nonn", "cons", "easy" ]
5
1
1
[ "A002163", "A179296", "A377694", "A377695", "A377696", "A377697", "A377698" ]
null
Paolo Xausa, Nov 04 2024
2024-11-06T04:40:44
oeisdata/seq/A377/A377696.seq
766d2a4046bfb34dbfd97d1eb68f61fa
A377697
Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.
[ "2", "9", "2", "7", "0", "5", "0", "9", "8", "3", "1", "2", "4", "8", "4", "2", "2", "7", "2", "3", "0", "6", "8", "8", "0", "2", "5", "1", "5", "4", "8", "4", "5", "7", "1", "7", "6", "5", "8", "0", "4", "6", "3", "7", "6", "9", "7", "0", "8", "6", "4", "4", "2", "9", "3", "2", "0", "3", "1", "7", "2", "9", "3", "4", "0", "5", "7", "8", "9", "0", "6", "9", "4", "2", "2", "8", "3", "5", "3", "6", "7", "4", "5", "6", "0", "8", "1", "0", "8", "0" ]
[ "nonn", "cons", "easy" ]
7
1
1
[ "A010499", "A205769", "A239798", "A377694", "A377695", "A377696", "A377697", "A377698" ]
null
Paolo Xausa, Nov 05 2024
2024-11-06T04:40:51
oeisdata/seq/A377/A377697.seq
044b67392df6f06c9540d487ebae0905
A377698
Decimal expansion of 30*arcsin(sqrt(5)/3).
[ "2", "5", "2", "3", "2", "0", "6", "0", "1", "1", "7", "0", "3", "7", "9", "0", "7", "6", "7", "3", "2", "9", "5", "7", "5", "0", "9", "5", "4", "7", "9", "2", "9", "2", "2", "4", "0", "1", "0", "6", "2", "3", "6", "3", "5", "6", "9", "1", "9", "5", "1", "7", "6", "5", "9", "3", "3", "5", "5", "6", "8", "4", "1", "4", "0", "7", "6", "2", "6", "7", "9", "1", "0", "4", "2", "9", "0", "1", "2", "0", "8", "1", "5", "5", "5", "6", "0", "2", "0", "1" ]
[ "nonn", "cons", "easy" ]
14
2
1
[ "A228496", "A377698" ]
null
Paolo Xausa, Nov 05 2024
2024-11-21T07:42:16
oeisdata/seq/A377/A377698.seq
6590dfd573e8456e13e414affa3066fe
A377699
Numbers k such that (35^k - 2^k)/33 is prime.
[ "2", "17", "53", "211", "4013", "55207" ]
[ "nonn", "hard", "more" ]
21
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A377699" ]
null
Robert Price, Nov 05 2024
2025-02-16T08:34:07
oeisdata/seq/A377/A377699.seq
eaf13b53c27e76dd647bb42ae9ab6b97
A377700
Number of ways of placing n nonattacking rooks on a toroidal board of 2n^2 equilateral triangular spaces.
[ "2", "4", "6", "48", "30", "1152", "266", "45824", "4050", "2736000", "75702", "233017344", "2060734" ]
[ "nonn", "more" ]
11
1
1
[ "A002047", "A006717", "A062166", "A067015", "A342372", "A375800", "A377700" ]
null
Hugh Robinson, Nov 04 2024
2024-11-13T08:29:40
oeisdata/seq/A377/A377700.seq
d969130e977e0f4d0a5930fb465eea1d
A377701
Number of non-perfect-powers x in the range 2^n < x < 2^(n+1).
[ "0", "1", "3", "6", "13", "29", "59", "121", "248", "501", "1008", "2024", "4064", "8150", "16323", "32686", "65418", "130906", "261913", "523966", "1048123", "2096517", "4193412", "8387355", "16775449", "33551945", "67105359", "134212792", "268428497", "536861096", "1073727974", "2147464110", "4294939718", "8589895659" ]
[ "nonn" ]
17
0
3
[ "A000015", "A000051", "A000225", "A000961", "A001597", "A007916", "A013597", "A014210", "A014234", "A023055", "A029707", "A045542", "A052410", "A053289", "A057820", "A061398", "A077643", "A081676", "A131605", "A244508", "A304521", "A375706", "A376559", "A376562", "A377432", "A377433", "A377434", "A377435", "A377436", "A377467", "A377468", "A377701", "A377702" ]
null
Gus Wiseman, Nov 05 2024
2024-11-10T05:36:56
oeisdata/seq/A377/A377701.seq
a94651bcf0e8bc3d1d96a94b3f2f211c
A377702
Perfect-powers except for powers of 2.
[ "9", "25", "27", "36", "49", "81", "100", "121", "125", "144", "169", "196", "216", "225", "243", "289", "324", "343", "361", "400", "441", "484", "529", "576", "625", "676", "729", "784", "841", "900", "961", "1000", "1089", "1156", "1225", "1296", "1331", "1369", "1444", "1521", "1600", "1681", "1728", "1764", "1849", "1936", "2025", "2116", "2187", "2197" ]
[ "nonn" ]
10
1
1
[ "A000961", "A001597", "A007916", "A014210", "A014234", "A023055", "A045542", "A052410", "A053289", "A057820", "A061345", "A065514", "A069623", "A081676", "A131605", "A188951", "A246655", "A304521", "A336416", "A345531", "A366833", "A375706", "A376559", "A376562", "A377435", "A377467", "A377468", "A377701", "A377702" ]
null
Gus Wiseman, Nov 05 2024
2024-11-07T08:36:46
oeisdata/seq/A377/A377702.seq
198371751e7f9ae00abea7199798c8dc
A377703
First differences of the sequence A345531(k) = least prime-power greater than the k-th prime.
[ "1", "3", "1", "5", "3", "3", "4", "2", "6", "1", "9", "2", "4", "2", "10", "2", "3", "7", "2", "6", "2", "8", "8", "4", "2", "4", "2", "4", "8", "7", "9", "2", "10", "2", "6", "6", "4", "2", "10", "2", "10", "2", "4", "2", "12", "12", "4", "2", "4", "6", "2", "2", "13", "7", "6", "2", "6", "4", "2", "6", "18", "4", "2", "4", "14", "6", "6", "6", "4", "6", "2", "12", "6", "4", "6", "8", "4", "8", "10", "2", "10", "2", "6" ]
[ "nonn" ]
10
1
2
[ "A000040", "A000961", "A001597", "A007916", "A008864", "A024619", "A031218", "A053289", "A053607", "A057820", "A080101", "A246655", "A304521", "A345531", "A361102", "A366833", "A375706", "A375708", "A375735", "A376559", "A376562", "A376599", "A377057", "A377281", "A377282", "A377286", "A377287", "A377288", "A377289", "A377432", "A377434", "A377436", "A377466", "A377468", "A377703" ]
null
Gus Wiseman, Nov 07 2024
2024-11-15T09:03:52
oeisdata/seq/A377/A377703.seq
75d23fac3d3c31d2ff219d9aaa63a6cd