sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A381320 | Number of minimum vertex colorings in the n-Hanoi graph. | [
"6",
"66",
"85200",
"183250434809856",
"1823313150135576711941779566275453880631296",
"1796015231442383417566549899388909415521140128662444489798112174969514654167314109511319978572879992886003172220405085684891648"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A193233",
"A288839",
"A381320"
] | null | Eric W. Weisstein, Feb 21 2025 | 2025-02-21T11:48:58 | oeisdata/seq/A381/A381320.seq | 69375c1c5748e090f4a624691f8a016f |
A381321 | Numbers k such that sigma(k)/k - 1 equals (sigma(m)/m - 1)^2 for some m <= k. | [
"1",
"6",
"28",
"216",
"360",
"496",
"2016",
"8128",
"16758",
"1571328",
"1935360",
"2678400",
"33550336",
"54758400",
"101382400",
"1685013120"
] | [
"nonn",
"more"
] | 41 | 1 | 2 | [
"A000396",
"A017666",
"A243473",
"A381321"
] | null | Leo Hennig, Feb 21 2025 | 2025-03-05T17:17:22 | oeisdata/seq/A381/A381321.seq | 37c7ee56cb919aad7e6e4f14f3d774c2 |
A381322 | Least prime pn such that there is a set p1 < p2 < ... < pn of primes such that, for any distinct p and q in the set, (p + q)/2 is prime. | [
"2",
"7",
"19",
"71",
"113",
"383",
"509",
"881",
"2963",
"6991",
"18521",
"27611"
] | [
"nonn",
"hard",
"more"
] | 50 | 1 | 1 | [
"A362629",
"A381322"
] | null | Charles R Greathouse IV, Feb 25 2025 | 2025-03-01T12:17:10 | oeisdata/seq/A381/A381322.seq | 56220c553237bb4f0aefad655583f7bc |
A381323 | a(n) is the least nondecreasing prime p such that n is the number of primes between p (not included) and p+n*log(p). | [
"11",
"37",
"37",
"59",
"59",
"59",
"79",
"79",
"137",
"151",
"229",
"229",
"347",
"367",
"373",
"379",
"379",
"397",
"397",
"571",
"571",
"571",
"587",
"587",
"587",
"587",
"587",
"587",
"587",
"587",
"853",
"853",
"853",
"877",
"877",
"877",
"877",
"877",
"967",
"967",
"1009",
"1009",
"1019",
"1021",
"1021",
"1277",
"1297",
"1297",
"1361",
"1361",
"1361",
"1361",
"1361",
"1361",
"1361"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A381293",
"A381323"
] | null | Alain Rocchelli, Feb 21 2025 | 2025-03-02T23:55:22 | oeisdata/seq/A381/A381323.seq | dfb50d9b334bf793b6d9ff1cb0648bd6 |
A381326 | Number of (undirected) Hamiltonian cycles in the complete 4-partite graph K_{n,n,n,n}. | [
"3",
"744",
"1833840",
"18872165376",
"553245728256000",
"37106744352952320000",
"4936487939183251906560000",
"1177983332748595472891904000000",
"467912746454054494167896413962240000",
"292026962339084784352431710907924480000000",
"273498538086199515052362271809542396313600000000"
] | [
"nonn"
] | 4 | 1 | 1 | [
"A378241",
"A381326"
] | null | Eric W. Weisstein, Feb 20 2025 | 2025-02-20T10:11:20 | oeisdata/seq/A381/A381326.seq | e6cfa356b130c3cc17d02a847d33a086 |
A381327 | a(n) is the number of nonnegative integers that can be represented by n segments in the Cistercian numeral system. | [
"1",
"24",
"214",
"910",
"2099",
"2858",
"2415",
"1190",
"289"
] | [
"nonn",
"base",
"fini",
"full"
] | 4 | 1 | 2 | [
"A341737",
"A381327"
] | null | Stefano Spezia, Feb 20 2025 | 2025-02-23T11:21:15 | oeisdata/seq/A381/A381327.seq | bb226d18b8ec42bd7e6aa45b5f537dcd |
A381328 | a(n+1) is the least k such that k - (a(n-1)+a(n)) and k + (a(n-1)+a(n)) are primes; a(0)=0, a(1)=1. | [
"0",
"1",
"4",
"8",
"17",
"28",
"52",
"83",
"142",
"232",
"377",
"614",
"996",
"1641",
"2642",
"4290",
"6945",
"11246",
"18198",
"29457",
"47662",
"77124",
"124797",
"201928",
"326736",
"528723",
"855464",
"1384230",
"2239797",
"3624050",
"5863850",
"9487911",
"15351768",
"24839684",
"40191555",
"65031270",
"105222856",
"170254137",
"275477064",
"445731218",
"721208325",
"1166939604"
] | [
"nonn"
] | 11 | 0 | 3 | null | null | Robert Israel, Feb 20 2025 | 2025-02-23T17:29:56 | oeisdata/seq/A381/A381328.seq | b617f53ad18630375893df73688d3848 |
A381329 | Number of steps for n to reach 1 under the map x -> x/2 if x is even, x -> 2*x+1 if x is prime or a perfect power, otherwise x -> gpf(x)-1 where gpf(x) = A006530(x). | [
"0",
"1",
"5",
"2",
"16",
"6",
"4",
"3",
"10",
"17",
"15",
"7",
"20",
"5",
"3",
"4",
"8",
"11",
"9",
"18",
"7",
"16",
"14",
"8",
"6",
"21",
"19",
"6",
"7",
"4",
"8",
"5",
"18",
"9",
"7",
"12",
"4",
"10",
"8",
"19",
"23",
"8",
"8",
"17",
"3",
"15",
"13",
"9",
"19",
"7",
"5",
"22",
"11",
"20",
"18",
"7",
"12",
"8",
"6",
"5",
"21",
"9",
"7",
"6",
"8",
"19",
"4",
"10",
"17",
"8",
"9",
"13",
"8",
"5",
"3",
"11",
"18"
] | [
"nonn"
] | 15 | 1 | 3 | [
"A006530",
"A381329"
] | null | Bill McEachen, Feb 20 2025 | 2025-02-21T09:40:50 | oeisdata/seq/A381/A381329.seq | b05dfae491689839447decd044050899 |
A381330 | Numbers that are the sum of a prime and the square of a prime in more than one way. | [
"11",
"27",
"28",
"32",
"38",
"51",
"52",
"54",
"56",
"62",
"66",
"68",
"72",
"78",
"80",
"86",
"92",
"96",
"98",
"108",
"110",
"116",
"122",
"126",
"128",
"132",
"134",
"138",
"140",
"146",
"150",
"152",
"156",
"158",
"162",
"164",
"171",
"172",
"174",
"176",
"180",
"182",
"186",
"188",
"192",
"198",
"200",
"204",
"206",
"210",
"212",
"216",
"218",
"222",
"224",
"228"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A049002",
"A081053",
"A381330"
] | null | Chai Wah Wu, Feb 20 2025 | 2025-02-21T11:12:25 | oeisdata/seq/A381/A381330.seq | c62065bb64d4d626b3c15dee7c9c5b74 |
A381331 | a(1) = a(2) = 1; for n > 2, a(n) = floor((n - 2)*a(n - 1)/a(n - 2)) + GCD(n - 2, a(n - 2)). | [
"1",
"1",
"2",
"5",
"8",
"7",
"5",
"5",
"8",
"13",
"15",
"12",
"9",
"21",
"31",
"27",
"14",
"9",
"11",
"31",
"54",
"35",
"16",
"11",
"16",
"35",
"55",
"41",
"21",
"15",
"21",
"57",
"85",
"48",
"19",
"15",
"28",
"70",
"93",
"52",
"24",
"22",
"38",
"74",
"84",
"51",
"30",
"28",
"44",
"79",
"88",
"56",
"33",
"34",
"55",
"89",
"144",
"91",
"39",
"25",
"38",
"96",
"155",
"102",
"42",
"28",
"44",
"105",
"160",
"104"
] | [
"nonn",
"easy"
] | 18 | 1 | 3 | [
"A133058",
"A145102",
"A381331"
] | null | Ctibor O. Zizka, Feb 20 2025 | 2025-02-25T11:28:26 | oeisdata/seq/A381/A381331.seq | 2371791569243d6f4427ca43f5956317 |
A381332 | a(n) is the number of different hooklength lists of the plane partitions of n. | [
"1",
"1",
"2",
"4",
"6",
"11",
"19",
"31",
"52",
"86",
"146",
"231",
"392",
"615",
"1006",
"1594",
"2612",
"4062",
"6518",
"10116",
"15958",
"24557",
"38565",
"58548"
] | [
"nonn",
"more"
] | 14 | 1 | 3 | [
"A000041",
"A000219",
"A094504",
"A097391",
"A381332"
] | null | Wouter Meeussen, Feb 20 2025 | 2025-02-24T21:23:56 | oeisdata/seq/A381/A381332.seq | 642a2e653048f3682692051a86114475 |
A381333 | Smallest integer that is the sum of a prime and the square of a prime in n or more ways. | [
"6",
"11",
"56",
"176",
"188",
"362",
"398",
"668",
"1448",
"1448",
"1592",
"2390",
"3372",
"3632",
"4532",
"6342",
"6342",
"6368",
"6368",
"10632",
"12920",
"12920",
"12942",
"19502",
"23168",
"25038",
"25038",
"25038",
"25472",
"32238",
"32238",
"39800",
"39800",
"39800",
"53360",
"64998",
"72740",
"72740",
"72740",
"81542",
"82880",
"82880"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A001172",
"A081053",
"A381330",
"A381333"
] | null | Chai Wah Wu, Feb 20 2025 | 2025-02-21T06:09:01 | oeisdata/seq/A381/A381333.seq | d6c798ac83850905835654e7badb6585 |
A381334 | Smallest integer that is the sum of a prime and the square of a prime in exactly n ways. | [
"6",
"11",
"56",
"176",
"188",
"362",
"398",
"668",
"1568",
"1448",
"1592",
"2390",
"3372",
"3632",
"4532",
"6888",
"6342",
"8582",
"6368",
"10632",
"13002",
"12920",
"12942",
"19502",
"23168",
"26990",
"26292",
"25038",
"25472",
"33648",
"32238",
"41048",
"40640",
"39800",
"53360",
"64998",
"77348",
"74718",
"72740",
"81542",
"89682",
"82880"
] | [
"nonn"
] | 16 | 1 | 1 | [
"A081053",
"A381333",
"A381334"
] | null | Chai Wah Wu, Feb 20 2025 | 2025-02-25T01:56:05 | oeisdata/seq/A381/A381334.seq | 6795e1f80ed66279696475fa3401d8fd |
A381335 | Integers k such that there are i groups of order k+i up to isomorphism, for i=1,2,3,4,5. | [
"2814120",
"22411272",
"29436120"
] | [
"nonn",
"hard",
"more",
"new"
] | 10 | 1 | 1 | [
"A373648",
"A373649",
"A373650",
"A381335"
] | null | Robin Jones, Apr 19 2025 | 2025-04-22T08:17:10 | oeisdata/seq/A381/A381335.seq | 036eab0c1a2a782a8792ca25067229a9 |
A381336 | a(n) is the smallest k > 0 for which a nondegenerate integer-sided triangle (k, k + n, c >= k + n) with an integer area exists. | [
"3",
"6",
"9",
"12",
"12",
"18",
"5",
"7",
"4",
"24",
"14",
"36",
"15",
"10",
"36",
"14",
"7",
"8",
"6",
"21",
"8",
"3",
"12",
"5",
"10",
"15",
"12",
"20",
"46",
"35",
"9",
"28",
"20",
"14",
"25",
"16",
"15",
"12",
"22",
"21",
"19",
"16",
"12",
"6",
"20",
"5",
"4",
"10",
"11",
"20",
"21",
"30",
"96",
"24",
"13",
"9",
"18",
"7",
"25",
"63",
"21",
"18",
"22",
"9",
"35",
"9",
"25",
"21",
"36",
"17",
"13"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A103974",
"A103975",
"A188158",
"A379830",
"A381336",
"A381337"
] | null | Felix Huber, Mar 16 2025 | 2025-03-24T06:14:18 | oeisdata/seq/A381/A381336.seq | 29022f1175b53a64c56155fe787bd5af |
A381337 | a(n) is the smallest c >= A381336(n) + n for which a nondegenerate integer-sided triangle (A381336(n), A381336(n) + n, c) with an integer area exists. | [
"5",
"10",
"15",
"20",
"25",
"30",
"13",
"20",
"15",
"50",
"25",
"60",
"41",
"26",
"75",
"40",
"25",
"30",
"29",
"50",
"35",
"26",
"37",
"30",
"39",
"52",
"45",
"52",
"109",
"82",
"41",
"80",
"55",
"50",
"65",
"60",
"61",
"58",
"61",
"68",
"73",
"70",
"65",
"52",
"75",
"52",
"53",
"60",
"61",
"78",
"75",
"104",
"203",
"90",
"75",
"70",
"87",
"68",
"101",
"150",
"89",
"82",
"91",
"80",
"117"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A381336",
"A381337"
] | null | Felix Huber, Mar 18 2025 | 2025-03-25T23:53:58 | oeisdata/seq/A381/A381337.seq | 61af9efd32812cc5997117034a561244 |
A381338 | Numbers k such that (22^k - 3^k)/19 is prime. | [
"5",
"31",
"823",
"15287",
"26293",
"32083",
"51263",
"92791"
] | [
"nonn",
"hard",
"more"
] | 5 | 1 | 1 | [
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A229542",
"A375161",
"A375236",
"A377031",
"A381338"
] | null | Robert Price, Feb 20 2025 | 2025-02-21T08:20:20 | oeisdata/seq/A381/A381338.seq | 98d87f49be98bf2d4c64ac9edc961b18 |
A381339 | Number of vector differences between two permutations of order n, up to multiplication by nonzero rational numbers and permutations of the components. | [
"1",
"1",
"2",
"3",
"9",
"28",
"128",
"539",
"2651",
"13000",
"67466",
"355381",
"1926343",
"10590537",
"59234734",
"335302599"
] | [
"nonn",
"more",
"hard"
] | 14 | 0 | 3 | [
"A019589",
"A175176",
"A362968",
"A381243",
"A381244",
"A381339"
] | null | Max Alekseyev, Feb 20 2025 | 2025-02-24T08:52:00 | oeisdata/seq/A381/A381339.seq | b6a7b271981b8e88279f79b33e19ed16 |
A381340 | Decimal value of c > 1.5 for which H(2*c) = 2*H(c) for H = Hadamard's gamma function. | [
"1",
"5",
"0",
"3",
"1",
"7",
"6",
"0",
"9",
"2",
"3",
"4",
"3",
"2",
"7",
"6",
"4",
"0",
"3",
"7",
"2",
"8",
"6",
"7",
"7",
"1",
"3",
"7",
"6",
"8",
"8",
"0",
"4",
"5",
"0",
"1",
"0",
"7",
"8",
"7",
"6",
"9",
"6",
"6",
"0",
"4",
"1",
"6",
"2",
"6",
"6",
"3",
"6",
"6",
"7",
"3",
"4",
"3",
"0",
"0",
"3",
"7",
"0",
"4",
"3",
"8",
"8",
"4",
"9",
"2",
"8",
"6",
"6",
"0",
"4",
"7",
"9",
"7",
"9",
"5",
"0",
"3",
"5",
"1",
"4",
"4",
"1",
"3",
"7",
"3",
"5",
"8",
"9",
"4",
"7",
"8",
"0",
"5",
"0",
"9",
"5",
"1",
"8",
"4",
"0"
] | [
"nonn",
"cons"
] | 25 | 1 | 2 | [
"A000796",
"A381340"
] | null | Lee A. Newberg, Feb 20 2025 | 2025-02-26T02:15:05 | oeisdata/seq/A381/A381340.seq | 4fa69ae3ef11d6e794700fca0c2d3c3d |
A381341 | Expansion of e.g.f. exp( x * cosh(sqrt(2)*x) ). | [
"1",
"1",
"1",
"7",
"25",
"81",
"601",
"3207",
"18705",
"156385",
"1087441",
"8962823",
"84001897",
"732712241",
"7487525865",
"78537490951",
"831722893217",
"9804469109953",
"115549730623009",
"1431784628480007",
"18795444460125241",
"248964703826005777",
"3487888859183694329",
"50283005924345951111"
] | [
"nonn"
] | 10 | 0 | 4 | [
"A003727",
"A009189",
"A185951",
"A381273",
"A381274",
"A381275",
"A381276",
"A381341",
"A381342"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-02-21T05:50:01 | oeisdata/seq/A381/A381341.seq | e5d3615465821a38917855251dbc4f26 |
A381342 | Expansion of e.g.f. exp( x * cos(sqrt(2)*x) ). | [
"1",
"1",
"1",
"-5",
"-23",
"-39",
"361",
"2675",
"3697",
"-90575",
"-741839",
"52779",
"48483865",
"358510985",
"-1225182503",
"-43006420829",
"-239523048095",
"2745896185953",
"54532102774753",
"144304368441179",
"-6547928921714999",
"-88336890555248327",
"199686588300036553",
"18186115601328322515"
] | [
"sign"
] | 11 | 0 | 4 | [
"A003727",
"A009189",
"A185951",
"A381273",
"A381274",
"A381275",
"A381276",
"A381341",
"A381342"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-02-21T05:50:26 | oeisdata/seq/A381/A381342.seq | 73417658c65ce3a8234f0fe864932c2b |
A381343 | Expansion of e.g.f. exp( sin(sqrt(2)*x) / sqrt(2) ). | [
"1",
"1",
"1",
"-1",
"-7",
"-15",
"25",
"287",
"721",
"-2847",
"-30255",
"-61697",
"682761",
"5861713",
"3105193",
"-258188513",
"-1681060063",
"4623681473",
"135471132705",
"564325398271",
"-6357495670375",
"-89817656595791",
"-84337394884167",
"7820620314702879",
"67277670159083761",
"-322108989883888479"
] | [
"sign"
] | 15 | 0 | 5 | [
"A002017",
"A009210",
"A009229",
"A136630",
"A351891",
"A351892",
"A381277",
"A381278",
"A381280",
"A381343",
"A381344"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-02-21T05:50:47 | oeisdata/seq/A381/A381343.seq | f2d9ee7e404acc890775e048d10bfb5c |
A381344 | Expansion of e.g.f. 1/( 1 - x * cosh(sqrt(2)*x) ). | [
"1",
"1",
"2",
"12",
"72",
"500",
"4560",
"47936",
"565376",
"7572240",
"112838400",
"1844425792",
"32910332928",
"636463467328",
"13251265570816",
"295598326909440",
"7034150340034560",
"177843592245969152",
"4760839037033054208",
"134528586280018721792",
"4001489050575059025920",
"124973219149863342633984"
] | [
"nonn",
"changed"
] | 16 | 0 | 3 | [
"A185951",
"A205571",
"A352252",
"A381280",
"A381281",
"A381282",
"A381283",
"A381344",
"A381345"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-04-19T06:56:01 | oeisdata/seq/A381/A381344.seq | 8e2a3ae8afa8f8dda27850f694a3c4b0 |
A381345 | Expansion of e.g.f. 1/( 1 - x * cos(sqrt(2)*x) ). | [
"1",
"1",
"2",
"0",
"-24",
"-220",
"-1200",
"-2576",
"52864",
"1016208",
"10909440",
"57039488",
"-687971328",
"-26190716864",
"-450123634688",
"-4238375059200",
"24514848522240",
"2156422420074752",
"54984136073084928",
"799573460292407296",
"42320889956270080",
"-425007017470737816576",
"-15563879892284330213376"
] | [
"sign"
] | 11 | 0 | 3 | [
"A185951",
"A205571",
"A352252",
"A381280",
"A381281",
"A381282",
"A381283",
"A381344",
"A381345"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-02-21T05:52:14 | oeisdata/seq/A381/A381345.seq | b90152390475df613285062184a8bc7e |
A381346 | Expansion of e.g.f. 1/( 1 - sinh(sqrt(2)*x) / sqrt(2) ). | [
"1",
"1",
"2",
"8",
"40",
"244",
"1808",
"15632",
"154240",
"1712656",
"21132032",
"286800128",
"4246266880",
"68108302144",
"1176458774528",
"21772909267712",
"429818456473600",
"9015349812633856",
"200218257664704512",
"4693597812326094848",
"115820240623410872320",
"3000905720793597113344"
] | [
"nonn",
"changed"
] | 13 | 0 | 3 | [
"A136630",
"A191277",
"A381284",
"A381285",
"A381286",
"A381346",
"A381347"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-04-19T05:54:25 | oeisdata/seq/A381/A381346.seq | cfd1a9134e474e5adfb6148c8bc6b4b7 |
A381347 | Expansion of e.g.f. 1/( 1 - sin(sqrt(2)*x) / sqrt(2) ). | [
"1",
"1",
"2",
"4",
"8",
"4",
"-112",
"-1184",
"-9088",
"-59504",
"-310528",
"-643136",
"14701568",
"323581504",
"4554426368",
"51666451456",
"458243735552",
"2004840714496",
"-37024075153408",
"-1386061762251776",
"-29290212127670272",
"-483475390212586496",
"-6224109737622372352",
"-45231727252157947904"
] | [
"sign"
] | 10 | 0 | 3 | [
"A136630",
"A191277",
"A263249",
"A381284",
"A381285",
"A381286",
"A381346",
"A381347"
] | null | Seiichi Manyama, Feb 20 2025 | 2025-02-21T05:53:48 | oeisdata/seq/A381/A381347.seq | 373d9e2e1b098953f5f387a6af40ce71 |
A381348 | Irregular triangle read by rows in which row n lists the largest subset of Z/nZ fixed by x -> x^2. | [
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"3",
"4",
"0",
"1",
"2",
"4",
"0",
"1",
"0",
"1",
"4",
"7",
"0",
"1",
"5",
"6",
"0",
"1",
"3",
"4",
"5",
"9",
"0",
"1",
"4",
"9",
"0",
"1",
"3",
"9",
"0",
"1",
"2",
"4",
"7",
"8",
"9",
"11",
"0",
"1",
"6",
"10",
"0",
"1",
"0",
"1",
"0",
"1",
"4",
"7",
"9",
"10",
"13",
"16",
"0",
"1",
"4",
"5",
"6",
"7",
"9",
"11",
"16",
"17",
"0",
"1",
"5",
"16",
"0",
"1",
"4",
"7",
"9",
"15",
"16",
"18"
] | [
"nonn",
"tabf"
] | 67 | 1 | 12 | [
"A002145",
"A096008",
"A096088",
"A277847",
"A309414",
"A381348"
] | null | Aloe Poliszuk, Feb 20 2025 | 2025-04-07T23:39:10 | oeisdata/seq/A381/A381348.seq | 9a7a8b84f955dcb4585412294c0ed775 |
A381349 | Triangle read by rows: T(n,k) is the number of distinct tuples E each corresponding to some k-ary word W = (w_1, ..., w_n), where E is a tuple (e_1, ..., e_{n-1}) with e_i being the number of pairs of equal letters (w_j,w_k) in W such that j + i = k. | [
"1",
"1",
"2",
"1",
"3",
"4",
"1",
"6",
"9",
"10",
"1",
"10",
"22",
"26",
"27",
"1",
"20",
"54",
"73",
"78",
"79",
"1",
"36",
"163",
"249",
"269",
"275",
"276",
"1",
"72",
"447",
"791",
"915",
"942",
"949",
"950",
"1",
"135",
"1350",
"3136",
"3776",
"3899",
"3934",
"3942",
"3943",
"1",
"272",
"4088",
"11315",
"14849",
"15650",
"15811",
"15855",
"15864",
"15865"
] | [
"nonn",
"tabl"
] | 26 | 1 | 3 | [
"A000312",
"A006606",
"A120910",
"A226873",
"A381349"
] | null | John Tyler Rascoe, Feb 21 2025 | 2025-02-26T12:57:02 | oeisdata/seq/A381/A381349.seq | fc24668ea882154443664407866cfdb1 |
A381350 | Number of subsets of 8 integers between 1 and n such that their sum is 2 modulo n. | [
"1",
"5",
"15",
"42",
"99",
"217",
"429",
"808",
"1430",
"2438",
"3978",
"6308",
"9690",
"14550",
"21318",
"30664",
"43263",
"60115",
"82225",
"111038",
"148005",
"195143",
"254475",
"328752",
"420732",
"534076",
"672452",
"840648",
"1043460",
"1287036",
"1577532",
"1922736",
"2330445",
"2810385",
"3372291",
"4028178",
"4790071",
"5672645"
] | [
"nonn",
"easy"
] | 23 | 9 | 2 | [
"A011796",
"A031164",
"A056594",
"A381289",
"A381290",
"A381291",
"A381350"
] | null | Xavier Roulleau, Feb 21 2025 | 2025-02-28T05:59:12 | oeisdata/seq/A381/A381350.seq | 10f5d73d18d895ff9848fad2f6de90e0 |
A381351 | Number of subsets of 9 integers between 1 and n such that their sum is 3 modulo n. | [
"1",
"5",
"19",
"55",
"143",
"335",
"715",
"1430",
"2703",
"4862",
"8398",
"14000",
"22610",
"35530",
"54484",
"81719",
"120175",
"173592",
"246675",
"345345",
"476913",
"650325",
"876525",
"1168710",
"1542684",
"2017356",
"2615103",
"3362260",
"4289780",
"5433736",
"6835972",
"8544965",
"10616489",
"13114465"
] | [
"nonn",
"easy"
] | 15 | 10 | 2 | [
"A011796",
"A031164",
"A032194",
"A381289",
"A381290",
"A381291",
"A381351"
] | null | Xavier Roulleau, Feb 21 2025 | 2025-02-28T17:57:25 | oeisdata/seq/A381/A381351.seq | b9a9008af33da66654a2a5182e028552 |
A381353 | G.f. A(x) satisfies [x^n] A(x)^prime(n) = 0 for n > 1. | [
"1",
"1",
"-1",
"2",
"-5",
"13",
"-31",
"48",
"129",
"-2035",
"12963",
"-20703",
"-782282",
"14675113",
"-177056253",
"1716591959",
"-14243243451",
"103606488776",
"-627394591646",
"1811555482942",
"35994203030869",
"-1017785909530332",
"17383954047181972",
"-240466278357060336",
"2883144103957621596",
"-30796354831853056598",
"299839265871265461201"
] | [
"sign"
] | 15 | 0 | 4 | [
"A381353",
"A381355"
] | null | Paul D. Hanna, Mar 11 2025 | 2025-03-12T08:14:10 | oeisdata/seq/A381/A381353.seq | 9af71cc415bfb3b727a355a5986d3b9f |
A381354 | G.f. satisfies x = Sum_{n>=1} -(-1)^(n mod 3) * x^n * abs(1/A(x)^n), where abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x). | [
"1",
"1",
"4",
"14",
"44",
"130",
"496",
"1586",
"5128",
"17764",
"59492",
"196368",
"659330",
"2226166",
"7396070",
"24876724",
"83420692",
"279644938",
"935867180",
"3146178556",
"10534161782",
"35369902036",
"118498115768",
"398015733448",
"1333108657368",
"4477017033638",
"15004173961698",
"50369493608278",
"168842274387828",
"566766393991544"
] | [
"nonn"
] | 6 | 0 | 3 | null | null | Paul D. Hanna, Mar 02 2025 | 2025-03-02T22:51:01 | oeisdata/seq/A381/A381354.seq | 547221eaa130a275beb697256b4a5755 |
A381355 | G.f. A(x) = x*F'(x)/F(x) where F(x) is the g.f. of A381353 that satisfies [x^n] F(x)^prime(n) = 0 for n > 1. | [
"1",
"-3",
"10",
"-35",
"121",
"-390",
"1037",
"-1083",
"-14030",
"137837",
"-382106",
"-8791718",
"199408912",
"-2701500413",
"28888970650",
"-262327310011",
"2080772422210",
"-13882125053550",
"52262449086711",
"642274567089685",
"-21939026363969530",
"405884590698374334",
"-5979931388627873195",
"75930802310040533922",
"-856565474619901407729"
] | [
"sign"
] | 13 | 1 | 2 | [
"A381353",
"A381355"
] | null | Paul D. Hanna, Mar 11 2025 | 2025-03-12T08:14:18 | oeisdata/seq/A381/A381355.seq | 19cd41988dbc6816cdff8435a9556bf2 |
A381356 | Limit of rows in irregular triangle A381587. | [
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"5",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"3",
"1",
"5",
"1",
"1",
"1",
"5",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"5",
"1",
"1",
"1",
"3",
"1",
"5",
"1",
"1",
"1",
"5",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"5"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A306346",
"A381356",
"A381587"
] | null | Paul D. Hanna, Mar 03 2025 | 2025-03-04T13:47:57 | oeisdata/seq/A381/A381356.seq | 1ded855ce0d8e15439f1475b87b17073 |
A381357 | Row lengths of irregular triangle A381587. | [
"1",
"1",
"1",
"2",
"4",
"6",
"10",
"16",
"26",
"42",
"66",
"102",
"156",
"238",
"364",
"560",
"868",
"1354",
"2120",
"3322",
"5198",
"8112",
"12624",
"19602",
"30400",
"47138",
"73138",
"113598",
"176630",
"274858"
] | [
"nonn",
"more"
] | 17 | 1 | 4 | [
"A381357",
"A381358",
"A381587"
] | null | Paul D. Hanna, Mar 03 2025 | 2025-03-03T13:02:45 | oeisdata/seq/A381/A381357.seq | fd162d496723f343a0f3ed2211a456b8 |
A381358 | Row sums of irregular triangle A381587. | [
"1",
"1",
"2",
"3",
"5",
"9",
"15",
"25",
"41",
"67",
"109",
"175",
"277",
"433",
"671",
"1035",
"1595",
"2463",
"3817",
"5937",
"9259",
"14457",
"22569",
"35193",
"54795",
"85195",
"132333",
"205471",
"319069",
"495699"
] | [
"nonn",
"more"
] | 16 | 1 | 3 | [
"A381357",
"A381358",
"A381587"
] | null | Paul D. Hanna, Mar 03 2025 | 2025-03-03T13:02:40 | oeisdata/seq/A381/A381358.seq | 439a5119c1277219a233e8e72b410f3d |
A381359 | E.g.f. A(x) satisfies 1 - A'(x)^2 + 4*A(x)^3 = 0. | [
"1",
"12",
"720",
"129600",
"51321600",
"37977984000",
"47113228800000",
"90796614543360000",
"256892229695692800000",
"1021474451008342425600000",
"5513370502054734544896000000",
"39267642006336798923489280000000",
"360478517037545726209161953280000000",
"4181620210850033164370074219315200000000"
] | [
"nonn"
] | 50 | 0 | 2 | [
"A104133",
"A104134",
"A381359",
"A381360"
] | null | Paul D. Hanna, Mar 06 2025 | 2025-04-02T05:16:11 | oeisdata/seq/A381/A381359.seq | c50489419af8a69f3036d0b36d333931 |
A381360 | E.g.f. satisfies A(x) = exp( Integral abs(1/A(x)) dx ), where abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x). | [
"1",
"1",
"2",
"4",
"12",
"40",
"160",
"720",
"3680",
"20800",
"129600",
"880000",
"6476800",
"51321600",
"435776000",
"3946624000",
"37977984000",
"386949376000",
"4161608704000",
"47113228800000",
"560034421760000",
"6974121256960000",
"90796614543360000",
"1233482823823360000",
"17455222222028800000",
"256892229695692800000"
] | [
"nonn"
] | 37 | 0 | 3 | [
"A104133",
"A104134",
"A381359",
"A381360",
"A381361",
"T0",
"T1",
"T2"
] | null | Paul D. Hanna, Feb 25 2025 | 2025-02-28T09:48:25 | oeisdata/seq/A381/A381360.seq | abe41131e33e94563726c9d9f7bab2e1 |
A381362 | G.f. A(x) satisfies 1/2 = Sum_{n=-oo..+oo} x^n*A(x)^n * (A(x)^n + x)^(2*n-1) * (x^n + A(x))^(2*n-1). | [
"1",
"2",
"46",
"862",
"20414",
"526106",
"14519710",
"419293310",
"12527971550",
"384222183226",
"12030729376882",
"383113013296770",
"12372095284443242",
"404291094649795558",
"13345757405802263098",
"444433438912442427974",
"14914705697211799893458",
"503945427634033914776682",
"17131542722554038753304418"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A380066",
"A381362",
"A381363",
"A381364",
"A381365"
] | null | Paul D. Hanna, Feb 21 2025 | 2025-02-21T09:28:35 | oeisdata/seq/A381/A381362.seq | bb95510c37088e863da61b4848b43132 |
A381363 | G.f. A(x) satisfies 1/2 = Sum_{n=-oo..+oo} x^n*A(x)^n * (A(x)^n + x)^(3*n-1) * (x^n + A(x))^(3*n-1). | [
"1",
"2",
"66",
"1986",
"70750",
"2773026",
"115646874",
"5037785442",
"226634621738",
"10451025646474",
"491480704359206",
"23483727916864770",
"1136978797530782274",
"55661780274825593226",
"2750906179870011022678",
"137071833496453114753202",
"6878951603092645315764426",
"347398329676557462113960102",
"17642408607091724771432417962"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A380066",
"A381362",
"A381363",
"A381364",
"A381365"
] | null | Paul D. Hanna, Feb 21 2025 | 2025-02-22T01:25:51 | oeisdata/seq/A381/A381363.seq | b8b1101cb7686c2cdf1111393b9c8a9e |
A381364 | G.f. A(x) satisfies 1/3 = Sum_{n=-oo..+oo} x^n*A(x)^n * (A(x)^n + 2*x)^(n-1) * (x^n + 2*A(x))^(n-1). | [
"1",
"6",
"69",
"1185",
"25971",
"638664",
"16870146",
"469957290",
"13643527371",
"409333196409",
"12617508055164",
"397955799543372",
"12805103784047244",
"419461854027499095",
"13966745624480483286",
"472195682273425114437",
"16198043820079506200952",
"563559268046248762052514",
"19883430320804741832966096"
] | [
"nonn"
] | 9 | 0 | 2 | [
"A380066",
"A381362",
"A381363",
"A381364",
"A381365"
] | null | Paul D. Hanna, Feb 21 2025 | 2025-02-21T11:49:43 | oeisdata/seq/A381/A381364.seq | 797a50e7b87c7933a53888a94e7e3ac7 |
A381365 | G.f. A(x) satisfies 1/3 = Sum_{n=-oo..+oo} x^n*A(x)^n * (A(x)^n + 2*x)^(2*n-1) * (x^n + 2*A(x))^(2*n-1). | [
"1",
"6",
"267",
"13686",
"850848",
"58650900",
"4328042982",
"334965057171",
"26856046274793",
"2212709064827217",
"186314651055503493",
"15969595037968661298",
"1389302975474149478955",
"122403732968608536815772",
"10902910239945431586012588",
"980514346017575408715296385"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A380066",
"A381362",
"A381363",
"A381364",
"A381365"
] | null | Paul D. Hanna, Feb 21 2025 | 2025-02-21T11:49:46 | oeisdata/seq/A381/A381365.seq | 270e95dcc9f4056241c852ff71291fbf |
A381366 | Number of possible configurations of an n dimensional Rubik's simplex. | [
"3732480",
"253603223500400479331942400000",
"66038535945066815418194228229716898861828197815802983951534337590785326501068800000000000000000"
] | [
"nonn"
] | 21 | 3 | 1 | [
"A079746",
"A381366",
"A381367"
] | null | Michel Marcus, Feb 21 2025 | 2025-03-03T13:33:06 | oeisdata/seq/A381/A381366.seq | 1c9cbde846475853954c2b391d3d78df |
A381367 | Number of possible configurations of an n dimensional Rubik's hypercube. | [
"43252003274489856000",
"1756772880709135843168526079081025059614484630149557651477156021733236798970168550600274887650082354207129600000000000000"
] | [
"nonn"
] | 28 | 3 | 1 | [
"A075152",
"A381366",
"A381367"
] | null | Michel Marcus, Feb 21 2025 | 2025-03-03T13:33:13 | oeisdata/seq/A381/A381367.seq | c60a1bc3ceb1d12e2d499973d306ea7b |
A381368 | a(n) is the least k > n for which prime(n) + prime(k) is a square. | [
"4",
"6",
"5",
"10",
"16",
"9",
"8",
"102",
"13",
"20",
"30",
"28",
"17",
"26",
"16",
"58",
"33",
"23",
"55",
"21",
"54",
"142",
"30",
"28",
"49",
"48",
"139",
"35",
"91",
"47",
"45",
"44",
"56",
"135",
"54",
"40",
"39",
"252",
"51",
"49",
"78",
"128",
"62",
"76",
"75",
"126",
"245",
"71",
"55",
"69",
"54",
"68",
"120",
"137",
"81",
"65",
"63",
"238",
"171",
"96",
"62",
"76",
"108",
"209"
] | [
"nonn",
"easy"
] | 13 | 1 | 1 | [
"A000040",
"A000290",
"A259232",
"A381368"
] | null | Felix Huber, Mar 02 2025 | 2025-03-08T08:47:33 | oeisdata/seq/A381/A381368.seq | 46f734916389ad17436990030dd3a579 |
A381369 | A(n,k) is the sum over all partitions of [n] of k^j for a partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals. | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"4",
"1",
"1",
"2",
"5",
"8",
"1",
"1",
"2",
"6",
"15",
"16",
"1",
"1",
"2",
"7",
"28",
"52",
"32",
"1",
"1",
"2",
"8",
"47",
"204",
"203",
"64",
"1",
"1",
"2",
"9",
"72",
"628",
"2344",
"877",
"128",
"1",
"1",
"2",
"10",
"103",
"1552",
"17327",
"43160",
"4140",
"256",
"1",
"1",
"2",
"11",
"140",
"3276",
"84416",
"1022983",
"1291952",
"21147",
"512"
] | [
"nonn",
"tabl"
] | 23 | 0 | 6 | [
"A000110",
"A011782",
"A125810",
"A125812",
"A125813",
"A125814",
"A125815",
"A381369",
"A381373",
"A381426"
] | null | Alois P. Heinz, Feb 21 2025 | 2025-03-15T18:45:03 | oeisdata/seq/A381/A381369.seq | 54bc89daf523b3ce68c834e8ab47ae86 |
A381370 | Smallest number with reciprocal of period length n in base 9. | [
"1",
"2",
"5",
"7",
"32",
"11",
"35",
"547",
"17",
"19",
"25",
"23",
"224",
"398581",
"29",
"31",
"128",
"103",
"95",
"1597",
"352",
"43",
"115",
"47",
"97",
"151",
"53",
"109",
"928",
"59",
"155",
"683",
"256",
"161",
"515",
"71",
"608",
"18427",
"7985",
"79",
"187",
"83",
"203",
"431",
"89",
"181",
"235",
"1223",
"896",
"491",
"101"
] | [
"nonn",
"base"
] | 35 | 0 | 2 | [
"A003060",
"A379642",
"A381370"
] | null | Erich Friedman, Feb 25 2025 | 2025-02-28T15:13:50 | oeisdata/seq/A381/A381370.seq | 5ebf40419438d62c70340bd3107f5186 |
A381371 | Let M_n be the n X n matrix M_(i,j)=1/(i+j+i*j); a(n) is the denominator of det(M_n). | [
"1",
"3",
"600",
"13340250",
"50970747366000",
"192735375681129362668125",
"15380836671854204397523000341517500",
"139074458529886561401033709221959285413905785765625",
"690389384806889736952966420263657968347961857742117270950740703125"
] | [
"nonn",
"easy",
"frac"
] | 13 | 0 | 2 | [
"A069740",
"A381371"
] | null | Stefano Spezia, Feb 21 2025 | 2025-02-23T04:48:27 | oeisdata/seq/A381/A381371.seq | c9cf846630790428696395ce5ab0d43f |
A381372 | Smaller of two consecutive primes p and q, both ending with 3, such that q-p = 10n, or -1 if no such primes exist. | [
"283",
"3413",
"7253",
"19333",
"45893",
"142993",
"399283",
"542603",
"818723",
"396733",
"3240983",
"10863973",
"32788543",
"8917523",
"17652013",
"92593183",
"80935103",
"92510963",
"257789053",
"481691513",
"20831323",
"47326693",
"607010093",
"1461724573",
"387096133",
"1496441363",
"2298026803",
"1855047163"
] | [
"nonn",
"base"
] | 33 | 1 | 1 | [
"A140791",
"A380785",
"A381372"
] | null | Jean-Marc Rebert, Feb 23 2025 | 2025-03-08T17:30:56 | oeisdata/seq/A381/A381372.seq | 3752b79840f5ab843ab66f86735ee9b9 |
A381373 | Sum over all partitions of [n] of n^j for a partition with j inversions. | [
"1",
"1",
"2",
"7",
"72",
"3276",
"915848",
"2011878835",
"42723411900032",
"10608257527069388539",
"35808039364308986083608352",
"1828963737334508176477805993389490",
"1618534282345584818909121118371843799592960",
"28472613161534902071627567919297331348486838233018341"
] | [
"nonn"
] | 22 | 0 | 3 | [
"A062173",
"A120325",
"A125810",
"A381369",
"A381373",
"A381427"
] | null | Alois P. Heinz, Feb 21 2025 | 2025-03-15T18:44:34 | oeisdata/seq/A381/A381373.seq | cb69fe6a6895dfad3594a346c866f31f |
A381374 | Little Hankel transform of A317614: a(n) = A317614(n+1)^2 - A317614(n)*A317614(n+2). | [
"1",
"1",
"97",
"49",
"769",
"289",
"2977",
"961",
"8161",
"2401",
"18241",
"5041",
"35617",
"9409",
"63169",
"16129",
"104257",
"25921",
"162721",
"39601",
"242881",
"58081",
"349537",
"82369",
"487969",
"113569",
"663937",
"152881",
"883681",
"201601",
"1153921",
"261121",
"1481857",
"332929",
"1875169",
"418609",
"2342017",
"519841",
"2891041"
] | [
"nonn",
"easy"
] | 4 | 1 | 3 | [
"A056221",
"A056222",
"A239607",
"A317614",
"A374668",
"A381374"
] | null | Stefano Spezia, Feb 21 2025 | 2025-02-23T11:21:36 | oeisdata/seq/A381/A381374.seq | ac6351f19a77d7fd144f3f21dcd64ae3 |
A381376 | E.g.f. A(x) satisfies A(x) = 1/( 1 - x * cosh(x * A(x)^2) ). | [
"1",
"1",
"2",
"9",
"96",
"1385",
"22080",
"403417",
"8829184",
"227956689",
"6667822080",
"215780258441",
"7674505073664",
"298885308910201",
"12661212551163904",
"578940699178779225",
"28400662193828659200",
"1488075298726340008097",
"82965096417136263561216",
"4904558063539270185865609"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A185951",
"A381171",
"A381300",
"A381376",
"A381377"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:56:27 | oeisdata/seq/A381/A381376.seq | c201a3992186501df7158c7f1727cefe |
A381377 | E.g.f. A(x) satisfies A(x) = 1/( 1 - x * cosh(x * A(x)) )^2. | [
"1",
"2",
"6",
"30",
"288",
"4090",
"68160",
"1292774",
"28627200",
"739821618",
"21729070080",
"708442911022",
"25365382259712",
"992297344710698",
"42173572623716352",
"1934344590577340790",
"95175474351245230080",
"5000227637170108004194",
"279428527333796676894720",
"16552583621200571079876158"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A185951",
"A381206",
"A381376",
"A381377"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:56:23 | oeisdata/seq/A381/A381377.seq | c2a04d877b7bb3fda8b4679d34087bbb |
A381378 | E.g.f. A(x) satisfies A(x) = 1/( 1 - x * cos(x * A(x)^2) ). | [
"1",
"1",
"2",
"3",
"-48",
"-1135",
"-18240",
"-231637",
"-1356544",
"53849889",
"3026119680",
"100808786419",
"2429052865536",
"26284690243825",
"-1539261873164288",
"-140633348417624805",
"-7196339681250508800",
"-258335768147494234303",
"-4225401456668904259584",
"307227604973975435785571"
] | [
"sign"
] | 11 | 0 | 3 | [
"A185951",
"A364980",
"A381376",
"A381378",
"A381382",
"A381384"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:56:19 | oeisdata/seq/A381/A381378.seq | 9b7ca9ee67a9815b6bd673d76df8d3ae |
A381379 | E.g.f. A(x) satisfies A(x) = 1/( 1 - x * cos(x * A(x)) )^2. | [
"1",
"2",
"6",
"18",
"-48",
"-2630",
"-52800",
"-824054",
"-8682240",
"54462258",
"7410631680",
"305163480578",
"8935815871488",
"167137193150954",
"-1440976761090048",
"-349400091225243270",
"-22113174143289262080",
"-960586728800597050526",
"-26252145855684866211840",
"255024367557922004307442"
] | [
"sign"
] | 11 | 0 | 2 | [
"A185951",
"A381378",
"A381379"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:55:53 | oeisdata/seq/A381/A381379.seq | bb005ec8894f84ea3f8ad276407a4f5d |
A381380 | Decimal expansion of the area of a ruled surface formed by moving a segment of length sqrt(6), the ends of which lie on the diagonals of opposite faces of a unit cube oriented at right angles to each other. | [
"2",
"7",
"2",
"7",
"0",
"5",
"4",
"7",
"7",
"3",
"8",
"1",
"2",
"0",
"4",
"8",
"9",
"8",
"8",
"4",
"3",
"5",
"1",
"5",
"5",
"6",
"7",
"9",
"0",
"2",
"0",
"2",
"5",
"9",
"8",
"4",
"2",
"8",
"3",
"4",
"6",
"4",
"7",
"7",
"1",
"9",
"9",
"0",
"3",
"1",
"3",
"8",
"7",
"4",
"0",
"0",
"3",
"1",
"0",
"7",
"1",
"1",
"8",
"9",
"3",
"9",
"5",
"3",
"9",
"5",
"1",
"4",
"0",
"1",
"3",
"6",
"7",
"1",
"4",
"8",
"4",
"8",
"4",
"4",
"9",
"4",
"0",
"4",
"0",
"1",
"1"
] | [
"nonn",
"cons"
] | 39 | 1 | 1 | null | null | Nicolay Avilov, Feb 22 2025 | 2025-04-10T08:04:42 | oeisdata/seq/A381/A381380.seq | e7bd0a34272302ba4fc638c20888c62b |
A381381 | a(n) is the smallest positive integer m such that for all integers k >= m an n-free 1-partition of k exists. | [
"154",
"155",
"126",
"183",
"97",
"101",
"91",
"108",
"92",
"98",
"78",
"81",
"108",
"78",
"78",
"91",
"78",
"106",
"81",
"92",
"78",
"80",
"78",
"78",
"78",
"81",
"78",
"108",
"78",
"78",
"92"
] | [
"nonn",
"more"
] | 5 | 3 | 1 | null | null | Michel Marcus, Feb 22 2025 | 2025-02-22T09:55:20 | oeisdata/seq/A381/A381381.seq | ce9fe94b2a64a1a97c1a0194297cf32b |
A381382 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sinh(x * A(x)^2) / A(x)^2 ). | [
"1",
"1",
"2",
"7",
"48",
"541",
"7600",
"120891",
"2178176",
"45053401",
"1065957888",
"28344376303",
"831973593088",
"26647344263541",
"925300511922176",
"34668496386129763",
"1394928344160731136",
"59986286728056665905",
"2744940504174063714304",
"133158543838350039763671"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A136630",
"A364980",
"A381376",
"A381378",
"A381382",
"A381384"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:55:49 | oeisdata/seq/A381/A381382.seq | cf220dc3ac6ee14d81c58f072931c347 |
A381383 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sinh(x * A(x)) / A(x) )^2. | [
"1",
"2",
"6",
"26",
"176",
"1842",
"25552",
"417146",
"7727232",
"162203810",
"3855123968",
"102712106202",
"3024863555584",
"97316416451282",
"3393616911181824",
"127581806046438074",
"5147059194652983296",
"221843071154521998402",
"10172731970828970557440",
"494451746675777509028762"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A136630",
"A381382",
"A381383"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:55:46 | oeisdata/seq/A381/A381383.seq | a50dbebeccbda1ffdc04b30578e45898 |
A381384 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sin(x * A(x)^2) / A(x)^2 ). | [
"1",
"1",
"2",
"5",
"0",
"-299",
"-5840",
"-90791",
"-1210496",
"-11174519",
"71397888",
"8367496301",
"327020705792",
"9709296136541",
"226223975684096",
"2946493117173761",
"-87437164233621504",
"-9675847870039338095",
"-535455805780063748096",
"-22518479178045130002731",
"-706013052362778282033152"
] | [
"sign"
] | 10 | 0 | 3 | [
"A136630",
"A364980",
"A381376",
"A381378",
"A381382",
"A381384"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:55:43 | oeisdata/seq/A381/A381384.seq | 32f6d179eb6b8349585d9431e5b9ae74 |
A381385 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sin(x * A(x)) / A(x) )^2. | [
"1",
"2",
"6",
"22",
"64",
"-398",
"-14768",
"-288458",
"-4695168",
"-62117470",
"-385004032",
"15463485398",
"923640068096",
"33487329741842",
"957927747201024",
"20185023268062070",
"95909717192212480",
"-21197461265149558718",
"-1619210077600334151680",
"-82170388240550451506282",
"-3226620083793471277105152"
] | [
"sign"
] | 11 | 0 | 2 | [
"A136630",
"A381384",
"A381385"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-22T09:55:39 | oeisdata/seq/A381/A381385.seq | acb0bf2c9b4585bfbac4d2784f7dc98a |
A381386 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sinh(x * A(x)^2) ). | [
"1",
"1",
"6",
"73",
"1360",
"34321",
"1095584",
"42350673",
"1923628032",
"100430070721",
"5926517800192",
"390116250605401",
"28341322114027520",
"2252512575040254801",
"194421212092585943040",
"18110799663166635386017",
"1810994441189833169698816",
"193488658627430346315888385",
"21997611392941496027173879808"
] | [
"nonn"
] | 17 | 0 | 3 | [
"A136630",
"A381386",
"A381387"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-24T08:09:17 | oeisdata/seq/A381/A381386.seq | c28dc96940a20b82ba86badde60366e5 |
A381387 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sinh(x * A(x)) )^2. | [
"1",
"2",
"14",
"182",
"3520",
"91002",
"2954400",
"115638014",
"5303063552",
"278979672050",
"16565016146176",
"1095997724407302",
"79966475806040064",
"6379010456725968362",
"552344502268240535552",
"51595059327775839277646",
"5171865567269556457308160",
"553764742712510134123863522"
] | [
"nonn"
] | 16 | 0 | 2 | [
"A136630",
"A381386",
"A381387"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-24T08:09:04 | oeisdata/seq/A381/A381387.seq | 4dbd0694002c32a2e46bb5d02075359d |
A381388 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sin(x * A(x)^2) ). | [
"1",
"1",
"6",
"71",
"1280",
"31201",
"961184",
"35838991",
"1569696768",
"79007365921",
"4494170889472",
"285130996517399",
"19963494971809792",
"1529055924661457921",
"127179971644212387840",
"11416028319985437309215",
"1099976414821996358795264",
"113239907265894992879189185",
"12404749306625020735299780608"
] | [
"nonn"
] | 16 | 0 | 3 | [
"A136630",
"A381388",
"A381389"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-24T08:00:33 | oeisdata/seq/A381/A381388.seq | 05a84eff6c314cd2d18f8de388cc131a |
A381389 | E.g.f. A(x) satisfies A(x) = 1/( 1 - sin(x * A(x)) )^2. | [
"1",
"2",
"14",
"178",
"3344",
"83722",
"2628000",
"99358810",
"4398573568",
"223280915090",
"12788876882176",
"816044058415298",
"57411735641690112",
"4415467258014111002",
"368568207039291072512",
"33186631279383615035242",
"3206409506796711229521920",
"330893672854541429428877602"
] | [
"nonn"
] | 16 | 0 | 2 | [
"A136630",
"A381388",
"A381389"
] | null | Seiichi Manyama, Feb 22 2025 | 2025-02-24T07:59:58 | oeisdata/seq/A381/A381389.seq | afaabb186ac2c850e9b37ef88545f60a |
A381390 | a(n) = 12*n^2 + 4*n + 1. | [
"1",
"17",
"57",
"121",
"209",
"321",
"457",
"617",
"801",
"1009",
"1241",
"1497",
"1777",
"2081",
"2409",
"2761",
"3137",
"3537",
"3961",
"4409",
"4881",
"5377",
"5897",
"6441",
"7009",
"7601",
"8217",
"8857",
"9521",
"10209",
"10921",
"11657",
"12417",
"13201",
"14009",
"14841",
"15697",
"16577",
"17481",
"18409",
"19361",
"20337",
"21337"
] | [
"nonn",
"easy"
] | 22 | 0 | 2 | [
"A001082",
"A381390"
] | null | Aaron David Fairbanks, Mar 06 2025 | 2025-03-07T09:13:20 | oeisdata/seq/A381/A381390.seq | c52e5028ff9e1b31d4bd0daaa3f8f3ea |
A381391 | Number of k <= 10^n that are neither squarefree nor prime powers (i.e., k is in A126706). | [
"0",
"29",
"367",
"3866",
"39098",
"391838",
"3920154",
"39205902",
"392069187",
"3920718974",
"39207261564",
"392072817656",
"3920728751139",
"39207289143932",
"392072896183208",
"3920728975677128",
"39207289797472001",
"392072898095046811",
"3920728981307675534",
"39207289814141997459",
"392072898144605471040"
] | [
"nonn"
] | 17 | 1 | 2 | [
"A011557",
"A071172",
"A126706",
"A229099",
"A267574",
"A372403",
"A380403",
"A381391"
] | null | Michael De Vlieger, Feb 22 2025 | 2025-02-23T12:17:10 | oeisdata/seq/A381/A381391.seq | 329dbf5110320cc85d555a7e410b41cb |
A381392 | Decimal expansion of the double zeta(3/2,2). | [
"9",
"3",
"1",
"8",
"2",
"4",
"4",
"9",
"0",
"4",
"2",
"5",
"0",
"3",
"4",
"0",
"9",
"8",
"5",
"5",
"1",
"6",
"1",
"5",
"1",
"1",
"0",
"7",
"0",
"3",
"6",
"4",
"3",
"0",
"5",
"1",
"7",
"0",
"7",
"5",
"0",
"5",
"7",
"9",
"4",
"6",
"3",
"4",
"6",
"8",
"7",
"6",
"9",
"9",
"5",
"7",
"6",
"6",
"2",
"7"
] | [
"nonn",
"cons"
] | 7 | 0 | 1 | null | null | R. J. Mathar, Feb 22 2025 | 2025-02-22T13:47:50 | oeisdata/seq/A381/A381392.seq | bf6b6fa1e59b4f02100bbfcbbeddeeae |
A381393 | Decimal expansion of the double zeta(5/2,5/2). | [
"3",
"8",
"1",
"3",
"3",
"0",
"1",
"5",
"3",
"1",
"1",
"1",
"6",
"0",
"9",
"2",
"6",
"0",
"5",
"7",
"1",
"8",
"8",
"1",
"8",
"7",
"5",
"4",
"3",
"0",
"9",
"8",
"9",
"2",
"9",
"3",
"2",
"8",
"0",
"8",
"8",
"6",
"5",
"3",
"8",
"1",
"3",
"4",
"9",
"0",
"3",
"1",
"1",
"6",
"6",
"4",
"9",
"3",
"0",
"3",
"8"
] | [
"nonn",
"cons"
] | 7 | 0 | 1 | null | null | R. J. Mathar, Feb 22 2025 | 2025-02-22T13:47:57 | oeisdata/seq/A381/A381393.seq | 9e0128b3709df62c37ef34f3474da6cc |
A381394 | Decimal expansion of the double zeta(2,8). | [
"0",
"0",
"4",
"1",
"2",
"2",
"4",
"6",
"9",
"6",
"7",
"8",
"3",
"9",
"9",
"8",
"3",
"2",
"2",
"2",
"4",
"0",
"4",
"6",
"9",
"5",
"6",
"8",
"3",
"8",
"6",
"9",
"4",
"2",
"0",
"8",
"8",
"5",
"5",
"8",
"1",
"2",
"6",
"2",
"7",
"3",
"5",
"8",
"4",
"6",
"8",
"5",
"6",
"9",
"2",
"8",
"5",
"2",
"4",
"5",
"5",
"1",
"7",
"9",
"2",
"8",
"7",
"1",
"7",
"1",
"1",
"1",
"2",
"7",
"7",
"4",
"0",
"6",
"3",
"8",
"8",
"3",
"3",
"1",
"2",
"7",
"5",
"9",
"4",
"5",
"3",
"4",
"5",
"2",
"4",
"3",
"4",
"1",
"7",
"3",
"8",
"8",
"1",
"7",
"4"
] | [
"nonn",
"cons"
] | 12 | 0 | 3 | null | null | R. J. Mathar, Feb 22 2025 | 2025-02-26T02:15:20 | oeisdata/seq/A381/A381394.seq | 4af27c554a521e76372c16ead02e4c67 |
A381395 | Decimal expansion of the double zeta(3,7). | [
"0",
"0",
"8",
"4",
"1",
"9",
"6",
"6",
"8",
"5",
"0",
"3",
"0",
"9",
"6",
"3",
"3",
"2",
"4",
"2",
"3",
"9",
"6",
"8",
"5",
"7",
"9",
"7",
"1",
"4",
"6",
"7",
"0",
"6",
"5",
"0",
"6",
"3",
"6",
"9",
"1",
"7",
"8",
"7",
"5",
"0",
"6",
"3",
"9",
"5",
"8",
"0",
"9",
"2",
"2",
"7",
"2",
"5",
"7",
"4",
"5",
"1",
"6",
"6",
"3",
"5",
"9",
"0",
"4",
"6",
"9",
"0",
"0",
"4",
"7",
"9",
"1",
"5",
"3",
"3",
"7",
"7",
"7",
"9",
"6",
"2",
"7",
"3",
"5",
"3",
"9",
"2",
"3",
"3",
"7",
"1",
"5",
"8",
"7",
"5",
"5",
"0",
"6",
"4",
"7"
] | [
"nonn",
"cons"
] | 12 | 0 | 3 | null | null | R. J. Mathar, Feb 22 2025 | 2025-02-26T02:14:09 | oeisdata/seq/A381/A381395.seq | e452f8e1d27c52d951ec119233f9c00a |
A381396 | Decimal expansion of the double zeta(4,6). | [
"0",
"1",
"7",
"4",
"5",
"5",
"1",
"9",
"4",
"7",
"5",
"0",
"8",
"3",
"5",
"0",
"2",
"4",
"7",
"3",
"5",
"7",
"4",
"0",
"6",
"3",
"9",
"3",
"8",
"6",
"6",
"6",
"8",
"4",
"1",
"3",
"7",
"3",
"1",
"8",
"5",
"9",
"2",
"8",
"2",
"9",
"0",
"9",
"5",
"2",
"1",
"4",
"3",
"1",
"0",
"0",
"6",
"1",
"5",
"6",
"7",
"0",
"1",
"1",
"3",
"3",
"3",
"8",
"9",
"2",
"4",
"1",
"8",
"5",
"2",
"8",
"7",
"7",
"4",
"4",
"4",
"7",
"4",
"6",
"9",
"2",
"0",
"7",
"2",
"2",
"6",
"9",
"0",
"2",
"3",
"3",
"4",
"5",
"4",
"1",
"2",
"1",
"0",
"5",
"4"
] | [
"nonn",
"cons"
] | 15 | 0 | 3 | null | null | R. J. Mathar, Feb 22 2025 | 2025-02-26T02:13:55 | oeisdata/seq/A381/A381396.seq | c5ca7354ad2196ecd637054300b7f767 |
A381397 | Decimal expansion of the double zeta(2,10). | [
"0",
"0",
"0",
"9",
"9",
"9",
"2",
"0",
"6",
"7",
"8",
"7",
"2",
"0",
"9",
"6",
"9",
"1",
"8",
"4",
"0",
"4",
"3",
"3",
"8",
"0",
"1",
"4",
"8",
"8",
"2",
"1",
"5",
"8",
"3",
"7",
"6",
"0",
"9",
"1",
"4",
"1",
"0",
"1",
"9",
"2",
"3",
"2",
"8",
"1",
"9",
"4",
"0",
"9",
"6",
"8",
"4",
"8",
"8",
"2",
"2",
"2",
"0",
"6",
"8",
"5",
"6",
"7",
"2",
"1",
"8",
"5",
"3",
"2",
"7",
"1",
"8",
"5",
"9",
"1",
"2",
"5",
"6",
"3",
"0",
"3",
"5",
"0",
"3",
"6",
"5",
"4",
"0",
"1",
"2",
"7",
"7",
"7",
"5",
"8",
"9",
"8",
"6",
"4",
"7"
] | [
"cons",
"nonn"
] | 12 | 0 | 4 | null | null | R. J. Mathar, Feb 22 2025 | 2025-02-26T02:13:33 | oeisdata/seq/A381/A381397.seq | fd45c783ab1737c76415a7e14d429998 |
A381398 | Irregular triangle read by rows, where row n lists the elements of the set of bases and exponents (including exponents = 1) in the prime factorization of n. | [
"1",
"2",
"1",
"3",
"2",
"1",
"5",
"1",
"2",
"3",
"1",
"7",
"2",
"3",
"2",
"3",
"1",
"2",
"5",
"1",
"11",
"1",
"2",
"3",
"1",
"13",
"1",
"2",
"7",
"1",
"3",
"5",
"2",
"4",
"1",
"17",
"1",
"2",
"3",
"1",
"19",
"1",
"2",
"5",
"1",
"3",
"7",
"1",
"2",
"11",
"1",
"23",
"1",
"2",
"3",
"2",
"5",
"1",
"2",
"13",
"3",
"1",
"2",
"7",
"1",
"29",
"1",
"2",
"3",
"5",
"1",
"31",
"2",
"5",
"1",
"3",
"11",
"1",
"2",
"17",
"1",
"5",
"7",
"2",
"3"
] | [
"nonn",
"tabf",
"easy"
] | 11 | 2 | 2 | [
"A035306",
"A081812",
"A381201",
"A381202",
"A381203",
"A381204",
"A381205",
"A381212",
"A381398",
"A381399",
"A381402"
] | null | Paolo Xausa, Feb 22 2025 | 2025-02-25T11:39:24 | oeisdata/seq/A381/A381398.seq | 9e36de8d47fc4b46be9d5828da530ecc |
A381399 | a(n) is the number of prime elements in the set of bases and exponents in the prime factorization of n. | [
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"3",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"3",
"2",
"2",
"1",
"3",
"1",
"2",
"3",
"1",
"2",
"3",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"2",
"2",
"3",
"1",
"3"
] | [
"nonn",
"easy"
] | 9 | 1 | 6 | [
"A115588",
"A381398",
"A381399",
"A381400",
"A381401"
] | null | Paolo Xausa, Feb 22 2025 | 2025-02-25T11:39:39 | oeisdata/seq/A381/A381399.seq | 896e076ede099ef465aa8bf4f3270e43 |
A381400 | Numbers k >= 2 such that A115588(k) != A381399(k). | [
"64",
"81",
"256",
"320",
"405",
"448",
"512",
"567",
"625",
"704",
"729",
"832",
"891",
"1024",
"1053",
"1088",
"1216",
"1280",
"1377",
"1472",
"1539",
"1600",
"1792",
"1856",
"1863",
"1875",
"1984",
"2240",
"2349",
"2368",
"2401",
"2511",
"2560",
"2624",
"2752",
"2816",
"2835",
"2997",
"3008",
"3072",
"3136",
"3321",
"3328",
"3392",
"3483",
"3520"
] | [
"nonn",
"easy"
] | 10 | 1 | 1 | [
"A115588",
"A381399",
"A381400"
] | null | Paolo Xausa, Feb 22 2025 | 2025-02-25T11:39:46 | oeisdata/seq/A381/A381400.seq | 006f70f48b149e23778557ac6a9dd944 |
A381401 | a(n) is the number of (possibly non-distinct) prime elements in the multiset of bases and exponents in the prime factorization of n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"1",
"1",
"3",
"1",
"3",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"3",
"3",
"2",
"1",
"2",
"2",
"3",
"2",
"3",
"1",
"3",
"2",
"3",
"2",
"2",
"1",
"4",
"1",
"2",
"3",
"1",
"2",
"3",
"1",
"3",
"2",
"3",
"1",
"4",
"1",
"2",
"3",
"3",
"2",
"3",
"1",
"2",
"1",
"2",
"1",
"4",
"2",
"2",
"2",
"3",
"1",
"4"
] | [
"nonn",
"easy"
] | 10 | 1 | 4 | [
"A106490",
"A349281",
"A381398",
"A381399",
"A381401"
] | null | Paolo Xausa, Feb 24 2025 | 2025-02-25T11:40:01 | oeisdata/seq/A381/A381401.seq | 7511e01fbfa8bebf5279c8aa2db8b366 |
A381402 | Numbers k such that the set P of bases and exponents in the prime factorization of k (including exponents = 1) contains all numbers from min(P) to max(P). | [
"2",
"4",
"6",
"8",
"9",
"12",
"18",
"24",
"27",
"36",
"48",
"54",
"72",
"81",
"108",
"144",
"162",
"216",
"240",
"324",
"432",
"625",
"648",
"720",
"810",
"1200",
"1296",
"1620",
"2000",
"2025",
"2160",
"2592",
"3125",
"3240",
"3600",
"3750",
"3888",
"4050",
"5000",
"5625",
"6000",
"6480",
"7500",
"8100",
"10125",
"10800",
"11250",
"12960",
"15000",
"15625"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A381398",
"A381402"
] | null | Paolo Xausa, Feb 24 2025 | 2025-02-25T11:40:10 | oeisdata/seq/A381/A381402.seq | d223725322e93214e7c069e867a74326 |
A381403 | a(n) is the mode of the multiset of bases and exponents (including exponents = 1) in the prime factorization of n (using smallest mode if multimodal). | [
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"easy"
] | 8 | 2 | 3 | [
"A035306",
"A381178",
"A381403",
"A381404"
] | null | Paolo Xausa, Feb 27 2025 | 2025-03-01T12:19:17 | oeisdata/seq/A381/A381403.seq | 4da4d87791f215885cfe3bb3df4c5c53 |
A381404 | a(n) is the mode of the multiset of bases and exponents (including exponents = 1) in the prime factorization of n (using largest mode if multimodal). | [
"2",
"3",
"2",
"5",
"1",
"7",
"3",
"3",
"1",
"11",
"2",
"13",
"1",
"1",
"4",
"17",
"2",
"19",
"2",
"1",
"1",
"23",
"3",
"5",
"1",
"3",
"2",
"29",
"1",
"31",
"5",
"1",
"1",
"1",
"2",
"37",
"1",
"1",
"5",
"41",
"1",
"43",
"2",
"5",
"1",
"47",
"4",
"7",
"2",
"1",
"2",
"53",
"3",
"1",
"7",
"1",
"1",
"59",
"2",
"61",
"1",
"7",
"6",
"1",
"1",
"67",
"2",
"1",
"1",
"71",
"3",
"73",
"1",
"5",
"2",
"1",
"1",
"79",
"5",
"4",
"1",
"83",
"2",
"1",
"1"
] | [
"nonn",
"easy"
] | 7 | 2 | 1 | [
"A000040",
"A035306",
"A381178",
"A381403",
"A381404"
] | null | Paolo Xausa, Feb 27 2025 | 2025-03-01T12:19:27 | oeisdata/seq/A381/A381404.seq | d7a290f17f27b7290e2482387f306d15 |
A381405 | a(0) = 0; for n > 0, a(n) is the smallest unused number such that a(n) AND a(n-1) = 0, where AND is the binary AND operation, while the binary weight of a(n) does not equal that of a(n-1). | [
"0",
"1",
"6",
"8",
"3",
"4",
"9",
"2",
"5",
"16",
"7",
"24",
"32",
"10",
"21",
"34",
"13",
"18",
"37",
"64",
"11",
"20",
"35",
"12",
"19",
"36",
"25",
"66",
"28",
"33",
"14",
"17",
"38",
"65",
"22",
"40",
"23",
"72",
"39",
"80",
"15",
"48",
"67",
"60",
"128",
"26",
"68",
"27",
"96",
"29",
"98",
"129",
"30",
"97",
"130",
"41",
"86",
"136",
"49",
"78",
"144",
"42",
"85",
"138",
"53",
"74",
"132",
"43",
"84",
"139",
"52",
"75",
"148",
"99",
"140",
"51",
"76",
"147",
"44",
"83",
"160",
"31",
"192",
"45",
"82",
"141",
"50",
"77",
"146",
"101"
] | [
"nonn",
"base"
] | 11 | 0 | 3 | [
"A000120",
"A057168",
"A061712",
"A129760",
"A381405",
"A381406"
] | null | Scott R. Shannon, Feb 22 2025 | 2025-02-23T09:31:51 | oeisdata/seq/A381/A381405.seq | 8ff8321eaf2757c0cbea68cfbf38f246 |
A381406 | a(0) = 0; for n > 0, a(n) is the smallest unused number such that a(n) OR a(n-1) = 2^k - 1, where OR is the binary OR operation and k>=1, while the binary weight of a(n) does not equal that of a(n-1). | [
"0",
"1",
"3",
"2",
"5",
"7",
"4",
"11",
"6",
"13",
"10",
"15",
"8",
"23",
"9",
"14",
"17",
"30",
"19",
"12",
"27",
"20",
"31",
"16",
"47",
"18",
"29",
"22",
"43",
"21",
"46",
"25",
"39",
"24",
"55",
"26",
"45",
"50",
"61",
"34",
"63",
"28",
"51",
"44",
"59",
"36",
"91",
"37",
"58",
"69",
"62",
"33",
"94",
"35",
"60",
"67",
"124",
"71",
"56",
"79",
"48",
"95",
"32",
"127",
"38",
"57",
"70",
"121",
"54",
"41",
"86",
"107",
"52",
"75",
"117",
"42",
"53",
"74",
"119",
"40",
"87",
"104",
"151",
"105",
"118",
"73",
"126",
"49",
"78",
"115"
] | [
"nonn",
"base"
] | 8 | 0 | 3 | [
"A000120",
"A057168",
"A061712",
"A086799",
"A381405",
"A381406"
] | null | Scott R. Shannon, Feb 22 2025 | 2025-02-23T09:31:44 | oeisdata/seq/A381/A381406.seq | 3d0f4fc151aea751b533403cd84ad8c5 |
A381407 | E.g.f. A(x) satisfies A(x) = exp( x * cosh(x * A(x)^2) ). | [
"1",
"1",
"1",
"4",
"61",
"756",
"8581",
"125168",
"2577849",
"60269968",
"1469636041",
"39496750272",
"1212192326005",
"41147125079360",
"1496063100479949",
"58263746530145536",
"2447130544401729649",
"110270888250759852288",
"5279535712822539622033",
"267412182631190346232832"
] | [
"nonn"
] | 9 | 0 | 4 | [
"A185951",
"A381376",
"A381407"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:01:19 | oeisdata/seq/A381/A381407.seq | 2dab5a899ea74255110b38292d16a613 |
A381408 | E.g.f. A(x) satisfies A(x) = exp( 2 * x * cosh(x * A(x)) ). | [
"1",
"2",
"4",
"14",
"160",
"2202",
"28384",
"419302",
"8238080",
"193340978",
"4860711424",
"132391420350",
"4045976651776",
"137295166640842",
"5028417873133568",
"197042617602645398",
"8292209178735935488",
"374117497443421923426",
"17958577129581151387648",
"912189896002576287703918"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A185951",
"A381407",
"A381408"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:02:20 | oeisdata/seq/A381/A381408.seq | 2eda360000f38173cbc6ec6e22643dc1 |
A381409 | E.g.f. A(x) satisfies A(x) = exp( x * cos(x * A(x)^2) ). | [
"1",
"1",
"1",
"-2",
"-59",
"-744",
"-6419",
"-6096",
"1504553",
"47199232",
"911415481",
"7309642880",
"-338340409043",
"-21607316073472",
"-725479564376475",
"-13094500078091264",
"245361657851526353",
"35579148236923486208",
"1875350389057457406193",
"57582879572195726819328"
] | [
"sign"
] | 9 | 0 | 4 | [
"A185951",
"A381378",
"A381409"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:03:24 | oeisdata/seq/A381/A381409.seq | f9a88ef59c2279da734c4d6a4d1053ea |
A381410 | E.g.f. A(x) satisfies A(x) = exp( 2 * x * cos(x * A(x)) ). | [
"1",
"2",
"4",
"2",
"-128",
"-2118",
"-23456",
"-125046",
"2962432",
"134260082",
"3203705344",
"43519495186",
"-465102608384",
"-58643045328086",
"-2434321489723392",
"-60275924271785062",
"-100012292095737856",
"89170947715367242466",
"5992924139510968483840",
"233532153884059053483042"
] | [
"sign"
] | 10 | 0 | 2 | [
"A185951",
"A381409",
"A381410"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:04:15 | oeisdata/seq/A381/A381410.seq | df79fc6439776817f1beb78991310ed6 |
A381411 | E.g.f. A(x) satisfies A(x) = exp( sinh(x * A(x)^2) / A(x)^2 ). | [
"1",
"1",
"1",
"2",
"21",
"252",
"2645",
"29248",
"420777",
"7789008",
"160214281",
"3480537568",
"82299294077",
"2172147323712",
"63112534885725",
"1969853583132672",
"65473850077772881",
"2323179959573426432",
"88007266294215935121",
"3540245668453458467328",
"150353926528453088942821"
] | [
"nonn"
] | 8 | 0 | 4 | [
"A136630",
"A381411"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:05:28 | oeisdata/seq/A381/A381411.seq | 1ac98da2661026b6f18fcbdecaf90089 |
A381412 | E.g.f. A(x) satisfies A(x) = exp( 2 * sinh(x * A(x)) / A(x) ). | [
"1",
"2",
"4",
"10",
"64",
"754",
"9024",
"109050",
"1544960",
"27480162",
"567449600",
"12641553258",
"303021248512",
"7982668175954",
"231306526932992",
"7245659221444186",
"242226980924424192",
"8623216994933650114",
"327015684198600278016",
"13169904418920596839626",
"560434137147666884198400"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A136630",
"A381411",
"A381412"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:08:47 | oeisdata/seq/A381/A381412.seq | 87187aa495a470f7c2e4f7346a3d2419 |
A381413 | E.g.f. A(x) satisfies A(x) = exp( sin(x * A(x)^2) / A(x)^2 ). | [
"1",
"1",
"1",
"0",
"-19",
"-248",
"-2355",
"-14504",
"69113",
"4886848",
"117560921",
"1925294976",
"14523966437",
"-478472693632",
"-28832809713435",
"-921278399444480",
"-18983574162924687",
"-55161522627854336",
"18306724696454977713",
"1118400460045234098176",
"41755736397548337559133"
] | [
"sign"
] | 10 | 0 | 5 | [
"A136630",
"A381413"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:09:50 | oeisdata/seq/A381/A381413.seq | 289356fa2437c003aa7be638570c3c3a |
A381414 | E.g.f. A(x) satisfies A(x) = exp( 2 * sin(x * A(x)) / A(x) ). | [
"1",
"2",
"4",
"6",
"-32",
"-686",
"-8256",
"-72394",
"-200448",
"11160866",
"373370880",
"7696016614",
"100295200768",
"-338643776142",
"-77999443329024",
"-3211092423560938",
"-85537972638318592",
"-1169784729390416830",
"33029632126142382080",
"3381750252027454249926",
"158090250687453045194752"
] | [
"sign"
] | 11 | 0 | 2 | [
"A136630",
"A381413",
"A381414"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:16:51 | oeisdata/seq/A381/A381414.seq | 28ddd9dedacea9a7e733890c6555910b |
A381415 | E.g.f. A(x) satisfies A(x) = exp( sinh(x * A(x)^2) ). | [
"1",
"1",
"5",
"50",
"765",
"15852",
"415441",
"13182976",
"491502521",
"21061603152",
"1020066862269",
"55107133707232",
"3285531022228725",
"214295961023511616",
"15179005200468020489",
"1160334809344169734144",
"95214513195493336071537",
"8347897781857074205573376",
"778804910740650550851809013"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A136630",
"A162650",
"A381415"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:17:43 | oeisdata/seq/A381/A381415.seq | 12a0d418ade02fcdc6c8ab1c587fb6ad |
A381416 | E.g.f. A(x) satisfies A(x) = exp( 2 * sinh(x * A(x)) ). | [
"1",
"2",
"12",
"130",
"2080",
"44354",
"1185856",
"38188546",
"1439993088",
"62261776002",
"3037542875136",
"165090563653250",
"9892965209886720",
"648064548551770562",
"46075919968420085760",
"3533725068594022938626",
"290804441398399410503680",
"25561250854199444302177538",
"2390133356713125694150017024"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A136630",
"A381415",
"A381416"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:19:14 | oeisdata/seq/A381/A381416.seq | 4142c63f71fca5c75fa490d6488e974b |
A381417 | E.g.f. A(x) satisfies A(x) = exp( sin(x * A(x)^2) ). | [
"1",
"1",
"5",
"48",
"693",
"13432",
"327561",
"9639224",
"332476361",
"13157303104",
"587704852749",
"29250533304960",
"1605304225302525",
"96313936238637184",
"6271774683977444817",
"440545491471769836032",
"33204015428071302059025",
"2672942015998405569765376",
"228892490007003118401996565"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A136630",
"A381417"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:20:10 | oeisdata/seq/A381/A381417.seq | d94fbfb1afacda5730ebfd44f716697b |
A381418 | E.g.f. A(x) satisfies A(x) = exp( 2 * sin(x * A(x)) ). | [
"1",
"2",
"12",
"126",
"1920",
"38594",
"966336",
"29013502",
"1016725248",
"40756464002",
"1840019388416",
"92407718510206",
"5110719354064896",
"308687318601431618",
"20219267260662005760",
"1427631259848921544702",
"108098847179804608299008",
"8738141126983786551626498",
"751078053821468153074155520"
] | [
"nonn"
] | 11 | 0 | 2 | [
"A136630",
"A381417",
"A381418"
] | null | Seiichi Manyama, Feb 23 2025 | 2025-02-23T08:20:57 | oeisdata/seq/A381/A381418.seq | 008a0199281e04968c7620b0fe3a694f |
A381419 | a(1) = 1; for n > 1, a(n) is the smallest unused positive number that is coprime to a(n-1) and has a different binary weight than a(n-1). | [
"1",
"3",
"2",
"5",
"4",
"7",
"6",
"11",
"8",
"9",
"13",
"10",
"19",
"12",
"23",
"14",
"15",
"16",
"17",
"21",
"20",
"27",
"22",
"29",
"18",
"25",
"24",
"31",
"26",
"33",
"28",
"39",
"32",
"35",
"34",
"37",
"30",
"41",
"36",
"43",
"38",
"45",
"44",
"47",
"40",
"49",
"46",
"55",
"42",
"53",
"48",
"59",
"50",
"51",
"52",
"57",
"56",
"61",
"54",
"65",
"58",
"63",
"62",
"67",
"60",
"73",
"64",
"69",
"68",
"71",
"66",
"79",
"70",
"83"
] | [
"nonn",
"base"
] | 23 | 1 | 2 | [
"A000120",
"A027748",
"A093714",
"A109451",
"A381419",
"A381420",
"A381821"
] | null | Scott R. Shannon, Feb 23 2025 | 2025-03-11T08:23:12 | oeisdata/seq/A381/A381419.seq | a2164401b3acce9f5f8c2a35614d4ef6 |
A381420 | a(1) = 1, a(2) = 3; for n > 2, a(n) is the smallest unused positive number that shares a factor with a(n-1) and has a different binary weight than a(n-1). | [
"1",
"3",
"15",
"5",
"25",
"10",
"2",
"6",
"4",
"12",
"8",
"14",
"16",
"18",
"21",
"9",
"27",
"24",
"22",
"20",
"26",
"30",
"28",
"32",
"34",
"38",
"36",
"39",
"13",
"65",
"35",
"40",
"42",
"33",
"11",
"55",
"44",
"46",
"48",
"45",
"50",
"54",
"52",
"58",
"56",
"60",
"62",
"64",
"66",
"51",
"17",
"85",
"68",
"70",
"63",
"7",
"77",
"49",
"91",
"78",
"69",
"23",
"115",
"75",
"72",
"57",
"19",
"95",
"76",
"80",
"74",
"86",
"82",
"90"
] | [
"nonn",
"base"
] | 18 | 1 | 2 | [
"A000120",
"A027748",
"A064413",
"A093714",
"A109451",
"A381419",
"A381420"
] | null | Scott R. Shannon, Feb 23 2025 | 2025-03-11T09:01:23 | oeisdata/seq/A381/A381420.seq | be0919296bee9db1993b0ff3e41177a0 |
A381421 | a(n) = Sum_{k=0..n} (k+1) * binomial(2*k,2*n-2*k). | [
"1",
"2",
"5",
"22",
"68",
"206",
"631",
"1870",
"5467",
"15836",
"45416",
"129260",
"365565",
"1028122",
"2877697",
"8021010",
"22274476",
"61653850",
"170152275",
"468347046",
"1286055927",
"3523777912",
"9635982160",
"26302324504",
"71674754873",
"195015074610",
"529846108989",
"1437657038030",
"3896050721940"
] | [
"nonn",
"easy",
"changed"
] | 44 | 0 | 2 | [
"A034839",
"A108479",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
] | null | Seiichi Manyama, Mar 28 2025 | 2025-04-23T10:47:06 | oeisdata/seq/A381/A381421.seq | 0607d5af75c0fae02cb24434f9706fee |
A381422 | Expansion of g.f. = exp( Sum_{n>=1} A066802(n)*x^n/n ) | [
"1",
"20",
"662",
"26780",
"1205961",
"58050204",
"2924165436",
"152231599628",
"8125577046740",
"442293253888592",
"24457749066666142",
"1370114821790970340",
"77591333270514869230",
"4434803157977731784808",
"255492958449660158603448",
"14820943641891118200315756",
"864962304943085638764540396"
] | [
"nonn",
"new"
] | 8 | 0 | 2 | [
"A066802",
"A155200",
"A156216",
"A229451",
"A229452",
"A255881",
"A381422"
] | null | Karol A. Penson, Apr 22 2025 | 2025-04-22T14:08:40 | oeisdata/seq/A381/A381422.seq | 58c4a2fb5484e6eea761550803ab7b1c |
A381423 | Exponent of x of maximal coefficient in Hermite polynomial of order n. | [
"0",
"1",
"2",
"3",
"4",
"1",
"2",
"3",
"4",
"5",
"2",
"3",
"4",
"5",
"6",
"3",
"4",
"5",
"6",
"7",
"4",
"5",
"6",
"7",
"4",
"5",
"6",
"7",
"8",
"5",
"6",
"7",
"8",
"5",
"6",
"7",
"8",
"9",
"6",
"7",
"8",
"9",
"6",
"7",
"8",
"9",
"10",
"7",
"8",
"9",
"10",
"7",
"8",
"9",
"10",
"11",
"8",
"9",
"10",
"11",
"8",
"9",
"10",
"11",
"12",
"9",
"10",
"11",
"12",
"9",
"10",
"11",
"12",
"9",
"10",
"11",
"12",
"13",
"10"
] | [
"nonn"
] | 8 | 0 | 3 | [
"A277280",
"A381423"
] | null | Mike Sheppard, Feb 23 2025 | 2025-03-06T12:00:16 | oeisdata/seq/A381/A381423.seq | 3d54c74672e02eb8874df7b89e462da8 |
A381424 | Truncated hex numbers: a(n) = 24*n^2 + 6*n + 1. | [
"1",
"31",
"109",
"235",
"409",
"631",
"901",
"1219",
"1585",
"1999",
"2461",
"2971",
"3529",
"4135",
"4789",
"5491",
"6241",
"7039",
"7885",
"8779",
"9721",
"10711",
"11749",
"12835",
"13969",
"15151",
"16381",
"17659",
"18985",
"20359",
"21781",
"23251",
"24769",
"26335",
"27949",
"29611",
"31321",
"33079",
"34885",
"36739",
"38641"
] | [
"nonn",
"easy"
] | 17 | 0 | 2 | [
"A003215",
"A005892",
"A007742",
"A381424"
] | null | Aaron David Fairbanks, Feb 23 2025 | 2025-03-06T12:53:01 | oeisdata/seq/A381/A381424.seq | 54b9334730d474ddfb6a0c9db05fd296 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.