sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A383217
Lexicographically earliest strictly increasing sequence such that no term is a substring of the product of all previous terms.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "30", "32", "33", "34", "35", "36", "37", "40", "41", "44", "45", "46", "48", "49", "53", "54", "55", "56", "57", "59", "61", "63", "64", "65", "66", "67", "68", "69", "70", "71", "76", "79", "80", "84", "85", "87", "90", "91", "97", "98" ]
[ "nonn", "base" ]
8
1
2
[ "A033180", "A383217", "A383218" ]
null
Dominic McCarty, Apr 19 2025
2025-04-19T18:07:27
oeisdata/seq/A383/A383217.seq
995c25a33fc26613184e07141e9e2c63
A383218
The product of the first n terms of A383217.
[ "1", "2", "6", "24", "120", "720", "5760", "51840", "518400", "5702400", "68428800", "889574400", "12454041600", "186810624000", "2988969984000", "50812489728000", "914624815104000", "17377871486976000", "347557429739520000", "7298706024529920000", "160571532539658240000", "3693145248412139520000" ]
[ "nonn", "base" ]
5
1
2
[ "A033180", "A383217", "A383218" ]
null
Dominic McCarty, Apr 19 2025
2025-04-19T18:07:34
oeisdata/seq/A383/A383218.seq
2687e8d9818779e749311ffcba6c2cbf
A383219
Number of nilpotent semigroups by order, up to isomorphism and anti-isomorphism.
[ "0", "0", "1", "2", "10", "93", "2813", "616830", "1833587417", "52972875977730" ]
[ "nonn", "hard", "more" ]
5
0
4
[ "A001423", "A383219" ]
null
Joseph E. Marrow, Apr 19 2025
2025-05-04T16:48:00
oeisdata/seq/A383/A383219.seq
d49fa1690156a60ca1d6b2acf4a07e5d
A383220
Integers k such that rad(k)*2^(k/rad(k)) + 1 is prime where rad = A007947.
[ "1", "2", "3", "5", "6", "11", "14", "15", "20", "21", "23", "24", "26", "29", "30", "33", "35", "39", "41", "44", "51", "53", "65", "68", "69", "74", "78", "83", "86", "88", "89", "90", "95", "105", "111", "113", "114", "116", "117", "119", "125", "126", "131", "134", "135", "138", "140", "141", "146", "147", "153", "155", "156", "158", "165", "168", "171", "173", "174", "179" ]
[ "nonn" ]
12
1
2
[ "A002234", "A003557", "A005384", "A007947", "A383220" ]
null
Juri-Stepan Gerasimov, Apr 19 2025
2025-05-01T21:54:10
oeisdata/seq/A383/A383220.seq
e56eb9244841bf297c227f987880690d
A383221
Coefficient of x^3 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).
[ "0", "0", "0", "1", "26", "595", "14155", "363944", "10206700", "312193524", "10380710220", "373619597736", "14490750497432", "603032132116336", "26818416624389936", "1269883590624201344", "63806666669904903808", "3391580011320726010880", "190174443042558311293440", "11220246602286014617751040" ]
[ "nonn" ]
12
0
5
[ "A225470", "A383221" ]
null
Seiichi Manyama, Apr 20 2025
2025-05-06T09:31:46
oeisdata/seq/A383/A383221.seq
9dd3865541e21a3ec7f944420e964dc6
A383222
Coefficient of x^4 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).
[ "0", "0", "0", "0", "1", "40", "1275", "39655", "1276009", "43382934", "1570298610", "60630265740", "2495678898636", "109326548645600", "5085420626585936", "250576924194171120", "13046999027750243984", "716156618057417103008", "41347880768363832470304", "2505655766070932929630464" ]
[ "nonn", "easy" ]
12
0
6
[ "A225470", "A383222" ]
null
Seiichi Manyama, Apr 20 2025
2025-05-06T09:31:50
oeisdata/seq/A383/A383222.seq
9025a5f002aa2b30a49e4d6028046913
A383223
Number of integer solutions to Product_{k=1..n} (4 + c(k)) = 4 * Product_{k=1..n} c(k) with 0 < c(k) <= c(k+1).
[ "0", "2", "15", "375", "28901", "5185573" ]
[ "nonn", "more" ]
5
1
2
[ "A263207", "A375787", "A380749", "A381644", "A382672", "A383223" ]
null
Zhining Yang, Apr 19 2025
2025-04-27T05:56:54
oeisdata/seq/A383/A383223.seq
f7ff6b9501d2e63d9d75b28665dc8422
A383224
Decimal expansion Sum_{p primes} log(p)^2*p^2/(p^2-1)^2.
[ "8", "8", "4", "4", "8", "1", "8", "3", "3", "9", "6", "3", "5", "2", "3", "8", "8", "5", "1", "9", "6", "5", "3", "6", "1", "5", "3", "8", "7", "0", "6", "5", "1", "1", "6", "8", "5", "8", "8", "6", "6", "7", "3", "3", "2", "6", "3", "8", "7", "1", "1", "3", "3", "5", "1", "8", "1", "8", "3", "9", "2", "8", "6", "5", "7", "7", "8", "6", "0", "4", "5", "7", "1", "6", "5", "2", "7", "8", "8", "6", "3", "4", "3", "1", "2", "9", "5", "1", "0", "2", "2", "9", "5", "2", "4", "5", "2", "5", "4", "7", "0", "5", "6", "0", "1" ]
[ "nonn", "cons" ]
53
0
1
[ "A345364", "A383224" ]
null
Artur Jasinski, Apr 27 2025
2025-05-07T05:31:00
oeisdata/seq/A383/A383224.seq
3c7b18f11768a635b67dff9d84524c06
A383225
a(n) = sqrt(1 + P(n)*P(n+1)*P(n+2)*P(n+3)) where P(n) = A000129(n) are the Pell numbers.
[ "1", "11", "59", "349", "2029", "11831", "68951", "401881", "2342329", "13652099", "79570259", "463769461", "2703046501", "15754509551", "91824010799", "535189555249", "3119313320689", "18180690368891", "105964828892651", "617608282987021", "3599684869029469", "20980500931189799", "122283320718109319", "712719423377466121" ]
[ "nonn", "easy" ]
63
0
2
[ "A000129", "A156035", "A383225" ]
null
Jules Beauchamp, Apr 26 2025
2025-05-25T11:05:15
oeisdata/seq/A383/A383225.seq
1cbc479d4a86f2c295b0fc11d9fa3fe4
A383226
Number of winning positions for the next player (a, b, c) where 1 <= a, b, c <= n in "Divisor Nim" (see comments).
[ "0", "4", "13", "44", "80", "144", "219", "364", "502", "692", "899", "1224", "1524", "1912", "2311", "3008", "3542", "4206", "4869", "5830", "6652", "7658", "8639", "10080", "11262", "12670", "14041", "15932", "17528", "19416", "21231", "24112", "26206", "28652", "30995", "34182", "36816", "39886", "42799", "46880", "50132", "53880" ]
[ "nonn" ]
22
1
2
[ "A007814", "A383226" ]
null
Do Thanh Nhan, Apr 20 2025
2025-06-02T15:29:39
oeisdata/seq/A383/A383226.seq
253105267af45cc5c0824d2ca3c34feb
A383227
a(n) is the product of first n even numbers not divisible by 5 (cf. A217562).
[ "1", "2", "8", "48", "384", "4608", "64512", "1032192", "18579456", "408748032", "9809952768", "255058771968", "7141645615104", "228532659683328", "7770110429233152", "279723975452393472", "10629511067190951936", "446439464822019981312", "19643336452168879177728", "903593476799768442175488", "43372486886388885224423424" ]
[ "nonn" ]
10
0
2
[ "A217562", "A356858", "A383227" ]
null
Stefano Spezia, Apr 20 2025
2025-06-02T15:29:49
oeisdata/seq/A383/A383227.seq
3655b6566d140ff68086a695689aac11
A383228
a(n) is the number of cases where both j and k (1 <= j < k <= n), are divisors of Sum_{i=j..k} i^i.
[ "0", "0", "0", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3", "3", "4", "4", "5", "5", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "10", "11", "11", "11", "11", "12", "12", "12", "12", "12", "12", "12", "14", "14", "14", "14", "15", "15", "15", "16", "16", "16", "16", "16", "16", "16", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17" ]
[ "nonn" ]
20
1
6
[ "A000312", "A001923", "A128981", "A383228" ]
null
Jean-Marc Rebert, Apr 20 2025
2025-04-22T07:49:18
oeisdata/seq/A383/A383228.seq
b3a106d78c86d531cbcb518216acfbf0
A383229
Indices of record low-water marks of the sequence abs((sin n)^n).
[ "0", "1", "2", "3", "6", "9", "13", "16", "19", "22", "44", "66", "88", "110", "132", "154", "176", "179", "198", "201", "223", "245", "267", "289", "311", "333", "355", "710", "1065", "1420", "1775", "2130", "2485", "2840", "3195", "3550", "3905", "4260", "4615", "4970", "5325", "5680", "6035", "6390", "6745", "7100", "7455", "7810", "8165", "8520", "8875", "9230", "9585", "9940" ]
[ "nonn" ]
30
0
3
[ "A382815", "A383229", "A383283" ]
null
Jwalin Bhatt, Apr 28 2025
2025-05-01T08:31:16
oeisdata/seq/A383/A383229.seq
ec401e29ca02d7716dd8a4ea2fcdf8bf
A383230
Numbers k whose decimal representation can be split in three parts which can be used as seeds for a tribonacci-like sequence containing k itself.
[ "197", "742", "1007", "1257", "1484", "1749", "1789", "3241", "4349", "4515", "4851", "5709", "6482", "6925", "7756", "8196", "8449", "8698", "10232", "10997", "11627", "16898", "17206", "18353", "19789", "20464", "27315", "30696", "31385", "35537", "40928", "43367", "44111", "48310", "48591", "49228", "50574", "58506", "62770", "79976", "88222" ]
[ "nonn", "base" ]
46
1
1
[ "A000073", "A000213", "A001590", "A007629", "A130792", "A383230" ]
null
Paolo P. Lava, Apr 20 2025
2025-05-23T20:02:39
oeisdata/seq/A383/A383230.seq
5b5f990ab1a4c8861c99d7cf516c8bec
A383231
Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "7", "83", "1394", "30330", "810756", "25710012", "943434288", "39324264624", "1835297984160", "94813760519136", "5371462318747392", "331125138305434368", "22065681276731119104", "1580617232453691210240", "121117633854691036502016", "9885823380533972300470272", "856279708828545483688808448" ]
[ "nonn" ]
8
0
3
[ "A004041", "A024216", "A024382", "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:57:13
oeisdata/seq/A383/A383231.seq
b2705a1f04f3a7104eeeaefee1d56a36
A383232
Expansion of e.g.f. f(x)^2 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "9", "122", "2242", "52180", "1471692", "48790608", "1859539344", "80109265824", "3849497255520", "204138860091264", "11842095171021696", "745962168915065088", "50708105952635996928", "3699802551156676392960", "288399758863879774476288", "23919432333548949807869952", "2103184085769044913951461376" ]
[ "nonn" ]
8
0
3
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:57:09
oeisdata/seq/A383/A383232.seq
3b417a338daec8cf556c9941b04f5fed
A383233
Expansion of e.g.f. f(x)^3 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "11", "167", "3318", "81930", "2423208", "83582568", "3295488816", "146241365904", "7214605476480", "391735046081664", "23216763331632384", "1491431668108800768", "103230214859003968512", "7659080261784464808960", "606407304545822037952512", "51033731719180664212641792", "4549228202963725560906891264" ]
[ "nonn" ]
13
0
3
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T10:39:38
oeisdata/seq/A383/A383233.seq
f89a2b59b5c75732344cd1c0ea8678c3
A383234
Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "13", "218", "4646", "121080", "3741144", "133863792", "5447294352", "248518603584", "12566268267840", "697632464382336", "42189230206182528", "2760816706845539328", "194381535085933095936", "14652311175996819978240", "1177370323796943823325184", "100466288729505689717809152" ]
[ "nonn" ]
7
0
3
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:53
oeisdata/seq/A383/A383234.seq
8ce5127b9ded64732b057a6c5bf508b3
A383235
Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n.
[ "1", "0", "1", "0", "0", "1", "0", "0", "2", "1", "0", "0", "4", "4", "1", "0", "0", "8", "12", "8", "1", "0", "0", "16", "32", "44", "12", "1", "0", "0", "32", "80", "208", "92", "18", "1", "0", "0", "64", "192", "912", "576", "200", "24", "1", "0", "0", "128", "448", "3840", "3216", "1776", "344", "32", "1", "0", "0", "256", "1024", "15808", "16704", "13872", "3840", "600", "40", "1" ]
[ "nonn", "tabl" ]
20
0
9
[ "A000079", "A001787", "A007472", "A007590", "A048993", "A100575", "A158681", "A383235" ]
null
Ven Popov, Apr 20 2025
2025-05-06T08:46:00
oeisdata/seq/A383/A383235.seq
6ecd7c194692f7dc914c72a2d29d1df7
A383236
The least number of applications of Ackermann-Péter functions to reach n, starting from 0.
[ "1", "2", "3", "4", "4", "5", "5", "6", "6", "7", "7", "8", "5", "6", "7", "8", "8", "9", "9", "10", "9", "10", "10", "11", "10", "11", "11", "12", "6", "7", "8", "9", "10", "11", "11", "12", "11", "12", "12", "13", "12", "13", "13", "14", "12", "13", "13", "14", "13", "14", "14", "15", "13", "14", "14", "15", "14", "15", "15", "16", "7", "8", "9", "10" ]
[ "nonn", "look" ]
20
1
2
[ "A143796", "A368423", "A383236" ]
null
Hendrik Ballhausen, Apr 20 2025
2025-04-24T13:34:55
oeisdata/seq/A383/A383236.seq
bef4c0de1095c2e2e71a8cca3889054f
A383237
Primes p such that x^5+x+1 has no roots modulo p.
[ "2", "29", "41", "47", "71", "131", "179", "197", "233", "239", "257", "269", "311", "353", "443", "461", "491", "509", "587", "647", "653", "683", "761", "857", "863", "887", "929", "947", "1013", "1061", "1223", "1277", "1283", "1289", "1301", "1361", "1373", "1409", "1427", "1439", "1499", "1511", "1559", "1619", "1637", "1733", "1823", "1973", "1979" ]
[ "nonn" ]
11
1
1
[ "A003627", "A383237" ]
null
Jayde S. Massmann, Apr 20 2025
2025-04-24T13:22:49
oeisdata/seq/A383/A383237.seq
91ef964c94cc7a525f6f4f8367fbb8b2
A383238
A sequence constructed by greedily sampling the Poisson distribution for parameter value 1, 1/(e*(i-1)!) to minimize discrepancy.
[ "1", "2", "3", "1", "2", "4", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "5", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "4", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "4", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "4", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "5", "1", "2", "3", "1", "2", "4", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "4", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "6", "1", "2", "3", "1", "2" ]
[ "nonn" ]
25
1
2
[ "A381617", "A382093", "A382095", "A382961", "A383238" ]
null
Jwalin Bhatt, Apr 20 2025
2025-06-03T21:43:02
oeisdata/seq/A383/A383238.seq
3756facec834f34c9f014645d16b7119
A383239
Integers k such that there exists an integer 0<m<k such that sigma(k) = sigma(m) = m + 2*k.
[ "1740", "7776", "22428", "55968", "106140", "143910", "198792", "246510", "309582", "326196", "411138", "421596", "428256", "590112", "639288", "697158", "870552", "941094", "958716", "1060956", "1087776", "1105884", "1269828", "1341660", "1361568", "1447620", "1495494", "1512810", "1626324", "1727940", "1819392" ]
[ "nonn" ]
47
1
1
[ "A000203", "A005820", "A036474", "A063990", "A125490", "A259180", "A259303", "A292365", "A383239" ]
null
S. I. Dimitrov, Apr 20 2025
2025-06-01T17:16:19
oeisdata/seq/A383/A383239.seq
63d93c54f340afedb2ade78cde8ecc04
A383240
Rectangular array read by antidiagonals where row n contains the numbers of the form prime(n)*m^2, where prime(n) does not divide m.
[ "2", "18", "3", "50", "12", "5", "98", "48", "20", "7", "162", "75", "45", "28", "11", "242", "147", "80", "63", "44", "13", "338", "192", "180", "112", "99", "52", "17", "450", "300", "245", "175", "176", "117", "68", "19", "578", "363", "320", "252", "275", "208", "153", "76", "23", "722", "507", "405", "448", "396", "325", "272", "171", "92", "29", "882", "588", "605" ]
[ "nonn", "tabl" ]
11
1
1
[ "A000040", "A000290", "A336615", "A383240" ]
null
Clark Kimberling, May 04 2025
2025-05-09T19:33:21
oeisdata/seq/A383/A383240.seq
f1849675c0a5bb91193bc81776ccba51
A383241
a(n) = p(n)*p(n+1)*(p(n+1) - p(n)) - 1, where p(n) = prime(n).
[ "5", "29", "69", "307", "285", "883", "645", "1747", "4001", "1797", "6881", "6067", "3525", "8083", "14945", "18761", "7197", "24521", "19027", "10365", "34601", "26227", "44321", "69063", "39187", "20805", "44083", "23325", "49267", "200913", "66547", "107681", "38085", "207109", "44997", "142241", "153545", "108883", "173345" ]
[ "nonn" ]
11
1
1
[ "A000042", "A383241", "A383242", "A383243", "A383244" ]
null
Clark Kimberling, May 07 2025
2025-05-13T23:11:55
oeisdata/seq/A383/A383241.seq
dacbd55fd49d55924fbf7b00173665fb
A383242
a(n) = p(n)*p(n+1)*(p(n+1) - p(n)) + 1, where p(n) = prime(n).
[ "7", "31", "71", "309", "287", "885", "647", "1749", "4003", "1799", "6883", "6069", "3527", "8085", "14947", "18763", "7199", "24523", "19029", "10367", "34603", "26229", "44323", "69065", "39189", "20807", "44085", "23327", "49269", "200915", "66549", "107683", "38087", "207111", "44999", "142243", "153547", "108885", "173347" ]
[ "nonn" ]
9
1
1
[ "A000042", "A383241", "A383242", "A383243", "A383244" ]
null
Clark Kimberling, May 07 2025
2025-05-13T23:12:37
oeisdata/seq/A383/A383242.seq
565987d0bfbf64850288431270a81224
A383243
Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) - 1 sorted by increasing k.
[ "5", "29", "307", "883", "1747", "4001", "6067", "26227", "108883", "152083", "424481", "311347", "396883", "848201", "580627", "1713709", "1814509", "864883", "5092973", "3046789", "3386989", "1664083", "2581961", "2196307", "2304307", "2377747", "6955309", "3526867", "4088467", "20916053", "4796083", "7339361" ]
[ "nonn" ]
16
1
1
[ "A000042", "A383241", "A383242", "A383243", "A383244" ]
null
Clark Kimberling, May 07 2025
2025-05-15T21:41:22
oeisdata/seq/A383/A383243.seq
5f47a6243035f503e8daea80bf2f08e7
A383244
Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) + 1 sorted by increasing k.
[ "7", "31", "71", "647", "4003", "6883", "3527", "14947", "34603", "20807", "23327", "173347", "73727", "503869", "103967", "145799", "450403", "194687", "669283", "848203", "1193443", "1775563", "649799", "1976803", "2088547", "2131243", "4687069", "2534947", "2581963", "5338237", "3250123", "3411043", "1555847", "5346763" ]
[ "nonn" ]
16
1
1
[ "A000042", "A383241", "A383242", "A383243", "A383244" ]
null
Clark Kimberling, May 07 2025
2025-05-15T21:41:03
oeisdata/seq/A383/A383244.seq
4ed313bda96eb0381dc817a7f11657f1
A383245
Nonnegative integers that contain the digit 0, or an even digit d immediately followed by a digit >= d.
[ "0", "10", "20", "22", "23", "24", "25", "26", "27", "28", "29", "30", "40", "44", "45", "46", "47", "48", "49", "50", "60", "66", "67", "68", "69", "70", "80", "88", "89", "90", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "120", "122", "123", "124", "125", "126", "127", "128", "129", "130", "140", "144", "145", "146", "147", "148", "149", "150", "160", "166" ]
[ "nonn", "base", "easy" ]
15
1
2
[ "A342043", "A347298", "A382464", "A382623", "A382937", "A383061", "A383245", "A383246", "A383247", "A383249", "A383500" ]
null
Paolo Xausa, Apr 20 2025
2025-04-30T11:08:53
oeisdata/seq/A383/A383245.seq
3c4473508816a88d1daeeeaf4fda13d4
A383246
Positive integers without the digit 0 such that every even digit except the rightmost is immediately followed by a smaller digit.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "31", "32", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "51", "52", "53", "54", "55", "56", "57", "58", "59", "61", "62", "63", "64", "65", "71", "72", "73", "74", "75", "76", "77", "78", "79", "81", "82", "83", "84", "85", "86", "87", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
[ "nonn", "base", "easy" ]
14
1
2
[ "A342043", "A377912", "A382465", "A382624", "A382938", "A383062", "A383245", "A383246", "A383248", "A383250", "A383501" ]
null
Paolo Xausa, Apr 20 2025
2025-04-30T11:08:50
oeisdata/seq/A383/A383246.seq
428137870e0030c98a4ac92af60c90f8
A383247
Positive integers that contain the digit 9, or an odd digit d immediately followed by a digit <= d.
[ "9", "10", "11", "19", "29", "30", "31", "32", "33", "39", "49", "50", "51", "52", "53", "54", "55", "59", "69", "70", "71", "72", "73", "74", "75", "76", "77", "79", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "129", "130", "131", "132", "133" ]
[ "nonn", "base", "easy" ]
8
1
1
[ "A342044", "A347298", "A382464", "A382623", "A382937", "A383061", "A383245", "A383247", "A383248", "A383249" ]
null
Paolo Xausa, Apr 25 2025
2025-04-28T12:19:59
oeisdata/seq/A383/A383247.seq
08fe904d504ff58a54efd8c8e79d0205
A383248
Nonnegative integers without the digit 9 such that every odd digit except the rightmost is immediately followed by a larger digit.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "12", "13", "14", "15", "16", "17", "18", "20", "21", "22", "23", "24", "25", "26", "27", "28", "34", "35", "36", "37", "38", "40", "41", "42", "43", "44", "45", "46", "47", "48", "56", "57", "58", "60", "61", "62", "63", "64", "65", "66", "67", "68", "78", "80", "81", "82", "83", "84", "85", "86", "87", "88", "120", "121", "122", "123", "124", "125", "126", "127", "128" ]
[ "nonn", "base", "easy" ]
9
1
3
[ "A342044", "A377912", "A382465", "A382624", "A382938", "A383062", "A383246", "A383247", "A383248", "A383250" ]
null
Paolo Xausa, Apr 25 2025
2025-04-28T12:20:08
oeisdata/seq/A383/A383248.seq
7c529a124bea62f3d4337f35292de146
A383249
Positive integers ending with the digit 1, or containing an odd digit d immediately followed by a digit >= d.
[ "1", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "31", "33", "34", "35", "36", "37", "38", "39", "41", "51", "55", "56", "57", "58", "59", "61", "71", "77", "78", "79", "81", "91", "99", "101", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "130", "131", "132", "133", "134", "135" ]
[ "nonn", "base", "easy" ]
16
1
2
[ "A342045", "A347298", "A382464", "A382623", "A382937", "A383061", "A383245", "A383247", "A383249", "A383250" ]
null
Paolo Xausa, Apr 26 2025
2025-05-05T22:57:03
oeisdata/seq/A383/A383249.seq
21081038e361fb1520a7be1d2b06f965
A383250
Nonnegative integers not ending with the digit 1 and such that every odd digit except the rightmost is immediately followed by a smaller digit.
[ "0", "2", "3", "4", "5", "6", "7", "8", "9", "10", "20", "22", "23", "24", "25", "26", "27", "28", "29", "30", "32", "40", "42", "43", "44", "45", "46", "47", "48", "49", "50", "52", "53", "54", "60", "62", "63", "64", "65", "66", "67", "68", "69", "70", "72", "73", "74", "75", "76", "80", "82", "83", "84", "85", "86", "87", "88", "89", "90", "92", "93", "94", "95", "96", "97", "98", "100", "102", "103" ]
[ "nonn", "base", "easy" ]
15
1
2
[ "A342045", "A377912", "A382465", "A382624", "A382938", "A383062", "A383246", "A383248", "A383249", "A383250" ]
null
Paolo Xausa, Apr 26 2025
2025-04-29T13:24:33
oeisdata/seq/A383/A383250.seq
88c594c51f78b8df17aaa0a7b6ca4630
A383251
Short leg of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "3", "3", "5", "11", "29", "85", "265", "859", "2861", "9725", "33593", "117573", "416025", "1485801", "5348881", "19389691", "70715341", "259289581", "955277401", "3534526381", "13128240841", "48932534041", "182965127281", "686119227301", "2579808294649", "9723892802905", "36734706144305", "139067101832009" ]
[ "nonn", "easy", "changed" ]
20
0
1
[ "A000108", "A381483", "A382114", "A383251", "A386291" ]
null
Miguel-Ángel Pérez García-Ortega, Apr 20 2025
2025-07-17T16:31:30
oeisdata/seq/A383/A383251.seq
cb69117f69001834778558b06c600746
A383252
Numbers that cannot be written in the form (j+2k)^2-(j+k)^2-j^2 with j,k>0.
[ "1", "2", "5", "6", "8", "9", "10", "13", "14", "17", "18", "21", "22", "24", "25", "26", "29", "30", "33", "34", "37", "38", "40", "41", "42", "45", "46", "49", "50", "53", "54", "56", "57", "58", "61", "62", "65", "66", "69", "70", "72", "73", "74", "77", "78", "81", "82", "85", "86", "88", "89", "90", "93", "94", "97", "98", "101", "102", "104", "105", "106", "109", "110", "113" ]
[ "nonn" ]
21
1
2
[ "A364168", "A383252" ]
null
Darío Clavijo, Apr 20 2025
2025-05-11T18:25:55
oeisdata/seq/A383/A383252.seq
890ce7bc04b253f8116ba0f0f6bcf5bf
A383253
Number of compositions of n with parts in standard order.
[ "1", "1", "1", "2", "3", "5", "9", "16", "29", "53", "98", "182", "340", "638", "1202", "2273", "4312", "8204", "15650", "29925", "57344", "110101", "211771", "407987", "787174", "1520851", "2942030", "5697842", "11046881", "21438881", "41645541", "80967881", "157547508", "306791828", "597847686", "1165828440", "2274890125" ]
[ "nonn", "easy" ]
40
0
4
[ "A000110", "A011782", "A047998", "A107429", "A126347", "A278984", "A383253", "A383713" ]
null
John Tyler Rascoe, May 06 2025
2025-05-08T04:17:09
oeisdata/seq/A383/A383253.seq
6da01572debc48f8c0a9107e67b5f3da
A383254
Expansion of 1/sqrt( (1-x) * (1-5*x)^3 ).
[ "1", "8", "51", "300", "1695", "9348", "50729", "272128", "1447155", "7643880", "40156281", "210019428", "1094338401", "5684293020", "29446107975", "152181330480", "784880109315", "4040712839880", "20768844586025", "106595697483700", "546389531720445", "2797395801163260", "14306735857573995" ]
[ "nonn", "easy" ]
27
0
2
[ "A026375", "A383254", "A383499", "A383503" ]
null
Seiichi Manyama, May 05 2025
2025-05-21T01:38:31
oeisdata/seq/A383/A383254.seq
20232970d756eaa2f47328315092db93
A383255
Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's.
[ "1", "4", "194", "107080", "672498596", "48104236145168", "39202958861329453384", "364022757339778569993689888", "38513979937284562006371342202842000", "46429021191757554279412904483559912259714112", "637737721080296383894709847744103523361428384973270816" ]
[ "nonn" ]
13
0
2
[ "A002416", "A006506", "A014235", "A060757", "A181213", "A213977", "A381857", "A383255" ]
null
John Tyler Rascoe, Apr 20 2025
2025-04-23T14:57:45
oeisdata/seq/A383/A383255.seq
622796d23555fe549fa66b8e55954405
A383256
Number of n X n matrices of nonnegative entries with all columns summing to n and no horizontally adjacent zeros.
[ "1", "1", "7", "343", "125465", "366908001", "8698468668251", "1708834003295306868", "2810884261025802145414705", "39088555382409783097546399456477", "4626844513673581956954679383115038810744", "4688191496359773864437279635019555242588548880831" ]
[ "nonn" ]
10
0
3
[ "A008300", "A120733", "A145839", "A261780", "A382923", "A383256" ]
null
John Tyler Rascoe, Apr 21 2025
2025-04-23T17:02:34
oeisdata/seq/A383/A383256.seq
6c710bb92ee428e2bb53516dd0e871dd
A383257
Let p = prime(n), then a(n) is the non-p-smooth part of (p-1)!+1.
[ "1", "1", "1", "103", "329891", "2834329", "1230752346353", "336967037143579", "48869596859895986087", "10513391193507374500051862069", "8556543864909388988268015483871", "10053873697024357228864849950022572972973", "19900372762143847179161250477954046201756097561", "32674560877973951128910293168477013254334511627907" ]
[ "nonn" ]
53
1
4
[ "A060371", "A383257", "A383578" ]
null
Mike Jones, Apr 29 2025
2025-05-16T03:49:55
oeisdata/seq/A383/A383257.seq
d816719fb0ee6972c37432a24870e6b2
A383258
LCM-transform of A064664 (the inverse of the EKG-sequence).
[ "1", "2", "5", "3", "1", "2", "7", "2", "1", "3", "1", "1", "1", "13", "11", "17", "1", "1", "37", "1", "1", "19", "43", "2", "1", "3", "1", "1", "1", "23", "61", "31", "1", "2", "5", "1", "67", "1", "29", "1", "1", "1", "3", "41", "1", "1", "89", "1", "1", "1", "1", "47", "1", "1", "53", "7", "1", "1", "107", "1", "1", "1", "1", "2", "1", "59", "2", "1", "1", "1", "1", "1", "1", "1", "1", "71", "1", "1", "151", "1", "1", "73", "1", "1", "1", "1", "1", "79", "167", "83", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "197" ]
[ "nonn" ]
14
1
2
[ "A064413", "A064664", "A064954", "A265576", "A368900", "A383258" ]
null
Antti Karttunen, Apr 21 2025
2025-04-21T11:15:51
oeisdata/seq/A383/A383258.seq
ab7d3b318c4a1c06d32f11206b297af0
A383259
a(n) is the excess of even composites over odd composites in the first n positive integers.
[ "0", "0", "0", "1", "1", "2", "2", "3", "2", "3", "3", "4", "4", "5", "4", "5", "5", "6", "6", "7", "6", "7", "7", "8", "7", "8", "7", "8", "8", "9", "9", "10", "9", "10", "9", "10", "10", "11", "10", "11", "11", "12", "12", "13", "12", "13", "13", "14", "13", "14", "13", "14", "14", "15", "14", "15", "14", "15", "15", "16", "16", "17", "16", "17", "16", "17", "17", "18", "17", "18", "18", "19", "19", "20" ]
[ "nonn", "easy" ]
13
1
6
[ "A000034", "A000720", "A002808", "A066247", "A071904", "A383037", "A383259" ]
null
Felix Huber, Apr 24 2025
2025-04-25T20:38:05
oeisdata/seq/A383/A383259.seq
9dc39621e18aa20d9f06d11c3c9ae02d
A383260
Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(3*x) - 1)/3.
[ "0", "1", "5", "30", "211", "1691", "15126", "148975", "1599401", "18563832", "231317677", "3076301471", "43448641176", "648950825173", "10212710942609", "168797691270438", "2921824286030527", "52833169082034839", "995732022426733782", "19519908917429511307", "397294691005861642805", "8381466690394292755896" ]
[ "nonn" ]
13
0
3
[ "A024216", "A138378", "A383203", "A383260", "A383261", "A383262" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:53:11
oeisdata/seq/A383/A383260.seq
d5d2e056a73d31cb9884f94f16e48f66
A383261
Expansion of e.g.f. f(x) * exp(2 * f(x)), where f(x) = (exp(3*x) - 1)/3.
[ "0", "1", "7", "57", "527", "5441", "61959", "770281", "10364671", "149854545", "2313932471", "37963374329", "658873048623", "12050610195937", "231496456566631", "4657345160220681", "97873704021590111", "2143496712532350833", "48821033290172899095", "1154261436241093805593", "28279753601438144211343" ]
[ "nonn" ]
9
0
3
[ "A024395", "A383260", "A383261" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:54:00
oeisdata/seq/A383/A383261.seq
647bbf68ca9aa0eb37751b706d0df8f6
A383262
Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(3*x) - 1)/3.
[ "0", "0", "1", "12", "123", "1270", "13776", "158718", "1944685", "25294338", "348340491", "5064749074", "77528735868", "1246096312188", "20976610875949", "368984700979440", "6767792258171547", "129182459141936566", "2561529454871582772", "52676675861728386114", "1121762199908797394977" ]
[ "nonn" ]
11
0
4
[ "A003128", "A286721", "A383204", "A383262" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:55:09
oeisdata/seq/A383/A383262.seq
af973e248f34891915b6e39a61530966
A383263
Union of prime powers (A246655) and numbers that are not squarefree (A013929).
[ "2", "3", "4", "5", "7", "8", "9", "11", "12", "13", "16", "17", "18", "19", "20", "23", "24", "25", "27", "28", "29", "31", "32", "36", "37", "40", "41", "43", "44", "45", "47", "48", "49", "50", "52", "53", "54", "56", "59", "60", "61", "63", "64", "67", "68", "71", "72", "73", "75", "76", "79", "80", "81", "83", "84", "88", "89", "90", "92", "96", "97", "98", "99", "100", "101", "103" ]
[ "nonn" ]
18
1
1
[ "A000040", "A013929", "A246655", "A363597", "A383263" ]
null
Peter Luschny, Apr 27 2025
2025-04-30T13:53:02
oeisdata/seq/A383/A383263.seq
fe1c16ea5995b362e84c3d79d2bf7dfe
A383264
Numbers whose vSPD is not squarefree, where vSPD(n) is the valuation of the smallest prime divisor for n >= 2.
[ "16", "48", "80", "81", "112", "144", "176", "208", "240", "256", "272", "304", "336", "368", "400", "405", "432", "464", "496", "512", "528", "560", "567", "592", "624", "625", "656", "688", "720", "752", "768", "784", "816", "848", "880", "891", "912", "944", "976", "1008", "1040", "1053", "1072", "1104", "1136", "1168", "1200", "1232", "1264", "1280", "1296" ]
[ "nonn", "easy" ]
26
1
1
[ "A008683", "A013929", "A067029", "A383264" ]
null
Peter Luschny, Apr 25 2025
2025-06-19T11:39:26
oeisdata/seq/A383/A383264.seq
c5f6b15a09344637ce6cd734e69380b5
A383265
a(n) = Sum_{k=0..n} A383266(n, k).
[ "0", "2", "7", "14", "24", "35", "48", "63", "81", "101", "122", "145", "170", "197", "226", "257", "292", "327", "364", "403", "444", "487", "532", "579", "628", "680", "733", "789", "846", "905", "966", "1029", "1095", "1162", "1231", "1302", "1376", "1451", "1528", "1607", "1688", "1771", "1856", "1943", "2032", "2123", "2216", "2311", "2408", "2508", "2609" ]
[ "nonn" ]
5
0
2
[ "A383265", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-21T16:04:25
oeisdata/seq/A383/A383265.seq
434eab2580f076d7713a3e58cb951ea3
A383266
Triangle read by rows: For n, k >= 2 T(n, k) is defined as the exponent of the highest power e of k such that k^e <= n. Otherwise T(n, 0) = n^2 and T(n, 1) = n.
[ "0", "1", "1", "4", "2", "1", "9", "3", "1", "1", "16", "4", "2", "1", "1", "25", "5", "2", "1", "1", "1", "36", "6", "2", "1", "1", "1", "1", "49", "7", "2", "1", "1", "1", "1", "1", "64", "8", "3", "1", "1", "1", "1", "1", "1", "81", "9", "3", "2", "1", "1", "1", "1", "1", "1", "100", "10", "3", "2", "1", "1", "1", "1", "1", "1", "1", "121", "11", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "144", "12", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl" ]
7
0
4
[ "A000196", "A383265", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-21T17:08:49
oeisdata/seq/A383/A383266.seq
5ad7fd843823a48405fdd451b7645499
A383267
Decimal expansion of (4/11)^(1/3).
[ "7", "1", "3", "7", "6", "5", "8", "5", "5", "5", "0", "3", "6", "0", "8", "1", "7", "0", "6", "7", "1", "8", "9", "9", "9", "9", "1", "7", "6", "2", "6", "6", "1", "2", "4", "7", "5", "9", "0", "7", "9", "6", "5", "4", "7", "5", "8", "9", "0", "3", "8", "0", "6", "6", "9", "1", "5", "6", "2", "6", "7", "5", "2", "0", "8", "4", "5", "8", "3", "1", "4", "7", "0", "6", "7", "7", "1", "8", "7", "5", "6", "4", "6", "3", "2", "4", "0", "3", "3", "9", "9", "3", "2", "2", "6", "8", "1", "7", "1", "7", "2", "4", "4", "6", "4" ]
[ "nonn", "cons", "easy" ]
29
0
1
[ "A111728", "A383267" ]
null
Arkadiusz Wesolowski, Apr 21 2025
2025-05-23T02:12:38
oeisdata/seq/A383/A383267.seq
f0fc47e819a1064dc3aeaccde3a06dbb
A383268
Numbers k for which sigma(k - x) + sigma(k + x) = 4*k has at least one nonnegative solution.
[ "6", "13", "15", "17", "28", "33", "39", "42", "50", "51", "53", "54", "55", "57", "59", "61", "65", "66", "69", "71", "77", "78", "82", "89", "90", "93", "95", "99", "101", "107", "111", "115", "118", "120", "121", "123", "125", "129", "131", "139", "141", "149", "153", "161", "165", "167", "171", "177", "179", "182", "183", "190", "195", "196", "197", "201", "204", "213", "215" ]
[ "nonn", "easy" ]
17
1
1
[ "A000203", "A000396", "A186103", "A383268", "A383269" ]
null
Felix Huber, Apr 24 2025
2025-06-10T08:41:27
oeisdata/seq/A383/A383268.seq
0373e98b6b6fa6e9577a115d6b10a85f
A383269
a(n) is the smallest nonnegative solution to sigma(A383268(n) - x) + sigma(A383268(n) + x) = 4*A383268(n).
[ "0", "1", "5", "11", "0", "7", "17", "28", "26", "37", "23", "14", "7", "13", "17", "49", "11", "22", "11", "5", "1", "58", "70", "13", "20", "37", "19", "11", "17", "31", "41", "67", "6", "16", "13", "73", "49", "11", "55", "91", "19", "73", "119", "5", "11", "77", "53", "43", "103", "86", "7", "114", "173", "88", "71", "59", "124", "95", "139", "7", "128", "31", "92", "143", "83", "227", "163" ]
[ "nonn", "easy" ]
7
1
3
[ "A000203", "A000396", "A186103", "A383268", "A383269" ]
null
Felix Huber, Apr 24 2025
2025-05-02T19:33:13
oeisdata/seq/A383/A383269.seq
2741095f872c975d4f88e7aa021896d7
A383270
Length of the longest sequence of contiguous 1s in the binary expansion of n after flipping at most one 0-bit to 1.
[ "1", "1", "2", "2", "2", "3", "3", "3", "2", "2", "3", "4", "3", "4", "4", "4", "2", "2", "2", "3", "3", "3", "4", "5", "3", "3", "4", "5", "4", "5", "5", "5", "2", "2", "2", "3", "2", "3", "3", "4", "3", "3", "3", "4", "4", "4", "5", "6", "3", "3", "3", "3", "4", "4", "5", "6", "4", "4", "5", "6", "5", "6", "6", "6", "2", "2", "2", "3", "2", "3", "3", "4", "2", "2", "3", "4", "3", "4", "4", "5", "3", "3", "3", "3", "3", "3", "4", "5" ]
[ "nonn", "base" ]
34
0
3
[ "A000079", "A000120", "A007088", "A038374", "A070939", "A383270" ]
null
Darío Clavijo, Apr 21 2025
2025-05-07T19:18:45
oeisdata/seq/A383/A383270.seq
4be7d2a0a69ef43eb96231399ddaeba4
A383271
Number of primes (excluding n) that may be generated by replacing any binary digit of n with a digit from 0 to 1.
[ "0", "0", "1", "1", "1", "1", "2", "2", "0", "2", "2", "1", "1", "1", "0", "3", "1", "1", "2", "3", "0", "4", "1", "3", "0", "2", "0", "3", "1", "2", "1", "2", "0", "2", "1", "2", "1", "2", "0", "3", "1", "1", "1", "4", "0", "5", "1", "1", "0", "2", "0", "2", "1", "2", "0", "2", "0", "3", "1", "1", "1", "2", "0", "4", "0", "3", "2", "3", "0", "3", "1", "4", "1", "1", "0", "5", "0", "4", "1", "1", "0", "4", "1", "2", "0", "0", "0", "3", "1", "1" ]
[ "nonn", "base" ]
27
0
7
[ "A070939", "A145667", "A209252", "A352942", "A383271" ]
null
Michael S. Branicky, Apr 21 2025
2025-04-23T19:31:05
oeisdata/seq/A383/A383271.seq
5d85774a4eb343135b97db6c1251b2f8
A383272
Positions of records in A383271.
[ "0", "2", "6", "15", "21", "45", "111", "261", "1605", "1995", "4935", "8295", "69825", "268155", "550725", "4574955", "12024855", "39867135", "398467245", "1698754365", "16351800465" ]
[ "nonn", "base" ]
19
1
2
[ "A276694", "A322743", "A383271", "A383272" ]
null
Michael S. Branicky, Apr 21 2025
2025-04-23T02:38:52
oeisdata/seq/A383/A383272.seq
210ba38443c1c3112391437ad9b623b3
A383273
Triangle read by rows: T(n,k) is the number of ruler-and-compass constructions consisting of n-k lines and k circles with 0 <= k <= n.
[ "1", "1", "2", "0", "2", "1", "0", "0", "12", "4", "0", "0", "45", "116", "44", "0", "0", "232", "1565", "3005", "1084", "0", "0", "1627", "34114", "166556", "249494", "91192", "0", "0", "21547" ]
[ "nonn", "tabl", "hard", "more" ]
16
0
3
[ "A333944", "A383082", "A383083", "A383273" ]
null
Peter Kagey, Apr 21 2025
2025-04-29T13:35:50
oeisdata/seq/A383/A383273.seq
32e1510eecd498ce511049c9f0f97d81
A383274
a(n) = Sum_{i,j = 0..n} C(n, i)^2*C(n, j)^2*C(i+j, i)*2^(i+j).
[ "1", "13", "441", "20629", "1119361", "66116013", "4126228569", "267666251733", "17868312820737", "1219477111897933", "84701899713767161", "5967906378862013973", "425503428034568158081", "30642774518964618986989", "2225692868157573335052441", "162858794856607965831417429", "11993850186156155815298686977" ]
[ "nonn" ]
43
0
2
[ "A005259", "A383274" ]
null
Zhi-Wei Sun, Apr 26 2025
2025-05-07T11:33:10
oeisdata/seq/A383/A383274.seq
9f6428b37656ba79d14cd528cf5c8184
A383275
Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition.
[ "1", "1", "2", "5", "14", "42", "134", "454", "1634", "6245", "25321", "108779", "494443", "2374288", "12024257", "64100444", "358948674", "2106756217", "12931155910", "82823317389", "552400947902", "3829070637080", "27534807426150", "205066734143893", "1579309451332366", "12559941159979791", "103013928588389695" ]
[ "nonn", "easy" ]
18
0
3
[ "A000108", "A011782", "A088305", "A382312", "A382991", "A383101", "A383175", "A383275" ]
null
John Tyler Rascoe, Apr 21 2025
2025-06-11T04:01:14
oeisdata/seq/A383/A383275.seq
448e05626a7b76755016947c950cd85e
A383276
Numbers of the form A034444(k) * k.
[ "1", "4", "6", "8", "10", "14", "16", "18", "22", "24", "26", "32", "34", "38", "40", "46", "48", "50", "54", "56", "58", "60", "62", "64", "72", "74", "80", "82", "84", "86", "88", "94", "96", "98", "104", "106", "112", "118", "122", "128", "132", "134", "136", "140", "142", "144", "146", "152", "156", "158", "160", "162", "166", "176", "178", "180", "184", "192", "194", "200" ]
[ "nonn", "easy" ]
12
1
2
[ "A005087", "A007814", "A034444", "A036438", "A100484", "A138929", "A151821", "A298473", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-26T03:33:22
oeisdata/seq/A383/A383276.seq
cfa5177cdf068af1b7775c816feb4d88
A383277
The number of divisors d of n for which A034444(d)*d is equal to n.
[ "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0" ]
[ "nonn", "easy" ]
7
1
null
[ "A005087", "A007814", "A034444", "A327166", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:46:10
oeisdata/seq/A383/A383277.seq
ad7b916faf2fdd69a26603dae46f8dd1
A383278
The number of integers k such that A034444(k) * k <= n.
[ "1", "1", "1", "2", "2", "3", "3", "4", "4", "5", "5", "5", "5", "6", "6", "7", "7", "8", "8", "8", "8", "9", "9", "10", "10", "11", "11", "11", "11", "11", "11", "12", "12", "13", "13", "13", "13", "14", "14", "15", "15", "15", "15", "15", "15", "16", "16", "17", "17", "18", "18", "18", "18", "19", "19", "20", "20", "21", "21", "22", "22", "23", "23", "24", "24", "24", "24", "24", "24", "24", "24" ]
[ "nonn", "easy" ]
11
1
4
[ "A034444", "A087197", "A345288", "A356005", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:47:18
oeisdata/seq/A383/A383278.seq
6bdce362a02b525d0595d9d69ef20fae
A383279
The unique solution to x * A034444(x) = A383276(n).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "6", "13", "16", "17", "19", "10", "23", "12", "25", "27", "14", "29", "15", "31", "32", "18", "37", "20", "41", "21", "43", "22", "47", "24", "49", "26", "53", "28", "59", "61", "64", "33", "67", "34", "35", "71", "36", "73", "38", "39", "79", "40", "81", "83", "44", "89", "45", "46", "48", "97", "50", "101", "51", "103", "52", "107", "54", "109" ]
[ "nonn", "easy" ]
10
1
2
[ "A000265", "A005087", "A007814", "A034444", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:43:27
oeisdata/seq/A383/A383279.seq
ebbf27e5116931f936201b1116a55f17
A383280
a(n) = (3/2)^n * Sum_{k=0..n} (1/6)^k * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "2", "9", "72", "954", "19980", "624510", "27420120", "1607036760", "120942324720", "11351106055800", "1298791163577600", "177888712528573200", "28728740092874421600", "5401708378739722249200", "1169716267087957140552000", "288993599402729842084464000", "80796133625685147464322528000" ]
[ "nonn" ]
15
0
2
[ "A000681", "A001499", "A383280" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:22:44
oeisdata/seq/A383/A383280.seq
114039925dcfef292fec79f9008b7919
A383281
a(n) = Sum_{k=0..n} (2*k+1) * (1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "2", "11", "120", "2202", "61260", "2407770", "127116360", "8680455000", "744631438320", "78393873940200", "9938444069030400", "1493483322288157200", "262511581007832156000", "53360641241377862792400", "12420661873849173800856000", "3282370875452495120806512000", "977378127650967704776130016000" ]
[ "nonn" ]
16
0
2
[ "A002018", "A383281" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:34:28
oeisdata/seq/A383/A383281.seq
c13d5f46781108a97758ebeb3a1bc0e0
A383282
a(n) = Sum_{k=0..n} (2*k+1) * (-1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "1", "5", "51", "906", "24690", "956790", "49993650", "3387124440", "288755250840", "30247310482200", "3818739956308200", "571858101118458000", "100218359688123877200", "20319306632495415745200", "4719164981053010642154000", "1244680987088062472732784000", "369981708267221405777101680000" ]
[ "nonn" ]
13
0
3
[ "A383281", "A383282" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:37:56
oeisdata/seq/A383/A383282.seq
daac08d77ef1e6c8409a465057602951
A383283
Indices of record low-water marks of the sequence abs((cos n)^n).
[ "0", "1", "2", "5", "8", "11", "33", "55", "77", "99", "121", "143", "165", "187", "190", "209", "212", "234", "256", "278", "300", "322", "344", "366", "633", "655", "677", "699", "721", "1032", "1054", "1076", "1387", "1409", "1431", "1764", "2119", "2474", "2829", "3184", "3539", "3894", "4249", "4604", "4959", "5314", "5669", "6024", "6379", "6734", "7089", "7444", "7799", "8154", "8509", "8864", "9219", "9574", "9929", "10284" ]
[ "nonn" ]
19
0
3
[ "A382564", "A383229", "A383283" ]
null
Jwalin Bhatt, Apr 28 2025
2025-04-29T13:30:56
oeisdata/seq/A383/A383283.seq
fa64241d61329b1b46d32496732db77c
A383284
Lexicographically earliest infinite sequence such that a(i) = a(j) => A265576(i) = A265576(j), for all i, j >= 1, where A265576 is the LCM-transform of EKG-sequence.
[ "1", "2", "2", "3", "1", "3", "1", "2", "4", "1", "1", "1", "5", "1", "1", "1", "2", "1", "6", "1", "1", "3", "1", "4", "1", "1", "7", "1", "1", "1", "2", "8", "1", "1", "1", "9", "1", "1", "1", "1", "1", "10", "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "11", "1", "1", "1", "12", "1", "1", "1", "2", "1", "13", "1", "1", "1", "1", "1", "1", "14", "1", "1", "3", "1", "1", "1", "15", "1", "1", "1", "1", "1", "1", "1", "16", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "17" ]
[ "nonn" ]
12
1
2
[ "A000720", "A064413", "A064423", "A265576", "A383284", "A383285" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T09:09:42
oeisdata/seq/A383/A383284.seq
62b623839146818a78380e75d6220e30
A383285
Positions of terms > 1 in A265576, where A265576 is the LCM-transform of EKG-sequence.
[ "2", "3", "4", "6", "8", "9", "13", "17", "19", "22", "24", "27", "31", "32", "36", "42", "50", "56", "60", "64", "66", "73", "76", "80", "88", "99", "106", "112", "114", "122", "124", "127", "133", "137", "150", "159", "166", "171", "181", "188", "196", "202", "206", "215", "232", "235", "240", "252", "258", "263", "278", "286", "290", "296", "304", "313", "319", "327", "335", "343", "359", "362", "370", "376", "380", "400", "419", "429", "437", "443" ]
[ "nonn" ]
10
1
1
[ "A064413", "A064423", "A265576", "A383284", "A383285", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T15:26:27
oeisdata/seq/A383/A383285.seq
e39a17cbea0d5d07508d97ce3e7230e0
A383286
Dirichlet convolution of A276086 (primorial base exp-function) with A055615 (Dirichlet inverse of n).
[ "2", "-1", "0", "3", "8", "-4", "-4", "-3", "12", "14", "68", "6", "24", "62", "96", "195", "416", "86", "212", "270", "720", "956", "2204", "584", "1160", "1788", "3660", "5454", "11192", "-300", "-48", "-429", "-228", "-820", "20", "-260", "-4", "-376", "60", "-420", "548", "-1462", "264", "-1758", "540", "-2902", "3056", "-960", "1680", "80", "3900", "4086", "15644", "-3320", "8212", "1896", "25500", "16904", "78632", "-850", "-24", "150" ]
[ "sign" ]
6
1
1
[ "A055615", "A276086", "A349394", "A369010", "A383286" ]
null
Antti Karttunen, May 12 2025
2025-05-12T21:26:35
oeisdata/seq/A383/A383286.seq
de0f5f8e6fe938f2b751bed55dcca21d
A383287
a(n) = 1 if A276075(n) is a multiple of 4, otherwise 0, where A276075 is fully additive with a(p) = PrimePi(p)!.
[ "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1" ]
[ "nonn" ]
9
1
null
[ "A121262", "A276075", "A369001", "A372573", "A383287", "A383288" ]
null
Antti Karttunen, May 15 2025
2025-05-15T08:17:57
oeisdata/seq/A383/A383287.seq
6aa0104998cc32112e811a96a2790f53
A383288
Numbers k for which A276075(k) is a multiple of 4, where A276075 is fully additive with a(p) = PrimePi(p)!.
[ "1", "7", "9", "11", "12", "13", "15", "16", "17", "19", "20", "23", "25", "29", "31", "37", "41", "43", "47", "49", "53", "59", "61", "63", "67", "71", "73", "77", "79", "81", "83", "84", "89", "91", "97", "99", "101", "103", "105", "107", "108", "109", "112", "113", "117", "119", "121", "127", "131", "132", "133", "135", "137", "139", "140", "143", "144", "149", "151", "153", "156", "157", "161", "163", "165", "167", "169", "171", "173", "175", "176" ]
[ "nonn" ]
10
1
2
[ "A276075", "A339746", "A369002", "A383287", "A383288" ]
null
Antti Karttunen, May 15 2025
2025-05-15T08:18:02
oeisdata/seq/A383/A383288.seq
9aa4e0ef51a2d00626d77ddd91f1478e
A383290
Number of happy primes <= 10^n.
[ "1", "7", "35", "200", "1465", "11144", "91323", "812371", "7408754", "67982202", "621496655" ]
[ "nonn", "base", "more" ]
6
1
2
[ "A007770", "A035497", "A068571", "A383290" ]
null
Shyam Sunder Gupta, Apr 22 2025
2025-05-01T16:22:53
oeisdata/seq/A383/A383290.seq
1331f183c601487e1ac9f57fa8a2ab42
A383291
Successively larger gaps in happy numbers start at this happy number.
[ "1", "32", "49", "109", "139", "409", "496", "566", "3392", "4287", "5364", "358962", "488444", "4488044", "59299951", "59999665", "88889733", "488849933", "569199933", "5888999662", "3888899909932" ]
[ "nonn", "base", "more" ]
9
1
2
[ "A007770", "A383291" ]
null
Shyam Sunder Gupta, Apr 22 2025
2025-05-02T19:34:18
oeisdata/seq/A383/A383291.seq
5fb0a233f56cf40d8cc179473bc94114
A383292
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) + 1/p^(3*s)).
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "3", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "3", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "3", "3", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "1", "2", "2", "4" ]
[ "nonn", "mult", "easy" ]
18
1
4
[ "A001694", "A046100", "A073184", "A095691", "A330595", "A365498", "A365552", "A368105", "A380922", "A383292" ]
null
Vaclav Kotesovec, Apr 22 2025
2025-04-22T14:17:11
oeisdata/seq/A383/A383292.seq
f5312356a022915d3f72523906d9057b
A383293
Exponential of Mangoldt function applied to EKG-sequence: a(n) = A014963(A064413(n)).
[ "1", "2", "2", "1", "3", "3", "1", "2", "1", "5", "1", "1", "1", "7", "1", "1", "2", "1", "1", "11", "1", "3", "1", "5", "1", "1", "1", "13", "1", "1", "2", "1", "17", "1", "1", "1", "19", "1", "1", "1", "1", "1", "23", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "1", "29", "1", "1", "1", "31", "1", "1", "2", "1", "1", "37", "1", "1", "1", "1", "1", "1", "41", "1", "3", "1", "1", "1", "1", "43", "1", "1", "1", "1", "1", "1", "1", "47", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "53" ]
[ "nonn" ]
7
1
2
[ "A014963", "A064413", "A265576", "A383293", "A383294" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:23
oeisdata/seq/A383/A383293.seq
59336b42484b6b95e5951202f806759b
A383294
Positions of prime powers (A246655) in EKG-sequence.
[ "2", "3", "5", "6", "8", "10", "14", "17", "20", "22", "24", "28", "31", "33", "37", "43", "50", "57", "61", "64", "67", "74", "76", "81", "89", "100", "107", "112", "115", "122", "124", "128", "134", "138", "151", "160", "167", "171", "182", "189", "197", "203", "207", "216", "232", "236", "240", "253", "259", "264", "279", "287", "290", "297", "305", "314", "319", "328", "336", "344", "359", "363", "371", "377", "381", "401", "420", "430", "438", "444" ]
[ "nonn" ]
8
1
1
[ "A064413", "A064955", "A246655", "A383293", "A383294", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:27
oeisdata/seq/A383/A383294.seq
96fa1229cb84aca9eddc7e23e76d5f9b
A383295
Positions of proper prime powers (A246547) in EKG-sequence.
[ "3", "6", "8", "17", "22", "24", "31", "50", "64", "76", "112", "122", "124", "171", "232", "240", "290", "319", "359", "485", "521", "595", "696", "823", "947", "982", "1279", "1313", "1642", "1810", "1961", "2090", "2096", "2168", "2306", "2736", "3002", "3398", "3638", "3932", "4379", "4733", "4913", "5207", "6072", "6312", "6583", "6710", "7717", "7898", "9165", "9929", "10298", "11144", "11568", "11786", "12430", "14138" ]
[ "nonn" ]
12
1
1
[ "A064413", "A064955", "A246547", "A265576", "A383285", "A383294", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-05-15T11:25:44
oeisdata/seq/A383/A383295.seq
28bc72b0ed0c7d68d4b158778d453e62
A383296
Primorial base echo numbers: primorial base expansion of k has the largest prime factor of k-1 as its suffix.
[ "11", "41", "59", "101", "127", "137", "161", "221", "229", "251", "313", "323", "337", "401", "551", "641", "667", "703", "757", "799", "881", "929", "1001", "1013", "1093", "1157", "1177", "1211", "1369", "1541", "1583", "1601", "1667", "1753", "1873", "1939", "2017", "2177", "2201", "2393", "2501", "2509", "2561", "2647", "2669", "3043", "3079", "3197", "3217", "3433", "3521", "3613", "3649", "3653", "3823", "3851", "4001" ]
[ "nonn", "base" ]
8
1
1
[ "A006530", "A049345", "A383296", "A383297", "A383896" ]
null
Antti Karttunen, May 15 2025
2025-05-15T08:18:44
oeisdata/seq/A383/A383296.seq
b9d081119964e23c64087e1c63756d80
A383297
Numbers k for which A276086(A006530(k-1)) divides A276086(k), where A006530 gives the largest prime factor of k, and A276086 is the primorial base exp-function.
[ "3", "5", "9", "11", "15", "17", "23", "27", "29", "33", "41", "43", "53", "57", "59", "63", "65", "71", "75", "79", "83", "85", "87", "89", "99", "101", "105", "113", "115", "119", "123", "125", "127", "129", "135", "137", "141", "143", "147", "149", "161", "169", "173", "179", "187", "195", "197", "203", "207", "209", "221", "225", "229", "235", "239", "249", "251", "253", "257", "259", "261", "267", "281", "287", "293", "295", "297", "311", "313" ]
[ "nonn" ]
6
1
1
[ "A006530", "A276086", "A383296", "A383297" ]
null
Antti Karttunen, May 15 2025
2025-05-15T08:22:11
oeisdata/seq/A383/A383297.seq
ec1157f883d3e741ac18c7852c07489b
A383298
a(n) = 1 if A276086(n) is a multiple of A276086(A003415(n)), otherwise 0, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0" ]
[ "nonn" ]
8
0
null
[ "A003415", "A276086", "A327859", "A383298", "A383299" ]
null
Antti Karttunen, May 15 2025
2025-05-15T14:58:16
oeisdata/seq/A383/A383298.seq
fd3579feb0f92f230faf42f10c804ebf
A383299
Numbers k such that A276086(k) is a multiple of A276086(A003415(k)), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "1", "3", "4", "5", "7", "9", "11", "13", "15", "17", "19", "23", "27", "29", "31", "37", "41", "43", "45", "47", "51", "53", "59", "61", "67", "71", "73", "79", "83", "87", "89", "97", "101", "103", "107", "109", "113", "117", "119", "127", "131", "137", "139", "141", "147", "149", "151", "157", "161", "163", "165", "167", "171", "173", "177", "179", "181", "191", "193", "197", "199", "203", "207", "209", "211", "223", "227", "229", "233", "239" ]
[ "nonn", "changed" ]
16
1
3
[ "A003415", "A006005", "A048103", "A051674", "A276086", "A327859", "A328387", "A369650", "A383298", "A383299", "A383300", "A383301" ]
null
Antti Karttunen, May 15 2025
2025-07-08T07:52:05
oeisdata/seq/A383/A383299.seq
39d21b01e1325f9a891df0e2e518165d
A383300
Numbers k such that primorial base expansion of k has the primorial base expansion of k' as its suffix, where k' stands for the arithmetic derivative of k (A003415).
[ "0", "1", "3", "4", "5", "7", "11", "13", "17", "19", "23", "27", "29", "31", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "97", "101", "103", "107", "109", "113", "127", "131", "137", "139", "149", "151", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227", "229", "233", "239", "241", "251", "257", "263", "269", "271", "277", "281", "283", "293", "307", "311", "313", "317", "331" ]
[ "nonn" ]
33
1
3
[ "A003415", "A006005", "A049345", "A051674", "A235224", "A348283", "A383299", "A383300", "A383301", "A383933" ]
null
Antti Karttunen, May 15 2025
2025-05-19T04:26:11
oeisdata/seq/A383/A383300.seq
62551023656e71bb165c537f6f564ef6
A383301
Numbers k whose primorial base expansion has the primorial base expansion of k' as its nontrivial proper suffix, where k' stands for the arithmetic derivative of k (A003415).
[ "4784261", "338634851", "433979267", "713516597", "829765697", "1092143279", "1790536511", "2518099229", "8107348511" ]
[ "nonn", "base", "more" ]
21
1
1
[ "A002110", "A003415", "A048103", "A049345", "A235224", "A383300", "A383301" ]
null
Antti Karttunen, May 15 2025
2025-05-21T17:52:27
oeisdata/seq/A383/A383301.seq
ec50095b246afe60c1ac4f50a5d8f64a
A383302
a(n) = 1 if A276086(A276086(n)) is a multiple of A276086(A003415(n)), otherwise 0, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "1", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0" ]
[ "nonn" ]
8
0
null
[ "A003415", "A276086", "A276087", "A327859", "A383298", "A383302", "A383303" ]
null
Antti Karttunen, May 15 2025
2025-05-15T17:11:36
oeisdata/seq/A383/A383302.seq
ba420387575fb5c0aaca767460d16198
A383303
Numbers k such that A276086(A276086(k)) is a multiple of A276086(A003415(k)), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "1", "2", "6", "8", "10", "14", "22", "26", "28", "40", "50", "56", "58", "62", "68", "72", "74", "82", "86", "91", "92", "94", "95", "102", "118", "122", "124", "134", "136", "142", "144", "146", "155", "160", "174", "178", "185", "194", "196", "202", "206", "208", "215", "217", "220", "221", "225", "236", "246", "247", "253", "259", "268", "270", "272", "280", "282", "290", "295", "296", "300", "302", "305", "318", "330", "335", "340", "344" ]
[ "nonn" ]
6
1
3
[ "A003415", "A276086", "A276087", "A327859", "A383299", "A383302", "A383303", "A383933" ]
null
Antti Karttunen, May 15 2025
2025-05-15T17:11:40
oeisdata/seq/A383/A383303.seq
a643476d61b863035d5758d14d59de8d
A383304
Nonnegative integers whose difference between the largest and smallest digits is equal to the arithmetic mean of its digits.
[ "0", "13", "26", "31", "39", "62", "93", "123", "132", "144", "213", "225", "231", "246", "252", "264", "267", "276", "288", "312", "321", "348", "369", "384", "396", "414", "426", "438", "441", "462", "483", "522", "624", "627", "639", "642", "672", "693", "726", "762", "828", "834", "843", "882", "936", "963", "1133", "1223", "1232", "1313", "1322", "1331", "1344", "1434", "1443" ]
[ "nonn", "base", "easy" ]
10
1
2
[ "A037904", "A054054", "A054055", "A061383", "A179239", "A371383", "A371384", "A383304", "A383305" ]
null
Stefano Spezia, Apr 22 2025
2025-04-25T10:30:42
oeisdata/seq/A383/A383304.seq
965132f4a5c3a76e44302bec2ccb4591
A383305
a(n) is number of n-digit nonnegative integers whose difference between the largest and smallest digits is equal to the arithmetic mean of its digits.
[ "1", "6", "39", "266", "1730", "11361", "74809", "494194", "3273132", "21730506", "144588345", "964050593", "6440655572", "43111601819", "289112380019", "1942335481170", "13072051432742", "88125501965430", "595077180675348", "4024698113281006", "27261843502415806", "184931926767687963", "1256249015578188517", "8545135121520262849", "58198759816476208605" ]
[ "nonn", "base" ]
13
1
2
[ "A037904", "A054054", "A054055", "A371383", "A371384", "A383304", "A383305" ]
null
Stefano Spezia, Apr 22 2025
2025-04-25T15:06:56
oeisdata/seq/A383/A383305.seq
2859a61aefd9d6ffb55859cd0a9c2aba
A383306
Nonnegative integers whose difference between the largest and smallest digits is equal to the mode of its digits.
[ "0", "101", "110", "112", "121", "202", "211", "220", "224", "242", "303", "330", "336", "363", "404", "422", "440", "448", "484", "505", "550", "606", "633", "660", "707", "770", "808", "844", "880", "909", "990", "1011", "1022", "1033", "1044", "1055", "1066", "1077", "1088", "1099", "1101", "1110", "1112", "1121", "1202", "1211", "1220", "1223", "1232" ]
[ "nonn", "base", "easy" ]
4
1
2
[ "A037904", "A054054", "A054055", "A115353", "A383306", "A383307" ]
null
Stefano Spezia, Apr 22 2025
2025-04-25T10:31:04
oeisdata/seq/A383/A383306.seq
bddd4614b5c7a8ad06ff7b52d8ed07dc
A383307
a(n) is number of n-digit nonnegative integers whose difference between the largest and smallest digits is equal to the mode of its digits.
[ "1", "0", "30", "631", "8318", "84939", "762621", "6836799", "66714966", "698183347", "7345264685", "74862560359", "738289921745", "7152117119827", "69258386123495", "678852874461343", "6757612542040310", "67956663939884115", "684414144298352061", "6858156111567293583", "68247431544857431593", "675967074881581484903" ]
[ "nonn", "base" ]
16
1
3
[ "A037904", "A054054", "A054055", "A115353", "A383306", "A383307" ]
null
Stefano Spezia, Apr 22 2025
2025-04-27T15:03:32
oeisdata/seq/A383/A383307.seq
609aa7ab83a5ec7509dbd0771bb2f458
A383308
Number of integer partitions of n that can be partitioned into sets with a common sum.
[ "1", "1", "2", "3", "4", "4", "8", "6", "10", "13", "15", "13", "31" ]
[ "nonn", "more" ]
10
0
3
[ "A000009", "A000041", "A001055", "A045778", "A050320", "A089259", "A116540", "A270995", "A279788", "A293511", "A296119", "A302478", "A318360", "A321455", "A326518", "A326534", "A358914", "A381633", "A381717", "A381719", "A381992", "A381993", "A381994", "A382077", "A382080", "A382429", "A383014", "A383093", "A383308" ]
null
Gus Wiseman, Apr 25 2025
2025-04-27T09:09:37
oeisdata/seq/A383/A383308.seq
7c6d036270e554ff6e5a78d2aba7316c
A383309
Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.
[ "1", "3", "5", "7", "9", "11", "17", "19", "23", "25", "27", "31", "35", "41", "49", "53", "59", "67", "81", "83", "97", "103", "109", "121", "125", "127", "131", "157", "175", "179", "191", "209", "211", "227", "241", "243", "245", "277", "283", "289", "311", "331", "343", "353", "361", "367", "391", "401", "419", "431", "461", "509", "529", "547", "563", "587", "599" ]
[ "nonn" ]
7
1
2
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A023894", "A034699", "A038041", "A045778", "A050361", "A055396", "A056239", "A061395", "A112798", "A164336", "A246655", "A279784", "A279789", "A300383", "A302242", "A302493", "A317141", "A321455", "A326518", "A326534", "A353864", "A353866", "A355742", "A355743", "A381719", "A381871", "A381993", "A381995", "A382215", "A382304", "A383309" ]
null
Gus Wiseman, Apr 25 2025
2025-04-25T20:08:55
oeisdata/seq/A383/A383309.seq
7eb29c6edb66ea6423956b51d8fc7750
A383310
Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.
[ "1", "1", "1", "2", "1", "3", "1", "5", "2", "3", "1", "8", "1", "3", "3", "9", "1", "8", "1", "8", "3", "3", "1", "20", "2", "3", "5", "8", "1", "12", "1", "19", "3", "3", "3", "24", "1", "3", "3", "20", "1", "12", "1", "8", "8", "3", "1", "46", "2", "8", "3", "8", "1", "20", "3", "20", "3", "3", "1", "38", "1", "3", "8", "37", "3", "12", "1", "8", "3", "12", "1", "67", "1", "3", "8", "8", "3", "12", "1", "46", "9", "3" ]
[ "nonn" ]
10
1
4
[ "A000009", "A001055", "A001970", "A005117", "A008578", "A045778", "A045782", "A050320", "A050326", "A050336", "A050342", "A050345", "A255906", "A261049", "A279785", "A281113", "A293243", "A293511", "A296118", "A296119", "A296120", "A296121", "A296122", "A302494", "A316439", "A317776", "A358914", "A381992", "A382201", "A383310" ]
null
Gus Wiseman, Apr 26 2025
2025-04-26T15:27:20
oeisdata/seq/A383/A383310.seq
812083493f122def8666593b0ccc8546
A383311
Number of ways to choose a set multipartition (multiset of sets) of a factorization of n into factors > 1.
[ "1", "1", "1", "2", "1", "3", "1", "4", "2", "3", "1", "7", "1", "3", "3", "7", "1", "7", "1", "7", "3", "3", "1", "16", "2", "3", "4", "7", "1", "12", "1", "12", "3", "3", "3", "20", "1", "3", "3", "16", "1", "12", "1", "7", "7", "3", "1", "33", "2", "7", "3", "7", "1", "16", "3", "16", "3", "3", "1", "34", "1", "3", "7", "22", "3", "12", "1", "7", "3", "12", "1", "49", "1", "3", "7", "7", "3", "12", "1", "33", "7", "3" ]
[ "nonn" ]
5
1
4
[ "A000009", "A001055", "A001970", "A005117", "A008578", "A045778", "A050320", "A050326", "A050336", "A050342", "A050345", "A089259", "A116539", "A116540", "A270995", "A279785", "A281113", "A293243", "A293511", "A294788", "A296118", "A296119", "A296120", "A296121", "A302478", "A302494", "A316439", "A330783", "A381992", "A382077", "A383310", "A383311" ]
null
Gus Wiseman, Apr 28 2025
2025-04-28T13:04:16
oeisdata/seq/A383/A383311.seq
9dac072998f3c913088fcbd356271630
A383312
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,1),(2,0),(2,2)}).
[ "1", "1", "0", "0", "2", "14", "86", "624", "5096", "46554", "470446", "5214936", "62943852", "821949042", "11548027442", "173711893048", "2785807179384", "47448884653218", "855436571437710", "16275060021803232", "325872090863707740", "6850004083354211050", "150827444158572339810", "3471582648001267649808", "83371646323922972242776" ]
[ "nonn", "easy" ]
12
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312" ]
null
Dan Li, Apr 22 2025
2025-05-09T02:36:28
oeisdata/seq/A383/A383312.seq
561c1c5e2ef37d77603b6ba22c625f33
A383313
Expansion of e.g.f. exp(-x/2) / (1-2*x)^(1/4).
[ "1", "0", "1", "4", "27", "232", "2455", "30852", "449113", "7432624", "137829249", "2830911220", "63796168579", "1565078980536", "41521403685463", "1184510408920468", "36158133322895985", "1176012432875399008", "40599110984252798017", "1482736219224857910756", "57115359439245403771051" ]
[ "nonn" ]
12
0
4
[ "A002801", "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T05:42:22
oeisdata/seq/A383/A383313.seq
40816eaf149425ac9973551ac15a55d7
A383314
Expansion of e.g.f. exp(-x/2) / (1-4*x)^(1/8).
[ "1", "0", "2", "16", "204", "3392", "69880", "1717824", "49077392", "1597961728", "58410015264", "2368359845120", "105492853521088", "5120497605295104", "269008689666893696", "15207860554294309888", "920541893947665404160", "59401332750388003782656", "4070589051420604880962048" ]
[ "nonn" ]
13
0
3
[ "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:25:47
oeisdata/seq/A383/A383314.seq
31871fe4cb06beac795ac4abfa03b857
A383315
Expansion of e.g.f. exp(-x/2) / (1-6*x)^(1/12).
[ "1", "0", "3", "36", "675", "16632", "509085", "18626436", "793001097", "38511087120", "2101009734099", "127215916659540", "8465583820754907", "614101808094096744", "48230098800348987405", "4077120575169267005268", "369111206211249734907345", "35630377583888099367357984", "3653123185073359871950788963" ]
[ "nonn" ]
12
0
3
[ "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:34:33
oeisdata/seq/A383/A383315.seq
ba0a773dedb42e77d95c21d4a5af3fdb
A383316
Expansion of e.g.f. exp(x/2) / (1-4*x)^(1/8).
[ "1", "1", "3", "23", "281", "4593", "93643", "2285959", "64981809", "2107824353", "76819828499", "3107456481399", "138145505435977", "6694550810809297", "351219409831557339", "19832058937696108007", "1199219012904515868257", "77314609952787255980481", "5293934640303567123132451" ]
[ "nonn" ]
12
0
3
[ "A002801", "A383316", "A383317" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:29:22
oeisdata/seq/A383/A383316.seq
81184eefc807ce67520ed9d16f22bdaa
A383317
Expansion of e.g.f. exp(x/2) / (1-6*x)^(1/12).
[ "1", "1", "4", "46", "838", "20398", "619768", "22564252", "957247708", "46363595644", "2524152072304", "152582368541224", "10139721673875976", "734706716925462184", "57646381491830349472", "4869084744694710293392", "440492624600086270972432", "42494068518463022190243088", "4354423933547086885775444032" ]
[ "nonn" ]
14
0
3
[ "A002801", "A383316", "A383317" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T05:47:27
oeisdata/seq/A383/A383317.seq
f35e69174e025299504c2510a6187db2