sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A383318
Lexicographically earliest sequence of distinct terms such that replacing each term k with prime(k) does not change the succession of digits.
[ "6455", "3", "5", "1", "12", "37", "15", "7", "4", "71", "77", "35", "33", "8", "9", "14", "91", "371", "92", "34", "346", "72", "53", "94", "79", "13", "923", "39", "359", "2", "41", "49", "140", "141", "721", "916", "724", "17", "31", "792", "27", "80", "98", "11", "54", "497", "159", "547", "95", "912", "760", "73", "10", "340", "952", "131", "25", "135", "47", "93", "739", "43" ]
[ "nonn", "base" ]
9
1
1
[ "A067928", "A302656", "A383318", "A383319", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:39:28
oeisdata/seq/A383/A383318.seq
7065ddec6bd0606dc0e56e9f6a674b0f
A383319
a(n) = prime(A383318(n)).
[ "64553", "5", "11", "2", "37", "157", "47", "17", "7", "353", "389", "149", "137", "19", "23", "43", "467", "2539", "479", "139", "2339", "359", "241", "491", "401", "41", "7219", "167", "2417", "3", "179", "227", "809", "811", "5449", "7159", "5479", "59", "127", "6073", "103", "409", "521", "31", "251", "3547", "937", "3943", "499", "7121", "5791", "367", "29" ]
[ "nonn", "base" ]
8
1
1
[ "A067928", "A302656", "A383318", "A383319", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-06-02T15:29:57
oeisdata/seq/A383/A383319.seq
496eb34ff8148f2de3704d1f410a3ab1
A383320
Lexicographically earliest sequence of distinct terms such that replacing each term k with Fibonacci(k) does not change the succession of digits.
[ "0", "1", "5", "43", "3", "4", "9", "44", "37", "2", "33", "470", "140", "8", "7", "332", "41", "57", "81", "71", "35", "24", "578", "74", "93", "86", "58", "6", "61", "14", "242", "47", "46", "936", "9310", "13", "87", "148", "48", "19", "30", "12", "55", "77", "36", "270", "246", "51", "68", "97", "194", "4350", "50", "27", "72", "31", "359", "90", "22", "40", "278", "505", "23" ]
[ "nonn", "base" ]
6
1
3
[ "A038546", "A302656", "A383318", "A383320", "A383321", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:40:13
oeisdata/seq/A383/A383320.seq
72d55cfb8f0247584190f4e472b962fe
A383321
a(n) = Fibonacci(A383320(n)).
[ "0", "1", "5", "433494437", "2", "3", "34", "701408733", "24157817", "1", "3524578", "74938658661142424746936931013871484819301255773627024651689719443505027723135990224027850523592585", "81055900096023504197206408605", "21", "13" ]
[ "nonn", "base" ]
9
1
3
[ "A038546", "A302656", "A383318", "A383320", "A383321", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-06-02T15:30:06
oeisdata/seq/A383/A383321.seq
80da4b1f83482f925df8bd3d074b74af
A383322
Lexicographically earliest sequence of distinct terms such that replacing each term k with k! does not change the succession of digits.
[ "1", "2", "198", "15", "5", "24", "3", "0", "56", "4", "800", "260", "18", "181", "7", "120", "43", "26", "25", "78", "46", "6", "11", "45", "67", "2580", "8", "37", "34", "49", "61", "66", "465", "63", "9", "28", "62", "93", "960", "65", "410", "626", "13", "82", "98", "59", "32", "659", "453", "242", "255", "580", "939", "42", "70", "44", "932", "22", "55", "38", "389", "50" ]
[ "nonn", "base" ]
11
1
2
[ "A033147", "A302656", "A383318", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-24T15:14:55
oeisdata/seq/A383/A383322.seq
5197ac5604fbea0f06475edbcdcc7cb1
A383323
Expansion of e.g.f. (1+x)*(exp(x)-1)*(exp(x)-x)*(exp(x)-x^2/2).
[ "0", "1", "5", "16", "59", "251", "890", "3270", "12269", "45793", "167360", "596036", "2070755", "7041087", "23517590", "77417074", "251879897", "811815485", "2596707692", "8255064768", "26112370895", "82260512731", "258263585090", "808543518254", "2525239747781", "7870664327961", "24487769002520", "76069664095420", "235979863263419" ]
[ "nonn" ]
16
0
3
[ "A358341", "A383323" ]
null
Enrique Navarrete, Apr 23 2025
2025-05-02T19:34:56
oeisdata/seq/A383/A383323.seq
12a38c801b1823f3c4a88f37ebf07241
A383324
a(n) = round(3^n/5).
[ "0", "1", "2", "5", "16", "49", "146", "437", "1312", "3937", "11810", "35429", "106288", "318865", "956594", "2869781", "8609344", "25828033", "77484098", "232452293", "697356880", "2092070641", "6276211922", "18828635765", "56485907296", "169457721889", "508373165666", "1525119496997", "4575358490992", "13726075472977" ]
[ "nonn", "easy" ]
14
0
3
[ "A178543", "A383324" ]
null
Chai Wah Wu, Apr 23 2025
2025-04-25T18:49:29
oeisdata/seq/A383/A383324.seq
0b292fb6497e6727c3bc428e91fa9142
A383325
Numbers not of the form round(3^k/5). Complement of A383324.
[ "3", "4", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72" ]
[ "nonn" ]
6
1
1
[ "A383324", "A383325" ]
null
Chai Wah Wu, Apr 23 2025
2025-04-25T16:00:15
oeisdata/seq/A383/A383325.seq
548ae2bf7c2386cb13ac673407b422be
A383327
a(n) is the number of occurrences of n in A049802.
[ "1", "2", "1", "4", "1", "2", "3", "5", "1", "3", "2", "5", "2", "4", "1", "7", "2", "4", "2", "5", "3", "5", "1", "6", "3", "4", "2", "6", "3", "3", "2", "10", "3", "4", "1", "5", "4", "5", "3", "8", "3", "5", "2", "6", "2", "5", "2", "10", "3", "4", "2", "7", "2", "5", "3", "8", "4", "5", "2", "5", "2", "7", "1", "14", "1", "5", "5", "5", "1", "4", "4", "11", "3", "6", "3", "7", "2", "6", "2", "10", "2", "6", "3", "8", "3", "6", "4", "11" ]
[ "nonn" ]
42
1
2
[ "A000041", "A049802", "A383327" ]
null
Miles Englezou, Apr 23 2025
2025-05-14T19:09:06
oeisdata/seq/A383/A383327.seq
36e8193314e337c7b778cb478b996c54
A383328
Numbers that have the same set of digits as the sum of the squares of their digits.
[ "0", "1", "155", "224", "242", "334", "343", "422", "433", "505", "515", "550", "551", "1388", "1788", "1838", "1878", "1883", "1887", "3188", "3334", "3336", "3343", "3363", "3433", "3633", "3818", "3881", "4333", "5005", "5050", "5500", "6333", "7188", "7818", "7881", "8138", "8178", "8183", "8187", "8318", "8381", "8718", "8781", "8813", "8817", "8831" ]
[ "nonn", "base" ]
23
1
3
[ "A003132", "A029793", "A249515", "A383328" ]
null
Jean-Marc Rebert, Apr 23 2025
2025-05-13T08:26:32
oeisdata/seq/A383/A383328.seq
b89cbb13612948bd4df25cd2da2809ce
A383329
Number of multiplications required to compute x^n by Knuth's power tree method.
[ "0", "1", "2", "2", "3", "3", "4", "3", "4", "4", "5", "4", "5", "5", "5", "4", "5", "5", "6", "5", "6", "6", "6", "5", "6", "6", "6", "6", "7", "6", "7", "5", "6", "6", "7", "6", "7", "7", "7", "6", "7", "7", "7", "7", "7", "7", "8", "6", "7", "7", "7", "7", "8", "7", "8", "7", "8", "8", "8", "7", "8", "8", "8", "6", "7", "7", "8", "7", "8", "8", "9", "7", "8", "8", "8", "8", "9", "8", "9", "7", "8", "8", "8", "8", "8", "8", "9" ]
[ "nonn" ]
8
1
3
[ "A003313", "A113945", "A114622", "A114623", "A115617", "A122352", "A383329" ]
null
Pontus von Brömssen, Apr 24 2025
2025-04-24T08:53:59
oeisdata/seq/A383/A383329.seq
86ead8a6a4c3306cc7eda986aa347767
A383330
Triangle read by rows: T(n,k) is the length of a shortest vectorial addition chain for (n,k), 0 <= k <= n.
[ "0", "0", "1", "1", "2", "2", "2", "3", "3", "3", "2", "3", "3", "4", "3", "3", "4", "4", "4", "4", "4", "3", "4", "4", "4", "4", "5", "4", "4", "5", "5", "5", "5", "5", "5", "5", "3", "4", "4", "5", "4", "5", "5", "6", "4", "4", "5", "5", "5", "5", "5", "5", "6", "5", "5", "4", "5", "5", "5", "5", "5", "5", "6", "5", "6", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "4", "5", "5", "5", "5", "6", "5", "6", "5", "6", "6", "7", "5" ]
[ "nonn", "tabl" ]
7
0
5
[ "A003313", "A265690", "A383330", "A383331", "A383332" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:27
oeisdata/seq/A383/A383330.seq
88b097f09c416cd1beda670cd6ac4392
A383331
Number of pairs of nonnegative integers, not both equal to 0, with a shortest vectorial addition chain of length n.
[ "2", "3", "7", "16", "37", "91", "229", "585", "1528", "4034", "10862" ]
[ "nonn", "hard", "more" ]
7
0
1
[ "A003065", "A383330", "A383331", "A383332", "A383333" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:47
oeisdata/seq/A383/A383331.seq
e7ff11ee5f8214a343f50933aba3defe
A383332
Smallest positive weight of a pair of nonnegative integers with a shortest vectorial addition chain of length n.
[ "1", "2", "3", "4", "6", "8", "12", "20", "29", "44", "70", "104" ]
[ "nonn", "hard", "more" ]
7
0
2
[ "A003064", "A383330", "A383331", "A383332", "A383334" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:12
oeisdata/seq/A383/A383332.seq
1d66bfcf0ae092affe6b06d7ef530613
A383333
Square array read by antidiagonals: T(n,k) is the number of n-tuples of nonnegative integers, not all equal to 0, with a shortest vectorial addition chain of length k; n >= 1, k >= 0.
[ "1", "1", "2", "2", "3", "3", "3", "7", "6", "4", "5", "16", "16", "10", "5", "9", "37", "46", "30", "15", "6", "15", "91", "134", "101", "50", "21", "7", "26", "229", "411", "349", "190", "77", "28", "8", "44", "585", "1319", "1264", "751", "323", "112", "36", "9", "78", "1528", "4368", "4817", "3106", "1426", "511", "156", "45", "10", "136", "4034", "14925", "19131", "13532", "6586", "2478", "766", "210", "55", "11" ]
[ "nonn", "tabl" ]
6
1
3
[ "A000027", "A000217", "A003065", "A005581", "A383331", "A383333", "A383334" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:21
oeisdata/seq/A383/A383333.seq
f1fd4925a388a02c7c5cd10cbc4f9c95
A383334
Square array read by antidiagonals: T(n,k) is the smallest positive weight of an n-tuple of nonnegative integers with a shortest vectorial addition chain of length k; n >= 1, k >= 0.
[ "1", "2", "1", "3", "2", "1", "5", "3", "2", "1", "7", "4", "3", "2", "1", "11", "6", "4", "3", "2", "1", "19", "8", "5", "4", "3", "2", "1", "29", "12", "7", "5", "4", "3", "2", "1", "47", "20", "9", "6", "5", "4", "3", "2", "1", "71", "29", "13", "8", "6", "5", "4", "3", "2", "1", "127", "44", "20", "10", "7", "6", "5", "4", "3", "2", "1", "191", "70", "30", "14", "9", "7", "6", "5", "4", "3", "2", "1" ]
[ "nonn", "tabl" ]
6
1
2
[ "A003064", "A383332", "A383333", "A383334" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:09
oeisdata/seq/A383/A383334.seq
b50fc348c520ab48d9a495c02d5b2557
A383335
Length of shortest addition-multiplication-exponentiation chain for n.
[ "0", "1", "2", "2", "3", "3", "4", "3", "3", "4", "4", "4", "5", "5", "4", "3", "4", "4", "5", "4", "5", "5", "6", "4", "4", "5", "3", "4", "4", "4", "5", "4", "5", "5", "5", "4", "5", "5", "5", "5", "6", "5", "6", "6", "5", "6", "6", "5", "5", "5", "6", "6", "6", "4", "5", "5", "5", "5", "6", "5", "6", "6", "6", "4", "5", "5", "5", "5", "6", "5", "6", "5", "6", "6", "5", "6", "6", "6", "7", "5", "4", "5", "5", "5", "5", "6", "5" ]
[ "nonn" ]
9
1
3
[ "A003313", "A128998", "A230697", "A383335", "A383336", "A383337" ]
null
Pontus von Brömssen, Apr 27 2025
2025-05-02T12:11:45
oeisdata/seq/A383/A383335.seq
0cb40f99612bd9fb817b6a0350a0b202
A383336
Smallest number with shortest addition-multiplication-exponentiation chain of length n.
[ "1", "2", "3", "5", "7", "13", "23", "79", "214", "1418", "5991" ]
[ "nonn", "hard", "more" ]
11
0
2
[ "A003064", "A173566", "A383001", "A383142", "A383335", "A383336", "A383337" ]
null
Pontus von Brömssen, Apr 27 2025
2025-05-02T12:11:54
oeisdata/seq/A383/A383336.seq
267c93caefa99227c33b93b99e272ed1
A383337
Number of integers with a shortest addition-multiplication-exponentiation chain of length n.
[ "1", "1", "2", "7", "45", "485" ]
[ "nonn", "hard", "more" ]
9
0
3
[ "A003065", "A383002", "A383143", "A383335", "A383336", "A383337" ]
null
Pontus von Brömssen, Apr 27 2025
2025-05-02T12:11:50
oeisdata/seq/A383/A383337.seq
33e5d7e4f5967aa1a69c2e34fc62b394
A383338
Square array read by antidiagonals, where the n-th row is the coordination sequence of a certain tiling with an n-dimensional analog of the X pentomino (or Greek cross), n >= 1.
[ "1", "2", "1", "2", "4", "1", "2", "8", "8", "1", "2", "12", "26", "14", "1", "2", "16", "56", "76", "20", "1", "2", "20", "98", "244", "150", "28", "1", "2", "24", "152", "578", "632", "296", "38", "1", "2", "28", "218", "1138", "1882", "1680", "558", "48", "1", "2", "32", "296", "1984", "4492", "6424", "4336", "896", "60", "1", "2", "36", "386", "3176", "9230", "18908", "21782", "8688", "1422", "74", "1" ]
[ "nonn", "tabl" ]
5
1
2
[ "A005897", "A007980", "A008574", "A040000", "A383338" ]
null
Pontus von Brömssen, Apr 29 2025
2025-04-29T13:40:57
oeisdata/seq/A383/A383338.seq
a7d299160a8a188879d013260a7846e5
A383339
a(1)=1; thereafter if a(n-1) is a first occurrence, then a(n) is the number of first occurrences in the sequence thus far. Otherwise; a(n) is the number of terms that are the same distance away from their previous last occurrence as a(n-1).
[ "1", "1", "1", "2", "1", "1", "3", "2", "1", "1", "4", "2", "2", "5", "3", "1", "1", "6", "3", "3", "7", "4", "1", "2", "2", "8", "4", "1", "2", "4", "2", "2", "9", "5", "1", "1", "10", "5", "5", "11", "6", "1", "3", "2", "1", "3", "4", "1", "5", "1", "3", "3", "12", "6", "1", "4", "1", "4", "5", "2", "1", "6", "2", "6", "6", "13", "7", "1", "2", "4", "2", "7", "5", "1", "5", "8", "1", "7", "6", "2", "2", "14", "6", "7", "7", "15" ]
[ "nonn" ]
14
1
4
[ "A383339", "A383340", "A383421" ]
null
Neal Gersh Tolunsky, Apr 23 2025
2025-05-03T14:23:11
oeisdata/seq/A383/A383339.seq
00b5bc5248f28a3d3c619402a8068b40
A383340
a(1)=1; thereafter if a(n-1) is a first occurrence, then a(n) is the number of first occurrences in the sequence thus far. Otherwise, a(n) is the number of terms that are the same number of distinct values away from their previous last occurrence as a(n-1).
[ "1", "1", "1", "2", "1", "1", "3", "2", "1", "2", "2", "4", "2", "3", "1", "2", "3", "4", "3", "4", "5", "1", "1", "5", "6", "1", "5", "6", "7", "1", "4", "2", "1", "8", "2", "9", "3", "1", "3", "7", "2", "4", "3", "5", "2", "6", "3", "7", "1", "4", "5", "6", "2", "7", "3", "8", "4", "9", "5", "1", "6", "7", "2", "8", "3", "9", "4", "10", "1", "11", "2", "5", "1", "8", "12", "3", "1", "9", "2", "10", "13", "3", "4", "2", "5", "3" ]
[ "nonn", "look" ]
11
1
4
[ "A383339", "A383340" ]
null
Neal Gersh Tolunsky, Apr 23 2025
2025-04-25T21:29:37
oeisdata/seq/A383/A383340.seq
207f2efc11d1a6fa33e750fe1642104e
A383341
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k,j)/(n-j)!.
[ "1", "1", "1", "1", "1", "2", "1", "1", "3", "6", "1", "1", "4", "11", "24", "1", "1", "5", "16", "53", "120", "1", "1", "6", "21", "88", "309", "720", "1", "1", "7", "26", "129", "568", "2119", "5040", "1", "1", "8", "31", "176", "897", "4288", "16687", "40320", "1", "1", "9", "36", "229", "1296", "7317", "36832", "148329", "362880", "1", "1", "10", "41", "288", "1765", "11296", "67365", "354688", "1468457", "3628800" ]
[ "nonn", "tabl" ]
21
0
6
[ "A000142", "A000255", "A052124", "A295181", "A383341", "A383378", "A383379", "A383383" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T16:00:41
oeisdata/seq/A383/A383341.seq
a7118f2ecc6932c8d78a281e29e03b93
A383342
Lexicographically earliest infinite sequence of distinct positive integers such that the number following any consecutive pair x, y of terms is the smallest novel number divisible by R(x,y) = rad(x*y)/rad(gcd(x,y)).
[ "1", "2", "4", "3", "6", "8", "9", "12", "10", "15", "18", "20", "30", "21", "70", "60", "42", "35", "90", "84", "105", "40", "126", "210", "5", "168", "420", "25", "252", "630", "45", "14", "840", "75", "28", "1050", "120", "7", "1260", "150", "49", "1470", "180", "56", "315", "240", "98", "525", "270", "112", "735", "300", "140", "63", "330", "770", "147", "660", "1540", "189" ]
[ "nonn" ]
26
1
2
[ "A002110", "A005117", "A007947", "A362855", "A368133", "A369825", "A383342" ]
null
David James Sycamore and Michael De Vlieger, Apr 22 2025
2025-06-21T19:58:32
oeisdata/seq/A383/A383342.seq
46a4f50ade4c01794c4a1e407a34e3fb
A383343
a(n) = 3^n - 3*binomial(n,3) - 3*binomial(n,2) - 2*n - 1.
[ "0", "0", "1", "8", "42", "172", "611", "2004", "6292", "19304", "58533", "176464", "530558", "1593204", "4781575", "14347196", "43044648", "129137680", "387417545", "1162258008", "3486780370", "10460348540", "31381054251", "94143172708", "282429529532", "847288601592", "2541865819501", "7625597475104", "22876792443942", "68630377352644", "205891132081103" ]
[ "nonn", "easy" ]
15
0
4
[ "A127873", "A383343" ]
null
Enrique Navarrete, Apr 23 2025
2025-05-01T18:15:24
oeisdata/seq/A383/A383343.seq
24dc557de35b0bb9a2ca009407ce39eb
A383344
Expansion of e.g.f. exp(-4*x) / (1-x)^4.
[ "1", "0", "4", "8", "72", "416", "3520", "31104", "316288", "3525632", "43117056", "572195840", "8191304704", "125761056768", "2060841582592", "35894401335296", "662066514984960", "12890305925218304", "264155723747688448", "5682905054074109952", "128051031032232411136", "3015653024970577018880" ]
[ "nonn", "easy" ]
16
0
3
[ "A000166", "A087981", "A088991", "A137775", "A295181", "A381504", "A383344" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-25T12:10:52
oeisdata/seq/A383/A383344.seq
412bee9ba9c2e0f26118118ec629a1f8
A383345
Number of uniquely solveable n X 2 nonograms (hanjie).
[ "1", "4", "14", "52", "210", "816", "3206", "12536", "48962", "191226", "746456", "2913544", "11371040", "44376798", "173181564", "675834086", "2637392942", "10292179494", "40164144690", "156736057740", "611644171812", "2386868430698", "9314465669046" ]
[ "nonn", "hard" ]
21
0
2
[ "A242876", "A383345", "A384764" ]
null
Bertram Felgenhauer, Jun 11 2025
2025-06-17T22:46:14
oeisdata/seq/A383/A383345.seq
a81db1934b0c01abdedf289bacf9c294
A383346
Representation of n in rational base 3/2.
[ "0", "2", "21", "210", "212", "2101", "2120", "2122", "21011", "21200", "21202", "21221", "210110", "210112", "212001", "212020", "212022", "212211", "2101100", "2101102", "2101121", "2120010", "2120012", "2120201", "2120220", "2120222", "2122111", "21011000", "21011002", "21011021", "21011210", "21011212", "21200101", "21200120" ]
[ "nonn", "base" ]
16
0
2
[ "A024629", "A383346" ]
null
Michel Marcus, Apr 24 2025
2025-04-24T06:48:18
oeisdata/seq/A383/A383346.seq
cd1ea2364ad20c727fee2687d48c8272
A383347
Numbers that have the same set of digits as the sum of the cubes of their digits.
[ "0", "1", "135", "137", "153", "173", "307", "315", "317", "351", "370", "371", "407", "470", "513", "531", "703", "704", "713", "730", "731", "740", "3007", "3070", "3700", "4007", "4070", "4700", "7003", "7004", "7030", "7040", "7300", "7400", "11112", "11113", "11121", "11131", "11211", "11311", "12111", "12599", "12959", "12995", "13111", "15299" ]
[ "nonn", "base" ]
22
1
3
[ "A046197", "A055012", "A249515", "A383347" ]
null
Jean-Marc Rebert, Apr 24 2025
2025-05-01T19:44:39
oeisdata/seq/A383/A383347.seq
523846b1f1dea1d77e4db46a9c41d9af
A383348
Triangle related to the partitions of n in three colors, read by rows.
[ "9", "6", "243", "1", "243", "6561", "0", "90", "8748", "177147", "0", "15", "4860", "295245", "4782969", "0", "1", "1458", "216513", "9565938", "129140163", "0", "0", "252", "91854", "8680203", "301327047", "3486784401", "0", "0", "24", "24786", "4723920", "325241892", "9298091736", "94143178827", "0", "0", "1", "4374", "1712421", "215233605", "11622614670", "282429536481", "2541865828329" ]
[ "nonn", "tabl" ]
5
1
1
[ "A013733", "A383348" ]
null
Michel Marcus, Apr 24 2025
2025-04-24T13:21:09
oeisdata/seq/A383/A383348.seq
15c5842dbf4623009a48c78dc38dba2a
A383349
Numbers that have the same set of digits as the sum of 4th powers of its digits.
[ "0", "1", "488", "668", "686", "848", "866", "884", "1346", "1364", "1436", "1463", "1634", "1643", "2088", "2556", "2565", "2655", "2808", "2880", "3146", "3164", "3416", "3461", "3614", "3641", "4136", "4163", "4316", "4361", "4479", "4497", "4613", "4631", "4749", "4794", "4947", "4974", "5256", "5265", "5526", "5562", "5625", "5652", "6134", "6143" ]
[ "nonn", "base" ]
25
1
3
[ "A003132", "A052455", "A055013", "A249515", "A383328", "A383347", "A383349" ]
null
Jean-Marc Rebert, Apr 24 2025
2025-05-02T17:39:34
oeisdata/seq/A383/A383349.seq
840f9213f2d84570dab1c2a9e364ec94
A383350
a(n) is the smallest integer k such that there are k+i groups of order a(n)+i, for i=1,...,n.
[ "0", "2", "72", "72", "2814120", "29436120" ]
[ "nonn", "fini", "more" ]
21
1
2
[ "A373648", "A373649", "A373650", "A381335", "A383350" ]
null
Robin Jones, Apr 24 2025
2025-06-02T17:59:45
oeisdata/seq/A383/A383350.seq
b3d97be069799ea782b50012b3072d98
A383351
Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into k parts where 0 <= k <= n, and each part is one of 2 kinds.
[ "1", "0", "4", "0", "6", "10", "0", "8", "24", "20", "0", "10", "53", "60", "35", "0", "12", "88", "164", "120", "56", "0", "14", "144", "348", "370", "210", "84", "0", "16", "208", "672", "904", "700", "336", "120", "0", "18", "299", "1174", "1998", "1870", "1183", "504", "165", "0", "20", "400", "1952", "3952", "4524", "3360", "1848", "720", "220" ]
[ "nonn", "tabl" ]
9
0
3
[ "A000292", "A008284", "A382339", "A382342", "A383351", "A383352" ]
null
Peter Dolland, Apr 24 2025
2025-05-01T18:42:46
oeisdata/seq/A383/A383351.seq
9266be9e6de9058863eecdae96111401
A383352
Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into at most k parts where 0 <= k <= n, and each part is one of 2 kinds.
[ "1", "0", "4", "0", "6", "16", "0", "8", "32", "52", "0", "10", "63", "123", "158", "0", "12", "100", "264", "384", "440", "0", "14", "158", "506", "876", "1086", "1170", "0", "16", "224", "896", "1800", "2500", "2836", "2956", "0", "18", "317", "1491", "3489", "5359", "6542", "7046", "7211", "0", "20", "420", "2372", "6324", "10848", "14208", "16056", "16776", "16996" ]
[ "nonn", "tabl" ]
9
0
3
[ "A026820", "A381891", "A381895", "A383351", "A383352" ]
null
Peter Dolland, Apr 24 2025
2025-05-01T18:41:31
oeisdata/seq/A383/A383352.seq
23fc6e908c924747193d664f4a48118b
A383353
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n 2-colored objects are distributed into k containers of two kinds. Containers may be left empty.
[ "1", "2", "0", "3", "4", "0", "4", "8", "6", "0", "5", "12", "22", "8", "0", "6", "16", "38", "40", "10", "0", "7", "20", "54", "92", "73", "12", "0", "8", "24", "70", "144", "196", "112", "14", "0", "9", "28", "86", "196", "354", "376", "172", "16", "0", "10", "32", "102", "248", "512", "760", "678", "240", "18", "0", "11", "36", "118", "300", "670", "1200", "1554", "1136", "335", "20", "0" ]
[ "nonn", "tabl" ]
20
0
2
[ "A026820", "A161870", "A278710", "A381891", "A382345", "A383351", "A383352", "A383353" ]
null
Peter Dolland, Apr 24 2025
2025-05-08T03:16:39
oeisdata/seq/A383/A383353.seq
363989ccaee64df79c634fef05e4bb83
A383354
Squares of plane partition numbers.
[ "1", "1", "9", "36", "169", "576", "2304", "7396", "25600", "79524", "250000", "737881", "2187441", "6175225", "17363889", "47320641", "127622209", "336135556", "876219201", "2240128900", "5666777284", "14112014436", "34772925625", "84554753089", "203576025636", "484461937089", "1142215875025", "2665572144964", "6166451098756" ]
[ "nonn" ]
5
0
3
[ "A000219", "A001255", "A304990", "A383354" ]
null
Ilya Gutkovskiy, Apr 24 2025
2025-04-24T08:54:09
oeisdata/seq/A383/A383354.seq
25971ae9122c4bb82756705df33f49af
A383355
Expansion of 1/sqrt( (1-x) * (1-x-4*x^4) ).
[ "1", "1", "1", "1", "3", "5", "7", "9", "17", "31", "51", "77", "129", "227", "391", "641", "1067", "1829", "3157", "5351", "9033", "15399", "26471", "45349", "77387", "132293", "227153", "390379", "670013", "1149819", "1976595", "3402137", "5856157", "10079327", "17358491", "29918957", "51590271", "88971985", "153484661", "264898703", "457374335" ]
[ "nonn" ]
24
0
5
[ "A026569", "A217615", "A360310", "A383355" ]
null
Seiichi Manyama, May 01 2025
2025-05-02T04:25:04
oeisdata/seq/A383/A383355.seq
058941f0e54accef4705b5e61cdab0ef
A383356
a(n) = index of the smallest nonagonal number having the same digital sum as the n-th triangular number.
[ "1", "6", "3", "1", "3", "6", "4", "2", "2", "4", "5", "12", "4", "3", "6", "4", "2", "2", "4", "6", "3", "4", "12", "6", "4", "2", "11", "4", "5", "12", "13", "12", "5", "13", "2", "11", "4", "5", "12", "4", "12", "5", "13", "11", "2", "4", "5", "12", "4", "12", "5", "13", "2", "11", "4", "23", "12", "4", "12", "5", "13", "11", "2", "4", "5", "3", "13", "12", "5", "13", "11", "11", "4", "23", "12", "13", "3", "5", "4", "2", "2", "4" ]
[ "nonn", "easy", "base" ]
27
1
2
[ "A000217", "A001106", "A004157", "A007953", "A383356" ]
null
Claude H. R. Dequatre, Apr 24 2025
2025-05-20T15:48:15
oeisdata/seq/A383/A383356.seq
1ae3cf8375d77a17360a8fcb7c956959
A383357
Integers m such that R(Sum_{k=1..m} (10^k+k)) is prime, where R is the digit reversal function A004086.
[ "1", "2", "4", "20", "34", "35", "77", "158", "181", "401", "973", "3517", "6818" ]
[ "nonn", "base", "more" ]
25
1
2
[ "A000040", "A004086", "A073805", "A383357" ]
null
Claude H. R. Dequatre, Apr 24 2025
2025-05-09T18:48:55
oeisdata/seq/A383/A383357.seq
5e0586087048cbea6e5856c64567c680
A383358
Numbers k >= 2 such that (S(k) - I(k)) / (k - 1) is an integer, where S(k) = Sum_{i=2..k} A007918(i) and I(k) = Sum_{i=2..k} A007917(i).
[ "2", "3", "16", "21", "23", "39", "49", "381", "396", "24963", "39762", "40101", "40276", "4431583", "21553054", "36244531", "2183957515", "2183971285", "2183971945", "3636636400", "3636636411", "6063744535", "16846463635", "28070695902", "215867952637", "359222008925", "597739400517", "597739400913", "597739426757" ]
[ "nonn" ]
33
1
1
[ "A007917", "A007918", "A383358" ]
null
Ctibor O. Zizka, Apr 24 2025
2025-05-10T08:59:47
oeisdata/seq/A383/A383358.seq
e65c924238759c36b4e4d7ab9a498351
A383359
Integers m such that m^4 is the sum of squares of two or more consecutive positive integers.
[ "13", "295", "330", "364", "1085", "5005", "6305", "15516", "415151", "1990368", "34011252", "42016497", "79565281", "139107722", "254801664", "418093065", "667378972", "1214995500", "3609736702", "4353556896" ]
[ "nonn", "more" ]
80
1
1
[ "A000330", "A097812", "A189173", "A383359", "A383367", "A383653" ]
null
Zhining Yang, May 01 2025
2025-05-12T22:32:43
oeisdata/seq/A383/A383359.seq
bddfc12baa0b6648ba7ba58fef1157a9
A383360
Numbers k that have an i-th smallest divisor d_i(k) for which i*d_i(k) = k.
[ "1", "4", "15", "20", "21", "27", "28", "30", "32", "33", "39", "40", "44", "48", "51", "52", "57", "68", "69", "76", "84", "87", "92", "93", "111", "112", "116", "123", "124", "129", "141", "144", "148", "159", "160", "164", "172", "175", "177", "183", "188", "200", "201", "210", "212", "213", "219", "224", "236", "237", "240", "244", "245", "249", "267", "268", "270", "275" ]
[ "nonn", "easy" ]
13
1
2
[ "A027750", "A383360", "A383361", "A383362" ]
null
Felix Huber, Apr 26 2025
2025-05-02T19:33:44
oeisdata/seq/A383/A383360.seq
a8450e8812bb9bce210f206d7c080da1
A383361
a(n) is the i-th smallest divisor d_i of A383360(n) for which i*d_i = A383360(n).
[ "1", "2", "5", "5", "7", "9", "7", "6", "8", "11", "13", "8", "11", "8", "17", "13", "19", "17", "23", "19", "12", "29", "23", "31", "37", "16", "29", "41", "31", "43", "47", "16", "37", "53", "20", "41", "43", "35", "59", "61", "47", "25", "67", "21", "53", "71", "73", "28", "59", "79", "20", "61", "49", "83", "89", "67", "27", "55", "28", "71", "97", "73", "101", "103", "79", "107", "65", "109" ]
[ "nonn", "easy" ]
5
1
2
[ "A383360", "A383361", "A383362" ]
null
Felix Huber, May 03 2025
2025-05-08T18:08:27
oeisdata/seq/A383/A383361.seq
7a101deacb7c90b014a8a939ece131f9
A383362
a(n) is the number i for which i*d_i = A383360(n), where d_i is i-th smallest divisor d_i of A383360(n).
[ "1", "2", "3", "4", "3", "3", "4", "5", "4", "3", "3", "5", "4", "6", "3", "4", "3", "4", "3", "4", "7", "3", "4", "3", "3", "7", "4", "3", "4", "3", "3", "9", "4", "3", "8", "4", "4", "5", "3", "3", "4", "8", "3", "10", "4", "3", "3", "8", "4", "3", "12", "4", "5", "3", "3", "4", "10", "5", "10", "4", "3", "4", "3", "3", "4", "3", "5", "3", "4", "3", "4", "3", "4", "8", "3", "10", "4", "3", "4", "3", "5", "4", "4", "7", "3", "4" ]
[ "nonn", "easy" ]
5
1
2
[ "A383360", "A383361", "A383362" ]
null
Felix Huber, May 03 2025
2025-05-08T18:09:01
oeisdata/seq/A383/A383362.seq
6b6cd195f008f80c0e4c2c24c58b6e01
A383363
Composite numbers k all of whose proper divisors have binary weights that are not equal to the binary weight of k.
[ "15", "25", "27", "39", "51", "55", "57", "63", "69", "77", "81", "85", "87", "91", "95", "99", "111", "115", "117", "119", "121", "123", "125", "141", "143", "145", "147", "159", "169", "171", "175", "177", "183", "185", "187", "201", "203", "205", "207", "209", "213", "215", "219", "221", "231", "235", "237", "243", "245", "247", "249", "253", "255", "261", "265", "275" ]
[ "nonn", "easy", "base" ]
12
1
1
[ "A000120", "A325571", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:30:29
oeisdata/seq/A383/A383363.seq
ddf7d13d2bb6910a1d0f0f42d70511ef
A383364
a(n) is the least number k with exactly n proper divisors, where all of them have binary weights that are different from the binary weight of k.
[ "1", "3", "25", "15", "81", "63", "15625", "231", "1225", "405", "59049", "495", "531441", "5103", "2025", "1485", "33232930569601", "2475", "3814697265625", "6237", "18225", "295245", "31381059609", "4095", "1500625", "2657205", "81225", "25515", "22876792454961", "14175", "931322574615478515625", "21735", "31236921", "301327047" ]
[ "nonn", "base" ]
7
0
2
[ "A000120", "A032741", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:32:07
oeisdata/seq/A383/A383364.seq
e634c8c9dc61d4effc0768f805ec56b7
A383365
Numbers k with a record number of proper divisors, where all of them have binary weights that are different from the binary weight of k.
[ "1", "3", "15", "63", "231", "405", "495", "1485", "2475", "4095", "14175", "21735", "24255", "31185", "79695", "190575", "218295", "239085", "294525", "904365", "1276275", "2789325", "3586275", "4937625", "6912675", "10072755", "17342325", "17972955", "26801775", "46621575", "80405325", "192567375", "326351025", "333107775", "654729075" ]
[ "nonn", "base" ]
13
1
2
[ "A000120", "A032741", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-25T03:10:22
oeisdata/seq/A383/A383365.seq
edfd5ac153f3baed872ef143e6d588cb
A383366
Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.
[ "4400700", "12963816", "29878920", "38353800", "44973480", "51894304", "52208520", "67849656", "73134432", "81685080", "100711656", "103759848", "105096096", "113044896", "113161320", "114608032", "128639034", "135465912", "135559080", "136786200", "139242740", "148758120", "156686088", "159628350", "171090416" ]
[ "nonn", "base" ]
8
1
1
[ "A380845", "A380846", "A380849", "A380850", "A383366" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T13:20:53
oeisdata/seq/A383/A383366.seq
0d3a64d9f7849a85a72c5eb7bd84ceaa
A383367
a(n) is the least integer k such that A383359(n)^4 can be expressed as a sum of squares of k consecutive integers.
[ "2", "177", "352", "1536", "2401", "40898", "60625", "185761", "19512097", "47761921", "1224370081", "7957888849", "10842382346", "11474926944", "12230369281", "190412616875", "497818686976", "72899460001", "1384334025217", "313455536641" ]
[ "nonn", "more" ]
63
1
1
[ "A001032", "A189173", "A383359", "A383367", "A383654" ]
null
Zhining Yang, May 01 2025
2025-05-13T08:55:00
oeisdata/seq/A383/A383367.seq
0c16a697c223f1923d280419db86b602
A383368
Number of intercalates in pine Latin squares of order 2n.
[ "1", "12", "27", "80", "125", "252", "343", "576", "729", "1100", "1331", "1872", "2197", "2940", "3375", "4352", "4913", "6156", "6859", "8400", "9261", "11132", "12167", "14400", "15625" ]
[ "nonn", "easy" ]
6
1
2
[ "A002860", "A016755", "A089207", "A092237", "A099721", "A338522", "A383368" ]
null
Eduard I. Vatutin, Apr 24 2025
2025-04-29T13:21:04
oeisdata/seq/A383/A383368.seq
6d73fac7ed2a85f4ed21c2f9e887ce39
A383369
Population of elementary triangular automaton rule 90 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "6", "12", "6", "24", "24", "48", "6", "24", "36", "72", "24", "96", "96", "192", "6", "24", "36", "72", "36", "144", "144", "288", "24", "96", "144", "288", "96", "384", "384", "768", "6", "24", "36", "72", "36", "144", "144", "288", "36", "144", "216", "432", "144", "576", "576", "1152", "24", "96", "144", "288", "144", "576", "576", "1152", "96", "384", "576", "1152", "384", "1536", "1536", "3072", "6" ]
[ "nonn" ]
20
0
2
[ "A246035", "A247640", "A275667", "A383369" ]
null
Paul Cousin, Apr 24 2025
2025-05-14T01:22:34
oeisdata/seq/A383/A383369.seq
8cfa64c2f6870a2775108577483e1e60
A383370
Number of partial orders on {1,2,...,n} that are contained in the usual linear order, whose dual is given by the relabelling k -> n+1-k.
[ "1", "1", "2", "3", "12", "25", "172", "482", "5318", "19675", "333768", "1609846", "40832554", "254370640", "9459449890", "75546875426", "4061670272088" ]
[ "nonn", "hard", "more" ]
14
0
3
[ "A006455", "A037223", "A383370" ]
null
Ludovic Schwob, Apr 24 2025
2025-05-02T12:50:40
oeisdata/seq/A383/A383370.seq
92cdd2f810f628ed7582a0777a9965f2
A383371
Primes whose decimal digits are integer powers of 2.
[ "2", "11", "41", "181", "211", "241", "281", "421", "811", "821", "881", "1181", "1481", "1811", "2111", "2141", "2221", "2281", "2411", "2441", "4111", "4211", "4241", "4421", "4441", "4481", "8111", "8221", "8821", "11411", "11821", "12211", "12241", "12281", "12421", "12821", "12841", "14221", "14281", "14411", "14821", "18121", "18181", "18211" ]
[ "nonn", "base", "easy" ]
12
1
1
[ "A000040", "A028846", "A066593", "A173580", "A260267", "A260270", "A381259", "A383371" ]
null
Jason Bard, Apr 24 2025
2025-04-25T15:26:14
oeisdata/seq/A383/A383371.seq
f6a31f18e5dc4c860ff37d4885af6287
A383372
Number of centrally symmetric Baxter permutations of length n.
[ "1", "1", "2", "2", "6", "8", "26", "38", "130", "202", "712", "1152", "4144", "6904", "25202", "42926", "158442", "274586", "1022348", "1796636", "6736180", "11974360", "45154320", "81040720", "307069360", "555620080", "2113890560", "3851817920", "14705955008", "26960013552", "103245460226" ]
[ "nonn" ]
7
0
3
[ "A001181", "A383372" ]
null
Ludovic Schwob, Apr 24 2025
2025-04-25T12:29:41
oeisdata/seq/A383/A383372.seq
006cf76b568ef1cc48cf22aa924cdcc3
A383373
G.f. A(x) satisfies A(x/A(x)) = sqrt( A(x)/(1-x) ).
[ "1", "1", "3", "17", "144", "1578", "20667", "309537", "5163546", "94322686", "1865068734", "39590596392", "896665516139", "21564504636677", "548607953848461", "14717355393674499", "415221091369972818", "12291288050720271156", "380962114204256259227", "12340036749852846376091", "417016745706666405878133", "14679158494566139185152215" ]
[ "nonn" ]
12
0
3
[ "A383373", "A383374", "A383375" ]
null
Paul D. Hanna, Apr 24 2025
2025-04-26T16:35:00
oeisdata/seq/A383/A383373.seq
a4c79922ea3130b04af30e83e6946d7e
A383374
G.f. A(x) satisfies A(x*A(x)) = A(x)^2/(1 + x*A(x)^3).
[ "1", "1", "4", "27", "249", "2844", "38075", "577673", "9717329", "178553807", "3546288227", "75545107370", "1716015649915", "41373846407013", "1054899166283981", "28355559280197387", "801428339782456817", "23762420081295087151", "737605545429659396990", "23925256916784635157871", "809554335031496855685141", "28530240300376524015778791" ]
[ "nonn" ]
14
0
3
[ "A383373", "A383374", "A383375" ]
null
Paul D. Hanna, Apr 24 2025
2025-04-26T16:35:25
oeisdata/seq/A383/A383374.seq
3a404c6a4427b2640e200e82c487d41d
A383375
G.f. A(x) satisfies [x^n] 1/A(x)^(n+1) = [x^n] 1/A(x)^(2*n+2) for n > 1, with A'(0) = 1.
[ "1", "1", "5", "40", "414", "5100", "71678", "1121273", "19216748", "356943612", "7130028364", "152267876318", "3460605407367", "83386349441711", "2123571541190759", "57000879370143239", "1608746374389534964", "47636112766991357023", "1476931395095225314527", "47858488423054347510410", "1618037571915550646760348", "56984337381224407981871465" ]
[ "nonn" ]
13
0
3
[ "A383373", "A383374", "A383375" ]
null
Paul D. Hanna, Apr 24 2025
2025-04-26T16:33:42
oeisdata/seq/A383/A383375.seq
2b6d720514248d0a53c921405cd6f5ff
A383376
G.f. satisfies A(x) = Sum_{n>=1} A(x^3)^n / A(x^(2*n)), with A(0) = 0 and A'(0) = 1.
[ "1", "1", "0", "2", "4", "2", "2", "8", "8", "14", "22", "26", "53", "70", "89", "149", "220", "291", "441", "674", "926", "1411", "2030", "2870", "4399", "6293", "8928", "13395", "19487", "27757", "41125", "59858", "85792", "126621", "183878", "264811", "389217", "565465", "816552", "1195594", "1738434", "2515324", "3674241", "5342577", "7742504", "11293759", "16420065", "23821180" ]
[ "nonn" ]
14
1
4
null
null
Paul D. Hanna, May 15 2025
2025-05-16T02:11:17
oeisdata/seq/A383/A383376.seq
70b1089112b911380b89438b221d6040
A383377
G.f. satisfies A(x) = Sum_{n>=0} x^n * abs(1/A(x)^n), where abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).
[ "1", "1", "2", "4", "6", "6", "20", "46", "92", "138", "276", "676", "1476", "3332", "5670", "11574", "27262", "61952", "135354", "222848", "549226", "1319282", "3068894", "6449978", "10987080", "27779594", "67311236", "157054012", "313271538", "579149708", "1452091208", "3548249288", "7866783754", "16098393372", "32442930610", "78084645030", "180671169756" ]
[ "nonn" ]
13
0
3
[ "A382122", "A383377" ]
null
Paul D. Hanna, May 15 2025
2025-05-18T03:20:04
oeisdata/seq/A383/A383377.seq
994287ccbb1dceb544165ce686735ffa
A383378
Expansion of e.g.f. exp(-3*x) / (1-x)^4.
[ "1", "1", "5", "21", "129", "897", "7317", "67365", "692577", "7849953", "97199109", "1304688789", "18863836065", "292198665249", "4826470920021", "84669407740773", "1571901715253313", "30786460730863425", "634323280633460613", "13714611211502376597", "310448651226154786881", "7342298348439393120321" ]
[ "nonn", "easy" ]
18
0
3
[ "A000261", "A010843", "A137775", "A383341", "A383344", "A383378", "A383380", "A383382" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:00:22
oeisdata/seq/A383/A383378.seq
a83c849277b3e4763f18c52dddfcfb8e
A383379
a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * binomial(n+k,n)/(n-k)!.
[ "1", "1", "4", "21", "176", "1765", "22464", "331177", "5692672", "110286441", "2394828800", "57389046781", "1507401363456", "43018690418509", "1326170009092096", "43905977120300625", "1553942522589937664", "58544111242378404433", "2339326913228257886208", "98816004834223734304741" ]
[ "nonn" ]
11
0
3
[ "A295182", "A383341", "A383379" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T11:42:51
oeisdata/seq/A383/A383379.seq
d33752e077e32b764e1bc3b23acac9f5
A383380
Expansion of e.g.f. exp(-2*x) / (1-x)^4.
[ "1", "2", "8", "40", "248", "1808", "15136", "142784", "1496960", "17254144", "216740864", "2945973248", "43065951232", "673626675200", "11224114860032", "198447384666112", "3710328985124864", "73136238041563136", "1515739708283944960", "32947698735175172096", "749499782353468522496", "17806903161183314378752" ]
[ "nonn", "easy" ]
14
0
2
[ "A000023", "A000255", "A000261", "A052124", "A087981", "A383344", "A383378", "A383380", "A383381" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T11:49:10
oeisdata/seq/A383/A383380.seq
74fc9ec2b1e70ea1cecff9c0c775be90
A383381
Expansion of e.g.f. exp(-2*x) / (1-x)^5.
[ "1", "3", "14", "82", "576", "4688", "43264", "445632", "5062016", "62812288", "844863744", "12239474432", "189939644416", "3142842052608", "55223903596544", "1026805938614272", "20139224002953216", "415503046091767808", "8994794537935765504", "203848794955954716672", "4826475681472562855936", "119162892472107134353408" ]
[ "nonn", "easy" ]
13
0
2
[ "A000023", "A001909", "A052124", "A087981", "A383380", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:02:53
oeisdata/seq/A383/A383381.seq
885c07014f564fb0fab36c0db708e3ad
A383382
Expansion of e.g.f. exp(-3*x) / (1-x)^5.
[ "1", "2", "9", "48", "321", "2502", "22329", "223668", "2481921", "30187242", "399071529", "5694475608", "87197543361", "1425766728942", "24787205125209", "456477484618908", "8875541469155841", "181670665706512722", "3904395263350689609", "87898121215165479168", "2068411075529464370241", "50778930934558144895382" ]
[ "nonn", "easy" ]
14
0
2
[ "A001909", "A010843", "A137775", "A383378", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:04:46
oeisdata/seq/A383/A383382.seq
b25554adaf54f0cc1fb885fb3ed7d9d7
A383383
Expansion of e.g.f. exp(-4*x) / (1-x)^5.
[ "1", "1", "6", "26", "176", "1296", "11296", "110176", "1197696", "14304896", "186166016", "2620022016", "39631568896", "640971452416", "11034441916416", "201411030081536", "3884642996289536", "78929236862140416", "1684881987266215936", "37695662812132212736", "881964287274876665856", "21536903057742987001856" ]
[ "nonn", "easy" ]
14
0
3
[ "A001909", "A383341", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:12:22
oeisdata/seq/A383/A383383.seq
9b0cba03cfcb3a5632c1c25916b2ad99
A383384
Expansion of e.g.f. exp(-5*x) / (1-x)^5.
[ "1", "0", "5", "10", "105", "620", "5725", "52950", "571025", "6686200", "85871925", "1193029250", "17846277625", "285737086500", "4874590170125", "88245858436750", "1689282139310625", "34088182903910000", "723088091207873125", "16083522103093616250", "374280288623526655625", "9093957982779894737500" ]
[ "nonn", "easy" ]
19
0
3
[ "A000166", "A001909", "A295181", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:07:48
oeisdata/seq/A383/A383384.seq
591a58aac8badc0374b2e9e87d72dce3
A383385
Irregular triangle read by rows: T(n,k) is the number of non-isomorphic directed graphs reachable in k steps (and no fewer) by n agents using the LNS protocol (see A307085); n >= 1, 0 <= k <= A383387(n).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "5", "6", "1", "1", "2", "6", "18", "41", "28", "1", "1", "2", "7", "23", "97", "353", "676", "367", "22", "2", "1", "1", "2", "7", "24", "113", "608", "3053", "10791", "19500", "12625", "2192", "128", "1", "1", "1", "2", "7", "25", "118", "685", "4438", "28426", "148891", "525385", "1012956", "875486", "290254", "35413", "1166", "6" ]
[ "nonn", "tabf" ]
9
1
10
[ "A307085", "A383385", "A383386", "A383387", "A383388" ]
null
Pontus von Brömssen, May 06 2025
2025-05-20T08:55:11
oeisdata/seq/A383/A383385.seq
c6c515d9db337bf147272e1e765c0a6b
A383386
Irregular triangle read by rows: T(n,k) is the number of non-isomorphic directed graphs reachable in k >= 0 steps (and no fewer) by n >= 1 agents using the ANY protocol (see A318154).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "5", "7", "1", "1", "2", "6", "19", "46", "36", "1", "1", "2", "7", "24", "103", "395", "850", "518", "34", "5", "1", "1", "2", "7", "25", "119", "656", "3437", "13155", "26959", "19958", "3716", "263", "1", "1", "1", "2", "7", "26", "124", "734", "4865", "32225", "179804", "702813", "1550358", "1546271", "561917", "70430", "2223", "4" ]
[ "nonn", "tabf" ]
9
1
10
[ "A318154", "A383385", "A383386", "A383387", "A383389" ]
null
Pontus von Brömssen, May 06 2025
2025-05-20T08:55:01
oeisdata/seq/A383/A383386.seq
114dcdda71cc965712ac260633d442f4
A383387
Maximum number of steps needed to reach a reachable directed graph by n agents using the LNS protocol (see A307085).
[ "0", "1", "3", "4", "6", "10", "13", "16" ]
[ "nonn", "more" ]
5
1
3
[ "A307085", "A318154", "A383385", "A383386", "A383387" ]
null
Pontus von Brömssen, May 06 2025
2025-05-07T10:46:52
oeisdata/seq/A383/A383387.seq
e2b86dfd0b6369b067bd447638a2863d
A383388
Number of non-isomorphic directed graphs reachable in n steps (and no fewer) by at least 2*n agents using the LNS protocol (see A307085).
[ "1", "1", "2", "7", "25", "120", "709", "4892", "38551", "338339", "3261255" ]
[ "nonn", "more" ]
5
0
3
[ "A307085", "A383385", "A383388", "A383389" ]
null
Pontus von Brömssen, May 06 2025
2025-05-07T10:47:02
oeisdata/seq/A383/A383388.seq
19f84e12e29390796b0288af3056acec
A383389
Number of non-isomorphic directed graphs reachable in n steps (and no fewer) by at least 2*n agents using the ANY protocol (see A318154).
[ "1", "1", "2", "7", "26", "126", "758", "5326", "42676", "381551", "3751542" ]
[ "nonn", "more" ]
4
0
3
[ "A318154", "A383386", "A383388", "A383389" ]
null
Pontus von Brömssen, May 06 2025
2025-05-07T10:47:09
oeisdata/seq/A383/A383389.seq
d3b3ac61b8da6d309f4eaa1458554311
A383390
Numbers k such that k^2 and (k+1)^2 are both abundant numbers.
[ "104", "495", "584", "735", "944", "1155", "1364", "1484", "2144", "2204", "2415", "2624", "2924", "2925", "3135", "3255", "3794", "3795", "4304", "4484", "4784", "4844", "5264", "5355", "5445", "5564", "5565", "5655", "5775", "5984", "6104", "6764", "7424", "7455", "7664", "7755", "7875", "8084", "8294", "8295", "8414", "8415", "8924", "9009", "9344", "9944", "9975" ]
[ "nonn" ]
14
1
1
[ "A005101", "A063734", "A096399", "A381738", "A383390", "A383391" ]
null
Amiram Eldar, Apr 25 2025
2025-04-26T13:25:42
oeisdata/seq/A383/A383390.seq
65c5d42a66236d4d5f7f9952765811b3
A383391
Numbers k such that k^2, (k+1)^2 and (k+2)^2 are all abundant numbers.
[ "2924", "3794", "5564", "8294", "8414", "10064", "13454", "19304", "22154", "22814", "35684", "39974", "40544", "40754", "41768", "46214", "49994", "52064", "56264", "60884", "63854", "65624", "68354", "68474", "69068", "70244", "78974", "84824", "88604", "92168", "93224", "95354", "100694", "102464", "106028", "107084", "111110", "111824" ]
[ "nonn" ]
27
1
1
[ "A002110", "A005101", "A063734", "A096536", "A381738", "A383390", "A383391" ]
null
Amiram Eldar, Apr 25 2025
2025-05-06T18:06:59
oeisdata/seq/A383/A383391.seq
576c07bce8e3664f8f6fca8704e05b01
A383392
Numbers k such that (sigma(k) + sigma(k + sigma(k))) / k is an integer where sigma(k) = A000203(k) is the sum of the divisors of k.
[ "1", "3", "14", "19", "27", "28", "48", "139", "164", "243", "496", "1428", "1440", "3360", "3480", "5932", "8128", "11004", "19683", "25296", "27144", "31756", "35616", "45436", "47520", "51480", "84000", "115506", "218520", "221088", "288288", "290520", "303309", "414528", "445788", "605880", "1019070", "1122432", "2100000", "2136288" ]
[ "nonn" ]
13
1
2
[ "A000203", "A007691", "A246456", "A383392" ]
null
Ctibor O. Zizka, Apr 25 2025
2025-05-01T22:33:41
oeisdata/seq/A383/A383392.seq
ecb065b9b272796a037bcaba4fc2abb2
A383393
Primes p such that p + 2, p + 8, p + 12, p + 18 and p + 20 are also primes.
[ "11", "5639", "5849", "45119", "51419", "54401", "88799", "130631", "165701", "229751", "284729", "321311", "626609", "797549", "855719", "883229", "1068701", "1128761", "1146779", "1178699", "1652879", "1978421", "2253479", "2254781", "2269439", "2453441", "3154421", "3216119", "4046291", "4583849", "5050679", "5387729" ]
[ "nonn" ]
14
1
1
[ "A000040", "A001223", "A022008", "A382810", "A383393" ]
null
Alexander Yutkin, Apr 25 2025
2025-05-02T10:32:20
oeisdata/seq/A383/A383393.seq
a32842841dc5d1cd0c76e46772f2a52d
A383396
Primes p such that p + 6, p + 10, p + 12, p + 16 and p + 22 are also primes.
[ "7", "31", "2677", "35521", "42451", "44257", "55807", "93481", "118891", "198817", "221707", "234181", "313981", "393571", "560227", "669847", "1107781", "1210387", "1596367", "1616611", "1738411", "2710921", "3194551", "3377587", "3441931", "3484561", "3586537", "3699181", "3887551", "3904897", "4095661", "4192261", "4239721" ]
[ "nonn" ]
12
1
1
[ "A000040", "A001223", "A022008", "A052378", "A383396" ]
null
Alexander Yutkin, Apr 25 2025
2025-05-02T22:36:50
oeisdata/seq/A383/A383396.seq
809dfce7814a1ee9c04a6647a400b38d
A383397
Numbers in whose canonical prime factorization the powers of the primes form a strictly increasing sequence.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "46", "47", "49", "50", "51", "52", "53", "54", "55", "57", "58", "59", "61", "62", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "81", "82", "83", "85", "86", "87", "88", "89", "91", "92", "93", "94", "95", "97", "98", "99", "100", "101" ]
[ "nonn", "easy" ]
24
1
2
[ "A005117", "A140831", "A383397" ]
null
Boas Bakker, Apr 26 2025
2025-04-29T12:41:49
oeisdata/seq/A383/A383397.seq
34f82e93931e32662aa4d08c0fab3884
A383398
a(n) is the smallest number whose sum with any previous term is abundant.
[ "1", "11", "19", "29", "59", "349", "521", "2071", "66949", "223231", "3660191", "4552181", "5500081", "10161979", "12235619", "47859629" ]
[ "nonn", "hard", "more" ]
27
1
2
[ "A000040", "A001358", "A005100", "A005101", "A005231", "A173490", "A383398", "A383399" ]
null
Jakub Buczak, Apr 25 2025
2025-05-02T19:40:05
oeisdata/seq/A383/A383398.seq
4a76dfb2a9540f3a8dc81418c835f6b0
A383399
For n>1, a(n) is the smallest number greater than a(n-1), whose sum with any previous term is deficient, with a(1) = 1.
[ "1", "2", "3", "6", "7", "8", "31", "43", "44", "91", "115", "121", "122", "127", "128", "140", "146", "163", "211", "248", "283", "290", "331", "403", "427", "464", "511", "595", "631", "667", "668", "751", "842", "883", "931", "955", "1051", "1106", "1123", "1171", "1243", "1291", "1388", "1411", "1555", "1591", "1682", "1711", "1723", "1771", "1843", "1891", "2011", "2131" ]
[ "nonn" ]
19
1
2
[ "A005100", "A005101", "A383398", "A383399" ]
null
Jakub Buczak, Apr 25 2025
2025-04-26T15:19:43
oeisdata/seq/A383/A383399.seq
e9c8b37d09b08206c1f894fa959d12e7
A383400
Starting values of maximal runs of at least five integers, each with exactly two distinct prime factors.
[ "54", "91", "115", "141", "158", "205", "212", "295", "301", "323", "391", "535", "685", "721", "799", "1135", "1345", "1465", "1535", "1711", "1941", "1981", "2101", "2215", "2302", "2425", "2641", "3865", "4411", "5461", "6505", "6625", "6925", "7165", "7231", "7261", "7441", "7855", "7891", "8575", "9121", "9355", "9571" ]
[ "nonn" ]
17
1
1
[ "A001221", "A088986", "A364307", "A383400" ]
null
IWABUCHI Yu(u)ki, Apr 25 2025
2025-05-13T09:59:17
oeisdata/seq/A383/A383400.seq
6b100b30a7155ac844464d9d03beab1f
A383401
Index of the largest odd divisor in the list of divisors of n.
[ "1", "1", "2", "1", "2", "3", "2", "1", "3", "3", "2", "3", "2", "3", "4", "1", "2", "5", "2", "4", "4", "3", "2", "3", "3", "3", "4", "4", "2", "7", "2", "1", "4", "3", "4", "6", "2", "3", "4", "4", "2", "7", "2", "4", "6", "3", "2", "3", "3", "5", "4", "4", "2", "7", "4", "4", "4", "3", "2", "9", "2", "3", "6", "1", "4", "7", "2", "4", "4", "7", "2", "7", "2", "3", "6", "4", "4", "7", "2", "4", "5", "3", "2", "9", "4", "3", "4", "5", "2", "11", "4", "4", "4", "3", "4", "3", "2", "5", "6", "7" ]
[ "nonn", "easy" ]
31
1
3
[ "A000005", "A000079", "A000265", "A001227", "A027750", "A065091", "A174090", "A383401" ]
null
Omar E. Pol, May 14 2025
2025-05-15T08:17:16
oeisdata/seq/A383/A383401.seq
bf072be3a07be0e09d162e8c557bc954
A383402
Smallest number whose largest odd divisor is its n-th divisor.
[ "1", "3", "6", "15", "18", "36", "30", "105", "60", "120", "90", "315", "816", "1360", "180", "700", "450", "360", "720", "1008", "420", "1540", "630", "900", "840", "1080", "1620", "1680", "2160", "1800", "1890", "5280", "1260", "3240", "3150", "17325", "7200", "29120", "5670", "9072", "2520", "3960", "10296", "18144", "3780", "20020", "5040", "7920", "10800" ]
[ "nonn" ]
55
1
2
[ "A000005", "A000265", "A001227", "A005117", "A027750", "A038547", "A064989", "A182469", "A221647", "A355200", "A383401", "A383402", "A383961" ]
null
Omar E. Pol, May 14 2025
2025-06-01T09:57:15
oeisdata/seq/A383/A383402.seq
fd24e62aa9ab7f6397d1bf36aed4f43b
A383403
Partial sums of the sum of the divisors of the numbers of the form 6*k + 3, k >= 0.
[ "4", "17", "41", "73", "113", "161", "217", "295", "367", "447", "551", "647", "771", "892", "1012", "1140", "1296", "1488", "1640", "1822", "1990", "2166", "2406", "2598", "2826", "3060", "3276", "3564", "3824", "4064", "4312", "4632", "4968", "5240", "5552", "5840", "6136", "6539", "6923", "7243", "7607", "7943", "8375", "8765", "9125", "9573", "9989", "10469", "10861" ]
[ "nonn", "easy" ]
47
0
1
[ "A000203", "A016945", "A237593", "A239660", "A274536", "A363161", "A365442", "A365444", "A365446", "A383403", "A383405" ]
null
Omar E. Pol, Apr 27 2025
2025-05-22T20:07:09
oeisdata/seq/A383/A383403.seq
f908165aef3ba22fb8af466c93d55a52
A383404
Palindromic primes formed from the reflected decimal expansion of the golden ratio phi.
[ "11", "1618033308161", "16180339887498948482045868343656381118365634386854028484989478893308161", "16180339887498948482045868343656381177203030277118365634386854028484989478893308161" ]
[ "base", "nonn" ]
19
1
1
[ "A001622", "A002113", "A002385", "A039954", "A135699", "A135700", "A383404" ]
null
Omar E. Pol, May 06 2025
2025-05-12T17:23:42
oeisdata/seq/A383/A383404.seq
41e2dcab0e0f6e89993acca899410314
A383405
Partial sums of the sum of the divisors of the numbers of the form 6*k + 5, k >= 0.
[ "6", "18", "36", "60", "90", "138", "180", "228", "282", "342", "426", "498", "594", "678", "768", "888", "990", "1098", "1212", "1356", "1512", "1644", "1782", "1950", "2100", "2292", "2484", "2652", "2826", "3006", "3234", "3426", "3624", "3864", "4104", "4368", "4620", "4848", "5082", "5322", "5664", "5916", "6174", "6438", "6708", "7080", "7362", "7698", "7992", "8328", "8700", "9012", "9330", "9690", "10074" ]
[ "nonn", "easy" ]
40
0
1
[ "A000203", "A016969", "A098098", "A237593", "A239660", "A363161", "A365442", "A365444", "A365446", "A383403", "A383405" ]
null
Omar E. Pol, Apr 25 2025
2025-05-08T21:14:36
oeisdata/seq/A383/A383405.seq
9a97766d5d58de9694850e8d85cf627c
A383406
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}).
[ "1", "1", "0", "0", "2", "14", "88", "632", "5152", "46976", "474056", "5249064", "63298724", "825977620", "11597642568", "174371083288", "2795208188972", "47592162832412", "857760977798888", "16315057829100968", "326599827759568812", "6863964030561807340", "151109048051281532488", "3477542225297684400056", "83503678542689445133052" ]
[ "nonn", "easy" ]
5
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312", "A383406" ]
null
Dan Li, Apr 25 2025
2025-04-26T08:28:34
oeisdata/seq/A383/A383406.seq
243e0c1ff4c5e650202751e9e73e53d3
A383407
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}).
[ "1", "1", "0", "0", "2", "14", "88", "636", "5174", "47122", "475124", "5257936", "63380706", "826813990", "11606987816", "174484661916", "2796700455414", "47613243806514", "858079661762692", "16320191491499712", "326687622910353650", "6865552738575268502", "151139376627154723752", "3478151378775992816412", "83516519907235226131286" ]
[ "nonn", "easy" ]
5
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312", "A383406", "A383407" ]
null
Dan Li, Apr 26 2025
2025-04-26T08:28:43
oeisdata/seq/A383/A383407.seq
c229a6866294b840ffe90f11bf6c452c
A383408
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,2),(1,0),(1,1),(1,2),(2,1)}).
[ "1", "1", "0", "0", "2", "14", "88", "632", "5152", "46972", "474008", "5248616", "63294680", "825940168", "11597278752", "174367336624", "2795167052832", "47591679875632", "857754907053056", "16314976128578752", "326598651690933216", "6863945954213702816", "151108752072042907968", "3477537076217415673344", "83503583639127861347392" ]
[ "nonn", "easy" ]
5
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312", "A383406", "A383407", "A383408" ]
null
Dan Li, Apr 26 2025
2025-04-26T08:28:38
oeisdata/seq/A383/A383408.seq
ad97925bcf4fdabe5b00d5f8493d97e4
A383409
Expansion of e.g.f. (exp(x)-1)*(exp(x)-x)*(exp(x)-x^2/2)*(exp(x)-x^3/6).
[ "0", "1", "5", "19", "77", "326", "1406", "5601", "23715", "101092", "431172", "1841357", "7889877", "33924268", "146103678", "628595097", "2695143751", "11495831852", "48733234456", "205252231229", "858955851705", "3573016550756", "14781047390930", "60846099935609", "249385924540907" ]
[ "nonn" ]
9
0
3
[ "A383323", "A383409" ]
null
Enrique Navarrete, Apr 26 2025
2025-05-02T19:35:20
oeisdata/seq/A383/A383409.seq
b2a32248c0dfe61d3130e503c5fc971b
A383410
Array read by downward antidiagonals: A(n,k) = Sum_{i=0..n-1} Sum_{j=0..k+1} binomial(n-1,i)*binomial(k+1,j)*A(i,j) with A(0,k) = 1, n >= 0, k >= 0.
[ "1", "1", "2", "1", "4", "8", "1", "8", "22", "44", "1", "16", "62", "154", "308", "1", "32", "178", "554", "1306", "2612", "1", "64", "518", "2038", "5690", "12994", "25988", "1", "128", "1522", "7634", "25366", "66338", "148282", "296564", "1", "256", "4502", "29014", "115298", "346366", "867002", "1908274", "3816548", "1", "512", "13378", "111554", "532726", "1844042", "5179798", "12564434", "27333706", "54667412" ]
[ "nonn", "tabl" ]
6
0
3
[ "A005649", "A383410" ]
null
Mikhail Kurkov, Apr 26 2025
2025-05-03T19:02:22
oeisdata/seq/A383/A383410.seq
445801f35724cf0bec4c15f8b4f5d0cf
A383411
Primes p such that gcd(ord_p(3), ord_p(5)) = 1.
[ "2", "13", "313", "51169", "797161", "3482851", "5096867", "12207031", "162410641", "368385827", "1001523179", "4902814883", "104849105869", "131772143257", "572027881891" ]
[ "nonn", "hard", "more" ]
32
1
1
[ "A062117", "A211241", "A344202", "A383411" ]
null
Li GAN, Apr 26 2025
2025-05-17T22:49:18
oeisdata/seq/A383/A383411.seq
db7017a4230fdee82279e86aaee7837f
A383412
Lexicographically earliest sequence of integers >= 2 such that whenever a(k_1) = ... = a(k_m) with k_1 < ... < k_m, the sum k_1 + ... + k_m can be computed without carries in base a(k_1).
[ "2", "2", "2", "3", "2", "3", "4", "5", "2", "3", "5", "6", "6", "7", "7", "8", "2", "4", "9", "9", "4", "7", "9", "10", "8", "5", "5", "3", "11", "12", "5", "10", "2", "10", "11", "11", "3", "12", "12", "12", "13", "13", "6", "13", "13", "14", "14", "14", "15", "7", "15", "15", "16", "16", "16", "17", "14", "17", "18", "18", "15", "18", "19", "19", "2", "20", "20", "20", "4", "17", "17", "21", "6", "18" ]
[ "nonn", "base" ]
7
0
1
[ "A131577", "A279125", "A336206", "A375776", "A383412" ]
null
Rémy Sigrist, Apr 26 2025
2025-05-02T08:01:23
oeisdata/seq/A383/A383412.seq
3abff7b9ab8e1b67ca6ad7fe65652ca0
A383413
Area A of triangles such that the sides are distinct integers and A is an integer.
[ "6", "24", "30", "36", "42", "54", "60", "66", "72", "84", "90", "96", "114", "120", "126", "132", "144", "150", "156", "168", "180", "198", "204", "210", "216", "234", "240", "252", "264", "270", "288", "294", "300", "306", "324", "330", "336", "360", "378", "384", "390", "396", "408", "420", "456", "462", "468", "480", "486", "504", "510", "522", "528", "540", "546", "576", "594" ]
[ "nonn" ]
17
1
1
[ "A188158", "A316853", "A383413" ]
null
Karl-Heinz Hofmann, Apr 26 2025
2025-05-10T11:58:35
oeisdata/seq/A383/A383413.seq
6b6fde6c049d71059c197c492b742460
A383414
Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7).
[ "7", "28", "15", "112", "60", "23", "448", "240", "92", "31", "1792", "960", "368", "124", "39", "7168", "3840", "1472", "496", "156", "47", "28672", "15360", "5888", "1984", "624", "188", "55", "114688", "61440", "23552", "7936", "2496", "752", "220", "63", "458752", "245760", "94208", "31744", "9984", "3008", "880", "252", "71", "1835008", "983040", "376832", "126976", "39936", "12032", "3520", "1008", "284", "79" ]
[ "nonn", "easy", "tabl" ]
6
0
1
[ "A000302", "A002042", "A004215", "A004771", "A383414", "A383415" ]
null
Stefano Spezia, Apr 26 2025
2025-04-27T15:03:42
oeisdata/seq/A383/A383414.seq
a40a7aff4b659b2e5c1a0fe52d395633
A383415
Antidiagonal sums of A383414.
[ "7", "43", "195", "811", "3283", "13179", "52771", "211147", "844659", "3378715", "13514947", "54059883", "216239635", "864958651", "3459834723", "13839339019", "55357356211", "221429424987", "885717700099", "3542870800555", "14171483202387", "56685932809723", "226743731239075", "906974924956491", "3627899699826163" ]
[ "nonn", "easy" ]
4
0
1
[ "A383414", "A383415" ]
null
Stefano Spezia, Apr 26 2025
2025-04-27T15:03:50
oeisdata/seq/A383/A383415.seq
d8fe743f7895e31f4f30d0829605381f
A383416
Population of elementary triangular automaton rule 186 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "10", "16", "16", "28", "46", "52", "40", "64", "88", "94", "124", "142", "208", "238", "160", "202", "232", "226", "286", "334", "376", "442", "478", "454", "538", "604", "658", "724", "820", "928", "838", "814", "838", "856", "904", "934", "976", "970", "1024", "1066", "1132", "1348", "1408", "1450", "1702", "1768", "1702", "1720", "1906", "1936" ]
[ "nonn" ]
10
0
2
[ "A372581", "A380012", "A380590", "A380670", "A381734", "A382971", "A383416" ]
null
Paul Cousin, Apr 26 2025
2025-05-03T17:43:32
oeisdata/seq/A383/A383416.seq
bf72327e041e960d9f1e7c34fcfff80d
A383417
Population of elementary triangular automaton rule 2 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "3", "6", "6", "12", "12", "18", "18", "30", "24", "48", "42", "54", "60", "72", "72", "90", "78", "114", "90", "120", "96", "162", "156", "162", "180", "282", "210", "306", "234", "300", "300", "342", "318", "378", "318", "378", "354", "384", "408", "408", "444", "600", "450", "612", "576", "654", "600", "726", "588", "798", "762", "786", "804", "924", "912", "984" ]
[ "nonn" ]
13
0
2
[ "A383417", "A383418" ]
null
Paul Cousin, Apr 26 2025
2025-05-03T23:56:31
oeisdata/seq/A383/A383417.seq
df752bbbd0265babbeb11dce58e15a38
A383418
Third center column of elementary triangular automaton rule 2, starting from a lone 1 cell.
[ "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
17
0
null
[ "A383417", "A383418" ]
null
Paul Cousin, Apr 26 2025
2025-06-03T01:11:03
oeisdata/seq/A383/A383418.seq
e18748bb61c684fbed159be478ecfd38
A383419
a(n) = A378762(A381968(n)).
[ "1", "5", "3", "6", "2", "4", "12", "10", "14", "8", "15", "9", "13", "7", "11", "23", "21", "25", "19", "27", "17", "28", "20", "26", "18", "24", "16", "22", "38", "36", "40", "34", "42", "32", "44", "30", "45", "35", "43", "33", "41", "31", "39", "29", "37", "57", "55", "59", "53", "61", "51", "63", "49", "65", "47", "66", "54", "64", "52", "62", "50", "60", "48", "58", "46", "56" ]
[ "nonn", "tabf" ]
47
1
2
[ "A000027", "A000384", "A016813", "A056023", "A376214", "A378684", "A378762", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383419", "A383589", "A383590", "A383722", "A383723", "A383724" ]
null
Boris Putievskiy, May 01 2025
2025-06-08T16:55:41
oeisdata/seq/A383/A383419.seq
02a4aeddc8b056af715e09f6e67585bd
A383420
Maximum (equal) number of red and blue tiles on an n X n matrix, where opposite colors cannot be adjacent diagonally or edgewise, and where a cluster of the same color can be no greater than n.
[ "0", "0", "6", "8", "16", "24", "30", "38" ]
[ "nonn", "hard", "more" ]
43
1
3
[ "A000290", "A001105", "A002378", "A023365", "A033587", "A383420" ]
null
Jakub Buczak, Apr 26 2025
2025-05-04T12:54:20
oeisdata/seq/A383/A383420.seq
1a01c3e840788738ab36ff23832770e2