sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A383318 | Lexicographically earliest sequence of distinct terms such that replacing each term k with prime(k) does not change the succession of digits. | [
"6455",
"3",
"5",
"1",
"12",
"37",
"15",
"7",
"4",
"71",
"77",
"35",
"33",
"8",
"9",
"14",
"91",
"371",
"92",
"34",
"346",
"72",
"53",
"94",
"79",
"13",
"923",
"39",
"359",
"2",
"41",
"49",
"140",
"141",
"721",
"916",
"724",
"17",
"31",
"792",
"27",
"80",
"98",
"11",
"54",
"497",
"159",
"547",
"95",
"912",
"760",
"73",
"10",
"340",
"952",
"131",
"25",
"135",
"47",
"93",
"739",
"43"
]
| [
"nonn",
"base"
]
| 9 | 1 | 1 | [
"A067928",
"A302656",
"A383318",
"A383319",
"A383320",
"A383322"
]
| null | Dominic McCarty, Apr 23 2025 | 2025-04-23T10:39:28 | oeisdata/seq/A383/A383318.seq | 7065ddec6bd0606dc0e56e9f6a674b0f |
A383319 | a(n) = prime(A383318(n)). | [
"64553",
"5",
"11",
"2",
"37",
"157",
"47",
"17",
"7",
"353",
"389",
"149",
"137",
"19",
"23",
"43",
"467",
"2539",
"479",
"139",
"2339",
"359",
"241",
"491",
"401",
"41",
"7219",
"167",
"2417",
"3",
"179",
"227",
"809",
"811",
"5449",
"7159",
"5479",
"59",
"127",
"6073",
"103",
"409",
"521",
"31",
"251",
"3547",
"937",
"3943",
"499",
"7121",
"5791",
"367",
"29"
]
| [
"nonn",
"base"
]
| 8 | 1 | 1 | [
"A067928",
"A302656",
"A383318",
"A383319",
"A383320",
"A383322"
]
| null | Dominic McCarty, Apr 23 2025 | 2025-06-02T15:29:57 | oeisdata/seq/A383/A383319.seq | 496eb34ff8148f2de3704d1f410a3ab1 |
A383320 | Lexicographically earliest sequence of distinct terms such that replacing each term k with Fibonacci(k) does not change the succession of digits. | [
"0",
"1",
"5",
"43",
"3",
"4",
"9",
"44",
"37",
"2",
"33",
"470",
"140",
"8",
"7",
"332",
"41",
"57",
"81",
"71",
"35",
"24",
"578",
"74",
"93",
"86",
"58",
"6",
"61",
"14",
"242",
"47",
"46",
"936",
"9310",
"13",
"87",
"148",
"48",
"19",
"30",
"12",
"55",
"77",
"36",
"270",
"246",
"51",
"68",
"97",
"194",
"4350",
"50",
"27",
"72",
"31",
"359",
"90",
"22",
"40",
"278",
"505",
"23"
]
| [
"nonn",
"base"
]
| 6 | 1 | 3 | [
"A038546",
"A302656",
"A383318",
"A383320",
"A383321",
"A383322"
]
| null | Dominic McCarty, Apr 23 2025 | 2025-04-23T10:40:13 | oeisdata/seq/A383/A383320.seq | 72d55cfb8f0247584190f4e472b962fe |
A383321 | a(n) = Fibonacci(A383320(n)). | [
"0",
"1",
"5",
"433494437",
"2",
"3",
"34",
"701408733",
"24157817",
"1",
"3524578",
"74938658661142424746936931013871484819301255773627024651689719443505027723135990224027850523592585",
"81055900096023504197206408605",
"21",
"13"
]
| [
"nonn",
"base"
]
| 9 | 1 | 3 | [
"A038546",
"A302656",
"A383318",
"A383320",
"A383321",
"A383322"
]
| null | Dominic McCarty, Apr 23 2025 | 2025-06-02T15:30:06 | oeisdata/seq/A383/A383321.seq | 80da4b1f83482f925df8bd3d074b74af |
A383322 | Lexicographically earliest sequence of distinct terms such that replacing each term k with k! does not change the succession of digits. | [
"1",
"2",
"198",
"15",
"5",
"24",
"3",
"0",
"56",
"4",
"800",
"260",
"18",
"181",
"7",
"120",
"43",
"26",
"25",
"78",
"46",
"6",
"11",
"45",
"67",
"2580",
"8",
"37",
"34",
"49",
"61",
"66",
"465",
"63",
"9",
"28",
"62",
"93",
"960",
"65",
"410",
"626",
"13",
"82",
"98",
"59",
"32",
"659",
"453",
"242",
"255",
"580",
"939",
"42",
"70",
"44",
"932",
"22",
"55",
"38",
"389",
"50"
]
| [
"nonn",
"base"
]
| 11 | 1 | 2 | [
"A033147",
"A302656",
"A383318",
"A383320",
"A383322"
]
| null | Dominic McCarty, Apr 23 2025 | 2025-04-24T15:14:55 | oeisdata/seq/A383/A383322.seq | 5197ac5604fbea0f06475edbcdcc7cb1 |
A383323 | Expansion of e.g.f. (1+x)*(exp(x)-1)*(exp(x)-x)*(exp(x)-x^2/2). | [
"0",
"1",
"5",
"16",
"59",
"251",
"890",
"3270",
"12269",
"45793",
"167360",
"596036",
"2070755",
"7041087",
"23517590",
"77417074",
"251879897",
"811815485",
"2596707692",
"8255064768",
"26112370895",
"82260512731",
"258263585090",
"808543518254",
"2525239747781",
"7870664327961",
"24487769002520",
"76069664095420",
"235979863263419"
]
| [
"nonn"
]
| 16 | 0 | 3 | [
"A358341",
"A383323"
]
| null | Enrique Navarrete, Apr 23 2025 | 2025-05-02T19:34:56 | oeisdata/seq/A383/A383323.seq | 12a38c801b1823f3c4a88f37ebf07241 |
A383324 | a(n) = round(3^n/5). | [
"0",
"1",
"2",
"5",
"16",
"49",
"146",
"437",
"1312",
"3937",
"11810",
"35429",
"106288",
"318865",
"956594",
"2869781",
"8609344",
"25828033",
"77484098",
"232452293",
"697356880",
"2092070641",
"6276211922",
"18828635765",
"56485907296",
"169457721889",
"508373165666",
"1525119496997",
"4575358490992",
"13726075472977"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 3 | [
"A178543",
"A383324"
]
| null | Chai Wah Wu, Apr 23 2025 | 2025-04-25T18:49:29 | oeisdata/seq/A383/A383324.seq | 0b292fb6497e6727c3bc428e91fa9142 |
A383325 | Numbers not of the form round(3^k/5). Complement of A383324. | [
"3",
"4",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72"
]
| [
"nonn"
]
| 6 | 1 | 1 | [
"A383324",
"A383325"
]
| null | Chai Wah Wu, Apr 23 2025 | 2025-04-25T16:00:15 | oeisdata/seq/A383/A383325.seq | 548ae2bf7c2386cb13ac673407b422be |
A383327 | a(n) is the number of occurrences of n in A049802. | [
"1",
"2",
"1",
"4",
"1",
"2",
"3",
"5",
"1",
"3",
"2",
"5",
"2",
"4",
"1",
"7",
"2",
"4",
"2",
"5",
"3",
"5",
"1",
"6",
"3",
"4",
"2",
"6",
"3",
"3",
"2",
"10",
"3",
"4",
"1",
"5",
"4",
"5",
"3",
"8",
"3",
"5",
"2",
"6",
"2",
"5",
"2",
"10",
"3",
"4",
"2",
"7",
"2",
"5",
"3",
"8",
"4",
"5",
"2",
"5",
"2",
"7",
"1",
"14",
"1",
"5",
"5",
"5",
"1",
"4",
"4",
"11",
"3",
"6",
"3",
"7",
"2",
"6",
"2",
"10",
"2",
"6",
"3",
"8",
"3",
"6",
"4",
"11"
]
| [
"nonn"
]
| 42 | 1 | 2 | [
"A000041",
"A049802",
"A383327"
]
| null | Miles Englezou, Apr 23 2025 | 2025-05-14T19:09:06 | oeisdata/seq/A383/A383327.seq | 36e8193314e337c7b778cb478b996c54 |
A383328 | Numbers that have the same set of digits as the sum of the squares of their digits. | [
"0",
"1",
"155",
"224",
"242",
"334",
"343",
"422",
"433",
"505",
"515",
"550",
"551",
"1388",
"1788",
"1838",
"1878",
"1883",
"1887",
"3188",
"3334",
"3336",
"3343",
"3363",
"3433",
"3633",
"3818",
"3881",
"4333",
"5005",
"5050",
"5500",
"6333",
"7188",
"7818",
"7881",
"8138",
"8178",
"8183",
"8187",
"8318",
"8381",
"8718",
"8781",
"8813",
"8817",
"8831"
]
| [
"nonn",
"base"
]
| 23 | 1 | 3 | [
"A003132",
"A029793",
"A249515",
"A383328"
]
| null | Jean-Marc Rebert, Apr 23 2025 | 2025-05-13T08:26:32 | oeisdata/seq/A383/A383328.seq | b89cbb13612948bd4df25cd2da2809ce |
A383329 | Number of multiplications required to compute x^n by Knuth's power tree method. | [
"0",
"1",
"2",
"2",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"5",
"4",
"5",
"5",
"6",
"5",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"7",
"6",
"7",
"5",
"6",
"6",
"7",
"6",
"7",
"7",
"7",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"6",
"7",
"7",
"7",
"7",
"8",
"7",
"8",
"7",
"8",
"8",
"8",
"7",
"8",
"8",
"8",
"6",
"7",
"7",
"8",
"7",
"8",
"8",
"9",
"7",
"8",
"8",
"8",
"8",
"9",
"8",
"9",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"9"
]
| [
"nonn"
]
| 8 | 1 | 3 | [
"A003313",
"A113945",
"A114622",
"A114623",
"A115617",
"A122352",
"A383329"
]
| null | Pontus von Brömssen, Apr 24 2025 | 2025-04-24T08:53:59 | oeisdata/seq/A383/A383329.seq | 86ead8a6a4c3306cc7eda986aa347767 |
A383330 | Triangle read by rows: T(n,k) is the length of a shortest vectorial addition chain for (n,k), 0 <= k <= n. | [
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"2",
"3",
"3",
"4",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"3",
"4",
"4",
"4",
"4",
"5",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"5",
"5",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"5",
"6",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"4",
"5",
"5",
"5",
"5",
"6",
"5",
"6",
"5",
"6",
"6",
"7",
"5"
]
| [
"nonn",
"tabl"
]
| 7 | 0 | 5 | [
"A003313",
"A265690",
"A383330",
"A383331",
"A383332"
]
| null | Pontus von Brömssen, Apr 26 2025 | 2025-04-26T11:27:27 | oeisdata/seq/A383/A383330.seq | 88b097f09c416cd1beda670cd6ac4392 |
A383331 | Number of pairs of nonnegative integers, not both equal to 0, with a shortest vectorial addition chain of length n. | [
"2",
"3",
"7",
"16",
"37",
"91",
"229",
"585",
"1528",
"4034",
"10862"
]
| [
"nonn",
"hard",
"more"
]
| 7 | 0 | 1 | [
"A003065",
"A383330",
"A383331",
"A383332",
"A383333"
]
| null | Pontus von Brömssen, Apr 26 2025 | 2025-04-26T11:27:47 | oeisdata/seq/A383/A383331.seq | e7ff11ee5f8214a343f50933aba3defe |
A383332 | Smallest positive weight of a pair of nonnegative integers with a shortest vectorial addition chain of length n. | [
"1",
"2",
"3",
"4",
"6",
"8",
"12",
"20",
"29",
"44",
"70",
"104"
]
| [
"nonn",
"hard",
"more"
]
| 7 | 0 | 2 | [
"A003064",
"A383330",
"A383331",
"A383332",
"A383334"
]
| null | Pontus von Brömssen, Apr 26 2025 | 2025-04-26T11:27:12 | oeisdata/seq/A383/A383332.seq | 1d66bfcf0ae092affe6b06d7ef530613 |
A383333 | Square array read by antidiagonals: T(n,k) is the number of n-tuples of nonnegative integers, not all equal to 0, with a shortest vectorial addition chain of length k; n >= 1, k >= 0. | [
"1",
"1",
"2",
"2",
"3",
"3",
"3",
"7",
"6",
"4",
"5",
"16",
"16",
"10",
"5",
"9",
"37",
"46",
"30",
"15",
"6",
"15",
"91",
"134",
"101",
"50",
"21",
"7",
"26",
"229",
"411",
"349",
"190",
"77",
"28",
"8",
"44",
"585",
"1319",
"1264",
"751",
"323",
"112",
"36",
"9",
"78",
"1528",
"4368",
"4817",
"3106",
"1426",
"511",
"156",
"45",
"10",
"136",
"4034",
"14925",
"19131",
"13532",
"6586",
"2478",
"766",
"210",
"55",
"11"
]
| [
"nonn",
"tabl"
]
| 6 | 1 | 3 | [
"A000027",
"A000217",
"A003065",
"A005581",
"A383331",
"A383333",
"A383334"
]
| null | Pontus von Brömssen, Apr 26 2025 | 2025-04-26T11:27:21 | oeisdata/seq/A383/A383333.seq | f1fd4925a388a02c7c5cd10cbc4f9c95 |
A383334 | Square array read by antidiagonals: T(n,k) is the smallest positive weight of an n-tuple of nonnegative integers with a shortest vectorial addition chain of length k; n >= 1, k >= 0. | [
"1",
"2",
"1",
"3",
"2",
"1",
"5",
"3",
"2",
"1",
"7",
"4",
"3",
"2",
"1",
"11",
"6",
"4",
"3",
"2",
"1",
"19",
"8",
"5",
"4",
"3",
"2",
"1",
"29",
"12",
"7",
"5",
"4",
"3",
"2",
"1",
"47",
"20",
"9",
"6",
"5",
"4",
"3",
"2",
"1",
"71",
"29",
"13",
"8",
"6",
"5",
"4",
"3",
"2",
"1",
"127",
"44",
"20",
"10",
"7",
"6",
"5",
"4",
"3",
"2",
"1",
"191",
"70",
"30",
"14",
"9",
"7",
"6",
"5",
"4",
"3",
"2",
"1"
]
| [
"nonn",
"tabl"
]
| 6 | 1 | 2 | [
"A003064",
"A383332",
"A383333",
"A383334"
]
| null | Pontus von Brömssen, Apr 26 2025 | 2025-04-26T11:27:09 | oeisdata/seq/A383/A383334.seq | b50fc348c520ab48d9a495c02d5b2557 |
A383335 | Length of shortest addition-multiplication-exponentiation chain for n. | [
"0",
"1",
"2",
"2",
"3",
"3",
"4",
"3",
"3",
"4",
"4",
"4",
"5",
"5",
"4",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"4",
"4",
"5",
"3",
"4",
"4",
"4",
"5",
"4",
"5",
"5",
"5",
"4",
"5",
"5",
"5",
"5",
"6",
"5",
"6",
"6",
"5",
"6",
"6",
"5",
"5",
"5",
"6",
"6",
"6",
"4",
"5",
"5",
"5",
"5",
"6",
"5",
"6",
"6",
"6",
"4",
"5",
"5",
"5",
"5",
"6",
"5",
"6",
"5",
"6",
"6",
"5",
"6",
"6",
"6",
"7",
"5",
"4",
"5",
"5",
"5",
"5",
"6",
"5"
]
| [
"nonn"
]
| 9 | 1 | 3 | [
"A003313",
"A128998",
"A230697",
"A383335",
"A383336",
"A383337"
]
| null | Pontus von Brömssen, Apr 27 2025 | 2025-05-02T12:11:45 | oeisdata/seq/A383/A383335.seq | 0cb40f99612bd9fb817b6a0350a0b202 |
A383336 | Smallest number with shortest addition-multiplication-exponentiation chain of length n. | [
"1",
"2",
"3",
"5",
"7",
"13",
"23",
"79",
"214",
"1418",
"5991"
]
| [
"nonn",
"hard",
"more"
]
| 11 | 0 | 2 | [
"A003064",
"A173566",
"A383001",
"A383142",
"A383335",
"A383336",
"A383337"
]
| null | Pontus von Brömssen, Apr 27 2025 | 2025-05-02T12:11:54 | oeisdata/seq/A383/A383336.seq | 267c93caefa99227c33b93b99e272ed1 |
A383337 | Number of integers with a shortest addition-multiplication-exponentiation chain of length n. | [
"1",
"1",
"2",
"7",
"45",
"485"
]
| [
"nonn",
"hard",
"more"
]
| 9 | 0 | 3 | [
"A003065",
"A383002",
"A383143",
"A383335",
"A383336",
"A383337"
]
| null | Pontus von Brömssen, Apr 27 2025 | 2025-05-02T12:11:50 | oeisdata/seq/A383/A383337.seq | 33e5d7e4f5967aa1a69c2e34fc62b394 |
A383338 | Square array read by antidiagonals, where the n-th row is the coordination sequence of a certain tiling with an n-dimensional analog of the X pentomino (or Greek cross), n >= 1. | [
"1",
"2",
"1",
"2",
"4",
"1",
"2",
"8",
"8",
"1",
"2",
"12",
"26",
"14",
"1",
"2",
"16",
"56",
"76",
"20",
"1",
"2",
"20",
"98",
"244",
"150",
"28",
"1",
"2",
"24",
"152",
"578",
"632",
"296",
"38",
"1",
"2",
"28",
"218",
"1138",
"1882",
"1680",
"558",
"48",
"1",
"2",
"32",
"296",
"1984",
"4492",
"6424",
"4336",
"896",
"60",
"1",
"2",
"36",
"386",
"3176",
"9230",
"18908",
"21782",
"8688",
"1422",
"74",
"1"
]
| [
"nonn",
"tabl"
]
| 5 | 1 | 2 | [
"A005897",
"A007980",
"A008574",
"A040000",
"A383338"
]
| null | Pontus von Brömssen, Apr 29 2025 | 2025-04-29T13:40:57 | oeisdata/seq/A383/A383338.seq | a7d299160a8a188879d013260a7846e5 |
A383339 | a(1)=1; thereafter if a(n-1) is a first occurrence, then a(n) is the number of first occurrences in the sequence thus far. Otherwise; a(n) is the number of terms that are the same distance away from their previous last occurrence as a(n-1). | [
"1",
"1",
"1",
"2",
"1",
"1",
"3",
"2",
"1",
"1",
"4",
"2",
"2",
"5",
"3",
"1",
"1",
"6",
"3",
"3",
"7",
"4",
"1",
"2",
"2",
"8",
"4",
"1",
"2",
"4",
"2",
"2",
"9",
"5",
"1",
"1",
"10",
"5",
"5",
"11",
"6",
"1",
"3",
"2",
"1",
"3",
"4",
"1",
"5",
"1",
"3",
"3",
"12",
"6",
"1",
"4",
"1",
"4",
"5",
"2",
"1",
"6",
"2",
"6",
"6",
"13",
"7",
"1",
"2",
"4",
"2",
"7",
"5",
"1",
"5",
"8",
"1",
"7",
"6",
"2",
"2",
"14",
"6",
"7",
"7",
"15"
]
| [
"nonn"
]
| 14 | 1 | 4 | [
"A383339",
"A383340",
"A383421"
]
| null | Neal Gersh Tolunsky, Apr 23 2025 | 2025-05-03T14:23:11 | oeisdata/seq/A383/A383339.seq | 00b5bc5248f28a3d3c619402a8068b40 |
A383340 | a(1)=1; thereafter if a(n-1) is a first occurrence, then a(n) is the number of first occurrences in the sequence thus far. Otherwise, a(n) is the number of terms that are the same number of distinct values away from their previous last occurrence as a(n-1). | [
"1",
"1",
"1",
"2",
"1",
"1",
"3",
"2",
"1",
"2",
"2",
"4",
"2",
"3",
"1",
"2",
"3",
"4",
"3",
"4",
"5",
"1",
"1",
"5",
"6",
"1",
"5",
"6",
"7",
"1",
"4",
"2",
"1",
"8",
"2",
"9",
"3",
"1",
"3",
"7",
"2",
"4",
"3",
"5",
"2",
"6",
"3",
"7",
"1",
"4",
"5",
"6",
"2",
"7",
"3",
"8",
"4",
"9",
"5",
"1",
"6",
"7",
"2",
"8",
"3",
"9",
"4",
"10",
"1",
"11",
"2",
"5",
"1",
"8",
"12",
"3",
"1",
"9",
"2",
"10",
"13",
"3",
"4",
"2",
"5",
"3"
]
| [
"nonn",
"look"
]
| 11 | 1 | 4 | [
"A383339",
"A383340"
]
| null | Neal Gersh Tolunsky, Apr 23 2025 | 2025-04-25T21:29:37 | oeisdata/seq/A383/A383340.seq | 207f2efc11d1a6fa33e750fe1642104e |
A383341 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k,j)/(n-j)!. | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"3",
"6",
"1",
"1",
"4",
"11",
"24",
"1",
"1",
"5",
"16",
"53",
"120",
"1",
"1",
"6",
"21",
"88",
"309",
"720",
"1",
"1",
"7",
"26",
"129",
"568",
"2119",
"5040",
"1",
"1",
"8",
"31",
"176",
"897",
"4288",
"16687",
"40320",
"1",
"1",
"9",
"36",
"229",
"1296",
"7317",
"36832",
"148329",
"362880",
"1",
"1",
"10",
"41",
"288",
"1765",
"11296",
"67365",
"354688",
"1468457",
"3628800"
]
| [
"nonn",
"tabl"
]
| 21 | 0 | 6 | [
"A000142",
"A000255",
"A052124",
"A295181",
"A383341",
"A383378",
"A383379",
"A383383"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T16:00:41 | oeisdata/seq/A383/A383341.seq | a7118f2ecc6932c8d78a281e29e03b93 |
A383342 | Lexicographically earliest infinite sequence of distinct positive integers such that the number following any consecutive pair x, y of terms is the smallest novel number divisible by R(x,y) = rad(x*y)/rad(gcd(x,y)). | [
"1",
"2",
"4",
"3",
"6",
"8",
"9",
"12",
"10",
"15",
"18",
"20",
"30",
"21",
"70",
"60",
"42",
"35",
"90",
"84",
"105",
"40",
"126",
"210",
"5",
"168",
"420",
"25",
"252",
"630",
"45",
"14",
"840",
"75",
"28",
"1050",
"120",
"7",
"1260",
"150",
"49",
"1470",
"180",
"56",
"315",
"240",
"98",
"525",
"270",
"112",
"735",
"300",
"140",
"63",
"330",
"770",
"147",
"660",
"1540",
"189"
]
| [
"nonn"
]
| 26 | 1 | 2 | [
"A002110",
"A005117",
"A007947",
"A362855",
"A368133",
"A369825",
"A383342"
]
| null | David James Sycamore and Michael De Vlieger, Apr 22 2025 | 2025-06-21T19:58:32 | oeisdata/seq/A383/A383342.seq | 46a4f50ade4c01794c4a1e407a34e3fb |
A383343 | a(n) = 3^n - 3*binomial(n,3) - 3*binomial(n,2) - 2*n - 1. | [
"0",
"0",
"1",
"8",
"42",
"172",
"611",
"2004",
"6292",
"19304",
"58533",
"176464",
"530558",
"1593204",
"4781575",
"14347196",
"43044648",
"129137680",
"387417545",
"1162258008",
"3486780370",
"10460348540",
"31381054251",
"94143172708",
"282429529532",
"847288601592",
"2541865819501",
"7625597475104",
"22876792443942",
"68630377352644",
"205891132081103"
]
| [
"nonn",
"easy"
]
| 15 | 0 | 4 | [
"A127873",
"A383343"
]
| null | Enrique Navarrete, Apr 23 2025 | 2025-05-01T18:15:24 | oeisdata/seq/A383/A383343.seq | 24dc557de35b0bb9a2ca009407ce39eb |
A383344 | Expansion of e.g.f. exp(-4*x) / (1-x)^4. | [
"1",
"0",
"4",
"8",
"72",
"416",
"3520",
"31104",
"316288",
"3525632",
"43117056",
"572195840",
"8191304704",
"125761056768",
"2060841582592",
"35894401335296",
"662066514984960",
"12890305925218304",
"264155723747688448",
"5682905054074109952",
"128051031032232411136",
"3015653024970577018880"
]
| [
"nonn",
"easy"
]
| 16 | 0 | 3 | [
"A000166",
"A087981",
"A088991",
"A137775",
"A295181",
"A381504",
"A383344"
]
| null | Seiichi Manyama, Apr 23 2025 | 2025-04-25T12:10:52 | oeisdata/seq/A383/A383344.seq | 412bee9ba9c2e0f26118118ec629a1f8 |
A383345 | Number of uniquely solveable n X 2 nonograms (hanjie). | [
"1",
"4",
"14",
"52",
"210",
"816",
"3206",
"12536",
"48962",
"191226",
"746456",
"2913544",
"11371040",
"44376798",
"173181564",
"675834086",
"2637392942",
"10292179494",
"40164144690",
"156736057740",
"611644171812",
"2386868430698",
"9314465669046"
]
| [
"nonn",
"hard"
]
| 21 | 0 | 2 | [
"A242876",
"A383345",
"A384764"
]
| null | Bertram Felgenhauer, Jun 11 2025 | 2025-06-17T22:46:14 | oeisdata/seq/A383/A383345.seq | a81db1934b0c01abdedf289bacf9c294 |
A383346 | Representation of n in rational base 3/2. | [
"0",
"2",
"21",
"210",
"212",
"2101",
"2120",
"2122",
"21011",
"21200",
"21202",
"21221",
"210110",
"210112",
"212001",
"212020",
"212022",
"212211",
"2101100",
"2101102",
"2101121",
"2120010",
"2120012",
"2120201",
"2120220",
"2120222",
"2122111",
"21011000",
"21011002",
"21011021",
"21011210",
"21011212",
"21200101",
"21200120"
]
| [
"nonn",
"base"
]
| 16 | 0 | 2 | [
"A024629",
"A383346"
]
| null | Michel Marcus, Apr 24 2025 | 2025-04-24T06:48:18 | oeisdata/seq/A383/A383346.seq | cd1ea2364ad20c727fee2687d48c8272 |
A383347 | Numbers that have the same set of digits as the sum of the cubes of their digits. | [
"0",
"1",
"135",
"137",
"153",
"173",
"307",
"315",
"317",
"351",
"370",
"371",
"407",
"470",
"513",
"531",
"703",
"704",
"713",
"730",
"731",
"740",
"3007",
"3070",
"3700",
"4007",
"4070",
"4700",
"7003",
"7004",
"7030",
"7040",
"7300",
"7400",
"11112",
"11113",
"11121",
"11131",
"11211",
"11311",
"12111",
"12599",
"12959",
"12995",
"13111",
"15299"
]
| [
"nonn",
"base"
]
| 22 | 1 | 3 | [
"A046197",
"A055012",
"A249515",
"A383347"
]
| null | Jean-Marc Rebert, Apr 24 2025 | 2025-05-01T19:44:39 | oeisdata/seq/A383/A383347.seq | 523846b1f1dea1d77e4db46a9c41d9af |
A383348 | Triangle related to the partitions of n in three colors, read by rows. | [
"9",
"6",
"243",
"1",
"243",
"6561",
"0",
"90",
"8748",
"177147",
"0",
"15",
"4860",
"295245",
"4782969",
"0",
"1",
"1458",
"216513",
"9565938",
"129140163",
"0",
"0",
"252",
"91854",
"8680203",
"301327047",
"3486784401",
"0",
"0",
"24",
"24786",
"4723920",
"325241892",
"9298091736",
"94143178827",
"0",
"0",
"1",
"4374",
"1712421",
"215233605",
"11622614670",
"282429536481",
"2541865828329"
]
| [
"nonn",
"tabl"
]
| 5 | 1 | 1 | [
"A013733",
"A383348"
]
| null | Michel Marcus, Apr 24 2025 | 2025-04-24T13:21:09 | oeisdata/seq/A383/A383348.seq | 15c5842dbf4623009a48c78dc38dba2a |
A383349 | Numbers that have the same set of digits as the sum of 4th powers of its digits. | [
"0",
"1",
"488",
"668",
"686",
"848",
"866",
"884",
"1346",
"1364",
"1436",
"1463",
"1634",
"1643",
"2088",
"2556",
"2565",
"2655",
"2808",
"2880",
"3146",
"3164",
"3416",
"3461",
"3614",
"3641",
"4136",
"4163",
"4316",
"4361",
"4479",
"4497",
"4613",
"4631",
"4749",
"4794",
"4947",
"4974",
"5256",
"5265",
"5526",
"5562",
"5625",
"5652",
"6134",
"6143"
]
| [
"nonn",
"base"
]
| 25 | 1 | 3 | [
"A003132",
"A052455",
"A055013",
"A249515",
"A383328",
"A383347",
"A383349"
]
| null | Jean-Marc Rebert, Apr 24 2025 | 2025-05-02T17:39:34 | oeisdata/seq/A383/A383349.seq | 840f9213f2d84570dab1c2a9e364ec94 |
A383350 | a(n) is the smallest integer k such that there are k+i groups of order a(n)+i, for i=1,...,n. | [
"0",
"2",
"72",
"72",
"2814120",
"29436120"
]
| [
"nonn",
"fini",
"more"
]
| 21 | 1 | 2 | [
"A373648",
"A373649",
"A373650",
"A381335",
"A383350"
]
| null | Robin Jones, Apr 24 2025 | 2025-06-02T17:59:45 | oeisdata/seq/A383/A383350.seq | b3d97be069799ea782b50012b3072d98 |
A383351 | Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into k parts where 0 <= k <= n, and each part is one of 2 kinds. | [
"1",
"0",
"4",
"0",
"6",
"10",
"0",
"8",
"24",
"20",
"0",
"10",
"53",
"60",
"35",
"0",
"12",
"88",
"164",
"120",
"56",
"0",
"14",
"144",
"348",
"370",
"210",
"84",
"0",
"16",
"208",
"672",
"904",
"700",
"336",
"120",
"0",
"18",
"299",
"1174",
"1998",
"1870",
"1183",
"504",
"165",
"0",
"20",
"400",
"1952",
"3952",
"4524",
"3360",
"1848",
"720",
"220"
]
| [
"nonn",
"tabl"
]
| 9 | 0 | 3 | [
"A000292",
"A008284",
"A382339",
"A382342",
"A383351",
"A383352"
]
| null | Peter Dolland, Apr 24 2025 | 2025-05-01T18:42:46 | oeisdata/seq/A383/A383351.seq | 9266be9e6de9058863eecdae96111401 |
A383352 | Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into at most k parts where 0 <= k <= n, and each part is one of 2 kinds. | [
"1",
"0",
"4",
"0",
"6",
"16",
"0",
"8",
"32",
"52",
"0",
"10",
"63",
"123",
"158",
"0",
"12",
"100",
"264",
"384",
"440",
"0",
"14",
"158",
"506",
"876",
"1086",
"1170",
"0",
"16",
"224",
"896",
"1800",
"2500",
"2836",
"2956",
"0",
"18",
"317",
"1491",
"3489",
"5359",
"6542",
"7046",
"7211",
"0",
"20",
"420",
"2372",
"6324",
"10848",
"14208",
"16056",
"16776",
"16996"
]
| [
"nonn",
"tabl"
]
| 9 | 0 | 3 | [
"A026820",
"A381891",
"A381895",
"A383351",
"A383352"
]
| null | Peter Dolland, Apr 24 2025 | 2025-05-01T18:41:31 | oeisdata/seq/A383/A383352.seq | 23fc6e908c924747193d664f4a48118b |
A383353 | Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n 2-colored objects are distributed into k containers of two kinds. Containers may be left empty. | [
"1",
"2",
"0",
"3",
"4",
"0",
"4",
"8",
"6",
"0",
"5",
"12",
"22",
"8",
"0",
"6",
"16",
"38",
"40",
"10",
"0",
"7",
"20",
"54",
"92",
"73",
"12",
"0",
"8",
"24",
"70",
"144",
"196",
"112",
"14",
"0",
"9",
"28",
"86",
"196",
"354",
"376",
"172",
"16",
"0",
"10",
"32",
"102",
"248",
"512",
"760",
"678",
"240",
"18",
"0",
"11",
"36",
"118",
"300",
"670",
"1200",
"1554",
"1136",
"335",
"20",
"0"
]
| [
"nonn",
"tabl"
]
| 20 | 0 | 2 | [
"A026820",
"A161870",
"A278710",
"A381891",
"A382345",
"A383351",
"A383352",
"A383353"
]
| null | Peter Dolland, Apr 24 2025 | 2025-05-08T03:16:39 | oeisdata/seq/A383/A383353.seq | 363989ccaee64df79c634fef05e4bb83 |
A383354 | Squares of plane partition numbers. | [
"1",
"1",
"9",
"36",
"169",
"576",
"2304",
"7396",
"25600",
"79524",
"250000",
"737881",
"2187441",
"6175225",
"17363889",
"47320641",
"127622209",
"336135556",
"876219201",
"2240128900",
"5666777284",
"14112014436",
"34772925625",
"84554753089",
"203576025636",
"484461937089",
"1142215875025",
"2665572144964",
"6166451098756"
]
| [
"nonn"
]
| 5 | 0 | 3 | [
"A000219",
"A001255",
"A304990",
"A383354"
]
| null | Ilya Gutkovskiy, Apr 24 2025 | 2025-04-24T08:54:09 | oeisdata/seq/A383/A383354.seq | 25971ae9122c4bb82756705df33f49af |
A383355 | Expansion of 1/sqrt( (1-x) * (1-x-4*x^4) ). | [
"1",
"1",
"1",
"1",
"3",
"5",
"7",
"9",
"17",
"31",
"51",
"77",
"129",
"227",
"391",
"641",
"1067",
"1829",
"3157",
"5351",
"9033",
"15399",
"26471",
"45349",
"77387",
"132293",
"227153",
"390379",
"670013",
"1149819",
"1976595",
"3402137",
"5856157",
"10079327",
"17358491",
"29918957",
"51590271",
"88971985",
"153484661",
"264898703",
"457374335"
]
| [
"nonn"
]
| 24 | 0 | 5 | [
"A026569",
"A217615",
"A360310",
"A383355"
]
| null | Seiichi Manyama, May 01 2025 | 2025-05-02T04:25:04 | oeisdata/seq/A383/A383355.seq | 058941f0e54accef4705b5e61cdab0ef |
A383356 | a(n) = index of the smallest nonagonal number having the same digital sum as the n-th triangular number. | [
"1",
"6",
"3",
"1",
"3",
"6",
"4",
"2",
"2",
"4",
"5",
"12",
"4",
"3",
"6",
"4",
"2",
"2",
"4",
"6",
"3",
"4",
"12",
"6",
"4",
"2",
"11",
"4",
"5",
"12",
"13",
"12",
"5",
"13",
"2",
"11",
"4",
"5",
"12",
"4",
"12",
"5",
"13",
"11",
"2",
"4",
"5",
"12",
"4",
"12",
"5",
"13",
"2",
"11",
"4",
"23",
"12",
"4",
"12",
"5",
"13",
"11",
"2",
"4",
"5",
"3",
"13",
"12",
"5",
"13",
"11",
"11",
"4",
"23",
"12",
"13",
"3",
"5",
"4",
"2",
"2",
"4"
]
| [
"nonn",
"easy",
"base"
]
| 27 | 1 | 2 | [
"A000217",
"A001106",
"A004157",
"A007953",
"A383356"
]
| null | Claude H. R. Dequatre, Apr 24 2025 | 2025-05-20T15:48:15 | oeisdata/seq/A383/A383356.seq | 1ae3cf8375d77a17360a8fcb7c956959 |
A383357 | Integers m such that R(Sum_{k=1..m} (10^k+k)) is prime, where R is the digit reversal function A004086. | [
"1",
"2",
"4",
"20",
"34",
"35",
"77",
"158",
"181",
"401",
"973",
"3517",
"6818"
]
| [
"nonn",
"base",
"more"
]
| 25 | 1 | 2 | [
"A000040",
"A004086",
"A073805",
"A383357"
]
| null | Claude H. R. Dequatre, Apr 24 2025 | 2025-05-09T18:48:55 | oeisdata/seq/A383/A383357.seq | 5e0586087048cbea6e5856c64567c680 |
A383358 | Numbers k >= 2 such that (S(k) - I(k)) / (k - 1) is an integer, where S(k) = Sum_{i=2..k} A007918(i) and I(k) = Sum_{i=2..k} A007917(i). | [
"2",
"3",
"16",
"21",
"23",
"39",
"49",
"381",
"396",
"24963",
"39762",
"40101",
"40276",
"4431583",
"21553054",
"36244531",
"2183957515",
"2183971285",
"2183971945",
"3636636400",
"3636636411",
"6063744535",
"16846463635",
"28070695902",
"215867952637",
"359222008925",
"597739400517",
"597739400913",
"597739426757"
]
| [
"nonn"
]
| 33 | 1 | 1 | [
"A007917",
"A007918",
"A383358"
]
| null | Ctibor O. Zizka, Apr 24 2025 | 2025-05-10T08:59:47 | oeisdata/seq/A383/A383358.seq | e65c924238759c36b4e4d7ab9a498351 |
A383359 | Integers m such that m^4 is the sum of squares of two or more consecutive positive integers. | [
"13",
"295",
"330",
"364",
"1085",
"5005",
"6305",
"15516",
"415151",
"1990368",
"34011252",
"42016497",
"79565281",
"139107722",
"254801664",
"418093065",
"667378972",
"1214995500",
"3609736702",
"4353556896"
]
| [
"nonn",
"more"
]
| 80 | 1 | 1 | [
"A000330",
"A097812",
"A189173",
"A383359",
"A383367",
"A383653"
]
| null | Zhining Yang, May 01 2025 | 2025-05-12T22:32:43 | oeisdata/seq/A383/A383359.seq | bddfc12baa0b6648ba7ba58fef1157a9 |
A383360 | Numbers k that have an i-th smallest divisor d_i(k) for which i*d_i(k) = k. | [
"1",
"4",
"15",
"20",
"21",
"27",
"28",
"30",
"32",
"33",
"39",
"40",
"44",
"48",
"51",
"52",
"57",
"68",
"69",
"76",
"84",
"87",
"92",
"93",
"111",
"112",
"116",
"123",
"124",
"129",
"141",
"144",
"148",
"159",
"160",
"164",
"172",
"175",
"177",
"183",
"188",
"200",
"201",
"210",
"212",
"213",
"219",
"224",
"236",
"237",
"240",
"244",
"245",
"249",
"267",
"268",
"270",
"275"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 2 | [
"A027750",
"A383360",
"A383361",
"A383362"
]
| null | Felix Huber, Apr 26 2025 | 2025-05-02T19:33:44 | oeisdata/seq/A383/A383360.seq | a8450e8812bb9bce210f206d7c080da1 |
A383361 | a(n) is the i-th smallest divisor d_i of A383360(n) for which i*d_i = A383360(n). | [
"1",
"2",
"5",
"5",
"7",
"9",
"7",
"6",
"8",
"11",
"13",
"8",
"11",
"8",
"17",
"13",
"19",
"17",
"23",
"19",
"12",
"29",
"23",
"31",
"37",
"16",
"29",
"41",
"31",
"43",
"47",
"16",
"37",
"53",
"20",
"41",
"43",
"35",
"59",
"61",
"47",
"25",
"67",
"21",
"53",
"71",
"73",
"28",
"59",
"79",
"20",
"61",
"49",
"83",
"89",
"67",
"27",
"55",
"28",
"71",
"97",
"73",
"101",
"103",
"79",
"107",
"65",
"109"
]
| [
"nonn",
"easy"
]
| 5 | 1 | 2 | [
"A383360",
"A383361",
"A383362"
]
| null | Felix Huber, May 03 2025 | 2025-05-08T18:08:27 | oeisdata/seq/A383/A383361.seq | 7a101deacb7c90b014a8a939ece131f9 |
A383362 | a(n) is the number i for which i*d_i = A383360(n), where d_i is i-th smallest divisor d_i of A383360(n). | [
"1",
"2",
"3",
"4",
"3",
"3",
"4",
"5",
"4",
"3",
"3",
"5",
"4",
"6",
"3",
"4",
"3",
"4",
"3",
"4",
"7",
"3",
"4",
"3",
"3",
"7",
"4",
"3",
"4",
"3",
"3",
"9",
"4",
"3",
"8",
"4",
"4",
"5",
"3",
"3",
"4",
"8",
"3",
"10",
"4",
"3",
"3",
"8",
"4",
"3",
"12",
"4",
"5",
"3",
"3",
"4",
"10",
"5",
"10",
"4",
"3",
"4",
"3",
"3",
"4",
"3",
"5",
"3",
"4",
"3",
"4",
"3",
"4",
"8",
"3",
"10",
"4",
"3",
"4",
"3",
"5",
"4",
"4",
"7",
"3",
"4"
]
| [
"nonn",
"easy"
]
| 5 | 1 | 2 | [
"A383360",
"A383361",
"A383362"
]
| null | Felix Huber, May 03 2025 | 2025-05-08T18:09:01 | oeisdata/seq/A383/A383362.seq | 6b6cd195f008f80c0e4c2c24c58b6e01 |
A383363 | Composite numbers k all of whose proper divisors have binary weights that are not equal to the binary weight of k. | [
"15",
"25",
"27",
"39",
"51",
"55",
"57",
"63",
"69",
"77",
"81",
"85",
"87",
"91",
"95",
"99",
"111",
"115",
"117",
"119",
"121",
"123",
"125",
"141",
"143",
"145",
"147",
"159",
"169",
"171",
"175",
"177",
"183",
"185",
"187",
"201",
"203",
"205",
"207",
"209",
"213",
"215",
"219",
"221",
"231",
"235",
"237",
"243",
"245",
"247",
"249",
"253",
"255",
"261",
"265",
"275"
]
| [
"nonn",
"easy",
"base"
]
| 12 | 1 | 1 | [
"A000120",
"A325571",
"A380844",
"A383363",
"A383364",
"A383365"
]
| null | Amiram Eldar, Apr 24 2025 | 2025-04-24T12:30:29 | oeisdata/seq/A383/A383363.seq | ddf7d13d2bb6910a1d0f0f42d70511ef |
A383364 | a(n) is the least number k with exactly n proper divisors, where all of them have binary weights that are different from the binary weight of k. | [
"1",
"3",
"25",
"15",
"81",
"63",
"15625",
"231",
"1225",
"405",
"59049",
"495",
"531441",
"5103",
"2025",
"1485",
"33232930569601",
"2475",
"3814697265625",
"6237",
"18225",
"295245",
"31381059609",
"4095",
"1500625",
"2657205",
"81225",
"25515",
"22876792454961",
"14175",
"931322574615478515625",
"21735",
"31236921",
"301327047"
]
| [
"nonn",
"base"
]
| 7 | 0 | 2 | [
"A000120",
"A032741",
"A380844",
"A383363",
"A383364",
"A383365"
]
| null | Amiram Eldar, Apr 24 2025 | 2025-04-24T12:32:07 | oeisdata/seq/A383/A383364.seq | e634c8c9dc61d4effc0768f805ec56b7 |
A383365 | Numbers k with a record number of proper divisors, where all of them have binary weights that are different from the binary weight of k. | [
"1",
"3",
"15",
"63",
"231",
"405",
"495",
"1485",
"2475",
"4095",
"14175",
"21735",
"24255",
"31185",
"79695",
"190575",
"218295",
"239085",
"294525",
"904365",
"1276275",
"2789325",
"3586275",
"4937625",
"6912675",
"10072755",
"17342325",
"17972955",
"26801775",
"46621575",
"80405325",
"192567375",
"326351025",
"333107775",
"654729075"
]
| [
"nonn",
"base"
]
| 13 | 1 | 2 | [
"A000120",
"A032741",
"A380844",
"A383363",
"A383364",
"A383365"
]
| null | Amiram Eldar, Apr 24 2025 | 2025-04-25T03:10:22 | oeisdata/seq/A383/A383365.seq | edfd5ac153f3baed872ef143e6d588cb |
A383366 | Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k. | [
"4400700",
"12963816",
"29878920",
"38353800",
"44973480",
"51894304",
"52208520",
"67849656",
"73134432",
"81685080",
"100711656",
"103759848",
"105096096",
"113044896",
"113161320",
"114608032",
"128639034",
"135465912",
"135559080",
"136786200",
"139242740",
"148758120",
"156686088",
"159628350",
"171090416"
]
| [
"nonn",
"base"
]
| 8 | 1 | 1 | [
"A380845",
"A380846",
"A380849",
"A380850",
"A383366"
]
| null | Amiram Eldar, Apr 24 2025 | 2025-04-24T13:20:53 | oeisdata/seq/A383/A383366.seq | 0d3a64d9f7849a85a72c5eb7bd84ceaa |
A383367 | a(n) is the least integer k such that A383359(n)^4 can be expressed as a sum of squares of k consecutive integers. | [
"2",
"177",
"352",
"1536",
"2401",
"40898",
"60625",
"185761",
"19512097",
"47761921",
"1224370081",
"7957888849",
"10842382346",
"11474926944",
"12230369281",
"190412616875",
"497818686976",
"72899460001",
"1384334025217",
"313455536641"
]
| [
"nonn",
"more"
]
| 63 | 1 | 1 | [
"A001032",
"A189173",
"A383359",
"A383367",
"A383654"
]
| null | Zhining Yang, May 01 2025 | 2025-05-13T08:55:00 | oeisdata/seq/A383/A383367.seq | 0c16a697c223f1923d280419db86b602 |
A383368 | Number of intercalates in pine Latin squares of order 2n. | [
"1",
"12",
"27",
"80",
"125",
"252",
"343",
"576",
"729",
"1100",
"1331",
"1872",
"2197",
"2940",
"3375",
"4352",
"4913",
"6156",
"6859",
"8400",
"9261",
"11132",
"12167",
"14400",
"15625"
]
| [
"nonn",
"easy"
]
| 6 | 1 | 2 | [
"A002860",
"A016755",
"A089207",
"A092237",
"A099721",
"A338522",
"A383368"
]
| null | Eduard I. Vatutin, Apr 24 2025 | 2025-04-29T13:21:04 | oeisdata/seq/A383/A383368.seq | 6d73fac7ed2a85f4ed21c2f9e887ce39 |
A383369 | Population of elementary triangular automaton rule 90 at generation n, starting from a lone 1 cell at generation 0. | [
"1",
"4",
"6",
"12",
"6",
"24",
"24",
"48",
"6",
"24",
"36",
"72",
"24",
"96",
"96",
"192",
"6",
"24",
"36",
"72",
"36",
"144",
"144",
"288",
"24",
"96",
"144",
"288",
"96",
"384",
"384",
"768",
"6",
"24",
"36",
"72",
"36",
"144",
"144",
"288",
"36",
"144",
"216",
"432",
"144",
"576",
"576",
"1152",
"24",
"96",
"144",
"288",
"144",
"576",
"576",
"1152",
"96",
"384",
"576",
"1152",
"384",
"1536",
"1536",
"3072",
"6"
]
| [
"nonn"
]
| 20 | 0 | 2 | [
"A246035",
"A247640",
"A275667",
"A383369"
]
| null | Paul Cousin, Apr 24 2025 | 2025-05-14T01:22:34 | oeisdata/seq/A383/A383369.seq | 8cfa64c2f6870a2775108577483e1e60 |
A383370 | Number of partial orders on {1,2,...,n} that are contained in the usual linear order, whose dual is given by the relabelling k -> n+1-k. | [
"1",
"1",
"2",
"3",
"12",
"25",
"172",
"482",
"5318",
"19675",
"333768",
"1609846",
"40832554",
"254370640",
"9459449890",
"75546875426",
"4061670272088"
]
| [
"nonn",
"hard",
"more"
]
| 14 | 0 | 3 | [
"A006455",
"A037223",
"A383370"
]
| null | Ludovic Schwob, Apr 24 2025 | 2025-05-02T12:50:40 | oeisdata/seq/A383/A383370.seq | 92cdd2f810f628ed7582a0777a9965f2 |
A383371 | Primes whose decimal digits are integer powers of 2. | [
"2",
"11",
"41",
"181",
"211",
"241",
"281",
"421",
"811",
"821",
"881",
"1181",
"1481",
"1811",
"2111",
"2141",
"2221",
"2281",
"2411",
"2441",
"4111",
"4211",
"4241",
"4421",
"4441",
"4481",
"8111",
"8221",
"8821",
"11411",
"11821",
"12211",
"12241",
"12281",
"12421",
"12821",
"12841",
"14221",
"14281",
"14411",
"14821",
"18121",
"18181",
"18211"
]
| [
"nonn",
"base",
"easy"
]
| 12 | 1 | 1 | [
"A000040",
"A028846",
"A066593",
"A173580",
"A260267",
"A260270",
"A381259",
"A383371"
]
| null | Jason Bard, Apr 24 2025 | 2025-04-25T15:26:14 | oeisdata/seq/A383/A383371.seq | f6a31f18e5dc4c860ff37d4885af6287 |
A383372 | Number of centrally symmetric Baxter permutations of length n. | [
"1",
"1",
"2",
"2",
"6",
"8",
"26",
"38",
"130",
"202",
"712",
"1152",
"4144",
"6904",
"25202",
"42926",
"158442",
"274586",
"1022348",
"1796636",
"6736180",
"11974360",
"45154320",
"81040720",
"307069360",
"555620080",
"2113890560",
"3851817920",
"14705955008",
"26960013552",
"103245460226"
]
| [
"nonn"
]
| 7 | 0 | 3 | [
"A001181",
"A383372"
]
| null | Ludovic Schwob, Apr 24 2025 | 2025-04-25T12:29:41 | oeisdata/seq/A383/A383372.seq | 006cf76b568ef1cc48cf22aa924cdcc3 |
A383373 | G.f. A(x) satisfies A(x/A(x)) = sqrt( A(x)/(1-x) ). | [
"1",
"1",
"3",
"17",
"144",
"1578",
"20667",
"309537",
"5163546",
"94322686",
"1865068734",
"39590596392",
"896665516139",
"21564504636677",
"548607953848461",
"14717355393674499",
"415221091369972818",
"12291288050720271156",
"380962114204256259227",
"12340036749852846376091",
"417016745706666405878133",
"14679158494566139185152215"
]
| [
"nonn"
]
| 12 | 0 | 3 | [
"A383373",
"A383374",
"A383375"
]
| null | Paul D. Hanna, Apr 24 2025 | 2025-04-26T16:35:00 | oeisdata/seq/A383/A383373.seq | a4c79922ea3130b04af30e83e6946d7e |
A383374 | G.f. A(x) satisfies A(x*A(x)) = A(x)^2/(1 + x*A(x)^3). | [
"1",
"1",
"4",
"27",
"249",
"2844",
"38075",
"577673",
"9717329",
"178553807",
"3546288227",
"75545107370",
"1716015649915",
"41373846407013",
"1054899166283981",
"28355559280197387",
"801428339782456817",
"23762420081295087151",
"737605545429659396990",
"23925256916784635157871",
"809554335031496855685141",
"28530240300376524015778791"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A383373",
"A383374",
"A383375"
]
| null | Paul D. Hanna, Apr 24 2025 | 2025-04-26T16:35:25 | oeisdata/seq/A383/A383374.seq | 3a404c6a4427b2640e200e82c487d41d |
A383375 | G.f. A(x) satisfies [x^n] 1/A(x)^(n+1) = [x^n] 1/A(x)^(2*n+2) for n > 1, with A'(0) = 1. | [
"1",
"1",
"5",
"40",
"414",
"5100",
"71678",
"1121273",
"19216748",
"356943612",
"7130028364",
"152267876318",
"3460605407367",
"83386349441711",
"2123571541190759",
"57000879370143239",
"1608746374389534964",
"47636112766991357023",
"1476931395095225314527",
"47858488423054347510410",
"1618037571915550646760348",
"56984337381224407981871465"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A383373",
"A383374",
"A383375"
]
| null | Paul D. Hanna, Apr 24 2025 | 2025-04-26T16:33:42 | oeisdata/seq/A383/A383375.seq | 2b6d720514248d0a53c921405cd6f5ff |
A383376 | G.f. satisfies A(x) = Sum_{n>=1} A(x^3)^n / A(x^(2*n)), with A(0) = 0 and A'(0) = 1. | [
"1",
"1",
"0",
"2",
"4",
"2",
"2",
"8",
"8",
"14",
"22",
"26",
"53",
"70",
"89",
"149",
"220",
"291",
"441",
"674",
"926",
"1411",
"2030",
"2870",
"4399",
"6293",
"8928",
"13395",
"19487",
"27757",
"41125",
"59858",
"85792",
"126621",
"183878",
"264811",
"389217",
"565465",
"816552",
"1195594",
"1738434",
"2515324",
"3674241",
"5342577",
"7742504",
"11293759",
"16420065",
"23821180"
]
| [
"nonn"
]
| 14 | 1 | 4 | null | null | Paul D. Hanna, May 15 2025 | 2025-05-16T02:11:17 | oeisdata/seq/A383/A383376.seq | 70b1089112b911380b89438b221d6040 |
A383377 | G.f. satisfies A(x) = Sum_{n>=0} x^n * abs(1/A(x)^n), where abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x). | [
"1",
"1",
"2",
"4",
"6",
"6",
"20",
"46",
"92",
"138",
"276",
"676",
"1476",
"3332",
"5670",
"11574",
"27262",
"61952",
"135354",
"222848",
"549226",
"1319282",
"3068894",
"6449978",
"10987080",
"27779594",
"67311236",
"157054012",
"313271538",
"579149708",
"1452091208",
"3548249288",
"7866783754",
"16098393372",
"32442930610",
"78084645030",
"180671169756"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A382122",
"A383377"
]
| null | Paul D. Hanna, May 15 2025 | 2025-05-18T03:20:04 | oeisdata/seq/A383/A383377.seq | 994287ccbb1dceb544165ce686735ffa |
A383378 | Expansion of e.g.f. exp(-3*x) / (1-x)^4. | [
"1",
"1",
"5",
"21",
"129",
"897",
"7317",
"67365",
"692577",
"7849953",
"97199109",
"1304688789",
"18863836065",
"292198665249",
"4826470920021",
"84669407740773",
"1571901715253313",
"30786460730863425",
"634323280633460613",
"13714611211502376597",
"310448651226154786881",
"7342298348439393120321"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 3 | [
"A000261",
"A010843",
"A137775",
"A383341",
"A383344",
"A383378",
"A383380",
"A383382"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T12:00:22 | oeisdata/seq/A383/A383378.seq | a83c849277b3e4763f18c52dddfcfb8e |
A383379 | a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * binomial(n+k,n)/(n-k)!. | [
"1",
"1",
"4",
"21",
"176",
"1765",
"22464",
"331177",
"5692672",
"110286441",
"2394828800",
"57389046781",
"1507401363456",
"43018690418509",
"1326170009092096",
"43905977120300625",
"1553942522589937664",
"58544111242378404433",
"2339326913228257886208",
"98816004834223734304741"
]
| [
"nonn"
]
| 11 | 0 | 3 | [
"A295182",
"A383341",
"A383379"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T11:42:51 | oeisdata/seq/A383/A383379.seq | d33752e077e32b764e1bc3b23acac9f5 |
A383380 | Expansion of e.g.f. exp(-2*x) / (1-x)^4. | [
"1",
"2",
"8",
"40",
"248",
"1808",
"15136",
"142784",
"1496960",
"17254144",
"216740864",
"2945973248",
"43065951232",
"673626675200",
"11224114860032",
"198447384666112",
"3710328985124864",
"73136238041563136",
"1515739708283944960",
"32947698735175172096",
"749499782353468522496",
"17806903161183314378752"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 2 | [
"A000023",
"A000255",
"A000261",
"A052124",
"A087981",
"A383344",
"A383378",
"A383380",
"A383381"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T11:49:10 | oeisdata/seq/A383/A383380.seq | 74fc9ec2b1e70ea1cecff9c0c775be90 |
A383381 | Expansion of e.g.f. exp(-2*x) / (1-x)^5. | [
"1",
"3",
"14",
"82",
"576",
"4688",
"43264",
"445632",
"5062016",
"62812288",
"844863744",
"12239474432",
"189939644416",
"3142842052608",
"55223903596544",
"1026805938614272",
"20139224002953216",
"415503046091767808",
"8994794537935765504",
"203848794955954716672",
"4826475681472562855936",
"119162892472107134353408"
]
| [
"nonn",
"easy"
]
| 13 | 0 | 2 | [
"A000023",
"A001909",
"A052124",
"A087981",
"A383380",
"A383381",
"A383382",
"A383383",
"A383384"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T12:02:53 | oeisdata/seq/A383/A383381.seq | 885c07014f564fb0fab36c0db708e3ad |
A383382 | Expansion of e.g.f. exp(-3*x) / (1-x)^5. | [
"1",
"2",
"9",
"48",
"321",
"2502",
"22329",
"223668",
"2481921",
"30187242",
"399071529",
"5694475608",
"87197543361",
"1425766728942",
"24787205125209",
"456477484618908",
"8875541469155841",
"181670665706512722",
"3904395263350689609",
"87898121215165479168",
"2068411075529464370241",
"50778930934558144895382"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 2 | [
"A001909",
"A010843",
"A137775",
"A383378",
"A383381",
"A383382",
"A383383",
"A383384"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T12:04:46 | oeisdata/seq/A383/A383382.seq | b25554adaf54f0cc1fb885fb3ed7d9d7 |
A383383 | Expansion of e.g.f. exp(-4*x) / (1-x)^5. | [
"1",
"1",
"6",
"26",
"176",
"1296",
"11296",
"110176",
"1197696",
"14304896",
"186166016",
"2620022016",
"39631568896",
"640971452416",
"11034441916416",
"201411030081536",
"3884642996289536",
"78929236862140416",
"1684881987266215936",
"37695662812132212736",
"881964287274876665856",
"21536903057742987001856"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 3 | [
"A001909",
"A383341",
"A383381",
"A383382",
"A383383",
"A383384"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T12:12:22 | oeisdata/seq/A383/A383383.seq | 9b0cba03cfcb3a5632c1c25916b2ad99 |
A383384 | Expansion of e.g.f. exp(-5*x) / (1-x)^5. | [
"1",
"0",
"5",
"10",
"105",
"620",
"5725",
"52950",
"571025",
"6686200",
"85871925",
"1193029250",
"17846277625",
"285737086500",
"4874590170125",
"88245858436750",
"1689282139310625",
"34088182903910000",
"723088091207873125",
"16083522103093616250",
"374280288623526655625",
"9093957982779894737500"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 3 | [
"A000166",
"A001909",
"A295181",
"A383381",
"A383382",
"A383383",
"A383384"
]
| null | Seiichi Manyama, Apr 24 2025 | 2025-04-25T12:07:48 | oeisdata/seq/A383/A383384.seq | 591a58aac8badc0374b2e9e87d72dce3 |
A383385 | Irregular triangle read by rows: T(n,k) is the number of non-isomorphic directed graphs reachable in k steps (and no fewer) by n agents using the LNS protocol (see A307085); n >= 1, 0 <= k <= A383387(n). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"5",
"6",
"1",
"1",
"2",
"6",
"18",
"41",
"28",
"1",
"1",
"2",
"7",
"23",
"97",
"353",
"676",
"367",
"22",
"2",
"1",
"1",
"2",
"7",
"24",
"113",
"608",
"3053",
"10791",
"19500",
"12625",
"2192",
"128",
"1",
"1",
"1",
"2",
"7",
"25",
"118",
"685",
"4438",
"28426",
"148891",
"525385",
"1012956",
"875486",
"290254",
"35413",
"1166",
"6"
]
| [
"nonn",
"tabf"
]
| 9 | 1 | 10 | [
"A307085",
"A383385",
"A383386",
"A383387",
"A383388"
]
| null | Pontus von Brömssen, May 06 2025 | 2025-05-20T08:55:11 | oeisdata/seq/A383/A383385.seq | c6c515d9db337bf147272e1e765c0a6b |
A383386 | Irregular triangle read by rows: T(n,k) is the number of non-isomorphic directed graphs reachable in k >= 0 steps (and no fewer) by n >= 1 agents using the ANY protocol (see A318154). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"5",
"7",
"1",
"1",
"2",
"6",
"19",
"46",
"36",
"1",
"1",
"2",
"7",
"24",
"103",
"395",
"850",
"518",
"34",
"5",
"1",
"1",
"2",
"7",
"25",
"119",
"656",
"3437",
"13155",
"26959",
"19958",
"3716",
"263",
"1",
"1",
"1",
"2",
"7",
"26",
"124",
"734",
"4865",
"32225",
"179804",
"702813",
"1550358",
"1546271",
"561917",
"70430",
"2223",
"4"
]
| [
"nonn",
"tabf"
]
| 9 | 1 | 10 | [
"A318154",
"A383385",
"A383386",
"A383387",
"A383389"
]
| null | Pontus von Brömssen, May 06 2025 | 2025-05-20T08:55:01 | oeisdata/seq/A383/A383386.seq | 114dcdda71cc965712ac260633d442f4 |
A383387 | Maximum number of steps needed to reach a reachable directed graph by n agents using the LNS protocol (see A307085). | [
"0",
"1",
"3",
"4",
"6",
"10",
"13",
"16"
]
| [
"nonn",
"more"
]
| 5 | 1 | 3 | [
"A307085",
"A318154",
"A383385",
"A383386",
"A383387"
]
| null | Pontus von Brömssen, May 06 2025 | 2025-05-07T10:46:52 | oeisdata/seq/A383/A383387.seq | e2b86dfd0b6369b067bd447638a2863d |
A383388 | Number of non-isomorphic directed graphs reachable in n steps (and no fewer) by at least 2*n agents using the LNS protocol (see A307085). | [
"1",
"1",
"2",
"7",
"25",
"120",
"709",
"4892",
"38551",
"338339",
"3261255"
]
| [
"nonn",
"more"
]
| 5 | 0 | 3 | [
"A307085",
"A383385",
"A383388",
"A383389"
]
| null | Pontus von Brömssen, May 06 2025 | 2025-05-07T10:47:02 | oeisdata/seq/A383/A383388.seq | 19f84e12e29390796b0288af3056acec |
A383389 | Number of non-isomorphic directed graphs reachable in n steps (and no fewer) by at least 2*n agents using the ANY protocol (see A318154). | [
"1",
"1",
"2",
"7",
"26",
"126",
"758",
"5326",
"42676",
"381551",
"3751542"
]
| [
"nonn",
"more"
]
| 4 | 0 | 3 | [
"A318154",
"A383386",
"A383388",
"A383389"
]
| null | Pontus von Brömssen, May 06 2025 | 2025-05-07T10:47:09 | oeisdata/seq/A383/A383389.seq | d3b3ac61b8da6d309f4eaa1458554311 |
A383390 | Numbers k such that k^2 and (k+1)^2 are both abundant numbers. | [
"104",
"495",
"584",
"735",
"944",
"1155",
"1364",
"1484",
"2144",
"2204",
"2415",
"2624",
"2924",
"2925",
"3135",
"3255",
"3794",
"3795",
"4304",
"4484",
"4784",
"4844",
"5264",
"5355",
"5445",
"5564",
"5565",
"5655",
"5775",
"5984",
"6104",
"6764",
"7424",
"7455",
"7664",
"7755",
"7875",
"8084",
"8294",
"8295",
"8414",
"8415",
"8924",
"9009",
"9344",
"9944",
"9975"
]
| [
"nonn"
]
| 14 | 1 | 1 | [
"A005101",
"A063734",
"A096399",
"A381738",
"A383390",
"A383391"
]
| null | Amiram Eldar, Apr 25 2025 | 2025-04-26T13:25:42 | oeisdata/seq/A383/A383390.seq | 65c5d42a66236d4d5f7f9952765811b3 |
A383391 | Numbers k such that k^2, (k+1)^2 and (k+2)^2 are all abundant numbers. | [
"2924",
"3794",
"5564",
"8294",
"8414",
"10064",
"13454",
"19304",
"22154",
"22814",
"35684",
"39974",
"40544",
"40754",
"41768",
"46214",
"49994",
"52064",
"56264",
"60884",
"63854",
"65624",
"68354",
"68474",
"69068",
"70244",
"78974",
"84824",
"88604",
"92168",
"93224",
"95354",
"100694",
"102464",
"106028",
"107084",
"111110",
"111824"
]
| [
"nonn"
]
| 27 | 1 | 1 | [
"A002110",
"A005101",
"A063734",
"A096536",
"A381738",
"A383390",
"A383391"
]
| null | Amiram Eldar, Apr 25 2025 | 2025-05-06T18:06:59 | oeisdata/seq/A383/A383391.seq | 576c07bce8e3664f8f6fca8704e05b01 |
A383392 | Numbers k such that (sigma(k) + sigma(k + sigma(k))) / k is an integer where sigma(k) = A000203(k) is the sum of the divisors of k. | [
"1",
"3",
"14",
"19",
"27",
"28",
"48",
"139",
"164",
"243",
"496",
"1428",
"1440",
"3360",
"3480",
"5932",
"8128",
"11004",
"19683",
"25296",
"27144",
"31756",
"35616",
"45436",
"47520",
"51480",
"84000",
"115506",
"218520",
"221088",
"288288",
"290520",
"303309",
"414528",
"445788",
"605880",
"1019070",
"1122432",
"2100000",
"2136288"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A000203",
"A007691",
"A246456",
"A383392"
]
| null | Ctibor O. Zizka, Apr 25 2025 | 2025-05-01T22:33:41 | oeisdata/seq/A383/A383392.seq | ecb065b9b272796a037bcaba4fc2abb2 |
A383393 | Primes p such that p + 2, p + 8, p + 12, p + 18 and p + 20 are also primes. | [
"11",
"5639",
"5849",
"45119",
"51419",
"54401",
"88799",
"130631",
"165701",
"229751",
"284729",
"321311",
"626609",
"797549",
"855719",
"883229",
"1068701",
"1128761",
"1146779",
"1178699",
"1652879",
"1978421",
"2253479",
"2254781",
"2269439",
"2453441",
"3154421",
"3216119",
"4046291",
"4583849",
"5050679",
"5387729"
]
| [
"nonn"
]
| 14 | 1 | 1 | [
"A000040",
"A001223",
"A022008",
"A382810",
"A383393"
]
| null | Alexander Yutkin, Apr 25 2025 | 2025-05-02T10:32:20 | oeisdata/seq/A383/A383393.seq | a32842841dc5d1cd0c76e46772f2a52d |
A383396 | Primes p such that p + 6, p + 10, p + 12, p + 16 and p + 22 are also primes. | [
"7",
"31",
"2677",
"35521",
"42451",
"44257",
"55807",
"93481",
"118891",
"198817",
"221707",
"234181",
"313981",
"393571",
"560227",
"669847",
"1107781",
"1210387",
"1596367",
"1616611",
"1738411",
"2710921",
"3194551",
"3377587",
"3441931",
"3484561",
"3586537",
"3699181",
"3887551",
"3904897",
"4095661",
"4192261",
"4239721"
]
| [
"nonn"
]
| 12 | 1 | 1 | [
"A000040",
"A001223",
"A022008",
"A052378",
"A383396"
]
| null | Alexander Yutkin, Apr 25 2025 | 2025-05-02T22:36:50 | oeisdata/seq/A383/A383396.seq | 809dfce7814a1ee9c04a6647a400b38d |
A383397 | Numbers in whose canonical prime factorization the powers of the primes form a strictly increasing sequence. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"57",
"58",
"59",
"61",
"62",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"81",
"82",
"83",
"85",
"86",
"87",
"88",
"89",
"91",
"92",
"93",
"94",
"95",
"97",
"98",
"99",
"100",
"101"
]
| [
"nonn",
"easy"
]
| 24 | 1 | 2 | [
"A005117",
"A140831",
"A383397"
]
| null | Boas Bakker, Apr 26 2025 | 2025-04-29T12:41:49 | oeisdata/seq/A383/A383397.seq | 34f82e93931e32662aa4d08c0fab3884 |
A383398 | a(n) is the smallest number whose sum with any previous term is abundant. | [
"1",
"11",
"19",
"29",
"59",
"349",
"521",
"2071",
"66949",
"223231",
"3660191",
"4552181",
"5500081",
"10161979",
"12235619",
"47859629"
]
| [
"nonn",
"hard",
"more"
]
| 27 | 1 | 2 | [
"A000040",
"A001358",
"A005100",
"A005101",
"A005231",
"A173490",
"A383398",
"A383399"
]
| null | Jakub Buczak, Apr 25 2025 | 2025-05-02T19:40:05 | oeisdata/seq/A383/A383398.seq | 4a76dfb2a9540f3a8dc81418c835f6b0 |
A383399 | For n>1, a(n) is the smallest number greater than a(n-1), whose sum with any previous term is deficient, with a(1) = 1. | [
"1",
"2",
"3",
"6",
"7",
"8",
"31",
"43",
"44",
"91",
"115",
"121",
"122",
"127",
"128",
"140",
"146",
"163",
"211",
"248",
"283",
"290",
"331",
"403",
"427",
"464",
"511",
"595",
"631",
"667",
"668",
"751",
"842",
"883",
"931",
"955",
"1051",
"1106",
"1123",
"1171",
"1243",
"1291",
"1388",
"1411",
"1555",
"1591",
"1682",
"1711",
"1723",
"1771",
"1843",
"1891",
"2011",
"2131"
]
| [
"nonn"
]
| 19 | 1 | 2 | [
"A005100",
"A005101",
"A383398",
"A383399"
]
| null | Jakub Buczak, Apr 25 2025 | 2025-04-26T15:19:43 | oeisdata/seq/A383/A383399.seq | e9c8b37d09b08206c1f894fa959d12e7 |
A383400 | Starting values of maximal runs of at least five integers, each with exactly two distinct prime factors. | [
"54",
"91",
"115",
"141",
"158",
"205",
"212",
"295",
"301",
"323",
"391",
"535",
"685",
"721",
"799",
"1135",
"1345",
"1465",
"1535",
"1711",
"1941",
"1981",
"2101",
"2215",
"2302",
"2425",
"2641",
"3865",
"4411",
"5461",
"6505",
"6625",
"6925",
"7165",
"7231",
"7261",
"7441",
"7855",
"7891",
"8575",
"9121",
"9355",
"9571"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A001221",
"A088986",
"A364307",
"A383400"
]
| null | IWABUCHI Yu(u)ki, Apr 25 2025 | 2025-05-13T09:59:17 | oeisdata/seq/A383/A383400.seq | 6b100b30a7155ac844464d9d03beab1f |
A383401 | Index of the largest odd divisor in the list of divisors of n. | [
"1",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"3",
"3",
"2",
"3",
"2",
"3",
"4",
"1",
"2",
"5",
"2",
"4",
"4",
"3",
"2",
"3",
"3",
"3",
"4",
"4",
"2",
"7",
"2",
"1",
"4",
"3",
"4",
"6",
"2",
"3",
"4",
"4",
"2",
"7",
"2",
"4",
"6",
"3",
"2",
"3",
"3",
"5",
"4",
"4",
"2",
"7",
"4",
"4",
"4",
"3",
"2",
"9",
"2",
"3",
"6",
"1",
"4",
"7",
"2",
"4",
"4",
"7",
"2",
"7",
"2",
"3",
"6",
"4",
"4",
"7",
"2",
"4",
"5",
"3",
"2",
"9",
"4",
"3",
"4",
"5",
"2",
"11",
"4",
"4",
"4",
"3",
"4",
"3",
"2",
"5",
"6",
"7"
]
| [
"nonn",
"easy"
]
| 31 | 1 | 3 | [
"A000005",
"A000079",
"A000265",
"A001227",
"A027750",
"A065091",
"A174090",
"A383401"
]
| null | Omar E. Pol, May 14 2025 | 2025-05-15T08:17:16 | oeisdata/seq/A383/A383401.seq | bf072be3a07be0e09d162e8c557bc954 |
A383402 | Smallest number whose largest odd divisor is its n-th divisor. | [
"1",
"3",
"6",
"15",
"18",
"36",
"30",
"105",
"60",
"120",
"90",
"315",
"816",
"1360",
"180",
"700",
"450",
"360",
"720",
"1008",
"420",
"1540",
"630",
"900",
"840",
"1080",
"1620",
"1680",
"2160",
"1800",
"1890",
"5280",
"1260",
"3240",
"3150",
"17325",
"7200",
"29120",
"5670",
"9072",
"2520",
"3960",
"10296",
"18144",
"3780",
"20020",
"5040",
"7920",
"10800"
]
| [
"nonn"
]
| 55 | 1 | 2 | [
"A000005",
"A000265",
"A001227",
"A005117",
"A027750",
"A038547",
"A064989",
"A182469",
"A221647",
"A355200",
"A383401",
"A383402",
"A383961"
]
| null | Omar E. Pol, May 14 2025 | 2025-06-01T09:57:15 | oeisdata/seq/A383/A383402.seq | fd24e62aa9ab7f6397d1bf36aed4f43b |
A383403 | Partial sums of the sum of the divisors of the numbers of the form 6*k + 3, k >= 0. | [
"4",
"17",
"41",
"73",
"113",
"161",
"217",
"295",
"367",
"447",
"551",
"647",
"771",
"892",
"1012",
"1140",
"1296",
"1488",
"1640",
"1822",
"1990",
"2166",
"2406",
"2598",
"2826",
"3060",
"3276",
"3564",
"3824",
"4064",
"4312",
"4632",
"4968",
"5240",
"5552",
"5840",
"6136",
"6539",
"6923",
"7243",
"7607",
"7943",
"8375",
"8765",
"9125",
"9573",
"9989",
"10469",
"10861"
]
| [
"nonn",
"easy"
]
| 47 | 0 | 1 | [
"A000203",
"A016945",
"A237593",
"A239660",
"A274536",
"A363161",
"A365442",
"A365444",
"A365446",
"A383403",
"A383405"
]
| null | Omar E. Pol, Apr 27 2025 | 2025-05-22T20:07:09 | oeisdata/seq/A383/A383403.seq | f908165aef3ba22fb8af466c93d55a52 |
A383404 | Palindromic primes formed from the reflected decimal expansion of the golden ratio phi. | [
"11",
"1618033308161",
"16180339887498948482045868343656381118365634386854028484989478893308161",
"16180339887498948482045868343656381177203030277118365634386854028484989478893308161"
]
| [
"base",
"nonn"
]
| 19 | 1 | 1 | [
"A001622",
"A002113",
"A002385",
"A039954",
"A135699",
"A135700",
"A383404"
]
| null | Omar E. Pol, May 06 2025 | 2025-05-12T17:23:42 | oeisdata/seq/A383/A383404.seq | 41e2dcab0e0f6e89993acca899410314 |
A383405 | Partial sums of the sum of the divisors of the numbers of the form 6*k + 5, k >= 0. | [
"6",
"18",
"36",
"60",
"90",
"138",
"180",
"228",
"282",
"342",
"426",
"498",
"594",
"678",
"768",
"888",
"990",
"1098",
"1212",
"1356",
"1512",
"1644",
"1782",
"1950",
"2100",
"2292",
"2484",
"2652",
"2826",
"3006",
"3234",
"3426",
"3624",
"3864",
"4104",
"4368",
"4620",
"4848",
"5082",
"5322",
"5664",
"5916",
"6174",
"6438",
"6708",
"7080",
"7362",
"7698",
"7992",
"8328",
"8700",
"9012",
"9330",
"9690",
"10074"
]
| [
"nonn",
"easy"
]
| 40 | 0 | 1 | [
"A000203",
"A016969",
"A098098",
"A237593",
"A239660",
"A363161",
"A365442",
"A365444",
"A365446",
"A383403",
"A383405"
]
| null | Omar E. Pol, Apr 25 2025 | 2025-05-08T21:14:36 | oeisdata/seq/A383/A383405.seq | 9a97766d5d58de9694850e8d85cf627c |
A383406 | Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}). | [
"1",
"1",
"0",
"0",
"2",
"14",
"88",
"632",
"5152",
"46976",
"474056",
"5249064",
"63298724",
"825977620",
"11597642568",
"174371083288",
"2795208188972",
"47592162832412",
"857760977798888",
"16315057829100968",
"326599827759568812",
"6863964030561807340",
"151109048051281532488",
"3477542225297684400056",
"83503678542689445133052"
]
| [
"nonn",
"easy"
]
| 5 | 0 | 5 | [
"A002464",
"A382644",
"A382645",
"A382651",
"A383040",
"A383107",
"A383312",
"A383406"
]
| null | Dan Li, Apr 25 2025 | 2025-04-26T08:28:34 | oeisdata/seq/A383/A383406.seq | 243e0c1ff4c5e650202751e9e73e53d3 |
A383407 | Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}). | [
"1",
"1",
"0",
"0",
"2",
"14",
"88",
"636",
"5174",
"47122",
"475124",
"5257936",
"63380706",
"826813990",
"11606987816",
"174484661916",
"2796700455414",
"47613243806514",
"858079661762692",
"16320191491499712",
"326687622910353650",
"6865552738575268502",
"151139376627154723752",
"3478151378775992816412",
"83516519907235226131286"
]
| [
"nonn",
"easy"
]
| 5 | 0 | 5 | [
"A002464",
"A382644",
"A382645",
"A382651",
"A383040",
"A383107",
"A383312",
"A383406",
"A383407"
]
| null | Dan Li, Apr 26 2025 | 2025-04-26T08:28:43 | oeisdata/seq/A383/A383407.seq | c229a6866294b840ffe90f11bf6c452c |
A383408 | Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,2),(1,0),(1,1),(1,2),(2,1)}). | [
"1",
"1",
"0",
"0",
"2",
"14",
"88",
"632",
"5152",
"46972",
"474008",
"5248616",
"63294680",
"825940168",
"11597278752",
"174367336624",
"2795167052832",
"47591679875632",
"857754907053056",
"16314976128578752",
"326598651690933216",
"6863945954213702816",
"151108752072042907968",
"3477537076217415673344",
"83503583639127861347392"
]
| [
"nonn",
"easy"
]
| 5 | 0 | 5 | [
"A002464",
"A382644",
"A382645",
"A382651",
"A383040",
"A383107",
"A383312",
"A383406",
"A383407",
"A383408"
]
| null | Dan Li, Apr 26 2025 | 2025-04-26T08:28:38 | oeisdata/seq/A383/A383408.seq | ad97925bcf4fdabe5b00d5f8493d97e4 |
A383409 | Expansion of e.g.f. (exp(x)-1)*(exp(x)-x)*(exp(x)-x^2/2)*(exp(x)-x^3/6). | [
"0",
"1",
"5",
"19",
"77",
"326",
"1406",
"5601",
"23715",
"101092",
"431172",
"1841357",
"7889877",
"33924268",
"146103678",
"628595097",
"2695143751",
"11495831852",
"48733234456",
"205252231229",
"858955851705",
"3573016550756",
"14781047390930",
"60846099935609",
"249385924540907"
]
| [
"nonn"
]
| 9 | 0 | 3 | [
"A383323",
"A383409"
]
| null | Enrique Navarrete, Apr 26 2025 | 2025-05-02T19:35:20 | oeisdata/seq/A383/A383409.seq | b2a32248c0dfe61d3130e503c5fc971b |
A383410 | Array read by downward antidiagonals: A(n,k) = Sum_{i=0..n-1} Sum_{j=0..k+1} binomial(n-1,i)*binomial(k+1,j)*A(i,j) with A(0,k) = 1, n >= 0, k >= 0. | [
"1",
"1",
"2",
"1",
"4",
"8",
"1",
"8",
"22",
"44",
"1",
"16",
"62",
"154",
"308",
"1",
"32",
"178",
"554",
"1306",
"2612",
"1",
"64",
"518",
"2038",
"5690",
"12994",
"25988",
"1",
"128",
"1522",
"7634",
"25366",
"66338",
"148282",
"296564",
"1",
"256",
"4502",
"29014",
"115298",
"346366",
"867002",
"1908274",
"3816548",
"1",
"512",
"13378",
"111554",
"532726",
"1844042",
"5179798",
"12564434",
"27333706",
"54667412"
]
| [
"nonn",
"tabl"
]
| 6 | 0 | 3 | [
"A005649",
"A383410"
]
| null | Mikhail Kurkov, Apr 26 2025 | 2025-05-03T19:02:22 | oeisdata/seq/A383/A383410.seq | 445801f35724cf0bec4c15f8b4f5d0cf |
A383411 | Primes p such that gcd(ord_p(3), ord_p(5)) = 1. | [
"2",
"13",
"313",
"51169",
"797161",
"3482851",
"5096867",
"12207031",
"162410641",
"368385827",
"1001523179",
"4902814883",
"104849105869",
"131772143257",
"572027881891"
]
| [
"nonn",
"hard",
"more"
]
| 32 | 1 | 1 | [
"A062117",
"A211241",
"A344202",
"A383411"
]
| null | Li GAN, Apr 26 2025 | 2025-05-17T22:49:18 | oeisdata/seq/A383/A383411.seq | db7017a4230fdee82279e86aaee7837f |
A383412 | Lexicographically earliest sequence of integers >= 2 such that whenever a(k_1) = ... = a(k_m) with k_1 < ... < k_m, the sum k_1 + ... + k_m can be computed without carries in base a(k_1). | [
"2",
"2",
"2",
"3",
"2",
"3",
"4",
"5",
"2",
"3",
"5",
"6",
"6",
"7",
"7",
"8",
"2",
"4",
"9",
"9",
"4",
"7",
"9",
"10",
"8",
"5",
"5",
"3",
"11",
"12",
"5",
"10",
"2",
"10",
"11",
"11",
"3",
"12",
"12",
"12",
"13",
"13",
"6",
"13",
"13",
"14",
"14",
"14",
"15",
"7",
"15",
"15",
"16",
"16",
"16",
"17",
"14",
"17",
"18",
"18",
"15",
"18",
"19",
"19",
"2",
"20",
"20",
"20",
"4",
"17",
"17",
"21",
"6",
"18"
]
| [
"nonn",
"base"
]
| 7 | 0 | 1 | [
"A131577",
"A279125",
"A336206",
"A375776",
"A383412"
]
| null | Rémy Sigrist, Apr 26 2025 | 2025-05-02T08:01:23 | oeisdata/seq/A383/A383412.seq | 3abff7b9ab8e1b67ca6ad7fe65652ca0 |
A383413 | Area A of triangles such that the sides are distinct integers and A is an integer. | [
"6",
"24",
"30",
"36",
"42",
"54",
"60",
"66",
"72",
"84",
"90",
"96",
"114",
"120",
"126",
"132",
"144",
"150",
"156",
"168",
"180",
"198",
"204",
"210",
"216",
"234",
"240",
"252",
"264",
"270",
"288",
"294",
"300",
"306",
"324",
"330",
"336",
"360",
"378",
"384",
"390",
"396",
"408",
"420",
"456",
"462",
"468",
"480",
"486",
"504",
"510",
"522",
"528",
"540",
"546",
"576",
"594"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A188158",
"A316853",
"A383413"
]
| null | Karl-Heinz Hofmann, Apr 26 2025 | 2025-05-10T11:58:35 | oeisdata/seq/A383/A383413.seq | 6b6fde6c049d71059c197c492b742460 |
A383414 | Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7). | [
"7",
"28",
"15",
"112",
"60",
"23",
"448",
"240",
"92",
"31",
"1792",
"960",
"368",
"124",
"39",
"7168",
"3840",
"1472",
"496",
"156",
"47",
"28672",
"15360",
"5888",
"1984",
"624",
"188",
"55",
"114688",
"61440",
"23552",
"7936",
"2496",
"752",
"220",
"63",
"458752",
"245760",
"94208",
"31744",
"9984",
"3008",
"880",
"252",
"71",
"1835008",
"983040",
"376832",
"126976",
"39936",
"12032",
"3520",
"1008",
"284",
"79"
]
| [
"nonn",
"easy",
"tabl"
]
| 6 | 0 | 1 | [
"A000302",
"A002042",
"A004215",
"A004771",
"A383414",
"A383415"
]
| null | Stefano Spezia, Apr 26 2025 | 2025-04-27T15:03:42 | oeisdata/seq/A383/A383414.seq | a40a7aff4b659b2e5c1a0fe52d395633 |
A383415 | Antidiagonal sums of A383414. | [
"7",
"43",
"195",
"811",
"3283",
"13179",
"52771",
"211147",
"844659",
"3378715",
"13514947",
"54059883",
"216239635",
"864958651",
"3459834723",
"13839339019",
"55357356211",
"221429424987",
"885717700099",
"3542870800555",
"14171483202387",
"56685932809723",
"226743731239075",
"906974924956491",
"3627899699826163"
]
| [
"nonn",
"easy"
]
| 4 | 0 | 1 | [
"A383414",
"A383415"
]
| null | Stefano Spezia, Apr 26 2025 | 2025-04-27T15:03:50 | oeisdata/seq/A383/A383415.seq | d8fe743f7895e31f4f30d0829605381f |
A383416 | Population of elementary triangular automaton rule 186 at generation n, starting from a lone 1 cell at generation 0. | [
"1",
"4",
"10",
"16",
"16",
"28",
"46",
"52",
"40",
"64",
"88",
"94",
"124",
"142",
"208",
"238",
"160",
"202",
"232",
"226",
"286",
"334",
"376",
"442",
"478",
"454",
"538",
"604",
"658",
"724",
"820",
"928",
"838",
"814",
"838",
"856",
"904",
"934",
"976",
"970",
"1024",
"1066",
"1132",
"1348",
"1408",
"1450",
"1702",
"1768",
"1702",
"1720",
"1906",
"1936"
]
| [
"nonn"
]
| 10 | 0 | 2 | [
"A372581",
"A380012",
"A380590",
"A380670",
"A381734",
"A382971",
"A383416"
]
| null | Paul Cousin, Apr 26 2025 | 2025-05-03T17:43:32 | oeisdata/seq/A383/A383416.seq | bf72327e041e960d9f1e7c34fcfff80d |
A383417 | Population of elementary triangular automaton rule 2 at generation n, starting from a lone 1 cell at generation 0. | [
"1",
"3",
"6",
"6",
"12",
"12",
"18",
"18",
"30",
"24",
"48",
"42",
"54",
"60",
"72",
"72",
"90",
"78",
"114",
"90",
"120",
"96",
"162",
"156",
"162",
"180",
"282",
"210",
"306",
"234",
"300",
"300",
"342",
"318",
"378",
"318",
"378",
"354",
"384",
"408",
"408",
"444",
"600",
"450",
"612",
"576",
"654",
"600",
"726",
"588",
"798",
"762",
"786",
"804",
"924",
"912",
"984"
]
| [
"nonn"
]
| 13 | 0 | 2 | [
"A383417",
"A383418"
]
| null | Paul Cousin, Apr 26 2025 | 2025-05-03T23:56:31 | oeisdata/seq/A383/A383417.seq | df752bbbd0265babbeb11dce58e15a38 |
A383418 | Third center column of elementary triangular automaton rule 2, starting from a lone 1 cell. | [
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1"
]
| [
"nonn"
]
| 17 | 0 | null | [
"A383417",
"A383418"
]
| null | Paul Cousin, Apr 26 2025 | 2025-06-03T01:11:03 | oeisdata/seq/A383/A383418.seq | e18748bb61c684fbed159be478ecfd38 |
A383419 | a(n) = A378762(A381968(n)). | [
"1",
"5",
"3",
"6",
"2",
"4",
"12",
"10",
"14",
"8",
"15",
"9",
"13",
"7",
"11",
"23",
"21",
"25",
"19",
"27",
"17",
"28",
"20",
"26",
"18",
"24",
"16",
"22",
"38",
"36",
"40",
"34",
"42",
"32",
"44",
"30",
"45",
"35",
"43",
"33",
"41",
"31",
"39",
"29",
"37",
"57",
"55",
"59",
"53",
"61",
"51",
"63",
"49",
"65",
"47",
"66",
"54",
"64",
"52",
"62",
"50",
"60",
"48",
"58",
"46",
"56"
]
| [
"nonn",
"tabf"
]
| 47 | 1 | 2 | [
"A000027",
"A000384",
"A016813",
"A056023",
"A376214",
"A378684",
"A378762",
"A379342",
"A379343",
"A380200",
"A380245",
"A380815",
"A380817",
"A381662",
"A381663",
"A381664",
"A381968",
"A382499",
"A382679",
"A382680",
"A383419",
"A383589",
"A383590",
"A383722",
"A383723",
"A383724"
]
| null | Boris Putievskiy, May 01 2025 | 2025-06-08T16:55:41 | oeisdata/seq/A383/A383419.seq | 02a4aeddc8b056af715e09f6e67585bd |
A383420 | Maximum (equal) number of red and blue tiles on an n X n matrix, where opposite colors cannot be adjacent diagonally or edgewise, and where a cluster of the same color can be no greater than n. | [
"0",
"0",
"6",
"8",
"16",
"24",
"30",
"38"
]
| [
"nonn",
"hard",
"more"
]
| 43 | 1 | 3 | [
"A000290",
"A001105",
"A002378",
"A023365",
"A033587",
"A383420"
]
| null | Jakub Buczak, Apr 26 2025 | 2025-05-04T12:54:20 | oeisdata/seq/A383/A383420.seq | 1a01c3e840788738ab36ff23832770e2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.