sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384788
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384787.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "148", "0", "1", "4", "27", "338", "7381", "0", "1", "5", "40", "576", "16240", "801536", "0", "1", "6", "55", "868", "26829", "1697602", "186678019", "0", "1", "7", "72", "1220", "39424", "2701488", "384962560", "93865986880", "0", "1", "8", "91", "1638", "54325", "3828164", "595921743", "190657584770", "102755888482153", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A379168", "A384787", "A384788" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:57:10
oeisdata/seq/A384/A384788.seq
45d447153779d41937406589edb3c98b
A384789
The number of ways in which the n-th cubefull number can be expressed as b^3 * c^4 * d^5, with b, c and d >= 1.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "4", "1", "1" ]
[ "nonn", "easy" ]
8
1
12
[ "A008680", "A036966", "A057523", "A384789", "A384791" ]
null
Amiram Eldar, Jun 10 2025
2025-06-10T11:36:49
oeisdata/seq/A384/A384789.seq
d1254f67078de855cd7a54e541b9e63d
A384790
Numbers with a record number of ways in which they can be expressed as b^2 * c^3, with b and c >= 1.
[ "1", "64", "4096", "46656", "2985984", "191102976", "2176782336", "12230590464", "46656000000", "2985984000000", "34012224000000", "191102976000000", "2176782336000000", "139314069504000000", "351298031616000000", "4001504141376000000", "22483074023424000000", "256096265048064000000", "16390160963076096000000" ]
[ "nonn" ]
17
1
2
[ "A001694", "A002182", "A025487", "A046055", "A057523", "A181800", "A370256", "A384790", "A384791" ]
null
Amiram Eldar, Jun 10 2025
2025-06-10T12:36:07
oeisdata/seq/A384/A384790.seq
2da2060b6ac428b8b7aa08dc19160f50
A384791
Numbers with a record number of ways in which they can be expressed as b^3 * c^4 * d^5, with b, c and d >= 1.
[ "1", "256", "4096", "32768", "262144", "1048576", "8388608", "16777216", "134217728", "268435456", "1073741824", "4294967296", "8589934592", "34359738368", "68719476736", "110075314176", "549755813888", "557256278016", "1761205026816", "4458050224128", "7044820107264", "8916100448256", "56358560858112", "71328803586048" ]
[ "nonn", "changed" ]
29
1
2
[ "A008680", "A025487", "A036966", "A046055", "A181800", "A384789", "A384790", "A384791" ]
null
Amiram Eldar, Jun 10 2025
2025-07-04T19:51:27
oeisdata/seq/A384/A384791.seq
f1dfb22053531c8ba63247a54cfd9680
A384792
Smallest number with a n-character traditional Japanese notation.
[ "1", "11", "21", "121", "221", "1121", "1221", "11121", "11221", "111221", "211221", "1211221", "2211221", "11211221", "12211221", "111211221", "112211221", "1112211221", "2112211221", "12112211221", "22112211221", "112112211221", "122112211221", "1112112211221" ]
[ "nonn", "easy", "fini", "full", "new" ]
35
1
2
null
null
Renaud Gaudron, Jun 10 2025
2025-07-04T01:20:06
oeisdata/seq/A384/A384792.seq
9b52acfd6763af57f911e0de13a74fc9
A384793
a(n) is the start of the first occurrence of exactly n consecutive zeroless primes (A038618).
[ "461717", "162119", "75431", "81421", "19661", "5923", "4813", "1319", "2917", "1117", "1721", "521", "911", "613", "311", "11519", "25411", "7321", "7717", "8819", "9413", "5519", "9613", "2311", "2", "41213", "16319", "1423", "21121", "8219", "162221", "71233", "113", "68521", "148627", "192611", "86531", "48413", "269219", "13313", "275521", "11113", "111521" ]
[ "nonn", "base", "changed" ]
30
1
1
[ "A038618", "A052382", "A384793", "A384794" ]
null
Hugo Pfoertner, based on an idea by René-Louis Clerc, Jun 20 2025
2025-07-03T09:29:35
oeisdata/seq/A384/A384793.seq
4d677d872520e05cfb52d5ade4224c29
A384794
a(n) is the index of A384793(n) in A038618.
[ "25854", "10283", "5501", "5861", "1734", "638", "535", "178", "353", "154", "226", "89", "141", "101", "59", "1053", "2110", "758", "800", "899", "949", "593", "970", "282", "1", "3184", "1463", "186", "1769", "836", "10285", "5190", "26", "5075", "9495", "12124", "6222", "3733", "16123", "1205", "16463", "1011", "7153", "59960", "19815", "10030", "23986" ]
[ "nonn" ]
4
1
1
[ "A038618", "A052382", "A384793", "A384794" ]
null
Hugo Pfoertner, Jun 29 2025
2025-06-29T18:28:50
oeisdata/seq/A384/A384794.seq
8eb097ba1043bc537eb4aa2f8a962603
A384795
Sorted list of sums of 5 prices in minor currency units for a currency that has a 2-decimal minor unit, such that the riddle "sum of prices equals product of prices" has a solution, with prices expressed as floating point numbers with 2 decimals.
[ "759", "760", "762", "765", "770", "770", "774", "777", "779", "780", "780", "780", "783", "783", "784", "785", "786", "791", "791", "792", "792", "792", "795", "798", "798", "798", "798", "798", "799", "799", "800", "804", "804", "805", "805", "805", "806", "808", "810", "810", "810", "810", "810", "810", "810", "810", "812", "812", "813", "816", "816", "816", "817", "817", "817" ]
[ "nonn", "fini" ]
12
1
1
[ "A380887", "A381619", "A381621", "A382510", "A384795" ]
null
Hugo Pfoertner, Jun 15 2025
2025-06-22T00:51:43
oeisdata/seq/A384/A384795.seq
bbf811a40428219377cb7f8589328f8b
A384796
Combined output of the Wichmann-Hill pseudo-random number generator multiplied by the product of its 3 internal moduli, 27817185604309.
[ "2754208631", "470970160205", "24903444211891", "3101366430392", "26134991275992", "3566993679349", "4951570111121", "8340345602949", "9728181819298", "1649210285891", "22865151158696", "24517988506432", "4452776901870", "18020118105109", "13572449960958", "8737468266210", "5324174073106", "26277704743891" ]
[ "nonn" ]
15
1
1
[ "A384796", "A385031", "A385032", "A385033" ]
null
Hugo Pfoertner, Jun 17 2025
2025-06-19T09:26:08
oeisdata/seq/A384/A384796.seq
aff484e5857d9c202bab7b883a7cab4f
A384797
a(n) = A047800(n) - A047800(n-1).
[ "2", "3", "4", "5", "5", "7", "7", "8", "9", "10", "10", "12", "11", "12", "14", "15", "13", "17", "15", "18", "18", "19", "17", "21", "21", "21", "22", "23", "22", "26", "23", "26", "27", "24", "28", "31", "28", "29", "29", "34", "28", "34", "32", "32", "37", "34", "35", "38", "36", "38", "38", "39", "34", "40", "42", "44", "43", "44", "42", "49", "42", "42", "46", "45", "51", "50", "46", "47", "50" ]
[ "nonn", "easy", "new" ]
14
1
1
[ "A047800", "A160663", "A384797", "A384798", "A384799" ]
null
Hugo Pfoertner, Jun 17 2025
2025-07-07T20:19:52
oeisdata/seq/A384/A384797.seq
73ab57a6983d60bef8fba758d9fc2d82
A384798
Records in A384797.
[ "2", "3", "4", "5", "7", "8", "9", "10", "12", "14", "15", "17", "18", "19", "21", "22", "23", "26", "27", "28", "31", "34", "37", "38", "39", "40", "42", "44", "49", "51", "56", "58", "64", "69", "71", "73", "77", "79", "82", "92", "94", "101", "104", "108", "109", "111", "116", "118", "120", "129", "136", "140", "141", "155", "160", "172", "174", "181", "190", "193", "194", "208", "209" ]
[ "nonn", "new" ]
13
1
1
[ "A047800", "A384797", "A384798", "A384799" ]
null
Hugo Pfoertner, Jun 17 2025
2025-07-07T20:28:23
oeisdata/seq/A384/A384798.seq
0c18fa24ef06455c6b5c681375c30484
A384799
Positions of records in A384797.
[ "1", "2", "3", "4", "6", "8", "9", "10", "12", "15", "16", "18", "20", "22", "24", "27", "28", "30", "33", "35", "36", "40", "45", "48", "52", "54", "55", "56", "60", "65", "70", "78", "80", "90", "95", "100", "105", "108", "110", "120", "130", "135", "140", "150", "155", "156", "160", "165", "168", "180", "190", "200", "205", "210", "225", "240", "255", "260", "270", "280", "285", "300" ]
[ "nonn", "new" ]
12
1
2
[ "A047800", "A384797", "A384798", "A384799" ]
null
Hugo Pfoertner, Jun 17 2025
2025-07-07T20:30:07
oeisdata/seq/A384/A384799.seq
97df304cd4a822e85a5fcf2cecdf8124
A384800
a(n) = A384727(A368538(n)).
[ "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "6", "1", "1", "7", "1", "1", "5", "1", "6", "1", "1", "2", "4", "1", "1", "23", "1", "13", "2" ]
[ "nonn", "more" ]
21
1
7
[ "A368538", "A384727", "A384800" ]
null
Richard Stanley, Jun 10 2025
2025-06-14T12:11:12
oeisdata/seq/A384/A384800.seq
2bca411e4497176010fda0b57868f849
A384801
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A213108.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "8", "10", "0", "1", "4", "15", "38", "41", "0", "1", "5", "24", "90", "216", "76", "0", "1", "6", "35", "172", "633", "1162", "-2183", "0", "1", "7", "48", "290", "1424", "4668", "2236", "-54998", "0", "1", "8", "63", "450", "2745", "12724", "30177", "-102282", "-1045567", "0", "1", "9", "80", "658", "4776", "28300", "113080", "43914", "-3135056", "-15948296", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A213108", "A384801" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:57:03
oeisdata/seq/A384/A384801.seq
baa5871466b30639b010b67bc211a308
A384802
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A213109.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "8", "22", "0", "1", "4", "15", "62", "233", "0", "1", "5", "24", "126", "696", "3716", "0", "1", "6", "35", "220", "1497", "11082", "77257", "0", "1", "7", "48", "350", "2768", "24228", "229756", "2026606", "0", "1", "8", "63", "522", "4665", "46004", "504657", "5961846", "63726497", "0", "1", "9", "80", "742", "7368", "80100", "969400", "13042326", "185814320", "2333516392", "0" ]
[ "nonn", "tabl" ]
10
0
8
[ "A000007", "A213109", "A384802" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:57:06
oeisdata/seq/A384/A384802.seq
ecd09a08d034487f241c714f0fdb4865
A384803
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^4) ).
[ "1", "1", "3", "28", "365", "7456", "198967", "6600448", "260641817", "11805179392", "603174969611", "34119591645184", "2107808150141509", "140656454965522432", "10045467848093258687", "762717885873201995776", "61259933997939643876913", "5188866020593647457533952", "463236056771875012276202899" ]
[ "nonn" ]
9
0
3
[ "A213108", "A213109", "A384803", "A384804" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T12:53:24
oeisdata/seq/A384/A384803.seq
ee044bd67f4e678ac2be7254183c2365
A384804
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384803.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "8", "28", "0", "1", "4", "15", "74", "365", "0", "1", "5", "24", "144", "1008", "7456", "0", "1", "6", "35", "244", "2037", "20242", "198967", "0", "1", "7", "48", "380", "3584", "40848", "535936", "6600448", "0", "1", "8", "63", "558", "5805", "72484", "1076427", "17641290", "260641817", "0", "1", "9", "80", "784", "8880", "119200", "1909120", "35239872", "693025024", "11805179392", "0" ]
[ "nonn", "tabl" ]
10
0
8
[ "A000007", "A384803", "A384804" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:56:59
oeisdata/seq/A384/A384804.seq
d6f889d090e2825136fece64c7965065
A384805
Consider triangles ABC satisfying (sin A)^2 + (sin B)^2 = sin C. Sequence gives A_0 (in radians), the maximum A such that more than one triple (A,B,C) is possible.
[ "2", "2", "3", "2", "9", "6", "5", "3", "3", "8", "8", "4", "5", "5", "6", "8", "4", "5", "7", "9", "5", "3", "6", "3", "0", "4", "0", "6", "8", "6", "6", "0", "8", "8", "4", "0", "5", "4", "4", "8", "4", "4", "0", "9", "1", "7", "2", "4", "3", "3", "9", "6", "3", "2", "6", "0", "7", "4", "5", "2", "5", "2", "0", "0", "0", "9", "6", "7", "5", "1", "3", "3", "5", "4", "6", "8", "9", "6", "6", "6", "8", "3", "1", "8", "3", "2", "3", "7", "5", "6" ]
[ "nonn", "cons", "easy" ]
10
0
1
[ "A384805", "A384807" ]
null
Jianing Song, Jun 10 2025
2025-06-10T08:59:13
oeisdata/seq/A384/A384805.seq
5902555c2b4b1ad01cf2091581d38882
A384806
Simple continued fraction expansion of arctan(1/2)/Pi.
[ "0", "6", "1", "3", "2", "5", "1", "6", "5", "3", "1", "1", "2", "1", "1", "2", "3", "1", "2", "3", "2", "2", "2", "2", "3", "2", "1", "1", "3", "1", "3", "2", "1", "1", "3", "1", "17", "1", "5", "1", "2", "1", "2", "1", "1", "1", "1", "4", "7", "11", "1", "2", "1", "583", "1", "2", "1", "1", "2", "22", "7", "3", "23", "2", "6", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "1", "5", "1", "1", "2", "3", "17", "6", "2", "70", "1", "6" ]
[ "nonn", "cofr" ]
8
0
2
[ "A000796", "A073000", "A086203", "A384806" ]
null
Stefano Spezia, Jun 10 2025
2025-06-10T08:46:37
oeisdata/seq/A384/A384806.seq
8524877726728ddb9c462043c7c632f0
A384807
Consider triangles ABC satisfying (sin A)^2 + (sin B)^2 = sin C. Sequence gives A_0 (in degrees), the maximum A such that more than one triple (A,B,C) is possible.
[ "1", "2", "7", "9", "3", "9", "4", "8", "9", "7", "1", "4", "8", "5", "0", "8", "4", "3", "9", "8", "8", "6", "1", "2", "2", "7", "5", "0", "2", "8", "7", "9", "8", "1", "6", "7", "9", "9", "2", "0", "3", "1", "6", "0", "5", "0", "8", "9", "3", "7", "8", "0", "8", "1", "6", "4", "2", "8", "9", "2", "3", "6", "2", "9", "9", "2", "2", "4", "9", "3", "1", "0", "9", "7", "0", "5", "2", "4", "7", "7", "7", "2", "8", "7", "3", "9", "8", "7", "4" ]
[ "nonn", "cons", "easy" ]
9
2
2
[ "A384805", "A384807" ]
null
Jianing Song, Jun 10 2025
2025-06-10T08:59:20
oeisdata/seq/A384/A384807.seq
74de8adc4f2f8c1e2a2919720c5c9f30
A384808
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384617.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "13", "0", "1", "4", "21", "56", "-63", "0", "1", "5", "32", "135", "128", "-2279", "0", "1", "6", "45", "256", "753", "-3888", "-51167", "0", "1", "7", "60", "425", "2016", "-1797", "-135752", "-423387", "0", "1", "8", "77", "648", "4145", "8224", "-224775", "-2099032", "13717889", "0", "1", "9", "96", "931", "7392", "31725", "-256016", "-5236809", "3294432", "885044593", "0" ]
[ "sign", "tabl" ]
10
0
8
[ "A000007", "A384617", "A384808" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:56:55
oeisdata/seq/A384/A384808.seq
da6b23f3544b43a5bd60a44b8fde8056
A384809
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^2)^2 ).
[ "1", "1", "5", "25", "153", "-799", "-82787", "-2990343", "-98020367", "-2473062911", "-22379003019", "3535310560409", "426542722323721", "33942691393940577", "2320589389274335117", "131491185267395291641", "4583444982950062321377", "-254657491559719266483967", "-86887910247671284788294683" ]
[ "sign" ]
10
0
3
[ "A052750", "A213110", "A213111", "A384617", "A384809", "A384810", "A384811" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T16:33:25
oeisdata/seq/A384/A384809.seq
a35c2b12bf6df0476119b222bf0e41ef
A384810
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^3)^2 ).
[ "1", "1", "5", "37", "417", "4761", "33313", "-1509339", "-135791359", "-8149132943", "-455269648959", "-24532196772291", "-1260399381304511", "-56411711489070807", "-1357347436103060191", "146282852689561868821", "35003916010171558562817", "5112183093788001812407521", "647998390863196992450043777" ]
[ "sign" ]
12
0
3
[ "A052750", "A213110", "A213111", "A384617", "A384809", "A384810", "A384813" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T16:33:29
oeisdata/seq/A384/A384810.seq
f391fac8c9776ba5fbccaf320796f20e
A384811
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384809.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "25", "0", "1", "4", "21", "80", "153", "0", "1", "5", "32", "171", "656", "-799", "0", "1", "6", "45", "304", "1689", "2432", "-82787", "0", "1", "7", "60", "485", "3456", "13443", "-139712", "-2990343", "0", "1", "8", "77", "720", "6185", "37184", "-100755", "-7039744", "-98020367", "0", "1", "9", "96", "1015", "10128", "79925", "143104", "-11110677", "-267665152", "-2473062911", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A384809", "A384811" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:56:52
oeisdata/seq/A384/A384811.seq
a31da9eb31afd395835a78d509d61dc7
A384812
If n = Product prime(i)^e(i) then a(n) = Sum prime(e(i)).
[ "0", "2", "2", "3", "2", "4", "2", "5", "3", "4", "2", "5", "2", "4", "4", "7", "2", "5", "2", "5", "4", "4", "2", "7", "3", "4", "5", "5", "2", "6", "2", "11", "4", "4", "4", "6", "2", "4", "4", "7", "2", "6", "2", "5", "5", "4", "2", "9", "3", "5", "4", "5", "2", "7", "4", "7", "4", "4", "2", "7", "2", "4", "5", "13", "4", "6", "2", "5", "4", "6", "2", "8", "2", "4", "5", "5", "4", "6", "2", "9", "7", "4", "2", "7", "4", "4", "4", "7", "2", "7" ]
[ "nonn" ]
6
1
2
[ "A001222", "A001414", "A008472", "A066328", "A181819", "A366988", "A384812" ]
null
Ilya Gutkovskiy, Jun 10 2025
2025-06-16T19:15:08
oeisdata/seq/A384/A384812.seq
f7ef42411451371ea694af3191f63910
A384813
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384810.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "37", "0", "1", "4", "21", "104", "417", "0", "1", "5", "32", "207", "1280", "4761", "0", "1", "6", "45", "352", "2769", "17392", "33313", "0", "1", "7", "60", "545", "5088", "42363", "213688", "-1509339", "0", "1", "8", "77", "792", "8465", "85344", "656505", "-472456", "-135791359", "0", "1", "9", "96", "1099", "13152", "153325", "1521904", "6181815", "-254502688", "-8149132943", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A384808", "A384810", "A384811", "A384813" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:57:18
oeisdata/seq/A384/A384813.seq
9aeeb41ffd0f6ca8860258e6f8336060
A384814
Integers k such that there exists an integer 0<m<k such that (1/sigma(m) + 1/sigma(k))*(m+k) = 2.
[ "28", "56", "66", "88", "90", "114", "132", "174", "220", "234", "238", "246", "284", "306", "308", "312", "340", "348", "356", "496", "532", "534", "552", "618", "620", "654", "668", "728", "752", "760", "786", "812", "856", "963", "990", "992", "996", "1052", "1092", "1148", "1180", "1196", "1210", "1220", "1232", "1244", "1288", "1320", "1326", "1364", "1372", "1474", "1494", "1580" ]
[ "nonn" ]
8
1
1
[ "A000203", "A000396", "A002025", "A002046", "A383964", "A384814" ]
null
S. I. Dimitrov, Jun 10 2025
2025-06-19T00:46:31
oeisdata/seq/A384/A384814.seq
0a07950070637c7795b839d39bc00d1e
A384815
Sum of the cubes of the exponents in the prime factorization of n.
[ "0", "1", "1", "8", "1", "2", "1", "27", "8", "2", "1", "9", "1", "2", "2", "64", "1", "9", "1", "9", "2", "2", "1", "28", "8", "2", "27", "9", "1", "3", "1", "125", "2", "2", "2", "16", "1", "2", "2", "28", "1", "3", "1", "9", "9", "2", "1", "65", "8", "9", "2", "9", "1", "28", "2", "28", "2", "2", "1", "10", "1", "2", "9", "216", "2", "3", "1", "9", "2", "3", "1", "35", "1", "2", "9", "9", "2", "3", "1", "65", "64", "2", "1", "10", "2", "2", "2", "28", "1", "10" ]
[ "nonn", "easy", "changed" ]
15
1
4
[ "A001222", "A001620", "A005064", "A090885", "A360970", "A384815" ]
null
Ilya Gutkovskiy, Jun 10 2025
2025-07-03T08:40:19
oeisdata/seq/A384/A384815.seq
6a9461c42b42d0120b8c740ea05482aa
A384816
Sum of the cubes of the indices of distinct prime factors of n.
[ "0", "1", "8", "1", "27", "9", "64", "1", "8", "28", "125", "9", "216", "65", "35", "1", "343", "9", "512", "28", "72", "126", "729", "9", "27", "217", "8", "65", "1000", "36", "1331", "1", "133", "344", "91", "9", "1728", "513", "224", "28", "2197", "73", "2744", "126", "35", "730", "3375", "9", "64", "28", "351", "217", "4096", "9", "152", "65", "520", "1001", "4913", "36", "5832", "1332", "72", "1", "243", "134", "6859", "344", "737", "92" ]
[ "nonn" ]
7
1
3
[ "A000720", "A005064", "A066328", "A332385", "A384816" ]
null
Ilya Gutkovskiy, Jun 10 2025
2025-06-16T19:14:43
oeisdata/seq/A384/A384816.seq
afd4aa37e50ae831df088c3edce6ead4
A384817
Numerator of the sum of the reciprocals of all square divisors of all positive integers <= n.
[ "1", "2", "3", "17", "21", "25", "29", "17", "173", "191", "209", "463", "499", "535", "571", "2473", "2617", "2777", "2921", "3101", "3245", "3389", "3533", "3713", "96569", "100169", "34723", "36223", "37423", "38623", "39823", "20699", "21299", "21899", "22499", "69997", "71797", "73597", "75397", "77647", "79447", "81247", "83047", "85297" ]
[ "nonn", "frac" ]
7
1
2
[ "A007406", "A017667", "A284648", "A309125", "A373439", "A384817", "A384818" ]
null
Ilya Gutkovskiy, Jun 10 2025
2025-06-16T18:52:58
oeisdata/seq/A384/A384817.seq
0f9e7946d5ab1726b348afb27a0cd47d
A384818
Denominator of the sum of the reciprocals of all square divisors of all positive integers <= n.
[ "1", "1", "1", "4", "4", "4", "4", "2", "18", "18", "18", "36", "36", "36", "36", "144", "144", "144", "144", "144", "144", "144", "144", "144", "3600", "3600", "1200", "1200", "1200", "1200", "1200", "600", "600", "600", "600", "1800", "1800", "1800", "1800", "1800", "1800", "1800", "1800", "1800", "600", "600", "600", "1200", "58800", "58800", "58800", "58800", "58800" ]
[ "nonn", "frac" ]
7
1
4
[ "A007407", "A017668", "A284650", "A309125", "A373440", "A384817", "A384818" ]
null
Ilya Gutkovskiy, Jun 10 2025
2025-06-16T18:53:04
oeisdata/seq/A384/A384818.seq
5e63231a7a6b7283f836831ac011898c
A384819
Nonnegative numbers a(n) < n for n >= 1 such that exp( Sum_{n>=1} (n^2 - a(n))*x^n/n ) is a power series with integral coefficients.
[ "0", "1", "2", "1", "4", "3", "6", "1", "2", "7", "10", "3", "12", "11", "3", "1", "16", "3", "18", "15", "14", "19", "22", "3", "4", "23", "2", "27", "28", "12", "30", "1", "15", "31", "7", "3", "36", "35", "32", "7", "40", "37", "42", "7", "21", "43", "46", "3", "6", "7", "27", "11", "52", "3", "34", "35", "50", "55", "58", "44", "60", "59", "5", "1", "18", "0", "66", "19", "39", "40", "70", "3", "72", "71", "3", "23", "1", "19", "78", "55", "2", "79", "82", "41", "47", "83", "51", "47", "88", "84", "74", "31", "86", "91", "17", "3", "96", "11", "42", "15", "100" ]
[ "nonn" ]
14
1
3
[ "A082579", "A384819", "A384820" ]
null
Paul D. Hanna, Jun 18 2025
2025-06-22T00:51:48
oeisdata/seq/A384/A384819.seq
2c14fb435eec46c32486406e56474d85
A384820
G.f. A(x) = exp( Sum_{n>=1} (n^2 - A384819(n))*x^n/n ) where A384819(k) < k for k >= 1 such that A(x) is a power series with integral coefficients.
[ "1", "1", "2", "4", "8", "14", "25", "43", "74", "124", "205", "335", "543", "869", "1379", "2170", "3388", "5249", "8079", "12353", "18776", "28375", "42651", "63782", "94923", "140614", "207384", "304578", "445528", "649200", "942495", "1363447", "1965697", "2824676", "4046190", "5778273", "8227533", "11681632", "16540183", "23357053", "32898242" ]
[ "nonn" ]
12
0
3
[ "A082579", "A384819", "A384820" ]
null
Paul D. Hanna, Jun 18 2025
2025-06-22T00:51:52
oeisdata/seq/A384/A384820.seq
2dcb1c66909b9fdbb21bc1a9a5ddb85b
A384821
G.f. A(x) satisfies -1/x = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+2).
[ "1", "2", "5", "22", "91", "416", "1978", "9738", "49181", "253572", "1328528", "7053672", "37866294", "205188765", "1120824743", "6165155890", "34119043994", "189839648588", "1061344406923", "5959197795092", "33588952625106", "189986944364176", "1078034452020854", "6134848540680166", "35005230073846833", "200229444332667654" ]
[ "nonn" ]
13
0
2
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T02:59:32
oeisdata/seq/A384/A384821.seq
71053ed895e9b08ca938417a0820e3fa
A384822
G.f. A(x) satisfies 1/x^5 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+4).
[ "1", "1", "5", "19", "109", "598", "3592", "22110", "140467", "911136", "6014277", "40260501", "272682397", "1865181921", "12866239311", "89403333632", "625211046931", "4396844409898", "31075863324446", "220618909826500", "1572549447431889", "11249693613964519", "80743512234554655", "581272589032594530", "4196118995069449989" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:05:09
oeisdata/seq/A384/A384822.seq
269ecd0bb717a555fa9b203fc868e7b2
A384823
G.f. A(x) satisfies -1/x^11 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+6).
[ "1", "1", "4", "28", "173", "1262", "9593", "75928", "618342", "5149640", "43650123", "375347585", "3266282211", "28709930633", "254526671024", "2273271614848", "20435110855838", "184745786960642", "1678668998195885", "15321962225034079", "140418372363945954", "1291587696225346583", "11919771215919819476", "110338977972166474055" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:07:29
oeisdata/seq/A384/A384823.seq
7066ec73d72a7edd45cd666bb2ea60eb
A384824
G.f. A(x) satisfies 1/x^19 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+8).
[ "1", "1", "5", "38", "319", "2871", "27507", "273925", "2808973", "29457644", "314470771", "3405995019", "37334767867", "413397265017", "4617060957512", "51951448775027", "588371324004508", "6701761863368579", "76723673176823126", "882342098781937683", "10188542630975395255", "118082022786322630334", "1373108879790849494070" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:10:05
oeisdata/seq/A384/A384824.seq
24c4ed34764a9193fa76dcf3c8b3b4f8
A384825
G.f. A(x) satisfies -1/x^29 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+10).
[ "1", "1", "6", "54", "542", "5955", "69114", "835140", "10391843", "132262619", "1713785727", "22531557603", "299817809184", "4030217936308", "54646151953660", "746513545616000", "10264746883787021", "141955200254335604", "1973170863256461516", "27551902179444882489", "386288077655575999571", "5435910477286670671340" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:12:35
oeisdata/seq/A384/A384825.seq
3874440a9a68b33d7655567c351314e1
A384826
G.f. A(x) satisfies 1/x^41 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+12).
[ "1", "1", "7", "73", "861", "11112", "151828", "2159179", "31627690", "473917665", "7230164079", "111926802631", "1753762735460", "27760507986844", "443257137593369", "7130838718144623", "115469073853104486", "1880570694656739472", "30784302913287253256", "506228988080918570208", "8358750672258509735440", "138528877561300962357350" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:14:48
oeisdata/seq/A384/A384826.seq
dd2afdd84b3ff00590700d68cbd15a7e
A384827
G.f. A(x) satisfies -1/x^55 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+14).
[ "1", "1", "8", "95", "1288", "19116", "300511", "4918268", "82918049", "1430142380", "25115651237", "447578072658", "8073426806649", "147122009148252", "2704441907759235", "50088849266618466", "933792151007378231", "17509062834076661230", "329985690688947517626", "6247533413700369107192", "118768564127167799819733" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:16:50
oeisdata/seq/A384/A384827.seq
3730b6d3e3fa474cd54b77cd19699ba8
A384828
G.f. A(x) satisfies 1/x^71 = Sum_{n=-oo..+oo} A(x)^n * x^n * (1 - x^n)^(n+16).
[ "1", "1", "9", "120", "1839", "30862", "548783", "10160786", "193811734", "3782270289", "75158649892", "1515578476370", "30935212293083", "637920390487505", "13269865608471203", "278121828806207328", "5867506406619195047", "124502776024601555996", "2655381364988431518262", "56892952987400631546208", "1223972213493916563960331" ]
[ "nonn" ]
10
0
3
[ "A366731", "A384821", "A384822", "A384823", "A384824", "A384825", "A384826", "A384827", "A384828" ]
null
Paul D. Hanna, Jun 10 2025
2025-06-11T03:18:38
oeisdata/seq/A384/A384828.seq
90943fa89c24c7830eddf1e34334cc65
A384829
G.f. satisfies A(x) = Sum_{n>=0} x^(n*(n+1)/2) * A(x)^(n*(n+1)).
[ "1", "1", "2", "6", "22", "87", "359", "1535", "6758", "30431", "139442", "648001", "3046730", "14467286", "69281190", "334211603", "1622568398", "7921905397", "38871120255", "191586353683", "948083155952", "4708743978840", "23463673225988", "117271827518778", "587744334759630", "2953138645722287", "14872864243128300", "75066312240321173" ]
[ "nonn" ]
10
0
3
[ "A106336", "A109085", "A384829" ]
null
Paul D. Hanna, Jun 13 2025
2025-06-13T07:01:45
oeisdata/seq/A384/A384829.seq
c84eb71ea06e18130c2df2e4131c319f
A384831
G.f. A(x) satisfies x + x^2 = A(A(x)) - A(A(A(x)))^2.
[ "1", "1", "2", "11", "64", "446", "3420", "28428", "252072", "2360784", "23187228", "237586156", "2529557212", "27898101068", "317939375512", "3736715692256", "45216913769794", "562576653920012", "7188297232200600", "94231521967695334", "1266217030228294392", "17426887813843435996", "245483608643275477496", "3536990534237805030068" ]
[ "nonn", "new" ]
7
1
3
null
null
Paul D. Hanna, Jun 29 2025
2025-06-30T10:17:31
oeisdata/seq/A384/A384831.seq
b99c6fd47f60d8db9159c29e49ebe17c
A384832
G.f. A(x) = Sum_{n>=0} x^n * Product_{k=0..n} ((1+x)^(n-k+1) - x^k).
[ "1", "2", "4", "13", "41", "144", "533", "2072", "8463", "36142", "160852", "744491", "3576342", "17796825", "91587499", "486686277", "2666612930", "15045088274", "87301643726", "520416443472", "3183640482658", "19967208261651", "128273336978302", "843360769602607", "5670286993205471", "38957428760628861", "273318099568893757", "1956848333035887861" ]
[ "nonn", "new" ]
9
1
2
[ "A121690", "A384832" ]
null
Paul D. Hanna, Jun 29 2025
2025-06-30T10:17:28
oeisdata/seq/A384/A384832.seq
007e74dd40fa06065705e8ca72923352
A384833
G.f. satisfies A(x) = x + A(x^2)*A(x^3) with A(0) = 1.
[ "1", "1", "1", "1", "1", "1", "2", "1", "2", "2", "2", "2", "4", "2", "3", "4", "4", "3", "7", "4", "6", "6", "7", "5", "12", "6", "9", "11", "11", "8", "18", "10", "14", "16", "16", "13", "29", "14", "22", "25", "26", "18", "40", "22", "32", "35", "35", "29", "60", "31", "44", "52", "51", "38", "84", "44", "66", "71", "71", "55", "118", "59", "88", "101", "98", "75", "158", "84", "121", "132", "131", "102", "222", "109", "163", "183", "183", "132", "288", "149", "220" ]
[ "nonn", "new" ]
13
0
7
[ "A382126", "A384833" ]
null
Paul D. Hanna, Jun 29 2025
2025-06-30T10:03:58
oeisdata/seq/A384/A384833.seq
446e7a38ea8db461f1795f9d12fd950a
A384835
The exponents (j, k) of the numbers 2^j*3^k that are averages of twin primes, with both j and k > 0, in the order of their sum, and then by j.
[ "1", "1", "1", "2", "2", "1", "2", "3", "3", "2", "4", "3", "6", "1", "5", "4", "7", "2", "3", "10", "6", "7", "2", "15", "12", "5", "18", "1", "18", "5", "21", "4", "24", "5", "27", "4", "11", "24", "30", "7", "32", "9", "33", "8", "31", "12", "36", "7", "43", "2", "32", "15", "43", "8", "50", "9", "63", "2", "66", "25", "79", "20", "99", "10", "57", "64", "82", "63", "63", "88", "56", "99", "148", "27" ]
[ "nonn", "tabf", "new" ]
41
1
4
[ "A027856", "A384639", "A384835" ]
null
Ken Clements, Jun 10 2025
2025-07-05T00:23:34
oeisdata/seq/A384/A384835.seq
f06dee815f2b9c3eab2405a60d39f8f4
A384836
a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n,4*k)|.
[ "1", "0", "0", "0", "1", "10", "85", "735", "6770", "67320", "724550", "8427650", "105615500", "1420941600", "20448793300", "313670857500", "5111631733000", "88224807112000", "1608190674259000", "30879323250633000", "623074177992110000", "13182400475167560000", "291842125111122170000", "6748135840840046510000" ]
[ "nonn" ]
10
0
6
[ "A000110", "A000142", "A001710", "A024430", "A143815", "A357828", "A365525", "A365528", "A384836", "A384837" ]
null
Vaclav Kotesovec, Jun 10 2025
2025-06-10T14:51:32
oeisdata/seq/A384/A384836.seq
4273f32d331bc60ab3dd520b7199e5ca
A384837
a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n,5*k)|.
[ "1", "0", "0", "0", "0", "1", "15", "175", "1960", "22449", "269326", "3416985", "45997655", "657262606", "9959178229", "159758917956", "2707741441460", "48389066401764", "909877831207125", "17965423056654249", "371766710374672096", "8047954162682335066", "181941000229690525197", "4288430328840863166236", "105226297616943093770399" ]
[ "nonn" ]
9
0
7
[ "A000110", "A000142", "A001710", "A024430", "A143815", "A357828", "A365525", "A365528", "A384836", "A384837" ]
null
Vaclav Kotesovec, Jun 10 2025
2025-06-10T14:51:17
oeisdata/seq/A384/A384837.seq
9ac18d8c52fc083948b1bd49f4e1cb83
A384838
Numbers k for which sigma(k - x) + sigma(k + x) = 5*k has at least one nonnegative solution.
[ "24", "53", "56", "63", "66", "74", "75", "79", "82", "84", "95", "112", "168", "192", "216", "227", "245", "252", "255", "274", "280", "282", "288", "308", "312", "347", "348", "351", "360", "365", "392", "395", "408", "420", "431", "432", "434", "458", "465", "466", "471", "476", "496", "528", "532", "560", "576", "579", "588", "624", "628", "644", "670", "694", "716", "720", "784" ]
[ "nonn" ]
12
1
1
[ "A000203", "A141643", "A383268", "A383758", "A384838", "A384839", "A384840", "A384841" ]
null
Michel Marcus, Jun 10 2025
2025-06-12T09:08:57
oeisdata/seq/A384/A384838.seq
0925d1bff6a8184b8e2da9587b61e3eb
A384839
Numbers k for which sigma(k - x) + sigma(k + x) = 6*k has at least one nonnegative solution.
[ "93", "120", "204", "211", "231", "239", "254", "269", "274", "280", "315", "336", "343", "360", "366", "372", "375", "378", "395", "396", "402", "420", "466", "475", "496", "592", "604", "672", "708", "724", "726", "774", "821", "822", "827", "836", "840", "844", "845", "862", "870", "880", "898", "919", "926", "952", "964", "976", "982", "996", "997", "1023", "1077", "1080" ]
[ "nonn" ]
15
1
1
[ "A000203", "A005820", "A383268", "A383758", "A384838", "A384839", "A384840", "A384841" ]
null
Michel Marcus, Jun 10 2025
2025-06-20T18:56:25
oeisdata/seq/A384/A384839.seq
298645a52b5a509375eb82e0272d5786
A384840
Numbers k for which sigma(k - x) + sigma(k + x) = 7*k has at least one nonnegative solution.
[ "1952", "1992", "2016", "2160", "2520", "2640", "3314", "3744", "3801", "4320", "4484", "4500", "4566", "4620", "4680", "4994", "5016", "5948", "6072", "6096", "6194", "6384", "6492", "6552", "6654", "6870", "7056", "7200", "7224", "7382", "7435", "7440", "7470", "7794", "7812", "7920", "7956", "8376", "8480", "8604", "8616", "8702", "8892", "9284", "9360", "9408" ]
[ "nonn" ]
12
1
1
[ "A000203", "A055153", "A383268", "A383758", "A384838", "A384839", "A384840", "A384841" ]
null
Michel Marcus, Jun 10 2025
2025-06-12T14:25:05
oeisdata/seq/A384/A384840.seq
99c891bbe72a84728508613bc7aae325
A384841
Numbers k for which sigma(k - x) + sigma(k + x) = 8*k has at least one nonnegative solution.
[ "14412", "17640", "25581", "25623", "25659", "26208", "30240", "31110", "31380", "31500", "32340", "32736", "32760", "34958", "35112", "44211", "44343", "45048", "45324", "45444", "46578", "48090", "49368", "51674", "52045", "52290", "53103", "53127", "53460", "54000", "54180", "59400", "59940", "60228", "60903", "60914", "60987", "61920", "62340", "62370" ]
[ "nonn" ]
14
1
1
[ "A000203", "A027687", "A383268", "A383758", "A384838", "A384839", "A384840", "A384841" ]
null
Michel Marcus, Jun 10 2025
2025-06-16T15:27:36
oeisdata/seq/A384/A384841.seq
fd15f256817beaaf1c42a56440ef7ede
A384842
a(n) is the n-th number which can be represented as the sum of n distinct n-almost primes in exactly n ways, or -1 if fewer than n such numbers exist.
[ "2", "24", "75", "211", "522", "1332", "3588", "8900", "20552", "48304", "118768", "256864", "558272", "1564608", "2863360" ]
[ "nonn", "more" ]
9
1
1
[ "A091538", "A365494", "A384842" ]
null
Robert Israel, Jun 10 2025
2025-06-11T01:01:43
oeisdata/seq/A384/A384842.seq
c7685d87c9c2b3c22f86364f8bf2abfe
A384843
Wiener index of the n-Dorogovtsev-Goltsev-Mendes graph.
[ "1", "3", "21", "204", "2130", "22245", "229119", "2325966", "23319708", "231384327", "2276119977", "22228324368", "215745006246", "2082918495849", "20017195390995", "191593142789010", "1827283815276144", "17372064324294411", "164687169445632573", "1557231841690641492", "14690512431146615802" ]
[ "nonn" ]
19
0
2
[ "A384843", "A384844" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-18T16:52:35
oeisdata/seq/A384/A384843.seq
508ee165a86c1398e852855642d7e9ff
A384844
Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the n-Dorogovtsev-Goltsev-Mendes graph.
[ "3", "9", "6", "27", "57", "21", "81", "351", "369", "60", "243", "1806", "3582", "1716", "156", "729", "8472", "26346", "24216", "6648", "384", "2187", "37683", "165375", "241032", "128880", "22896", "912", "6561", "162177", "938907", "1946676", "1670280", "584784", "72624", "2112", "19683", "683112", "4979928", "13697148", "16889340", "9580368", "2366256", "216768", "4800" ]
[ "nonn", "tabl" ]
12
1
1
[ "A000244", "A113070", "A384843", "A384844" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-14T03:40:18
oeisdata/seq/A384/A384844.seq
878befb84e280ffa0f2176bbfd39bc40
A384845
Array read by antidiagonals: T(n,m) is the number of spanning trees in the n X m rook graph K_n X K_m.
[ "1", "1", "1", "3", "4", "3", "16", "75", "75", "16", "125", "3456", "11664", "3456", "125", "1296", "300125", "5647152", "5647152", "300125", "1296", "16807", "42467328", "6291456000", "34359738368", "6291456000", "42467328", "16807", "262144", "8931928887", "13556617751088", "564859072962000", "564859072962000", "13556617751088", "8931928887", "262144" ]
[ "nonn", "tabl" ]
6
1
4
[ "A000272", "A006236", "A193137", "A384845" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-10T16:26:11
oeisdata/seq/A384/A384845.seq
fddd3b57c112fa5ecf3f164cb1180bfc
A384846
Number of spanning trees in the n-triangular honeycomb bishop graph.
[ "1", "1", "30", "25168", "664401820", "634543847913456", "25062233595938217514752", "46288337050885561953513132275712", "4471323660789245565301209855109407779782656", "25018309187086133240059638160242724409548249615719137280", "8903346030392451220795207850196917536479365714361743085011780990140416" ]
[ "nonn" ]
5
1
3
[ "A384845", "A384846", "A384847" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-10T16:57:46
oeisdata/seq/A384/A384846.seq
52c0d3555f87313f579b5d596676a85b
A384847
Number of spanning trees in the n X n black bishop graph.
[ "1", "1", "9", "960", "11154000", "719213811120", "13979695039203246080", "1189479898434851932473556992", "59490642495288058341403673304760320000", "11645428233837424031731122865772802780489910560000", "2207327946153908676600111470799606037757241457466405065001533440" ]
[ "nonn" ]
6
1
3
[ "A384846", "A384847", "A384848" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-10T16:57:40
oeisdata/seq/A384/A384847.seq
037db8d7d43fb9c58fa79cc1e5ee3bde
A384848
Number of spanning trees in the n X n white bishop graph.
[ "1", "4", "960", "1843200", "719213811120", "1391765093351424000", "1189479898434851932473556992", "4228796210572964243075940986388480000", "11645428233837424031731122865772802780489910560000", "121990507997921730280241882782262561248455235330514092032000000" ]
[ "nonn" ]
6
2
2
[ "A384846", "A384847", "A384848" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-10T16:57:29
oeisdata/seq/A384/A384848.seq
fff6e8c500325782e74cf63a640ec470
A384849
Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with degeneracy k, 0 <= k < n.
[ "1", "1", "1", "1", "2", "1", "1", "5", "4", "1", "1", "9", "18", "5", "1", "1", "19", "85", "43", "7", "1", "1", "36", "471", "442", "85", "8", "1", "1", "75", "3378", "6979", "1758", "144", "10", "1", "1", "152", "31782", "166258", "70811", "5421", "231", "11", "1", "1", "328", "385205", "5892753", "5164116", "547170", "15239", "342", "13", "1" ]
[ "nonn", "tabl" ]
7
1
5
[ "A000088", "A005195", "A352067", "A384849" ]
null
Andrew Howroyd, Jun 10 2025
2025-06-11T17:51:54
oeisdata/seq/A384/A384849.seq
7df85eef06b20b339ebdb00a8defaaee
A384850
Triangle read by rows: T(n,k) is the number of unsensed simple planar maps with n edges and k vertices, 1 <= k <= n+1.
[ "1", "0", "1", "0", "0", "1", "0", "0", "1", "2", "0", "0", "0", "2", "3", "0", "0", "0", "1", "7", "6", "0", "0", "0", "1", "7", "22", "12", "0", "0", "0", "0", "5", "42", "76", "27", "0", "0", "0", "0", "2", "49", "237", "271", "65", "0", "0", "0", "0", "1", "35", "442", "1293", "1001", "175", "0", "0", "0", "0", "0", "18", "510", "3539", "6757", "3765", "490" ]
[ "nonn", "tabl" ]
11
0
10
[ "A006082", "A006395", "A054923", "A212438", "A277741", "A342060", "A372892", "A384850", "A384963", "A384967" ]
null
Andrew Howroyd, Jun 13 2025
2025-06-15T14:39:26
oeisdata/seq/A384/A384850.seq
1c0b81dc5bba04aec4a539febe10b634
A384851
Decimal expansion of minimal radius of a circle that contains 14 non-overlapping unit disks.
[ "4", "3", "2", "8", "4", "2", "8", "5", "5", "4", "8", "6", "0", "8", "3", "6", "6", "8", "1", "4", "0", "3", "9", "0", "9", "3", "6", "7", "4", "7", "8", "1", "8", "1", "0", "9", "1", "6", "0", "8", "4", "9", "5", "7", "2", "9", "6", "5", "8", "6", "7", "5", "7", "0", "1", "2", "4", "5", "7", "5", "4", "8", "5", "5", "2", "2", "1", "1", "3", "3", "7", "0", "4", "5", "4", "0", "2", "1", "3", "8", "6", "3", "1", "9", "7", "5", "7" ]
[ "nonn", "cons" ]
11
1
1
[ "A084618", "A121570", "A121598", "A121601", "A121602", "A281115", "A282279", "A384851" ]
null
Jinyuan Wang, Jun 10 2025
2025-06-16T22:08:25
oeisdata/seq/A384/A384851.seq
1489faac2fb55067756417b3f7a72c61
A384852
a(n) = 2*binomial(n,2) + 3*binomial(n,3) + 4*binomial(n,4).
[ "0", "0", "2", "9", "28", "70", "150", "287", "504", "828", "1290", "1925", "2772", "3874", "5278", "7035", "9200", "11832", "14994", "18753", "23180", "28350", "34342", "41239", "49128", "58100", "68250", "79677", "92484", "106778", "122670", "140275", "159712", "181104", "204578", "230265", "258300", "288822", "321974", "357903", "396760" ]
[ "nonn", "easy" ]
29
0
3
[ "A004006", "A384852" ]
null
Enrique Navarrete, Jun 19 2025
2025-06-24T16:16:25
oeisdata/seq/A384/A384852.seq
20b1e1d834bde4dcba1dc585ac8ac9c9
A384853
Squared length of interior diagonal of n-th (U, V)-crossbox, where U = (1, 0, 1) and V = (0, 1, 0), as in Comments.
[ "1", "5", "9", "21", "57", "165", "489", "1461", "4377", "13125", "39369", "118101", "354297", "1062885", "3188649", "9565941", "28697817", "86093445", "258280329", "774840981", "2324522937", "6973568805", "20920706409", "62762119221", "188286357657", "564859072965", "1694577218889", "5083731656661" ]
[ "nonn", "new" ]
8
1
2
[ "A000079", "A008776", "A052548", "A384853" ]
null
Clark Kimberling, Jul 02 2025
2025-07-06T23:28:45
oeisdata/seq/A384/A384853.seq
2aa72698459ad888e9b12be562ce33ca
A384854
The number of divisors d of n such that (-d)^d = d (mod n).
[ "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "2", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "5", "1", "1", "1", "2", "2", "2", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "3", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "2", "1", "1" ]
[ "nonn" ]
13
1
2
[ "A000005", "A032741", "A065295", "A384237", "A384781", "A384854" ]
null
Juri-Stepan Gerasimov, Jun 10 2025
2025-06-17T16:44:22
oeisdata/seq/A384/A384854.seq
bd4647a4b86ff543d47fddbc94f26531
A384855
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x))^3 ).
[ "1", "1", "7", "10", "-503", "-8564", "-103751", "3479554", "327940225", "8613464536", "-36391967279", "-24834942253274", "-2356662167845487", "-88482481533921500", "1825569695231959993", "704791058412273699106", "88829364712362626504449", "5460031123686211024338736", "23871425875449192877470625" ]
[ "sign" ]
11
0
3
[ "A052752", "A213108", "A213112", "A213113", "A384617", "A384855", "A384856", "A384857", "A384858", "A384859" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-11T10:11:40
oeisdata/seq/A384/A384855.seq
0dc37983c6e7929322ab91b71a4c419f
A384856
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^2)^3 ).
[ "1", "1", "7", "28", "-107", "-11744", "-519101", "-12366080", "-101065751", "19899785728", "2369020104991", "160985802059776", "8664193820140093", "137309806362677248", "-48557247646714851365", "-9196626471351773732864", "-1230646715294157585659951", "-124354471985557029636669440", "-8657982884640209349171498569" ]
[ "sign" ]
11
0
3
[ "A052752", "A213112", "A213113", "A384855", "A384856", "A384857", "A384858", "A384860" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-11T10:11:34
oeisdata/seq/A384/A384856.seq
2fbff65dbee2460955b7af74360497ce
A384857
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^3)^3 ).
[ "1", "1", "7", "46", "361", "-6284", "-632951", "-31583474", "-1484748191", "-51928436312", "-303653774159", "219248741052826", "35743757192135425", "4097960104621191004", "408462300514973323753", "33384541884258873033406", "1521231207001104466842049", "-200132739000502301652035888", "-84772475888572203988197350303" ]
[ "sign" ]
13
0
3
[ "A052752", "A213109", "A213112", "A213113", "A384855", "A384856", "A384857", "A384858", "A384861" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-11T10:11:25
oeisdata/seq/A384/A384857.seq
bb107e2ce93035fe954918b6b7141aa6
A384858
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^8)^3 ).
[ "1", "1", "7", "136", "3781", "163216", "9103699", "646696576", "55084545289", "5491386074368", "625131329307391", "79898089652402176", "11312691034562944525", "1755128489880477528064", "295767148537661982373963", "53734366029378178883731456", "10459045695948264117117132049", "2169330513346145105101803814912" ]
[ "nonn" ]
8
0
3
[ "A052752", "A213112", "A213113", "A384855", "A384856", "A384857", "A384858", "A384862" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-11T10:11:21
oeisdata/seq/A384/A384858.seq
254f916cac644cb39aa811b50d9ae297
A384859
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384855.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "10", "0", "1", "4", "27", "62", "-503", "0", "1", "5", "40", "162", "-632", "-8564", "0", "1", "6", "55", "316", "-135", "-20758", "-103751", "0", "1", "7", "72", "530", "1264", "-31572", "-413900", "3479554", "0", "1", "8", "91", "810", "3865", "-34316", "-919647", "2636678", "327940225", "0", "1", "9", "112", "1162", "7992", "-20500", "-1552472", "-5475222", "679001872", "8613464536", "0" ]
[ "sign", "tabl" ]
15
0
8
[ "A000007", "A384801", "A384808", "A384855", "A384859" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-12T08:28:42
oeisdata/seq/A384/A384859.seq
7982cc972e849d2f3270c8b10b967c4e
A384860
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384856.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "28", "0", "1", "4", "27", "98", "-107", "0", "1", "5", "40", "216", "304", "-11744", "0", "1", "6", "55", "388", "1485", "-20638", "-519101", "0", "1", "7", "72", "620", "3712", "-20592", "-1185920", "-12366080", "0", "1", "8", "91", "918", "7285", "-3836", "-1908657", "-35662030", "-101065751", "0" ]
[ "sign", "tabl" ]
17
0
8
[ "A000007", "A058127", "A384811", "A384856", "A384860" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-12T08:28:57
oeisdata/seq/A384/A384860.seq
8f1bc71c4161e2cecf201679a911ccfc
A384861
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384857.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "46", "0", "1", "4", "27", "134", "361", "0", "1", "5", "40", "270", "1384", "-6284", "0", "1", "6", "55", "460", "3321", "-2518", "-632951", "0", "1", "7", "72", "710", "6448", "18468", "-1223180", "-31583474", "0", "1", "8", "91", "1026", "11065", "65524", "-1591407", "-72713338", "-1484748191", "0" ]
[ "sign", "tabl" ]
17
0
8
[ "A000007", "A384802", "A384813", "A384857", "A384861" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-12T08:29:55
oeisdata/seq/A384/A384861.seq
407a68f97853e0d702a09778e6babd50
A384862
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384858.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "136", "0", "1", "4", "27", "314", "3781", "0", "1", "5", "40", "540", "8944", "163216", "0", "1", "6", "55", "820", "15741", "383282", "9103699", "0", "1", "7", "72", "1160", "24448", "672768", "21329920", "646696576", "0", "1", "8", "91", "1566", "35365", "1045924", "37392543", "1504825562", "55084545289", "0" ]
[ "nonn", "tabl" ]
14
0
8
[ "A000007", "A384858", "A384862" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-12T08:29:34
oeisdata/seq/A384/A384862.seq
92ef6c76c56406b5a8e889035711aff7
A384863
Consecutive states of the linear congruential pseudo-random number generator G05CAF when started at s=1.
[ "1", "302875106592253", "458357793578900489", "130117127544889829", "214028503895537745", "129723886062288141", "506561892515206873", "27366493393768821", "104092279467936161", "249472354291378461", "22695394996597417", "331563264261234181", "550296776567063537", "359770781871757869" ]
[ "nonn", "easy" ]
13
1
2
[ "A384217", "A384387", "A384863" ]
null
Sean A. Irvine, Jun 10 2025
2025-06-12T21:55:58
oeisdata/seq/A384/A384863.seq
4657de10f886adc0ae04190e853ef57e
A384864
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A213091.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "2", "0", "1", "4", "6", "6", "4", "0", "1", "5", "10", "13", "13", "11", "0", "1", "6", "15", "24", "30", "34", "31", "0", "1", "7", "21", "40", "59", "78", "96", "98", "0", "1", "8", "28", "62", "105", "156", "220", "296", "317", "0", "1", "9", "36", "91", "174", "286", "442", "669", "952", "1070", "0", "1", "10", "45", "128", "273", "492", "820", "1336", "2136", "3182", "3685", "0" ]
[ "sign", "tabl" ]
17
0
8
[ "A000007", "A213091", "A384864" ]
null
Seiichi Manyama, Jun 11 2025
2025-06-12T08:29:45
oeisdata/seq/A384/A384864.seq
c8397453079e547cc7bc7579035b4be8
A384865
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A213092.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "3", "0", "1", "4", "6", "8", "8", "0", "1", "5", "10", "16", "23", "31", "0", "1", "6", "15", "28", "48", "84", "120", "0", "1", "7", "21", "45", "87", "171", "327", "511", "0", "1", "8", "28", "68", "145", "308", "664", "1372", "2234", "0", "1", "9", "36", "98", "228", "516", "1192", "2760", "5980", "9988", "0" ]
[ "tabl", "sign" ]
15
0
8
[ "A000007", "A213092", "A384865" ]
null
Seiichi Manyama, Jun 11 2025
2025-06-12T08:29:25
oeisdata/seq/A384/A384865.seq
79367d8c6154d1c704dd10357f91120d
A384866
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A213093.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "4", "0", "1", "4", "6", "10", "13", "0", "1", "5", "10", "19", "35", "62", "0", "1", "6", "15", "32", "69", "158", "297", "0", "1", "7", "21", "50", "119", "303", "760", "1523", "0", "1", "8", "28", "74", "190", "516", "1453", "3868", "8091", "0", "1", "9", "36", "105", "288", "821", "2462", "7359", "20487", "43243", "0" ]
[ "tabl", "sign" ]
14
0
8
[ "A000007", "A213093", "A384866" ]
null
Seiichi Manyama, Jun 11 2025
2025-06-12T08:29:10
oeisdata/seq/A384/A384866.seq
301553eb4bfcc2a395b2161bc266ceb6
A384867
Array A(T,k) read down antidiagonals: Number of typed decorated trees of cardinality T on k vertices with D=2 decorations.
[ "2", "4", "2", "14", "8", "2", "52", "52", "12", "2", "214", "376", "114", "16", "2", "916", "2998", "1228", "200", "20", "2", "4116", "25256", "14568", "2864", "310", "24", "2", "18996", "222128", "18", "3132", "45140", "5540", "444", "28", "2" ]
[ "nonn", "tabl", "more" ]
11
1
1
[ "A038055", "A136794", "A242249", "A384867" ]
null
R. J. Mathar, Jun 11 2025
2025-06-11T09:57:08
oeisdata/seq/A384/A384867.seq
aa3d7a1f54550c6dd737e58333bf9bb6
A384868
a(n) = Sum_{i=1...|b|} i*(-1)^b_i where b is the lexicographically n-th binary string.
[ "0", "1", "-1", "3", "-1", "1", "-3", "6", "0", "2", "-4", "4", "-2", "0", "-6", "10", "2", "4", "-4", "6", "-2", "0", "-8", "8", "0", "2", "-6", "4", "-4", "-2", "-10", "15", "5", "7", "-3", "9", "-1", "1", "-9", "11", "1", "3", "-7", "5", "-5", "-3", "-13", "13", "3", "5", "-5", "7", "-3", "-1", "-11", "9", "-1", "1", "-9", "3", "-7", "-5", "-15", "21", "9", "11", "-1", "13", "1", "3", "-9", "15", "3", "5", "-7", "7", "-5", "-3", "-15", "17" ]
[ "sign", "tabf", "look", "easy" ]
44
0
4
[ "A000079", "A000217", "A000225", "A007931", "A100575", "A231204", "A365968", "A377170", "A384868" ]
null
Christopher Purcell, Jun 11 2025
2025-06-18T21:18:34
oeisdata/seq/A384/A384868.seq
93d289f2a85adab252a6ecc6befe02ac
A384869
For n >= 1, a(n) = Sum_{k = 1..n} gcd(n, floor((n/k)*10^x)), where x = A121341(k/gcd(n,k)).
[ "1", "3", "7", "8", "17", "21", "31", "27", "53", "33", "71", "58", "85", "74", "103", "75", "129", "118", "145", "70", "209", "141", "199", "146", "197", "194", "309", "191", "281", "175", "301", "206", "427", "271", "339", "297", "397", "306", "503", "157", "481", "432", "505", "336", "559", "395", "553", "388", "607", "303", "777", "454", "677", "620", "605", "467" ]
[ "base", "nonn" ]
49
1
2
[ "A003592", "A018804", "A051626", "A051628", "A085837", "A121341", "A384869" ]
null
Ctibor O. Zizka, Jun 11 2025
2025-06-26T17:54:15
oeisdata/seq/A384/A384869.seq
c1468274d09ed29d1286c2313b894b19
A384870
The largest k such that the set {1^n, 2^n, ..., k^n} has uniquely distinct subset sums.
[ "1", "2", "4", "5", "8", "11", "15", "19", "21", "28", "30", "37", "42", "45", "45" ]
[ "nonn", "hard", "more" ]
43
0
2
[ "A000124", "A208531", "A332101", "A384870" ]
null
Yuto Tsujino, Jun 11 2025
2025-06-22T23:42:55
oeisdata/seq/A384/A384870.seq
e2b467851e9332f3e52b662a79c74fcd
A384871
Decimal expansion of the volume of a pentagonal orthocupolarotunda with unit edge.
[ "9", "2", "4", "1", "8", "0", "8", "2", "8", "6", "4", "5", "7", "8", "9", "5", "2", "0", "0", "8", "5", "2", "4", "4", "5", "1", "4", "3", "1", "9", "0", "1", "5", "8", "8", "2", "3", "8", "3", "4", "6", "2", "1", "5", "8", "2", "5", "2", "4", "0", "1", "1", "9", "2", "5", "5", "6", "4", "3", "6", "9", "2", "6", "1", "2", "7", "1", "9", "1", "8", "5", "9", "5", "0", "7", "8", "7", "6", "0", "2", "0", "7", "1", "1", "3", "3", "6", "3", "3", "5" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A002163", "A384144", "A384283", "A384285", "A384624", "A384871", "A384872" ]
null
Paolo Xausa, Jun 11 2025
2025-06-12T08:36:58
oeisdata/seq/A384/A384871.seq
3edf58c0d760ca6ba0c3177fe8f19ab9
A384872
Decimal expansion of the surface area of a pentagonal orthocupolarotunda with unit edge.
[ "2", "3", "5", "3", "8", "5", "3", "2", "3", "3", "2", "5", "0", "6", "0", "5", "8", "3", "1", "0", "0", "4", "1", "0", "0", "7", "6", "2", "2", "3", "6", "7", "2", "8", "8", "5", "7", "1", "8", "8", "7", "1", "3", "8", "8", "9", "1", "8", "6", "0", "3", "1", "5", "6", "5", "9", "6", "5", "8", "9", "3", "9", "1", "2", "2", "1", "1", "1", "8", "3", "1", "7", "5", "8", "8", "7", "0", "7", "6", "3", "7", "5", "8", "3", "8", "1", "3", "8", "6", "8" ]
[ "nonn", "cons", "easy" ]
12
2
1
[ "A002163", "A002194", "A384284", "A384286", "A384625", "A384871", "A384872" ]
null
Paolo Xausa, Jun 11 2025
2025-06-12T12:59:56
oeisdata/seq/A384/A384872.seq
057a7e13d310a7943c3b2ce0ac406f18
A384873
a(n) is the smallest n-digit zeroless prime.
[ "2", "11", "113", "1117", "11113", "111119", "1111151", "11111117", "111111113", "1111111121", "11111111113", "111111111149", "1111111111139", "11111111111123", "111111111111229", "1111111111111123", "11111111111111119", "111111111111111131", "1111111111111111111", "11111111111111111131" ]
[ "nonn", "base" ]
30
1
1
[ "A004022", "A052382", "A068693", "A096497", "A384873" ]
null
Gonzalo Martínez, Jun 11 2025
2025-06-23T22:21:42
oeisdata/seq/A384/A384873.seq
5f7c418bfb2c5ebb62b4daccadca239e
A384874
a(n) is the first prime encountered when iterating the map x -> x/2 if x is even, x*lpf(x) + 1 otherwise, where lpf(x) is the least prime factor of x, on n >= 2; or -1 if a prime is never reached.
[ "2", "3", "2", "5", "3", "7", "2", "7", "5", "11", "3", "13", "7", "23", "2", "17", "7", "19", "5", "2", "11", "23", "3", "313", "13", "41", "7", "29", "23", "31", "2", "313", "17", "11", "7", "37", "19", "59", "5", "41", "2", "43", "11", "17", "23", "47", "3", "43", "313", "5869", "13", "53", "41", "13", "7", "43", "29", "59", "23", "61", "31", "313", "2", "163", "313", "67", "17", "13", "11" ]
[ "nonn" ]
12
2
1
[ "A006370", "A320028", "A384698", "A384874" ]
null
Ya-Ping Lu, Jun 11 2025
2025-06-21T22:15:34
oeisdata/seq/A384/A384874.seq
5c99b313777f579867b98a29815d29d2
A384875
Irregular triangle T(n,k) = 2^(floor(n/3)-k) * nextprime(2^(n-2*(floor(n/3)-k))), with k = 0..floor(n/3)-1.
[ "6", "10", "22", "20", "34", "44", "74", "68", "134", "88", "148", "262", "136", "268", "514", "296", "524", "1042", "272", "536", "1028", "2062", "592", "1048", "2084", "4106", "1072", "2056", "4124", "8198", "1184", "2096", "4168", "8212", "16418", "2144", "4112", "8248", "16396", "32822", "4192", "8336", "16424", "32836", "65542", "4288", "8224", "16496", "32792", "65644", "131074" ]
[ "nonn", "tabf", "easy", "new" ]
22
3
1
[ "A006881", "A010846", "A100484", "A384875" ]
null
Michael De Vlieger, Jun 11 2025
2025-07-06T10:01:56
oeisdata/seq/A384/A384875.seq
f33834e450dc5710039d80d27758baf3
A384876
Smallest number m such that both m-1 and m+1 are products of at least n (not necessarily distinct) primes.
[ "3", "5", "17", "55", "161", "1457", "2431", "13121", "101249", "153089", "2086399", "7991297", "65071999", "72630271", "2829746177", "2975006719", "68278476799", "75389157377", "159703334911", "1570258288639", "9714181341185", "91845775327231", "551785225781249", "2123044908695551", "4560483868737535", "4560483868737535", "424428773098651649" ]
[ "nonn" ]
37
1
1
[ "A000040", "A001222", "A099047", "A154704", "A176462", "A384372", "A384876" ]
null
Sinuhe Perea, Jun 12 2025
2025-06-14T21:42:54
oeisdata/seq/A384/A384876.seq
b9b25a157b3bdcd7128fc2e9b68daab1
A384877
Irregular triangle read by rows where row k lists the lengths of maximal anti-runs (increasing by more than 1) in the binary indices of n.
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "2", "2", "3", "1", "2", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "2", "2", "3", "1", "2", "1", "1", "2", "2", "3", "3", "1", "3", "1", "2", "2", "2" ]
[ "nonn", "tabf" ]
9
0
6
[ "A000120", "A023758", "A044813", "A048793", "A052499", "A069010", "A164707", "A243815", "A245562", "A245563", "A246029", "A328592", "A355393", "A355394", "A356606", "A356607", "A384175", "A384176", "A384177", "A384877", "A384879", "A384890", "A384893" ]
null
Gus Wiseman, Jun 17 2025
2025-06-18T07:35:50
oeisdata/seq/A384/A384877.seq
78002c18610cf4976b32ff99895d2e68
A384878
Position of first appearance of n in the flattened version of the triangle A384877, whose m-th row lists the lengths of maximal anti-runs in the binary indices of m.
[ "1", "6", "34", "178", "882", "4210", "19570", "89202", "400498", "1776754" ]
[ "nonn", "more" ]
12
1
2
[ "A000120", "A001792", "A023758", "A044813", "A048793", "A052499", "A069010", "A245562", "A245563", "A384175", "A384176", "A384877", "A384878", "A384879", "A384890", "A384893" ]
null
Gus Wiseman, Jun 23 2025
2025-06-25T18:04:30
oeisdata/seq/A384/A384878.seq
41df23ef9c0bf52ea3b81052cf998432
A384879
Numbers whose binary indices have all distinct lengths of maximal anti-runs (increasing by more than 1).
[ "1", "2", "4", "5", "8", "9", "10", "11", "13", "16", "17", "18", "19", "20", "21", "22", "25", "26", "32", "33", "34", "35", "36", "37", "38", "40", "41", "42", "43", "44", "49", "50", "52", "53", "64", "65", "66", "67", "68", "69", "70", "72", "73", "74", "75", "76", "80", "81", "82", "83", "84", "85", "86", "88", "97", "98", "100", "101", "104", "105", "106", "128", "129", "130" ]
[ "nonn" ]
5
1
2
[ "A000120", "A023758", "A044813", "A048793", "A069010", "A098859", "A164707", "A242882", "A243815", "A245562", "A245563", "A246029", "A325325", "A328592", "A336866", "A356606", "A356607", "A384175", "A384176", "A384177", "A384877", "A384878", "A384879", "A384884", "A384886", "A384890", "A384893" ]
null
Gus Wiseman, Jun 17 2025
2025-06-18T07:36:04
oeisdata/seq/A384/A384879.seq
f8d558854ef275892d955a1054ad4abf
A384880
Number of strict integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).
[ "1", "1", "1", "1", "2", "2", "3", "4", "6", "6", "9", "10", "12", "15", "18", "21", "25", "30", "34", "41", "46", "55", "63", "75", "85", "99", "114", "133", "152", "178", "201", "236", "269", "308", "352", "404", "460", "525", "594", "674", "763", "865", "974", "1098", "1236", "1385", "1558", "1745", "1952", "2181", "2435", "2712", "3026", "3363", "3740", "4151", "4612" ]
[ "nonn" ]
6
0
5
[ "A000009", "A000041", "A008289", "A047993", "A089259", "A098859", "A239455", "A242882", "A325324", "A325325", "A329739", "A336866", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A384175", "A384176", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886" ]
null
Gus Wiseman, Jun 13 2025
2025-06-14T23:51:34
oeisdata/seq/A384/A384880.seq
171ee3737bb6c584af1e5ddce80a8d0d
A384881
Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.
[ "1", "0", "1", "0", "1", "1", "0", "2", "0", "1", "0", "1", "3", "0", "1", "0", "2", "2", "2", "0", "1", "0", "2", "3", "3", "2", "0", "1", "0", "2", "5", "3", "2", "2", "0", "1", "0", "1", "8", "4", "4", "2", "2", "0", "1", "0", "3", "5", "10", "4", "3", "2", "2", "0", "1", "0", "2", "9", "9", "9", "5", "3", "2", "2", "0", "1", "0", "2", "11", "13", "9", "9", "4", "3", "2", "2", "0", "1" ]
[ "nonn", "tabl" ]
6
0
8
[ "A000009", "A000041", "A001227", "A007690", "A008284", "A034296", "A047966", "A047993", "A066205", "A066311", "A073491", "A098859", "A116608", "A116674", "A183558", "A268193", "A287170", "A325325", "A356229", "A375136", "A384881", "A384882", "A384884", "A384887", "A385213" ]
null
Gus Wiseman, Jun 25 2025
2025-06-25T22:50:10
oeisdata/seq/A384/A384881.seq
7adb9e7d4bbdae39637c54b4d1a2a85d
A384882
Number of integer partitions of n with all distinct lengths of maximal runs of consecutive parts decreasing by 1 but not by 0.
[ "1", "1", "1", "2", "2", "3", "2", "5", "4", "5", "6", "9", "7", "12", "12", "11", "16", "18", "17", "25", "25", "23", "33", "35", "36", "42", "52", "45", "58", "64", "60", "77", "91", "79", "109", "108", "105", "129", "149", "134", "170", "179", "177", "213", "236", "208", "275", "281", "282", "323", "359", "330", "410", "433", "440", "474", "541", "508", "614", "631", "635" ]
[ "nonn" ]
5
0
4
[ "A000009", "A000041", "A008284", "A047966", "A047993", "A089259", "A098859", "A106529", "A239455", "A242882", "A243815", "A325325", "A336866", "A351294", "A381432", "A382857", "A383013", "A383708", "A384175", "A384178", "A384880", "A384882", "A384884", "A384886", "A384887", "A384904" ]
null
Gus Wiseman, Jun 20 2025
2025-06-21T00:41:45
oeisdata/seq/A384/A384882.seq
7f9c4c333e426a4a2154ca6dea50a663
A384883
Number of maximal sparse subsets of the binary indices of n, where a set is sparse iff 1 is not a first difference.
[ "1", "1", "1", "2", "1", "1", "2", "2", "1", "1", "1", "2", "2", "2", "2", "3", "1", "1", "1", "2", "1", "1", "2", "2", "2", "2", "2", "4", "2", "2", "3", "4", "1", "1", "1", "2", "1", "1", "2", "2", "1", "1", "1", "2", "2", "2", "2", "3", "2", "2", "2", "4", "2", "2", "4", "4", "2", "2", "2", "4", "3", "3", "4", "5", "1", "1", "1", "2", "1", "1", "2", "2", "1", "1", "1", "2", "2", "2", "2", "3", "1", "1", "1", "2", "1", "1", "2" ]
[ "nonn", "new" ]
8
0
4
[ "A000045", "A000071", "A000931", "A001629", "A010049", "A034839", "A044813", "A053538", "A116674", "A119900", "A166469", "A202023", "A202064", "A208342", "A245564", "A268193", "A374356", "A384177", "A384877", "A384878", "A384883", "A384890", "A384893", "A384905", "A385215" ]
null
Gus Wiseman, Jul 02 2025
2025-07-03T09:29:30
oeisdata/seq/A384/A384883.seq
774542e6b8dfced7584c01a480fea6b3
A384884
Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).
[ "1", "1", "2", "3", "4", "6", "9", "13", "18", "25", "35", "46", "60", "79", "104", "131", "170", "215", "271", "342", "431", "535", "670", "830", "1019", "1258", "1547", "1881", "2298", "2787", "3359", "4061", "4890", "5849", "7010", "8361", "9942", "11825", "14021", "16558", "19561", "23057", "27084", "31821", "37312", "43627", "50999", "59500", "69267" ]
[ "nonn" ]
8
0
3
[ "A000009", "A000041", "A007690", "A008284", "A034296", "A044813", "A047993", "A066311", "A073491", "A098859", "A183558", "A239455", "A242882", "A287170", "A325324", "A325325", "A336866", "A351294", "A355393", "A355394", "A356226", "A356230", "A356233", "A356234", "A356235", "A356236", "A356606", "A356607", "A381432", "A384175", "A384176", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384887" ]
null
Gus Wiseman, Jun 13 2025
2025-06-14T23:51:17
oeisdata/seq/A384/A384884.seq
da50ac5ad04a9bbc9b6b94e3045b59e3
A384885
Number of integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).
[ "1", "1", "1", "1", "2", "3", "4", "6", "8", "9", "13", "15", "18", "22", "28", "31", "38", "45", "53", "62", "74", "86", "105", "123", "146", "171", "208", "242", "290", "340", "399", "469", "552", "639", "747", "862", "999", "1150", "1326", "1514", "1736", "1979", "2256", "2560", "2909", "3283", "3721", "4191", "4726", "5311", "5973", "6691", "7510", "8396", "9395" ]
[ "nonn" ]
7
0
5
[ "A000009", "A000041", "A007690", "A008284", "A034296", "A047966", "A066311", "A073491", "A098859", "A183558", "A239455", "A242882", "A287170", "A325324", "A325325", "A329739", "A336866", "A351294", "A355393", "A355394", "A356226", "A356230", "A356234", "A356235", "A356236", "A356606", "A356607", "A381432", "A384175", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384887", "A384888" ]
null
Gus Wiseman, Jun 13 2025
2025-06-14T23:50:59
oeisdata/seq/A384/A384885.seq
e6d506768767998f32e54a9ce79c62b4
A384886
Number of strict integer partitions of n with all equal lengths of maximal runs (decreasing by 1).
[ "1", "1", "1", "2", "2", "3", "4", "4", "4", "7", "7", "8", "11", "11", "14", "17", "19", "20", "27", "27", "35", "38", "45", "47", "60", "63", "75", "84", "97", "104", "127", "134", "155", "175", "196", "218", "251", "272", "307", "346", "384", "424", "480", "526", "586", "658", "719", "798", "890", "979", "1078", "1201", "1315", "1451", "1603", "1762", "1934", "2137" ]
[ "nonn" ]
6
0
4
[ "A000009", "A000041", "A008284", "A044813", "A047966", "A047993", "A089259", "A098859", "A106529", "A239455", "A242882", "A243815", "A325324", "A325325", "A329739", "A336866", "A351294", "A381432", "A382857", "A383013", "A383708", "A384175", "A384176", "A384178", "A384880", "A384884", "A384886", "A384904" ]
null
Gus Wiseman, Jun 13 2025
2025-06-14T23:50:30
oeisdata/seq/A384/A384886.seq
ee3f413bb4aeb4e5a3f3271620f85904
A384887
Number of integer partitions of n with all equal lengths of maximal gapless runs (decreasing by 0 or 1).
[ "1", "1", "2", "3", "5", "6", "9", "10", "14", "18", "21", "26", "35", "39", "46", "58", "68", "79", "97", "111", "131", "155", "177", "206", "246", "278", "318", "373", "423", "483", "563", "632", "722", "827", "931", "1058", "1209", "1354", "1528", "1736", "1951", "2188", "2475", "2762", "3097", "3488", "3886", "4342", "4876", "5414", "6038", "6741", "7482" ]
[ "nonn" ]
6
0
3
[ "A000009", "A000041", "A007690", "A008284", "A034296", "A044813", "A047993", "A066311", "A073491", "A098859", "A183558", "A243815", "A325324", "A325325", "A336866", "A355393", "A355394", "A356226", "A356230", "A356233", "A356234", "A356235", "A356236", "A356606", "A356607", "A384175", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384887", "A384888", "A384904" ]
null
Gus Wiseman, Jun 15 2025
2025-06-16T23:50:57
oeisdata/seq/A384/A384887.seq
eab52b72819abe5989ebc6bd70480116
A384888
Number of integer partitions of n with all equal lengths of maximal anti-runs (decreasing by more than 1).
[ "1", "1", "2", "3", "5", "6", "9", "10", "13", "17", "20", "24", "32", "36", "44", "55", "64", "75", "92", "105", "125", "147", "169", "195", "231", "263", "303", "351", "401", "458", "532", "600", "686", "784", "889", "1010", "1152", "1296", "1468", "1662", "1875", "2108", "2384", "2669", "3001", "3373", "3775", "4222", "4734", "5278", "5896", "6576", "7322" ]
[ "nonn" ]
6
0
3
[ "A000009", "A000041", "A007690", "A008284", "A034296", "A044813", "A047993", "A066311", "A073491", "A098859", "A183558", "A239455", "A242882", "A243815", "A287170", "A325325", "A336866", "A351294", "A355393", "A355394", "A356226", "A356235", "A356236", "A356606", "A356607", "A381432", "A384175", "A384176", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384887", "A384888", "A384889" ]
null
Gus Wiseman, Jun 15 2025
2025-06-16T23:50:45
oeisdata/seq/A384/A384888.seq
1dc6c2f249a0cbd1a7cbb980fca0855d
A384889
Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1).
[ "1", "2", "4", "8", "14", "23", "37", "59", "93", "146", "230", "365", "584", "940", "1517", "2450", "3959", "6404", "10373", "16822", "27298", "44297", "71843", "116429", "188550", "305200", "493930", "799422", "1294108", "2095291", "3392736", "5493168", "8892148", "14390372", "23282110", "37660759", "60914308", "98528312", "159386110" ]
[ "nonn" ]
15
0
2
[ "A010027", "A034296", "A034839", "A044813", "A047966", "A047993", "A066311", "A072774", "A073491", "A116674", "A243815", "A268193", "A356606", "A384175", "A384176", "A384177", "A384879", "A384880", "A384886", "A384888", "A384889", "A384890", "A384893", "A384905" ]
null
Gus Wiseman, Jun 18 2025
2025-06-22T15:08:25
oeisdata/seq/A384/A384889.seq
8a2f49d2ea97dcbe40ea4bfc30020a16