sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A385865
Triangle read by rows where T(n,k), for 1 <= k < n, is the column number where (n-k)^2 occurs in an n X n grid filled rowwise with the numbers 1 to n^2.
[ "1", "1", "1", "1", "4", "1", "1", "4", "4", "1", "1", "4", "3", "4", "1", "1", "4", "2", "2", "4", "1", "1", "4", "1", "8", "1", "4", "1", "1", "4", "9", "7", "7", "9", "4", "1", "1", "4", "9", "6", "5", "6", "9", "4", "1", "1", "4", "9", "5", "3", "3", "5", "9", "4", "1", "1", "4", "9", "4", "1", "12", "1", "4", "9", "4", "1", "1", "4", "9", "3", "12", "10", "10", "12", "3", "9", "4", "1", "1", "4", "9", "2", "11", "8", "7", "8", "11", "2", "9", "4", "1", "1" ]
[ "nonn", "easy", "tabl", "new" ]
34
2
5
[ "A385865", "A385866" ]
null
Binay Krishna Maity, Jul 10 2025
2025-07-17T14:50:53
oeisdata/seq/A385/A385865.seq
37b39012daecd9d1a3c0c0401de157ef
A385866
Triangle read by rows where T(n,k), for 1 <= k < n, is the row number where (n-k)^2 occurs in an n X n grid filled rowwise with the numbers 1 to n^2.
[ "1", "2", "1", "3", "1", "1", "4", "2", "1", "1", "5", "3", "2", "1", "1", "6", "4", "3", "2", "1", "1", "7", "5", "4", "2", "2", "1", "1", "8", "6", "4", "3", "2", "1", "1", "1", "9", "7", "5", "4", "3", "2", "1", "1", "1", "10", "8", "6", "5", "4", "3", "2", "1", "1", "1", "11", "9", "7", "6", "5", "3", "3", "2", "1", "1", "1", "12", "10", "8", "7", "5", "4", "3", "2", "2", "1", "1", "1", "13", "11", "9", "8", "6", "5", "4", "3", "2", "2", "1", "1", "1" ]
[ "nonn", "easy", "tabl", "new" ]
34
2
2
[ "A385865", "A385866" ]
null
Binay Krishna Maity, Jul 10 2025
2025-07-17T09:43:09
oeisdata/seq/A385/A385866.seq
a1d12e9e22fb2f48a2f85ba586a3d9fb
A385869
The maximum possible number of 7-cycles in an outerplanar graph on n vertices.
[ "1", "4", "7", "12", "17", "24", "27", "32", "37", "44", "47", "52", "57", "64", "67", "72", "77", "84", "87", "92", "97", "104", "107", "112", "117", "124", "127", "132", "137", "144", "147", "152", "157", "164", "167", "172", "177", "184", "187", "192", "197", "204", "207", "212", "217", "224", "227", "232", "237", "244", "247", "252", "257", "264", "267", "272", "277", "284", "287", "292", "297" ]
[ "nonn", "easy", "new" ]
17
7
2
null
null
Stephen Bartell, Jul 10 2025
2025-07-16T22:30:58
oeisdata/seq/A385/A385869.seq
c5ae3abd8293b9193bbaafebe8d44f95
A385870
Number of subsets of {1,2,...,n} such that no two elements differ by 1 or 6.
[ "1", "2", "3", "5", "8", "13", "21", "29", "45", "66", "99", "148", "218", "337", "497", "755", "1131", "1699", "2571", "3824", "5794", "8661", "13041", "19601", "29376", "44311", "66349", "99936", "150000", "225387", "339000", "508631", "765392", "1148865", "1727249", "2595270", "3898324", "5861084", "8801690", "13231745", "19877092", "29869125" ]
[ "easy", "nonn", "new" ]
6
0
2
[ "A376033", "A385870" ]
null
Michael A. Allen, Jul 11 2025
2025-07-15T18:26:33
oeisdata/seq/A385/A385870.seq
68ef3c6dadc864973241cb0d984604b8
A385871
a(n) is the number of primes in the prime chain to which prime(n) belongs. Details are in the Comments.
[ "3", "3", "3", "3", "3", "1", "1", "2", "3", "2", "1", "2", "2", "1", "3", "2", "1", "1", "1", "1", "2", "2", "3", "1", "2", "2", "2", "2", "1", "1", "1", "2", "3", "1", "3", "1", "2", "2", "2", "2", "2", "4", "1", "1", "1", "1", "1", "2", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "2", "4", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "2", "1", "1", "3", "2" ]
[ "nonn", "new" ]
25
1
1
[ "A000040", "A385871" ]
null
Tamas Sandor Nagy, Jul 11 2025
2025-07-18T16:45:34
oeisdata/seq/A385/A385871.seq
7b6ed96de8d292184dc63eed45c602df
A385874
a(n) = 1 + Sum_{k=0..n-1} binomial(k+1,2) * a(k) * a(n-1-k).
[ "1", "1", "2", "8", "57", "639", "10357", "229588", "6686619", "248013315", "11425386222", "640413284553", "42933889931191", "3393203732253145", "312268381507616935", "33107736233111305459", "4006699123399932333697", "548987463226205098599755", "84552444466155546810368421", "14544161652321384236939516147" ]
[ "nonn", "new" ]
15
0
3
[ "A143917", "A385830", "A385835", "A385840", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-12T21:33:28
oeisdata/seq/A385/A385874.seq
892754544df3af55eb52cba18d05c4a2
A385875
a(n) = 1 + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).
[ "1", "1", "2", "10", "111", "2347", "84757", "4837213", "411373408", "49787445476", "8265626303452", "1826809978098228", "524311794034090050", "191377585766768936606", "87269255118865044728501", "48958442598180565027265909", "33340876732769115354996751746", "27239595466972699678481509900786" ]
[ "nonn", "new" ]
8
0
3
[ "A143917", "A385841", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-11T08:49:26
oeisdata/seq/A385/A385875.seq
625cd9ceac3b82a000cb6d2425aa3d58
A385876
a(n) = 1 + Sum_{k=0..n-1} binomial(k+3,4) * a(k) * a(n-1-k).
[ "1", "1", "2", "12", "193", "6968", "495189", "62906143", "13274340034", "4393943557987", "2179423896462618", "1560476564415661780", "1563601961040080858376", "2135883440687340361131857", "3889446901597262416621276499", "9260777373178278371280728311304", "28347247357191779349093896687278933" ]
[ "nonn", "new" ]
8
0
3
[ "A143917", "A385842", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-11T08:49:21
oeisdata/seq/A385/A385876.seq
b5696676943775ae434cf906d78df3bc
A385877
a(n) = 1 + Sum_{k=0..n-1} binomial(k+4,5) * a(k) * a(n-1-k).
[ "1", "1", "2", "14", "309", "17637", "2240632", "566921596", "262489646519", "208155482551991", "268104800528280951", "537014337938584568385", "1613191612128443060280697", "7048035233444754041436840277", "43620293298146615746333469478901", "373782307403691698916363133787269075" ]
[ "nonn", "new" ]
7
0
3
[ "A143917", "A385843", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-11T08:49:17
oeisdata/seq/A385/A385877.seq
b90bc5fc3babfc648a702dfaba5ce05c
A385887
The number k such that the k-th composition in standard order is the reversed sequence of lengths of maximal runs of binary indices of n.
[ "0", "1", "1", "2", "1", "3", "2", "4", "1", "3", "3", "6", "2", "5", "4", "8", "1", "3", "3", "6", "3", "7", "6", "12", "2", "5", "5", "10", "4", "9", "8", "16", "1", "3", "3", "6", "3", "7", "6", "12", "3", "7", "7", "14", "6", "13", "12", "24", "2", "5", "5", "10", "5", "11", "10", "20", "4", "9", "9", "18", "8", "17", "16", "32", "1", "3", "3", "6", "3", "7", "6", "12", "3", "7", "7", "14", "6", "13", "12", "24" ]
[ "nonn", "new" ]
5
0
4
[ "A000120", "A029931", "A044813", "A048793", "A069010", "A209859", "A232559", "A245562", "A245563", "A246029", "A247648", "A348366", "A358654", "A384175", "A384877", "A385816", "A385817", "A385818", "A385886", "A385887", "A385889" ]
null
Gus Wiseman, Jul 17 2025
2025-07-18T08:30:45
oeisdata/seq/A385/A385887.seq
cb24ff76dda6d7264e44cc76710bdabb
A385889
The number k such that the k-th composition in standard order is the sequence of lengths of maximal runs of binary indices of n.
[ "0", "1", "1", "2", "1", "3", "2", "4", "1", "3", "3", "5", "2", "6", "4", "8", "1", "3", "3", "5", "3", "7", "5", "9", "2", "6", "6", "10", "4", "12", "8", "16", "1", "3", "3", "5", "3", "7", "5", "9", "3", "7", "7", "11", "5", "13", "9", "17", "2", "6", "6", "10", "6", "14", "10", "18", "4", "12", "12", "20", "8", "24", "16", "32", "1", "3", "3", "5", "3", "7", "5", "9", "3", "7", "7", "11", "5", "13", "9", "17", "3" ]
[ "nonn", "new" ]
7
0
4
[ "A000120", "A023758", "A029931", "A044813", "A048793", "A069010", "A209859", "A245562", "A245563", "A246029", "A247648", "A348366", "A384175", "A384877", "A384878", "A385816", "A385817", "A385818", "A385887", "A385889" ]
null
Gus Wiseman, Jul 16 2025
2025-07-18T08:30:38
oeisdata/seq/A385/A385889.seq
3cdc062375a20ecbfab1f9f1b07e6d72
A385890
Positions of first appearances in A245563 = run lengths of binary indices.
[ "1", "2", "4", "6", "8", "12", "14", "16", "22", "24", "28", "30", "32", "44", "46", "48", "54", "56", "60", "62", "64", "86", "88", "92", "94", "96", "108", "110", "112", "118", "120", "124", "126", "128", "172", "174", "176", "182", "184", "188", "190", "192", "214", "216", "220", "222", "224", "236", "238", "240", "246", "248", "252", "254", "256", "342", "344", "348" ]
[ "nonn", "new" ]
7
1
2
[ "A000120", "A023758", "A048793", "A069010", "A200649", "A243815", "A245562", "A245563", "A246029", "A328592", "A384175", "A384176", "A384877", "A384890", "A385816", "A385889", "A385890" ]
null
Gus Wiseman, Jul 18 2025
2025-07-18T18:21:08
oeisdata/seq/A385/A385890.seq
af4ac7547eb69a0670923a54e60b7411
A385893
Cycle of length 130 in the dynamical system A385938 starting from 26.
[ "26", "61", "41", "96", "64", "43", "29", "68", "159", "106", "71", "166", "111", "74", "173", "404", "943", "629", "1468", "979", "653", "1524", "1016", "2371", "1581", "1054", "703", "469", "313", "209", "488", "1139", "2658", "1772", "4135", "2757", "1838", "4289", "10008", "6672", "4448", "10379", "24218", "56509", "37673", "87904", "58603", "39069", "26046", "17364" ]
[ "nonn", "easy", "fini", "full", "new" ]
27
0
1
[ "A385893", "A385938" ]
null
Miquel Cerda, Jul 12 2025
2025-07-17T20:13:35
oeisdata/seq/A385/A385893.seq
3b24b768ac958802dfe736de7adb234e
A385894
a(n) = n^5/5 + n^3/3 + 7*n/15.
[ "0", "1", "10", "59", "228", "669", "1630", "3479", "6728", "12057", "20338", "32659", "50348", "74997", "108486", "153007", "211088", "285617", "379866", "497515", "642676", "819917", "1034286", "1291335", "1597144", "1958345", "2382146", "2876355", "3449404", "4110373", "4869014", "5735775", "6721824", "7839073", "9100202", "10518683" ]
[ "nonn", "easy", "new" ]
4
0
3
[ "A058031", "A385894" ]
null
Stefano Spezia, Jul 12 2025
2025-07-12T18:39:21
oeisdata/seq/A385/A385894.seq
f04c192e8f1f1148d7fa40f9e1f12709
A385900
Number of figurative partitions of n (strictly decreasing index paths).
[ "1", "1", "2", "3", "3", "4", "4", "4", "4", "5", "5", "6", "6", "4", "6", "8", "7", "7", "9", "7", "7", "9", "9", "10", "11", "10", "9", "13", "12", "10", "13", "13", "13", "13", "13", "15", "16", "16", "18", "20", "17", "15", "17", "17", "18", "21", "21", "21", "22", "20", "23", "26", "26", "25", "30", "25", "25", "28", "29", "27", "32", "29", "25", "32", "29", "29", "37", "39", "35", "42", "44", "38" ]
[ "nonn", "new" ]
17
1
3
[ "A139600", "A385900", "A385901" ]
null
Peter Luschny, Jul 13 2025
2025-07-15T04:03:10
oeisdata/seq/A385/A385900.seq
a60d302aea6f56b1df9e1cfbc12ecdf7
A385901
Number of figurative partitions of n (weakly decreasing index paths).
[ "1", "1", "2", "3", "4", "5", "6", "7", "10", "11", "13", "17", "19", "22", "28", "33", "38", "46", "53", "62", "73", "83", "96", "116", "131", "151", "178", "203", "231", "269", "302", "345", "399", "450", "510", "589", "661", "749", "858", "963", "1082", "1231", "1374", "1547", "1752", "1952", "2188", "2469", "2751", "3073", "3454", "3842", "4279", "4798", "5318", "5909" ]
[ "nonn", "new" ]
10
1
3
[ "A139600", "A385900", "A385901" ]
null
Peter Luschny, Jul 14 2025
2025-07-15T04:03:06
oeisdata/seq/A385/A385901.seq
2f017ea517fc0bc11bbdeb03e6cfa40f
A385916
Positive integers m that form Gaussian integers m + i such that every Gaussian integer g with |g| <= |m + i| is a linear combination of the distinct Gaussian divisors of m + i (where i is the imaginary unit).
[ "1", "2", "3", "5", "7", "8", "12", "13", "17", "18", "21", "23", "27", "31", "32", "33", "37", "38", "41", "43", "47", "55", "57", "68", "72", "73", "75", "81", "82", "83", "89", "91", "93", "98", "99", "105" ]
[ "nonn", "more", "new" ]
12
1
2
[ "A005153", "A005574", "A363227", "A385489", "A385916" ]
null
Frank M Jackson, Jul 12 2025
2025-07-17T15:59:55
oeisdata/seq/A385/A385916.seq
43edf0d6f6b837a169ac3ea138509441
A385918
Decimal expansion of log_10(1 + 1/8).
[ "5", "1", "1", "5", "2", "5", "2", "2", "4", "4", "7", "3", "8", "1", "2", "8", "8", "9", "4", "8", "8", "3", "9", "1", "2", "2", "3", "3", "6", "7", "5", "1", "5", "3", "8", "0", "9", "5", "6", "8", "8", "0", "8", "3", "9", "9", "5", "0", "6", "6", "1", "0", "5", "7", "2", "8", "4", "4", "8", "8", "9", "7", "2", "2", "9", "1", "3", "3", "7", "3", "7", "7", "4", "4", "0", "4", "8", "7", "1", "7", "6", "2", "5", "1", "5", "4", "9" ]
[ "nonn", "cons", "easy", "new" ]
9
-1
1
[ "A007524", "A104140", "A154203", "A154580", "A385659", "A385853", "A385854", "A385855", "A385918" ]
null
Marco Ripà, Jul 12 2025
2025-07-12T21:08:04
oeisdata/seq/A385/A385918.seq
4dea6afbd07424948f47f80b0d6c5942
A385920
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^3*A''(x)).
[ "1", "1", "3", "34", "1085", "76176", "10075567", "2259237184", "795650626521", "415436957516800", "307467426910853051", "311183690415601457664", "418253671031607891057877", "728624453608629352377831424", "1611758187912750506708147828775", "4448533739124778044473142239512576" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385762", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:10:37
oeisdata/seq/A385/A385920.seq
c87ebaf69f6df5d5012012f5bf3fe796
A385921
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^4*A'''(x)).
[ "1", "1", "3", "16", "509", "66216", "24639367", "21043463344", "35690424280569", "108571039785256960", "549371080081204026731", "4363111116508031602712064", "51938511093491129409954627637", "892615592639462586040781503568896", "21469194967164193484102627607895188975", "703974996795045871424921458192403079479296" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385763", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:10:53
oeisdata/seq/A385/A385921.seq
eaeebb960cb3f4ff34009e769257e0f8
A385922
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^5*A''''(x)).
[ "1", "1", "3", "16", "125", "16296", "11929927", "30230776864", "203634850471929", "3082625458810336000", "93280255561776693446891", "5173509703646410927969711104", "491814532626655136406839912703157", "75968624000349445912469318939348786176", "18252829396078618393615717880609268502659375" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385764", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:11:14
oeisdata/seq/A385/A385922.seq
007267384cc347a1abf1892e9a7d923c
A385923
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^6*A'''''(x)).
[ "1", "1", "3", "16", "125", "1296", "949927", "4800957904", "96864153387129", "5860087724767012480", "886162470100464297115691", "294792579950929452096468136704", "196126682670165049397384798842463797", "242323538289386581241948100813652397771776", "523949046624700150687300336366625589891821933775" ]
[ "nonn", "new" ]
9
0
3
[ "A000272", "A156326", "A385765", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:11:28
oeisdata/seq/A385/A385923.seq
193fbb35d321e53c40929926887a3c45
A385928
Numbers k such that (34^k - 3^k)/31 is prime.
[ "2", "337", "421", "79493" ]
[ "nonn", "hard", "more", "new" ]
4
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A385928" ]
null
Robert Price, Jul 12 2025
2025-07-17T03:07:45
oeisdata/seq/A385/A385928.seq
4c1d0e88b7e987a90f26ff7f4c69ef38
A385930
Minimum base in which n achieves its maximum multiplicative persistence.
[ "2", "2", "2", "2", "2", "2", "2", "3", "2", "4", "4", "2", "5", "4", "4", "6", "3", "5", "5", "6", "6", "5", "6", "5", "3", "3", "7", "6", "6", "4", "8", "6", "6", "6", "9", "8", "8", "4", "7", "7", "7", "9", "11", "8", "7", "7", "7", "5", "10", "9", "9", "9", "3", "8", "8", "12", "10", "9", "6", "8", "9", "8", "4", "6", "6", "10", "12", "9", "9", "6", "3", "13", "5", "10", "11", "7", "10", "9", "3", "14", "14", "7" ]
[ "nonn", "new" ]
20
1
1
[ "A245760", "A385930" ]
null
Brendan Gimby, Jul 12 2025
2025-07-18T21:17:07
oeisdata/seq/A385/A385930.seq
dec6010d09685685cafbc82435c39ad2
A385932
Composite numbers m such that the sum of digits of m divides the sum of digits of prime factors of m (counted with multiplicity).
[ "4", "10", "22", "27", "32", "42", "58", "60", "70", "85", "94", "100", "104", "121", "152", "166", "200", "202", "231", "265", "274", "315", "316", "319", "322", "330", "342", "346", "355", "361", "378", "382", "391", "402", "406", "430", "438", "450", "454", "483", "510", "517", "526", "535", "540", "562", "576", "588", "602", "610", "612", "627", "632", "634", "636", "645", "648" ]
[ "nonn", "base", "easy", "new" ]
16
1
1
[ "A002808", "A006753", "A007953", "A103125", "A103126", "A104390", "A104391", "A118503", "A385932" ]
null
Stefano Spezia, Jul 12 2025
2025-07-17T00:49:24
oeisdata/seq/A385/A385932.seq
dfeb37f8a2b3d56a69beca2b0b12d939
A385933
Number of ways to tile a "central bump" strip of length n with 1 X 1 squares and 1 X 3 rectangles.
[ "4", "9", "13", "25", "30", "35", "52", "78", "121", "189", "271", "388", "561", "812", "1204", "1785", "2617", "3837", "5602", "8179", "12000", "17606", "25825", "37881", "55483", "81264", "119089", "174520", "255828", "375017", "549589", "805425", "1180342", "1729779", "2535196", "3715630", "5445561", "7980917", "11696455", "17141772" ]
[ "nonn", "new" ]
9
0
1
[ "A000930", "A385933" ]
null
Greg Dresden and Saim Usmani, Jul 12 2025
2025-07-17T16:10:58
oeisdata/seq/A385/A385933.seq
d10c6210727b691efb47d5460f219710
A385934
Numbers that are one greater than terms of A055932, and also prime.
[ "2", "3", "5", "7", "13", "17", "19", "31", "37", "61", "73", "97", "109", "151", "163", "181", "193", "211", "241", "257", "271", "421", "433", "487", "541", "577", "601", "631", "751", "769", "811", "1051", "1153", "1201", "1297", "1459", "1471", "1621", "1801", "2161", "2251", "2311", "2521", "2593", "2917", "3001", "3361", "3457", "3889", "4051", "4201", "4621", "4801", "4861" ]
[ "nonn", "new" ]
9
1
1
[ "A055932", "A385934", "A385935" ]
null
Ken Clements, Jul 12 2025
2025-07-17T16:10:32
oeisdata/seq/A385/A385934.seq
900480b1b8446bdd515a5e805f34c29e
A385935
Numbers that are one less than terms of A055932, and also prime.
[ "3", "5", "7", "11", "17", "23", "29", "31", "47", "53", "59", "71", "89", "107", "127", "149", "179", "191", "239", "269", "359", "383", "419", "431", "449", "479", "599", "647", "719", "809", "839", "863", "971", "1049", "1151", "1259", "1439", "1499", "1619", "1889", "2099", "2309", "2399", "2591", "2699", "2879", "2939", "2999", "3359", "3779", "4049", "4373", "4409", "4799" ]
[ "nonn", "new" ]
8
1
1
[ "A055932", "A385934", "A385935" ]
null
Ken Clements, Jul 12 2025
2025-07-17T16:09:59
oeisdata/seq/A385/A385935.seq
fa36ffe9ced1ac55a082d860296be948
A385936
a(n) is the starting position of the second occurrence of a string of the initial n hexadecimal digits of Pi in the hexadecimal expansion of Pi.
[ "3", "344", "2595", "41220", "1766549", "8759073", "22221394", "22221394" ]
[ "nonn", "base", "more", "new" ]
24
1
1
[ "A062964", "A081876", "A385936", "A385937" ]
null
Jason A. Doucette, Jul 12 2025
2025-07-18T00:58:27
oeisdata/seq/A385/A385936.seq
60d79af11446de6c4916b31ad9100cb5
A385937
a(n) is the starting position of the second occurrence of a string of the initial n binary digits of Pi in the binary expansion of Pi.
[ "1", "12", "16", "48", "77", "246", "246", "418", "418", "513", "513", "513", "513", "44458", "109628", "201504", "201504", "260229", "260229", "260229", "260229", "5195536", "5195536", "5195536", "16400799", "71861116", "71861116", "71861116", "88885576", "88885576", "465466168", "465466168", "2612839361", "2612839361", "5728737753", "5728737753" ]
[ "nonn", "base", "new" ]
22
1
2
[ "A004601", "A081876", "A385936", "A385937" ]
null
Jason A. Doucette, Jul 12 2025
2025-07-18T08:30:34
oeisdata/seq/A385/A385937.seq
141810e989e12806563d79b9fa08dffa
A385938
a(n) = 2*n/3 if n == 0 (mod 3), (2*n+1)/3 if n == 1 (mod 3), (7*n+1)/3 if n == 2 (mod 3).
[ "0", "1", "5", "2", "3", "12", "4", "5", "19", "6", "7", "26", "8", "9", "33", "10", "11", "40", "12", "13", "47", "14", "15", "54", "16", "17", "61", "18", "19", "68", "20", "21", "75", "22", "23", "82", "24", "25", "89", "26", "27", "96", "28", "29", "103", "30", "31", "110", "32", "33", "117", "34", "35", "124", "36", "37", "131", "38", "39", "138", "40", "41", "145", "42", "43", "152", "44", "45", "159" ]
[ "nonn", "new" ]
23
0
3
[ "A332057", "A385893", "A385938" ]
null
Miquel Cerda, Jul 13 2025
2025-07-18T14:45:52
oeisdata/seq/A385/A385938.seq
b7c004d5d0e2d31e04593e5ed1bda4fb
A385939
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^2) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "88", "3893", "352536", "57322537", "15277686880", "6239711818377", "3708478187297920", "3079046917046731661", "3455392385954013825024", "5100835934217411940938685", "9682263835381845999967986688", "23180826149963609282826172967025", "68850271609123855250628849758027776" ]
[ "nonn", "new" ]
9
0
3
[ "A156326", "A385830", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:25
oeisdata/seq/A385/A385939.seq
5dc76ce16498a87d301974eaec3660f4
A385940
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "148", "17189", "5676336", "4326290857", "6602349049360", "18222895109730537", "84299882148193513600", "616234715187848381357261", "6792153358905298302629935104", "108647409624774384033524243233165", "2443481854821246436998727854436139008", "75225062360951292682727255438183855480625" ]
[ "nonn", "new" ]
7
0
3
[ "A156326", "A385831", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:28
oeisdata/seq/A385/A385940.seq
1497c53dda777c4757e45f5f0c8f1538
A385941
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "268", "88997", "114813696", "431933720137", "3924557764490560", "75445736579647162857", "2782590090487142758353280", "182621397948270167786531824781", "20092371907364577184989521575079424", "3530551258386563793887714321816262653965", "951815440668013126114976449397609983348430848" ]
[ "nonn", "new" ]
8
0
3
[ "A156326", "A385832", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:32
oeisdata/seq/A385/A385941.seq
196c050ea87d229df879da9a69f3d657
A385942
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "508", "497861", "2554041696", "47918955042217", "2608995595530944320", "350836859825187730934697", "103472315352121087796983183360", "61101436986101317921145771113951181", "67212924933426575369862458525709786073344", "129898118403746997254471428114728554653243564525" ]
[ "nonn", "new" ]
8
0
3
[ "A156326", "A385833", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:36
oeisdata/seq/A385/A385942.seq
a65492d66c2bc32c3e3058bbe3e09fe5
A385943
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^6) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "988", "2888933", "59194266336", "5550172939486537", "1812719786900514856960", "1706146365658760367161728617", "4025335006744077207541517795929600", "21392361120121469487882204135345762936461", "235316442953945260569915546964215106936729204224" ]
[ "nonn", "new" ]
7
0
3
[ "A156326", "A385834", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:41
oeisdata/seq/A385/A385943.seq
b64c3581d044e42c8e4c92b02ce557af
A385944
a(n) = denominator of rational number Im(P(x))/Pi, x in interval (1/A005117(n+1),1/A005117(n)), where P(x) is the prime zeta function.
[ "1", "2", "6", "30", "15", "105", "210", "2310", "30030", "15015", "5005", "85085", "1616615", "4849845", "9699690", "223092870", "111546435", "3234846615", "2156564410", "66853496710", "200560490130", "100280245065", "100280245065", "3710369067405", "7420738134810", "2473579378270", "101416754509070", "152125131763605" ]
[ "nonn", "frac", "new" ]
32
1
2
[ "A005117", "A385808", "A385944" ]
null
Artur Jasinski, Jul 13 2025
2025-07-18T17:19:44
oeisdata/seq/A385/A385944.seq
8c7e2e482bf761f08fb877b274cb5902
A385945
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "63", "1533", "62736", "3969387", "366744330", "47441881377", "8313978813120", "1921417594566561", "572533956456137424", "215766174031503450885", "101144655173329674617088", "58127411808811103704523775", "40435528907318329027426583376", "33666103690446265067517343384833" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385952" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:18
oeisdata/seq/A385/A385945.seq
9003cc319f492878555edb1f32b8541f
A385946
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+4,4) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "6", "106", "4176", "316696", "42104392", "9172761368", "3106804304704", "1567537597699840", "1137145604406018176", "1151190083860345401984", "1585522852991230263395584", "2906652632758146061798315776", "6959140466024956612239458880000", "21400639132670591710876896798678016" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385953" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:14
oeisdata/seq/A385/A385946.seq
2221099ac93b1b4a439023fa33faab8a
A385947
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "7", "166", "10029", "1321025", "341733205", "160453080950", "128422430092385", "166469443066352440", "334968718604910165425", "1009644894131844004090200", "4422360688027934597152329025", "27423466157672001507611296316100", "235350249980804930971638499216115775" ]
[ "nonn", "new" ]
12
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385954" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:10
oeisdata/seq/A385/A385947.seq
aef43b4180416a2229d307e7d99622e1
A385948
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "8", "246", "21750", "4689546", "2197062708", "2046202234224", "3528088593902364", "10627093734265740672", "53295889303479275834616", "427383379745842299684115608", "5294446934064450139154214169992", "98355143996083993836475641916586304", "2669951662594756888115675117287929721248" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:05
oeisdata/seq/A385/A385948.seq
d87bb7392cd162bdc10a54d5a25d38e8
A385952
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * a(k) * a(n-1-k).
[ "1", "1", "5", "59", "1309", "48790", "2840931", "244770680", "29887602613", "4993307581843", "1108754325139526", "319359741512132370", "116893982001130825135", "53422902443413341967604", "30024521959524315980717288", "20477109546794819263709728560", "16750490995674468051531269811269" ]
[ "nonn", "new" ]
10
0
3
[ "A088716", "A351798", "A385945", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:21
oeisdata/seq/A385/A385952.seq
eed7195d5f908bcaedd32375f893ae9e
A385953
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+4,4) * a(k) * a(n-1-k).
[ "1", "1", "6", "101", "3756", "271256", "34761512", "7372486163", "2448035959989", "1216747945481685", "872431867857009866", "875060598719254613963", "1196215918953589596769516", "2179513438308809548333358500", "5191611931593198935913809439220", "15896735560092998091331427433546666" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A351798", "A385946", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:25
oeisdata/seq/A385/A385953.seq
257bccc23157e07ba35034568042cad1
A385954
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * a(k) * a(n-1-k).
[ "1", "1", "7", "160", "9309", "1193192", "303192604", "140697031749", "111717191583621", "144005113804578040", "288587523313304535136", "867207126292422956078756", "3789698359352103250842742098", "23458242467926487526255374709015", "201037179886862036121457727887328687" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A351798", "A385947", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:37
oeisdata/seq/A385/A385954.seq
373f69cfcce0666668f0cadeb11b3a24
A385955
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * a(k) * a(n-1-k).
[ "1", "1", "8", "239", "20595", "4369086", "2027570077", "1877595433603", "3225737601183428", "9693366952072675847", "48534731177400280613882", "388763324236561973987746008", "4812113062706722698140922709260", "89341696197620005494613697916344217", "2424197647354438894347947373843634554628" ]
[ "nonn", "new" ]
10
0
3
[ "A088716", "A351798", "A385948", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:43
oeisdata/seq/A385/A385955.seq
3d6634035167c60d24558b57f98f0464
A385957
Prime(n) is the a(n)-th prime having its distinct digits.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "3", "1", "4", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "2", "2", "3", "1", "2", "1", "2", "3", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "5", "6", "3", "7", "3", "1", "1", "2", "1", "1", "4", "1", "2", "1", "2", "1", "1", "2", "2", "1", "2", "2", "3", "1", "1" ]
[ "nonn", "easy", "base", "look", "new" ]
20
1
11
[ "A086066", "A254524", "A385776", "A385957" ]
null
David A. Corneth, Jul 13 2025
2025-07-13T11:36:07
oeisdata/seq/A385/A385957.seq
85f39b53870839020a3776f89dabac17
A385960
Decimal expansion of the absolute value of the coefficient [x^2] Gamma(x).
[ "9", "0", "7", "4", "7", "9", "0", "7", "6", "0", "8", "0", "8", "8", "6", "2", "8", "9", "0", "1", "6", "5", "6", "0", "1", "6", "7", "3", "5", "6", "2", "7", "5", "1", "1", "4", "9", "2", "8", "6", "1", "1", "4", "4", "9", "0", "7", "2", "5", "6", "3", "7", "6", "0", "9", "4", "1", "3", "3", "1", "1", "5", "4", "0", "5", "0", "4", "6", "5", "1", "8", "2", "3", "7", "2", "2", "3", "0", "6", "9", "3", "9", "8", "3", "8", "7", "5", "2", "7", "4", "1", "1", "3", "6", "2", "9", "7", "7", "2", "1", "6", "8", "2", "1" ]
[ "nonn", "cons", "new" ]
14
0
1
[ "A090998", "A385960", "A385961", "A385962" ]
null
R. J. Mathar, Jul 13 2025
2025-07-15T05:44:32
oeisdata/seq/A385/A385960.seq
aeac70c9d9fed53cb23e9a4f41e16814
A385961
Decimal expansion of the value of the coefficient [x^3] Gamma(x).
[ "9", "8", "1", "7", "2", "8", "0", "8", "6", "8", "3", "4", "4", "0", "0", "1", "8", "7", "3", "3", "6", "3", "8", "0", "2", "9", "4", "0", "2", "1", "8", "5", "0", "8", "5", "0", "3", "6", "0", "5", "7", "3", "6", "7", "9", "7", "2", "3", "4", "6", "5", "4", "1", "5", "4", "0", "4", "9", "5", "7", "4", "5", "5", "5", "9", "3", "8", "5", "6", "8", "3", "9", "2", "4", "8", "6", "9", "3", "4", "5", "0", "9", "4", "1", "0", "5", "9", "7", "7", "0", "5", "1", "8", "7", "5", "7", "0", "6", "5", "9", "5", "5", "8", "8", "5", "0", "6", "7", "0", "4", "3", "6", "8", "2" ]
[ "nonn", "cons", "new" ]
11
0
1
[ "A090998", "A385960", "A385961", "A385962" ]
null
R. J. Mathar, Jul 13 2025
2025-07-15T05:45:49
oeisdata/seq/A385/A385961.seq
ac61b501ea40889b4cf0b7d79be6e16c
A385962
Decimal expansion of the absolute value of the coefficient [x^4] Gamma(x).
[ "9", "8", "1", "9", "9", "5", "0", "6", "8", "9", "0", "3", "1", "4", "5", "2", "0", "2", "1", "0", "4", "7", "0", "1", "4", "1", "3", "7", "9", "1", "3", "7", "4", "6", "7", "5", "5", "1", "7", "4", "2", "6", "5", "0", "7", "1", "4", "7", "1", "9", "8", "9", "3", "0", "4", "9", "9", "9", "6", "7", "1", "9", "0", "4", "8", "8", "0", "0", "6", "3", "6", "4", "9", "6", "4", "0", "5", "0", "0", "4", "4", "6", "9", "5", "9", "4", "0", "5", "1", "0", "2", "3", "4", "7", "4", "6", "8", "2", "0", "6", "6", "3", "2", "3", "3", "2", "1", "2", "5", "9", "4", "6" ]
[ "nonn", "cons", "new" ]
10
0
1
[ "A090998", "A385960", "A385961", "A385962" ]
null
R. J. Mathar, Jul 13 2025
2025-07-15T05:46:46
oeisdata/seq/A385/A385962.seq
414f21bac49dbe65d06ab5f194ee6795
A385963
a(n) is the maximum number of distinct positive integers whose sum of squares is equal to n^2.
[ "0", "1", "1", "1", "1", "2", "1", "3", "1", "4", "5", "5", "5", "6", "7", "7", "7", "8", "8", "9", "9", "9", "9", "11", "10", "11", "11", "11", "11", "11", "13", "12", "12", "13", "14", "13", "14", "14", "15", "15", "15", "16", "16", "16", "16", "17", "17", "17", "18", "18", "18", "18", "19", "19", "19", "19", "19", "19", "19", "20", "21", "21", "21", "21", "22", "22", "22", "22", "23", "22", "24", "24", "24", "24", "24", "25" ]
[ "nonn", "new" ]
18
0
6
[ "A001032", "A030273", "A385963" ]
null
Gonzalo Martínez, Jul 13 2025
2025-07-18T19:50:53
oeisdata/seq/A385/A385963.seq
0065de0ce34ca3022c6a116dcecff100
A385965
Decimal expansion of the absolute value of the coefficient [x^4] 1/Gamma(x).
[ "0", "4", "2", "0", "0", "2", "6", "3", "5", "0", "3", "4", "0", "9", "5", "2", "3", "5", "5", "2", "9", "0", "0", "3", "9", "3", "4", "8", "7", "5", "4", "2", "9", "8", "1", "8", "7", "1", "1", "3", "9", "4", "5", "0", "0", "4", "0", "1", "1", "0", "6", "0", "9", "3", "5", "2", "2", "0", "6", "5", "8", "1", "2", "9", "7", "6", "1", "8", "0", "0", "9", "6", "8", "7", "5", "9", "7", "5", "9", "8", "8", "5", "4", "7", "1", "0", "7", "7", "0", "1", "2", "9", "4", "7", "8", "7", "7", "1", "3", "2", "3", "3", "5", "3", "2", "0", "0", "0", "2", "2", "2", "0", "0", "0", "0", "1", "8" ]
[ "nonn", "cons", "new" ]
14
0
2
[ "A001620", "A070860", "A385965", "A385966" ]
null
R. J. Mathar, Jul 13 2025
2025-07-15T05:47:38
oeisdata/seq/A385/A385965.seq
69b8f76b8bf7e7b5d62fecb621f7ecf3
A385966
Decimal expansion of the value of the coefficient [x^5] 1/Gamma(x).
[ "1", "6", "6", "5", "3", "8", "6", "1", "1", "3", "8", "2", "2", "9", "1", "4", "8", "9", "5", "0", "1", "7", "0", "0", "7", "9", "5", "1", "0", "2", "1", "0", "5", "2", "3", "5", "7", "1", "7", "7", "8", "1", "5", "0", "2", "2", "4", "7", "1", "7", "4", "3", "4", "0", "5", "7", "0", "4", "6", "8", "9", "0", "3", "1", "7", "8", "9", "9", "3", "8", "6", "6", "0", "5", "6", "4", "7", "4", "2", "4", "8", "3", "1", "9", "4", "7", "1", "9", "1", "4", "6", "5", "8", "0", "4", "1", "6", "2", "6", "6", "2", "3", "9", "5", "5", "9", "3", "4", "0", "5", "1", "2", "8" ]
[ "nonn", "cons", "new" ]
16
0
2
[ "A001620", "A070860", "A385965", "A385966" ]
null
R. J. Mathar, Jul 13 2025
2025-07-15T05:48:16
oeisdata/seq/A385/A385966.seq
8707133ea75e7838e97bbaefadd0ee04
A385968
Triprimes that are concatenations of three consecutive primes, and whose prime factors sum to a prime.
[ "199211223", "331337347", "367373379", "487491499", "653659661", "859863877", "102110311033", "106910871091", "111711231129", "112911511153", "130313071319", "143914471451", "165716631667", "178918011811", "214321532161", "226722692273", "246724732477", "274127492753", "274927532767", "284328512857", "330133073313", "362336313637" ]
[ "nonn", "base", "new" ]
7
1
1
[ "A107707", "A383114", "A385968" ]
null
Will Gosnell and Robert Israel, Jul 13 2025
2025-07-14T10:03:57
oeisdata/seq/A385/A385968.seq
911c3cf69c960c7cea0825caace87faa
A385972
The long legs of the triangles defined in A365577.
[ "4", "24", "480", "130560", "8589803520", "36893488138829168640", "680564733841876926889855726716117319680", "231584178474632390847141970017375815705859404597439251151988418800962722856960" ]
[ "nonn", "easy", "new" ]
4
1
1
[ "A365577", "A385972", "A385973" ]
null
Miguel-Ángel Pérez García-Ortega, Jul 13 2025
2025-07-13T18:02:33
oeisdata/seq/A385/A385972.seq
0a2f73d50588b769ef21bc608fa17e08
A385973
The hypotenuses of the triangles defined in A365577.
[ "5", "25", "481", "130561", "8589803521", "36893488138829168641", "680564733841876926889855726716117319681", "231584178474632390847141970017375815705859404597439251151988418800962722856961" ]
[ "nonn", "easy", "new" ]
8
1
1
[ "A365577", "A385972", "A385973" ]
null
Miguel-Ángel Pérez García-Ortega, Jul 13 2025
2025-07-14T10:04:07
oeisdata/seq/A385/A385973.seq
fc2ac0f17239f1dcba3de8c61bedd60f
A385977
Length of the long leg of the triangles defined in A377725.
[ "4", "112", "3444", "114720", "3883684", "131852560", "4478648724", "152139554112", "5168250745924", "175568295786160", "5964153281301684", "202605640210401120", "6882627596048598244", "233806732521557580112", "7942546277531426709204", "269812766700017940393600", "9165691521502509968254084" ]
[ "nonn", "easy", "new" ]
3
1
1
[ "A002315", "A377725", "A385977" ]
null
Sean A. Irvine, Jul 13 2025
2025-07-13T21:53:04
oeisdata/seq/A385/A385977.seq
2392e449d85d9ce266372fd0e07630fb
A385979
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+2,2) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "7", "145", "6449", "522096", "69506737", "14186121706", "4212887224905", "1747635451186240", "979909591959562571", "722787600597422326704", "685585597413868516073953", "820283211774547803576454720", "1217648676024408903145299884925", "2210504358495882876855897821031376" ]
[ "nonn", "new" ]
10
0
3
[ "A000272", "A156326", "A385979", "A385980", "A385981", "A385982" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:02:58
oeisdata/seq/A385/A385979.seq
fb712147c16d8dbf7c68b40a2c876004
A385980
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+3,3) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "9", "295", "24921", "4504516", "1543745107", "919392117722", "890353538984905", "1330464112593541120", "2940642877993896450701", "9284167814032856189142864", "40666099850492306669400356041", "241073945237343019120798232332320", "1893421587381601800604423881821405775" ]
[ "nonn", "new" ]
9
0
3
[ "A000272", "A156326", "A385946", "A385952", "A385979", "A385980", "A385981", "A385982" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:02:55
oeisdata/seq/A385/A385980.seq
a27f1f42ecdb8124fdf50ceb4e6a668d
A385981
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+4,4) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "11", "526", "75981", "27017601", "20599793857", "30432196412318", "80590529100023889", "359767027014797719000", "2575966649397129017224661", "28392489655027195386265889544", "465411261102140455922541427819489", "11017701081052339904298545720453122836", "367264434033142995461894471693185212854475" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385979", "A385980", "A385981", "A385982" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:02:48
oeisdata/seq/A385/A385981.seq
b7f2ea3b782927623e7fd83b6ad554ae
A385982
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+5,5) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "13", "856", "195525", "124248221", "188647130983", "611439299390984", "3879035706651051809", "44966039381652540837592", "900671755790709615794856671", "29761825253146859538914816137428", "1560353636451919718380582807368070417", "125541398272463750591414559674298911706684" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385979", "A385980", "A385981", "A385982" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:01:10
oeisdata/seq/A385/A385982.seq
d1e0a70859e7e6a01193f76b6b0bbecd
A385983
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "4", "46", "1432", "123808", "30876832", "22731703408", "49898049707776", "327831911519538304", "6455998409280026369536", "381291302353791118798096384", "67549186687935750257213597283328", "35899285521583612190120694413539704832", "57235559192922896714567337515980987820597248" ]
[ "nonn", "new" ]
9
0
3
[ "A000142", "A126444", "A155585", "A385983", "A385984" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:03:35
oeisdata/seq/A385/A385983.seq
7c93f95578e32c7066b68af4c10a3906
A385984
a(0) = 1; a(n) = Sum_{k=0..n-1} (-2)^k * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "-1", "-9", "57", "1353", "-38313", "-2796417", "339169041", "90178580529", "-45316930884849", "-46917802526957721", "95533688640942728073", "392558870984301366092217", "-3210372581644929567134113497", "-52647023496165910533698485658193", "1724296469950918188679460249845485729" ]
[ "sign", "new" ]
10
0
4
[ "A000142", "A126444", "A155585", "A385983", "A385984" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:03:31
oeisdata/seq/A385/A385984.seq
68ad9114bea70351ad719e4e2cd41c74
A385985
a(0) = 1; a(n) = Sum_{k=0..n-1} (2^k + 1) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "2", "10", "94", "1514", "40790", "1862050", "148965310", "21742138970", "5994070800710", "3197362825740850", "3348408098259631150", "6941708283693589284650", "28621208382355252313372150", "235296246090820978083474438850", "3862393961855717768080204865278750", "126690441172711092666839985418516720250" ]
[ "nonn", "new" ]
9
0
2
[ "A385617", "A385619", "A385985" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:03:22
oeisdata/seq/A385/A385985.seq
1e97f2954fb4a887e340edabc7dbe989
A385989
a(n) is the least m > n such that 2^n and 2^m are congruent modulo n.
[ "2", "3", "5", "5", "9", "8", "10", "9", "15", "14", "21", "14", "25", "17", "19", "17", "25", "24", "37", "24", "27", "32", "34", "26", "45", "38", "45", "31", "57", "34", "36", "33", "43", "42", "47", "42", "73", "56", "51", "44", "61", "48", "57", "54", "57", "57", "70", "50", "70", "70", "59", "64", "105", "72", "75", "59", "75", "86", "117", "64", "121", "67", "69", "65", "77", "76" ]
[ "nonn", "new" ]
10
1
1
[ "A007733", "A270096", "A385989" ]
null
Rémy Sigrist, Jul 14 2025
2025-07-16T14:35:43
oeisdata/seq/A385/A385989.seq
93e8e66a4996782fb0511468357b458b
A385990
a(0) = 1; a(n) = Sum_{k=0..n-1} (2^k + 3^k) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "2", "14", "250", "10762", "1160726", "334178342", "269864173450", "629119441422346", "4300094237465965718", "86926579696107616781126", "5223854240144609158089474250", "936213967612878042630582862931818", "501401563584674616157299481286097996374", "803517566423095869415868021817376896171061478" ]
[ "nonn", "new" ]
6
0
2
[ "A385620", "A385990" ]
null
Seiichi Manyama, Jul 14 2025
2025-07-14T10:03:02
oeisdata/seq/A385/A385990.seq
66da4cbeb01752ee699fc4a5a9df6549
A385991
a(n) is the number of distinct values among A002487(0), ..., A002487(n).
[ "1", "2", "2", "3", "3", "4", "4", "4", "4", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "10", "10", "11", "11", "12", "12", "12", "12", "13", "13", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "14", "15", "15", "15", "15", "16" ]
[ "nonn", "new" ]
13
0
2
[ "A002487", "A061069", "A061070", "A061071", "A091945", "A385991", "A385993" ]
null
Rémy Sigrist, Jul 14 2025
2025-07-17T14:30:52
oeisdata/seq/A385/A385991.seq
da3052c63578b6a0fc00c2177d52b55b
A385993
a(n) is the number of distinct values appearing an odd number of times among A002487(0), ..., A002487(n).
[ "1", "2", "1", "2", "3", "4", "3", "2", "1", "2", "3", "4", "5", "4", "3", "2", "3", "4", "5", "6", "7", "8", "7", "6", "5", "6", "7", "6", "5", "4", "3", "2", "1", "2", "3", "4", "5", "6", "7", "8", "9", "8", "9", "10", "9", "10", "9", "8", "9", "10", "11", "10", "11", "10", "9", "10", "9", "8", "7", "6", "5", "4", "3", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "11", "12", "11", "12", "13", "12", "13" ]
[ "nonn", "new" ]
10
0
2
[ "A002487", "A004171", "A091948", "A385991", "A385993" ]
null
Rémy Sigrist, Jul 14 2025
2025-07-17T08:21:03
oeisdata/seq/A385/A385993.seq
1d43e2de46c60686fc2981d57d0cb619
A385995
a(n) is the first value appearing n times in A002487.
[ "0", "1", "1", "1", "1", "3", "5", "5", "5", "5", "5", "5", "5", "5", "7", "7", "7", "7", "7", "11", "7", "11", "11", "11", "11", "11", "11", "11", "13", "13", "13", "13", "13", "13", "13", "13", "13", "13", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "23", "19", "19", "19", "23", "23", "23", "23", "23", "19", "19", "19", "19", "29", "29", "29", "29", "29", "29" ]
[ "nonn", "new" ]
8
1
6
[ "A002487", "A385995", "A385996" ]
null
Rémy Sigrist, Jul 14 2025
2025-07-17T08:20:59
oeisdata/seq/A385/A385995.seq
51745deaeab7bf1d0cac9dfe6177cce7
A385996
a(n) is the least k such that some value appears n times among A002487(0), ..., A002487(k).
[ "0", "2", "4", "8", "16", "28", "34", "44", "52", "62", "68", "88", "104", "124", "130", "152", "184", "200", "232", "250", "260", "296", "328", "380", "388", "440", "472", "500", "524", "568", "632", "688", "764", "772", "848", "904", "968", "1012", "1030", "1064", "1144", "1232", "1288", "1424", "1534", "1538", "1648", "1784", "1840", "1928", "2008", "2038" ]
[ "nonn", "new" ]
8
1
2
[ "A002487", "A091948", "A385995", "A385996" ]
null
Rémy Sigrist, Jul 14 2025
2025-07-17T08:20:56
oeisdata/seq/A385/A385996.seq
4ad1d2aea092310242e3b277198991d5
A385999
Least k such that every group of order n embeds into a group of order k*n.
[ "1", "1", "1", "2", "1", "2", "1", "4", "3", "2", "1", "12", "1", "2", "1", "16", "1", "12", "1", "8", "3", "2", "1" ]
[ "nonn", "more", "new" ]
11
1
4
[ "A340514", "A385999" ]
null
Miles Englezou, Jul 14 2025
2025-07-19T00:39:31
oeisdata/seq/A385/A385999.seq
8b900000b17c14bbc9a5eb78da440d6e
A386004
Primes whose digit set intersects the odd digits in at most one element and intersects the even digits in at most two elements.
[ "2", "3", "5", "7", "11", "23", "29", "41", "43", "47", "61", "67", "83", "89", "101", "181", "211", "223", "227", "229", "233", "241", "263", "269", "277", "281", "283", "383", "401", "409", "421", "433", "443", "449", "461", "463", "467", "487", "499", "601", "607", "641", "643", "647", "661", "677", "683", "727", "787", "809", "811", "821", "823", "827", "829", "863" ]
[ "nonn", "base", "new" ]
23
1
1
[ "A000040", "A020450", "A020457", "A020460", "A020469", "A385770", "A386004" ]
null
Jean-Marc Rebert, Jul 14 2025
2025-07-16T10:13:51
oeisdata/seq/A386/A386004.seq
60799fa2f5cf126a3cf5c439fabd18f7
A386012
a(n) = n^3*tau(n).
[ "1", "16", "54", "192", "250", "864", "686", "2048", "2187", "4000", "2662", "10368", "4394", "10976", "13500", "20480", "9826", "34992", "13718", "48000", "37044", "42592", "24334", "110592", "46875", "70304", "78732", "131712", "48778", "216000", "59582", "196608", "143748", "157216", "171500", "419904", "101306", "219488", "237276", "512000" ]
[ "nonn", "mult", "easy", "new" ]
14
1
2
[ "A000005", "A001620", "A034714", "A038040", "A320895", "A372928", "A386012" ]
null
R. J. Mathar, Jul 14 2025
2025-07-15T08:27:39
oeisdata/seq/A386/A386012.seq
d779cc4bdf7dabae356346db964b697f
A386013
a(n) = n^4*tau(n).
[ "1", "32", "162", "768", "1250", "5184", "4802", "16384", "19683", "40000", "29282", "124416", "57122", "153664", "202500", "327680", "167042", "629856", "260642", "960000", "777924", "937024", "559682", "2654208", "1171875", "1827904", "2125764", "3687936", "1414562", "6480000", "1847042", "6291456", "4743684", "5345344", "6002500", "15116544", "3748322", "8340544", "9253764", "20480000" ]
[ "nonn", "mult", "easy", "new" ]
14
1
2
[ "A000005", "A000583", "A001620", "A034714", "A038040", "A372931", "A386013" ]
null
R. J. Mathar, Jul 14 2025
2025-07-15T08:27:33
oeisdata/seq/A386/A386013.seq
09180569c500c84e014084bffacb26a0
A386017
Primes having only {0, 1, 2, 4} as digits.
[ "2", "11", "41", "101", "211", "241", "401", "421", "1021", "1201", "2011", "2111", "2141", "2221", "2411", "2441", "4001", "4021", "4111", "4201", "4211", "4241", "4421", "4441", "10111", "10141", "10211", "11411", "12011", "12041", "12101", "12211", "12241", "12401", "12421", "14011", "14221", "14401", "14411", "20011", "20021", "20101", "20201" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A030430", "A036953", "A036956", "A260266", "A260267", "A385776", "A386017" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:53
oeisdata/seq/A386/A386017.seq
1e8392f634cdf1bfcb57d5228e17dbeb
A386018
Primes having only {0, 1, 2, 5} as digits.
[ "2", "5", "11", "101", "151", "211", "251", "521", "1021", "1051", "1151", "1201", "1511", "2011", "2111", "2221", "2251", "2521", "2551", "5011", "5021", "5051", "5101", "5501", "5521", "10111", "10151", "10211", "10501", "11251", "11551", "12011", "12101", "12211", "12251", "12511", "15101", "15121", "15511", "15551", "20011", "20021", "20051" ]
[ "nonn", "base", "easy", "new" ]
7
1
1
[ "A000040", "A030430", "A036953", "A199325", "A385773", "A385776", "A386018" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:49
oeisdata/seq/A386/A386018.seq
25c4d983411f98f2d52b0344fa187d4b
A386019
Primes having only {0, 1, 2, 6} as digits.
[ "2", "11", "61", "101", "211", "601", "661", "1021", "1061", "1201", "1601", "1621", "2011", "2111", "2161", "2221", "2621", "6011", "6101", "6121", "6211", "6221", "6661", "10061", "10111", "10211", "10601", "11161", "11261", "11621", "12011", "12101", "12161", "12211", "12601", "12611", "16001", "16061", "16111", "16661", "20011", "20021" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030430", "A036953", "A199326", "A285774", "A385776", "A386019" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:45
oeisdata/seq/A386/A386019.seq
717dabd79d45486f2763baa9ee5a0710
A386020
Primes having only {0, 1, 2, 7} as digits.
[ "2", "7", "11", "17", "71", "101", "107", "127", "211", "227", "271", "277", "701", "727", "1021", "1117", "1171", "1201", "1217", "1277", "1721", "1777", "2011", "2017", "2027", "2111", "2207", "2221", "2707", "2711", "2777", "7001", "7027", "7121", "7127", "7177", "7207", "7211", "7717", "7727", "10007", "10111", "10177", "10211", "10271", "10711" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A036953", "A199327", "A260889", "A385776", "A386020" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:41
oeisdata/seq/A386/A386020.seq
2f23c5f93f21015a38e12dc2ae42f24a
A386021
Primes having only {0, 1, 2, 8} as digits.
[ "2", "11", "101", "181", "211", "281", "811", "821", "881", "1021", "1181", "1201", "1801", "1811", "2011", "2081", "2111", "2221", "2281", "2801", "8011", "8081", "8101", "8111", "8221", "8821", "10111", "10181", "10211", "11801", "11821", "12011", "12101", "12211", "12281", "12821", "18121", "18181", "18211", "20011", "20021", "20101", "20201" ]
[ "nonn", "base", "easy", "new" ]
7
1
1
[ "A000040", "A030430", "A036953", "A061247", "A173580", "A385775", "A385776", "A386021" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:37
oeisdata/seq/A386/A386021.seq
3ba24fb104337e36dbd2d73c893f009e
A386022
Primes having only {0, 1, 2, 9} as digits.
[ "2", "11", "19", "29", "101", "109", "191", "199", "211", "229", "911", "919", "929", "991", "1009", "1019", "1021", "1091", "1109", "1129", "1201", "1229", "1291", "1901", "1999", "2011", "2029", "2099", "2111", "2129", "2221", "2909", "2999", "9001", "9011", "9029", "9091", "9109", "9199", "9209", "9221", "9901", "9929", "10009", "10091", "10099" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A036953", "A199329", "A385776", "A386022" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:33
oeisdata/seq/A386/A386022.seq
4b46565cda19b7ae491a52b9297686f9
A386023
Primes having only {0, 1, 3, 4} as digits.
[ "3", "11", "13", "31", "41", "43", "101", "103", "113", "131", "311", "313", "331", "401", "431", "433", "443", "1013", "1031", "1033", "1103", "1301", "1303", "1433", "3001", "3011", "3041", "3301", "3313", "3331", "3343", "3413", "3433", "4001", "4003", "4013", "4111", "4133", "4441", "10103", "10111", "10133", "10141", "10301", "10303", "10313", "10331" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A036956", "A199341", "A260044", "A260266", "A385776", "A386023" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:29
oeisdata/seq/A386/A386023.seq
f41e495516f14e1733e6b227c08fb601
A386024
Primes having only {0, 1, 3, 5} as digits.
[ "3", "5", "11", "13", "31", "53", "101", "103", "113", "131", "151", "311", "313", "331", "353", "503", "1013", "1031", "1033", "1051", "1103", "1151", "1153", "1301", "1303", "1511", "1531", "1553", "3001", "3011", "3301", "3313", "3331", "3511", "3533", "5003", "5011", "5051", "5101", "5113", "5153", "5303", "5333", "5351", "5501", "5503", "5531", "10103" ]
[ "nonn", "base", "easy", "new" ]
7
1
1
[ "A000040", "A036958", "A199325", "A260044", "A260224", "A385776", "A386024" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:26
oeisdata/seq/A386/A386024.seq
8e5ef12f5e56ee5fe315adf4582fed32
A386025
Primes having only {0, 1, 3, 7} as digits.
[ "3", "7", "11", "13", "17", "31", "37", "71", "73", "101", "103", "107", "113", "131", "137", "173", "307", "311", "313", "317", "331", "337", "373", "701", "733", "773", "1013", "1031", "1033", "1103", "1117", "1171", "1301", "1303", "1307", "1373", "1733", "1777", "3001", "3011", "3037", "3137", "3301", "3307", "3313", "3331", "3371", "3373", "3701", "3733" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A199327", "A260044", "A260379", "A385776", "A386025" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:21
oeisdata/seq/A386/A386025.seq
27dd740ef667700d6b513a06dbe49cf9
A386026
Primes having only {0, 1, 3, 9} as digits.
[ "3", "11", "13", "19", "31", "101", "103", "109", "113", "131", "139", "191", "193", "199", "311", "313", "331", "911", "919", "991", "1009", "1013", "1019", "1031", "1033", "1039", "1091", "1093", "1103", "1109", "1193", "1301", "1303", "1319", "1399", "1901", "1913", "1931", "1933", "1993", "1999", "3001", "3011", "3019", "3109", "3119", "3191", "3301" ]
[ "nonn", "base", "easy", "new" ]
7
1
1
[ "A000040", "A199329", "A260044", "A329761", "A385776", "A386026" ]
null
Jason Bard, Jul 14 2025
2025-07-14T21:17:17
oeisdata/seq/A386/A386026.seq
2a786cdf541207f4af44bd4bcce3a7e3
A386027
Primes having only {0, 1, 4, 5} as digits.
[ "5", "11", "41", "101", "151", "401", "541", "1051", "1151", "1451", "1511", "4001", "4051", "4111", "4441", "4451", "5011", "5051", "5101", "5441", "5501", "10111", "10141", "10151", "10501", "11411", "11551", "14011", "14051", "14401", "14411", "14551", "15101", "15401", "15451", "15511", "15541", "15551", "40111", "40151", "41011", "41051" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030430", "A199325", "A260266", "A260268", "A385776", "A386027" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:48
oeisdata/seq/A386/A386027.seq
7509b4ccb7aa452e2b5bbec4bc058c77
A386028
Primes having only {0, 1, 4, 6} as digits.
[ "11", "41", "61", "101", "401", "461", "601", "641", "661", "1061", "1601", "4001", "4111", "4441", "6011", "6101", "6661", "10061", "10111", "10141", "10601", "11161", "11411", "14011", "14401", "14411", "14461", "16001", "16061", "16111", "16141", "16411", "16661", "40111", "41011", "41141", "41161", "41411", "41611", "41641", "44041", "44101" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030430", "A199326", "A260266", "A260269", "A385776", "A386028" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:39
oeisdata/seq/A386/A386028.seq
1e3e3433438df064246496f0b2edff00
A386029
Primes having only {0, 1, 4, 7} as digits.
[ "7", "11", "17", "41", "47", "71", "101", "107", "401", "701", "1117", "1171", "1447", "1471", "1741", "1747", "1777", "4001", "4007", "4111", "4177", "4441", "4447", "7001", "7177", "7411", "7417", "7477", "7717", "7741", "10007", "10111", "10141", "10177", "10477", "10711", "10771", "11047", "11071", "11117", "11171", "11177", "11411", "11447" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A079651", "A199327", "A260266", "A385776", "A386029" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:35
oeisdata/seq/A386/A386029.seq
551cc1db268753faa12a88ac50ca9e35
A386030
Primes having only {0, 1, 4, 8} as digits.
[ "11", "41", "101", "181", "401", "811", "881", "1181", "1481", "1801", "1811", "4001", "4111", "4441", "4481", "4801", "8011", "8081", "8101", "8111", "10111", "10141", "10181", "11411", "11801", "14011", "14081", "14401", "14411", "18041", "18181", "18401", "18481", "40111", "40801", "40841", "41011", "41081", "41141", "41411", "41801", "44041" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030430", "A061247", "A260266", "A260270", "A385776", "A386030" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:31
oeisdata/seq/A386/A386030.seq
980ee2cccafeb3c835bb05011077a91e
A386031
Primes having only {0, 1, 5, 6} as digits.
[ "5", "11", "61", "101", "151", "601", "661", "1051", "1061", "1151", "1511", "1601", "5011", "5051", "5101", "5501", "5651", "6011", "6101", "6151", "6551", "6661", "10061", "10111", "10151", "10501", "10601", "10651", "11161", "11551", "15061", "15101", "15161", "15511", "15551", "15601", "15661", "16001", "16061", "16111", "16561", "16651" ]
[ "nonn", "base", "easy", "new" ]
7
1
1
[ "A000040", "A030430", "A199325", "A199326", "A385776", "A385779", "A386031" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:27
oeisdata/seq/A386/A386031.seq
6f2db8b0771801fb4f74e62ca1aa1b55
A386032
Primes having only {0, 1, 5, 7} as digits.
[ "5", "7", "11", "17", "71", "101", "107", "151", "157", "557", "571", "577", "701", "751", "757", "1051", "1117", "1151", "1171", "1511", "1571", "1777", "5011", "5051", "5077", "5101", "5107", "5171", "5501", "5507", "5557", "5701", "5711", "5717", "7001", "7057", "7151", "7177", "7507", "7517", "7577", "7717", "7757", "10007", "10111", "10151", "10177" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A199325", "A199327", "A260828", "A385776", "A386032" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:23
oeisdata/seq/A386/A386032.seq
df3f1a0e887a0601d86ca43d0d687e16
A386033
Primes having only {0, 1, 5, 8} as digits.
[ "5", "11", "101", "151", "181", "811", "881", "1051", "1151", "1181", "1511", "1801", "1811", "5011", "5051", "5081", "5101", "5501", "5581", "5801", "5851", "5881", "8011", "8081", "8101", "8111", "8501", "8581", "10111", "10151", "10181", "10501", "11551", "11801", "15101", "15511", "15551", "15581", "15881", "18181", "50051", "50101", "50111" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030430", "A061247", "A199325", "A385776", "A385780", "A386033" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:19
oeisdata/seq/A386/A386033.seq
ee7a5ba4d8e9742cff94812aa2946870
A386034
Primes having only {0, 1, 5, 9} as digits.
[ "5", "11", "19", "59", "101", "109", "151", "191", "199", "509", "599", "911", "919", "991", "1009", "1019", "1051", "1091", "1109", "1151", "1511", "1559", "1901", "1951", "1999", "5009", "5011", "5051", "5059", "5099", "5101", "5119", "5501", "5519", "5591", "9001", "9011", "9059", "9091", "9109", "9151", "9199", "9511", "9551", "9901", "10009", "10091" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A199325", "A199329", "A385776", "A385781", "A386034" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:14
oeisdata/seq/A386/A386034.seq
c59b31eadd75cacfbb36e4541a0c8e93
A386035
Primes having only {0, 1, 6, 7} as digits.
[ "7", "11", "17", "61", "67", "71", "101", "107", "167", "601", "607", "617", "661", "677", "701", "761", "1061", "1117", "1171", "1601", "1607", "1667", "1777", "6007", "6011", "6067", "6101", "6607", "6661", "6701", "6761", "7001", "7177", "7607", "7717", "10007", "10061", "10067", "10111", "10177", "10601", "10607", "10667", "10711", "10771", "11071" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A199325", "A199326", "A260891", "A385776", "A386035" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:09
oeisdata/seq/A386/A386035.seq
e82a4a05eae6e3139ce2db81938c32e2
A386036
Primes having only {0, 1, 6, 8} as digits.
[ "11", "61", "101", "181", "601", "661", "811", "881", "1061", "1181", "1601", "1801", "1811", "1861", "6011", "6101", "6661", "8011", "8081", "8101", "8111", "8161", "8681", "8861", "10061", "10111", "10181", "10601", "10861", "11161", "11681", "11801", "16001", "16061", "16111", "16661", "16811", "18061", "18181", "18661", "60101", "60161" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030430", "A061247", "A199326", "A385776", "A385782", "A386036" ]
null
Jason Bard, Jul 14 2025
2025-07-15T08:28:05
oeisdata/seq/A386/A386036.seq
805304c8d46f24d59f6ab0c00c47a9e1
A386037
Primes having only {0, 1, 6, 9} as digits.
[ "11", "19", "61", "101", "109", "191", "199", "601", "619", "661", "691", "911", "919", "991", "1009", "1019", "1061", "1069", "1091", "1109", "1601", "1609", "1619", "1669", "1699", "1901", "1999", "6011", "6091", "6101", "6199", "6619", "6661", "6691", "6911", "6961", "6991", "9001", "9011", "9091", "9109", "9161", "9199", "9601", "9619", "9661", "9901" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A199326", "A199329", "A363023", "A385776", "A386037" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:09:39
oeisdata/seq/A386/A386037.seq
66e40b4a5c318440814f77cc86604314
A386038
Primes having only {0, 1, 7, 8} as digits.
[ "7", "11", "17", "71", "101", "107", "181", "701", "787", "811", "877", "881", "887", "1087", "1117", "1171", "1181", "1187", "1777", "1787", "1801", "1811", "1871", "1877", "7001", "7177", "7187", "7717", "7817", "7877", "8011", "8017", "8081", "8087", "8101", "8111", "8117", "8171", "8707", "8807", "8887", "10007", "10111", "10177", "10181", "10711" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A061247", "A199327", "A260892", "A385776", "A386038" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:03:58
oeisdata/seq/A386/A386038.seq
55348bd563305eea00eff74749768ae1
A386039
Primes having only {0, 1, 7, 9} as digits.
[ "7", "11", "17", "19", "71", "79", "97", "101", "107", "109", "179", "191", "197", "199", "701", "709", "719", "797", "907", "911", "919", "971", "977", "991", "997", "1009", "1019", "1091", "1097", "1109", "1117", "1171", "1709", "1777", "1901", "1907", "1979", "1997", "1999", "7001", "7019", "7079", "7109", "7177", "7717", "7901", "7907", "7919", "9001" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A199327", "A199329", "A260893", "A385776", "A386039" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:03:53
oeisdata/seq/A386/A386039.seq
67f1536f1fef978809a8cee32c450c3a
A386040
Primes having only {0, 1, 8, 9} as digits.
[ "11", "19", "89", "101", "109", "181", "191", "199", "809", "811", "881", "911", "919", "991", "1009", "1019", "1091", "1109", "1181", "1801", "1811", "1889", "1901", "1999", "8009", "8011", "8081", "8089", "8101", "8111", "8191", "8819", "8999", "9001", "9011", "9091", "9109", "9181", "9199", "9811", "9901", "10009", "10091", "10099", "10111", "10181" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A061247", "A199329", "A385776", "A385783", "A386040" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:03:48
oeisdata/seq/A386/A386040.seq
41380758284595b0950cb47e02c2d717
A386041
Primes having only {0, 2, 3, 4} as digits.
[ "2", "3", "23", "43", "223", "233", "433", "443", "2003", "2203", "2243", "2333", "2423", "3023", "3203", "3323", "3343", "3433", "4003", "4243", "4423", "20023", "20233", "20323", "20333", "20443", "22003", "22303", "22343", "22433", "23003", "23203", "23333", "24023", "24043", "24203", "24223", "24443", "30203", "30223", "30323", "30403", "32003" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030431", "A199342", "A260125", "A385776", "A386041" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:04:45
oeisdata/seq/A386/A386041.seq
2e78ac54dc92280571a646d4be5d45ab
A386042
Primes having only {0, 2, 3, 5} as digits.
[ "2", "3", "5", "23", "53", "223", "233", "353", "503", "523", "2003", "2053", "2203", "2333", "2503", "3023", "3203", "3253", "3323", "3533", "5003", "5023", "5233", "5303", "5323", "5333", "5503", "20023", "20233", "20323", "20333", "20353", "20533", "22003", "22303", "23003", "23053", "23203", "23333", "25033", "25253", "25303", "25523", "30203" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030431", "A214703", "A260125", "A385776", "A386042" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:06:33
oeisdata/seq/A386/A386042.seq
dfdd025dc3214bd70d678a8e490b4e22
A386043
Primes having only {0, 2, 3, 6} as digits.
[ "2", "3", "23", "223", "233", "263", "2003", "2063", "2203", "2333", "2633", "2663", "3023", "3203", "3323", "3623", "6203", "6263", "6323", "20023", "20063", "20233", "20323", "20333", "20663", "22003", "22063", "22303", "23003", "23063", "23203", "23333", "23603", "23623", "23633", "23663", "26003", "26203", "26263", "26633", "30203", "30223" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A030431", "A260125", "A260126", "A385776", "A386043" ]
null
Jason Bard, Jul 15 2025
2025-07-15T18:06:29
oeisdata/seq/A386/A386043.seq
3d7ae174545bc959f02050a1c65bc5f7