id
stringlengths
14
15
text
stringlengths
13
2.7k
source
stringlengths
60
181
761966b0e4e4-3
Run when LLM ends running. async on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on new LLM token. Only available when streaming is enabled. async on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when LLM starts running. async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever end. async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever error.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
761966b0e4e4-4
Run on retriever error. async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run on retriever start. async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on arbitrary text. async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool ends running. async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool errors. async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler.html
a725b5f413b2-0
langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler¶ class langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(parent_container: DeltaGenerator, *, max_thought_containers: int = 4, expand_new_thoughts: bool = True, collapse_completed_thoughts: bool = True, thought_labeler: Optional[LLMThoughtLabeler] = None)[source]¶ A callback handler that writes to a Streamlit app. Create a StreamlitCallbackHandler instance. Parameters parent_container – The st.container that will contain all the Streamlit elements that the Handler creates. max_thought_containers – The max number of completed LLM thought containers to show at once. When this threshold is reached, a new thought will cause the oldest thoughts to be collapsed into a “History” expander. Defaults to 4. expand_new_thoughts – Each LLM “thought” gets its own st.expander. This param controls whether that expander is expanded by default. Defaults to True. collapse_completed_thoughts – If True, LLM thought expanders will be collapsed when completed. Defaults to True. thought_labeler – An optional custom LLMThoughtLabeler instance. If unspecified, the handler will use the default thought labeling logic. Defaults to None. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(parent_container, *[, ...]) Create a StreamlitCallbackHandler instance. on_agent_action(action[, color]) Run on agent action.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html
a725b5f413b2-1
on_agent_action(action[, color]) Run on agent action. on_agent_finish(finish[, color]) Run on agent end. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text[, color, end]) Run on arbitrary text. on_tool_end(output[, color, ...]) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html
a725b5f413b2-2
on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__(parent_container: DeltaGenerator, *, max_thought_containers: int = 4, expand_new_thoughts: bool = True, collapse_completed_thoughts: bool = True, thought_labeler: Optional[LLMThoughtLabeler] = None)[source]¶ Create a StreamlitCallbackHandler instance. Parameters parent_container – The st.container that will contain all the Streamlit elements that the Handler creates. max_thought_containers – The max number of completed LLM thought containers to show at once. When this threshold is reached, a new thought will cause the oldest thoughts to be collapsed into a “History” expander. Defaults to 4. expand_new_thoughts – Each LLM “thought” gets its own st.expander. This param controls whether that expander is expanded by default. Defaults to True. collapse_completed_thoughts – If True, LLM thought expanders will be collapsed when completed. Defaults to True. thought_labeler – An optional custom LLMThoughtLabeler instance. If unspecified, the handler will use the default thought labeling logic. Defaults to None. on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html
a725b5f413b2-3
Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html
a725b5f413b2-4
Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶ Run on arbitrary text. on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Examples using StreamlitCallbackHandler¶ Streamlit GPT4All
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html
2c5fdb668d64-0
langchain_core.callbacks.manager.AsyncCallbackManagerForRetrieverRun¶ class langchain_core.callbacks.manager.AsyncCallbackManagerForRetrieverRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager for retriever run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_retriever_end(documents, **kwargs) Run when retriever ends running. on_retriever_error(error, **kwargs) Run when retriever errors. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForRetrieverRun.html
2c5fdb668d64-1
Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → AsyncCallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type AsyncCallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager get_sync() → CallbackManagerForRetrieverRun[source]¶ Get the equivalent sync RunManager. Returns The sync RunManager. Return type CallbackManagerForRetrieverRun
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForRetrieverRun.html
2c5fdb668d64-2
Returns The sync RunManager. Return type CallbackManagerForRetrieverRun async on_retriever_end(documents: Sequence[Document], **kwargs: Any) → None[source]¶ Run when retriever ends running. async on_retriever_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when retriever errors. async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any Examples using AsyncCallbackManagerForRetrieverRun¶ Retrieve as you generate with FLARE
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForRetrieverRun.html
97971ee117dd-0
langchain_community.callbacks.labelstudio_callback.get_default_label_configs¶ langchain_community.callbacks.labelstudio_callback.get_default_label_configs(mode: Union[str, LabelStudioMode]) → Tuple[str, LabelStudioMode][source]¶ Get default Label Studio configs for the given mode. Parameters mode – Label Studio mode (“prompt” or “chat”) Returns: Tuple of Label Studio config and mode
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.get_default_label_configs.html
e97aa0247e8d-0
langchain_community.callbacks.infino_callback.InfinoCallbackHandler¶ class langchain_community.callbacks.infino_callback.InfinoCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, verbose: bool = False)[source]¶ Callback Handler that logs to Infino. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([model_id, model_version, verbose]) on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing. on_chain_end(outputs, **kwargs) Do nothing when LLM chain ends. on_chain_error(error, **kwargs) Need to log the error. on_chain_start(serialized, inputs, **kwargs) Do nothing when LLM chain starts. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_end(response, **kwargs) Log the latency, error, token usage, and response to Infino. on_llm_error(error, **kwargs) Set the error flag. on_llm_new_token(token, **kwargs) Do nothing when a new token is generated. on_llm_start(serialized, prompts, **kwargs) Log the prompts to Infino, and set start time and error flag. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e97aa0247e8d-1
Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing. on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. __init__(model_id: Optional[str] = None, model_version: Optional[str] = None, verbose: bool = False) → None[source]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing when LLM chain ends. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Need to log the error. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing when LLM chain starts. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e97aa0247e8d-2
Log the latency, error, token usage, and response to Infino. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Set the error flag. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing when a new token is generated. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Log the prompts to Infino, and set start time and error flag. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing. on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e97aa0247e8d-3
Do nothing when tool ends. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Examples using InfinoCallbackHandler¶ Infino
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
89f6dc6573b2-0
langchain_community.callbacks.wandb_callback.construct_html_from_prompt_and_generation¶ langchain_community.callbacks.wandb_callback.construct_html_from_prompt_and_generation(prompt: str, generation: str) → Any[source]¶ Construct an html element from a prompt and a generation. Parameters prompt (str) – The prompt. generation (str) – The generation. Returns The html element. Return type (wandb.Html)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.construct_html_from_prompt_and_generation.html
40069c7ac194-0
langchain_community.callbacks.tracers.wandb.WandbRunArgs¶ class langchain_community.callbacks.tracers.wandb.WandbRunArgs[source]¶ Arguments for the WandbTracer. job_type: Optional[str]¶ dir: Optional[StrPath]¶ config: Union[Dict, str, None]¶ project: Optional[str]¶ entity: Optional[str]¶ reinit: Optional[bool]¶ tags: Optional[Sequence]¶ group: Optional[str]¶ name: Optional[str]¶ notes: Optional[str]¶ magic: Optional[Union[dict, str, bool]]¶ config_exclude_keys: Optional[List[str]]¶ config_include_keys: Optional[List[str]]¶ anonymous: Optional[str]¶ mode: Optional[str]¶ allow_val_change: Optional[bool]¶ resume: Optional[Union[bool, str]]¶ force: Optional[bool]¶ tensorboard: Optional[bool]¶ sync_tensorboard: Optional[bool]¶ monitor_gym: Optional[bool]¶ save_code: Optional[bool]¶ id: Optional[str]¶ settings: Union[WBSettings, Dict[str, Any], None]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbRunArgs.html
b5e47526fc01-0
langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler¶ class langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler(run: Any)[source]¶ Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments. Parameters run (sagemaker.experiments.run.Run) – Run object where the experiment is logged. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(run) Initialize callback handler. flush_tracker() Reset the steps and delete the temporary local directory. jsonf(data, data_dir, filename[, is_output]) To log the input data as json file artifact. on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
b5e47526fc01-1
on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__(run: Any) → None[source]¶ Initialize callback handler. flush_tracker() → None[source]¶ Reset the steps and delete the temporary local directory. jsonf(data: Dict[str, Any], data_dir: str, filename: str, is_output: Optional[bool] = True) → None[source]¶ To log the input data as json file artifact. on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
b5e47526fc01-2
Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
b5e47526fc01-3
Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Examples using SageMakerCallbackHandler¶ SageMaker Tracking
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler.html
003901e1c3e5-0
langchain_community.callbacks.human.HumanRejectedException¶ class langchain_community.callbacks.human.HumanRejectedException[source]¶ Exception to raise when a person manually review and rejects a value.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.human.HumanRejectedException.html
da6654a86cfd-0
langchain_community.callbacks.wandb_callback.import_wandb¶ langchain_community.callbacks.wandb_callback.import_wandb() → Any[source]¶ Import the wandb python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.import_wandb.html
aec8b647b1ef-0
langchain_community.callbacks.wandb_callback.WandbCallbackHandler¶ class langchain_community.callbacks.wandb_callback.WandbCallbackHandler(job_type: Optional[str] = None, project: Optional[str] = 'langchain_callback_demo', entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False)[source]¶ Callback Handler that logs to Weights and Biases. Parameters job_type (str) – The type of job. project (str) – The project to log to. entity (str) – The entity to log to. tags (list) – The tags to log. group (str) – The group to log to. name (str) – The name of the run. notes (str) – The notes to log. visualize (bool) – Whether to visualize the run. complexity_metrics (bool) – Whether to log complexity metrics. stream_logs (bool) – Whether to stream callback actions to W&B This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response using the run.log() method to Weights and Biases. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.WandbCallbackHandler.html
aec8b647b1ef-1
ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([job_type, project, entity, tags, ...]) Initialize callback handler. flush_tracker([langchain_asset, reset, ...]) Flush the tracker and reset the session. get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.WandbCallbackHandler.html
aec8b647b1ef-2
on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__(job_type: Optional[str] = None, project: Optional[str] = 'langchain_callback_demo', entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False) → None[source]¶ Initialize callback handler. flush_tracker(langchain_asset: Any = None, reset: bool = True, finish: bool = False, job_type: Optional[str] = None, project: Optional[str] = None, entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: Optional[bool] = None, complexity_metrics: Optional[bool] = None) → None[source]¶ Flush the tracker and reset the session. Parameters langchain_asset – The langchain asset to save. reset – Whether to reset the session. finish – Whether to finish the run. job_type – The job type. project – The project. entity – The entity. tags – The tags. group – The group. name – The name. notes – The notes. visualize – Whether to visualize. complexity_metrics – Whether to compute complexity metrics. Returns – None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.WandbCallbackHandler.html
aec8b647b1ef-3
complexity_metrics – Whether to compute complexity metrics. Returns – None get_custom_callback_meta() → Dict[str, Any]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.WandbCallbackHandler.html
aec8b647b1ef-4
Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. reset_callback_meta() → None¶ Reset the callback metadata. Examples using WandbCallbackHandler¶ Weights & Biases
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.WandbCallbackHandler.html
0a00f834dd4e-0
langchain_core.callbacks.base.BaseCallbackManager¶ class langchain_core.callbacks.base.BaseCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Base callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) copy() Copy the callback manager. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
0a00f834dd4e-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None[source]¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None[source]¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None[source]¶ add_tags(tags: List[str], inherit: bool = True) → None[source]¶ copy() → T[source]¶ Copy the callback manager. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
0a00f834dd4e-2
Run when a chat model starts running. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. remove_handler(handler: BaseCallbackHandler) → None[source]¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None[source]¶ remove_tags(tags: List[str]) → None[source]¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None[source]¶ Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None[source]¶ Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackManager.html
ddf28316fb60-0
langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState¶ class langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Enumerator of the LLMThought state. THINKING = 'THINKING'¶ RUNNING_TOOL = 'RUNNING_TOOL'¶ COMPLETE = 'COMPLETE'¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState.html
093fa7a9c304-0
langchain_community.callbacks.comet_ml_callback.CometCallbackHandler¶ class langchain_community.callbacks.comet_ml_callback.CometCallbackHandler(task_type: Optional[str] = 'inference', workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, stream_logs: bool = True)[source]¶ Callback Handler that logs to Comet. Parameters job_type (str) – The type of comet_ml task such as “inference”, “testing” or “qc” project_name (str) – The comet_ml project name tags (list) – Tags to add to the task task_name (str) – Name of the comet_ml task visualize (bool) – Whether to visualize the run. complexity_metrics (bool) – Whether to log complexity metrics stream_logs (bool) – Whether to stream callback actions to Comet This handler will utilize the associated callback method and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to Comet. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([task_type, workspace, ...]) Initialize callback handler.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.comet_ml_callback.CometCallbackHandler.html
093fa7a9c304-1
__init__([task_type, workspace, ...]) Initialize callback handler. flush_tracker([langchain_asset, task_type, ...]) Flush the tracker and setup the session. get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.comet_ml_callback.CometCallbackHandler.html
093fa7a9c304-2
on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__(task_type: Optional[str] = 'inference', workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, stream_logs: bool = True) → None[source]¶ Initialize callback handler. flush_tracker(langchain_asset: Any = None, task_type: Optional[str] = 'inference', workspace: Optional[str] = None, project_name: Optional[str] = 'comet-langchain-demo', tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, finish: bool = False, reset: bool = False) → None[source]¶ Flush the tracker and setup the session. Everything after this will be a new table. Parameters name – Name of the performed session so far so it is identifiable langchain_asset – The langchain asset to save. finish – Whether to finish the run. Returns – None get_custom_callback_meta() → Dict[str, Any]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.comet_ml_callback.CometCallbackHandler.html
093fa7a9c304-3
Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.comet_ml_callback.CometCallbackHandler.html
093fa7a9c304-4
Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. reset_callback_meta() → None¶ Reset the callback metadata. Examples using CometCallbackHandler¶ Comet
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.comet_ml_callback.CometCallbackHandler.html
a9e5e0ac6874-0
langchain_community.callbacks.infino_callback.get_num_tokens¶ langchain_community.callbacks.infino_callback.get_num_tokens(string: str, openai_model_name: str) → int[source]¶ Calculate num tokens for OpenAI with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.get_num_tokens.html
4d2310a5ee90-0
langchain.callbacks.file.FileCallbackHandler¶ class langchain.callbacks.file.FileCallbackHandler(filename: str, mode: str = 'a', color: Optional[str] = None)[source]¶ Callback Handler that writes to a file. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(filename[, mode, color]) Initialize callback handler. on_agent_action(action[, color]) Run on agent action. on_agent_finish(finish[, color]) Run on agent end. on_chain_end(outputs, **kwargs) Print out that we finished a chain. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Print out that we are entering a chain. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.file.FileCallbackHandler.html
4d2310a5ee90-1
Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text[, color, end]) Run when agent ends. on_tool_end(output[, color, ...]) If not the final action, print out observation. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(filename: str, mode: str = 'a', color: Optional[str] = None) → None[source]¶ Initialize callback handler. on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we finished a chain. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.file.FileCallbackHandler.html
4d2310a5ee90-2
Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we are entering a chain. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) –
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.file.FileCallbackHandler.html
4d2310a5ee90-3
information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶ Run when agent ends. on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ If not the final action, print out observation.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.file.FileCallbackHandler.html
4d2310a5ee90-4
If not the final action, print out observation. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using FileCallbackHandler¶ Logging to file
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.file.FileCallbackHandler.html
2b5dd5ec120d-0
langchain_core.callbacks.manager.AsyncCallbackManagerForToolRun¶ class langchain_core.callbacks.manager.AsyncCallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager for tool run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForToolRun.html
2b5dd5ec120d-1
on_tool_error(error, **kwargs) Run when tool errors. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → AsyncCallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type AsyncCallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager get_sync() → CallbackManagerForToolRun[source]¶ Get the equivalent sync RunManager. Returns The sync RunManager. Return type CallbackManagerForToolRun async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForToolRun.html
2b5dd5ec120d-2
async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any async on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (str) – The output of the tool. async on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (Exception or KeyboardInterrupt) – The error. Examples using AsyncCallbackManagerForToolRun¶ Defining Custom Tools
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForToolRun.html
69d819a61f5c-0
langchain_core.callbacks.base.LLMManagerMixin¶ class langchain_core.callbacks.base.LLMManagerMixin[source]¶ Mixin for LLM callbacks. Methods __init__() on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. __init__()¶ on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.LLMManagerMixin.html
69d819a61f5c-1
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.LLMManagerMixin.html
ddb38faf2fcc-0
langchain_community.callbacks.infino_callback.import_infino¶ langchain_community.callbacks.infino_callback.import_infino() → Any[source]¶ Import the infino client.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.import_infino.html
b1380db83f9f-0
langchain_community.callbacks.comet_ml_callback.import_comet_ml¶ langchain_community.callbacks.comet_ml_callback.import_comet_ml() → Any[source]¶ Import comet_ml and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.comet_ml_callback.import_comet_ml.html
213c5b5da3f9-0
langchain_community.callbacks.context_callback.ContextCallbackHandler¶ class langchain_community.callbacks.context_callback.ContextCallbackHandler(token: str = '', verbose: bool = False, **kwargs: Any)[source]¶ Callback Handler that records transcripts to the Context service. (https://context.ai). Keyword Arguments token (optional) – The token with which to authenticate requests to Context. Visit https://with.context.ai/settings to generate a token. If not provided, the value of the CONTEXT_TOKEN environment variable will be used. Raises ImportError – if the context-python package is not installed. Chat Example:>>> from langchain_community.llms import ChatOpenAI >>> from langchain_community.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> chat = ChatOpenAI( ... temperature=0, ... headers={"user_id": "123"}, ... callbacks=[context_callback], ... openai_api_key="API_KEY_HERE", ... ) >>> messages = [ ... SystemMessage(content="You translate English to French."), ... HumanMessage(content="I love programming with LangChain."), ... ] >>> chat(messages) Chain Example:>>> from langchain.chains import LLMChain >>> from langchain_community.chat_models import ChatOpenAI >>> from langchain_community.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> human_message_prompt = HumanMessagePromptTemplate( ... prompt=PromptTemplate( ... template="What is a good name for a company that makes {product}?", ... input_variables=["product"], ... ), ... ) >>> chat_prompt_template = ChatPromptTemplate.from_messages( ... [human_message_prompt] ... )
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.ContextCallbackHandler.html
213c5b5da3f9-1
... [human_message_prompt] ... ) >>> callback = ContextCallbackHandler(token) >>> # Note: the same callback object must be shared between the ... LLM and the chain. >>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback]) >>> chain = LLMChain( ... llm=chat, ... prompt=chat_prompt_template, ... callbacks=[callback] ... ) >>> chain.run("colorful socks") Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([token, verbose]) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, **kwargs) Run when chain ends. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts. on_chat_model_start(serialized, messages, *, ...) Run when the chat model is started. on_llm_end(response, **kwargs) Run when LLM ends. on_llm_error(error, *, run_id[, parent_run_id])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.ContextCallbackHandler.html
213c5b5da3f9-2
on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(token: str = '', verbose: bool = False, **kwargs: Any) → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.ContextCallbackHandler.html
213c5b5da3f9-3
Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, **kwargs: Any) → Any[source]¶ Run when the chat model is started. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.ContextCallbackHandler.html
213c5b5da3f9-4
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.ContextCallbackHandler.html
213c5b5da3f9-5
Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using ContextCallbackHandler¶ Context
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.ContextCallbackHandler.html
ad36a5b6dc1b-0
langchain_community.callbacks.aim_callback.import_aim¶ langchain_community.callbacks.aim_callback.import_aim() → Any[source]¶ Import the aim python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.import_aim.html
dc1cb652a470-0
langchain_community.callbacks.streamlit.streamlit_callback_handler.ToolRecord¶ class langchain_community.callbacks.streamlit.streamlit_callback_handler.ToolRecord(name: str, input_str: str)[source]¶ The tool record as a NamedTuple. Create new instance of ToolRecord(name, input_str) Attributes input_str Alias for field number 1 name Alias for field number 0 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.ToolRecord.html
0315b1b9eeb7-0
langchain_community.callbacks.arize_callback.ArizeCallbackHandler¶ class langchain_community.callbacks.arize_callback.ArizeCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None)[source]¶ Callback Handler that logs to Arize. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([model_id, model_version, ...]) Initialize callback handler. on_agent_action(action, **kwargs) Do nothing. on_agent_finish(finish, **kwargs) Run on agent end. on_chain_end(outputs, **kwargs) Do nothing. on_chain_error(error, **kwargs) Do nothing. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Do nothing. on_llm_new_token(token, **kwargs) Do nothing. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
0315b1b9eeb7-1
on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run on arbitrary text. on_tool_end(output[, observation_prefix, ...]) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None) → None[source]¶ Initialize callback handler. on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
0315b1b9eeb7-2
Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run on arbitrary text. on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Run when tool ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
0315b1b9eeb7-3
Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
b6df4349b8c4-0
langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler¶ class langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler(metrics: List[Any], implementation_name: Optional[str] = None)[source]¶ Callback Handler that logs into deepeval. Parameters implementation_name – name of the implementation in deepeval metrics – A list of metrics Raises ImportError – if the deepeval package is not installed. Examples >>> from langchain_community.llms import OpenAI >>> from langchain_community.callbacks import DeepEvalCallbackHandler >>> from deepeval.metrics import AnswerRelevancy >>> metric = AnswerRelevancy(minimum_score=0.3) >>> deepeval_callback = DeepEvalCallbackHandler( ... implementation_name="exampleImplementation", ... metrics=[metric], ... ) >>> llm = OpenAI( ... temperature=0, ... callbacks=[deepeval_callback], ... verbose=True, ... openai_api_key="API_KEY_HERE", ... ) >>> llm.generate([ ... "What is the best evaluation tool out there? (no bias at all)", ... ]) "Deepeval, no doubt about it." Initializes the deepevalCallbackHandler. Parameters implementation_name – Name of the implementation you want. metrics – What metrics do you want to track? Raises ImportError – if the deepeval package is not installed. ConnectionError – if the connection to deepeval fails. Attributes BLOG_URL ISSUES_URL REPO_URL ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler.html
b6df4349b8c4-1
ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(metrics[, implementation_name]) Initializes the deepevalCallbackHandler. on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing on_chain_end(outputs, **kwargs) Do nothing when chain ends. on_chain_error(error, **kwargs) Do nothing when LLM chain outputs an error. on_chain_start(serialized, inputs, **kwargs) Do nothing when chain starts on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Log records to deepeval when an LLM ends. on_llm_error(error, **kwargs) Do nothing when LLM outputs an error. on_llm_new_token(token, **kwargs) Do nothing when a new token is generated. on_llm_start(serialized, prompts, **kwargs) Store the prompts on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler.html
b6df4349b8c4-2
Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. __init__(metrics: List[Any], implementation_name: Optional[str] = None) → None[source]¶ Initializes the deepevalCallbackHandler. Parameters implementation_name – Name of the implementation you want. metrics – What metrics do you want to track? Raises ImportError – if the deepeval package is not installed. ConnectionError – if the connection to deepeval fails. on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing when chain ends. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM chain outputs an error. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing when chain starts on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Log records to deepeval when an LLM ends.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler.html
b6df4349b8c4-3
Log records to deepeval when an LLM ends. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM outputs an error. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing when a new token is generated. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Store the prompts on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler.html
b6df4349b8c4-4
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Examples using DeepEvalCallbackHandler¶ Confident
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler.html
08dfdd880c3a-0
langchain_community.callbacks.utils.flatten_dict¶ langchain_community.callbacks.utils.flatten_dict(nested_dict: Dict[str, Any], parent_key: str = '', sep: str = '_') → Dict[str, Any][source]¶ Flattens a nested dictionary into a flat dictionary. Parameters nested_dict (dict) – The nested dictionary to flatten. parent_key (str) – The prefix to prepend to the keys of the flattened dict. sep (str) – The separator to use between the parent key and the key of the flattened dictionary. Returns A flat dictionary. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.flatten_dict.html
da89d117ea92-0
langchain_community.callbacks.wandb_callback.load_json_to_dict¶ langchain_community.callbacks.wandb_callback.load_json_to_dict(json_path: Union[str, Path]) → dict[source]¶ Load json file to a dictionary. Parameters json_path (str) – The path to the json file. Returns The dictionary representation of the json file. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.load_json_to_dict.html
f6070b0a9616-0
langchain_core.callbacks.manager.CallbackManagerForChainRun¶ class langchain_core.callbacks.manager.CallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for chain run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_agent_action(action, **kwargs) Run when agent action is received. on_agent_finish(finish, **kwargs) Run when agent finish is received. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_retry(retry_state, **kwargs) Run on a retry event.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainRun.html
f6070b0a9616-1
on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run when agent action is received. Parameters action (AgentAction) – The agent action. Returns
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainRun.html
f6070b0a9616-2
Parameters action (AgentAction) – The agent action. Returns The result of the callback. Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶ Run when agent finish is received. Parameters finish (AgentFinish) – The agent finish. Returns The result of the callback. Return type Any on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any Examples using CallbackManagerForChainRun¶ Custom chain
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainRun.html
2b08e108112e-0
langchain_core.callbacks.manager.atrace_as_chain_group¶ langchain_core.callbacks.manager.atrace_as_chain_group(group_name: str, callback_manager: Optional[AsyncCallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None) → AsyncGenerator[AsyncCallbackManagerForChainGroup, None][source]¶ Get an async callback manager for a chain group in a context manager. Useful for grouping different async calls together as a single run even if they aren’t composed in a single chain. Parameters group_name (str) – The name of the chain group. callback_manager (AsyncCallbackManager, optional) – The async callback manager to use, which manages tracing and other callback behavior. project_name (str, optional) – The name of the project. Defaults to None. example_id (str or UUID, optional) – The ID of the example. Defaults to None. run_id (UUID, optional) – The ID of the run. tags (List[str], optional) – The inheritable tags to apply to all runs. Defaults to None. Returns The async callback manager for the chain group. Return type AsyncCallbackManager Note: must have LANGCHAIN_TRACING_V2 env var set to true to see the trace in LangSmith. Example llm_input = "Foo" async with atrace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the async callback manager for the chain group res = await llm.apredict(llm_input, callbacks=manager) await manager.on_chain_end({"output": res})
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.atrace_as_chain_group.html
b2564544619c-0
langchain_community.callbacks.labelstudio_callback.LabelStudioMode¶ class langchain_community.callbacks.labelstudio_callback.LabelStudioMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Label Studio mode enumerator. PROMPT = 'prompt'¶ CHAT = 'chat'¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioMode.html
80197a7cc231-0
langchain_community.callbacks.tracers.comet.import_comet_llm_api¶ langchain_community.callbacks.tracers.comet.import_comet_llm_api() → SimpleNamespace[source]¶ Import comet_llm api and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.import_comet_llm_api.html
eff56d92017b-0
langchain_core.callbacks.manager.AsyncCallbackManager¶ class langchain_core.callbacks.manager.AsyncCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Return whether the handler is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the async callback manager. copy() Copy the callback manager. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
eff56d92017b-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ add_tags(tags: List[str], inherit: bool = True) → None¶ classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → AsyncCallbackManager[source]¶ Configure the async callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
eff56d92017b-2
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured async callback manager. Return type AsyncCallbackManager copy() → T¶ Copy the callback manager. async on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForChainRun[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The async callback managerfor the chain run. Return type AsyncCallbackManagerForChainRun async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The list ofasync callback managers, one for each LLM Run corresponding to each inner message list. Return type List[AsyncCallbackManagerForLLMRun] async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
eff56d92017b-3
Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The list of asynccallback managers, one for each LLM Run corresponding to each prompt. Return type List[AsyncCallbackManagerForLLMRun] async on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForRetrieverRun[source]¶ Run when retriever starts running. async on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForToolRun[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. Returns The async callback managerfor the tool run. Return type AsyncCallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None¶ remove_tags(tags: List[str]) → None¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
eff56d92017b-4
Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html
a482cb46eadc-0
langchain_community.callbacks.wandb_callback.analyze_text¶ langchain_community.callbacks.wandb_callback.analyze_text(text: str, complexity_metrics: bool = True, visualize: bool = True, nlp: Any = None, output_dir: Optional[Union[str, Path]] = None) → dict[source]¶ Analyze text using textstat and spacy. Parameters text (str) – The text to analyze. complexity_metrics (bool) – Whether to compute complexity metrics. visualize (bool) – Whether to visualize the text. nlp (spacy.lang) – The spacy language model to use for visualization. output_dir (str) – The directory to save the visualization files to. Returns A dictionary containing the complexity metrics and visualizationfiles serialized in a wandb.Html element. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.analyze_text.html
595b756f9cb9-0
langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler¶ class langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = None, tracking_uri: Optional[str] = None)[source]¶ Callback Handler that logs metrics and artifacts to mlflow server. Parameters name (str) – Name of the run. experiment (str) – Name of the experiment. tags (dict) – Tags to be attached for the run. tracking_uri (str) – MLflow tracking server uri. This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to mlflow server. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([name, experiment, tags, tracking_uri]) Initialize callback handler. flush_tracker([langchain_asset, finish]) get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
595b756f9cb9-1
on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = None, tracking_uri: Optional[str] = None) → None[source]¶ Initialize callback handler.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
595b756f9cb9-2
Initialize callback handler. flush_tracker(langchain_asset: Any = None, finish: bool = False) → None[source]¶ get_custom_callback_meta() → Dict[str, Any]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
595b756f9cb9-3
Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. reset_callback_meta() → None¶ Reset the callback metadata. Examples using MlflowCallbackHandler¶ MLflow
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
b45d9849ce74-0
langchain_community.callbacks.streamlit.mutable_expander.ChildType¶ class langchain_community.callbacks.streamlit.mutable_expander.ChildType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ The enumerator of the child type. MARKDOWN = 'MARKDOWN'¶ EXCEPTION = 'EXCEPTION'¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.mutable_expander.ChildType.html
453a254d1da7-0
langchain_core.callbacks.manager.AsyncRunManager¶ class langchain_core.callbacks.manager.AsyncRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async Run Manager. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncRunManager.html
453a254d1da7-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager abstract get_sync() → RunManager[source]¶ Get the equivalent sync RunManager. Returns The sync RunManager. Return type RunManager async on_retry(retry_state: RetryCallState, **kwargs: Any) → None[source]¶ Run on a retry event. async on_text(text: str, **kwargs: Any) → Any[source]¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncRunManager.html
3b8e842e3b2b-0
langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler¶ class langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler(logger: Logger, handler: Any)[source]¶ Callback Handler for logging to WhyLabs. This callback handler utilizes langkit to extract features from the prompts & responses when interacting with an LLM. These features can be used to guardrail, evaluate, and observe interactions over time to detect issues relating to hallucinations, prompt engineering, or output validation. LangKit is an LLM monitoring toolkit developed by WhyLabs. Here are some examples of what can be monitored with LangKit: * Text Quality readability score complexity and grade scores Text Relevance - Similarity scores between prompt/responses - Similarity scores against user-defined themes - Topic classification Security and Privacy - patterns - count of strings matching a user-defined regex pattern group - jailbreaks - similarity scores with respect to known jailbreak attempts - prompt injection - similarity scores with respect to known prompt attacks - refusals - similarity scores with respect to known LLM refusal responses Sentiment and Toxicity - sentiment analysis - toxicity analysis For more information, see https://docs.whylabs.ai/docs/language-model-monitoring or check out the LangKit repo here: https://github.com/whylabs/langkit — :param api_key: WhyLabs API key. Optional because the preferred way to specify the API key is with environment variable WHYLABS_API_KEY. Parameters org_id (Optional[str]) – WhyLabs organization id to write profiles to. Optional because the preferred way to specify the organization id is with environment variable WHYLABS_DEFAULT_ORG_ID. dataset_id (Optional[str]) – WhyLabs dataset id to write profiles to. Optional because the preferred way to specify the dataset id is
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
3b8e842e3b2b-1
Optional because the preferred way to specify the dataset id is with environment variable WHYLABS_DEFAULT_DATASET_ID. sentiment (bool) – Whether to enable sentiment analysis. Defaults to False. toxicity (bool) – Whether to enable toxicity analysis. Defaults to False. themes (bool) – Whether to enable theme analysis. Defaults to False. Initiate the rolling logger. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(logger, handler) Initiate the rolling logger. close() Close any loggers to allow writing out of any profiles before exiting. flush() Explicitly write current profile if using a rolling logger. from_params(*[, api_key, org_id, ...]) Instantiate whylogs Logger from params. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
3b8e842e3b2b-2
Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(logger: Logger, handler: Any)[source]¶ Initiate the rolling logger. close() → None[source]¶ Close any loggers to allow writing out of any profiles before exiting. flush() → None[source]¶ Explicitly write current profile if using a rolling logger.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
3b8e842e3b2b-3
flush() → None[source]¶ Explicitly write current profile if using a rolling logger. classmethod from_params(*, api_key: Optional[str] = None, org_id: Optional[str] = None, dataset_id: Optional[str] = None, sentiment: bool = False, toxicity: bool = False, themes: bool = False, logger: Optional[Logger] = None) → WhyLabsCallbackHandler[source]¶ Instantiate whylogs Logger from params. Parameters api_key (Optional[str]) – WhyLabs API key. Optional because the preferred way to specify the API key is with environment variable WHYLABS_API_KEY. org_id (Optional[str]) – WhyLabs organization id to write profiles to. If not set must be specified in environment variable WHYLABS_DEFAULT_ORG_ID. dataset_id (Optional[str]) – The model or dataset this callback is gathering telemetry for. If not set must be specified in environment variable WHYLABS_DEFAULT_DATASET_ID. sentiment (bool) – If True will initialize a model to perform sentiment analysis compound score. Defaults to False and will not gather this metric. toxicity (bool) – If True will initialize a model to score toxicity. Defaults to False and will not gather this metric. themes (bool) – If True will initialize a model to calculate distance to configured themes. Defaults to None and will not gather this metric. logger (Optional[Logger]) – If specified will bind the configured logger as the telemetry gathering agent. Defaults to LangKit schema with periodic WhyLabs writer. on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
3b8e842e3b2b-4
Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
3b8e842e3b2b-5
:type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
3b8e842e3b2b-6
Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using WhyLabsCallbackHandler¶ WhyLabs
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.whylabs_callback.WhyLabsCallbackHandler.html
1b7fbaf302d5-0
langchain_core.callbacks.manager.trace_as_chain_group¶ langchain_core.callbacks.manager.trace_as_chain_group(group_name: str, callback_manager: Optional[CallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None) → Generator[CallbackManagerForChainGroup, None, None][source]¶ Get a callback manager for a chain group in a context manager. Useful for grouping different calls together as a single run even if they aren’t composed in a single chain. Parameters group_name (str) – The name of the chain group. callback_manager (CallbackManager, optional) – The callback manager to use. inputs (Dict[str, Any], optional) – The inputs to the chain group. project_name (str, optional) – The name of the project. Defaults to None. example_id (str or UUID, optional) – The ID of the example. Defaults to None. run_id (UUID, optional) – The ID of the run. tags (List[str], optional) – The inheritable tags to apply to all runs. Defaults to None. Note: must have LANGCHAIN_TRACING_V2 env var set to true to see the trace in LangSmith. Returns The callback manager for the chain group. Return type CallbackManagerForChainGroup Example llm_input = "Foo" with trace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the callback manager for the chain group res = llm.predict(llm_input, callbacks=manager) manager.on_chain_end({"output": res})
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.trace_as_chain_group.html
b6ec7736d150-0
langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler¶ class langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler(api_key: Optional[str] = None, url: Optional[str] = None, project_id: Optional[int] = None, project_name: str = 'LangChain-%Y-%m-%d', project_config: Optional[str] = None, mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT)[source]¶ Label Studio callback handler. Provides the ability to send predictions to Label Studio for human evaluation, feedback and annotation. Parameters api_key – Label Studio API key url – Label Studio URL project_id – Label Studio project ID project_name – Label Studio project name project_config – Label Studio project config (XML) mode – Label Studio mode (“prompt” or “chat”) Examples >>> from langchain_community.llms import OpenAI >>> from langchain_community.callbacks import LabelStudioCallbackHandler >>> handler = LabelStudioCallbackHandler( ... api_key='<your_key_here>', ... url='http://localhost:8080', ... project_name='LangChain-%Y-%m-%d', ... mode='prompt' ... ) >>> llm = OpenAI(callbacks=[handler]) >>> llm.predict('Tell me a story about a dog.') Attributes DEFAULT_PROJECT_NAME ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([api_key, url, project_id, ...]) add_prompts_generations(run_id, generations)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
b6ec7736d150-1
add_prompts_generations(run_id, generations) on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Do nothing when LLM chain outputs an error. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Save the prompts in memory when an LLM starts. on_llm_end(response, **kwargs) Create a new Label Studio task for each prompt and generation. on_llm_error(error, **kwargs) Do nothing when LLM outputs an error. on_llm_new_token(token, **kwargs) Do nothing when a new token is generated. on_llm_start(serialized, prompts, **kwargs) Save the prompts in memory when an LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
b6ec7736d150-2
on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. __init__(api_key: Optional[str] = None, url: Optional[str] = None, project_id: Optional[int] = None, project_name: str = 'LangChain-%Y-%m-%d', project_config: Optional[str] = None, mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT)[source]¶ add_prompts_generations(run_id: str, generations: List[List[Generation]]) → None[source]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM chain outputs an error. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Save the prompts in memory when an LLM starts. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Create a new Label Studio task for each prompt and generation. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
b6ec7736d150-3
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM outputs an error. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing when a new token is generated. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Save the prompts in memory when an LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html